

Tree Species Composition and Forest Stratification along the Gradients in the Dry Deciduous Forests of Godavari Valley, Telangana, India

¹Plant Systematics Laboratory, Department of Botany, Kakatiya University, Warangal, Telangana - 506 009, India Corresponding author, E-mail: suthari.botany@ gmail.com

Sateesh Suthari*, Vatsavaya S. Raju

ABSTRACT

It is important to understand the tree species composition, abundance, species diversity and stratification in tropical dry deciduous forests that are under threat. A guadrat study was attempted in the dry deciduous forests along the ecological gradients in the Godavari Valley of northern Telangana, India. The study records the presence of 110 flowering plant taxa belonging to 82 genera and 37 families in 120 sampled plots, and there was enumeration of 15,192 individuals of ≥10 cm girth at breast height. *Tectona grandis* (teak) is the principal forest cover component in the region, which often formed pure stands in Adilabad and, to some extent, in Nizamabad districts. Further down to the Warangal district, teak was gradually replaced by Terminalia alata. Twenty tree species were found dominant at one place to the other, and the top 10 dominant taxa have shared nearly 41% of the total density of the forest cover. The tree relative density ranged from 0.007% to 20.84%. The values of Importance Value Index were between 0.245 (12 spp. including some exotics) and 32.6 (teak). These baseline data help to know the change detection along the gradients in the tropical forest ecosystem of a major river valley in the region and the drivers of change.

KEYWORDS

Godavari Valley, tropical dry deciduous, diversity indices, forest stratification, tree species composition

CC) BY-NC-ND © 2018 Sateesh Suthari, Vatsavaya S. Raju This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license

INTRODUCTION

Biodiversity is an important factor in nature conservation and natural resources in which the species diversity plays a vital role and it's the key component (Itô 1997). Of the terrestrial ecosystems, tropical forests are very productive in ecological services. Although tropical forests cover about 10% of the total geographical area, they are structurally and functionally complex ecosystems and provide livelihoods, timber and other forest products to about 1.6 billion people. Of the plant growth forms, trees recycle nutrients, reduce the soil erosion, regulate the course of rain water and provide ecological services such as oxygen, food, clothes, shelter, timber, fuel wood and medicine. To the tropical forests, tree diversity is the principal component as they provide resources to all the forest elements (FAO 2010), whereas the biotic factors such as seed quality, rate of dispersal, seedling survival and regeneration are important in maintaining the tree composition of the tropical forests (Baraloto & Goldberg 2005).

The aspects of biodiversity monitoring and quantifying have increased on regional, national and global levels in scientific and political writings since 1990s (Magurran 2004). Overexploitation and degradation are the factors contributing to the loss of forests and are recognized to be the major problems for the natural environment loss around the world (Mani & Parthasarathy 2006). The rapid inventory of species that provides information on diversity is an important tool to enhance our ability to maximize biodiversity conservation (Baraloto et al. 2013).

India is an example of areas known for its rich biological diversity. There are 91,200 species of animals and 45,500 plant taxa residing in its 10 biogeographic regions of the country (MoEF 2009). Anthropogenic factors such as clear cutting, shifting cultivation, uncontrolled non-timber forest product (NTFP) collections, illegal lopping, encroachment of forest areas, habitats fragmentation and spread of alien plant species are responsible for the decline of biodiversity and affect the

structure and functioning of forest ecosystems in India (Raju et al. 2010). The species composition, structure and distribution pattern of tree species vary along the environmental gradients such as rainfall, temperature, pH and physico-chemical parameters of soil. How the floristic life-form composition and proportions vary along the environmental and ecological gradients was demonstrated in the tropical deciduous forests (Raju et al. 2014).

The River Godavari, second largest in India, supports high primary production in Telangana state. For its water resource, a number of lift-irrigation and drinking water projects are contemplated and initiated in the Valley. There will be a change in the water regime in the region through creations of reservoirs; the attendant activities such as laying of canals, erecting the power lines, inroads into the forests and its further fragmentation and increased biotic pressure. In the current scenario of continuous loss of these tropical dry deciduous forests, it is essential to understand the forest stratification, the tree species composition, associations and their spatial distribution. In the absence of such a case study, the tree diversity, richness and forest stratification in the tropical dry deciduous forests along the gradients of the Godavari Valley in northern Telangana, India, were contemplated and thus formed the subject matter of this article. The main aims of the present study are to recognise the tree species diversity in dry deciduous forests, as an example of tropical dry forest, and to assume the changes in tree species composition through the environmental gradient of the Godavari Valley and to record the baseline data for change detection in the future.

1. STUDY AREA

The study area is northern Telangana, excluding Khammam district. It lies between the latitudes 17°17'3" and 19°55'2"N and longitudes 77²28'6" and 80⁴0'4"E (Figure 1). The study area covers four districts, namely, Adilabad, Nizamabad, Karimnagar and Warangal. Today, these districts of northern Telangana are reorganised into 15 districts (Figure 1B). The study presents the research finding as per the former district boundaries because the scenario of physiography of the land does not change with political boundaries.

Telangana state has an area of 503.35 km², and the following land-use categories cover very dense forest: 9,052.41 km² of moderately dense forests, 9,209.91 km² of open forest, 5305.85 km² of scrub jungle, 2,649.79 km² of non-forest area and 183.36 km² of under water bodies (Anonymous 2015). Whilst the geographic area of the state is 1,12,101 km², the study area occupies 48,754 km² (i.e. 42.44%), with the forest cover spread of 13,604.57 km². The natural forest regeneration potential in the Godavari Valley was largely through seed recruitment whilst the stocks and root suckers play a limited role (Gopalkrishna et al. 2017).

The landscape characterisation of the study area and the biotic and abiotic factors operating are presented in Table 1.

2. METHODOLOGY

2.1. Sampling Design and Collection of Data

The documentation of vegetation composition in the study area was performed during 2009–2013. The ground sample locations were chosen as selected by Indian Institute of Remote Sensing (IIRS), Dehra Dun (2009), based on forest density and NDVI values. One hundred and twenty quadrats of $31.62 \text{ m} \times 31.62 \text{ m}$ (0.1 ha) size plots were laid to collect the tree and shrubby layer data for the present work, and herbaceous layer is excluded because it comes under ground layer. The plant taxa

Table 1. Landscape characterisation of northern Telangana with abiotic and biotic factors.

District ¹	MAP MA		Typical soil	Fire ²	Biotic factors	Tectona grandis		Characteristic tree	
	(mm)	(ºC)				%	tion ³	associates	
Adilabad	742	34.5	Lime, sand stones	+	Grazing, teak, NTFP extraction	46.58	1	TG, LP, HP, AL, TA, CS, BS, DM, WT, LC	
Nizamabad	1000	32.0	Black cotton, Sandy loams	+	Grazing, fuel wood, NTFP extraction	30.90	1	TG, WT, DP, LP, MT, AL, MLL, BM, WA, CS	
Karimnagar	914	29.5	Red soils with loamy, black cotton	++	Grazing, timber, NTFP extraction	10.77	2	HP, TG, TA, AL, DM, MP, GF, LC, MT, CS	
Warangal	970- 1,050	29.5	Black cotton, Sandy loams	++	Grazing, timber, fuel wood, NTFP extraction	6.06	4	TA, XX, LP, TG, DM, HP, CS, BH, CC, LC	

¹Adilabad includes currently Adilabad, Nirmal, Asifabad and Mancherial districts. Nizamabad was split into Nizamabad and Kamareddy; Karimnagar into Jagtial, Sircilla, Peddapalli and the residual Karimnagar; Warangal into Jayashankar Bhupalpally, Warangal Rural, Warangal Urban, Jangaon and Mahabubabad districts. ²Fire—fire frequency.

³Position indicates the rank or predominance of teak (Tectona grandis in the area) which is indicated by bold 'TG' among the tree associates in the next column.

AL, Anageissus latifolia; BH, Bridelia montana, BM, Butea monosperma, BS, Butea superba; CC, Cleistanthus collinus, CS, Chloroxylon swietenia; DM, Diospyros melanoxylon; DP, Dalbergia paniculata; GF, Gitonia floribunda; HP, Holarrhena pubescens; LC, Lannea coromandelica; LP, Lagerstroemia parviflora; MAP, mean annual precipitation; MAT, mean annual temperature; MLL, Madhuca longifolia var. latifolia; MP, Morinda pubescens; MT, Miliusa tomentosa; NTFP, non-timber forest product; TA, Terminalia alata; TG, Tectona grandis; WA, Wrightia arborea; WT, Wrightia tinctoria; XX, Xylia xylocarpa.

Figure 1. Map showing the study area as administrative districts during the study and at present. (A) India; (B) Telangana with its current districts in the northern part numbered: 1. Adilabad, 2. Nirmal, 3. Asifabad, 4. Mancherial, 5. Nizamabad, 6. Kamareddi, 7. Jagtial, 8. Sircilla, 9. Peddapalli, 10. Karimnagar, 11. Bhupalpally, 12. Warangal Rural, 13. Warangal Urban, 14. Jangaon, 15. Mahabubabad; (C) Northern Telangana (except Khammam district).

were identified with the help of the *Flora of the Presidency of Madras* (Gamble & Fischer 1915-1935), *Flora of the Presidency of Bombay* (Cooke 1903) and latest the *e-Floras* whilst the plant names were as per the www.theplantlist.org. The girth

at breast height (GBH) was measured in the field at 1.37 m and a total of 15,192 individual stems of \geq 10 cm GBH were measured. The values of relative frequency (RF), relative density (RD), relative dominance (RDom) and Importance Value Index (IVI) (Misra 1968) were determined to describe the tree species composition, abundance (Table 2) and species richness (Suthari 2013; Gopalkrishna et al. 2017).

Total number of quadrats in which a species occur Frequency = ------×100 Total number of quadrats studied

Total number of individuals of the species occurring Abundance = ------ × 100 Total number of quadrats in which the species occur

Frequency of one species Relative frequency (RF) = ------× 100 Sum of all frequencies

Number of individuals of a species

Relative density (RD) = ------ × 100 Total number of individuals of all species

Combined basal area of a single species Relative dominance (RDom) = ------ × 100 Total basal area of all species

IVI = RF + RD + RDOM

Alpha diversity for the study sites was calculated using the Shannon–Weiner Diversity Index (1963) formula:

Shannon's Diversity Index (H') = $-\sum_{i=1}^{s}$

where H' is Shannon's Diversity Index, pi = n/N, s is the number of species; n is the number of all individuals of one species; N is the number of all individuals of all species and In is the natural logarithm.

Whittaker's Index = (a + b + c)/((2a + b + c)/2)

where a is the number of species common to both sites; b is the number of species that occur in site 1 but not site 2; c is the number of species that occur in site 2 but not site 1 (Whittaker 1960).

3. RESULTS

3.1. Floristic Composition and Diversity

The present study resulted in documenting 110 flowering plant tree species (Table 2), representing 82 genera and 37 families. Leguminosae (Fabaceae) constitutes the predominant family with 26 species in strength, which is followed, but distantly, by Rubiaceae (9 spp.) and Combretaceae (7 spp.). In the 4 districts of northern Telangana, 20 dominant woody species constitute local top 10 ranks. These include timber species of top storey such as Tectona grandis (teak; with 3166 individuals), Terminalia alata (1508), Holarrhena pubescens (928), Lagerstroemia parviflora (876), Anogeissus latifolia (729), Diospyros melanoxylon (709), Xylia xylocarpa (570), Chloroxylon swietenia (542), Lannea coromandelica (423) and Miliusa tomentosa (400) as well as multi-use species such as Madhuca longifolia var. latifolia and D. melanoxylon and ecologically valuable open canopy species such as H. pubescens, Wrightia arborea, Cleistanthus collinus and Bridelia montana in the 12-ha guadrat area sampled. So, on the basis of the forest cover, the land may be called 'teak region' for its overall dominance. In facts, it almost forms pure stands in Adilabad and, to a minor extent, in Nizamabad. However, all these formations make the tropical dry deciduous forest typical as described in the forest manuals or floras except the inclusion of Wrightia tinctoria, which is generally a semi-moist teak forest element. Currently, T. alata as an associate is relegated to second place whilst L. parviflora retained its next position. H. pubescens and D. melanoxylon occupy the fourth and fifth ranks, bringing down A. latifolia to the sixth position whilst X. xylocarpa attained the seventh position in its predominance (Table 2). The teak is gradually displaced further down towards Warangal by the species of Terminalia, Wrightia, Holarrhena, Xylia and so on. Wherever the top canopies are removed, the soil is exposed to light and erosion. The dominant natural teak in this eco-floristic zone has given way to T. alata towards southwest, which is presented in Figure 2. As the conditions conducive to teak growth gradually deminish from Central India further down in northern Telangana where T. grandis gets out numbered by T. alata, A. latifolia and so on. The intersection happens in the forests of former Karimnagar district.

To evaluate species richness in the forest community, the IVI is used as an index. *T. grandis* shows the highest IVI value (32.6) followed by *T. alata* (17.96), *L. parviflora* (12.56), *H. pubescens* (12.42) and *D. melanoxylon* (11.39). *T. grandis* is the species with the highest values of RF (4.84), RD (20.84%) and RDom (6.92). Conversely, *T. grandis* was the most abundant species in northern Telangana region in terms of absolute values. Besides, 41% of the total tree abundance is due to the top 10 species (Table 2). On the other hand, *Acacia torta, Bu*-

Figure 2. Individuals of Tectona grandis and Terminalia alata along gradients in the Godavari valley, northern Telangana.

Table 2. Species abundance and plant community indices of tropical dry deciduous forests of northern Telangana.

	Species	No. of Stems	Relative Frequency	Relative Density	Relative	Importance Value Index
1	Tectona arandis	3166	4.841	20.840	6.920	32.600
2	Terminalia alata	1508	3.601	9.926	4.431	17.958
3	Lagerstroemia parviflora	876	4.900	5.766	1.892	12.557
4	Holarrhena pubescens	928	3.542	6.108	2.772	12.422
5	Diospyros melanoxylon	709	5.313	4.667	1.412	11.392
6	Anogeissus latifolia	729	3 837	4 799	2 010	10.646
7	Xylia xylocarpa	570	1 417	3 752	4 257	9 425
8	Chloroxylon swietenia	548	3.601	3.607	1.610	8.818
9	Lannea coromandelica	423	4.014	2.784	1,115	7,913
10	Miliusa tomentosa	400	2.597	2.633	1.629	6.860
11	Dalberaia paniculata	393	2.715	2.587	1.531	6.834
12	Cleistanthus collinus	342	2.125	2.251	1.703	6.079
13	Wrightig tinctoria	371	1 535	2 113	2 213	5 860
14	Ziziphus xylopyrus	236	3.011	1.553	0.829	5,393
15	Morinda nubescens	241	1.240	1.586	2.057	4,883
16	Gitonia floribunda	191	0.708	1.257	2.853	4,818
17	Bridelia montana	234	1.240	1.540	1.997	4.777
18	Madhuca longifolia var. latifolia	197	2.656	1.297	0.785	4.738
19	Acacia chundra	216	2.302	1.422	0.993	4.717
20	Butea superba	192	2.007	1.264	1.012	4.283
21	Gardenia resinifera	177	1.063	1,165	1.762	3,990
22	Hardwickia binata	172	1.063	1.132	1.713	3.907
23	Cassia fistula	81	2.715	0.533	0.316	3.564
24	Bauhinia racemosa	117	2.184	0.770	0.567	3.521
25	Albizia amara	111	0.590	0.731	1,989	3.310
26	Dalberaia latifolia	128	1.535	0.843	0.882	3.260
27	Butea monosperma	133	1.299	0.875	1.083	3.258
28	Wriahtia arborea	44	0.177	0.290	2.629	3.095
29	Buchanania cochinchinensis	109	1.535	0.717	0.751	3.004
30	Azadirachta indica	97	1.535	0.638	0.669	2.842
31	Nyctanthes arbor-tristis	60	0.295	0.395	2.151	2.841
32	Gymnosporia emarainata	99	1.476	0.652	0.710	2.837
33	Gardenia latifolia	100	0.767	0.658	1.379	2.804
34	Diospyros chloroxylon	89	0.767	0.586	1.227	2.580
35	Carissa spinarum	44	0.236	0.290	1.971	2.497
36	Helicteres isora	60	1.358	0.395	0.468	2.220
37	Benkara malabarica	64	0.649	0.421	1.043	2.113
38	Acacia eburnea	34	0.236	0.224	1.523	1.983
39	Acacia sinuata	56	0.708	0.369	0.836	1.913
40	Grewia tiliifolia	51	1.063	0.336	0.508	1.906
41	Ziziphus oenopolia	55	0.885	0.362	0.657	1.905
42	Dalbergia volubilis	44	1.181	0.290	0.394	1.865
43	Pterocarpus marsupium	48	1.004	0.316	0.506	1.826
44	Bauhinia vahlii	39	0.413	0.257	0.999	1.668
45	Woodfordia floribunda	38	0.472	0.250	0.851	1.574
46	Soymida febrifuqa	25	1.181	0.165	0.224	1.569
47	Olax scandens	40	0.649	0.263	0.652	1.564
48	Boswellia serrata	37	0.826	0.244	0.474	1.544

Table 2 contined. Species abundance and plant community indices of tropical dry deciduous forests of northern Telangana.

	Species	No. of Stems	Relative Frequency	Relative Density	Relative Dominance	Importance Value Index
49	Holoptelea integrifolia	38	0.708	0.250	0.568	1.526
50	Strychnos potatorum	36	0.531	0.237	0.717	1.485
51	Gardenia gummifera	24	0.236	0.158	1.075	1.469
52	Eucalyptus globulus*	14	0.118	0.092	1.255	1.465
53	Schleichera oleosa	35	0.649	0.230	0.570	1.450
54	Bombax ceiba	26	0.945	0.171	0.291	1.407
55	lxora pavetta	13	0.118	0.086	1.165	1.369
56	Lantana x aculeata*	22	0.236	0.145	0.986	1.367
57	Oroxylum indicum	28	0.767	0.184	0.386	1.338
58	Annona squamosa*	24	0.295	0.158	0.860	1.313
59	Acacia leucoplea	26	0.767	0.171	0.358	1.297
60	Catunaregum spinosa	22	0.295	0.145	0.789	1.229
61	Mitragyna parviflora	26	0.590	0.171	0.466	1.227
62	Phyllanthus emblica	24	0.708	0.158	0.358	1.225
63	Bridelia retusa	22	0.413	0.145	0.563	1.121
64	Gmelina arborea	21	0.472	0.138	0.470	1.081
65	Firmiana simplex	18	0.590	0.118	0.323	1.031
66	Eriolaena hookeriana	16	0.649	0.105	0.261	1.015
67	Jatropha qossypiifolia	5	0.059	0.033	0.896	0.988
68	Celastrus paniculatus	9	0.118	0.059	0.807	0.984
69	Aegle marmelos	17	0.531	0.112	0.339	0.982
70	Terminalia chebula	11	0.177	0.072	0.657	0.907
71	Ficus mollis	4	0.059	0.026	0.717	0.802
72	Semecarpus anacardium	4	0.059	0.026	0.717	0.802
73	Balanites roxburghii	7	0.118	0.046	0.627	0.791
74	Senna auriculata	7	0.118	0.046	0.627	0.791
75	Strychnos nux-vomica	10	0.472	0.066	0.224	0.762
76	Cochlospermum religiosum	6	0.118	0.039	0.538	0.695
77	Desmodium oojeinense	6	0.118	0.039	0.538	0.695
78	Erythrina suberosa	6	0.118	0.039	0.538	0.695
79	Terminalia arjuna	8	0.236	0.053	0.358	0.647
80	Ailanthus excelsa*	3	0.059	0.020	0.538	0.616
81	Albizia procera	3	0.059	0.020	0.538	0.616
82	Cassine glauca	7	0.354	0.046	0.209	0.609
83	Terminalia bellerica	6	0.354	0.039	0.179	0.573
84	Careya arborea	6	0.236	0.039	0.269	0.544
85	Alangium salviifolium	5	0.177	0.033	0.299	0.509
86	Diospyros montana	5	0.177	0.033	0.299	0.509
87	Haldina cordifolia	5	0.177	0.033	0.299	0.509
88	Albizia odoratissima	4	0.118	0.026	0.358	0.503
89	Cissus repanda	4	0.118	0.026	0.358	0.503
90	Ehretia laevis	4	0.118	0.026	0.358	0.503
91	Pongamia pinnata	4	0.118	0.026	0.358	0.503
92	Acacia nilotica*	2	0.059	0.013	0.358	0.431
93	Polyalthia cerasoides	2	0.059	0.013	0.358	0.431
94	Erythroxylum monogynum	3	0.118	0.020	0.269	0.407
95	Premna tomentosa	3	0.118	0.020	0.269	0.407
96	Manilkara hexandra	3	0.177	0.020	0.179	0.376

	Species	No. of Stems	Relative Frequency	Relative Density	Relative Dominance	Importance Value Index
97	Ficus racemosa	2	0.118	0.013	0.179	0.310
98	Ziziphus mauritiana*	2	0.118	0.013	0.179	0.310
99	Acacia torta	1	0.059	0.007	0.179	0.245
100	Anacardium occidentale*	1	0.059	0.007	0.179	0.245
101	Buchanania axillaris	1	0.059	0.007	0.179	0.245
102	Ceiba pentandra*	1	0.059	0.007	0.179	0.245
103	Dalbergia sissoo*	1	0.059	0.007	0.179	0.245
104	Dichrostachys cinerea	1	0.059	0.007	0.179	0.245
105	Ficus religiosa	1	0.059	0.007	0.179	0.245
106	Garuga pinnata	1	0.059	0.007	0.179	0.245
107	Givotia moluccana	1	0.059	0.007	0.179	0.245
108	Gyrocarpus americanus*	1	0.059	0.007	0.179	0.245
109	Streblus asper	1	0.059	0.007	0.179	0.245
110	Termianlia catappa*	1	0.059	0.007	0.179	0.245
	Total (N)	15192		·	·	

Table 2 contined. Species abundance and plant community indices of tropical dry deciduous forests of northern Telangana.

*Exotics to native forests, either planted or naturalized.

chanania axillaris, Garuga pinnata, Givotia moluccana and Streblus asper represented the least, being hardly getting included in the quadrats laid. In terms of species abundance, of the 37 families found, half of them are represented by single species only (Table 3).

3.2. Species Diversity and Stratification

There are 110 tree species, which have fallen under the quadrats, largely constitute the forests structure of northern Telangana, forming the (1) Canopy layer [30], (2a) Under storey [43], (2b) Under storey canopy 'open' category [14], (3a) Shrub layer [8], (3b) Shrub layer [under storey open category – 6] and (4) Liana/Climber [8] (Table 3). Amongst these, a few non-forest and exotic species are either naturalised (11 spp.) or planted (1

Figure 3. Exclusive and common tree species in four districts of northern Telangana.

sp.). It is worth noting that these non-forest elements appeared either in canopy 'open' or shrub layer (under storey open) categories only. Furthermore, these species appeared in the ecotone areas.

The district-wise turnover of the forest species (Table 4) brings out the presence and performance of different floral elements in the landscape (beta diversity). Alpha diversity is expressed as the number of species (richness) in each ecosystem (e.g. 60 in Adilabad, 41 in Nizamabad, 70 in Karimnagar and 84 in Warangal). The beta diversity is notified as the forests in different districts are compared such as Adilabad vs. Nizamabad and the value is 48 between them. So, it is 40 for Nizamabad vs. Karimnagar, 38 for Karimnagar vs. Warangal and 51 for Warangal vs. Adilabad.

Accordingly, one finds greater species richness and diversity from Adilabad towards Warangal district. The tree species number increases from 60 in Adilabad to 84 in Warangal (Figure 3; Table 3). However, Nizamabad district has less than half the number of woody species of the eco-floristic zone.

4. **DISCUSSION**

In tropical forests, the plant diversity inventory largely concentrated on tree species diversity than the other life forms because tree species diversity is fundamental and important aspect for forest ecosystem. The tree diversity greatly varies from location to location mainly due to the factors such as geographical variation in the habitat, anthropogenic pressure, disturbances and climate. The floristic composition is one of the major characters of the plant community where the number of species and their individuals in a community reflect its gene pool and adaptation potential. Moreover, the floristic composition and diversity patterns of plant community are a prerequisite to understand the

Forest	District*** Strata/Species	Family	Adilabad (A)	Nizamabad (B)	Karimnagar (C)	Warangal (D)
	1. Canopy Layer					
01	Aegle marmelos	Rutaceae	5	0	1	11
02	Albizia amara	Leguminosae	39	0	63	09
03	Albizia odoratissima	Leguminosae	0	0	0	4
04	Albizia procera	Leguminosae	3	0	0	0
05	Anogeissus latifolia	Combretaceae	176	101	274	178
06	Bombax ceiba	Malvaceae	1	6	11	8
07	Boswellia serrata	Burseraceae	18	1	1	17
08	Careya arborea	Lecythidaceae	0	0	6	0
09	Dalbergia paniculata	Leguminosae	54	167	59	113
10	Diospyros melanoxylon	Ebenaceae	133	36	272	268
11	Ficus mollis	Moraceae	0	3	0	1
12	Ficus religiosa	Moraceae	1	0	0	0
13	Gmelina arborea	Lamiaceae	0	0	5	16
14	Haldina cordifolia	Rubiaceae	0	0	2	3
15	Hardwickia binata	Leguminosae	0	0	141	31
16	Holoptelea integrifolia	Ulmaceae	30	0	0	8
17	Lagerstroemia parviflora	Lythraceae	230	114	131	401
18	Lannea coromandelica	Anacardiaceae	64	27	150	182
19	Madhuca longifolia var. latifolia	Sapotaceae	18	65	27	87
20	Manilkara hexandra	Sapotaceae	0	0	1	2
21	Mitragyna parviflora	Rubiaceae	15	0	10	1
22	Pterocarpus marsupium	Leguminosae	17	0	20	11
23	Schleichera oleosa	Sapindaceae	0	0	25	10
24	Soymida febrifuga	Meliaceae	3	0	17	0
25	Tectona grandis	Lamiaceae	1777	618	464	307
26	Terminalia alata	Combretaceae	165	0	453	890
27	Terminalia arjuna	Combretaceae	0	0	7	1
28	Terminalia bellerica	Combretaceae	3	0	2	1
29	Terminalia catappa	Combretaceae	0	0	0	1
30	Terminalia chebula	Combretaceae	6	0	0	5
	2a. Under Storey					
31	Acacia eburnea	Leguminosae	0	0	0	0
32	Alangium salviifolium	Alangiaceae	2	0	0	3
33	Bauhinia racemosa	Leguminosae	47	40	15	15
34	Bauhinia vahlii	Leguminosae	0	3	27	9
35	Bridelia montana	Phyllanthaceae	4	6	27	197
36	Bridelia retusa	Phyllanthaceae	12	0	5	5
37	Buchanania axillaris	Anacardiaceae	0	0	0	1
38	Buchanania cochinchinensis	Anacardiaceae	29	9	22	49
39	Cassia fistula	Leguminosae	38	16	14	13

Table 3. Abundance (stems number) and strata-wise composition of tree species in northern Telangana in the districts of study.

Forest	District***	Family	Adilabad (A)	Nizamabad (B)	Karimnagar (C)	Warangal (D)
40	Cleistanthus collinus	Phyllanthaceae	50	0	94	198
41	Cochlospermum religiosum	Bixaceae	0	0	0	6
42	Dalbergia latifolia	Leguminosae	15	0	46	67
43	Desmodium oojeinense	Leguminosae	0	0	0	6
44	Diospyros chloroxylon	Ebenaceae	11	4	14	60
45	Diospyros montana	Ebenaceae	0	0	0	5
46	Ehretia laevis	Boraginaceae	0	0	4	0
47	Eriolaena hookeriana	Malvaceae	0	7	2	7
48	Erythrina suberosa	Leguminosae	6	0	0	0
49	Erythroxylum monogynum	Erythroxylaceae	0	0	3	0
50	Ficus racemosa	Moraceae	0	2	0	0
51	Firmiana simplex	Malvaceae	1	3	2	12
52	Gardenia gummifera	Rubiaceae	0	24	0	0
53	Gardenia latifolia	Rubiaceae	4	0	22	74
54	Gardenia resinifera	Rubiaceae	0	0	104	73
55	Garuga pinnata	Burseraceae	1	0	0	0
56	Givotia moluccana	Euphorbiaceae	1	0	0	0
57	Grewia tiliifolia	Malvaceae	1	0	0	50
58	Helicteres isora	Malvaceae	6	22	11	21
59	Holarrhena pubescens	Apocynaceae	206	0	486	236
60	Miliusa tomentosa	Annonaceae	5	108	148	139
61	Morinda pubescens	Rubiaceae	0	0	233	8
62	Nyctanthes arbor-tristis	Nyctanthaceae	0	16	0	44
63	Oroxylum indicum	Bignoniaceae	19	0	9	0
64	Phyllanthus emblica	Phyllanthaceae	0	0	2	22
65	Pongamia pinnata	Leguminosae	4	0	0	0
66	Semecarpus anacardium	Anacardiaceae	4	0	0	0
67	Strychnos nux-vomica	Loganiaceae	2	0	1	7
68	Strychnos potatorum	Loganiaceae	0	0	35	1
69	Wrightia arborea	Apocynaceae	0	44	0	0
70	Wrightia tinctoria	Apocynaceae	73	219	29	0
71	Xylia xylocarpa	Leguminosae	8	0	48	514
72	Ziziphus mauritiana	Rhamnaceae	0	0	0	2
73	Ziziphus xylopyrus	Rhamnaceae	39	09	126	62
	2b. Under Storey (Canopy Open Category)					
74	Acacia chundra	Leguminosae	22	26	102	66
75	Acacia leucoplea	Leguminosae	22	0	2	2
76	Acacia nilotica*	Leguminosae	2	0	0	0
77	Ailanthus excelsa*	Simaroubaceae	0	0	0	3
78	Anacardium occidentale*	Anacardiaceae	0	0	0	1
79	Annona sauamosa*	Annonaceae	0	18	0	6

Table 3 continued. Abundance (stems number) and strata-wise composition of tree species in northern Telangana in the districts of study.

Forest	District*** Strata/Species	Family	Adilabad (A)	Nizamabad (B)	Karimnagar (C)	Warangal (D)
80	Azadirachta indica*	Meliaceae	40	7	17	33
81	Balanites roxburghii	Zygophyllaceae	0	4	3	0
82	Butea monosperma	Leguminosae	49	57	12	15
83	Ceiba pentandra*	Malvaceae	0	0	0	1
84	Chloroxylon swietenia	Rutaceae	150	47	135	216
85	Dalbergia sissoo	Leguminosae	0	0	0	1
86	Gyrocarpus americanus*	Hernandiaceae	0	0	0	1
87	Ixora pavetta	Rubiaceae	0	0	11	2
	3a. Shrub Layer					
88	Benkara malabarica	Rubiaceae	0	24	8	32
89	Cassine glauca	Celastraceae	2	0	0	4
90	Catunaregam spinosa	Rubiaceae	2	0	9	11
91	Gymnosporia emarginata	Celastraceae	31	30	31	7
92	Polyalthia cerosoides	Annonaceae	0	0	0	2
93	Premna tomentosa	Lamiaceae	0	0	2	1
94	Streblus asper	Moraceae	1	0	0	0
95	Woodfordia floribunda	Lythraceae	0	0	1	37
	3b. Shrub Layer (Under Storey Open Category)					
96	Carissa spinarum	Apocynaceae	0	0	44	0
97	Dichrostachys cinerea	Leguminosae	0	0	0	1
98	Gitonia floribunda	Combretaceae	3	0	188	0
99	Jatropha gossypiifolia#	Euphorbiaceae	0	5	0	0
100	Lantana x aculeata*	Verbenaceae	0	22	0	0
101	Senna auriculata*	Leguminosae	0	7	0	0
	4. Liana/Climber					
102	Acacia sinuata	Leguminosae	5	22	26	3
103	Acacia torta	Leguminosae	0	0	0	1
104	Butea superba	Leguminosae	136	34	9	13
105	Celastrus paniculatus	Celastraceae	0	0	9	0
106	Cissus repanda	Vitaceae	0	0	4	0
107	Dalbergia volubilis	Leguminosae	6	0	9	29
108	Olax scandens	Olacaceae 0 32 5		5	3	
109	Ziziphus oenopolia	Rhamnaceae	03	04	13	35
	5. Plantation					
110	Eucalyptus globulus**	Myrtaceae	0	0	0	14
	Total	3815		2000	4308	5069
	Number of species	60		41	70	84

Table 3 continued. Abundance (stems number) and strata-wise composition of tree species in northern Telangana in the districts of study.

*Naturalized; **Planted; #Exotic, naturalized. *Contiguous with forest and fallen under the quadrats, indicating the proximity of plantations to forests. Note: Under Storey (Canopy Open category and Shrub Layer (Under Storey Open category) are due to removal of canopies of original strata.

District	Canopy layer	Under Storey	Under Storey (Canopy Open category)	Shrub layer	Shrub layer (Under Storey Open category)	Liana/ Climber	Planted*	Total Species
Adilabad	20	25	6	4	1	4	0	60
Nizamabad	10	16	6	2	3	4	0	41
Karimnagar	23	26	7	5	2	7	0	70
Warangal	26	31	12	7	1	6	1	84
Average	19	24	7.75	4.75	1.75	5.25	0.25	63.75

Table 4. District-wise tree species composition in northern Telangana

overall structure and function of an ecosystem (Singh et al. 2016).

Northern Telangana has a landscape characterised on the abiotic factors such as temperature, rainfall, physico-chemical parameters of soil and fire and biotic factors such as dominance of teak, overgrazing, collection of fuel wood, timber and non-timber forest products (Table 1). The soils are basic, alluvial and ferruginous black on tops. The soils are laterite and welldrained under teak. The teak flurishes well in the north of the river Godavari, as an extended distribution from central India. The forest landscape gradually changes from *Tectona* zone to *Terminalia* zone in Adilabad to Warangal, in the northeasterly direction (Gopalkrishna et al. 2017). The forest in Mancherial Division (Khanapur range) was classified as 'Dry teak' with the associates of *A. latifolia, T. alata, D. melanoxylon, Hardwickia binata* and *Dendrocalamus strictus* (Puri et al. 1989).

The importance value index (IVI) indicated that *T. grandis* is the most predominant tree species followed by *T. alata, L. parviflora, H. pubescens* and *D. melanoxylon* in the study area, whereas *Pterocapurs marsupium, Schleichera oleosa, Mangifera indica, Syzygium cumini, Bauhinia vahlii, Mallotus philippensis* and *Grewia tiliifolia* are the most common species in the tropical forests of R.V. Nagar Range of Eastern Ghats, India (Reddy & Ugle 2008). *T. grandis* is the predominant taxon with highest IVI value (32.6) and the co-dominant species are *T. alata, L. parviflora, H. pubescens* and *D. melanoxylon* with an IVI of 17.958, 12.557, 12.422 and 11.392, respectively.

It is observed that the top 10 dominant taxa have shared 41% of the total density of the study area that resulted in less diversified forest ecosystem. In tropical forest ecosystem, it is very common for one or two species to grow and spread all over. In northern Telangana region, 30 tree species, especially from genera such as *Tectona, Terminalia, Madhuca* and *Anogeissus*, occupy the top canopy and share more than half of the density. The under storey accounts for 35%, and liana and plantation category are negligible in the forest strands. *Butea superba* is the important liana and indicator species of undisturbed forests present, whereas *Gitonia floribunda* is the successional species occupying the fringes of forest patches, which are secondary and formed because of deforestation or removal of select woody species (Suthari 2013).

T. grandis, T. alata, L. parviflora, H. pubescens, D. melanoxylon, A. latifolia, X. xylocarpa, C. swietenia, L. coromandelica and M. tomentosa are the most common tree species in the natural vegetation of the Godavari Valley in northern Telangana. T. grandis was the most common, abundant and dominant taxon, and with its ecological function, it is the fundamental element of the ecosystem (cf. Ellison et al. 2005). The plausible anthropogenic reason for the decline of teak further southeast is the increased non-tribal population and their great demand for teak timber that has lead to its cutting and smuggling despite some protective measure by the State Forest Department. The baseline data, which provide the tree species composition, diversity and stratification in the forests, served to characterise the tropical dry deciduous forest ecosystem will be of certain use in the future change detection studies. The data further help to formulate new policies for the conservation of these native forests as natural resource utilisation base for the ethnic inhabitants and the local climate protection.

DISCLOSURE STATEMENT

The authors declare that there is no conflict of interest.

ACKNOWLEDGEMENTS

The authors are obliged to Dr V.K. Dadhwal, Project Director, NCP (IGBP) and Dr Sarnam Singh, Deputy Director (NCP-VCP), Indian Institute of Remote Sensing (IIRS), Dehra Dun, for the financial assistance through VCP project (Lr. No. IIRS:FED:VCP:08, dated 23-10-2008). The authors acknowledge the help of forest officials of Telangana State Forest Department for permitting to carry out the project work and the Head, Department of Botany, Kakatiya University, Warangal, for facilities. The authors are highly thankful to Dr Marcin K. Dyderski, for his valuable suggestions and stylistic corrections that considerably improved the quality of the manuscript.

REFERENCES

- Anonymous (2015) Telangana State of Forest Report, 2014. Telangana Forest Department, Government of Telangana, Hyderabad. pp. 128.
- Baraloto, C., Goldberg, D.E. (2005) Performance trade-off among tropical tree seedlings in contrasting microhabitats. Ecology, 86(9), 2461–2472.
- Baraloto, C., Molto, Q., Raband, S., Herault, B., Valencia, R., Blanc, L., Fine, P.V.A. & Thompson, J. (2013) Rapid simultaneous estimation of above ground biomass and tree diversity across Neotropical forest: a comparison of field inventory methods. Bitropica, 45, 288–298.
- Cooke, T. (1903) The Flora of the Presidency of Bombay. Taylor and Francis, Red Lion Court, Fleet Street.
- FAO (2010) The Global Forest Resource Management. Food and Agricultural Organization, Rome.
- Gamble, J.S. & Fischer, C.E.C. (1915-1935) Flora of the Presidency of Madras. Adlard & Son, Limted, London.
- Gopalkrishna, P., Suthari, S. & Raju V.S. (2017) Natural regeneration in the tropical deciduous forest ecosystems of Godavari valley in Warangal region of Telangana, India. Indian Forester (in press).
- Ellison, A.M., Bank, M.S., Clinton, B.D., Colburn, E.A., Elliott, K., Ford, C.R., Foster, D.R., Kloeppel, B.D., Knoepp, J.D., Lovett, G.M., Mohan, J., Orwig, D.A., Rodenhouse, N.L., Sobczak, W.V., Stinson, K.A., Stone, J.K., Swan, C.M., Thompson, J., Holle, B.V. & Webster, J.R. (2005). Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Ecology and Environment, 3, 479–486.
- IIRS (2009) Field Manual. National Carbon Project, ISRO-Geosphere Biosphere Programme, Vegetation Carbon Pool Assessment Project. Department of Space, Government of India, Dehra Dun, Uttaranchal.
- Itô, Y. (1997) Diversity of forest tree species in Yanbaru, the northern part of Okinawa Island. Plant Ecology, 133, 125–133.
- Magurran, A.E. (2004) Measuring Biological Diversity. Blackwell Science, Oxford.

- Mani, S. & Parthasarathy, N. (2006) Tree diversity and stand structure in inland and coastal tropical dry evergreen forests of peninsular India. Current Science, 90, 1238–1246.
- Misra, R. (1968). Ecology Work Book. Oxford & IBH Publishing Co, New Delhi.
- MoEF (2009) India's Fourth National Report to the Convention on Biological Diversity. Ministry of Environment and Forests, Government of India, New Delhi.
- Puri, G.S., Gupta, R.K., Meher-Homji, V.M. & Puri, S. (1989) Forest Ecology Vol. II. Plant Form, Diversity, Communities and Succession. Oxford University Press and IBH Publishing Co. Pvt. Ltd., New Delhi. pp. 582.
- Raju, V.S., Krishna, P.G. & Suthari, S. (2014) Environmental assessment of climate of a habitat through floristic life-form spectra, a case study of Warangal north forest division, Telangana, India. Journal of Natural Sciences, 2(1), 77–93.
- Raju, V.S., Reddy, C.S. & Suthari, S. (2010) Flowering plant diversity and endemism in India: an overview. ANU Journal of Natural Sciences, 2(1), 27–39.
- Reddy, C.S. & Ugle, P. (2008) Tree species diversity and distribution patterns in tropical forest of Eastern Ghats, India: a case study. Life Science Journal, 5(4), 87–93.
- Shannon, C.E. & Weiner, W. (1963) The Mathematical Theory of Communication. The University of Illinois Press, Urbana IL.
- Singh, S., Malik, Z.A. & Sharma, C.M. (2016) Tree species richness, diversity, and regeneration status in different oak (Quercus spp.) dominated forests of Garhwal Himalaya, India. Journal of Asia-Pacific Biodiversity, 9(3), 3293–3300.
- Suthari, S. (2013) Biodiversity Characterization and Aboveground Vegetation Carbon Pool Assessment in Northern Telangana at Landscape Level Using Geospatial Technique. Ph.D. Thesis, Department of Botany, Kakatiya University, Warangal.
- Whittaker, R.H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30(3), 279–338.