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Abstract. 
Background: Phytophthora megakarya is an invasive pathogen endemic to Central and West Africa. This 

species causes the most devastating form of black pod disease of cacao (Theobroma cacao). Despite the dele-
terious impacts of this disease on cocoa production, there is no information on the geographic distribution of 
P. megakarya.

Aim: In this study, we investigated the potential geographic distribution of P. megakarya in cocoa-produc-
ing regions of the world using ecological niche modelling. 

Methods: Occurrence records of P. megakarya in Central and West Africa were compiled from published 
studies. We selected relevant climate and soil variables in the indigenous range of this species to generate 14 
datasets of climate-only, soil-only, and a combination of both data types. For each dataset, we calibrated 100 
candidate MaxEnt models using 20 regularisation multiplier (0.1−1.0 at 0.1 interval, 2−4 at 0.5 interval, 4−8 
at 1 interval, and 10) and five feature classes. The best model was selected from statistically significant can-
didates with an omission rate ≤ 5% and the lowest Akaike Information Criterion corrected for small sample 
sizes, and projected onto cocoa-producing regions in Southeast Asia, Central and South America. The risk of 
extrapolation in model transfer was measured using the mobility-oriented parity (MOP) metric.

Results: We found an optimal goodness-of-fit and complexity for candidate models incorporating both 
climate and soil data. Predictions of the model with the best performance showed that nearly all of Central 
Africa, especially areas in Gabon, Equatorial Guinea, and southern Cameroon are at risk of black pod disease. 
In West Africa, suitable environments were observed along the Atlantic coast, from southern Nigeria to Gambia. 
Our analysis suggested that P. megakarya is capable of subsisting outside its native range, at least in terms of 
climatic and edaphic factors. Model projections identified likely suitable areas, especially in Brazil and Colom-
bia, from southwestern Mexico down to Panama, and across the Caribbean islands in the Americas, and in Sri 
Lanka, Indonesia, Malaysia, and Papua New Guinea in Asia and adjacent areas

Conclusion: The outcomes of this study would be useful for developing measures aimed at preventing the 
spread of this pathogen in the tropics. 
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1. Introduction
The oomycete genus Phytophthora essentially 

comprises pathogenic species of economic and eco-
logical importance. These organisms have been re-
sponsible for devastating plant diseases worldwide, 
including potato blight, jarrah dieback and sudden 
oak death. This genus has gained an important phyto-
pathological status in the last two decades, with more 
than 100 newly described species, classified on the 
basis of their invasiveness, either as cosmopolitan 
generalists or agriculture-related specialists  (Scott et 
al., 2019). Although many of these species are patho-
genic to cocoa (Table S1, Supplementary Material), 

P. megakarya is the most economically important 
given its severe impacts and recent westward incur-
sion in Africa from Cameroon (Akrofi, 2015; Bailey 
et al., 2016). The origin of this pathogen is not clear; 
its earliest occurrences were recorded in southwest-
ern Cameroon in 1906, following an unusually high 
black pod disease incidence that caused cocoa yield 
losses about three times higher than those due to P. 
palmivora. Although P. megakarya has not been re-
ported in cocoa-growing regions outside Africa, new 
introductions of this species cannot be overlooked 
especially in this era of increased global exchanges.
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Phytophthora megakarya thrives in very humid 
climates. Although soil texture plays a central role 
in the epidemiology of some Phytophthora species 
(Corcobado et al., 2013), there is a dearth of infor-
mation on the effect of edaphic factors on the per-
sistence of P. megakarya. A sharp contrast exists 
between weather conditions required for zoospore 
production in laboratory and field conditions (Bailey 
et al., 2016). In the field, rainfall rather than tempera-
ture is critical for development of epidemics caused 
by P. megakarya  (Deberdt et al., 2008). The amount 
of precipitation required for the survival of P. mega-
karya (1100–2000 mm) nearly matches that which 
is required for cocoa production (Akrofi, 2015). The 
minimum temperature for the survival of P. mega-
karya is 10–11o C, while the optimum temperature 
range for spore production and pathogenic activities 
is 24–26o C (Bailey et al., 2016). 

Under the conditions described above, the soil-
borne spores of P. megakarya develop into sporangia 
which are dispersed from cocoa stems to pods, and 
eventually up the foliage mainly by rain splash (Bai-
ley et al., 2016). Adaptations that make P. megakarya 
specifically harmful to cocoa include its spores’ abil-
ity to survive in soil for extended periods and sus-
tain multiple cycles of infestations. In addition, P. 
megakarya is more prolific in zoopore production, 
and readily forms sizeable necrotic lesions on cocoa 
pods compared to P. palmivora (Ali et al., 2016), and 
symptoms on pods (rot), branches and trunks (can-
ker) are more conspicuous (Bailey et al., 2016). Le-
sions on pods as a result of P. megakarya infestation 
can drastically reduce cocoa bean yield, while canker 
considerably shortens its life span. 

Predictive modelling to determine the distribu-
tional potential of species based on abiotic conditions 
is a widely used tool in ecology and biodiversity 
conservation (Franklin, 2009; Peterson et al., 2011). 
Advances in ecological niche modelling have pro-
vided opportunities to explore and predict the spatial 
extents of environmentally conducive habitats for 
disease-causing microorganisms (Peterson, 2014). 
In view of the serious environmental and economic 
impacts of  Phytophthora species worldwide, diverse 
modelling approaches have been used to identify po-
tentially suitable habitats for them (Burgess et al., 
2017; Duque-Lazo et al., 2016; Hernández-Lam-
braño et al., 2018; La Manna et al., 2012; Vaclavık & 
Meentemeyer, 2011; Ramírez-Gil & Peterson, 2019). 
For example, Burgess et al., (2017) predicted large 

areas with ideal environmental conditions for P. cin-
namomi in Sub-Saharan Africa, Southeast Asia, Eu-
rope, and America. However, the geographic cover-
age of most of these studies is limited, perhaps owing 
to the low dispersal ability of fungal and fungal-like 
species, or limited data availability. Considering the 
risk of a widespread outbreak of black pod disease 
in Africa as a result of increased East-West exchang-
es, we assessed the ecological niche of P. megakarya 
based on current climatic and edaphic factors in West 
and Central Africa, and provided information on its 
potential spatial distribution, more broadly across 
tropical regions, where cocoa is a major agricultural 
product.  

2. Materials and Methods 
2. 1 Study area, occurrence data cleaning

and partitioning 
The study area encompasses all cocoa-producing 

countries across Africa, Central and South Ameri-
ca, and Southeast Asia, based on country-specific 
yield data from the Food and Agricultural Organ-
isation of the United Nation database (http://www.
fao.org/faostat/en/#data). Available geo-referenced 
occurrence records of P. megakarya, which were all 
confined to West and Central Africa were gathered 
from published studies. The raw occurrence dataset 
contained 753 records across seven countries: Cam-
eroon, Gabon, Sao Tome & Principe, Nigeria, Togo, 
Ghana and Cote d’Ivoire. The bulk of these data 
(96.4%) were already compiled in a doctoral thesis 
(Mfegue, 2012) and the remaining were obtained 
from studies published prior to 2013 (Table S2, Sup-
plementary Material).

Data cleaning was done manually; dubious and 
duplicate records were identified when visualized 
in relation to their provenances using ArcMap 10.4  
(https://www.esri.com/). For instance, many records 
were listed in Cote d’Ivoire, Ghana, and Sao Tome 
and Principe but mapped in other countries and the 
Atlantic Ocean. Others mapped right on the coastline 
or very close to it (≤0.3 km), and were excluded to 
avoid ambiguity. Finally, to reduce spatial bias, oc-
currences were sub-sampled based on a minimal dis-
tance of 10 km between any two records using SDM 
Toolbox 2.4 (Brown, 2014). This cleaning and reduc-
tion process resulted in 92 useful occurrence records.

All occurrences of P. megakarya were restricted 
to tropical rainforest and savanna regions in Central 
and West Africa, which correspond to three subtypes 

http://www.fao.org/faostat/en/#data
http://www.fao.org/faostat/en/#data
https://www.esri.com/
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(Af, Am and Aw) of the Köppen-Geiger climate clas-
sification (Beck et al., 2018). To reduce uncertainties 
associated with choice of model calibration extent 
(Barve et al., 2011), we assumed that current popula-
tions of P. megakarya would be able to disperse across 
the geographical footprint within Af, Am and Aw in 
Africa (Fig. 1). Thus, model calibration was restricted 
to tropical rainforest and savanna climates in Africa. 
This spatial extent, represent the accessible area for 
P. megakarya, and it is referred to as “M” in the Biot-
ic-Abiotic-Movement framework of species distribu-
tions proposed by Sobéron & Peterson (2005).

Spatial relatedness in occurrence data, as shown 
by the high density of records of P. megakarya in 
southern Cameroon (Fig. 1b) has been shown to affect 
model predictions, especially when projections are 
made in non-analogous habitats (Roberts et al., 2017). 
To ensure a better degree of independence in training 
and testing data, we divided occurrence data equally 
into four distinct spatial calibration sets (bins) using 
the ENMeval package (Muscarella et al., 2014). We 

withheld 12 of the 92 records to serve as evaluation 
data and equally divided them among the four bins 
(Fig. S1, Supplementary Material).

2. 2 Environmental variables 
Previous studies have shown that temperature 

and rainfall are the most important growth-limiting 
factors for P. megakarya (Bailey et al., 2016; Puig 
et al., 2018). This pathogen thrives in very humid 
habitats, where rainfall exceeds 2000 mm (Ndoum-
bè-Nkeng et al., 2009). Relatively elevated tempera-
tures (>30° C) have been shown to inhibit its growth 
(Puig et al., 2018). Based on this information, we se-
lected six climatic variables that may represent this 
species’ climatic requirements. We downloaded these 
variables from the climatologies at high resolution for 
the earth’s land areas, CHELSA (Karger et al., 2017). 
Although climate is the major driver of species’ dis-
tributions at coarse scales, the utility of ecological 
niche models can be improved with the addition of 
edaphic variables (Velazco et al., 2017; Zuquim et 
al., 2019). Thus, we used topsoil (15 cm depth) phys-
ico-chemical properties and climatic variables both 
separately, and in combination to model the niche of 
P. megakarya. Seven topsoil (0 - 30 cm depth) phys-
ico-chemical properties were downloaded from the 
Harmonized World Soil Database (Wieder, 2014). 
All environmental layers were upscaled to a 5’ (100 
km2) resolution using the arithmetic mean of values 
of higher resolution cells, and cropped to the study 
area as defined in section 2.1 using SDM Toolbox 2.4 
(Brown, 2014). The complete list of predictor vari-
ables is provided in Table 1.

To reduce redundancy and dimensionality 
among predictor variables, the environmental space 
characterized by the selected predictor variables was 
summarized using principal component analysis. 
We considered the first three principal components, 
which cumulatively explained 91.99% and 77.48% 
of the original variation in the climatic and edaphic 
datasets, respectively, and retained the most import-
ant predictors (Fig. 2). This analysis was done us-
ing the FactoMineR (Lê et al., 2008) and factoextra 
(Kassambara & Mundt, 2020) packages in R (R Core 
Team 2020). We examined the information gain as-
sociated with both variable categories by grouping 
them incrementally to create 14 sets of predictor 
variables from a combination of the most important 
ones as shown in Table 2.

Figure 1: Study area. Cocoa-producing countries outside 
Africa with no known records of P. megakarya (CPCOA) 
are shown in grey (a); presence records and potentially 
accessible areas for P. megakarya in Africa, M are shown 
in green shades (b). GIS layers were obtained from Nat-
ural Earth (https://www.naturalearthdata.com/).

https://www.naturalearthdata.com/
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Table 1: List of bioclimatic variables used in this study

Variable 
Source Code Description Unit

Climate

Bio 01 Annual Mean Temperature °C/10

Bio 05 Maximum Temperature Warmest Month °C/10

Bio 06 Minimum Temperature Coldest Month °C/10

Bio 12 Annual Precipitation mm/year

Bio 13 Precipitation  Wettest Month mm/month

Bio 14 Precipitation of Driest Month mm/month

Soil

Bulk_Density Bulk density Kg/dm3

Gravel Gravel % volume

Sand Sand % weight

Silt Silt % weight

Clay Clay % weight

CEC Cation Exchange Capacity Cmol/kg

OC Organic Carbon % weight

pH pH (in Water) -log(H+)

2.3 Maximum entropy ecological
niche modelling 

Ecological niche models were developed using 
the maximum entropy modelling algorithm, imple-
mented in MaxEnt v. 3.4.0 (Phillips et al., 2006). 
Previous studies have demonstrated that spatial pre-
dictions from MaxEnt models tend to be not only 
more accurate than other comparable methods, but 
also reliable even with limited  presence data (van 
Proosdij et al., 2016; West et al., 2016). We used 
kuenm (Cobos et al., 2019a), an R package designed 
to make MaxEnt ecological niche model calibration 
and evaluation as comprehensive and reproducible as 
possible. MaxEnt model parameterisation in kuenm 
is user-friendly and does not require high computa-
tional power, even with relatively large datasets. The 
utility of this platform has been demonstrated in its 
ability to perform model selection across all possible 
combinations of environmental data and parameters 
(Cobos et al., 2019b). Using the 14 datasets previous-
ly generated, we created a suite of candidate models 
with 70% of the presence data, which amounts to 56 
records in total (14 per bin). These models were cali-

Figure 2: Principal components analysis of predictor 
variables. The importance of a variable is measured by 
the quality of its representation, cos2 (a & b), and its con-
tribution (c & d) to each principal component. Warmer 
colours depict better representation (top row), while the 
most important variables are depicted with an asterisk 
(bottom row).
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brated with a wide range of regularisation coefficients  
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.5, 0.8, 0.9, 1, 2, 2.5, 3, 
3.5, 4, 5, 6, 7, 8, 10) and the most basic sets of fea-
ture classes (quadratic, linear-quadratic, linear-prod-
uct, quadratic-product and linear-quadratic-product), 
to ensure simple relationships between presence data 
and predictor variables  (Merow et al., 2013). 

In kuenm, candidate models are evaluated based 
on their statistical significance first, which is as-
sessed by means of the area under the curve of the 
receiver operating characteristic, pROC (Peterson 
et al., 2008). Then, evaluation proceeds with mod-
el performance taking precedence over complexity. 
Partial ROC was calculated by bootstrap with 100 it-
erations and 50% of the data. Internal validation was 
based on 30% of the records (i.e., 6 per bin). After 
we had selected statistically significant models using 
an omission rate of ≤ 5 % (Anderson et al., 2003), 
the most parsimonious ones were retained for further 
analyses based on the lowest Akaike Information 
Criterion corrected for small samples sizes, ΔAICc  
≤ 2 (Warren and Seifert 2011).  

The final models were calibrated based on the 
parameters of the best candidate models using 100 
bootstrap replicate samples with all 80 P. megakarya 
occurrences. The probability of occurrence of this 
pathogen was estimated using the recommended 
complementary log-log (cloglog) transformed output 
(Phillips et al., 2017). Final model evaluation (in M) 
was based on the 12 records initially withheld from 
analyses. Model performance was further assessed 

using the Boyce index, a robust metric for pres-
ence-only models (Hirzel et al., 2006). Values of this 
metric close to +1 indicate reliable model predictions 
suggesting a model’s ability to detect habitat suitabil-
ity at test locations. We used the ecospat package (Di 
Cola et al., 2017) for this analysis. Binary suitability 
maps were generated by reclassifying the average of 
replicate models using the minimum and 10% train-
ing presence thresholds. Preference was given to the 
former considering the robustness of the processed 
occurrence dataset (Pearson et al., 2006). Uncertain-
ties in the spatial distribution of P. megakarya in M 
were estimated using the standard deviation of rep-
licate models. Projections in geographic space, out-
side M were created by extrapolation and clamping. 
Extrapolation risks associated with these projections 
were assessed using the mobility-oriented parity 
metric, MOP (Owens et al., 2013).

3. Results
3. 1. Models performance
and variable contributions 

We generated 1,400 candidate models for P. 
megakarya using a combination of 20 regularisation 
multipliers and five feature classes across 14 sets of 
environmental variables. All candidate model predic-
tions were significantly better than null expectations, 
and 1152 had an omission rate ≤ 5%. Predictor vari-
able source had a profound effect on model complexity 
(Fig. 3). Models based on both climatic and soil pre-
dictors provided the greatest parsimony as opposed to 

Table 2: List of the predictor variable combinations 

Variable  dataset code Variable combination
Set 01: Bio 05, Bio 06, Bio 13
Set 02: Bio 05, Bio 06, Bio 13, Bio 12
Set 03: Sand, pH, OC
Set 04: Sand, pH, OC, Silt
Set 05: Sand, pH, OC, Clay
Set 06: Sand, pH, OC, Silt, Clay
Set 07: Bio 05, Bio 06, Bio 13, Sand, pH, OC
Set 08 Bio 05, Bio 06, Bio 13, Sand, pH, OC, Silt
Set 09 Bio 05, Bio 06, Bio 13, Sand, pH, OC, Clay
Set 10 Bio 05, Bio 06, Bio 13, Sand, pH, OC, Silt, Clay 
Set 11 Bio 05, Bio 06, Bio 13, Bio 12, Sand, pH, OC
Set 12 Bio 05, Bio 06, Bio 13, Bio 12, Sand, pH, OC, Silt
Set 13 Bio 05, Bio 06, Bio 13, Bio 12 Sand, pH, OC, Clay
Set 14 Bio 05, Bio 06, Bio 13, Bio 12 Sand, pH, OC, Silt, Clay
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soil-only models. Of these, only four met the ΔAICc 
criterion (Table 3). Omission rate and Boyce index for 
the best model after  final evaluation were 8.3% and 
0.91, respectively.

The contribution of bioclimatic variables was 
higher than that of edaphic variables (Table 4). Ther-
mal variables, namely Maximum Temperature of the 
Warmest Month and Minimum Temperature of the 
Coldest Month, were the most influential predictors, 

as evidenced by their average contribution of 35.60 ± 
0.49% and 22.01 ± 0.44%, respectively. Precipitation 
of the Wettest Month was the third most important 
variable (20.44 ± 0.37%). Two other variables had 
about 4% importance in the best model: Clay content 
and Annual Precipitation. Of the four edaphic vari-
ables, sand content had the highest contribution (9.51 
± 0.24%), while soil carbon had the lowest contribu-
tion. 

Model response curves suggested that predicted 
suitability was highest at values of Maximum Tem-
perature of Warmest Month ≤ 26 ° C and decreased 
exponentially thereafter (Fig. 4 a). Suitability expo-
nentially increased with increasing Minimum Tem-
perature of Coldest Month and plateaued from about 
23°C (Fig. 4b). Precipitation of Wettest Month, Sand 
and Clay content followed a bell-shaped pattern with 
maximum suitability between 400-600 mm/month, 
50-60% and 30-40% respectively (Fig. 4 c-e).

3. 2 Model spatial predictions
in the calibration extent

The predicted distributions of P. megakarya  
based on the minimum and 10 percentile training 
presence thresholds were largely restricted between 
10° S and 10° N (Fig. 5 c & d). The largest region 
with environmental conditions more likely to support 
the proliferation of P. megakarya was in Central Af-
rica, encompassing São Tome and Principe, Gabon, 
Equatorial Guinea, and southern Cameroon. Habitat 
suitability was equally high in the Republic of Con-
go, including areas south of the Batéké Plateau to the 
northern limits of the Odzala National Park, and in 
the Democratic Republic of Congo, in the northern 

Figure 3: Summary of candidate model performance 
in relation to feature class and predictor variable 
source. Only statistically significant models meeting the 
omission rate criterion were considered. The performance 
of each predictor dataset is presented in the supplementary 
material (Fig. S2).

Table 3: Model performance in relation to predictor variable combinations and MaxEnt parameters for the four best 
models identified in our analyses 

Dataset FC RM pROC  OR AICc ΔAICc WAICc BI N

Set 14 LQ 0.40 0.00 0.17 1523.09 0.00 0.23 0.92 16

Set 11 LQ 0.40 0.00 0.17 1523.19 0.10 0.25 0.91 11

Set 13 LQ 0.50 0.00 0.08 1523.48 0.39 0.16 0.91 13

Set 09 LQ 0.40 0.00 0.17 1524.30 1.20 0.11 0.81 12

FC=feature class, RM= Regularisation multiplier, OR = Omission rate, BI: Boyce index, ΔAICc, Akaike Information Criterion 
corrected for small sample sizes, WAICc = weighted AIC.  
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Figure 4. Response curves of the best model. Curves depict the relationship between predicted habitat suitability 
(cloglog) and each environmental variables, keeping all others at their mean value. The average response for the 100 
replicates is shown in red and the standard deviation in grey. Variable codes are given in Table 1.

Table 4: Variable contributions and permutation importance

Variable Contribution (%) Permutation importance (%)

Max Temperature of Warmest Month 35.60 ± 0.49 31.60 ± 0.60

Min Temperature of Coldest Month 22.01 ± 0.44 29.84 ± 0.50

Precipitation of Wettest Month 20.44 ± 0.37 21.24 ± 0.50

Sand 9.51 ± 0.24 1.12 ± 0.16

Clay 4.78 ± 0.14 8.39 ± 0.34
Annual Precipitation 4.47 ± 0.25 1.82 ± 0.08

pH 3.12 ± 0.13 5.94 ± 0.25

OC 0.07 ± 0.02 0.06 ± 0.01
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half of the Congo River Basin. 
In west Africa, suitable areas were observed 

along the Atlantic coast, from southern Nigeria to 
Gambia. This area was interrupted by a discontinuity 
that coincides with the Dahomey Gap in Benin and 
Togo. Abiotic conditions over the entire Liberian ter-
ritory and much of Sierra Leone, and in the major co-
coa-producing regions in southern Cote d’Ivoire and 
Ghana were found to be conducive for P. megakarya. 
A broad swath of Guinea was predicted as unsuitable 
for this species as opposed to an isolated area ranging 
from the estuaries of Guinea-Bissau to north-western 
Gambia. In East Africa, our model also predicted an 
association of P. megakarya with coastal  environ-
ments, in Kenya, Tanzania, Mozambique and Mad-
agascar, and areas surrounding Lake Victoria. These 
predictions followed an overall similar pattern for 
both thresholds, and were associated with a moder-

ate level of uncertainty, resulting from the variabili-
ty among replicate models (Fig. 5 b). MOP analysis 
showed that all areas predicted as conducive for the 
study species in Madagascar had conditions similar 
to those of the calibration extent.

3. 3 Model spatial predictions outside
the calibration range

Model transfer to Central America predicted 
propitious environments in areas between southern 
Mexico and Panama, and across the Caribbean is-
lands with a very low extrapolation risk (Fig. 6 a & 
b). The largest suitable area in South America was 
central Brazil; other such areas appeared scattered in 
Suriname, Venezuela, Peru and Colombia. We noted 
very low habitat suitability in an area broadly match-
ing the meanders of the Amazon River (Fig. 6 a). 
However, predictions within this space were based 

Figure 5. MaxEnt prediction of suitable areas for P. megakarya in Sub-Saharan Africa. Continuous suitability map 
based on the mean of 100 replicate models (a) and uncertainty (standard deviation) associated with this prediction (b). 
Green and red areas depict the unsuitable and suitable geographic space in the calibration extent after reclassification 
using the minimum training presence threshold (c) and 10 percentile training presence threshold (d).
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on strict extrapolation according to MOP analysis as 
were those in southern Venezuela, northern Peru and 
along the Pacific coast of Colombia (Fig. 6 b). 

The environment in many cocoa-growing coun-
tries in Southeast Asia was conducive for P. mega-
karya (Fig. 6 c & d). Strict model extrapolation was 
observed on the northern side of the Deccan Plateau 
and Western Ghats in India. Areas extending from 
the Eastern Ghats to Sri Lanka were particularly 
suitable for this species. Moderate extrapolation risk 
was associated with predictions in Central Indonesia, 
Malaysia and Papua New Guinea. Although India is 
a major player in the global cocoa production, model 
predictions were generally unfavourable for P. mega-
karya in many areas of this country.

 

4. Discussion
In view of the emergence of P. megakarya and 

the resulting increase in the incidence of black pod 
disease in West and Central Africa, we assessed the 
potential geographical distribution of this species 
using maximum entropy modelling. MaxEnt mod-
els were calibrated with 80 presence locations of P. 
megakarya in Central and West Africa, while evalua-
tion was based on 12 records. The use of relevant cli-
matic and edaphic predictor variables revealed  areas 
with environmental conditions that are conducive for 
the proliferation of this species. Predicted distribu-
tional areas were fragmented in South America and 
more continuous in Southeast Asia, with more novel 
combinations of environmental factors in the former 
than the latter. The application of ecological niche 

Figure 6 . MaxEnt prediction of suitable areas for Phytophthora megakarya in South America and Southeast Asia. 
Suitable environmental conditions (in red) in Central and South America (a) and South east Asia (c). MOP analysis 
comparing environmental conditions in the calibration range with those in Central and South America (b) and Southeast 
Asia (d). High model extrapolation in these predictions are depicted in red. Binary maps were made using the minimum 
training presence threshold.
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models in the field of plant pathology is relatively 
recent, and the Phytophthora genus has been the pri-
mary focus of several studies (Burgess et al., 2017; 
Duque-Lazo et al., 2016; Kluza et al., 2007; La Man-
na et al., 2012; Ramírez-Gil & Peterson, 2019). 

The paucity of data on the presence of plant 
pathogens poses a major constraint in predicting their 
potential distributions. Georeferenced occurrence 
data of P. megakarya are rather poorly documented 
compared with its congeners outside the Afro-trop-
ical region (Scott et al., 2019). The spatial distribu-
tion of other Phytophthora species has mostly been 
explored through ecological niche modelling at rel-
atively limited geographical extents, usually within 
national boundaries. To date, P. cinnamomi is the 
only species that has been mapped across continents 
owing to its wide host range (Burgess et al., 2017). 
Many studies rely on primary data, collected during 
field sampling (Duque-Lazo et al., 2016; La Manna 
et al., 2012; Ramírez-Gil & Peterson, 2019). In con-
trast, our study exploited occurrences data gathered 
from a broader area, large enough to support a robust 
intercontinental niche modelling effort. However, 
we noted that many field-based studies on P. mega-
karya neglect to share detailed locality data for this 
species. We also noted that records of this species 
were conspicuously unavailable for Côte d’Ivoire 
even though it has been reported there (Pokou et al., 
2008). Although, our results are based on presence 
records mostly from eastern Cameroon, where this 
species was first detected, the approach used in data 
partitioning has been shown to reduce effects of spa-
tial structure in occurrence data and improve model  
performance (Roberts et al., 2017).

It is generally accepted that climate is the ma-
jor driver of species’ distributions at wide geograph-
ic scales; as such, niches have often been modelled 
with regard to climate predictors only. For example, 
an efficient climate-only epidemiological model has 
been developed to forecast  black pod disease out-
breaks in Nigeria (Etaware et al., 2020). Although 
these tools are relatively simple, reliable and easy to 
implement, given the direct effects of climatic factors 
on the pathogen’s physiology, we found that climate 
is not sufficient to characterize the environmental 
requirements of P. megakarya. Our results showed 
that edaphic variables, though not very useful in 
themselves, played a supplemental role in model pre-
dictions. In other words, we obtained better models 
for P. megakarya as a result of combining climatic 

and edaphic variables. This result was perhaps unex-
pected as Phytophthora species are essentially soil-
borne pathogens. For instance, results from previous 
studies highlighted the affinity of P. cinnamomi for 
fine-textured soils, which promote high water reten-
tion (Corcobado et al., 2013). In the same vein, clay 
content was also found to be among the factors that 
influence the distribution of this species in the Ibe-
rian Peninsula (Hernández-Lambraño et al., 2018). 
However, our findings support the hypothesis that 
both climate and soil related determine species’ dis-
tributions (Velazco et al., 2017; Zuquim et al., 2019).

We found a trend in the probability of predicted 
environmental suitability that is  consistent with the 
temperature and rainfall requirements of P. mega-
karya. Rainfall in West and Central Africa generally 
follows a bimodal distribution pattern, with the high-
est peak in September. Thus, the maximum suitabil-
ity for precipitation of the wettest month, which was 
predicted between 400 and 500 mm, is in agreement 
with the findings of Efombagn et al., (2004), who 
measured yearly black pod disease progress in three 
cocoa clones in Cameroon between 1999 and 2001, 
and recorded the highest number of rotten pods in 
September (rainfall ≈ 300 mm). In addition, we ob-
tained the highest habitat suitability for Minimum 
Temperature of the Coldest Month values above 
22° C, and Maximum Temperature of the Warmest 
Month values below 28° C. This range matches the 
24° C - 26° C optimal temperatures for P. megakarya 
(Bailey et al., 2016). 

Biotic factors, parasitism in the case of P. mega-
karya can play a significant role in shaping its geo-
graphic distribution, and as such reinforce model 
predictions. However, such interactions are often 
more expressed at local scales and tend to fade at 
coarser resolutions, comparable with those at which 
our analyses were done (Ramírez-Gil & Peterson 
2019). Hernández-Lambraño et al., (2018) used the 
presence of two primary hosts of P. cinnamomi as a 
predictor to estimate the potential geographic distri-
bution of this pathogen in the Iberian Peninsula. A 
similar specific host-pathogen relationship exists be-
tween P. megakarya and cocoa (Bailey et al., 2016). 
Although this pathogen might develop a multi-host 
capacity in the future, considering the number of 
its alternative hosts (Akrofi et al., 2015; Opoku et 
al., 2002), its close interaction with cocoa in Africa 
might be helpful in small scale modelling efforts.
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The size of the area that is potentially accessible 
to a species by means of natural dispersal (M) has 
profound influences on niche modelling outcomes 
(Barve et al., 2011). In this study, we adopted a rela-
tively broad M for model calibration. Although there 
is evidence that the study species currently occupies 
a small fraction of M (Akrofi, 2015), its impending 
spread beyond this area, through contaminated plant-
ing material cannot be overlooked considering the 
economic value of its primary host. This approach 
of defining M has been used in predictive models of 
pathogens affecting Hass avocado in Colombia, in-
cluding, P. palmivora and P. cinnamomi  (Ramírez-
Gil & Peterson, 2019).

Model predictions indicated that P. megakarya 
would be of less concern in Africa, except in Cen-
tral and West Africa where we identified two distinct 
areas of high environmental suitability, separated 
by the Dahomey Gap, in Benin. This result might 
explain the existence of two genetically different 
groups of P. megakarya, one in each region (Nyassé 
et al., 1999). We hypothesize that  the drier climate 
in the Dahomey Gap acts as an effective natural bar-
rier to the convergence of these two genotypes. It is 
noteworthy that our models were robust enough to 
detect high habitat suitability in the main cocoa-pro-
ducing regions, in southern Côte d’Ivoire (Pokou et 
al., 2008), even though presence data from this area 
were not available. 

Though we assessed the performance of differ-
ent MaxEnt models using a wide range of parameters 
and predictor variables, our use of a single modelling 
algorithm is one obvious limitation of this study. In 
fact, there is a multitude approaches in correlative 
species distribution modelling to choose from, and 
more calls have been made to explore model perfor-
mance across a suite of algorithms (Qiao et al. 2015; 
Zhu & Peterson 2017). Thus, further studies are 
needed to better understand the distributional poten-
tial of P. megakarya using  individual and ensemble 
models. 

Conclusions
Only four countries in West and Central Africa 

contribute the largest proportion of global cocoa bean 
production. However, further spread of P. megakarya 
is likely with increasing global trade, especially in 
developing economies. Adoption of pre-emptive 
measures would be crucial for effective coordinated 
international control measures. Models for P. mega-

karya incorporating soil and climate data  can be 
used to predict regions at risk of black pod disease. 
This study underscored the potential use of correl-
ative species distribution modelling for forecasting 
plant pathogen occurrences at regional and global 
scales. This understanding of the spatial pattern of 
occurrence of P. megakarya could help in controlling 
the spread of black pod disease in tropical regions. 
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Supplementary material

Table S1: Major pathogenic Phytophthora species of cocoa. 

Species Countries affected Authors

P. megakarya West Africa Brasier and Griffin (1979)
P. palmivora All cocoa-growing regions Brasier and Griffin (1979)

P. citrophthora Brazil, Mexico, Indonesia, India Lawrence et al. (1990); Appiah et al. (2004); Chowdappa 
and Chandramohanan (1996)

P. capsici Americas, Caribbean, Central Af-
rica

Erwin and Ribeiro (1996); Guest (2007)

P. katsurae Côte d’Ivoire Liyanage and Wheeler (1989)

P. botryos Malaysia Kroon et al. (2004)

P. megasperma Venezuela Zentmeyer (1988)
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Figure S1: Occurrence data partitioning 
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Figure S2: Candidate model performance in relation to feature class and predictor variable category


