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The suite of factors that drives where and under what conditions a species occurs has become the focus of in-
tense research interest. Three general categories of methods have emerged by which researchers address ques-
tions in this area: mechanistic models of species’ requirements in terms of environmental conditions that are 
based on first principles of biophysics and physiology, correlational models based on environmental associations 
derived from analyses of geographic occurrences of species, and process-based simulations that estimate occu-
pied distributional areas and associated environments from assumptions about niche dimensions and dispersal 
abilities. We review strengths and weaknesses of these sets of approaches, and identify significant advantages 
and disadvantages of each. Rather than identifying one or the other as ‘better,’ we suggest that researchers take 
great care to use the method best-suited to each specific research question, and be conscious of the weaknesses 
of any method, such that inappropriate interpretations are avoided.
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1.	 NICHES AND DISTRIBUTIONS
The many and diverse concepts associated with the term ‘niche’ 
have long been central in ecological thinking (Chase & Leibold 
2003). After a period of stagnation (approximately 1980-1990), 
during which research about niches was minimal (McInerny & 
Etienne 2012a, b), the term has seen a vibrant rebirth in recent 
decades. This revival appears associated at least in part with the 
possibility of using large databases of primary biodiversity oc-
currence data in tandem with geospatial data sets summarising 
environmental variables to estimate coarse-grained aspects of 
species’ niche dimensions. By extension, from such niche esti-
mates, one can then estimate potential distributional areas of 
species as well (Peterson et al. 2011).

This approach is the so-called ‘correlative’ approach 
to what has been termed ecological niche modelling (hereafter 
‘ENM’), in situations in which focus is on understanding condi-
tions that allow persistence of species’ populations, or species 
distribution modelling (‘SDM’) in situations in which focus is on 
predicting the geographic distribution of the species (Peterson 

& Soberón 2012). Other approaches to these challenges exist as 
well, however, such as ‘mechanistic’ niche modelling (Kearney 
& Porter 2009), that aims to understand, using detailed bio-
physical modelling approaches, the environmental require-
ments that make up the fundamental niche of a species; and 
‘process-oriented’ or ‘hybrid’ distribution modelling (Dormann 
et al. 2012), wherein hypotheses about niche, dispersal, and (in 
some cases) biotic interactions are integrated in models and 
simulations of the entire set of processes leading to the occu-
pation of areas by a species.

 Some authors prefer to blur distinctions between 
these approaches (Dormann et al. 2012), and clearly the three 
do overlap and interlink (e.g., correlational or mechanistic 
niche estimates being used in process-oriented approaches). 
How-​ever, here, we posit that the distinctions between mecha-
nistic, correlative, and process-oriented approaches are more 
than just technical or methodological in nature, but rather 
that they correspond at least roughly to distinctions between 
three types of niches that are being estimated. This distinction 
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is crucial to the progress and advancement of detailed under-
standing of the distribution and ecology of species. This paper 
thus sets out to review these three approaches that are often 
perceived as competing (Kearney 2006) or as a part of a con-
tinuum (Dormann et al. 2012).

1.1. Background
The popularity of correlative ENM and SDM approaches in 
ecology and biogeography can be understood as elaborations 
by recent research groups on concepts presented originally by 
Grinnell (1914, 1917, 1924) and Hutchinson (1957). Key ideas 
include (1) the supposition that the geographic distribution 
(‘range’) of a species relates closely to its physiological and 
behavioural features (from Grinnell 1917). This point was later 
elaborated by Hutchinson (1957, 1978), in his idea of a ‘bio-
tope’, defined as the geographic area across which the niche 
requirements of a species are fulfilled. (2) The niche can be 
represented as a multidimensional object enclosing the set of 
environmental conditions that a species requires for reproduc-
tion and survival (Hutchinson 1957). (3) At least three types 
of niches can be recognised: the fundamental (requirements 
only) and realised (modification of the fundamental to include 
effects of biotic interactions) niches, as well as an intermedi-
ate entity that later authors termed the ‘potential’ (Jackson 
and Overpeck 2000) or ‘existing’ (Peterson et al. 2011) niche; 
Hutchinson hinted at this latter niche type, but only very briefly 
(Hutchinson 1957, 1978). The point is that, whereas the funda-
mental niche is defined in strictly environmental dimensions 
sans geography, the existing niche represents the subset of the 
fundamental niche conditions that is actually represented on 
real-world landscapes that are relevant to the species (Peter-
son et al. 2011). Although still other types of niches (e.g., the 
‘tolerance niche’) can be recognised (Sax et al. 2013), we are 
working within a reductive framework that has been outlined in 
a recent book co-authored by two of us and colleagues (Peter-
son et al. 2011). Finally, (4) Hutchinson (1957, 1978) perceived 
that separating different types of environmental variables as 
they relate to ecological niches would open doors to important 
theoretical advances, which has clearly been the case.

Thanks to a few decades of progress in population bi-
ology and biogeography, the above points can be defined and 
explored more rigorously in terms of the population processes 
that underlie the so-called ‘BAM’ diagram (Figure 1), a heuristic 
for the joint effects of biotic, abiotic, and movement (disper-
sal) considerations. The fundamental niche is now conceived of 
as a scaled translation of the suite of physiological tolerances 
within which a species is able to maintain populations without 
immigration subsidy (Peterson et al. 2011). Whereas physi-
ological tolerances are organismal responses to conditions on 
microscales (perhaps 10-3 m), most environmental dimensions 
that are used in ENM or SDM studies are much coarser, on the 
order of kilometres or more (103-104 m). This scaling of physiol-
ogy into niche constitutes, in the end, one of the tougher chal-
lenges in building a rigorous conceptual underpinning of the 

broader endeavour of translating between organismal charac-
teristics and geographic distributions (Barve et al. 2014).

On geographic extents, to a first approximation (i.e., 
ignoring high-resolution habitat preferences and the potential 
for evolutionary change in niches), regions of the world (here-
after termed G) exist where the physiological requirements of a 
species are fulfilled (hereafter A). Regions where the biotic mi-
lieu is suitable for the species are called B and regions that have 
been accessible by dispersal to the species over relevant time 
periods are called M (for mobility). The intersection of these 
three areas, termed the occupied distribution (GO), is the area 
in which viable populations of a species can potentially persist, 
and may be found. The counterparts of some of these geo-
graphic areas in environmental space are a set of reductions 
of the fundamental ecological niche (NF). These niche entities 
include the ‘existing’ fundamental niche (termed NF*), which 
can be represented as = NF +h(M) (where h(X) can be inter-
preted as ‘the environments associated with X’). The ‘realised’ 
ecological niche (NR) can be represented as NF+h(M)+h(B), 
and thus incorporates the effects of biotic interactions as well. 
These definitions are elaborated and explored further in Box 1.

1.2. Estimation
As mentioned previously, three major approaches exist within 
this broader field: mechanistic modelling, process-based mod-
elling, and correlational modelling. Note that the latter sub-
sumes both ENM and SDM, which have too often been con-
fused or synonymised, an unfortunate practice that obscures 
important conceptual distinctions (Peterson & Soberón 2012). 
Curiously, and to a large degree the main point of this paper, 
these three approaches in reality estimate three different niche 
types such that debate among these approaches to a signifi-
cant degree is a matter of comparing apples and oranges.

 If one measures tolerance limits of a species with 
respect to a set of environmental dimensions via physiologi-
cal experiments (Birch 1953; Kellermann et al. 2012; Barve 
et al. 2014) or first-principles biophysical models (Kearney & 
Porter 2009; Buckley et al. 2010; Higgins et al. 2012), one is 
measuring the multidimensional projection of a theoretical, 
fundamental niche onto a simpler space consisting of the set 
of variables that is actually being measured or modelled (Drake 
2015). Such efforts are invariably carried out in relatively few 
environmental dimensions (e.g., temperature, water stress), as 
the complexity involved either in carrying out all of the facto-
rial experiments (physiological measurements) or in estimating 
all of the relevant parameters (biophysical models) cannot be 
easily addressed. Although mechanistic niche models indeed 
estimate dimensions of the fundamental niche, translation 
of those estimates into potential geographic distributions re-
quires significant assumptions about variation in many other 
dimensions. Scaling of parameter estimates and conditions 
across orders of magnitude of difference between physiologi-
cal and geographic realms is a complex issue that has not been 
considered in detail.
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Correlative methods (Guisan & Zimmermann 2000; 
Franklin 2010; Peterson et al. 2011) have a distinct suite of 
advantages and disadvantages. Here, data characterising sites 
where the species is known to occur are related to the envi-
ronmental characteristics of those localities. Although numer-
ous such correlative approaches exist (Elith et al. 2006), most 
compare environments associated with sites of known pres-
ence to those associated with sets of sites that do not (or are 
not known to) hold populations of the species. By this means, 
but under rather restrictive and too-often-ignored constraints 
(Anderson et al. 2003; Anderson & Raza 2010; Barve et al. 
2011; Saupe et al. 2012; Owens et al. 2013), it is possible to 
identify sets of conditions under which the species is able to 

maintain populations. These environmental correlates esti-
mate a ‘niche’ that is almost certainly intermediate between 
the realised and the fundamental niches (Lobo et al. 2010), but 
its actual position is rather poorly defined - this point will be 
discussed further below.

Finally, several recent efforts have aimed to develop 
process-based models and simulations of the joint action of 
the suite of factors that together determine species’ geograph-
ic distributions (Cabral & Schurr 2010; Dormann et al. 2012). 
These approaches generally require an initial hypothesis of 
the fundamental niche, hypotheses regarding dispersal ability 
across complex landscapes, a starting point, and (at times) hy-
potheses about interactions with other species. Process-based 
approaches ideally involve simulations such that the complexi-
ties of chance effects are also taken into account and appear in 
results as unusual possible outcomes. To the extent that these 
approaches are successful in approximating the full complexity 
of the situation, they create a detailed hypothesis of GO that 
mirrors the geographic footprint of the realised niche (NR).

1.3. This overview
This paper aims to provide a synthesis regarding approaches 
for estimating ecological niches and geographic distributions 
of species. We aim to derive a detailed understanding of the 
relative advantages and disadvantages of each approach, par-
ticularly in the face of real-world constraints of data availability, 
the biases that pervade such real-world analysis situations, and 
the data gaps that are similarly ubiquitous in this area of inqui-
ry. Rather than a competitive situation in which one approach 
might be found to perform better overall than the others, the 
picture to which we arrive is one of complementary view-
points. In particular, we note that many studies to date have 
used terminology and concepts cavalierly, creating consider-
able confusion of terminology and interpretation regarding 
similarities and differences among approaches. Indeed, appre-
ciating the different niches that each approach approximates in 
reality, as the three approaches serve quite different purposes 
and will yield quite different answers, we would argue that any 
perceived competition among methodologies is mostly a con-
sequence of misperception.

2.	 RELATIVE MERITS OF DIFFERENT APPROACHES

2.1. Mechanistic approaches
Mechanistic and biophysical approaches have the significant 
advantage of direct ties of quantities being estimated to the 
physiology of the species under consideration. As such, these 
methods have the potential for direct measurement of dimen-
sions of the fundamental niche without the confounding ef-
fects of accessible areas and interacting species. In this sense, 
these approaches permit identification of the spatial footprint 
of A, without the complications related to M or B that certainly 
affect the other two approaches. When estimating future dis-
tributions under scenarios of climate change, for example, the 

Figure 1. The BAM heuristic for understanding the drivers of species’ geographic 
distributions. Top: diagrammatic representation of effects of biotic, abiotic and 
mobility considerations; particular distributional areas are labelled and de-
scribed. Bottom: linked views of the distribution of a hypothetical species in geo-
graphic (left) and environmental (right) dimensions. In geographic dimensions, 
the accessible area is shown as a black line (delimited by the Mississippi River to 
the west, Gulf of Mexico to the south, Atlantic Ocean to the east and distance to 
the north). The habitable areas (i.e., conditions within the fundamental ecologi-
cal niche) are shown as red and dark blue (the remaining colours, including blue 
areas in the far north serve only to summarise general environmental variation). 
Note that portions of the habitable area are inside and other portions are outside 
the accessible area and some are broadly disjunct from the occupied area. The 
dark blue areas in the central United States indicate the presence of a competitor 
species that affects the distributional potential of the species. In environmental 
dimensions, the fundamental ecological niche is visible as the green ellipsoid and 
habitable sites on the landscape of North America are those coloured red or blue 
within that ellipsoid. The reductive effects of the presence of the competitor spe-
cies can be seen as the blue edging around the fundamental ecological niche. 
Note also that major portions of the fundamental ecological niche are not repre-
sented anywhere within North America; the portion of the ellipsoid that indeed is 
represented within the Americas and more particularly within the species’ M, is 
the existing fundamental ecological niche.

.
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Figure 2. Illustration of the existing fundamental ecological niche for 
a hypothetical species endemic to Madagascar. The map (top) shows 
values of annual mean temperature across Africa. The ‘species,’ how-
ever, is endemic to Madagascar and thus, has a restricted accessible 
area M, shown as the blue outline on the map. The environments 
represented across Africa and across M are contrasting, obviously, as 
can be appreciated from the histogram (bottom; white bars for Africa; 
gray bars for Madagascar). Note that a hypothetical ecological niche 
(see red bell-shaped curve on histogram) may not be represented com-
pletely across either G (here Africa) or M (here Madagascar). This re-
duced portion of the fundamental ecological niche that is observable is 
the existing ecological niche, and is what is observable in correlational 
ecological niche modelling studies.

Box 1. Illustration of niches and distributions

The ideas in this box are based on the concept, from Hutchinson 
(1957), of a rather complex correspondence between niche space and 
geographic space, the so-called Hutchinson’s Duality (Colwell & Rangel 
2009). This idea is made operational by representing geographic space 
as grids with an extent and cell-size and environmental variables as-
sociated to each cell (Peterson et al. 2011), as in many raster GIS op-
erations. Niches then are sets of points in the variable space at time t 
(which can be termed  Et); corresponding distributional areas are sets 
of coordinates in geographic space. The different types of niches (fun-
damental, existing, and realised) can be represented as subsets of the 
space Et (note that in much of our discussion in this paper, we neglect 
the time-specific nature of these definitions). The symbols used in this 
discussion are modified slightly from Peterson et al. (2011).

Figure 1 depicts the biotic-abiotic-mobility (BAM) diagram 
as well as an example of linked environmental and geographic spaces, 
illustrating the complex topological connections between the two. The 
ellipse in the environmental space is a simple illustration of a possible 
fundamental niche NF, but note that the entire ellipse is not observable 
under the suite of environmental conditions that is manifested on the 
ground. Rather, the set of habitable conditions that is the fundamental 
niche is intersected with the cloud of points in environmental space at 
a given time Et, to identify points inside the ellipse. Reducing NF further 
by intersection with the set of environments represented within the 
accessible area (M) for this species, we obtain a set of environments 
that is termed the existing niche, NF*, which is implicitly referred also to 
time t. The reduced nature of NF* with respect to NF can be appreciated 
also in Figure 2.

Note that the geographic area corresponding to NF* in the 
examples in Figure 1 is broader than the occupied geographic distribu-
tion, including areas in western North America that are not inhabited 
by this species. Dispersal limitations that are subsumed in the concept 
of M make only temperate areas east of the Mississippi River accessible 
to the species, and hence within GO. The remaining habitable areas are 
apparently outside of M, and as such, are termed the invadable geo-
graphic distribution (GI): some are immediately west of the Mississippi 
River barrier, whereas others are broadly disjunct farther to the west.

Finally, since interactions with other species may further 
hinder full occupation of potential geographic distributions, the geo-
graphic and environmental footprint of even the existing niche may 
not be fully used by the species. This idea is expressed in Figure 1 as 
the geographic presence of a hypothetical competitor species (range 
shown in blue) and the reductive effects on its ecological niche that can 
be seen in the environmental-space visualisation. This further-reduced 
environmental potential is the realised niche (NR); even this reduced 
niche nonetheless may still map onto both inhabited and uninhabited 
geographic areas as a result of finer-scale processes acting in parallel.

In the logic developed in this paper, then, the following rela-
tionships among niches should hold:

NF 4 NF*, NF* = NF +h(Mt)
NF* 4 NR , NR = NF*+h(Bt)

Note that NR is the most restricted suite of environments, as it reflects 
the fundamental niche of the species in question, the environments 
represented across the accessible area for the species, and the environ-
mental constraints placed on the species by other competing species. 
Almost all of these niches and sets of environments are time-specific: 
that is, they can and do change through time; the only exception would 
be NF, which should change on much slower time scales, responding 
only to evolutionary change in the species’ tolerances and physiological 
responses.
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objective must be to measure the fundamental niche of the 
species, as that is the niche that determines the species’ po-
tential for response; thus, mechanistic modelling approaches 
may be more adequate for these types of investigations, al-
though comparisons of future distributional estimates based 
on mechanistic and correlative approaches produced mixed 
results (Buckley et al. 2010; Kearney et al. 2010).

Mechanistic and biophysical approaches often as-
sume that an estimate of the niche of a single individual or a 
few individuals will suffice to characterise the ecological niche 
constraints on the entire geographic range of the species in 
question. In many cases, this limitation is the result of practi-
cal considerations: physiological measurements and detailed 
parameter estimates needed for mechanistic model calibra-
tion are costly in terms of both time and resources. However, 
in light of considerable evidence of local adaptation in niche-
related characteristics in many groups (Linhart & Grant 1996), 
one must also ponder the possibility that a single- or few-site 
characterisation of niche would underestimate the full ecologi-
cal and environmental potential of such locally adapted species 
(Kearney & Porter 2009; note, however, that correlative mod-
els can be accused of the same failing as is detailed below). On 
the positive side, if detailed information exists to parameterise 
small-scale adaptation events, mechanistic modelling offers 
the possibility of fine-tuning niche estimates to reflect the spe-
cific niche characteristics of locally adapted individuals.

In addition, the reliability of physiological parameters 
depends on the source of this crucial information, whether 
gathered in natural settings or through laboratory experi-
ments. The latter are potentially influenced by limitations spe-
cific to experimental situations such as acclimatisation, sam-
ple sizes, and length of life cycle (Lutterschmidt & Hutchison 
1997; Simon et al. 2015). A further major constraint is in the 
scaling challenges mentioned above: mechanistic models and 
measurements are physiological in nature and as such repre-
sent individual characteristics that are relevant on extremely 
fine spatial scales, but are then applied to estimate geographic 
phenomena at coarse spatial and temporal scales. These con-
straints require assumptions, many of which influence the out-
comes of the models (see Box 2).

Indeed, most mechanistic models tend to require 
large numbers of parameter estimates for model calibration 
and setup. For example, to estimate the microclimatic condi-
tions, parameters related to soil properties, wind speed, solar 
radiation, and cloud cover are needed. However, such detailed 
information may not be available for many regions of the 
world, especially at fine spatial and temporal scales (Kearney 
& Porter 2009). Behavioural characteristics that affect heat, 
energy, and water fluxes (thermoregulation by seeking shade, 
burrowing, body posture changes, etc.) can also be difficult to 
parameterise at the spatial and temporal resolutions needed. 
Finally, measurements of body part dimensions, insulative 
properties of integument, and specific physiological param-
eters (e.g., thermal conductivity, oxygen extraction efficiency, 
diet, and digestive properties) may not be available for many 

organisms; some of these parameters have been derived from 
allometric equations calibrated on better known model organ-
isms (Kearney & Porter 2004; Natori & Porter 2007; Long et al. 
2013). Estimates from single populations or based on allome-
tric equations or measurements of other species may not be 
precise enough; Box 2 provides an illustration of the sensitivity 
of mechanistic modelling approaches to rather minor varia-
tions in parameter estimates. Errors in parameter estimations 
have been shown to affect mechanistic model performance 
(e.g., Buckley et al. 2010).

A further key consideration is how individual mea-
surements are scaled up to landscape- or broad geographic-
level predictions of organisms’ energetic needs by applying 
the same energy balance equations. These extrapolations are 
calibrated in detail for one site, but are applied to all cells of 
a raster covering the geographic area of interest (Kearney & 
Porter 2009). An important complexity is that possible interac-
tions among neighbouring cells that may affect the microcli-
matic conditions and organismal energetics are not estimated 
(Natori & Porter 2007).

Finally, the geographic area (A) identified by mecha-
nistic models is of uncertain meaning. That is, if biotic inter-
actions or dispersal limitation play significant roles in dis-
tributional ecology, then large portions of A may not be, in 
reality, habitable and reachable by the species (Wisz et al. 
2013). Indeed, positive interactions may even open up addi-
tional distributional possibilities beyond the limits of A (Araújo 
& Rozenfeld 2014), as has been suggested for positive interac-
tions among species in increasingly harsh environmental condi-
tions (Bertness & Callaway 1994; Bruno et al. 2003), but that 
possibility is neglected in the reductive structure of the BAM 
diagram, which implicitly assumes that species interactions 
will be negative in nature. That is, even with a robust hypoth-
esis of A in hand, the maps that result may not be particularly 
predictive or instructive; this limitation will frequently require 
that mechanistic approaches be linked with process-oriented 
approaches to be able to predict and anticipate distributional 
phenomena.

2.2. Correlative approaches
Correlative approaches have both advantages and disadvan-
tages that are distinct from those of mechanistic approaches. 
Clearly, it is simultaneously an advantage and a disadvantage 
that correlative approaches measure something less than the 
full fundamental niche: as mentioned above, the meaning of 
estimates of A (the geographic footprint of the fundamental 
ecological niche) is unclear. That is, correlative model outputs 
express a complex combination of factors, including the effects 
of the frequently unknown B and M, whose combined restric-
tive effects (plus the effects of the sampling that underlies the 
occurrence data) shape species’ distributions and constrain 
their estimation. The degree to which a view of A will include 
uninhabited areas is not known in many cases. On the other 
hand, the joint effects and interactions among abiotic, biotic, 
and dispersal effects can be rather complex: interpretation of 
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correlational models will always be compromised by this mix-
ture, as joint effects will frequently not be able to be teased 
apart, distinguished, and interpreted completely and clearly 
(Soberón & Peterson 2005). Indeed, recent papers based on 
simulated species have demonstrated that some scenarios of 
joint effects of A, B, and M are impossible to disentangle and 
explore using correlational approaches (Saupe et al. 2012), 
particularly when models are to be transferred to other land-
scapes or times (Owens et al. 2013).

	On the other hand, the advantages of correlational 
approaches centre on their low input data needs: because they 
require few predictor variables for calibration (although many 
parameter estimates may be generated in the process of model 
calibration), they are perhaps less dependent on availability of 
variables for the calibration process. What is more, because cor-
relational models are keyed at the outset to geographic occur-
rences and coarse-resolution environmental dimensions, these 
approaches avoid the challenges of scaling up from individual 
phenomena to landscape-level phenomena. Their reliance on 
sampling of occurrences across the geographic distribution of 
the species provides a set of partial tests of niche tolerance 
limits: in this sense, correlational approaches avoid the single-
niche assumptions of mechanistic models and can incorporate 
effects of numerous causal factors in a single ‘model.’

 However, correlative approaches have limited use in 
pinpointing fine-grain, individual-level tolerance limits. When 
local adaptation in niche-relevant dimensions has occurred, 
correlative models cast at the level of the species will overesti-
mate the niche of any single population (whereas mechanistic 
models based on single populations will tend to underestimate 
niches in the same circumstances), and conversely niches es-
timated for single populations or subsets of species’ overall 
distributions may underestimate the full breadth of the niche 
(Peterson & Holt 2003; Strubbe et al. 2015) or indeed fail to 
achieve a predictive model at all (Owens et al. 2013). Finally, 
very clearly, the vagaries of the sampling of biodiversity (e.g., 
spatial bias to accessible areas, incomplete sampling across an 
area, incomplete detectability of individuals) will have consid-
erable potential to translate into new biases and problems in 
model outcomes (Hijmans 2012; Kramer-Schadt et al. 2013; 
Boria et al. 2014).

In sum, returning to the question of what is being 
estimated, ‘niches’ estimated by correlational approaches 
are complicated in terms of their interpretation. Correlational 
models will generally identify some suite of environmen-
tal conditions that fall in between fundamental and realised 
niches. Although, in that sense, they avoid the challenges of 
interpretation of the geographic footprint of A, they end up 
interpreting an uncertain mix of effects of A, B, and M. The 
geographic area identified by such models is neither GO nor the 
broader GP (the potential distributional area when dispersal 
constraints are relaxed), but rather something intermediate. 
Full interpretation of such models is complex and still requires 
additional assumptions and hypotheses to be able to interpret 

model outputs clearly as distributional predictions (Peterson & 
Soberón 2012).

2.3. Process-oriented approaches
Numerous recent papers have attempted to estimate, model, 
or simulate components of the BAM diagram and their joint 
action in determining the geographic ranges of species (Ran-
gel et al. 2007; Barve et al. 2011; Dormann et al. 2012; Lira-
Noriega et al. 2013; Wisz et al. 2013). At the outset, each of 
these studies has had to find some means of approximating the 
fundamental niche, which has included simple assumption and 
postulation of niche size, position, and shape (Godsoe 2010); 
niches derived from mechanistic models (Kearney & Porter 
2004); and niches estimated by correlational means (Schurr 
et al. 2012). That is to say, studies using process-oriented ap-
proaches in some sense must depend on and be built on prior 
niche estimates from the other two approaches. However, the 
end product of a process-oriented study is a hypothesis of GO, 
which corresponds to a set of environments that in some sense 
approximates NF.

The attractive aspect of process-oriented studies is 
that they are considerably more precise and explicit regarding 
what niches and distributions are being considered and esti-
mated. Because they take dispersal into account directly and 
they pose specific hypothesis about the action of different fac-
tors in the BAM framework, process-oriented approaches may 
provide unique views into how access, dispersal, and colonisa-
tion act separately and jointly to drive many distributional de-
tails. Indeed, when simulations are developed, process-orient-
ed models offer the unique possibility of testing and measuring 
the degree to which different factors do and do not affect par-
ticular species’ niches and distributions.

Put another way, in the interest of making the discus-
sion in this overview as explicit as possible, process-oriented 
studies are not concerned directly with estimating niches. 
Rather, they use estimates of niche dimensions and dispersal 
characteristics that, in turn, are used to simulate the processes 
that produce GO.  It is also possible to estimate parameters of 
such models using Bayesian approaches (Marion et al. 2012) 
that assume some prior distribution for the parameters of both 
niche and dispersal. Niche estimates in process-oriented stud-
ies should be of the fundamental niche, as the separate actions 
of dispersal limitation and interactions with other species are 
generally incorporated in the structure of the simulations and 
models. In translating fundamental niche estimates into re-
alised niches and distributional areas, process-oriented studies 
contrast rather dramatically with mechanistic and correlational 
modelling approaches.

3.	 SYNTHESIS

3.1. Overview
This paper reviews three approaches that appear at least on 
the surface to estimate the same sorts of things: either the 
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ecological niche or the geographic distribution of a species. 
These approaches, however, respond to three rather distinct 
questions. In this sense, the different approaches do not com-
pete; integrating two or more of these approaches can pro-
vide complementary information valuable in investigating the 
complexity of species’ niches and distributions. Perhaps the 
continuum metaphor mentioned earlier is closest to what we 
propose; however, in view of the differences in objective, the 
question rather is under which circumstances each approach is 
most applicable or desirable.

Thus, the nature of the research question is key in 
determining which approach to use. At one end of the spec-
trum are what can be termed ‘true’ niche modelling challenges 
in which the goal is to estimate the geographic regions that 
are potentially favourable for a species, often at sites or under 
conditions that the species may not even have reached or yet 
be experiencing. Here, clearly, estimates of NF are required, so 
physiological, biophysical, and maybe even behavioural infor-
mation is needed. Mechanistic models may be most appropri-
ate, at least in theory, as they provide direct estimates of NF 
and thus of A, and those niches and distributional areas are 
those that approximate most closely the potential distribution, 
termed GP in one recent synthesis; (Peterson et al. 2011). This 
appropriateness, of course, will depend on the degree to which 
such models can be parameterised adequately and sufficiently 
without undue reliance on general estimates or extrapolations. 
When such models are either not possible or not satisfacto-
rily detailed and specific, correlational models may provide a 
second-best choice, but with careful consideration of the ef-
fects of M (Anderson & Raza 2010; Barve et al. 2011), BAM 
scenario (Saupe et al. 2012) and the need for extrapolation 
(Owens et al. 2013). That is to say, neither mechanistic nor cor-
relational approaches provide ideal solutions to this challenge, 
but rather each must be used intelligently and in the context 
of its limitations.

At the other end of the spectrum, some studies have 
as a goal the precise and correct estimation of the actual geo-
graphic distribution of a species, such as in species-based con-
servation efforts. Here, clearly, ‘just’ a good estimate of the 
fundamental ecological niche (or the existing or realised niche) 
is not enough, as the correct conditions do not guarantee that 
the species will be present, although a first approximation is 
offered by a correlational model developed in the context of 
a carefully considered hypothesis about the limits of M. Any 
niche estimate will map onto broader geographic areas than 
the true GO covers, such that niche estimates must be accom-
panied by hypotheses about the effects of dispersal and ac-
cess, metapopulation dynamics, extinction, etc., if the model 
is to estimate GO with any rigor and in any detail. This general 
modelling goal will thus fall most closely in line with what can 
be accomplished with process-oriented modelling approaches, 
either in a statistical sense (Dormann et al. 2012), or in a simu-
lation environment (Barve et al. 2011). These approaches can, 
however, be quite computing- and data-intensive.

3.2. The popularity of correlational models
Correlative modelling has become extremely popular, since the 
idea was first explored in the 1980s and 1990s, with hundreds 
of papers appearing every year that use this general approach 
(Guisan et al. 2013). We believe that this popularity and rapid 
growth in interest and incorporation in diverse research av-
enues is in largest part owing to the massive growth in avail-
ability of biodiversity data and open-access analysis software. 
These data, which can be termed primary biodiversity occur-
rence data, have become massively openly and freely avail-
able via internet data portals such as the Global Biodiversity 
Information Facility, VertNet, eBird, speciesLink, REMIB, SABIF, 
Canadensis and many others (Thessen & Patterson 2011), such 
that on the order of more than 6.5 × 108 primary  biodiversity 
records are now online and openly available. Data availability 
is mirrored by broad and accessible of tools for correlational 
ecological niche modelling: most (not quite all) of the major 
analysis platforms are either available for download and use 
freely (Maxent; Phillips et al. 2006) or are open-source, such 
as openModeller (de Souza Muñoz et al. 2011) or dismo (Hij-
mans et al. 2012) such that even the programming code can be 
downloaded and explored.

In spite of the massive (and growing) popularity of 
correlational modelling, this approach estimates a less-than-
well-defined object, probably generally falling in between 
NR and NF* (Lobo et al. 2010). To be able to understand and 
be confident that a particular correlative modelling exercise 
is yielding predictions that are useful for a particular study, 
considerable care and attention to detail are required, which 
suggests that many studies using this approach have not been 
sufficiently careful and lack analytical rigor (Araújo & Peterson 
2012). To be able to interpret a correlational model correctly as 
in the challenge of approximating GO versus GP implied in the 
whole ENM/SDM debate (Peterson & Soberón 2012), ancillary 
hypotheses about movements and potential for movement (M 
in the BAM diagram) are required (Barve et al. 2011). Ideally, 
also, hypotheses would be available regarding presence or ab-
sence of any strong interactor species that might be involved 
(Bullock et al. 2000; Leathwick & Austin 2001). We note, none-
theless, that these same additional hypotheses are needed to 
be able to interpret the results of mechanistic models as any-
thing other than the rather oddly defined area A (i.e., the area 
of potential distribution, regardless of access and in absence of 
biotic constraints).

3.3. Why not just mechanistic models?
In a recent overview of correlational models (Peterson et al. 
2011), two of us (with other colleagues) stated considerable 
admiration of mechanistic modelling approaches based on 
the fact that they estimate dimensions of the fundamental 
niche directly. While we still adhere to that general statement 
in principle, in light of substantial further thought and 
experimentation, we are now perhaps a bit more guarded in 
our enthusiasm.
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Mechanistic modelling, as proposed by Warren Porter and colleagues 
(Porter et al. 1994), aims to calculate heat fluxes between an organism 
and its environment, and quantify the organism’s metabolic processes 
(e.g., energy needs, water loss through evaporation). If energy, water, 
and nutrient needs can be determined in detail, it would be possible 
to predict growth and survival (Porter et al. 2010). Compared with cor-
relative models, which do not establish linkages between organismal 
physiological processes and climate, mechanistic models are able to 
connect physiological function to climate (Kearney et al. 2014a). Such 
direct links can be established with respect to microclimatic conditions 
with which the organism actually comes in direct contact to estimate 
the organism’s energy and water budget.

To calculate heat fluxes between the organism and the sur-
rounding microclimate, information about its morphology, physiology, 
and behaviour is also needed. As a consequence, mechanistic models 
tend to require large numbers of parameters for model calibration 
(Kearney & Porter 2009; Porter et al. 2010). Mechanistic modelling 
ideas have been implemented in the program Niche Mapper™, which in-
cludes two components (see Figure 3): the microclimate model (i.e., the 
translation from macroclimate to microclimate) and biophysical model 
(i.e., the organism’s interface with its surrounding microclimate) (Porter 
and Mitchell 2006). Hourly microclimatic conditions at the height of the 
organism are estimated from environmental variables (e.g., air tem-
perature, humidity, wind speed, solar radiation) and are used in the 
biophysical model, along with the organism’s allometric, behavioural, 
and physiological characteristics. Recent efforts to create global-extent 
microclimate datasets at 5 km spatial resolution (Kearney et al. 2014a; 
Kearney et al. 2014b) address one of the crucial data requirements of 

mechanistic models. However, the lack of detailed knowledge of spe-
cies’ morphology, behaviour, and physiology remains a significant 
barrier to use of mechanistic models in estimating species’ niches. In 
applications of these approaches to date, as many as 60 parameter val-
ues have had to be specified, yet sensitivity of these methods to these 
has not been assessed rigorously.

Here, for illustration purposes, we explored the effects of 
minor modifications to 2 of the 13 physiological parameters from a 
published dataset for elk (Cervus elaphus) (Long et al. 2013). We cre-
ated an artificial landscape of 5 x 5 cells, with a north-to-south gradient 
of air maximum temperature and an east-to-west gradient of relative 
humidity (Figure 4), keeping wind speed and cloud cover constant; we 
integrated these data in the NicheMapper™ microclimate model. We 
ran three biophysical models, one with the original published parameter 
values (Long et al. 2013), one in which we increased the maximum core 
temperature of the organism from 40.0 to 40.2°C, and one in which we 
increased the percent of energy released as heat that affects body core 
temperature from 80 to 81%. The result of these simple explorations of 
parameter value variation was that estimates of total evaporative water 
loss for the elk differed spatially, even with seemingly trivial differences 
in single parameters (Figure 4).

Figure 3. Summary of information flow and data inputs to the mecha-
nistic model. The effects of small perturbations and variations in pa-
rameter values on mechanistic models are illustrated in Box 2.

Figure 4. Summary of explorations of variation of mechanistic models, 
using as starting point the Long et al. (2013) study of elk (Cervus ela-
phus) energetics. Our inquiry was based on a simple, hypothetical 5 x 5 
pixel environmental landscape in which relative humidity and tempera-
ture vary independently (top). We changed values of two physiological 
parameters (out of many that are required for model development): ef-
fects on the evaporative water loss landscape for the species are shown 
in the panels at the bottom of the figure.

Box 2. Mechanistic modelling example: effects of parameter values on heat-energy balance calculations.
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 Quite simply, we are increasingly aware of the ‘es-
timation burden’ that mechanistic models must bear. That is, 
few species out of the global sum of biological diversity have 
been the subject of detailed physiological measurements and 
even fewer have been the subject of first-principles-based 
mechanistic models. Indeed, the number of species that have 
been the focus of such fundamental niche estimation exercises 
is so small that new efforts must often rely on related species 
(or even rather unrelated species) for parameter estimates; 
Box 2 illustrates the implications of these assumptions. Also 
the numbers of parameters on which these models depend are 
generally quite large, in many cases numbering in dozens, such 
that overparameterization is also a concern. Admittedly, many 
correlative models also have large numbers of parameters, 
but these parameters are estimated from the data rather than 
specified by assumption a priori.

Free and open access to software with which to con-
duct such explorations is also a major consideration. That is, 
in contrast to modelling tools for correlational approaches, no 
software package for mechanistic modelling is, as yet, openly 
and freely available to the scientific community, at least to our 
knowledge. Moreover, mechanistic approaches require link-
age of two rather complex model types: one to identify the 
key physiological features of an organism and the other to 
scale from millimetres to kilometres; again, neither challenge 
is trivial and, neither model has been made openly and freely 
available.

3.4. What should we be doing?
We can perhaps sketch out an imaginary case in which we 
assemble an ‘ideal’ approach to understanding the distribu-
tional ecology of a species. The fundamental niche could be 
estimated via physiological studies and mechanistic modelling. 
Ideally, though, the mechanistic modelling would be subjected 
to checks and modifications based on correlative models of the 
same species (see, e.g., Barve et al. 2014), and geographic as-
sessments, to assure that a single ‘niche’ suffices for the spe-
cies in question across its geographic range.

 Once a niche estimate is in hand, however, we can 
then combine and integrate it with dispersal models providing 
an M-educated view of the distributional potential of the spe-
cies. Specifically, beyond just simple maximum dispersal ranges, 
dispersal can and should be involved as a function of landscape 
and environmental features such that dispersal is not just the 
‘ink blot’ spreading in a pool of water (Villalobos et al. 2014). 
By the same token, transient views of environmental changes 
through time that are of interest can be included, which will in-
teract in complex ways with dispersal ability as populations dif-
fuse across a changing environmental landscape. Such an ideal 
case has not, to our knowledge, been developed fully, although 
a few studies have linked multiple pieces of this complicated 
puzzle (Dormann et al. 2012; Kissling et al. 2012; Marion et al. 
2012; Barve et al. 2014).
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