of Ecology

©
c
—
=
o
-
c
©
(F}
Q
o
-
=
LL

Q”'ﬂ EUROPEAN JOURNAL OF ECOLOGY

EJE 2019, 5(2): 16-29, doi:10.2478/eje-2019-0010

'E. Advho 1, 985 31
Rapovce, Slovak Republic
Corresponding author,
E-mail: ferenc.mi-
chal85@gmail.com

2Department of Ecol-
ogy, Faculty of Science,
Charles University,
Vinicna 7, 12844 Praha
2, Czech Republic

3Department of Zool-
ogy, Faculty of Science,
Charles University,
Vinicna 7, 12844 Praha
2, Czech Republic

4Department of Zoology,
Faculty of Science, Uni-
versity of South Bohemia,
Branisovska 31, 37005
Ceské Budéjovice, Czech
Republic

5Universitd degli Studi
di Napoli “Federico II”,
Dipartimento di Agraria,
Via Universita 100,
80055 Portici, NA, Italy

6CenZerfor Theoretical
Study, Charles University
and Czech Academy of
Sciences, Jilska 1, 11000
Praha 1, Czech Republic

INTRODUCTION

Geographic trends in range sizes explain
patterns in bird responses to urbanization
in Europe

Michal Ferencl*, Ondrej Sedlééekz, Roman Fuchs3l4, Maurizio Fraissinet5, and David Storch2/®

ABSTRACT

The probability of occurrence of bird species in towns/cities increases with their range sizes, and Rapoport’s
rule states that range sizes increase with latitude. To test the hypothesis that the increasing number of bird
species persisting in cities at higher latitudes of Europe is linked to their larger range sizes, we compiled data on
bird communities of: a) 41 urban bird atlases; b) 37 city core zones from published sources; c) regions of nine
grid cells of the EBCC Atlas of European Breeding Birds around each city. We tested whether the proportion of
species from particular regional bird assemblages entering cities (i.e., proportional richness) was related to the
geographical position, mean range size of regional avifaunas, proportion of vegetated areas and city habitat
heterogeneity. The mean range sizes of the observed and randomly selected urban avifaunas were contrasted.
The proportional richness of urban avifaunas was positively related to the geographic position and mean range
size of birds in regional assemblages. The evidence favoured range sizes if considering the European range sizes
or latitudinal extents, but was limited for global range sizes. Randomizations tended to show larger range sizes
for the real avifaunas than in the randomly selected ones. For urban core zones, the results were less clear-cut
with some evidence only in favour of the European range sizes. No role of vegetation or habitat heterogeneity
was found. In conclusion, while vegetation availability or heterogeneity did not show any effects, spatial position
and range sizes of birds in regional assemblages seemed to influence the proportional richness of cities and their
core zones. Factors correlated with spatial position (e.g., climate) might increase the attractivity of particular cit-
ies to birds. However, the effects of range sizes indicated that urbanization possibly has more negative impacts
on the avifauna in the regions occupied by less widespread species.
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consequence of proportionally more species from particular

Urbanization is a process substantially transforming the original
environment and its impacts are perceivable at all spatial scales
(Seto et al., 2012; Grimm et al., 2015). Urbanized areas act as
systematic environmental filters leading to the most significant
ecological impact of urbanization, documented especially on
avian communities, called biotic homogenization (Jokimaki &
Kaisanlahti-Jokimaki, 2003; Clergeau et al., 2006; McKinney,
2006; Luck & Smallbone, 2011; Ferenc et al., 2014a; Sol et al.,
2014; Morelli et al., 2016; Leveau et al., 2017). It is exempli-
fied by higher avifaunal similarity among corresponding parts
of the urbanization gradient of different cities than among dif-
ferent parts of the urbanization gradient within particular cit-
ies (Clergeau et al., 2001, 2006), or by higher similarity among
cities than among their species pools (Luck & Smallbone, 2011;
Ferenc et al., 2014a). The latter example represents a large
scale homogenizing effect and is apparently stronger at higher
latitudes of Europe. However, this pattern is paradoxically a
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regional assemblages entering European cities at higher lati-
tudes (Ferenc et al., 2014a). The question therefore is: i) what
makes these cities of higher latitudes more attractive to birds,
or ii) what makes birds of higher latitudes more predisposed
to persist in cities in comparison to south European species?

External factors might include differences in climate
along the latitudinal gradient. Positive effects of urbanization
due to greater food availability and predictability throughout
the year (Jokimaki & Suhonen, 1993) might be more pro-
nounced at higher latitudes, thereby making urban areas more
attractive to birds in this region. Alternatively, differences in
history of urbanization at different latitudes of Europe (Jokima-
ki et al., 2016b) might be reflected in the degree of original
habitat alteration in urban areas, and thus, in their suitability
and attractivity to birds (Evans et al., 2009).

On the other hand, particular bird traits also show
latitudinal patterns (Cardillo, 2002) and many studies pointed
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to ecological, behavioural or life-history traits that enable or
prevent them to persist in cities (e.g., Bonier et al., 2007; Kark
et al., 2007; Croci et al., 2008; Hu & Cardoso, 2009; Conole &
Kirkpatrick, 2011; Evans et al., 2011; Diaz et al., 2013; Sol, 2013;
Leveau, 2013; Meffert & Dziock, 2013; Cardoso, 2014; Sol et al.,
2014; Jokimaki et al., 2016a). Recently, it has been shown that
commonness (i.e., geographic range or total population size) is
a strong predictor of affinity of European bird species to towns
and cities (Ferenc et al., 2018). Birds’ range sizes vary in space
(Orme et al., 2006) and species of higher latitudes tend to have
larger ranges (Rapoport, 1982; Stevens, 1989; Cardillo, 2002).
This so called Rapoport’s rule holds quite well at least at the
northern hemisphere (Rohde, 1996; Gaston et al., 1998), and
it might affect bird responses to urbanization across latitudes
in Europe.

The aim of this study was to reveal whether external
factors make European cities of higher latitudes more attrac-
tive to birds or whether the assumed latitudinal trend in range
sizes drives the observed patterns in proportions of species
of regional assemblages occurring in cities (proportional rich-
ness hereafter). In order to do so, using two datasets on the
European breeding avifauna of entire cities and city core zones,
we tested the following hypotheses: i) Geographical position
(especially latitude) has an independent effect on the propor-
tional richness of birds, which might indicate a role of various
factors correlated with geographical gradients, such as climate
or urbanization history. ii) Patterns of habitat availability and/
or habitat heterogeneity within cities of Europe drive the spa-
tially structured differences in proportional richness of their
avifaunas. iii) The proportional richness of cities is linked to the
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Rapoport’s rule predicting a latitudinal increase in range sizes
of species of particular regional bird assemblages.

1. MATERIALS AND METHODS

1.1. Data collection

Data on breeding bird communities in a) 41 European cities
(Fig. 1) were extracted from the urban bird atlases (atlas da-
taset); and b) 37 European city core zones (core zone dataset)
were obtained from a dataset published by Jokimaki et al.
(20164a, 2016b). St. Petersburg was excluded from this dataset
due to incomplete data on its regional bird assemblage (see
definition below). All non-natives were removed from the at-
las dataset. The core zone dataset contained two non-native
species (Psittacula krameri, Alopochen aegyptiaca), but their
inclusion is highly unlikely to substantially influence the results.
The atlas dataset contained species with possible, probable
and confirmed breeding status to minimize inconsistencies due
to different assignment of species into these categories across
particular atlases. On the other hand, the core zone dataset
contained only species with probable or confirmed breeding
status (Jokimaki et al., 2016a). The composition and richness
of regional bird assemblages was retrieved from the EBCC
Atlas of European Breeding Birds (Hagemeijer & Blair, 1997).
The regional avifauna of each city was defined as the bird as-
semblage of nine — if available — atlas grid cells (cell size: 50 by
50 km) surrounding each city. The central square included the
city or most of the city area and the remaining eight squares
surrounded the central square. The proportion of species from

Figure 1. Geographical distributio

n of the European cities in the ‘atlas dataset’
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each regional assemblage occupying the corresponding city or
city core zone was used as the response variable (see also Table
S1in Appendix S1 and Jokimaki et al., 2016a, 2016b).

In the atlas dataset, the city area was either directly
extracted from a particular atlas or calculated as the product of
the number of its grid cells and the size of a single cell. While
relying on particular authors’ expertise in city border definition,
only atlases with comparable methodology were utilized (see,
e.g., Dinetti et al., 1995). For example, the atlas of Paris was
excluded as it covered only the inner-city and not the entire
city area (Malher et al., 2010). In the core zone dataset, only
the innermost historical city centres were included and their
area recorded (Jokimaki et al., 2016a). Furthermore, the pro-
portion of i) ‘vegetated’, ii) ‘built-up” and iii) ‘other’ land cover
was recorded for each city (Ferenc et al., 2014a; Jokimaki et al.,
2016a) and the Shannon index (Shannon’s H) reflecting their
habitat heterogeneity was calculated thereof (Shannon, 1948).
Finally, we recorded the European breeding range size (i.e., the
number of occupied grid cells of the EBCC atlas); latitudinal
range extent in Europe (i.e., the number grid cells between the
northernmost and southernmost location of occurrence in the
EBCC atlas); and the global range size (BirdLife International,
2018) for each bird species.

1.2. Data analysis
Subsequently, we constructed generalized linear models (with
quasibinomial error distribution due to overdispersion and the
logit-link function) to relate the proportional richness to the
predictor set. In the case of the atlas dataset, both city area
and time span of data collection of urban bird atlases influence
the recorded species richness, and consequently, the propor-
tional richness of each city. Therefore, these two variables
were included in all models to account for their effects. Simi-
larly, for the core zone dataset, all models contained the study
plot area. These models were regarded as the baseline models.
A full model containing latitude, longitude, propor-
tion of vegetated area, Shannon index of habitat heterogene-
ity and either mean European range size (MERS hereafter) or
mean latitudinal extent in Europe or mean global range size of
birds in particular regional assemblages was created. Thereaf-
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Figure 2. Relationship between the proportional richness of European urban avifaunas (a) atlas dataset (R’, | = 0.34, p < 0.001); b) core zone dataset

(R?,,, = -0.004, p = 0.36)) plotted against latitude. The trend was fitted by OLS regression, shaded areas depict 95% confidence intervals.

ter, we constructed the minimal adequate models by backward
elimination of predictors while retaining only those causing a
significant increase in residual deviance when removed. Finally,
we tested for the presence of residual autocorrelation in the
resulting models using Moran’s I.

To test whether bird species present in cities are non-
randomly selected from regional assemblages according to
their range sizes, we performed a randomization test for the
atlas dataset. We randomly selected from each regional bird
assemblage the same number of species as was actually pres-
ent in the corresponding city. This procedure was repeated
10,000-times and we recorded the proportion of MERS, mean
latitudinal extent and mean global range size of randomized
the communities that were smaller than those observed in cit-
ies.

All analyses were carried out in R (R Core Team, 2017)
using the following packages: ‘tidyverse’ (Wickham, 2017) for
data manipulation and plotting, ‘fields’ (Nychka et al., 2017)
for geographical distance calculation and ‘ape’ (Paradis et al.,
2004) for Moran’s | calculation.

2. RESULTS

The first premise of this study was an increasing proportional
richness of urban avifauna with increasing latitude: although
such a latitudinal trend of proportional richness was detected
in the case of the atlas dataset (RZADJ =0.34, p < 0.001; Fig. 2a)
this relationship did not hold for the birds of city core zones
(R?,, = 0.00, p = 0.36; Fig. 2b). The second premise of increas-
ing geographical ranges or extent of species with latitude held
in dependence on the utilized measure: the MERS of urban
birds showed an increasing latitudinal trend in the case of the
atlas dataset (R?, = 0.42, p < 0.001; Fig. S3.1a in Appendix S3),
while this pattern was reversed at higher European latitudes
as the core-zone dataset revealed (RZADJ =0.43, p < 0.001; Fig.
S3.1b in Appendix S3). The pattern was very similar for the
mean latitudinal extent of species in regional assemblages
(atlas dataset: R?, | = 0.88, p < 0.001; Fig. S3.2a in Appendix
S3; core zone dataset: RZADJ =0.83, p < 0.001; Fig. S3.2b in Ap-
pendix S3). In contrast, the mean global range sizes of species

"Cora zone” dataset
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Figure 3. Relationship between the proportional richness of European urban avifaunas (a) atlas dataset (R2ADJ = 0.34, p < 0.001); b) core zone
dataset (R2ADJ = 0.08, p < 0.001)) plotted against the mean European range size (MERS; based on the number of occupied EBCC atlas grid cells) of
species of particular regional assemblages. The trend was fitted by OLS regression, shaded areas depict 95% confidence intervals.

in regional assemblages increased with latitude consistently in
both datasets (atlas dataset: RZADJ =0.34, p < 0.001; Fig. S3.3a
in Appendix S3; core zone dataset: R, = 0.81, p < 0.001; Fig.
S3.3b in Appendix S3).

Our results lend support to our central hypothesis:
the model for all species in the atlas dataset revealed (Table 1;
Table S2.1 in Appendix S2) that spatial position represented by
latitude (0.033 + 0.014, t = 2.32, p < 0.05) and longitude (0.02
+0.008, t = 2.56, p < 0.05) as well as MERS of species in the re-
gional assemblages (0.0017 + 0.0007, t = 2.48, p < 0.05; Fig. 3a)
had a significant positive effects on the proportional richness of
birds in European cities. On the other hand, only MERS (0.0017
+ 0.0008, t = 2.04, p < 0.05; Fig. 3b) had an influence on the
proportional richness of birds in the core zones of the European
cities. If the model included the mean latitudinal extent of spe-
cies in regional assemblages, it was significant (0.18 + 0.03, t =
5.87, p <0.001) along with longitude (0.02 £ 0.007,t=2.43,p <
0.05) in the case of the atlas dataset (Table 1; Table S2.1 in Ap-
pendix S2; Fig. S3.4a in Appendix S3;). However, no model could

be built upon our predictors in the case of the core zone dataset
(Table 1; Table S2.1 in Appendix S2; Fig. S3.4b in Appendix S3;).
Similarly, when including the mean global range sizes of birds
in regional assemblages, only latitude had a significant positive
effect (0.07 £ 0.01, t = 2.32, p < 0.001) on the proportional rich-
ness of birds in the case of the atlas dataset (Table 1; Table S2.1
in Appendix S2; Fig. S3.4a in Appendix S3) and no model could
be constructed for the core zone dataset (Table 1; Table S2.1 in
Appendix S2; Fig. S3.4b in Appendix S3). None of the resulting
models showed any residual autocorrelation at the 5% signifi-
cance level.

Due to the strong correlation between latitude and
mean global range size of birds in regional assemblages, we
conducted additional post-hoc analyses. They showed that if
the initial full model for the atlas dataset included either of the
range size descriptors (MERS, mean latitudinal extent or mean
global range size), but not latitude, the range size descriptor
was always retained in the final model. The same was true for
latitude, when leaving out the range size descriptors from the

Table 1: Simplified representation of models constructed by backward elimination showing significant predictors (at the 5% significance level) of proportional richness
of urban avifaunas in European cities (atlas dataset) and city core zones (core zones dataset) and their effect (‘+’ indicates a positive effect). Shaded columns represent
different measures of mean geographic range sizes of birds in particular regional assemblages (see Methods for definitions)

mean European . . , % vegetation
Dataset _p latitude longitude Shannon’s H g
range size cover
atlas + + +
core zones +
mean latitudinal . . ) .
Dataset latitude longitude Shannon’s H % vegetation cover
extent
atlas + +
core zones
mean global range . . ) .
Dataset gsize & latitude longitude Shannon’s H % vegetation cover
atlas +
core zones
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initial full model. On the other hand, no such effect was re-
vealed in the case of the core zone dataset (results not shown).

The role of range sizes of birds in determining their
proportional richness in cities was further emphasized by the
randomization test using the atlas dataset, as the observed
urban assemblages had significantly higher MERS than would
be expected by chance at the 5% significance level. Similar re-
sults were obtained by analysing latitudinal extents of birds,
although there were two cities where the avifauna had mean
latitudinal extents as if they were randomly assembled from
the regional assemblages. However, with using global range siz-
es, only seven out of 41 cities had avifaunas with higher mean
global range sizes than would be expected by chance, while the
rest of the cities had mean global range sizes as if the urban
avifaunas were assembled randomly.

3. DISCUSSION
Urban avifaunas of European cities and city centres seem to be
influenced by both their spatial position at the continent per
se as well as by the range sizes of species representing the po-
tential species pool in particular regions. Although we detected
no influence of vegetation availability or habitat heterogeneity
on the proportional richness of urban avifaunas, the effect of
geographic location might indicate an influence of unmeasured
external factors that are linked to spatial position, such as cli-
matic conditions. On the other hand, features of bird species
also influence the richness of urban avifaunas, with relatively
more species entering cities in regions occupied by more wide-
spread species.

Cities located towards the north-east of continental
Europe (based on the atlas dataset excluding Nordic countries)
with relatively continental climate tend to host higher propor-
tions of birds from regional assemblages. Such patterns might
be related to the climate moderating effects of urban areas due
to the heat-island phenomenon (Erz, 1966; Arnfield, 2003) re-
sulting in greater availability of food resources during the criti-
cal periods and their better predictability throughout the year
(Jokimaki & Suhonen, 1993). Such effects might enhance the
habituation and establishment of populations of particular spe-
cies within cities (Mgller et al., 2014; Tryjanowski et al., 2015).
However, the pattern of increasing proportional richness of
birds did not hold for the northernmost city core zones (based
on the core zone dataset) with the harshest climate, which
makes this interpretation dubious. Furthermore, urbanization
at higher latitudes of Europe is a relatively recent phenomenon
(Jokimaki et al., 2016b) and the responses of bird species might
be delayed. That means that avifaunas of different regions have
had unequal amount of time to respond to urbanization by ad-
aptation or by going extinct (Essl et al., 2015). The city-age ef-
fect can go both ways: i) younger cities can have higher propor-
tional richness as some species (e.g., forest specialists) will still
go extinct in the future or ii) younger cities can have lower pro-
portional richness due to less time for adaptation. Again, the
fact that the Nordic cities are the youngest, but do not have the
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highest proportional richness, disfavours the first explanation,
but not the second one. Nevertheless, the discrepancy among
the two datasets showing an increase in proportional richness
with latitude in the case of entire cities, but no such pattern in
the case of city core zones, could partly arise because of their
different scales of observation. The possibly positive effects of
urbanization observable at the scale of entire cities (such as the
heat-island phenomenon [Erz, 1966; Arnfield, 2003]) might be
overridden by its negative impacts in the most urbanized city
core zones (Clergeau et al., 2006).

Surprisingly, neither the proportion of vegetation cov-
er nor the habitat heterogeneity played any role in determining
the proportional richness of urban avifaunas. This points to the
fact that although such factors are of prominent importance
in determining bird species richness of urban communities at
smaller scales (Evans et al., 2009; Ferenc et al., 2014b, 2016),
their importance is not necessarily detectable at large spatial
scales (MacGregor-Fors et al., 2010). Instead, spatial patterns of
species range sizes seem to be a substantial part of the explana-
tion although our initial hypothesis of the link between Rapo-
port’s rule (Rapoport, 1982; Stevens, 1989) and bird responses
to urbanization does not hold. We found some evidence in fa-
vour of the influence of MERS and mean latitudinal extent, for
which Rapoport’s rule does not hold, but limited evidence in
favour of global range sizes, for which the Rapoport’s rule does
hold. On the one hand, the link between MERS and proportion-
al richness of cities persisted regardless of whether we focused
on entire cities or on city core zones including Nordic cities. On
the other hand, the latitudinal extent showed an influence only
in the case of entire cities, while not in the case of city core
zones. And finally, global range sizes showed no influence in
either case. As shown by the randomization tests for MERS or
mean latitudinal extent, the urban assemblages systematically
filter widespread species, but the evidence is much weaker if
considering mean global range sizes. However, even under this
scenario, urban avifaunas never showed smaller mean range
sizes than the randomly selected assemblages. The discrepant
results for MERS or mean latitudinal extent versus mean global
range sizes might have two very different reasons: i) the strong
correlation between latitude and global range size might lead
to a situation when these two variables mask each-others influ-
ence on proportional richness. Indeed, the post-hoc analyses
revealed such an effect and the mean global range size was al-
ways present in the final model if latitude was omitted from the
initial full model (and vice-versa), at least in the case of the atlas
dataset. ii) The shape of ranges of many northern bird species
might be elongated in the west-east direction across Eurasia,
but they might be relatively narrow in the north-south direc-
tion. Such species might in some ways experience less variable
environments than species having global ranges more elongat-
ed in the north-south direction, but this would require further
testing, which is out of scope of this study.

Indeed, the ability of species to cope with variable
environmental conditions and its link to their geographic range
sizes might be behind the observed relationships (Stevens,
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1989). Widespread birds might have high environmental toler-
ance possibly due to their ecological, behavioural or physiologi-
cal flexibility, which can be beneficial under urban conditions
(Bonier et al., 2007). Traits of widespread species thus might
be directly beneficial for survival in cities or indirectly con-
nected to urbanization by influencing the commonness of spe-
cies (Ferenc et al., 2018). Less common birds might simply be
extinction-prone in urban areas or less likely to colonize them
(Sol et al., 2014). Alternatively, species with larger ranges tend
to be more numerous locally (Brown, 1995, 2013; Gaston et al.,
2000; Gaston & Blackburn, 2008), which can enhance their oc-
currence in cities due to mass effects (Shmida & Wilson, 1985),
favourable metapopulation dynamics (Brown & Kodric-Brown,
1977; Hanski, 1995) or by lowering their local extinction risk
(Purvis et al., 2000).

Evidence of the influence of species’ commonness on
their occurrence in towns and cities is accumulating (Dale et al.,
2015; Jokimaki et al., 2016b; Ferenc et al., 2018). Our findings
have some important implications for assessing the ecological
impacts of urbanization on birds in different geographic loca-
tions. Geographical regions showing apparent compositional
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APPENDIX 3

"Atlas” dataset "Core zone" dataset
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Fig. $3.1: Mean European range size (MERS) of birds in regional assemblages (defined as nine EBCC grid cells around each city) plotted against
latitude a) atlas dataset (R?, ) = 0.42, p < 0.001); b) core zone dataset (R*,, = 0.43, p < 0.001). Trends fitted by OLS regression, shaded area depicts

95% confidence intervals.
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Fig. S3.2: Mean latitudinal extent (defined as the number of cells between the southernmost and northernmost occupied EBCC atlas grid cells) of
birds in regional assemblages (defined as nine EBCC grid cells around each city) plotted against latitude: a) atlas dataset (R°,, = 0.88, p < 0.001);
b) core zone dataset (R*, = 0.83, p < 0.001). Trends fitted by OLS regression, shaded area depicts 95% confidence intervals.
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"Aflas" dataset "Core zone" dataset
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Fig. $3.3: Mean global range size of birds in regional assemblages (defined as nine EBCC grid cells around each city) plotted against latitude: a) atlas
dataset (R?, = 0.34, p < 0.001); b) core zone dataset (R*,, = 0.81, p < 0.001). Trends fitted by OLS regression, shaded area depicts 95% confidence
intervals.
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Fig. $3.4: Relationship between the proportional richness of European urban avifaunas (a) atlas dataset (R’, = 0.42, p < 0.001); b) core zone
dataset (R, =-0.016, p = 0.51)) plotted against the mean latitudinal extent (defined as the number of cells between the southernmost and north-
ernmost occupied EBCC atlas grid cells) of species of particular regional assemblages. The trend was fitted by OLS regression, shaded area depicts
95% confidence intervals.
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"Atlas" dataset "Core zong" dataset
1.00- 0.3- L
{ ]
®
®

0.75- ®
a w 0.2 '. .
| i
i § i
€ = .
@ [
s 5 . °* ! 4
g £ . . °
50.50- 3 | T b .
= So1 e 4, °

[ B ~ »
s % ® (]
L4
L ]
025 $ -
0.0~
16.0 161 162 160 16.1 16.2 163 16.4
log(Global range (km2)) log(Global range (km2))

Fig. $3.5: Relationship between the proportional richness of European urban avifaunas (a) atlas dataset (R?, = 0.30, p < 0.001); b) core zone dataset (R?, =-0.028, p

=0.86)) plotted against the mean global range size (In-transformed) of species of particular regional assemblages. The trend was fitted by OLS regression, shaded area
depicts 95% confidence intervals.
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