

Global analysis of threat status reveals higher extinction risk in tropical than in temperate bird sister species

Jiří Reif^{1,2*}, Klára Štěpánková¹

Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Praha 2, Czech Republic Corresponding author, E-mail: jirireif@natur. cuni.cz

²Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University in Olomouc, 17. listopadu 50, 771 46 Olomouc, Czech Republic

ABSTRACT

Given increasing pressures upon biodiversity, identification of species' traits related to elevated extinction risk is useful for more efficient allocation of limited resources for nature conservation. Despite its need, such a global analysis was lacking in the case of birds. Therefore, we performed this exercise for avian sister species using information about their global extinction risk from IUCN Red List. We focused on 113 pairs of sister species, each containing a threatened and an unthreatened species to factor out the effects of common evolutionary history on the revealed relationship. We collected data on five traits with expected relationships to species' extinction risk based on previous studies performed at regional or national levels: breeding habitat (recognizing forest, grassland, wetland and oceanic species), latitudinal range position (temperate and tropics species), migration strategy (migratory and resident species), diet (carnivorous, insectivorous, herbivorous and omnivorous species) and body mass. We related the extinction risk using IUCN threat level categories to species' traits using generalised linear mixed effects models expecting lower risk for forest, temperate, omnivorous and smaller-bodied species. Our expectation was confirmed only in the case of latitudinal range position, as we revealed higher threat level for tropical than for temperate species. This relationship was robust to different methods of threat level expression and cannot be explained by a simple association of high bird species richness with the tropical zone. Instead, it seems that tropical species are more threatened because of their intrinsic characteristics such as slow life histories, adaptations to stable environments and small geographic ranges. These characteristics are obviously disadvantageous in conditions of current human-induced environmental perturbations. Moreover, given the absence of habitat effects, our study indicates that such perturbations act across different tropical environments. Therefore, disproportionally higher conservation effort in the tropics compared to the temperate zone is urgently needed.

KEYWORDS

Biodiversity, bird, threat, species' traits, sister species, tropics

© BY-NC-ND © 2016 Jiří Reif, Klára Štěpánková

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license

INTRODUCTION

Explosive growth of human population size and needs over the past decades was accompanied by massive global changes resulting in elevated extinction risk of many taxa (Barnosky et al. 2011). Despite increasing amount of sources allocated to various conservation measures, recent analyses confirmed that the risk of extinction is permanently increasing in vertebrates and other taxa (Butchart et al. 2010; Hoffmann et al. 2010). In this situation, it is crucial to enhance our knowledge about threatened taxa to allocate the conservation effort more efficiently (Pimm et al. 2014).

A comparative analysis of ecological traits of threatened species is particularly useful for this purpose because it reveals general patterns in threat of the focal species groups (Estrada et al. 2015). From this information, we can infer relative importance of particular threatening factors and, based on this assessment, we can set conservation priorities, which is essential for the development of successful strategies to mitigate threatening agents (Cardillo & Meijaard 2012; Dirzo et al. 2014).

In birds, various studies focused on traits correlated with increased extinction risk at the regional scale revealing relationships with habitat use, life histories or climatic niche (e.g. Manne & Pimm 2001; Trivino et al. 2013; Koleček et al. 2014a). However, a global analysis assessing correlates of threat status is still lacking. Only Owens & Bennett (2000) used family-level approach to reveal that taxa more specialised to utilise particular habitats are more threatened due to habitat destruction, whilst taxa with slower life histories are more threatened because of direct human persecution.

To build on these earlier studies, we compiled a global dataset of traits for avian sister species containing a threatened and an unthreatened taxon in each sister species pair. Focusing on sister species is useful for discriminating the traits respon-

sible for differences in species threat status because it accounts for confounding effects of common evolutionary history of the species within each pair (Webb & Gaston 2003). Therefore, traits that are shared within species pair, that is, those that are evolutionary stable and phylogenetically conserved, do not affect the observed relationships (Pigot & Tobias 2013).

In this study, we focused on following traits in which relationships to species' extinction risk can be expected: habitat use, latitudinal breeding range position, migration strategy, diet and body mass. In respect to species habitat use, we predict (i) higher extinction risk for species breeding in open habitats because of joint effects of agricultural intensification (Doland et al. 2001), expansion of cultivated land at the expense of natural steppe habitats (Foley et al. 2011) and forest encroachment on savannah and abandoned farmland (Sirami & Monadjem 2012). Moreover, we predict (ii) higher extinction risk for oceanic species because of detrimental effects of techniques used in modern fisheries (Croxall et al. 2012). Finally, we predict (iii) higher extinction risk in wetland species because of extensive loss of this habitat (Sterling et al. 2013).

Concerning latitudinal breeding range position, we predict (iv) higher extinction risk of tropical species because of their life style, making them particularly sensitive to environmental changes: small geographic ranges (Orme et al. 2006), adaptation to stable environmental conditions (Janzen 1967; Fjeldså et al. 2012) and slow pace of life (Stutchbury & Morton 2001). Concerning migration strategy, we predict (v) higher extinction risk for long-distance migratory species because of their higher sensitiveness to climate change impacts (Both et al. 2010), hunting pressure during migration and in wintering grounds (Zwarts et al. 2009), habitat loss at stop-over sites and wintering quarters (Vickery et al. 2014). Concerning diet, we predict (vi) higher extinction risk in more specialised species (i.e. carnivores, insectivores, herbivores) than in less specialised species (omnivores) because of lower resilience of specialists to global changes (Jiguet et al. 2007). Concerning body mass, we predict (vii) higher risk of extinction for larger-bodied species because of their lower potential for population recovery after environmental perturbations dictated by their long generation time (Sæther et al. 2005).

The aim of this study is to test these predictions and find the factors explaining elevated extinction risk for bird sister species at the global scale.

1. MATERIALS AND METHODS

1.1. Data

We used a database of bird sister species (n = 568 species pairs) published by Philimore et al. (2008). For each species, we first extracted its threat status from IUCN Red List (www.iucnredlist. org accessed in October 2013). For further analysis, we used only the sister species pairs (n = 113) with one species being unthreatened (threat category 'least concern', LC) and the second species having any of the higher categories indicated

elevated extinction risk (i.e. 'near threatened', NT; 'vulnerable', VU; 'endangered', EN; 'critically endangered', CR and 'extinct in the wild', EW; see Mace et al. 2008).

In the next step, we collected information about habitat use and latitudinal range position from Sibley and Monroe (1990). We recognised four broad habitat classes: forest, grassland, desert, wetland and ocean. Habitat class 'forest' (n = 111 species) contains various forest types and woodlands; 'grassland' (n = 62 species) contains various open habitats including steppe, savannah, arable fields, meadows and pastures, semidesert and scrub formations; 'wetland' (n = 37 species) contains various humid habitats including peatbogs and freshwater; 'ocean' (n = 16 species) contains marine species and species confined to oceanic islands. According to the latitudinal range position, we discriminated tropical (n = 142 species) and temperate (n = 84 species) species using location of their breeding ranges with respect to tropical and temperate zone, respectively. Tropical zone was defined as a latitudinal band between the tropic of Cancer and the tropic of Capricorn, temperate zone outside this band. When a species bred in both tropical and temperate zone, we assigned it to the category overlapping higher proportion of its breeding range. For this purpose, we searched for more information about range location of a given species in del Hoyo et al. (1992-2002, 2003-2011).

To collect information about species' migration strategy, life-history strategy and diet, we used del Hoyo et al. (1992-2002, 2003-2011). However, some species lacked information about one or more of these traits and these variables were thus available only for a subset of species pairs (n = 96). According to migration strategy, we classified species as migrants (n = 41 species) and residents (n = 151 species). As 'migrants', we defined species conducting seasonal movements outside their breeding range. As a surrogate for life-history strategy, we used species' body mass (in grams) assuming that larger bodied species invest more energy to survival and have thus 'slower strategies' being under the so-called 'K-selection', whilst smaller species invest more energy to actual reproduction and have thus 'faster' strategies being under 'r-selection' (Sæther et al. 2005). This gradient was confirmed as the most important life history axis in recent analyses focusing on variability in life history traits across large sets of species (Sol et al. 2012, Koleček et al. 2014b). According to diet, we classified species into four categories defined by prevailing food: carnivores (n = 34 species), insectivores (n = 63 species), herbivores (n = 77 species) and omnivores (n = 18 species). These categories are frequently used in interspecific comparative studies (e.g. Böhning-Gaese et al. 2000, Reif et al. 2010). As the information about diet of the focal species was only available as a qualitative description in the text of del Hoyo et al. (1992-2002; 2003-2011), we identified a given species as a carnivore, insectivore or herbivore, respectively, if some food sources from a given diet category were explicitly described as its main food (e.g. fish for carnivores or seeds for herbivores). If the main food of a given species overlapped all three categories mentioned above, we classified the species as an omnivore.

 $\mbox{All species data are provided in Supplementary} \label{eq:all-species} \mbox{Table 1.}$

1.2. Statistical analysis

Species threat status was a response variable in all analyses. For this variable, we used two types of coding: first, recognizing only threatened (1) and unthreatened species (0); and second, expressing increasing risk of extinction by numerical values for particular threat categories in the same way as is widely applying for calculating Red List Index (e.g. Hoffmann et al. 2010): NT = 1, VU = 2, EN = 3, CR = 4, EW = 5. These two coding types mirrored in the error structure used in statistical analyses: binomial error structure has been used for the first type of coding and Poisson error structure for the second type.

We related threat status to species' traits by using generalised linear mixed effects models (GLMMs) with multiple factors and taking identities species pairs into account. In each model, explanatory variables with fixed effects were particular species traits tested together and an identifier of species pairs (each containing a threatened and an unthreatened species, see above) was a factor with a random intercept. As we had two datasets because of lack of data on some explanatory variables for some species, we have performed two sets of analyses: (i) models for analyses with full dataset (n = 113 species pairs) contained only habitat and latitudinal range position and (ii) into models for analyses with reduced dataset (n = 96 species pairs) were added migration strategy, body mass (after log transformation) and diet. For each dataset, we ran a model with binomial and Poisson error structure, respectively, according to the type of coding used for the response variable (see above). These models contained only the main effects of particular explanatory variables and were used for reporting parameter estimates. However, because the effect of habitat can depend on latitudinal range position (e.g. different threat of species breeding in temperate vs. tropical forests), we tested whether including the habitat x latitudinal range position interaction improves the model fit. We do not use these interaction models for reporting the main effects due to dependence

of their values on interaction effects. Therefore, we ran eight GLMMs in total (see Table 1 for overview and description of all models).

2. RESULTS

Tropical species had higher threat level than their sisters breeding in the temperate zone according to GLMM taking into account pair-wise comparison between threatened and unthreatened sister species (Table 2). This relationship was consistent irrespective to the type of coding used for the response variable and applied for both full and reduced datasets (Table 2a,b). Irrespective to the type of coding used for the response variable, the relationship between threat level and species' habitat use was insignificant in full dataset (Table 2a). However, focusing on the reduced dataset, we found that the relationship between species' threat level and habitat use became significant when the threat level was coded using categories expressing increasing extinction risk. Specifically, open habitat species were more threatened than their sister species breeding in forest habitats (Table 2b). When using binary coding to discriminate between threatened and unthreatened species, the direction of the relationship remained the same but was much weaker and insignificant (Table 2b).

The interaction between habitat use and latitudinal range position was insignificant irrespective to the type of coding used for the response variable (full dataset–binomial errors: $\chi^2 = 0.36$, P = 0.948, whole model deviance = 305.7, degrees of freedom = 9; full dataset–Poisson errors: $\chi^2 = 1.73$, P = 0.613, whole model deviance = 320.6, degrees of freedom = 9; reduced dataset–binomial errors: $\chi^2 = 2.65$, P = 0.449, whole model deviance = 255.1, degrees of freedom = 14; reduced dataset–Poisson errors: $\chi^2 = 3.20$, P = 0.362, whole model deviance = 265.7, degrees of freedom = 14).

None of the GLMMs showed a significant relationship between species' threat and their migration strategy, body mass and diet, respectively (Table 2).

Table 1.	Characteristics	of the models	s used in s	tatistical	analysis

Model	Model terms	Error structure	No. of species pairs	Dataset
1	Habitat + Latitudinal range position	Binomial	113	Full
2	Habitat + Latitudinal range position	Piosson	113	Full
3	Habitat + Latitudinal range position + Habitat × Latitudinal range position	Binomial	113	Full
4	Habitat + Latitudinal range position + Habitat × Latitudinal range position	Piosson	113	Full
5	Habitat + Latitudinal range position + Migration + Body mass + Diet	Binomial	96	Reduced
6	Habitat + Latitudinal range position + Migration + Body mass + Diet	Piosson	96	Reduced
7	Habitat + Latitudinal range position + Habitat × Latitudinal range position + Migration + Body mass + Diet	Binomial	96	Reduced
8	Habitat + Latitudinal range position + Habitat × Latitudinal range position + Migration + Body mass + Diet	Piosson	96	Reduced

Table 2: Relationships between extinction risk (expressed using IUCN categories) and species' traits (habitat: forest, grassland, wetland and ocean; latitudinal range position: temperate and tropical; migration strategy: migratory and residential; body mass; diet: carnivorous, insectivorous, herbivorous and omnivorous) as revealed by generalised linear mixed effects models by pair-wise comparison of avian sister species (each pair contained a threatened and an unthreatened species). Threat level was expressed either as threatened (1) and unthreatened (0) corresponding to the binomial error structure or as increasing extinction risk following IUCN classification: least concern (0), near threatened (1), vulnerable (2), endangered (3), critically endangered (4), extinct in the wild (5), corresponding to Poisson error structure. Full dataset (a) contains all pairs of sister species (n = 113) with data on two trait variables, reduced dataset (b) contains limited number of pairs of sister species (n = 96) with data on five trait variables because of lack of data on some traits for some species (see Materials and methods section for more details). Significant results are in bold.

(a) Full dataset

	Binomial 6	error str	ucture		Poisson e			
	(deviance	(deviance = 306.1, df = 6)			(deviance	= 322.3,	df = 6)	
	coefficient	SE	z	Р	coefficient	SE	Z	Р
Intercept	-0.69	0.31	-2.18	0.029	-0.57	0.18	-3.20	0.001
Habitat								
Grassland*	0.33	0.33	1.00	0.318	0.20	0.33	0.62	0.532
Wetland*	0.29	0.40	0.71	0.479	0.26	0.16	1.56	0.118
Ocean*	0.59	0.58	1.02	0.310	0.30	0.20	1.48	0.140
Latitudinal range position								
Tropical zone†	0.80	0.31	2.58	0.010	0.49	0.17	2.89	0.004

df, degrees of freedom

- * Difference from the reference level forest
- † Difference from the reference level temperate zone

(b) Reduced dataset

	Binomial error structure Poisson error structure							
	(deviance =	257.8, d	lf = 11)		(deviance = 268.9, df = 11)			
	coefficient	SE	z	Р	coefficient	SE	z	Р
Intercept	-1.66	0.87	-1.92	0.055	-0.98	0.45	-2.19	0.029
Habitat								
Grassland*	0.49	0.36	1.36	0.176	0.39	0.18	2.13	0.033
Wetland*	0.27	0.47	0.57	0.567	0.29	0.24	1.21	0.227
Ocean*	0.52	0.80	0.65	0.518	0.08	0.44	0.19	0.851
Latitudinal range position								
Tropical zone†	0.81	0.35	2.28	0.023	0.58	0.19	3.02	0.003
Migration strategy								
Residents‡	0.32	0.40	0.80	0.427	0.18	0.20	0.88	0.377
Body mass¶	0.13	0.10	1.32	0.186	0.07	0.05	1.41	0.160
Diet								
Insectivores§	0.58	0.58	1.00	0.318	-0.03	0.29	-0.10	0.922
Herbivores§	0.35	0.53	0.66	0.508	0.09	0.26	0.33	0.739
Omnivores§	-0.44	0.64	-0.69	0.487	-0.56	0.36	-1.54	0.123

df, degrees of freedom

- * Difference from the reference level forest
- † Difference from the reference level temperate zone
- ‡ Difference from the reference level migrants
- ¶ Slope
- $\$ Difference from the reference level carnivorous

3. DISCUSSION

Our analysis of 113 pairs of globally threatened and unthreatened avian sister species showed higher threat for species breeding in the tropics. The result was consistent across different models and robust to manipulations of dataset (i.e. adding more factors to a limited set of species) and types of expression of the response variable: both simple binary coding as threatened versus unthreatened species and numerical transformation of IUCN categories of increasing extinction risk showed tropical breeding ranges of more threatened species. The remaining trait variables, namely, habitat use, migration strategy, body mass and diet, did not show any associations with threat level, albeit one model indicated significantly higher threat in species breeding in open habitats than in forest species.

Higher threat level is for tropical species in accord with the studies recognizing majority of biodiversity hot spots, that is, sites of exceptionally high species richness under extreme human pressures, as being localised in the tropics (e.g. Manne et al. 1999; Orme et al. 2005; Jenkins et al. 2013). One could argue that our result is just an artefact of a strong latitudinal gradient in bird species richness: Because the tropics harbour vast majority of global bird taxonomic diversity (Davies et al. 2007), they should also sample a higher number of threatened species than the temperate zone by chance alone (Hurlbert & Jetz 2007). This is true at the coarse scale of spatial resolution, although there are some mismatches between diversity and threat at the local level (Orme et al. 2005). However, our analysis does not suggest that the higher threat of tropical species results from a sampling artefact. Indeed, tropical species account for almost 80% of total bird diversity (Newton 2003), whereas they represented only 63% of our sample size. Moreover, because of using a sister species approach, our data contained equal numbers of threatened and unthreatened species. This approach thus ensured that a higher threat level observed in tropical species is not caused by a simple fact that most birds are tropical, but that it results from some intrinsic factors elevating avian extinction risk in this part of the world.

Why are the tropical species more threatened that their temperate sisters? First, it is possible that environmental pressures are higher in tropical regions due to higher growth rate of human population and also higher rate of economic development (e.g. Butchart et al. 2010, Janssen & Rutz 2011, Laurance et al. 2014). These pressures are reducing remaining areas of natural habitats forcing their bird species to higher risk of extinction (Gibson et al. 2011, Laurance et al. 2014). Alternatively, even if the pressures were similar in both latitudinal zones, tropical species evolved over long time in stable climatic conditions represented by modest changes in tropical ecosystems during Quaternary contrasting with great climatic oscillations and biome shifts in the temperate zone (Dynesius & Jansson 2000, Sandel et al. 2011). Therefore, temperate species that were unable to adapt to climatically induced disturbance and habitat fragmentation went extinct long before humans arrived. In contrast, their adaptation to stability made tropical species more sensitive to recent human disturbance resulting in their elevated extinction risk. Moreover, conservation legislation may be more developed and especially its enforcement more efficient in countries of "wealth north" (Sodhi et al. 2011, Atkinson et al. 2014) leading to more improved bird protection and reduced extinction risk in the temperate zone compared to the tropics.

In addition, according to the Rapoport's rule, tropical bird species should have smaller breeding ranges than temperate birds (Stevens 1989). As range size and population size are strongly correlated and small populations go extinct more frequently than large populations (Borregaard & Rahbek 2010), small ranges of tropical birds (Orme et al. 2006) can make their populations more vulnerable to environmental perturbations and thus more threatened. Indeed, recent studies did not find much support for the existence of ecological mechanisms underlying Rapoport's rule (Sizling et al. 2009) and global variability of birds' breeding range sizes is predominantly shaped by areas of major land masses (Storch 2000; Orme et al. 2006). On the other hand, threatened birds are concentrated in montane areas in the tropics (Orme et al. 2005) and montane species have generally smaller range sizes (Fjeldså et al. 2012). We thus cannot exclude that small range size of tropical species is the factor making them more vulnerable to threats discussed above resulting in their higher extinction risk.

We did not find a significant interaction between latitudinal position of breeding range and habitat. This indicates that environmental pressures acting in the tropics are not confined to a specific habitat. For example, species breeding in tropical forests are not more threatened than tropical savannah species, despite widely recognised pressures on tropical forests (e.g. Wilcove et al. 2014). Instead, it seems that threatening factors act simultaneously in different environments and we can speculate that despite tropical forests being the key habitat for global biodiversity, other habitats suffer from pressures of similar magnitudes (e.g. Sirami & Monadjem 2012) but less frequently reported. This corresponds to the above mentioned idea about a dominant effect of overall socioeconomic development of human societies in tropical countries.

The main effect of habitat was insignificant in all but one model. This model showed higher threat for open habitat than for forest species. This finding points at significance of various forms of degradation of these habitat including loss of pristine grasslands because of expansion of agriculture (Kamp et al. 2011), agricultural intensification in highly developed regions (Donald et al. 2001) and land abandonment in less productive agricultural regions of North America and Eurasia (Laiolo et al. 2004). Moreover, it seems that climate change and changes in ecosystems functioning drive loss of open grasslands because of forest and shrub encroachment even in the absence of direct human influence, making this habitat particularly vulnerable (Davey et al. 2012; Sirami & Monadjem 2012). On the other hand, despite increasing human pressure on primeval forest habitats in both tropical (Gibson et al. 2011; Wilcove et al. 2014) and temperate zones (Wesolowski 2005; Chyralecki & Selva 2016), global net change in forest area is slightly positive

or neutral (Hansen et al. 2013), which can be beneficial for forest birds leading to their lower threat levels.

The model showed a significant effect of habitat contained species' extinction risk as a response variable expressed using several different threat levels (and had thus Poisson error structure). A similar model with the extinction risk expressed by a binary coding discriminating threatened and unthreatened species (and having thus binomial error structure) showed the same direction of the habitat effect, but without the statistical significance. Therefore, we suggest that the discrimination of several levels of threat reflecting an increasing extinction risk is more informative and should be preferably used in analyses testing the contributions of possible threatening factors.

However, the effect of breeding habitat was generally weak in our analyses. Such a weak effect was surprising, given generally high variability in species' habitat use (called beta-niche) at the species level compared to evolutionary stable traits such as beak morphology creating species' alfa-niche (Ackerly & Cornwell 2007, Pearman et al. 2014). However, it seems that this variability is reduced within sister species, indicating the existence of niche conservatism in species' habitat use (Barnagaud et al. 2014). Indeed, the same habitat category for both species was observed in 85% of sister species pairs indicating that our focal sister species did not diverge in their habitat niches, and this limited variability obviously translated into poor ability of this trait to account for variation in threat level. It is, however, possible that the use of a more detailed classification of species' habitat would uncover new patterns. Obtaining more accurate data on habitat use of threatened species should be a priority for avian conservation research.

The remaining three traits (migration strategy, body mass and diet) did not show any relationships to threat level in our focal avian sister species. Body mass and diet are known to be highly conserved in phylogeny (Ricklefs 2007; McGill 2008), and thus it is not surprising that the species within pairs did not

differ in these traits resulting in the absence of relationships to threat level. We suggest that their effects would be possible to detect if higher taxa were taken as units for analysis (see Owens & Bennett 2000). Although migration strategies may be very different even amongst closely related species (Bruderer & Salewski 2008), variability in this trait within our focal species pairs was low (82% of pairs showed the same migration strategy for both species). Similar to habitat use, migration strategy is thus not the trait accounting for differences in threat level between avian sister species. However, we note that our data did not discriminate between short- and long-distance migrants. As serious declines were found in long-distance migrants in both North America and Eurasia (Greenberg & Marra 2005), it is possible that a finer classification of migration strategies would reveal a significant pattern.

In summary, our study based on pair-wise comparison of avian sister species showed significantly higher threat for tropical than for temperate taxa irrespective of their habitat use and accounting for several ecological and life-history traits. These results indicate that threatened birds are concentrated in the tropics, and conservation effort should be targeted into these areas not only because of their enormous biological diversity but also because of disproportionally higher threat of tropical compared to temperate species. Given the lower importance of the effect of birds' habitat use, suggesting that species under higher extinction risk are not confined to some specific habitats, we suggest that overall improvement of environmental conditions and legislation in countries located in the tropical zone may be a route to improvement. Lessons from some developing temperate regions, such as Eastern Europe (Koleček et al. 2014b), imply that such a solution is achievable.

Acknowledgements: We wish to thank Lenka Kopsová and two anonymous referees for their comments on earlier versions of this study.

References

- Ackerly, D.D. & Cornwell, W.K. (2007) A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components. Ecology Letters, 10, 135-145.
- Atkinson, P.W., Adams, W.M., Brouwer, J., Buchanan, G., Cheke, R.A., Cresswell, W., et al. (2014) Defining the key wintering habitats in the Sahel for declining African-Eurasian migrants using expert assessment. Bird Conservation International, 24, 477-491.
- Barnagaud, J.Y., Kissling, W.D., Sandel, B., Eiserhardt, W.L., Sekercioglu, C.H., Enquist, B.J., et al. (2014) Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. Ecology Letters, 17, 811-820.
- Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., et al. (2011): Has the Earth's sixth mass extinction already arrived? Nature, 471, 51-57.

- Böhning-Gaese, K., Halbe, B., Lemoine, N., Oberrath, R. (2000) Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evolutionary Ecology Research, 2, 823-839.
- Borregaard, M.K. & Rahbek, C. (2010) Causality of the relationship between geographic distribuition and species abundance. Quarterly Review of Biology, 85, 3-25.
- Both, C., Van Turnhout, C.A.M., Bijlsma, R.G., Siepel, H., Van Strien, A.J. & Foppen, R.P.B. (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of The Royal Society of London B, 277, 1259-1266.
- Bruderer, B. & Salewski, V. (2008) Evolution of bird migration in a biogeographical context. Journal of Biogeography, 35, 1951-1959.

- Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J.P.W., Almond, R.E.A., et al. (2010) Global biodiversity: indicators of recent declines. Science, 328, 1164-1168.
- Cardillo, M. & Meijaard, E. (2012) Are comparative studies of extinction risk useful for conservation? Trends in Ecology and Evolution, 27, 167-171.
- Chyralecki, P. & Selva, N. (2016) Ancient forest: spare it from clearance. Nature, 530, 419.
- Croxall, J.P., Butchart, S.H.M., Lascelles, B., Stattersfield, A.J., Sullivan, B., Symes, A., et al. (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conservation International, 22, 1-34.
- Davey, C.M., Chamberlain, D.E., Newson, S.E., Noble, D.G., & Johnston, A. (2012) Rise of the generalists: Evidence for climate driven homogenization in avian communities. Global Ecology and Biogeography, 21, 568-578.
- Davies, R.G., Orme ,C.D.L., Storch, D., Olson, V.A., Thomas, G.H., Ross, S.G., et al. (2007) Topography, energy and the global distribution of bird species richness. Proceedings of The Royal Society of London B, 274, 1189-1197.
- del Hoyo, J., Elliott, A. & Sargatal, J. (1992-2001) Handbook of the birds of the world (Vols. I-VII). Barcelona: Lynx editions.
- del Hoyo, J., Elliott, A. & Christie, D.A. (2003-2011) Handbook of the birds of the world (Vols. VIII-XVI). Barcelona: Lynx editions.
- Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B. & Collen, B. (2014) Defaunation in the Anthropocene. Science, 345, 401-406.
- Donald, P.F., Green, R.E. & Heath, M.F. (2001) Agricultural intensification and the collapse of Europe's farmland bird populations. Proceedings of The Royal Society of London B, 268, 25-29.
- Dynesius, M. & Jansson, R. (2000) Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of The National Academy of Sciences of The United States of America, 97, 9115-9120.
- Estrada, A., Meireles, C., Morales-Castilla, I., Poschlod, P., Vieites, D., Araujo, M.B., et al. (2015) Species' intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography, 24, 849-858.
- Fjeldså, J., Bowie, R.C.K. & Rahbek, C. (2012) The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution and Systematics, 43, 249-265.
- Foley, J.A., Ramankutty, N. & Brauman. K.A. (2011) Solutions for a cultivated planet. Nature, 478, 337-342.
- Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., et al. (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478, 378-381.
- Greenberg, R. & Marra, P.P. (2005) Birds of two worlds: the ecology and evolution of migration. Baltimore: John Hopkins University Press
- Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., et al. (2013) High-resolution global maps of 21st-century forest cover change. Science, 342, 850-853.
- Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T.M., Butchart, S.H.M., et al., 2010. The impact of conservation on the status of the world's vertebrates. Science, 330, 1503-1509.

- Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of The National Academy of Sciences of The United States of America, 104, 13384-13389.
- Janssen, R. & Rutz, D. (2011) Bioenergy for sustainable development in Africa. New York: Springer.
- Janzen, D.H. (1967) Why mountain passes are higher in the tropics? American Naturalist, 101, 233-249.
- Jenkins, C.N., Pimm, S.L. & Joppa, L.N. (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of The National Academy of Sciences of The United States of America, 110, E2602-E2610.
- Jiguet, F., Gadot, A.S., Julliard, R., Newson, S.E. & Couvet, D. (2007) Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biology, 13, 1672-1684.
- Kamp, J., Urazaliev, R., Donald, P.F. & Hölzel, N. (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biological Conservation, 144, 2607-2614.
- Koleček, J., Albrecht, T. & Reif, J. (2014a) Predictors of extinction risk of passerine birds in a Central European country. Animal Conservation, 17, 498-506.
- Koleček, J., Schleuning, M., Burfield, I.J., Báldi, A., Böhning-Gaese, K., Devictor, V., et al. (2014b): Birds protected by national legislation show improved population trends in Eastern Europe. Biological Conservation, 172, 109-116.
- Laiolo, P., Dondero, F., Ciliento, E. & Rolando, A. (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. Journal of Applied Ecology, 41, 294-304.
- Laurance, W.F., Sayer, J. & Cassman, K.G. (2014) Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29, 107-116.
- Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akcakaya, H.R., Leader-Williams, N., et al. (2008) Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology, 22, 1424-1442.
- Manne, L.L., Brooks, T.M. & Pimm, S.L. (1999) Relative risk of extinction of passerine birds on continents and islands. Nature, 399, 258-261.
- Manne, L.L. & Pimm, S.L. (2001) Beyond eight forms of rarity: which species are threatened and which will be next? Animal Conservation, 4, 221-229.
- McGill, B.J. (2008) Exploring predictions of abundance from body mass using hierarchical comparative approaches. American Naturalist, 172, 88-101.
- Newton, I. (2003) The speciation and biogeography of birds. London: Academic Press.
- Orme, C.D.L, Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A., et al. (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016-1019.
- Orme, C.D.L., Davies, R.G., Olson, V.A., Thomas, G.H., Ding, T.S., Rasmussen, P.C., et al. (2006) Global patterns of geographic range size in birds. PLoS Biology, 4, 1276-1283.
- Owens, I.P.F. & Bennett, P.M. (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced

- predators. Proceedings of The National Academy of Sciences of The United States of America, 97, 12144-12148.
- Pearman, P.B., Lavergne, S., Roquet, C., Wuest, R., Zimmermann, N.E. & Thuiller W. (2014) Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Global Ecology and Biogeography, 23, 414-424.
- Pigot, A.L. & Tobias, J.A. (2013) Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters, 16. 330-338.
- Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., et al. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 987.
- Reif, J., Vermouzek, Z., Voříšek, P., Šťastný, K., Bejček, V., Flousek, J. (2010) Population changes in Czech passerines are predicted by their life-history and ecological traits. Ibis, 152, 610-621.
- Ricklefs, R.E. (2007) History and diversity: explorations at the intersection of ecology and evolution. American Naturalist, 170, S56-S70.
- Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J., et al. (2011) The ionfluence of late Quaternary climatechange velocity on species endemism. Science, 334, 660-664.
- Sæther, B.E., Lande, R., Engen, S., Weimerskirch, H., Lillegard, L., Altwegg, R., et al. (2005) Generation time and temporal scaling of bird population dynamics. Nature, 436, 99-102.
- Sibley, C.G. & Monroe, B.L. (1990) Distribution and taxonomy of birds of the world. New Haven: Yale University Press.
- Sirami, C. & Monadjem, A. (2012) Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Diversity and Distributions, 18, 390-400.
- Šizling, A.L., Storch, D. & Keil, P. (2009) Rapoport's rule, species tolerances, and the latitudinal diversity gradient: geometric considerations. Ecology, 90, 3575-3586.

- Sodhi, N.S., Butler, R., Laurance, W.F. & Gibson, L. (2011) Conservation successes at micro-, meso- and macroscales. Trends in Ecology and Evolution, 26, 585-594.
- Sol, D., Maspons, J., Vall-llosera, M., Bartomeus, I., Garcia-Pena, G.E., Pinol, J., et al. (2012) Unraveling the life history of successful invaders. Science, 337, 580-583.
- Sterling, S.M., Ducharne, A. & Polcher, J. (2013) The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 3, 385-390.
- Stevens, G.C. (1989) The latitudinal gradient in geographic range how so many species coexist in the tropics. American Naturalist, 133, 240-256.
- Storch, D. (2000) Rapoport effect and speciation/extinction rates in the tropics. Trends in Ecology and Evolution, 15, 514.
- Stutchbury, B.J.M. & Morton, E.S. (2001) Behavioral ecology of tropical birds. London: Academic Press.
- Trivino, M., Cabeza, M., Thuiller, W., Hickler, T. & Araujo, M.B. (2013)
 Risk assessment for Iberian birds under global change. Biological
 Conservation, 168, 192-200.
- Vickery, J.A., Ewing, S.R., Smith, K.W., Pain, D.J., Bairlein, F., Škorpilová, J., et al. (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis, 156, 1-22.
- Webb, T.J. & Gaston, K.J. (2003) On the heritability of geographic range sizes. American Naturalist, 161, 553-566.
- Wesolowski, T. (2005) Virtual conservation: How the European Union is turning a blind eye to its vanishing primeval forests. Conservation Biology, 19, 1349-1358.
- Wilcove, D.S., Giam, X., Edwards, D.P., Fisher, B. & Koh, L.P. (2014) Navjot's nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology and Evolution, 28, 531-540.
- Zwarts, L., Bijlsma, R.G., Van der Kamp, J. & Wymenga, E. (2009) Living on the Edge: wetlands and birds in a changing Sahel. Zeist: KNNV Publishing.

Supplementary Table 1: Characteristics of pairs (Pair) of avian sister species (Species) used for the analysis. Species extinction risk was expressed using IUCN categories recognising either threatened (1) and unthreatened (0) species (Threat_1) or levels of increasing threat with least concern (0), near threatened (1), vulnerable (2), endangered (3), critically endangered (4) and extinct in the wild (5) species (Threat_2). Other traits included are habitat: forest, grassland, wetland and ocean; latitudinal range position (Latitude): temperate and tropical; migration strategy (Migration): migratory and residential; body mass (in grams); and diet: carnivorous, insectivorous, herbivorous and omnivorous.

Pair	Species	Threat_1	Threat_2	Latitude	Habitat	Migration	Body mass (g)	Diet
1	Aptenodytes patagonicus	1	1	Temperate	Ocean	Residential	11,000	Carnivorous
1	Aptenodytes forsteri	0	0	Temperate	Ocean	Migratory	33,000	Carnivorous
2	Pygoscelis papua	1	1	Temperate	Ocean	Migratory	7,000	Carnivorous
2	Pygoscelis antarctica	0	0	Temperate	Ocean	Migratory	4,500	Carnivorous
3	Rollandia rolland	1	3	Tropical	Wetland	_	_	_
3	Rollandia microptera	0	0	Temperate	Wetland	-	_	-
4	Poliocephalus poliocephalus	1	2	Temperate	Wetland	Migratory	240	Carnivorous
4	Poliocephalus rufopectus	0	0	Temperate	Wetland	Residential	251	Carnivorous
5	Bulweria bulwerii	1	1	Tropical	Ocean	_	_	_
5	Bulweria fallax	0	0	Temperate	Ocean	-	_	_
6	Puffinus pacificus	1	2	Temperate	Ocean	Residential	435	Carnivorous
6	Puffinus bulleri	0	0	Tropical	Ocean	Migratory	380	Carnivorous
7	Puffinus carneipes	1	2	Temperate	Ocean	_	_	_
7	Puffinus creatopus	0	0	Temperate	Ocean	_	_	-
9	Morus serrator	1	2	Temperate	Ocean	Residential	2,350	Carnivorous
9	Morus capensis	0	0	Temperate	Ocean	Residential	2,600	Carnivorous
10	Ephippiorhynchus senegalensis	1	1	Tropical	Wetland	Residential	6,000	Carnivorous
10	Ephippiorhynchus asiaticus	0	0	Tropical	Wetland	Residential	4,100	Carnivorous
11	Chauna torquata	1	1	Tropical	Wetland	-	_	-
11	Chauna chavaria	0	0	Temperate	Wetland	-	_	_
12	Anas strepera	1	1	Temperate	Wetland	Migratory	920	Herbivorous
12	Anas falcata	0	0	Temperate	Wetland	Migratory	596	Herbivorous
13	Leptodon cayanensis	1	4	Tropical	Forest	Residential	510	Carnivorous
13	Leptodon forbesi	0	0	Tropical	Forest	Residential	565	Carnivorous
14	Henicopernis longicauda	1	2	Tropical	Forest	Residential	594	Carnivorous
14	Henicopernis infuscatus	0	0	Tropical	Forest	Residential	595	Carnivorous
15	Haliaeetus vocifer	1	4	Tropical	Wetland	Residential	2,821	Carnivorous
15	Haliaeetus vociferoides	0	0	Tropical	Wetland	Residential	2,800	Carnivorous
16	Haliaeetus leucogaster	1	2	Tropical	Forest	Residential	2,830	Carnivorous
16	Haliaeetus sanfordi	0	0	Temperate	Wetland	Migratory	2,497	Carnivorous
17	Polihierax semitorquatus	1	1	Tropical	Grassland	Residential	60	Carnivorous
17	Polihierax insignis	0	0	Tropical	Grassland	Residential	98	Carnivorous
18	Aepypodius arfakianus	1	3	Tropical	Forest	_	_	_
18	Aepypodius bruijnii	0	0	Tropical	Forest	_	_	_
19	Chamaepetes unicolor	1	1	Tropical	Forest	Residential	675	Herbivorous
19	Chamaepetes goudotii	0	0	Tropical	Forest	Residential	1,135	Herbivorous
20	Crax alector	1	2	Tropical	Forest	Residential	3,106	Herbivorous
20	Crax fasciolata	0	0	Tropical	Forest	Residential	2,600	Herbivorous
21	Tetrao tetrix	1	1	Temperate	Forest	Residential	1,050	Herbivorous
21	Tetrao mlokosiewiczi	0	0	Temperate	Forest	Residential	840	Herbivorous

					l			<u> </u>
22	Tympanuchus phasianellus	1	2	Temperate	Grassland	Residential	880	Herbivorous
22	Tympanuchus cupido	0	0	Temperate	Grassland	Residential	990	Herbivorous
23	Cyrtonyx montezumae	1	1	Tropical	Forest	Residential	186	Herbivorous
23	Cyrtonyx ocellatus	0	0	Temperate	Forest	Residential	165	Herbivorous
24	Tragopan temminckii	1	2	Temperate	Forest	Residential	1,184	Herbivorous
24	Tragopan caboti	0	0	Temperate	Forest	Residential	1,150	Herbivorous
25	Lophura diardi	1	1	Tropical	Forest	Residential	1,210	Herbivorous
25	Lophura ignita	0	0	Tropical	Forest	Residential	1,817	Herbivorous
26	Pavo cristatus	1	3	Tropical	Forest	Residential	4,188	Omnivorous
26	Pavo muticus	0	0	Tropical	Forest	Residential	4,425	Herbivorous
27	Grus rubicunda	1	2	Tropical	Wetland	Residential	6,003	Omnivorous
27	Grus antigone	0	0	Temperate	Wetland	Residential	7,740	Omnivorous
28	Gymnocrex plumbeiventris	1	2	Tropical	Forest	Residential	300	Insectivorous
28	Gymnocrex rosenbergii	0	0	Tropical	Forest	Residential	310	Insectivorous
29	Amaurornis bicolor	1	3	Tropical	Wetland	Residential	55	Herbivorous
29	Amaurornis olivieri	0	0	Temperate	Forest	Migratory	59	Herbivorous
30	Porzana fusca	1	1	Temperate	Wetland	Migratory	60	Herbivorous
30	Porzana paykullii	0	0	Temperate	Wetland	Residential	66	Insectivorous
31	Ardeotis kori	1	1	Tropical	Grassland	-	_	-
31	Ardeotis arabs	0	0	Tropical	Grassland	_	_	_
32	Ardeotis australis	1	4	Temperate	Grassland	_	_	_
32	Ardeotis nigriceps	0	0	Temperate	Grassland	_	_	_
33	Actophilornis africanus	1	1	Tropical	Wetland	-	_	-
33	Actophilornis albinucha	0	0	Temperate	Wetland	_	_	_
34	Larus belcheri	1	2	Temperate	Wetland	Residential	929	Carnivorous
34	Larus atlanticus	0	0	Tropical	Wetland	Migratory	930	Carnivorous
35	Larus pipixcan	1	2	Tropical	Wetland	Residential	280	Carnivorous
35	Larus fuliginosus	0	0	Temperate	Wetland	Migratory	285	Carnivorous
36	Xema sabini	1	1	Temperate	Ocean	Migratory	190	Omnivorous
36	Pagophila eburnea	0	0	Temperate	Ocean	Migratory	610	Omnivorous
37	Rissa tridactyla	1	2	Temperate	Ocean	Migratory	408	Carnivorous
37	Rissa brevirostris	0	0	Temperate	Ocean	Migratory	385	Carnivorous
38	Sterna albifrons	1	2	Temperate	Wetland	Migratory	55	Carnivorous
38	Sterna nereis	0	0	Temperate	Wetland	Migratory	57	Carnivorous
39	Turacoena manadensis	1	1	Tropical	Forest	Migratory	212	Herbivorous
39	Turacoena modesta	0	0	Tropical	Forest	Migratory	214	Herbivorous
40	Henicophaps albifrons	1	2	Tropical	Forest	Migratory	247	Herbivorous
40	Henicophaps foersteri	0	0	Tropical	Forest	Migratory	251	Herbivorous
41	Zenaida macroura	1	5	Tropical	Grassland	Migratory	134	Herbivorous
41	Zenaida graysoni	0	0	Temperate	Grassland	Residential	190	Herbivorous
42	Aprosmictus erythropterus	1	1	Tropical	Grassland	-	_	_
42	Aprosmictus jonquillaceus	0	0	Temperate	Grassland	_	_	_
43	Nannopsittaca panychlora	1	1	Temperate	Forest	_	_	_
			_ *					1

	Dianitas malanasanhala	1	2	Temperate	Forest			
44	Pionites melanocephala	1	2	·	Forest	_	_	_
44	Pionites leucogaster	0	0	Temperate		_	_	-
45	Amazona amazonica	1	2	Tropical	Forest	_	_	_
45	Amazona guildingii	0	0	Tropical	Forest	_	=	_
46	Carpococcyx renauldi	1	1	Tropical	Forest	_	_	_
46	Carpococcyx radiceus	0	0	Tropical	Forest	_	_	_
47	Hyetornis pluvialis	1	3	Tropical	Forest	Residential	130	Insectivorous
47	Hyetornis rufigularis	0	0	Tropical	Forest	Residential	132	Insectivorous
48	Phodilus badius	1	3	Tropical	Forest	Residential	281	Carnivorous
48	Phodilus prigoginei	0	0	Tropical	Forest	Residential	195	Carnivorous
49	Schoutedenapus myoptilus	1	2	Tropical	Grassland	Residential	22	Insectivorous
49	Schoutedenapus schoutedeni	0	0	Tropical	Grassland	Residential	25	Insectivorous
50	Mearnsia novaeguineae	1	1	Tropical	Forest	_	_	_
50	Mearnsia picina	0	0	Tropical	Forest	_	_	_
51	Sephanoides sephaniodes	1	4	Tropical	Grassland	Migratory	5	Herbivorous
51	Sephanoides fernandensis	0	0	Tropical	Grassland	Residential	9	Herbivorous
52	Haplophaedia aureliae	1	1	Tropical	Forest	Residential	5	Herbivorous
52	Haplophaedia lugens	0	0	Tropical	Forest	Residential	5	Herbivorous
53	Ramphomicron microrhynchum	1	3	Tropical	Grassland	Residential	4	Herbivorous
53	Ramphomicron dorsale	0	0	Tropical	Forest	Residential	4	Herbivorous
54	Doricha enicura	1	1	Tropical	Grassland	Residential	2	Herbivorous
54	Doricha eliza	0	0	Tropical	Grassland	Residential	3	Herbivorous
55	Mellisuga minima	1	1	Tropical	Grassland	Residential	2	Herbivorous
55	Mellisuga helenae	0	0	Tropical	Grassland	Residential	2	Herbivorous
56	Priotelus temnurus	1	1	Tropical	Forest	Residential	58	Herbivorous
56	Priotelus roseigaster	0	0	Tropical	Forest	Migratory	74	Herbivorous
57	Electron platyrhynchum	1	2	Tropical	Forest	Residential	61	Carnivorous
 57	Electron carinatum	0	0	Tropical	Forest	Residential	65	Carnivorous
 59	Atelornis pittoides	1	1	Temperate	Forest	Residential	92	Insectivorous
 59	Atelornis crossleyi	0	0	Temperate	Forest	Residential	81	Insectivorous
60	Anorrhinus galeritus	1	1	Tropical	Forest	Residential	4,113	Omnivorous
60	Anorrhinus tickelli	0	0	Tropical	Forest	Residential	4,000	Omnivorous
61	Bucorvus abyssinicus	1	2	Tropical	Grassland	Residential	814	Omnivorous
61	Bucorvus leadbeateri	0	0	Tropical	Grassland	Residential	1,190	Omnivorous
62	Semnornis frantzii	1	1	Tropical	Forest	Residential	64	Herbivorous
62	Semnornis ramphastinus	0	0	Tropical	Forest	Residential	97	Herbivorous
63	Pteroglossus beauharnaesii	1	1	Tropical	Forest	Migratory	222	Omnivorous
63	Pteroglossus bitorquatus	0	0	Tropical	Forest	Residential	115	Omnivorous
64	Ramphastos swainsonii	1	2	Tropical	Forest	Residential	575	Omnivorous
64	Ramphastos ambiguus	0	0	Tropical	Forest	Residential	575	Omnivorous
65	Philepitta castanea	1	1	Tropical	Forest		3/3	J
	·			Tropical	Forest		_	
65 	Philepitta schlegeli	0	0	Tropical	Forest	_	_	_
66	Neodrepanis coruscans	1	2	порісаі	rorest	_	_	_

66	Neodrepanis hypoxantha	0	0	Tropical	Forest	_	_	_
67	Geositta crassirostris	1	2	Tropical	Grassland	Residential	52	Insectivorous
67	Geositta poecilopterus	0	0	Tropical	Grassland	Residential	18	Insectivorous
68	Aphrastura spinicauda	1	4	Temperate	Forest	Residential	11	Insectivorous
68	Aphrastura masafuerae	0	0	Temperate	Forest	Residential	14	Insectivorous
69	Limnornis curvirostris	1	1	Temperate	Wetland	Residential	28	Insectivorous
69	Limnornis rectirostris	0	0	Temperate	Wetland	Residential	18	Insectivorous
70	Xenerpestes minlosi	1	1	Tropical	Forest	Residential	11	Insectivorous
70	Xenerpestes singularis	0	0	Tropical	Forest	Residential	13	Insectivorous
71	Premnoplex brunnescens	1	2	Tropical	Forest	Residential	17	Insectivorous
71	Premnoplex tatei	0	0	Tropical	Forest	Residential	23	Insectivorous
72	Simoxenops striatus	1	1	Tropical	Forest	Residential	42	Insectivorous
72	·	0	0	Tropical	Forest	Residential	47	Insectivorous
	Simoxenops ucayalae			Tropical	Forest	Residential		Insectivorous
73	Hylocryptus rectirostris	1	2	Tropical	Forest	Residential	48	Insectivorous
73	Hylocryptus erythrocephalus	0	0		Forest	Residential	48	Insectivorous
74	Deconychura stictolaema	1	1	Tropical			16	
74	Deconychura longicauda	0	0	Tropical	Forest	Residential	25	Insectivorous
75	Pittasoma michleri	1	1	Tropical	Forest	Residential	110	Insectivorous
	Pittasoma rufopileatum	0	0	Tropical	Forest	Residential	97	Insectivorous
	Anairetes parulus	1	1	Temperate	Grassland	Migratory	4	Insectivorous
76	Anairetes fernandezianus	0	0	Temperate	Forest	Residential	6	Insectivorous
	Polystictus superciliaris	1	1	Temperate	Grassland	Residential	6	Insectivorous
	Polystictus pectoralis	0	0	Tropical	Grassland	Migratory	7	Insectivorous
78	Euscarthmus meloryphus	1	1	Tropical	Grassland	Residential	7	Insectivorous
78	Euscarthmus rufomarginatus	0	0	Temperate	Grassland	Residential	6	Herbivorous
79	Lathrotriccus euleri	1	2	Tropical	Grassland	Residential	11	Insectivorous
79	Lathrotriccus griseipectus	0	0	Temperate	Forest	Residential	11	Insectivorous
80	Menura novaehollandiae	1	1	Temperate	Grassland	Residential	995	Insectivorous
80	Menura alberti	0	0	Temperate	Grassland	Residential	930	Insectivorous
81	Tachycineta thalassina	1	2	Tropical	Grassland	Migratory	15	Insectivorous
81	Tachycineta euchrysea	0	0	Temperate	Grassland	Residential	17	Insectivorous
82	Anthus lutescens	1	2	Temperate	Grassland	Residential	15	Herbivorous
82	Anthus spragueii	0	0	Temperate	Grassland	Migratory	25	Herbivorous
83	Anthus correndera	1	1	Temperate	Grassland	Residential	20	Herbivorous
83	Anthus antarcticus	0	0	Temperate	Grassland	Residential	23	Insectivorous
84	Cinclus leucocephalus	1	2	Temperate	Wetland	Residential	44	Insectivorous
84	Cinclus schulzi	0	0	Tropical	Wetland	Residential	40	Insectivorous
85	Odontorchilus branickii	1	1	Tropical	Forest	Residential	10	Insectivorous
85	Odontorchilus cinereus	0	0	Tropical	Forest	Residential	11	Insectivorous
86	Troglodytes aedon	1	1	Tropical	Forest	Migratory	12	Herbivorous
86	Thryomanes sissonii	0	0	Temperate	Grassland	Residential	14	Herbivorous
87	Toxostoma cinereum	1	2	Temperate	Grassland	Residential	60	Herbivorous
87	Toxostoma bendirei	0	0	Temperate	Grassland	Residential	60	Herbivorous
88	Turdus nudigenis	1	1	Tropical	Forest	Residential	62	Herbivorous

							I	
88	Turdus haplochrous	0	0	Tropical	Grassland	Residential	84	Herbivorous
89	Turdus pallidus	1	2	Temperate	Forest	Migratory	77	Herbivorous
89	Turdus feae	0	0	Temperate	Forest	Migratory	79	Herbivorous
90	Turdus jamaicensis	1	3	Tropical	Forest	Residential	59	Herbivorous
90	Turdus swalesi	0	0	Tropical	Forest	Residential	99	Herbivorous
91	Bathmocercus rufus	1	1	Tropical	Grassland	Residential	17	Insectivorous
91	Bathmocercus cerviniventris	0	0	Tropical	Forest	Residential	16	Insectivorous
92	Acrocephalus newtoni	1	2	Tropical	Grassland	Residential	18	Insectivorous
92	Bebrornis sechellensis	0	0	Temperate	Wetland	Residential	16	Insectivorous
93	Schoenicola brevirostris	1	2	Tropical	Grassland	Residential	15	Insectivorous
93	Shoenicola platyura	0	0	Tropical	Grassland	Residential	20	Insectivorous
94	Sylvia lugens	1	2	Tropical	Grassland	Residential	15	Herbivorous
94	Sylvia buryi	0	0	Tropical	Grassland	Residential	22	Insectivorous
95	Sylvia deserticola	1	1	Temperate	Grassland	Migratory	11	Herbivorous
95	Sylvia undata	0	0	Temperate	Grassland	Migratory	10	Insectivorous
96	Ficedula westermanni	1	1	Tropical	Forest	Residential	8	Insectivorous
96	Ficedula rufigula	0	0	Temperate	Forest	Residential	11	Insectivorous
97	Ficedula buruensis	1	3	Tropical	Forest	Residential	9	Insectivorous
97	Ficedula bonthaina	0	0	Tropical	Forest	Residential	11	Insectivorous
98	Ficedula albicilla	1	2	Tropical	Grassland	Migratory	11	Insectivorous
98	Ficedula subrubra	0	0	Temperate	Forest	Migratory	11	Insectivorous
99	Ficedula tricolor	1	1	Tropical	Forest	Migratory	8	Insectivorous
99	Ficedula nigrorufa	0	0	Temperate	Forest	Residential	9	Insectivorous
100	Ficedula harterti	1	1	Tropical	Grassland	Residential	8	Insectivorous
100	Ficedula timorensis	0	0	Tropical	Forest	Residential	9	Insectivorous
101	Rhyacornis fuliginosus	1	2	Tropical	Wetland	Residential	18	Insectivorous
101	Rhyacornis bicolor	0	0	Tropical	Wetland	Residential	19	Insectivorous
102	Parus elegans	1	1	Tropical	Forest	Residential	13	Herbivorous
102	Parus amabilis	0	0	Tropical	Forest	Residential	15	Herbivorous
103	Heleia crassirostris	1	1	Tropical	Forest	_	_	_
103	Heleia muelleri	0	0	Tropical	Forest	_	_	_
104	Woodfordia superciliosa	1	1	Tropical	Grassland	Residential	30	Herbivorous
104	Woodfordia lacertosa	0	0	Tropical	Grassland	Residential	33	Herbivorous
105	Sphecotheres viridis	1	1	Tropical	Forest	Residential	77	Herbivorous
105	Sphecotheres hypoleucus	0	0	Tropical	Forest	Residential	77	Herbivorous
106	Ergaticus ruber	1	2	Tropical	Forest	Residential	8	Herbivorous
106	Ergaticus versicolor	0	0	Tropical	Forest	Residential	10	Herbivorous
107	Conothraupis speculigera	1	4	Tropical	Grassland	Migratory	26	Herbivorous
107	Conothraupis mesoleuca	0	0	Tropical	Grassland	Migratory	15	Herbivorous
108	Nemosia pileata	1	4	Tropical	Forest	Residential	14	Herbivorous
108	Nemosia rourei	0	0	Tropical	Wetland	Migratory	22	Herbivorous
109	Tangara seledon	1	2	Tropical	Forest	Residential	18	Herbivorous
109	Tangara fastuosa	0	0	Temperate	Forest	Residential	22	Herbivorous
110	Pselliophorus tibialis	1	2	Temperate	Forest	Residential	31	Herbivorous
110	ר שנוויטףווטועט נוטועווט	1		Temperate	101631	nesiderillar	21	Tierbivolous

110	Pselliophorus luteoviridis	0	0	Temperate	Forest	Residential	35	Herbivorous
111	Agelaius humeralis	1	3	Tropical	Wetland	Residential	36	Omnivorous
111	Agelaius xanthomus	0	0	Tropical	Grassland	Residential	38	Herbivorous
112	Agelaius phoeniceus	1	3	Temperate	Wetland	Residential	53	Herbivorous
112	Agelaius tricolor	0	0	Temperate	Wetland	Residential	56	Herbivorous
113	Euphagus cyanocephalus	1	2	Temperate	Grassland	Residential	63	Omnivorous
113	Euphagus carolinus	0	0	Temperate	Grassland	Residential	63	Omnivorous
114	Curaeus curaeus	1	3	Tropical	Grassland	Residential	83	Omnivorous
114	Curaeus forbesi	0	0	Temperate	Grassland	Residential	87	Herbivorous
115	Macroagelaius imthurni	1	3	Tropical	Forest	Residential	77	Omnivorous
115	Macroagelaius subalaris	0	0	Tropical	Forest	Residential	79	Herbivorous