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Abstract. 
Model Selection is a key part of many ecological studies, with Akaike’s Information Criterion (AIC) being by 

far the most commonly used technique for this purpose. Typically, a number of candidate models are defined a priori 
and ranked according to their expected out-of-sample performance. Model selection, however, only assesses the 
relative performance of the models and, as pointed out in a recent paper, a large proportion of ecology papers that 
use model selection do not assess the absolute fit of the ‘best’ model. In this paper, it is argued that assessing the 
absolute fit of the ‘best’ model alone does not go far enough. This is because a model that appears to perform well 
under model selection is also likely to appear to perform well under measures of absolute fit, even when there is no 
predictive value.  This paper proposes a model selection permutation test that assesses the probability that the model 
selection statistic of the ‘best’ model could have occurred by chance alone, whilst taking account of dependencies 
between the models. It is argued that this test should always be performed as a part of formal model selection. The 
test is demonstrated on two real population modelling examples of ibex in northern Italy and wild reindeer in Nor-
way. In both cases, the model selection permutation test gives a highly significant result, indicating that the perfor-
mance of the ‘best’ model is unlikely to be through chance alone. R code is provided with which to perform the tests.

Key words: model selection; Akaike’s Information Criterion; permutation test; ibex; reindeer.

Introduction
Model selection is a key element of a large body  

of  research in ecology journals. This is particularly 
true in population modelling studies in which gener-
alised linear models (GLMs) are typically tested with 
different combinations of potential predictor vari-
ables (Thieme 2018; Jacobson et al. 2004; Imperio 
et al. 2013). In a large number of cases, Akaike’s in-
formation criterion (AIC), or its adjusted version for 
small samples AICc, is used to compare the relative 
performance of different combinations of variables 
(henceforth ‘models’). The model with the most sup-
port according to the information criterion is then 
usually selected for further use or as a conclusion in 
itself. There is a noted tendency, however, to neglect 
to test whether any of the models are indeed useful or 
even ‘significant’. After all, the best of a bad bunch 
of models is still a bad model. MacNally et al. (2017) 
studied 119 ecology papers that use information cri-
teria to compare the performance of different models 
and found that only 55 included some measure of the 
absolute goodness of fit. The authors of that paper 
suggest both that some measure of absolute perfor-

mance should be shown and that a null model1 should 
always be included as a benchmark with which to 
compare the performance of each of the candidate 
models.

Whilst it is essential that some measure of the ab-
solute goodness of fit of the ‘best’ model is included, 
it is argued here that doing so does not solve the prob-
lem entirely, due to implicit multiple testing that is 
not taken into account. Suppose that a statistical test 
measures the significance of the ‘best’ model, which 
has been determined by an information criterion or 
some other method of model selection. Whilst, in this 
case, only one formal test is actually performed, the 
model of interest has already been determined as one 
that appears to perform relatively well under model 
selection.  Those models that achieve relatively good 
model selection statistics will therefore typically also 
obtain low p-values from statistical significance tests 
(e.g. AIC and likelihood ratio tests both reward mod-

1Null models aim  to provide a benchmark that captures 
the behaviour of a set of observed outcomes under a “null 
hypothesis” that none of the hypothesised variables or processes 
of have any predictive value. In the case of generalised linear 
models, the null model is simply the chosen model structure with 
no explanatory variables.
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els that place high probability on the outcomes, on 
average). Crucially, this is true both when the model 
is actually informative. i.e. would perform better than 
the null model out-of-sample, and when it appears to 
be informative only by random chance. Therefore, in 
the latter case, the probability that a statistical test 
on the ‘best’ model is wrongly found to be signifi-
cant is inflated. In statistical terminology, this means 
that the probability of a type I error is increased. It 
is argued in this paper that multiple testing needs to 
be accounted for when assessing the significance of 
each of the models and a framework is demonstrated 
with which to do this.

The distinction between assessing the relative 
and absolute values of a set of candidate models is 
well known. For example, in the context of ecology, 
it was pointed out by Symonds and Moussalli (2011) 
that, in model selection, ‘you can have a set of es-
sentially meaningless variables and yet the analysis 
will still produce a best model’. They therefore sug-
gest that it is ‘important to assess the goodness of fit  
(x2, R2) of the model that includes all the predictors 
under study, arguing that ‘if this global model is a 
good fit, then you can rest assured that the best ap-
proximating model will be a good fit also’. This ap-
proach seems somewhat ad-hoc since a global model 
with a large enough number of parameters will al-
ways appear to provide a good fit in-sample, regard-
less of how informative each of the variables are. As 
an explanation of why testing the significance of the 
‘best’ model is often neglected, Burnham and Ander-
son (2004) suggest that, historically, it has often been 
assumed that there is a single ‘true’ model and that 
that model is in the candidate set. The Bayesian der-
ivation of the Bayesian Information Criterion (BIC), 
for example, works under this assumption (Burnham 
and Anderson (2004)). If the assumption holds, with 
enough data, one can eventually expect to select the 
true model, and that model will, by definition, pro-
vide a good fit. In practice, few people believe that 
the ‘true’ model is ever likely to be a member of the 
candidate set.

Another suggested approach is to ensure that each 
variable included in the model is carefully justified a 
priori, such that only variables with a high chance of 
being informative are included (Burnham and Ander-
son 2001; Burnham and Anderson 2004). Whilst this 
is a sensible suggestion, it does not solve the problem 
since, whilst those variables may be expected to be 
important, a priori, this may not be reflected in the 

models once the data have been considered.
The statistical literature on multiple testing is 

considerable. Perhaps the most well known approach 
to the problem is the Bonferroni correction which 
makes a simple adjustment to the significance level 
according to the number of hypotheses that are test-
ed (Bonferroni (1936)). Other methodologies, such 
as the Bonferroni-Holm method (Holm (1979)) and 
Benjamini–Hochberg and Sidak corrections (Benja-
mini and Hochberg 1995; Šidák 1967), for example, 
control the order in which tests are applied to limit 
the number of overall tests, producing a uniformly 
more powerful approach. These are discussed further 
in section 1.3.

A weakness of the above approaches is that they 
assume that each of the hypotheses are independent 
of each other. If there is dependency between a set 
of hypotheses, the probability of committing a type 
I error in at least one of those hypotheses does not 
generally grow as quickly as when they are indepen-
dent. Such methods are therefore too conservative in 
such cases, with the result that the probability of re-
jecting an informative model is increased, i.e. a type 
II error is committed (Nakagawa (2004)). To attempt 
to overcome this problem, the Westfall-Young pro-
cedure uses permutation tests to adjust the p-values 
in multiple correlated hypothesis tests, whilst taking 
account of the dependency between the hypotheses 
(Westfall, Young, and Wright (1993)). This provides 
a test which is far more powerful in such cases.

In ecology, it is common to define candidate 
models as different combinations of the same set 
of candidate variables in a generalised linear mod-
el (Bolker et al. (2009)). There is therefore a strong 
degree of dependency between the candidate models 
and so the Bonferroni correction is unsuitable (along 
with other similar procedures). In this paper, two 
permutation tests are proposed, which are based on 
the Westfall-Young procedure. The first test, referred 
to as the single model permutation test, assesses the 
significance of individual models on the basis of a 
model selection statistic. This is then extended to de-
fine another test, referred to as the model selection 
permutation test, that measures the significance of 
the entire model selection procedure, whilst taking 
into account the dependencies between the candidate 
models. The result of the first test is an individual 
p-value for each model whilst the result of the second 
test is a single p-value relating to the model selection 
procedure itself. The idea is then that, if the p-val-



Edward Wheatcroft – Significance of Model Selection

89

ue of the model selection permutation test is smaller 
than the chosen significance level, the whole model 
selection procedure can be considered to be ‘signifi-
cant’, that is the probability of finding a model selec-
tion statistic as good or better than that of the ‘best’ 
model by chance is small. Model selection can then 
go ahead with the reassurance that the performance 
of the ‘best’ models is unlikely to have occurred sim-
ply due to random chance.

The model selection permutation test proposed 
in this paper has been utilised in another recent pa-
per entitled ‘Effects of weather and hunting on wild 
reindeer population dynamics in Hardangervidda 
National Park’ (Bargmann et al. 2020)  on which the 
author of this paper is also named. In that paper, the 
test is referred to as a ‘sanity check’ test and a refer-
ence to this paper is provided. As such, some of the 
analysis from that paper is reproduced here with the 
primary focus here being the application of the pro-
posed tests. Additionally, in this paper, an example is 
used in the form of a population modelling analysis 
of ibex populations in the northern part of Italy which 
was taken from an existing paper published in 2004 
(Jacobson et al. (2004)).

Approaches to Model Selection
Model selection is a key part of many studies in 

a wide range of disciplines, including ecology (John-
son and Omland (2004)). The standard approach is 
to define a set of candidate models a priori and to 
attempt to rank them according to how well they 
would generalise out-of-sample. The basis of model 
selection techniques is that a fair comparison is need-
ed between models with different numbers of param-
eters. If an extra parameter is added, the fit of the 
model will necessarily improve in-sample but may 
be ‘overfitted’ and will not improve out-of-sample. 
Model selection techniques therefore attempt to ac-
count for this issue.

Model selection techniques typically fall into 
two different categories. Information criteria weigh 
up the in-sample fit of the model with the number of 
parameters to be selected such that extra parameters 
are penalised. Cross-validation, on the other hand, 
divides the dataset such that parameter selection is 
always performed on data that are distinct from those 
on which the performance of the model is tested.

By far the most commonly used information cri-
terion in ecology is Akaike’s Information Criterion 
(AIC) and its corrected version for small samples 

AICc (Akaike (1974); Wagenmakers and Farrell 

(2004)). AIC is given by 
where L is the maximised likelihood and K is the 
number of parameters selected. In each case, the 
model with the lowest AIC is considered to be the 
most appropriate when applied out-of-sample. For 
small sample sizes, AIC is slightly biased and thus a 
corrected, unbiased, version is often used. 

The exact nature of AICc depends on the 
setting but, under the assumption that the mod-
el is univariate, linear and has Gaussian residu-
als (Claeskens and Hjort (2008)), it is defined by 

 .

Cross-validation takes a different approach to model 
selection. Here, the data are divided into two sets: 
a training set, over which the parameters are select-
ed, and a test set, on which the model is tested with 
those parameters. The process is then repeated with 
different subsets of the data set used as the training 
and test sets. Under leave-one-out cross-validation, 
the test set consists of a single point and the train-
ing set consists of each of the remaining points. This 
process is repeated such that each data point forms 
the test set exactly once. Leave-one-out cross-vali-
dation can be used alongside any method of forecast 
evaluation and, in this paper, is performed alongside 
the ignorance score (see appendix A for details) such 
that the forecasts can be evaluated probabilistically. 
In fact, this approach can be shown to be asymptot-
ically equivalent to AIC but will usually be expect-
ed to give a different ordering of models for finite 
sample sizes (Stone (1974)). For a discussion on the 
relative merits of point forecasting and probabilistic 
forecasting, see appendix C.

Permutation Tests
A permutation test is a nonparametric statisti-

cal test in which the significance of a test statistic is 
obtained by calculating its distribution under all dif-
ferent permutations of the set of observed outcomes. 
For example, a permutation test for the slope param-
eter of a simple linear regression would be performed 
by permuting the positions of the y values (the de-
pendent variable), keeping the x values (the predictor 
variables) in their original positions and calculating 
the slope parameter under all possible combinations 

^

^

^
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of y. The position of the slope parameter that has 
been calculated from the data in their original posi-
tions would then be compared to this distribution to 
calculate a p-value. In practice, it is often computa-
tionally prohibitive to consider all possible permu-
tations and thus permutations are randomly chosen 
a fixed number of times. Such tests are called ran-
domised permutation tests. Permutation tests have a 
number of advantages over standard parametric tests. 
Unlike the latter, no assumptions about the distribu-
tion of the test statistic under the null hypothesis are 
required since the method draws from the exact dis-
tribution (though it is assumed that the data points are 
exchangeable). Permutation tests thus give an exact 
test and, as such, randomised permutation tests are 
asymptotically exact. The general nature of permuta-
tion tests allows them to be applied in a wide range 
of settings without knowing the underlying sampling 
distribution. In this paper, two types of permutation 
test are demonstrated. The first assesses the signifi-
cance of a single model without taking into consid-
eration the other models in the model selection pro-
cedure whilst the second assesses the significance of 
the entire model selection procedure and thus takes 
into account multiple testing.

Multiple Testing
The problem of multiple testing is well-known 

and has been widely studied. Remedies to the prob-
lem typically involve adjustments to the p-value of 
each hypothesis test to reflect the number that are 
tested. Much of the literature on multiple testing 
focuses on controlling the familywise error rate 
(FWER) αf, defined as the probability of wrongly re-
jecting at least one of the hypotheses. Whilst, under 
standard hypothesis testing, αf usually grows with the 
number of hypotheses, the aim here is usually to limit 
the FWER to αf . Perhaps the most common approach 
to the problem is the Bonferroni correction which ad-
justs the required significance level for each test to  
αf m where m is the number of hypotheses tested. A 
major weakness of the Bonferroni correction, how-
ever, is that it assumes that each of the significance 
tests are independent of each other. When this is not 
the case, the test is too conservative and the true 
FWER is less than αf , resulting in a loss of power. 
Several modifications to the Bonferroni correction, 
such as the Bonferroni-Holm (Holm (1979)), Ben-
jamini-Hochberg (Benjamini and Hochberg (1995)) 
and Sidak (Šidák (1967)) corrections, have been pro-
posed that aim to increase the power by adjusting the 

order in which hypotheses are considered. None of 
these approaches take into account dependency be-
tween hypotheses, however.

An alternative approach to multiple testing was 
proposed by Westfall and Young in 1993 and aims 
to account for dependency between tests (Westfall, 
Young, and Wright (1993)). The approach makes use 
of permutation tests by randomly permuting the out-
comes and calculating adjusted p-values for each hy-
pothesis. An adjusted p-value for the ith hypothesis 
is given by...

 

where Pi denotes the observed p-value for the ith test,  
      is the ‘complete’ null hypothesis that all null 
hypotheses are true and Pi is the p-value of the ith 
hypothesis under a given permutation of the out-
comes. The adjusted p-value of the ith hypothesis 
corresponds to the probability of obtaining a p-value 
as small or smaller from at least one of the m hypoth-
eses that are tested simultaneously.

Materials and Methods
In this paper, an additional step in the process 

of model selection is proposed. The ‘model selection 
permutation test’ assesses the probability that a sta-
tistic at least as favourable as that of the ‘best’ model 
could have occurred by chance, given the candidate 
models. If this probability is deemed to be below 
some pre-defined threshold, normal model selection 
should then take place and the best model(s) chosen. 
By taking this additional step, confidence can be had 
that the information contained in the models is in-
deed informative. First, however, a permutation for 
individual models is proposed.  R code is provided 
for both tests in Appendix D and is also available 
at https://github.com/edjw87/Assessing-the-Signifi-
cance-of-Model-Selection-in-Ecology.

A Single-model Permutation Test
A permutation test is now described with which 

to test the signif﻿icance of individual models in a mod-
el selection procedure. The test is performed by com-
paring the observed model selection statistic with  
draws from the distribution of that statistic under the 
null hypothesis that the outcomes are independent 
of the model predictions. An approximate p-value 
is calculated by counting the proportion of permuta-
tions in which the model selection statistic is smaller 

~

https://github.com/edjw87/Assessing-the-Significance-of-Model-Selection-in-Ecology
https://github.com/edjw87/Assessing-the-Significance-of-Model-Selection-in-Ecology
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(assuming a negatively oriented statistic) than the ob-
served statistic. The single-model permutation test is 
formally described below:

1. Calculate the model selection statistic M.
2. Set j = 1.
3. Randomly permute the outcomes.
4. Calculate the model selection statistic Mj un-

der the new ordering.
5. Set j = j + 1.
6. Repeat steps two to four until j = J.
7. Calculate the approximate p-value 

where I is the indicator function.

In fact, the test outlined above is a standard per-
mutation test and, as such, is somewhat similar to 
that of the Westfall-Young permutation test and is 
asymptotically exact. However, whilst that test uses 
individual p-values to calculate adjusted p-values for 
each hypothesis (or model), the above test uses mod-
el selection statistics which do not necessarily natu-
rally have p-values associated with them.

The single model permutation test provides a 
simple basis with which to assess the significance of 
a single model. Note that, for a single model, when 
the chosen model selection statistic is an information 
criterion, the penalty for the number of parameters is 
always constant and therefore the test is equivalent to 
performing a permutation test on the log-likelihood. 
However, in the next section, the test is extended to 
multiple models with different numbers of parame-
ters and it is here in which the value of permutation 
tests for model selection statistics becomes apparent.

A Model-selection Permutation Test
A permutation test for a model selection proce-

dure is now defined. The aim here is to estimate the 
probability that the ‘best’ model selection statistic 
could have occurred solely by chance, that is under 
the hypothesis that none of the models are informa-
tive. We call this test the model-selection permuta-
tion test which, again, is asymptotically exact.

Under the model selection permutation test, the 
outcomes are randomly permuted as they are for the 
single model permutation test. Here, the null hypoth-
esis is that the model predictions are independent of 
the outcomes for all tested models. For a given per-
mutation of the outcomes, the chosen model selection 
statistic is calculated for each model. The compari-

son of interest is between the observed ‘best’ model 
selection statistic and the statistic of the ‘best’ model 
under  permutations. The p-value is estimated by 
counting the proportion of permutations in which the 
model selection statistic of the ‘best’ model is more 
favourable than that of the ‘best’ model under the 
true ordering of the outcomes. Formally, the proce-
dure is performed as follows:

1. Calculate the model selection statistic for each 

model .
2. Set 
3. Randomly permute the outcomes.
4. Calculate the model selection statistic for each 

model .

5. Set 
6. Repeat steps two to four until .
7. Calculate an estimated p-value   

 

 
where I is the indicator function.

Experiment One: Demonstration of  
Type I Error Inflation

The aim of experiment one is to demonstrate the 
use of the model selection permutation test in a case 
in which, by construction, none of the models are 
informative. It is shown that, as expected, the prob-
ability that the ‘best’ model is significant according 
to the single model permutation test increases with 
the number of candidate models. This represents, by 
definition, inflation in the probability of a type I error. 
It is then demonstrated that, for the model selection 
permutation test, the probability of a type I error is 
consistent with the prescribed significance level and 
is not affected by the number of candidate models. 
Two cases are used for illustration:

The experiment is conducted as follows: Let 
 be a set of outcomes, each of which 

are independent and identically distributed iid draws 
from a standard Gaussian distribution . Let 

  be k predictor variables for y where 
each one is defined as a set of 20 random iid draws  

 from  which are indepen-
dent of y and all other predictor variables. Define a 
model to be some combination of predictor variables 
in a multiple linear regression with y as the dependent 

~

~ ~

~~

~ ~
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variable. As such, none of the models have any pre-
dictive value out-of-sample and thus the null model 
is, by design, the optimal choice.

For each model, AICc is obtained and a p-value 
is then calculated for the ‘best’ model using the sin-
gle model permutation test. In addition, a p-value for 
the model selection permutation test is obtained. In 
both cases, the number of random permutations is set 
to J = 512. Each test is deemed to be significant if its 
p-value is less than 0.05 (i.e. both tests are carried out 
at the 5 percent level).

The whole procedure is repeated 256 times, each 
with newly generated predictor and dependent vari-
ables. The proportion of those 256 repeats in which 
the ‘best’ model is found to be significant and the 
proportion in which the model selection permutation 
test is found to be significant is then calculated.

The following cases are considered:
1. independent models - each model is a linear 

regression with exactly one of as a single 
predictor variable. There are thus n candidate mod-
els.

2. dependent models - k candidate variables 
 are defined and n distinct combinations 

are randomly selected, without replacement, as can-
didate models.

In the former case, by construction, each mod-
el is independent whilst, in the latter, since some 
candidate models have shared predictor variables, 
there is a dependency structure between models. For 
each value of k, there are  possible combi-
nations of variables (excluding the null model) and 
n random combinations are chosen. Only values of 
n  up to  are therefore possible. Therefore, 
for , all of the possible combinations 
of variables are tested and only a random subset are 
tested for .

Population Modelling Examples
Two real population modelling examples from 

ecology are used to demonstrate both the single 
model and model selection permutation tests. Both 
examples are published in existing papers and are 
presented here with the minimal details required to 
effectively demonstrate the methodology presented 
in this paper. Further details can be found in the pa-
pers themselves.

Experiment Two: Ibex
The first population modelling example was 

published in Ecology in 2004 in ‘Climate forcing and 

density dependence in a mountain ungulate popula-
tion’ (Jacobson et al. (2004)). In that paper, the au-
thors fit 20 different population models to attempt to 
explain changes in the ibex population of Gran Para-
diso National Park in Northwestern Italy between the 
years of 1956 and 2000, using combinations of the 
following predictor variables:

•	 Current population.
•	 Snow cover.
•	 Interaction between snow cover and current 
population.
Five different combinations of the three variables 

were fitted with both the Modified Stochastic Ricker 
and Modified Stochastic Gompertz models (defined 
in the appendix) such that a total of ten models were 
assessed. In addition, the same ten combinations of 
variables were fitted with a threshold such that dif-
ferent coefficients were applied to the predictor vari-
ables when the snow density exceeds and falls below 
154cm.  The total number of models tested is there-
fore 20.

The relative population change in year  is de-
fined as

   
where  and  are the population counts in years 
i and i + 1 respectively. The Modified Stochastic 
Ricker and Modified Stochastic Gompertz models 
are generalised linear models such that the relative 
population change is modelled as a linear function of 
the chosen predictor variables. The Stochastic Rick-
er and Gompertz models differ only in the way they 
treat the current population size as a predictor vari-
able.

AIC was calculated for each model based on its 
performance in predicting the relative population 
change (rather than the actual population size). Al-
though, in that paper, AIC was the only model se-
lection statistic considered, here, for illustration, 
the models are also compared using leave-one-out-
cross-validation with the mean ignorance score as 
the evaluation method. The model selection statistics 
for each model are presented relative to that of the 
null model, i.e. with the statistic of the null model 
subtracted, such that a negative value indicates more 
support for the model than for the null model.

To demonstrate the two tests defined in this pa-
per, the single model permutation test is performed 
for each model and an estimated p-value is calculat-
ed. In addition, results from the model selection per-
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mutation test are shown to assess the credibility of 
the overall model selection procedure.

Experiment three: Reindeer
This example comes from a study of the popu-

lation of wild reindeer in Hardangervidda National 
Park in Southern Norway (Bargmann et al., 2019). 
The aim of the study was to attempt to understand the 
factors that cause the population to change over time. 
This was done using a Modified Stochastic Ricker 
population model (defined in the appendix) with var-
ious combinations of factors as inputs. The following 
climatic factors were considered as potential predic-
tors of the population:

(a) Mean temperature over January and Feb-
ruary.
(b) Days in February/March in which the tem-
perature exceed .
(c) The number of summer growing degree 
days from June to September (days above 5 
degrees Celsius).
(d) The current size of the population (density 
dependence).
(e) The proportion of the population hunted 
and killed.
(f) Interaction between proportion killed and 
chosen weather variable.
(g) Interaction between population size and 
chosen weather variable.

The winter of 2010 was significantly colder 
than each of the other years in the data set and was 
found to be an influential observation (according to 
Cook’s distance). Given this, the analysis was per-
formed twice: with and without that year included. 
The corrected version of Akaike’s Information Cri-
terion (AICc) was used to rank the performance of 
the models.

In this paper, the analysis is repeated and, for 
the purpose of demonstration, the models are also 
compared using the cross-validated mean ignorance 
score, as an alternative model selection technique. 
The analysis is performed with the year 2010 re-
moved (see above). Following the original paper, a 
slightly different approach is taken to that of the ibex 
example. Whilst, in the ibex case, the performance of 
the models is assessed in terms of prediction of the 
relative population change, in this case, forecasts of 
the actual population counts are produced. To do this, 
Monte-Carlo simulation is used with a large sample 
and forecast distributions are produced using kernel 
density estimation.

Both the single model permutation test and the 
model selection permutation test are performed 
alongside both the cross-validated mean ignorance 
and the AICc for the original set of candidate models. 
The experiment is then repeated with a subset of the 
models to demonstrate a case in which the model se-
lection permutation test is found not to be significant.

Results

Experiment One: Demonstration of 
 Type I Error Inflation

The results of experiment one are now presented. 
In figure 1, the dashed lines show, as a function of n, 
the proportion of repeats in which the ‘best’ model, 
as selected by AICc, is found to be significant under 
the single model permutation test and the solid lines 
show the proportion of repeats in which the model 
selection permutation test is found to be significant. 
The black line corresponds to the case in which all 
of the models are independent of each other and the 
red, green and magenta lines show the case in which 
there a total of 2, 3, and 4 candidate variables respec-
tively. Both tests are performed at the 5 percent level. 
The grey area denotes the interval in which the pro-
portions would fall with 95 percent probability if the 

Figure 1. Estimated probability of a type I error at the 5 
percent level as a function of the number of models (n) 
for (i) the single model permutation test (dashed lines) 
and (ii) the model selection permutation test (solid lines). 
Black lines show the results for the independent case and 
the blue, red, green and magenta lines show the dependent 
case for k (the number of independent predictor variables) 
equal to 1,2,3 and 4 respectively. The grey area denotes 
the interval in which the proportions would fall with 95 
percent probability if the underlying probability of a sig-
nificant result (a type I error) were truly 5 percent.
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Model b c e Threshold Pars DD AIC p-value Mean Ign p-value

M11 * * * Yes 7 R -51.2 -0.98

M12 * * * Yes 7 G -50.6 -0.94

M13 * * Yes 5 R -46.1 -0.84

M14 * * Yes 5 G -45.8 -0.82

M15 * * Yes 5 R -37.2 -0.66

M4 * * No 3 G -36.8 -0.67

M2 * * * No 4 G -34.8 -0.62

M16 * * Yes 5 G -34.7 -0.58

M3 * * No 3 R -33.9 -0.57

M18 * * Yes 5 G -32.4 -0.52

M1 * * * No 4 R -39.1 -0.50

M5 * * No 3 R -30.9 -0.56

M6 * * No 3 G -30.6 -0.55

M8 * * No 3 G -30.0 -0.54

M7 * * No 3 R -27.1 -0.47

M17 * * Yes 5 R -24.8 -0.27

M9 * No 2 R -22.1 -0.43

M19 * Yes 3 R -20.8 -0.37

M10 * No 2 G -10.4 -0.16

M20 * Yes 3 G -10.1 -0.12

M0 No 1 0 - 0 -

Table 1: AIC and cross-validated mean ignorance scores expressed relative to the null model for each ibex model. Col-
umns headed by b, c and e indicate whether density dependence, snow cover and the interaction between the two have 
been included in the model respectively.  The column headed by “Threshold” indicates whether a threshold model has 
been used. Also shown are the total number of free parameters and whether the Ricker or Gompertz model has been used 
(R or G). The p-value of each model from the single model permutation test when using the AIC and the cross-validated 
mean ignorance are shown. The models are listed in order of their AIC values.

underlying probability of a wrongly significant result 
(a type I error) were truly 5 percent. If the propor-
tion falls outside of this range, there is significant ev-
idence that the probability of wrongly rejecting, and 
therefore committing a type I error, is different to the 
prescribed significance level.

As expected, as the number of candidate mod-
els is increased, the probability of a type I error for 
the ‘best’ model is inflated beyond the prescribed 
significance level. Note, however, how dependency 
between models decreases this probability. This is 
because fewer predictor variables are considered and 

therefore the probability of finding one that happens 
to be ‘significantly’ correlated with the outcomes by 
chance is reduced. This demonstrates the impact de-
pendency between models can have and makes clear 
the importance of taking this into account.

Since the solid lines generally fall within the 
grey area, the proportion of cases in which a signifi-
cant result is wrongly found for the model selection 
permutation test is generally consistent with the sig-
nificance level of 5 percent both when the models 
are independent of each other (black line) and when 
there are dependencies between them (coloured 
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lines). Unlike the approach in which the ‘best’ model 
is tested, the model selection permutation test is not 
impacted by these dependencies and thus we can be 
confident that the probability of a type I error is kept 
at the prescribed significance level.

 Experiment Two: Ibex
The results of the model selection procedure for 

the ibex example are shown in table 1. Consistent 
with the original paper, columns headed by b, c and 
e indicate whether density dependence, snow cover 
and the interaction between the two, respectively, 
have been included in the model. It is found that al-
most all of the models outperform the null model un-
der both model selection methods. Estimated p-val-
ues calculated using the single model permutation 
test are shown for each model based on the two mod-
el selection techniques considered. In all cases, the 
estimated p-values are found to be extremely small.

Although it seems unlikely that the performance 
of the models could be explained simply through ran-
dom chance, it is rigorous to use the model selection 
permutation test to assess the overall significance of 
the model selection procedure. For both model se-
lection techniques considered, out of  
permutations tested, none were found in which the 
‘best’ model outperformed that for the observed 
outcomes and thus the estimated p-value is zero. A 
CDF of the AIC of the ‘best’ model (relative to the 
null model) under each permutation of the outcomes 
is shown in the top panel of figure 2 along with the 

Figure 2: Top: Smallest AIC values from resampled out-
comes (black dots), their CDF and the smallest AIC from 
the observed data (green star) for the ibex example. Bot-
tom: the same for cross-validated mean ignorance.

AIC of the best model from the observed data set. 
The equivalent, but with the cross-validated mean 
ignorance, is shown in the lower panel. From, these 
results, it is clear that it is extremely unlikely that 
the ‘best model’ in the model selection procedure 
occurred purely by chance. Given its strong signifi-
cance, confidence can be had that the results indicate 
genuine predictive skill.

Experiment three: Reindeer
The results of the model selection procedure for 

the reindeer case are shown in table 2. Here, those 
variables that are included in the model are indicated 
with a star. The letters correspond to the variables 
listed in the Materials and Methods section. The AICc 
and mean ignorance (both shown relative to that of 
the null model) are shown for each model along with 
estimated p-values obtained from the single model 
permutation test.

Here, whilst a number of the models are found to 
be strongly significant, the p-values of those models 
are typically larger than for the best ibex population 
models in experiment two. It is therefore prudent to 
apply the model selection permutation test to assess 
the probability that the model selection statistics of 
the ‘best’ model could have occurred by chance. 
Here, we obtain estimated p-values of  and 

 for the AICc and cross-validated mean ig-
norance respectively. The fact that these p-values are 
small means confidence can be had that the ‘best’ 
model is indeed informative relative to the null mod-
el and did not simply occur by chance.

The reindeer example is now used to demon-
strate a case in which, whilst one or more of the mod-
els is found to be significant, the probability that this 
occurred by chance is found to be high. Consider a 
model selection procedure in which the best six mod-
els according to the AICc in table 2 were not used 
as candidate models and therefore the selection is 
between the ten remaining models. At least one of 
the candidate models is significant at the 5 percent 
level for both model selection techniques. However, 
given the number of candidate models, caution is ad-
vised. Applying the model selection permutation test, 
p-values of  and  are obtained for the 
AICc and cross-validated mean ignorance respec-
tively. Here, in both cases, the test is insignificant at 
the 5 percent level and there is a relatively high prob-
ability that the significance of the individual models 
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simply occurred by chance.

Discussion
There is a clear and obvious need in ecology for 

authors to assess the absolute value of the ‘best’ mod-
el in a model selection procedure. Currently, this step 
is all too often completely absent. The single mod-
el permutation test defined in this paper provides a 
generalised approach with which to assess the signif-
icance of a model. However, by selecting the ‘best’ 
model via model selection and proceeding to evalu-
ate its significance, the probability of a type I error 
can be inflated far beyond the significance level. This 
is because the model with the best model selection 
statistic has already been determined as one that per-

forms well relative to the other models, perhaps by 
chance.

One can imagine that, if each of the models were 
independent, intuition could be used to assess the im-
pact of multiple testing. Caution would be advised if 
one out of a total of twenty models were significant 
at the five percent level, for example. The Bonferroni 
correction works on this basis. Commonly, in model 
selection in ecology, the same variables are present 
in multiple models. Given this dependency, this in-
tuition is lost and therefore more formal methods are 
required. The model selection permutation test has 
been proposed for situations such as these. The test 
estimates the probability that the ‘best’ model could 
have occurred by chance, whilst taking the depen-

Model a b c d e f g h  AICc Mean ign. p (IGN) p (AICc)

M3 * *

M5 * * *

M10 * * *

M1 *

M8 * *

M2 * *

M4 * * *

M6 *

M7 * *

M9 * * *

M14 * * *

M13 * *

M16 * * *

M11 *

M0 - -

M12 * *

M15 * * *

Table 2: AICc and cross-validated mean ignorance scores expressed relative to the null model. A star in each column 
headed by the letters a to h indicates whether the variables listed in the Materials and Methods section have been included 
in the model. Estimated p-values calculated using the single model permutation test are given for each model for each 
model selection technique (under the heading p(IGN) and p(AICc) for the mean ignorance and AIC respectively). 
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dency structure between the models into account. As 
such, the test gives a clear and intuitive approach to 
the problem of significance in model selection by as-
sessing the entire model selection procedure.

The tests described in this paper can be used to 
assess whether a set of variables can provide bet-
ter predictions than the null model in a population 
modelling procedure. Although the focus here is on 
ecology and, in particular, population modelling, the 
methodology is highly applicable to other fields in 
which model selection is applied. For example, in 
sports forecasting, one may want to determine which 
combination of factors most impact the probability of 
scoring a goal or the outcome of a game.

Whilst the tests described can help provide con-
fidence that the best candidate variables are more 
informative than the null model in terms of making 
predictions, it should be highly stressed that, even 
if a model can be shown to significantly outperform 
the null model, it is not necessarily the case that the 
model is fit for a particular purpose. Before using the 
model, further evidence regarding the suitability of 
the model in a particular setting should be gathered. 
Nonetheless, the tests described in this paper provide 
a key step towards rigorous model selection in ecol-
ogy which, in turn, allows for better modelling and 
hence a better understanding of the factors that im-
pact animal populations.
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Appendix

Population Modelling
The permutation tests described in this paper are 

demonstrated using two population modelling exam-
ples taken from existing papers. Background meth-
odology relevant to both papers is described here. 
Each of the two examples make use of population 
models. The Modified Stochastic Gompertz Model is 
defined by

and the Modified Stochastic Ricker model is defined 
by

where  is the population count in the ith year, 

 is called the relative population change,  is the ith 
explanatory variable, and  is a random draw from a 
Gaussian distribution with mean zero and variance 

. The two models are very similar and only differ 
in how the current population is used as an explan-
atory variable (i.e. which form of so called ‘density 
dependence’ is considered). The parameters a, b and 

 are to be selected using least-squares esti-
mation. The Stochastic Gompertz and Ricker Models 
automatically give probabilistic forecasts of the rel-
ative population change in the form of of a Gaussian 
distribution . The forecast distribution of 
the relative population change can be used to estimate 
a forecast distribution of the actual population. In this 
paper, where applicable (for the reindeer case), this 
is done using Monte-Carlo simulation with 10,000 
samples.

A ‘null’ model distribution naturally arises from 
the Modified Stochastic Ricker or Gompertz Model 
with all parameters except for the intercept and the 
variance set to zero. The null model therefore takes 
the form  where  and  are param-
eters to be selected.

Evaluating Probabilistic Forecasts
Probabilistic forecasts are usually evaluated us-

ing functions of the forecast and the outcome called 

http://dx.doi.org/10.1890/02-0753
http://dx.doi.org/10.1111/1365-2664.13060
http://dx.doi.org/10.1111/1365-2664.13060
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scoring rules. A wide range of scoring rules have 
been proposed and there is still some debate over 
which are the most appropriate (Gneiting and Raftery 
(2007)). A property of scoring rules generally consid-
ered to be of high importance is called propriety. A 
score is proper if it is optimised in expectation when 
the distribution from which the outcome is drawn is 
issued as the forecast (Bröcker and Smith (2007)). 
Propriety would therefore discourage a forecaster in 
possession of that forecast distribution from issuing 
a different one to achieve a better score. It is worth 
noting that no similar property exists for measures of 
the performance of point forecasts. For example,  
needn’t favour a forecast based on the true distribu-
tion of the outcome.

An example of a proper scoring rule is the igno-
rance score (Good 1952; Roulston and Smith 2002) 
defined by

where  is the probability density placed on the 
outcome. The ignorance score is negatively orient-
ed and hence smaller values indicate better forecast 
skill. The score is also local because it only takes the 
probability at the outcome into consideration (Gne-
iting and Raftery (2007)) and, in fact, can be shown 
to be the only scoring rule that is both proper and 
local (Bernardo (1979)). An advantage of the igno-
rance score is in its interpretation. The difference in 
the mean ignorance between two sets of forecasts can 
be interpreted as the base 2 logarithm of the ratio of 
the density placed on the outcome by each, measured 
in bits. For example, if the mean ignorance of one set 
of forecasts is 3 bits smaller than another, it places 

 times more probability density on the outcome, 
on average. The ignorance score is used in the re-
sults section of this paper alongside leave-one-out 
cross-validation.

Point and Probabilistic Forecasting
It was noted by MacNally et al. (2017) that au-

thors commonly neglect to include a measure of the 
absolute performance of the ‘best’ model alongside 
a model selection procedure. Of those papers that 
do include such a measure, the vast majority were 
found to use , adjusted  or related measures. 
Although the low number of cases in which no ab-
solute measure of fit is provided is concerning, those 
measures that are commonly used for this purpose 
can be problematic themselves. AIC and its corrected 
version are founded in information theory and ap-

proximate the expected difference in information loss 
from approximating the underlying system with dif-
ferent candidate models. Since ‘information’ in this 
case relates to the probability or probability density 
assigned to the outcome, it is therefore a measure of 
probabilistic performance. It can be noted that gener-
alised linear models, as commonly used in ecology, 
naturally provide a set of probabilistic forecasts.  
and similar related metrics, however, are measures 
of deterministic performance, i.e. they only consid-
er a forecast to be a single number. This means that, 
whilst models are selected according to the perfor-
mance of the resulting probabilistic forecasts, they 
are evaluated as point forecasts. This seems like an 
inconsistent approach to the forecasting problem as 
a whole.

In fact, probabilistic forecasts can contain a great 
deal of information that cannot be communicated in 
point forecasts. In the case of a Gaussian forecast dis-
tribution, for example, the variance can be of great 
value in understanding the uncertainty in the point 
estimate defined by the mean. For more complex 
forecast distributions, a single number such as the 
mean may be entirely inadequate. Consider, for ex-
ample, a herd of terrestrial animals that, according to 
a probabilistic forecast distribution, is equally likely 
to be on either side of a large lake that runs from 
north to south. It is difficult, in this case, to define a 
single number from the distribution that represents a 
useful point forecast. After all, it makes little sense 
to predict the mean of that distribution since it would 
fall within the lake, an area in which there is little 
or no chance of the herd residing. Equally, it would 
make little sense to forecast that the herd will be on 
a particular side of the lake since each are deemed 
equally likely. In summary, to use a point rather than 
a probabilistic forecast, information must be discard-
ed.

In addition to the issues described above, mea-
sures of the predictive performance of point fore-
casts tend to be fraught with problems. For example 

, which appears to be the most commonly used 
measure in ecology papers, is widely known to be 
a poor measure of forecast performance (Wheatcroft 
(2015)). Firstly, the correlation between two vari-
ables does not depend on the scale on which they 
are given. This means that, if a set of predictions and 
outcomes are correlated, it doesn’t necessarily mean 
that those predictions are ‘close’ to the outcomes. For 
example, a set of temperature forecasts measured in 
Fahrenheit when the outcomes are measured in Cel-
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sius may still have a high  value. This has been 
widely acknowledged and, for example, Murphy 
describes  as a measure of potential rather than 
absolute skill (Murphy and Epstein (1989)). Second-
ly, other well known problems with using correlation 
coefficients apply. For example, influential observa-
tions can greatly increase the correlation between 
two variables without much, or any, actual improve-
ment in predictive performance (Wheatcroft (2015)).

R Code
The code at the end of this section can be used 

to apply the two permutation tests described in this 
paper. It is demonstrated using the ibex example 
but it is straightforward to apply to any user-defined 
model.  The code and instructions can also be found 
at https://github.com/edjw87/Assessing-the-Signifi-
cance-of-Model-Selection-in-Ecology.

Running the code for the Ibex example
The following code can be used to apply the sin-

gle model and model selection permutation tests in 
R. The code consists of the following two functions 
and a script demonstrating their usage:

1) model_sel_permutations.R (function to per-
form the single model and model selection permuta-
tion tests)

2) Ibex.R (function to use within model_sel_per-
mutations.R to perform tests for the ibex example)

3) main.R (script demonstrating how to use the 
two functions to perform the tests)

The model_sel_permutations.R function per-
forms the tests with a given, user defined, function. 
This is demonstrated using the Ibex.R function but it 
is straightforward to use an alternative function (in-
structions for doing this are described below). Fur-
ther details on each of the functions is given below 
and their use is demonstrated in main.R

1) Ibex.R
Let n be the number of yearly observations (in 

this case of the relative population change), k the 
number of potential predictor variables and m the 
number of models (each one representing a different 
combination of predictor variables).

The function Ibex.R takes as arguments:
(i) outcome - a vector of outcomes of length n
(ii) vars - an nxk matrix of predictor variables
(iii) combinations - an mxk matrix of 1s and 0s 

which determines the predictor variables that are to 
be included in each model. Each row corresponds to 
a different combination of variables (model) and the 

number in each column determines whether that vari-
able (as defined in the columns of “vars”) is included 
or not (1 or 0).

(iv) threshold_value - a vector of length m de-
fining a threshold value for each model on which the 
regression is performed. Set this to “NA” if threshold 
model is not used.

(v) threshold_variable - Variable corresponding 
to column in “combinations” on which the threshold 
is to be applied.

The function fits each model and returns a vec-
tor of AIC values with each one corresponding to 
a different combination of variables and thresholds 
(as determined by the combinations argument to the 
function).

2) model_sel_permutations.R
This is the function that performs the two permu-

tation tests. It takes as arguments :
(i) repeats - a single number defining the number 

of permutations of the outcomes used to calculate the 
estimated p-values of the two tests.

(ii) FUN - The name of the model function (in 
this case “Ibex”)

(iii) pars - a list consisting of the inputs to the 
model function in the order they appear. Each ele-
ment of the list should be given the name of the argu-
ment. E.g., for the ibex example, we define

>pars=list(“outcome”=Y,”vars”=vars,”com-
binations”=var_combinations,”threshold_val-
ue”=threshold_value,”threshold_variable”=-
threshold_variable)

For the ibex example, the tests are then run with 
the command:

>output=model_sel_permutat ions(re-
peats,Ibex,pars)

and the outputs form a list, the elements of which 
can be accessed by typing

>print(‘Single model p-values:’) >print(out-
put$single_model_p_value) 

>print(‘Model selection p-value:’) >print(out-
put$model_selection_p_value)

Running the code with a user-defined model
The Ibex.R function provided is suitable for 

other population modelling examples using the Sto-
chastic Ricker and Gompertz models as well as other 
linear generalised linear models (GLMs). However, 
it is also straightforward to write a function for oth-
er models by replacing Ibex.R with a user-defined 
function. The only requirement of the function is that 

https://github.com/edjw87/Assessing-the-Significance-of-Model-Selection-in-Ecology
https://github.com/edjw87/Assessing-the-Significance-of-Model-Selection-in-Ecology
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the first argument must be a vector of outcomes. The 
tests can then be performed by running

>output=model_sel_permutations(repeats,”-
function_name”,pars)

where “function_name” is replaced with the 
name of the function and pars is a list consisting of 
the inputs to the user-defined function (see the ibex 
example for syntax).

R functions and scripts

main.R
### read in necessary functions

source(‘Ibex.R’)   
source(‘model_sel_permutations.R’)

## read ibex data file

data=read.csv(‘GP_data.csv’)  

### These are the candidate predictor 
variables

postmp=which(is.na(data[,3])==FALSE) 
###locations in which there are no 
missing snow density values
n=data[postmp,2] 	###current popula-
tion count
x=data[postmp,3] 	###log population 
count
sd=data[postmp,5] 	 ###snow densi-
ty
n_sd=n*sd ### interaction between snow 
density and population count
x_sd=x*sd ### interaction between snow 
density and log population count

### This is the dependent variable

Y=data[postmp,4] ### Vector of “rel-
ative population change”.  These are 
the outcomes that we want to predict.

vars=cbind(n,x,sd,n_sd,x_sd) ### cre-
ate a matrix of predictor variables 
for use in Ibex.R

### define included variables in each 
model

var_combinations=matrix-
(rep(0,20*5,1),20,5) ### initialise 
matrix of selected variables

### Define combinations of variables 
(models). One row for each combina-
tion.

var_combinations[1,]=c(1,0,1,1,0) #m1
var_combinations[2,]=c(0,1,1,0,1) #m2
var_combinations[3,]=c(0,0,1,1,0) #m3
var_combinations[4,]=c(0,0,1,0,1) #m4
var_combinations[5,]=c(1,0,0,1,0) #m5
var_combinations[6,]=c(0,1,0,0,1) #m6
var_combinations[7,]=c(1,0,1,0,0) #m7
var_combinations[8,]=c(0,1,1,0,0) #m8
var_combinations[9,]=c(0,0,0,1,0) #m9
var_combinations[10,]=c(0,0,0,0,1) 
#m10
var_combinations[11,]=c(1,0,1,1,0) 
#m11
var_combinations[12,]=c(0,1,1,0,1) 
#m12
var_combinations[13,]=c(0,0,1,1,0) 
#m13
var_combinations[14,]=c(0,0,1,0,1) 
#m14
var_combinations[15,]=c(1,0,0,1,0) 
#m15
var_combinations[16,]=c(0,1,0,0,1) 
#m16
var_combinations[17,]=c(1,0,1,0,0) 
#m17
var_combinations[18,]=c(0,1,1,0,0) 
#m18
var_combinations[19,]=c(0,0,0,1,0) 
#m19
var_combinations[20,]=c(0,0,0,0,1) 
#m20

threshold_val-
ue=c(rep(NA,10),rep(154,10))  ### 
define threshold values for each mod-
el (vector with entry for each model). 
Here models 11-20 are threshold models 
and so a threshold is defined
threshold_variable=3 ### select vari-
able column in “vars” on which to add 
threshold (scalar).  Here, we set the 
threshold on the third variable (snow 
density).

repeats=4096 #### define number of per-
mutations in permutation test
pars=list(“outcome”=Y,”vars”=vars,”-
combinations”=var_combinations,”-
threshold_value”=threshold_val-
ue,”threshold_variable”=thresh-
old_variable) ### make a list for the 
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parameters in Ibex.R.  The first argu-
ment must be the outcomes that are to 
be permuted

output=model_sel_permutations(re-
peats,Ibex,pars) ### run the permuta-
tion test and save them in “output” 
which is a list.

print(‘Single model p-values’)   ### 
print the results
print(output$single_model_p_value) ### 
single model p-values are given in the 
first element of the list.
print(‘Model selection p-value’)
print(output$model_selection_p_value) 
### model selection p-value is given 
in the second element of the list

Ibex.R
Ibex <- function (outcome,vars,com-
binations,threshold_value,threshold_
variable) {
### function to produce the AIC of dif-
ferent combinations of predictor vari-
ables in a multiple linear regression
### The arguments are as follows:
### outcome - a vector of outcomes of 
length n 
### vars - an nxk matrix of predictor 
variables 
### combinations - an mxk matrix con-
sisting of 1s and 0s which determines 
the predictor variables that are to be 
included in the model. Each row cor-
responds to a different combination 
of variables (model) and each column 
determines whether that variable is 
included or not (1 or 0).
### threshold_value - threshold value 
for selected variable
### threshold_variable - variable (the 
column in “vars”) on which threshold 
is applied

output=numeric() ### initialise output 
vector
for (i in 1:dim(combinations)[1]){   
### loop through each combination of 
variables (model)
	 includedvars=which(combina-
tions[i,]==1)
	 subvars=vars[,includedvars]  ### 
find which variables are to be included
	

	 if (is.na(threshold_value[i])){  
### if there is no threshold,  perform 
regression on selected variables
		  if (length(subvars)==0)
{ ### if no variables, perform regres-
sion with only a constant term and 
calculate AIC
			   output[i]=-2*log-
Lik(lm(outcome~1))+2*1 	
		  }	 else{ ### if vari-
ables defined, perform regression and 
calculate AIC
			   output[i]=-2*log-
Lik(lm(outcome~subvars))+(sum(combina-
tions[i,])+2)*2 ### Perform regression 
and calculate AIC
		  }
	 } else{ ### if threshold value 
is supplied, find separate parameters 
on each side of the threshold
		  if (length(subvars)==0){  
			   output[i]=-2*log-
Lik(lm(outcome~1))+2*1 ### if no vari-
ables, perform regression with only a 
constant term and calculate AIC	
		  } else{
			   if (length(included-
vars)>1){	
				    vars1=-
vars[,includedvars] #### pull out se-
lected variables into a new matrix
				    vars2=-
vars[,includedvars] #### pull out 
selected variables into another new 
matrix
			   } else{
				    vars1=matrix(-
vars[,includedvars]) #### if only one 
variable is selected, convert vector 
into a matrix
				    vars2=matrix(-
vars[,includedvars]) ## as above
			   }
			   pos1=which(vars[,-
threshold_variable]<threshold_val-
ue[i]) ### find points below threshold
			   vars1[pos1,]=0  
##### put zeros into the matrix when 
selected variable is less than thresh-
old
			   pos2=which(vars[,-
threshold_variable]>=threshold_val-
ue[i]) ### find points above or equal 
to threshold
			   vars2[pos2,]=0  
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##### put zeros into the matrix when 
selected variable is greater than or 
equal threshold
			   varsnew=cbind(-
vars1,vars2) ### bind the 2 matrices 
into 1 big one.
			   output[i]=-2*log-
Lik(lm(outcome~varsnew))+(2*sum(combi-
nations[i,])+2)*2 ### Perform regres-
sion and calculate AIC for threshold 
model
		  }
	 }
}

return(output)  #### return AIC values 
for each combination of variables
}
model_sel_permutations.R
model_sel_permutations <- function 
(repeats,FUN,pars) {
##### function to calculate p-values 
from single model and model selection 
permutation tests

### calculate model selection statis-
tics from the outcomes in their origi-
nal order.
STATtrue=do.call(FUN, pars) 

#### Calculate model selection statis-
tics under each permutation
STATperm=numeric() ### initialise ma-
trix to store statistics from each 
permutation
for (i in 1:repeats)  ### use a random 
permutation of the outcomes and calcu-
late the model selection statistic
{
	 pars[[1]]=sample(as.numeric(un-
list(pars[1]))) ### permute the out-
comes and
	 tmp=as.numeric(do.call(FUN, 
pars))+rnorm(1)*0.000001 ### apply the 
user function with the permuted out-
comes (rnorm is added to break poten-
tial ties)
	 STATperm=rbind(STATperm,tmp) ### 
Record model selection statistics from 
particular permutation of the outcomes
}

#### Calculate p-values of each model 
under single model permutation test
single_model_p_value=numeric() ### 

initialise vector for p-values

for (j in 1:dim(STATperm)[2]) ### loop 
through each combination of variables
{		
	 single_model_p_value[-
j]=(which(sort(c(STATtrue[j],STATper-
m[,j]))==STATtrue[j])-1)/repeats  ### 
p-value for each combination of vari-
ables
}

#### Calculate p-value for model se-
lection permutation test

tmp=numeric()  ##### find minimum mod-
el selection statistic over all models 
for each repeat and store in “tmp”.
for (k in 1:dim(STATperm)[1]){
	 tmp[k]=min(STATperm[k,])
}

model_selection_p_val-
ue=(which(sort(c(min(STATtrue),t-
mp))==min(STATtrue))-1)/repeats  ### 
Calculate model selection p-value

output=list(“single_model_p_value”=s-
ingle_model_p_value,”model_selec-
tion_p_value”=model_selection_p_value)  
### define outputs

return(output)
}


