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Civil aviation is a fast-growing industry driven by globalisa-
tion. Previously the environmental impacts of aircraft emis-
sions (Moussiopoulos et al. 1997; Rissman et al. 2013), noise 
(Vanker et al. 2013), de-icing chemicals (Turnbull & Bevan 
1995) and polycyclic aromatic hydrocarbons (Ray et al. 2008) 
have been studied. Also, airfield vegetation and wildlife studies 
are common (Servoss et al. 2000; Blackwell et al. 2008, 2009; 
Belant et al. 2013; Fischer et al. 2013). However, in the con-
text of airport soils and anthropogenic soils in general, there 
is less information (Pytka et al. 2003; Baran et al. 2004; Ray 
et al. 2008; McNeill & Cancilla 2009; Werkenthin et al. 2014). 
Even more scarcely studies on airfield soil biota have been con-
ducted. Among the few exceptions is a study exploring the mi-
croarthropod communities in the area of Orio al Serio Airport 
in Bergamo, Italy (Migliorini et al. 2003) and another studying 
the development of earthworm communities on translocated 
grassland turf from Manchester airport, United Kingdom (But﻿﻿t 

et al. 2003). Research on urban microarthropod communities 
are more common. The subjects range from roadside soils 
(Eitminavičiūtė 2006a,b; Magro et al. 2013) to urban soil qual-
ity assessment (Santorufo et al. 2012).

Soil mites, including Oribatida (Acari), are considered 
fairly resistant towards anthropogenic activities (Skubała 1997; 
Khalil et al. 2009; Santorufo et al. 2012), however their species 
specific response to various disturbances and environmental 
changes make them valuable bioindicators (Paolett﻿﻿i & Bressan 
1996). Other soil microarthropods such as springtails (Hexapo-
da: Collembola) and other mite orders are considered less sen-
sitive towards traffic related environmental changes, though 
this does not lessen their importance as potential bioindicators 
(Paolett﻿﻿i & Bressan 1996 ; Eitminavičiūtė 2006a), e.g. when and 
where other groups are only present in low numbers. Many 
microarthropod species are also known for tolerating exposure 
to heavy metals due to their accumulative properties, which 
makes them suitable for studying aviation related disturbances 
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(Van Straalen & Van Wensem 1986; Heikens et al. 2001). Dia-
toms, mostly known from their bioindication abilities in water 
(Dickman 1998), are so far less used for in soil ecological re-
search, but can still be considered as potential indicators of soil 
habitat properties (van Kerckvoorde et al. 2000; Van de Vijver 
et al. 2008; Heger et al. 2012; Vacht et al. 2014). 

Based on previous studies from urban areas and traf-
fic related disturbances (Santorufo et al. 2012) the following 
hypotheses were set: Although, microarthropod and diatom 
communities vary between the airfields the communities at 
the studied airfields also share a substantial percentage of spe-
cies which can be considered typical to areas affected by inten-
sive traffic related disturbances such as airfields; Diatom and 
microarthropod (Collembola and oribatid mites) species indic-
ative of specific airfields and the purpose of different airfield 
areas can be identified.

This pilot study aims (1) to describe and analyze the 
microarthropod fauna and diatom flora of Tallinn, Tartu and 
Pärnu airfields and their community parameters; (2) to identify 
the extent of the shared community of each bioindicator group 
in comparison of the three airfields and the components of the 
shared community; (3) to at﻿﻿tempt to identify whether the stud-
ied airfield soils have maintained their functionality based on 
their biological properties. These aims were achieved.

1. MATERIAL AND METHODS

1.1.  Study sites
Three Estonian airfields (Fig. 1) were selected based on their 
accessibility, aviation history, availability of background infor-
mation and natural conditions for studying soil communities. 
The main characteristics of these three airfields are shown in 
Table 1. Based on the soil maps provided by Estonian Land 
Board (ht﻿﻿tp://geoportaal.maaamet.ee/est/Kaardiserver/Mul-
lakaart-p96.html), the soils of Tallinn airfield range from Rendzi 
Leptosols to Histosols. In Tartu the soils have been classified as 
Luvisols influenced by excess moisture (gleying) and in Pärnu 
airfield as Gleysols. Since their classification, several decades 
ago, they have been subject to draining in various extent.

The three airfields have experienced aviation relat-
ed disturbances in various extents. For example, Tallinn air-
field today acts as the primary airfield in Estonia with highest 
passenger and aircraft movement numbers and also receives 
intensive maintenance activities. Tartu airfield has low usage 
intensity but has been most recently (< 15 years) reconstruct-
ed, including partial removal and filling of soil. Pärnu airfield, 
on the other hand, is today only used for a few regional flights, 
but has been under extensive military use during the Soviet 
era (1940-1991) which may have resulted in high exposure to 
aviation related pollutants. Therefore, it is impossible to place 
the airfields on a clearly definable anthropogenic disturbance 
gradient.

Figure 1. Location of study sites in north-eastern Europe (A) and in Estonia (B) and general sampling design within the airfields (C) where TL1 and TL2 mark the sampling 
sites on slow-melting sites, and TL3 through TL8 mark the runway side sampling sites. 

.
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1.2. Sampling procedure and laboratory analysis of samples
Sampling was conducted in September, 2013, and repeated in 
September 2014. In addition to six sampling points at runway 
sides also two snow-melting sites were sampled from each air-
field. Fig. 1 shows the general sampling design at each airfield. 
Because sampling at the airfields was to some extent restricted 
(e.g the allowed time for sampling and the volume of soil re-
moved from the site) eight samples were collected for this ex-
plorative study from each airfield each year (in total 48 samples 
of each bioindicator group). A ø 5 cm soil auger was used to 
collect samples from 0-10 cm of topsoil (196 cm3) for microar-
thropod (oribatid mites and springtails) and diatom extraction, 
microbial measurements and soil chemical analysis.

Microarthropods were extracted using Berlese-Tull-
gren funnel until samples were fully dry (at least 72 hours) 
and stored in 90% ethanol. For clearing purposes 80% lactic 
acid was used for oribatid mites. Samples were hand sorted 
and identified by species. Keys by Fjellberg (1998; 2007) and 
Hopkin (2007) were used to identify adult Collembola. The no-
menclature follows Bellinger et al (1996-2018). For the identi-
fication of adult oribatid mites keys by Weigmann (2006) and 
Niedbala (2008) were used. The nomenclature follows Weig-
mann (2006).

For diatom analysis soil samples (N = 24) were mixed 
and 2 cm3 of soil was extracted, then treated with 10% HCl and 
30% H2O2 while heating the samples to remove carbonates and 
organic mat﻿﻿ter. Samples were decanted and centrifuged to re-
move other unnecessary components. The solution (0.1 ml) 
was transferred to cover glass, dried and fixed with Naphrax. 
Samples were examined under 600–1000 × magnification (us-
ing immersion oil nd = 1.516). From each sample 300–500 
valves were identified and counted along random transects. 
Damaged valves were counted as a separate individual when 
more than half of the valve was intact. Diatoms were identi-
fied to species level and when this was impossible due to dam-
ages, to genus level (Krammer & Lange-Bertalot 1988, 1991; 
Hamilton et al. 1992; Lange-Bertalot & Metzeltin 1996; Round 
& Bukhtiyarova 1996; Lange-Bertalot & Metzeltin, 1996; Lange-
Bertalot, 1997; Krammer, 2000; Compère, 2001; Lange-Berta-

lot et al. 2011; Souffreau et al. 2013; Lowe et al., 2014). The 
nomenclature follows Krammer & Lange-Bertalot (1988; 1991) 
with additions from newer taxonomic literature (e.g Compère, 
2001; Lange-Bertalot et al. 2011). 

Soil parameters were measured to characterize the 
airfields in general, not to link them directly to soil commu-
nities, therefore, the soil samples from each airfields were 
pooled. These samples were analyzed at the Estonian Environ-
mental Research Center with ICP-AES for Cu, Pb, Zn and Cd be-
cause these metals are considered most indicative of traffic re-
lated pollution (Davis et al. 2001). Samples were also analysed 
for total-N, P and K, Ca, Mg and pHKCl at the Estonian Agricul-
tural Research Centre. Soil organic mat﻿﻿ter and carbonate con-
tent was measured using loss-on-ignition method (prepASH®, 
Precisa). Soil microbial respiration rates (basal respiration) and 
Substrate Induced Respiration (SIR) were determined using 
manometric respirometers (Oxitop®, WTW).

1.3. Data analysis
Species data from two years of sampling were pooled for nu-
merical analyses. Communities were described by observed 
Collembola and oribatid mite abundance per sample, pres-
ence-absence data was noted for diatoms. Because all mi-
croarthropod communities from the same volume of soil were 
identified and counted, only their observed species richness 
were calculated. Diatom communities were described based 
on rarefied species richness (Heck et al. 1975; Oksanen 2012). 
All bioindicator groups were characterized based on communi-
ty diversity (Shannon’s H). Also the Oribatida Collembola ratio 
(O/C) was calculated for each airfield. The number of repeti-
tions for soil chemical and microbial analysis was limited due 
to fieldwork restrictions and therefore this data was only ana-
lyzed using descriptive statistical methods to give an overview 
on general soil characteristics. 

Kruskal-Wallis test, ANOVA, and average linkage clus-
ter analysis based on Bray-Curtis dissimilarity were used to 
compare the communities of Tallinn, Tartu and Pärnu airfields 
and the different land uses within airfields (runway sides and 
snow-melting fields). Indicator Species Analysis (ISA) (Dufrene 
& Legendre 1997; De Cáceres & Legendre 2009) together with 
Monte Carlo randomization technique for testing the statistical 
significance (P < 0.05) of Indicator Values (IV) was used to iden-
tify potential indicator species. Community parameter calcu-
lations, descriptive and generalising analyzes were conducted 
using R programming environment (R Development Core Team 
2014) with the ‘indicspecies’ (De Cáceres & Legendre 2009), 
‘MASS’ (Venables & Ripley 2002) and ‘vegan’ (Oksanen 2013) 
package, and IBM SPSS Statistics 20.0. 

2. RESULTS

2.1. Soil properties
Although the soil maps provided by Estonian Land Board show 
some differences between the three airfield soils and all of 

Table 1. Characteristics of Tallinn, Tartu and Pärnu airfields
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them have maintained some characteristics of the original soils 
(e.g. higher carbonate content in Tallinn) they have all been af-
fected by aviation, airfield maintenance, and aviation related 
construction activities e.g. draining, tilling, removal and filling. 
An overwhelming area of these soils can today be classified 
as Technosols (IUSS Working Group WRB 2015), characterized 
by a dense and tightly rooted mull type humus horizon that 
contains various artifacts such as pieces of glass, aluminium, 
plastic, paint and runway construction materials. Table 2 lists 
the results from soil chemical analyses, including results from a 
previous study on Tallinn airfield soil (Keskküla 2011), and soil 
microbial parameter measurements. 

2.2. Community properties
The results from community properties are shown in Table 3 
separating between the runway sides and snow-melting sites. 
On Pärnu airfield the oribatid mites outnumbered the Col-
lembola (O/C ratio 3.0). In Tallinn the O/C ratio was 0.8 and in 
Tartu  0.5. 

2.3. Collembola community composition
In total 31 springtail species were identified, belonging to 22 
genera. The most abundant species, forming 31% of the to-
tal abundance, was Protaphorura armata Tullberg, 1869. The 
snow-melting sites of the three airfields shared five springtail 
species: Anurida granaria Nicolet, 1847, Metaphorura affinis 
Börner, 1902, P. armata, Parisotoma notabilis Schaeffer, 1896 
and Ceratophysella sp. Runway sides shared 11 species, includ-
ing almost all of those also found from snow-melting sites (ex-
cept Ceratophysella sp). In addition, the airfield runway sides 
also shared Folsomia candida Willem 1902, Folsomia sexocula-
ta Tullberg, 1871, Isotoma minor Schaeffer, 1896, Isotoma viri-
dis Bourlet, 1839, Isotomurus sp., Tomocerus vulgaris Tullberg, 
1871 and Lepidocyrtus lanuginosus Gmelin, 1788. 

An explorative average linkage cluster analysis re-
vealed that based on the springtail communities the three air-
fields cannot be distinguished from each-other. The part of the 

community not shared by all studied airfields can be considered 
site specific, possibly depending on the natural  conditions (e.g. 
hydrological regime, soil development prior to aviation related 
activities) and anthropogenic history (e.g. history and place-
ment of the filling soil on site, type and quantity of de-icing 
chemicals) of each site. These site specific species included e.g. 
Bourletiella arvalis Fitch, 1863 (characteristic of Tartu airfield), 
Micranurida pygmaea Börner, 1902 (characteristic of Pärnu air-
field) and Folsomia quadrioculata Tullberg, 1871 (characteristic 
of Tallinn airfield).

The list of all encountered species together with 
their abundance (per sample) at each airfield, separating be-
tween the runway sides and snow-melting sites is given in Ap-
pendix (Table A.1.). No significant differences were detected 
in the species abundance in comparison of the three airfields. 
In three-way ISA (Tallinn, Tartu and Pärnu airfield), springtails 
were not significantly strong indicators of any of the airfields 
singularly, but as a combination M. affinis (IV = 0.87, P = 0.02) 
and T. vulgaris (IV = 0.81, P = 0.011) were indicative of Pärnu 
and Tallinn airfields. 

On Family level, Neanuridae were significantly more 
abundant at snow-melting sites compared to runway sides (χ2 = 
5.715, df = 1, P = 0.017). The trend was opposite for Tomoceri-
dae (χ2 = 6.611, df = 1, P = 0.01). Significant differences in spe-
cies abundance depending on the purpose of the airfield area 
(runway side or snow-melting sites) were rare, only a few spe-
cies showed significant difference – e.g. T. vulgaris (χ2 = 6.611, 
df = 1, P = 0.01) and L. lanuginosus (χ2 = 7.689, df = 1, P = 0.006) 
that were both only found on runway sides. Two-way ISA sup-
ported the assumption that these two species can be consid-
ered significantly indicative of airfield runway sides (IV = 0.85, P 
= 0.011 and  IV = 0.82, P = 0.017 respectively). The results from 
ISA, where the sites were divided into six groups (separating 
between airfields, their runway sides and snow-melting sites) 
showed that T. vulgaris (IV = 0.93, P = 0.01) and L. lanugino-
sus (IV = 0.93, P = 0.003) are more specifically strongly and sig-
nificantly associated with the combination of Tallinn and Tartu 
runway sides. These species, however, can not be considered 
ideal indicators of these runway sides because they can also be 
found on other sites in addition to the two runway sides (A = 
0.9459 and B = 0.9429 respectively) and they cannot be found 
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Table 2. Results from soil chemical and microbial analysis. Heavy metal and oil 
product (C10-C40) concentration result ranges for Tallinn (*) are based on previ-
ous research (Keskküla 2011), others are based on a single result from repreated 
measurements (N=10) or expressed as Mean ± SE as provided by the laboratory

Table 3. Collembola, oribatid mites and diatom community parameters (observed 
species richness for Collembola and oribatid mites, rarefied species richness for 
diatoms and diversity expressed by  Shannon’s H on the runway sides and snow-
melting sites of Tallinn, Tartu and Pärnu airfields 
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from all the sampled sites on Tallinn and Tartu runway sides (B 
= 0.9167 for both). 

2.4. Oribatida community composition
In total 34 oribatid mite species were identified, belonging to 
22 genera. The majority of species found on airfield soils belong 
to suborder Brachypylina. The most abundant species were 
Scheloribates laevigatus Koch, 1836 and Tectocepheus velatus 
velatus Michael, 1880. These two species made up 37% of the 
total abundance, 19% and 18% respectively. While the snow-
melting sites of the three airfields shared only one oribatid mite 
species, T. velatus velatus, the runway sides had five species 
incommon: Liebstadia pannonica Willmann, 1951, Platynothrus 
peltifer Koch, 1839, S. laevigatus, Trichoribates incisellus Kram-
er, 1897 and T. velatus velatus. The list of all encountered spe-
cies together with their abundance (per sample) at each air-
field, separating between the runway sides and snow-melting 
sites at each airfield is given in Appendix (Table A.2.).

No significant differences in oribatid mite species 
abundance depending on the purpose of the airfield area (run-
way side or snow-melting sites) or airfield were detected (P > 
0.05). The explorative average linkage cluster analysis showed 
that at the snow-melting sites the oribatid mite communities 
were not differentiable based on the specific airfield. The com-
munities belonging to the runway sides, however, formed a 
distinct group together with the communities on the Tallinn air-
field, and separated them from the communities of Tartu and 
Pärnu (Fig. 2). No significant differences were observed in the 
abundance of oribatid mite species in comparison on runway 
sides and snow-melting sites nor in comparison of the three 
airfields. 

Some site specific species such as Eupelops acromios 
Hermann, 1804 and Nothrus silvestris Nicolet, 1855, character-
istic only of Tallinn airfield, and Punctoribates punctum Berlese, 
1908, characteristic of Pärnu airfield, were encountered. When 
grouping the sites into six groups (separating between airfields, 
their runway sides and snow-melting sites) the ISA did not re-
veal any oribatid mite species that were significantly indicative. 
In three-way ISA E. acromios was significantly indicative of Tal-
linn airfield (IV = 0.79, P = 0.01). S.  laevigatus, T. velatus ve-
latus and Eupelops hygrophilus Knülle, 1954 were significantly 
(P < 0.04) linked to various combinations of two airfields. Even 

though L. pannonica inhabited only runway side soils, no sig-
nificant indicators were found that could identify different land 
use within airfields.  

2.5.  Diatom community composition
In total 49 diatom species were identified belonging to 30 gen-
era. The most abundant diatoms were Hantzschia amphioxys 
(Ehrenberg) Grunow, 1880 (26.1%), Aulacoseira granulata (Eh-
renberg) Ehrenberg, 1843 (12.9%) and Luticola mutica (Kützing) 
Mann, 1990 (9.7%). The snow-melting sites shared five species, 
which in addition to the three most abundant species were 
Fragilaria nitzschioides (Grunow) Lange-Bertalot, 2011 and 
Navicula cari (Ehrenberg) Ehrenberg, 1836. The runway sides 
of the three airfields shared eight species. These included the 
most abundant diatom species mentioned previously and also 
Pinnularia obscura (Krasske) Patrik & Reimer, 1966, N. cari, Hu-
midophila contenta (Grunow) Lowe et al., 2014 and F. nitzschi-
oides. An explorative cluster analysis did not reveal notable sim-
ilarities between the diatom communities of the three airfields, 
in comparison of the snow-melting sites and runway sides. 

There were 12 diatom species that were specific to 
Pärnu airfield, including e.g. Fragilariforma virescens (Ralfs) 
Williams & Round, 1988 and several species belonging to the 
Stauroneis genus. The list of all encountered species at each air-
field, separating between the runway sides and snow-melting 
sites is given in Appendix (Table A.3.)

The results from six-way ISA (separating between 
airfields, their runway sides and snow-melting sites) indicated 
that Pinnularia lata (Brébisson) Rabehorst, 1853 (IV = 0.985 P 
= 0.016), Pinnularia borealis (Ehrenberg) Ehrenberg, 1843 (IV = 
0.957 P = 0.041) and Diploneis finnica (Ehrenberg) Cleve, 1891 
(IV = 0.913 P = 0.027) are strongly and significantly associated 
with the snow-melting sites of Pärnu airfield. These three spe-
cies can be used to indicate the snow-melting sites of Pärnu 
airfield because they appear on all sampled sites (B = 1.0000) 
and they are largely (but not completely) restricted to them 
(A=0.9706, A=0.9158 and A=0.8333 respectively). Also three 
other diatom species – F. nitzschioides, L. mutica and D. finnica) 
were significantly (P > 0.05) linked to snow-melting sites of all 
the studied airfields.

3. DISCUSSION
The concentrations of Pb and Zn were mildly elevated (Peter-
sell et al. 1997) in Tallinn airfield. Pärnu airfield had elevated 
Zn content compared to normal levels in the region. Levels of 
Cd were high on all airfields (Petersell et al. 1997). Neverthe-
less, the concentration of measured heavy metals and oil prod-
ucts (C10–C40) remained lower than the limits set by Estonian 
Environmental Ministry (Riigiteataja 2010; Pinedo et al. 2014). 
While most soil parameters varied only moderately between 
the three airfields, elevated level of K was noted in Tallinn 
and higher organic mat﻿﻿ter content in Tartu compared to the 
other airfields. Overall, both K and organic mat﻿﻿ter content in 
the humus horizon can be considered high (Kask & Niine 1997; 

Figure 2. Average linkage cluster analysis of the oribatid mite samples collected 
from runways sides, abbreviation beginning with TL refer to Tallinn airfield, TR to 
Tartu airfield and P to Pärnu airfield, numbers stand for sampling sites within the 
airfield as shown on Fig.1.

.
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Petersell et al. 1997). While in Tallinn the elevated K content is 
likely linked to historic soil conditions, the high organic mat﻿﻿ter 
content in Tartu airfield soil is more of a mystery, possibly tied 
to characteristics of the filling soil used in some parts of the 
airfield. Soil pH values, varying from slightly acidic to neutral, 
reflected the historic soil conditions, indicating also that the ad-
dition of construction and other aviation related substances has 
not raised the soil pH as often occurs in soils under anthropo-
genic influence (Maechling et al. 1974). 

The SIR results showed similar results as measured 
from Estonian road-side grasslands (Vacht 2012), but exceeded 
the levels measured from e.g. semi-coke heap habitats (Kalda 
et al. 2015). Basal respiration rate was higher than measured 
from road-side soils (Vacht 2012). Soil basal respiration has 
been shown to indicate toxicity effects (e.g. Pb, Zn, Cu) in soils 
(Romero-Freire et al. 2016), but not in soils with high organic 
mat﻿﻿ter and carbonate content such as the soils encountered in 
this study. Also the indicativeness of substrate induced respira-
tion has been known to depend greatly on soil pH (Cheng & 
Coleman 1989). The elevated respiration rate in Pärnu may be 
related to the increased levels of oil products in the airfield soil 
(Hund & Schenk 1994).

Diatom and oribatid mite species richness (rarefied 
species richness for diatoms) and diversity showed similar 
trends in comparison of the three airfields. Collembolan diver-
sity varied greatly, showing no strong signs on indicativeness to 
airfield nor airfield area purpose. The oribatid mite and diatom 
community diversity were similar showing high diversity in the 
snow-melting sites of Tallinn airfield and lowest diversity in the 
runways sides of Tartu airfield. In Tallinn this difference could 
be caused by the nature of de-icing agents used, and in Tartu 
the decreased diversity could potentially be linked to recent 
runway construction work. 

Springtail communities were dominated by P. armata 
and P. notabilisi, which are known to inhabit highly disturbed 
areas (Migliorini et al. 2003; Eitminavičiūtė 2006a,b). Collem-
bolans are considered as a relatively resistant group to anthro-
pogenic disturbances (Bengtsson & Rundgren 1988; Haimi & 
Siira-Pietikäinen 1996), however, their community composition 
is known to respond to human-induced disturbances, especial-
ly by decreasing numbers of Isotomidae and Onychiuridae and 
increasing abundance of less demanding Entomobryidae and 
Neanuridae (Sousa et al. 2003; Magro et al. 2013). This study, 
however, did not encounter a strong shift in most of these 
groups in comparison of the three airfields nor in comparison 
of the snow-melting sites and runway sides. Only Neanuridae 
(e.g. A. granaria and M. pygmaea) were more abundant at 
the snow-melting sites, which may indicate that these areas 
present a suitable niche for these species. For Entomobryidae 
(e.g. L. lanuginosus and L. cyaneus) the change in abundance 
was opposite, making it difficult to interpret either the runway 
sides nor snow-melting sites as the more demanding habitat. 
Some studies also point out that epedaphic (Pernin et al. 2006) 
L. lanuginosus may be indifferent to soil contamination levels 
(Austruy et al. 2016). The comparison the Collembolan families 

of the three airfields did not reveal any significant differences in 
abundances, indicating that solely based on these parameters, 
the airfields cannot be ranked according to their disturbance 
level. 

The community similarity of different airfields and 
airfield area purposes together with the number and percent-
age of shared species suggest fairly homogeneous Collembolan 
communities. The typical airfield springtail community consists 
of A.granaria, M. affinis, P. armata, P. notabilis, and likely also 
species belonging to Folsomia and Isotoma genera. 

Most of the oribatid mites found in this study (e.g. P. 
punctum, S. laevigatus) are widespread eurytopic species, usu-
ally forming the main body of edaphic communities in most dis-
turbed landscapes in Europe (Caruso et al. 2009). The species 
composition of Oribatid mites resembled those of Lithuanian 
urban soils (Eitminavičiūtė 2006a,b) containing dominant T. ve-
latus velatus and S. laevigatus. The lat﻿﻿ter has also been found 
from the area of Orio al Serio Airport in Northern Italy (Migli-
orini et al. 2003). The low abundance of Oppiella nova Oude-
mans, 1902 could be due to high soil pH as noted by previous 
studies (Eitminavičiūtė 2006a,b). Also typically moss-dwelling 
(Smrž 1994) Scutovertex minutus Koch, 1835 was found from all 
sites, however, only abundantly from one of the snow-melting 
sites in Tartu (site TR1). Previously this species has been found 
from the immediate proximity to the roads (Eitminavičiūtė 
2006a,b) possibly showing its high tolerance towards de-icing 
agents and preference for hydric conditions. Some research 
suggest the species has a high tolerance for fluctuating abiotic 
soil parameters (e.g. moisture) (Smrž 1994). Also T. incisellus, 
L. pannonica and Peloptulus phaenotus Koch, 1844 have been 
previously encountered in heavy metal contaminated soils (Ca-
ruso et al. 2009; Skubała & Zaleski 2012). Therefore, the com-
munity that can be considered typical to airfields contains the 
following species: T. velatus velatus, L. pannonica, P. peltifer, S. 
laevigatus and T. incisellus. Compared to springtails the oribatid 
mite communities show more variability, especially in compari-
son of different airfield area purposes. This is why in the future, 
especially the effects of airfield de-icing agents on oribatid mite 
communities should be studied in more detail.

The dominant diatom species were the cosmopolitan 
H. amphioxys, A. granulata and L. mutica. All the studied air-
fields contained the same base soil community, that has also 
previously been found from many soil habitats both in Estonia 
(Vacht et al. 2014) and elsewhere (Soare & Dobrescu 2010; 
Heger et al. 2012) that represent a tolerant algal community 
which has lit﻿﻿tle bioindication value that is particular to airfields. 
Nevertheless, the shared species of the three airfields (e.g. F. 
nitzschioides, H. amphioxys, N. cari, L. mutica) can be expected 
to be found on also other similar airfields. Also it is possible that 
some species (e.g. D. finnica) may indicate snow-melting sites 
mostly due to increased moisture, which are less suitable habi-
tats for microarthropod communities. This is one of the reasons 
why microarthropods and diatoms should be considered as 
complementary bioindicator groups in soil ecological research. 
The ISA revealed that in comparison of the three bioindicator 
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groups, diatoms and springtails were the most indicative on 
specific airfield or land use. Based on this, oribatid mites can be 
considered fairly robust towards airfield related disturbances.

Soil functionality is closely related to the concept of 
soil quality which in turn has the capability to sustain among 
other things biotic communities (Gardi et al. 2002). All the air-
field soils are functional soils, containing a well adapted and 
comparatively diverse community of diatoms, springtails and 
oribatid mites. It has been noted on several occasions that us-
ing bioindicators should be incorporated into evaluation of soil 
functionality and quality of anthropogenic soils (Hartley et al. 
2008). The community composition found on these airfields 
indicates that all main functional groups of microarthropods 
are present, though fungal feeders were prominent (e.g. T. ve-
latus velatus, S. laevigatus). This means that the habitat must 
contain also sufficient food sources for all groups present.. Also 
high ratio in Acarina/Collembola may suggest high soil quality 
because there are known to be less mites than springtails in 
degraded soils (Parisi et al. 2005). The results of the O/C ra-
tio indicates well that in an anthropogenic grassland such as 
airfields it is vital to include both oribatid mite and springtail 
identification due to the variation of the dominant group, to 
receive a full overview of the microarthropod communities 
before combining the data with diatom community data. The 
ratio reflects also the dominant soil process – humification over 
mineralization in Pärnu and mineralization over humification in 
Tallinn and Tartu. The elevated O/C ratio ( >1 ) can be also con-
sidered a measure of environmental stability (Bachelier 1986) 
which means Pärnu airfield can be considered as the most envi-
ronmentally stable out of the three airfields studied. 

4. CONCLUSION
While an overwhelming area of the three airfields show char-
acteristics of Technosols, they also show properties of the 
natural soils which despite the moderately elevated levels of 

pollutants have maintained fully functional soil biological com-
munities. Microarthropod and diatom community parame-
ters show more similar variation than springtail communities 
depending on the airfield and the purpose of the particular 
airfield area. All three bioindicator groups had a substantial 
percentage of species that can be considered typical to areas 
affected by disturbances, in this case airfields. These species 
include springtails e.g. M. affinis and P. notabilis, oribatid mites 
T. velatus velatus, L. pannonica  and T. incisellus, and diatoms F. 
nitzschioides, H. amphioxys and L. mutica.

Collembola species L. lanuginosus and T. vulgaris 
were significantly indicative of airfield runway sides but no 
strong indicators of specific airfield were discovered. Oribatid 
mites were not indicative of different airfield purposes, only E. 
acromios was noted as indicative of Tallinn airfield.

Three diatom species, F. nitzschioides, Luticola mutica 
and D. finnica, were significantly linked to airfield snow-melting 
sites. Also, many diatom species were specific to Pärnu airfield. 

In conclusion, it is clear that despite aviation related 
disturbances these three airfields have maintained a functional 
soil biological community that has adapted well to these condi-
tions. Also, the shifts in O/C ratio and variation in the commu-
nity parameters of the three groups indicates the potential of 
these three groups as complementary bioindicators of anthro-
pogenic disturbances. Further studies are needed to confirm 
the connections between these bioindicators and specific soil 
parameters.
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APPENDIX 

Table A1 Collembola

Tallinn Tartu Pärnu

Runway 
sides

Snow-mel-
ting sites

Runway 
sides

Snow-mel-
ting sites

Runway 
sides

Snow-mel-
ting sites

Collembola

Anurida granaria (Nicolet, 1847) 0.3 ± 0.2 1.0 ± 1.0 0.2 ± 0.2 3.0 ± 3.0 0.2 ± 0.2 0.5 ± 0.5

Bourletiella arvalis (Fitch, 1863) - - 0.2 ± 0.2 0.5 ± 0.5 - -

Ceratophysella bengtssoni (Ågren, 1904) 4.7 ± 2.1 - - 3.0 ± 3.0 0.2 ± 0.2 1.5 ± 0.5

Ceratophysella sp. 2.3 ± 2.1 0.5 ± 0.5 3.0 ± 2.2 21.0 ± 20.0 0.3 ± 0.3 2.5 ± 2.5

Dicyrtomina sp. - 0.5 ± 0.5 - 0.5 ± 0.5 1.5 ± 1.5 -

Folsomia candida (Willem, 1902) 3.5 ± 1.5 - 2.2 ± 1.8 8.5 ± 8.5 0.2 ± 0.2 0.5 ± 0.5

Folsomia fimetaria (Linnaeus, 1758) - - 0.5 ± 0.2 - 0.2 ± 0.2 0.5 ± 0.5

Folsomia quadrioculata (Tullberg, 1871) 0.2 ± 0.2 0.5 ± 0.5 - - - -

Folsomia sexoculata (Tullberg, 1871) 3.8 ± 2.3 7.5 ± 5.5 0.7 ± 0.3 0.5 ± 0.5 3.3 ± 2.6 -

Friesea sp. - - - 1.5 ± 1.5 - -

Heteromurus nitidus (Templeton, 1835) 0.3 ± 0.2 - - - - -

Hypogastrura sp. 2.7 ± 1.8 0.5 ± 0.5 0.5 ± 0.3 11.0 ± 11.0 - -

Isotoma minor (Schaeffer, 1896) 5.2 ± 1.7 - 1.0 ± 0.7 31.5 ± 31.5 1.2 ± 0.5 2.0 ± 0.0

Isotoma viridis (Bourlet, 1839) 1.5 ± 0.9 - 1.2 ± 0.3 0.5 ± 0.5 0.7 ± 0.4 1.0 ± 1.0

Isotomurus palustris (Müller, 1776) 1.7 ± 0.6 - - - 0.2 ± 0.2 1.0 ± 0.0

Isotomurus sp. 1.8 ± 1.1 - 0.8 ± 0.5 - 0.3 ± 0.2 -

Tomocerus vulgaris (Tullberg, 1871) 0.3 ± 0.2 - 1.5 ± 0.8 - - -

Lepidocyrtus lanuginosus (Gmelin, 1788) 3.0 ± 1.5 - 2.5 ± 1.1 - 0.3 ± 0.2 -

Metaphorura affinis (Börner, 1902) 2.3 ± 1.0 2.5 ± 2.5 7.5 ± 2.9 2.5 ± 2.5 0.5 ± 0.5 1.5 ± 1.5

Micranurida pygmaea (Börner, 1901) - - - - 0.2 ± 0.2 1.0 ± 1.0

Parisotoma notabilis (Schaeffer, 1896) 17.2 ± 7.5 2,5 ± 0.5 3.0 ± 1.9 1.5 ± 0.5 3.3 ± 1.7 1.0 ± 1.0

Proisotoma minuta (Tullberg, 1871) 0.3 ± 0.2 - 0.7 ± 0.5 35.0 ± 35.0 - 0.5 ± 0.5

Protaphorura armata (Tullberg, 1869) 1.7 ± 1.1 1.5 ± 1.5 4.7 ± 1.9 70.0 ± 70.0 0.2 ± 0.2 0.5 ± 0.5

Pseudisotoma sensibilis (Tullberg, 1876) - - 1.2 ± 1.2 - - 2.5 ± 2.5

Pseudosinella sexoculata (Schöt﻿﻿t, 1902) - - - 6.0 ± 6.0 - -

Sminthurides schoetti (Axelson, 1903) - - - - 0.3 ± 0.3 -

Sminthurides sp. - - - - 0.7 ± 0.4 -

Sminthurinus aureus (Lubbock, 1862) 0.2 ± 0.2 - - 0.5 ± 0.5 - -

Tomocerus vulgaris (Tullberg, 1871) 2.7 ± 0.9 - 3.2 ± 0.7 - 0.3 ± 0.3 -

Willowsia buski (Lubbock, 1870) 1.2 ± 0.8 - 1.2 ± 1.0 - - -

Xenylla sp. 2.2 ± 1.3 - 0.5 ± 0.3 1.0 ± 1.0 - -
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Table A2 Oribatid

Tallinn Tartu Pärnu

Runway sides Snow-melting 
sites Runway sides Snow-melting 

sites Runway sides Snow-melting 
sites

Oribatida

Liochthonius brevis (Michael, 1888) - - - 4.0 ± 4.0 0.3 ± 0.3 1.0 ± 1.0

Liochthonius sellnicki (Thor, 1930) - - - - 0.5 ± 0.5 -

Steganacarus (Atropacarus) sticulus (Koch, 
1836)

- - - - 0.5 ± 0.5 -

Steganacarus (Tropacarus) carinatus 
(Koch, 1841)

0.2 ± 0.2 - - - 0.2 ± 0.2 -

Rhysotrita ardua (Koch, 1841) - - - - 0.2 ± 0.2 -

Platynothrus peltifer (Koch, 1839) 0.2 ± 0.2 - 0.7 ± 0.7 - 4.2 ± 2.1 1.0 ± 1.0

Nothrus silvestris (Nicolet, 1855) 0.2 ± 0.2 0.5 ± 0.5 - - - -

Conchogneta traegardhi (Forsslund, 1947) 0.2 ± 0.2 - - - - -

Oppiella nova (Oudemans, 1902) - - 0.8 ± 0.8 - 0.3 ± 0.2 -

Oppiella translamellata (Willmann, 1923) 0.2 ± 0.2 - 0.8 ± 0.5 - - -

Tectocepheus velatus velatus (Michael, 
1880)

3.2 ± 1.5 2.0 ± 2.0 10.3 ± 5.3 18.0 ± 13.0 0.2 ± 0.2 -

Scutovertex minutus (Koch, 1835) - 1.0 ± 1.0 - 23.5 ± 23.5 0.2 ± 0.2 -

Eupelops tardus (Koch, 1835) 0.8 ± 0.5 - - - - -

Eupelops acromios (Hermann, 1804) 1.7 ± 0.8 0.5 ± 0.5 - - - -

Eupelops hygrophilus (Knülle, 1954) 3.3 ± 2.2 - - - 1.2 ± 0.6 4.0 ± 4.0

Eupelops occultus (Koch, 1835) - - 0.3 ± 0.3 - - -

Peloptulus phaenotus (Koch, 1844) 0.3 ± 0.3 - - - 3.7 ± 2.1 1.0 ± 1.0

Liebstadia pannonica (Willmann, 1951) 0.2 ± 0.2 - 0.3 ± 0.3 - 0.3 ± 0.2 -

Scheloribates laevigatus (Koch, 1836) 1.7 ± 1.7 - 14.8 ± 9.9 0.5 ± 0.5 4.7 ± 1.8 4.5 ± 3.5

Scheloribates latipes (Koch, 1844) 0.7 ± 0.7 - - - 0.5 ± 0.3 0.5 ± 0.5

Chamobates voigtsi (Oudemans, 1902) 0.2 ± 0.2 - - - - -

Ceratozetes mediocris (Berlese, 1908) 0.2 ± 0.2 - - - - -

Ceratozetes parvulus (Sellnick, 1922) 0.7 ± 0.5 - - - - -

Ceratozetes gracilis (Michael, 1884) 0.2 ± 0.2 - - - - -

Trichoribates incisellus (Kramer, 1897) 0.8 ± 0.5 - 0.7 ± 0.5 1.0 ± 1.0 0.2 ± 0.2 -

Mycobates sarekensis (Trägårdh, 1910) - - 0.7 ± 0.7 0.5 ± 0.5 0.2 ± 0.2 -

Mycobates tridactylus (Willmann, 1929) 0.2 ± 0.2 - - - - -

Punctoribates punctum (Berlese, 1908) - - - - 0.2 ± 0.2 1.5 ± 1.5

Haplozetes vindobonesis (Willmann, 1935) 0.7 ± 0.7 - - - - -

Peloribates longipilosus (Csiszár, 1962) 1.7 ± 1.7 - - - - -

Galumna sp. 0.8 ± 0.3 - - - - -

Galumna lanceata (Oudemans, 1900) 0.5 ± 0.5 - - - - -

Galumna obvia (Berlese, 1914) 0.3 ± 0.3 - - - - -

Pergalumna nervosa (Berlese, 1914) 0.7 ± 0.7 - - - - -
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Table A3 Diatom

Tallinn Tartu Pärnu

Runway 
sides

Snow-mel-
ting sites

Runway 
sides

Snow-mel-
ting sites

Runway 
sides

Snow-mel-
ting sites

Diatoms

Achnanthes delicatula (Kützing) Grunow, 1880 - - - - - +

Achnanthes hungarica (Grunow) Grunow, 1880 - - - - + -

Actinella sp. (Lewis) Lewis, 1864 + - - - - -

Amphipleura sp. (Kützing) Kützing, 1844 - - - - - +

Aulacoseira granulata (Ehrenberg) Ehrenberg, 1843 + + + - + +

Aulacoseira karelica (Mölder) Simonsen, 1979 + - - - - -

Aulacoseira sp. (Ehrenberg) Thwaites, 1848 + - - + - -

Caloneis sp. (Cleve) Cleve, 1894 - - - + - -

Cocconeis fluviatilis (Wallace) Wallace, 1960 - - - - + -

Cymbella affinis (Kützing) Kützing, 1844 - - + + - +

Cymbella radiosa (Héribaud-Joseph) Héribaud-Joseph, 
1903 + - - - - -

Diploneis finnica (Ehrenberg) Cleve, 1891 - + - - - +

Epithemia sp. Kützing, 1844 + - - - - +

Epithemia turgida (Ehrenberg) Kützing, 1844 - - - + - +

Eunotia paludosa Grunow 1862 - - + - - -

Fragilaria nitzschioides (Grunow) Van Heurck 1881 + + + + + +

Fragilaria sp. (Müller) Lyngbye, 1819 + - - - + -

Fragilariforma virescens (Ralfs) Williams and Round, 
1988 - - - - + -

Gomphonema parvulus (Kützing) Kützing, 1849 + - - + - +

Hantzschia amphioxys (Ehrenberg) Grunow, 1880 + + + + + +

Humidophila contenta (Grunow) Lowe et al., 2014 + - + - + +

Luticola mutica (Kützing) Mann, 1990 + + + + + +

Luticola nivalis (Ehrenberg) Mann, 1990 - + - - - -

Luticola venticosa (Kützing) Mann, 1990 + - - + - +

Mastogloia sp. (Thwaites) Smith, 1856 - - - - - +

Mayamaea sp. (Kützing) Lange-Bertalot, 1997 + + - - + +

Navicula cari (Ehrenberg) Ehrenberg, 1836 + + + + + +

Navicula cincta (Ehrenberg) Ralfs, 1861 - - - + + -

Navicula subhamulata (Grunow) Grunow, 1880 + - - - + +

Nitzschia alpina (Hustedt) Hustedt, 1943 + - - - + +

Nitzschia amphibia (Grunow) Grunow, 1862 - - - + + +

Nitzschia sp. Hassall, 1845 - - - + - -

Pinnularia borealis (Ehrenberg) Ehrenberg, 1843 + + - - + +

Pinnularia lata (Brébisson) Rabehorst, 1853 + - - - - +

Pinnularia obscura (Krasske) Patrick and Reimer, 1966 + - - + + +

Pinnularia rabenhorsti (Grunow) Krammer, 2000 - - - - + +

Pinnularia sp. Ehrenberg, 1843 + - + - + -

Pinnularia subcapitata Gregory, 1856 - - - - + -

Pseudostaurosira sp. Williams and Round, 1988 - - - - - +
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Sellaphora alastos (Hohn and Hellerman) Lange-Berta-
lot and Metzeltin, 1996

- - - - - +

Stauroforma exiguformis Flower, Jones and Round, 
1996

- - - - - +

Stauroneis kriegeri (Patrick) Patrick, 1945 - - - - + -

Stauroneis sp. Ehrenberg, 1842 - - - - - +

Staurosira construens var. venter (Ehrenberg) Hamil-
ton, 1992

- - - - - +

Staurosirella leptostauron (Ehrenberg) Williams and 
Round, 1987

+ + - - - +

Stephanodiscus sp. (Ehrenberg) Eherenberg, 1845 + - - - - +

Suriella ovata Kützing, 1844 - - - - + -

Tabellaria fenestrata (Lyngbye) Kützing, 1844 + - + - - +

Ulnaria ulna (Kützing) Compère, 2001 - - - - - +

continued Table A3 Diatom
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