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Abstract. 

New World bats play a significant role in ecosystem functioning and are imperative for maintaining environ-
mental services. Nevertheless, human-caused environmental changes are jeopardizing bat communities, which 
results in the loss of functional roles provided by them. It is important, therefore, to assess ecological processes 
performed by bats in the Neotropics to define priorities in further research for better conservation planning. In 
this systematic review, I identify general trends, advances, bias, and knowledge gaps in bat-mediated ecological 
processes across Neotropical ecosystems. I have conducted an extensive search on Google Scholar, Scopus, 
Web of Science, and Bat Eco–Interactions Database resulting in 538 references, of which 185 papers were 
included in the review. The papers were published in 76 peer-reviewed journals, with the highest peak between 
2006-2010. From the six biomes recorded, Moist broadleaf tropical forest was the most researched, contrary to 
Montane biomes (>2000 m), where few studies have been conducted. Seed dispersal was the process with more 
studies (44%), followed by pollination (38%), nutrient cycling (10%), and arthropod suppression (8%). Seed 
dispersal and pollination displayed large bias on specific bat-plant systems (Artibeus-Ficus, Sturnira-Solanum, 
Carollia-Piper, Pachycereeae tribe-Leptonycteris) and ecoregions (Ithsmian-Atlantic moist forest, Cerrado, 
Tehuacán Valley matorral), thus being important to explore other bat and plant species as well as other eco-
systems. Arthropod suppression and nutrient cycling were largely overlooked despite constituting essential 
functions in ecosystem resilience; particularly, more research is needed to know cascading effects on plant 
fitness in different agroforestry systems, but also is key the understanding of how bats can be pivotal mobile 
links in terrestrial ecosystems and cave environments. I highlight the importance to consider bats with multiple 
roles and functional trait-based approach to gain a comprehensive understanding of their functionality. Even 
though functional studies have increased in the last two decades, several aspects of bat roles are still obscured, 
and is necessary to keep evaluating their ecological and economic importance to provide useful information 
for major decision-makings in Neotropical ecosystems’ conservation. Bat extirpations are likely to affect their 
ecological roles, therefore, mitigating major threats of bats are urgently needed to sustain ecosystem integrity 
in the Neotropics. 
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Introduction
In the last few decades, the relationship between 

biodiversity and ecosystem functioning has become 
a key framework for understanding species’ roles 
in the provision of ecosystem services (Luck et al. 
2009; Cadotte et al. 2011; Luck et al. 2012). In an era 
with unprecedented rates of biodiversity loss at glob-
al scale (Johnson et al. 2017; Ceballos et al. 2017), 
the study of ecological processes and functional roles 
of species in the ecosystems becomes critical for ma-
jor decision-making in conservation planning (Díaz 
& Cabido 2001; Cadotte et al. 2011; Córdova-Tapia 
& Zambrano 2015). However, functional roles per-
formed by species, especially in animals, have fre-
quently been inferred from ecological interactions 

that not necessarily entails a contribution to ecologi-
cal process as such.

It is well-recognized the central role of mammals 
in mediating ecological processes such as seed dis-
persal, seed predation, pollination, pest control, en-
ergy flow, predation, herbivory, and ecosystem engi-
neering (Lacher et al. 2019). Within mammals, bats 
are, undoubtedly, one of the most important taxa since 
represent the highest number of species after rodents, 
which means for about 21.89 % of all the mamma-
lian richness (Mammal Diversity Database 2020). 
Furthermore, bats display a high ecological diversity 
because are involved in multiple trophic interactions 
(Kasso & Balakrishnan 2013), thus contributing to a 
variety of ecosystem services (Kunz et al. 2011). The 
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global conservation status of bats, nevertheless, is a 
major concern because, on one hand, a third of bats 
assessed by International Union for Conservation of 
Nature (IUCN) are considered either threatened or 
data deficient, and on the other hand, over half of the 
species are ranked with either unknown or decreas-
ing population trends (Frick et al. 2019). Importantly, 
the Neotropics is a priority region of conservation at-
tention for bats (Frick et al. 2019), but the pervasive 
lack of data about bat ecology has partially hampered 
conservation actions across the region.  

New world bats are particularly important in 
maintaining ecosystem health throughout the provi-
sion of ecological functions, including forest regen-
eration via seed dispersal (Galindo-González et al. 
2000; Muscarella & Fleming 2007), plant reproduc-
tion prompted by pollination (Aguilar-Rodríguez et 
al. 2014; Tremlett et al. 2019), pest control caused 
by arthropod suppression (Kalka et al. 2008; Karp & 
Daily 2014), and nutrient cycling via guano and urine 
deposition (Voigt et al. 2015). Despite the numerous 
studies that have parsed out bat-plant interactions in 
the Neotropics, the quantification of real functions 
performed by bats seems to be fuzzy and not compre-
hensive. Summarizing the information about func-
tional contributions of bats, therefore, may be useful 
to evaluate the advances in the study of ecological 
processes, identify gaps of knowledge, and define 
priorities in future ecological research.

The Neotropical region is, probably, the most 
complex biotic realm of the world because of its vast 
extension of forests, but also for its tremendous tax-
onomic, phylogenetic, and functional diversity (An-
tonelli et al. 2018; Rull & Carnaval 2020). Indeed, 
ecosystems like Neotropical rain forests represent 
the highest animal and plant diversity of all terres-
trial ecosystems (Olson and Dinerstein et al. 2002; 
Rex et al. 2011). Other biomes from this region such 
as Mountain forests are recognized by their striking 
patterns of endemism (Orme et al. 2005), but many 
components of ecosystem functioning remain poorly 
explored in comparison to other biomes from low-
er elevations. Nonetheless, the Neotropical realm is 
one of the most threatened regions due to marked an-
thropogenic pressures (González-Maya et al. 2017). 
Considering the current rates of bat extinction (Frick 
et al. 2019), and that human-induced impacts are 
likely to increase in the coming years (Arroyo-Rodrí-
guez et al. 2017), it is necessary to assess bat-mediat-
ed functional roles across the Neotropics to provide 

key information for future ecological and economic 
valuation that allows designing better conservation 
planning.

In this paper, I analyzed the main ecological pro-
cesses performed by bats (i.e. seed dispersal, polli-
nation, arthropod suppression, and nutrient cycling) 
across Neotropical ecosystems, describing the bib-
liographical, spatial, and ecological information of 
each function. By doing so, I assessed quantitative-
ly the current understanding of ecological processes 
provided by Neotropical bats, highlighting gaps of 
knowledge, remarkable advances and future chal-
lenges in bat functional research.

Materials and Methods
Data Searching and Exclusions

On December 2019 I conducted an extensive 
revision through Google Scholar, Scopus, and Web 
of Science searching for the available scientific lit-
erature that contained in the title, abstract, and/or 
keywords the following search terms with all the 
possible combinations: (“Bats” OR “Chiroptera” OR 
“Flying mammals”)  AND (“food habit” OR “diet” 
OR “frugivory”  OR “seed dispersal” OR “seed in-
gestion” OR “dispersers” OR “chiropterocory” OR 
“nectarivory” OR “pollination” OR “flower” OR 
“nectar” OR “chiropterophily” OR “foraging” OR  
“predation” OR “consumption” OR “biological con-
trol” OR “insect control” OR “mosquito control” 
OR “ecosystem function” OR “ecological function” 
OR “ecological process” OR “functional group” OR 
“ecological group” OR “role”) AND (“Neotropics” 
OR “Neotropical” OR “New world”). I also searched 
for references in the Bat Eco–Interactions Database 
(Geiselman et al. 2015) and the papers referenced in 
the articles selected. Thus, I included all the possible 
references without time restriction (up to December 
2019). The Google Scholar search produced 100 pag-
es of results, which were completely revised.

After eliminating the duplicated documents, and 
Gray literature (e.g. thesis, congress memories, and 
technical reports), I evaluated all the references ac-
cording to the following inclusion criteria by review-
ing the title, key words and abstract: (1) the organ-
isms investigated were Neotropical bats regardless 
where the study was conducted and (2) papers’ topics 
were related to seed dispersal, pollination, arthropod 
suppression or nutrient cycling, as these are the main 
functions recognized in bats (Kasso & Balakrishnan 
2013) (Fig. S1 in supplementary material). Posterior-
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ly, reading the full text, I removed the references that: 
(1) were based mainly on bat ecomorphology, plant 
phylogeny, theoretical ecology, and evolutionary bi-
ology because those themes are marginally related 
to ecosystem functioning approach and (2) included 
only trophic interactions between bat-flowers, bat-
fruits or bat-insects such as dietary studies because 
they don’t assess effectively the process (Fig. S1 in 
supplementary material). Thus, I gathered research 
studies that directly assess the ecological roles per-
formed by Neotropical bats either empirically (i.e. 
field studies, experiments) or analytically (i.e. me-
ta-analyses or reviews).

Data analyses
I organized the Information derived from the 

references in Microsoft Excel 2016 by using mainly 
cross-tabulations. From each document, I compiled 
information according to the following features: 
(a) Bibliographic information (year, type of publi-
cation, type of study, journal, the disciplinary topic 
of the study) (b) Spatial information (country and 
city/state of the study, altitude, biome and ecore-
gion) (c) Ecological processes information (func-
tion assessed, component of the process assessed, 
variables analyzed, methods employed, and effects 

evaluated). When a paper covered different features 
(e.g. topics, functions, variables, etc.), each feature 
was considered separately. Altitude was searched in 
Google Earth when the study did not provide it, and 
biomes and ecoregions were obtained from locations 
described in the study areas, which were assigned ac-
cording to Ecoregions 2017 © Resolve (Olson et al. 
2001; Dinerstein et al. 2017). 

I quantified the percentage of publications to each 
feature with a respective number of studies (n). To 
assess publication rates and correlations of the num-
ber of papers to altitude, I regressed the percentage 
of publications to years and elevation, respectively. 
These analyses were carried out using Rwizard 4.3 
(Guisande et al. 2014).

Results
General trends

Keyword search identified 538 references. After 
a detailed analysis of each paper, 185 were consid-
ered for the purpose of this study (Fig. S1 in sup-
plementary material).  The number of publications 
increased importantly since the start of the new mil-
lennium (P < 0.0001, R2 = 0.47, Fig. 1a) with a note-
worthy peak in the period time between 2006-2010 
(n = 44). Studies were published in 76 peer-reviewed 

Figure 1. Bibliographical information of bat-mediated ecological processes in the Neotropics showing: (a) years (b) 
topics (c) study type (d) type of document. The number of studies is presented on the side of each bar.
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journals (Table S1 in supplementary material). The 
journals with the largest number of publications were 
Biotropica (n = 18), American Journal of Botany (n = 
17), Journal of Tropical Ecology (n = 10), and Ecolo-
gy (n = 10). The main topics of the studies were plant 
reproduction (n = 70), foraging behavior (n = 37), 
successional gradient (n = 32) and seed ecophysiol-
ogy (n = 31) (Fig. 1b). Regarding study type, most 
were empirical-experimental (n = 73), empirical (n 
= 58) and experimental (n = 32) (Fig. 1c) and the 
type of publications were mainly original articles (n 
= 141) and short communications (n = 22) (Fig. 1d). 

Seed dispersal (n = 85) and pollination (n = 73) 
were by far the most investigated bat-mediated eco-
logical processes, whereas nutrient cycling (n = 20) 
and arthropod suppression (n = 16) received less at-
tention (Fig. 2a). Over the 13 Neotropical countries 
where bat ecological roles were investigated, México 
presented more studies (n = 47) followed by Brazil 
(n = 43). In the former, more research was conducted 
in pollination (n = 28) and in the latter more seed 
dispersal studies were performed (n = 22) (Fig. 2b). 
From the six world biomes found in the systematic 
review, Moist broadleaf tropical forest showed most 
functional studies (n = 89, 52.66%) (Fig. 2c). Across 
the 54 ecoregions selected to perform the studies, 
Ithsmian-Atlantic moist forest in Costa Rica and 

Panamá (n = 18, 10.22%), Cerrado in Brazil (n = 17, 
9.65%), Tehuacán Valley matorral in Mexico (n = 10, 
5.68%) and Central American Dry Forest in Costa 
Rica (n = 10, 5.68%) were the most frequent study 
sites. Following an inverse function, I found a signif-
icant relationship between altitude and the number of 
publications (P < 0.0001, R2 = 0. 92, Fig. 2d), with 
more than the 70% of the studies carried out up from 
0 to 600 m elevation (n = 94).

Seed dispersal
Seed rain (n = 52) and seed germination (n = 35) 

were the components assessed when evaluated seed 
dispersal performed by bats (Fig. 3a). Within vari-
ables employed to make an appraisal of seed rain, 
species richness of seeds dispersed (n = 25), seed 
density (n = 19), and disperser importance index (n 
= 8) were the most frequent variables analyzed (Fig. 
3b). For seed germination component, the variables 
most commonly studied were germination percent-
age (n = 26), germination rate (n = 12) mean ger-
mination time (n = 6) (Fig. 3b). Habitat comparison 
(n = 25) and germination experiments (n = 30) were 
the principal methods for studying both components 
of the functions. Exclosure experiments were lesser 
employed (n = 2, 3.3%). The principal effects test-
ed comprised animal ingestion (bats and control), 

Figure 2. Spatial information of bat-mediated ecological processes in the Neotropics showing: (a) ecological processes 
(b) country (c) biome (d) elevation. Colors of the bars indicate the ecological process studied.
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habitat type (forest, edges, open areas and forests 
with different successional stages), vertebrate seed 
disperser (bats and birds), and plant species (germi-
nation treatments testing the responses of different 
seed species ingested by the same frugivorous bat) 
(Fig. 3c). In these investigations, Artibeus, Carollia, 
Platyrrhinus, and Sturnira were the bat genera with 
more studies (n = 49, 83%), and Ficus, Piper, Ce-
cropia and Solanum the plant genera dispersed more 
frequently by them.

Pollination
Pollination was heavily investigated in the com-

ponent of effectiveness (n = 63), but very few studies 
were carried out in terms of plant genetics (n = 5) 
(Fig. 4a). Variables such as fruit set (n = 49), seed set 
(n = 36), and pollen deposited (n = 14) were the most 
employed when analyzing pollination effectiveness 
(Fig. 4b). Outcrossing rate (n = 2) and genetic diver-
sity (n = 5) were the variables used for examining 
the effect of bat pollination on plant genetics (Fig. 
4b). Main effects parsed out in the studies constitut-
ed pollinator group (diurnal birds, diurnal insects, 
nocturnal insects, nocturnal mammals), breeding 
system (self-pollination, outcrossing pollination, 
etc.), plant species (bat pollination in different plant 
species), populations (bat pollination in different 

plant populations of the same species), bat species 
(pollination of the same plant species performed by 
different bat species), and habitat type (fragmented, 
disturbed, natural) (Fig. 4c). Experimental exclosure 
(n = 37, 72.5%) was the main study design in the 
evaluation of this process. In general, Leptonycteris, 
Choeroniscus, Anoura, and Glossophaga were the 
most studied bat genera (n = 51, 88%). Pachycereeae 
tribe which comprises columnar cacti such as Stenoc-
ereus, Pachycereus, and Carnaegiea were the most 
common plants studied in bat pollination systems.

Arthropod suppression
Reduction of herbivory (n = 6) and arthropod 

predation (n = 9) were the two aspects analyzed for 
arthropod suppression (Fig. 5a). In the former, vari-
ables included arthropod biomass (n = 5) and eco-
nomic savings provided by bats (n = 3), and in the 
latter, leaf damage (n = 3), leafs saved by bats (n = 1), 
leaf loss (n = 1), leafs attacked (n = 1) and fruit set 
(n = 1) were analyzed (Fig. 5b). The studies included 
mainly comparisons between animal groups (bat vs 
birds), seasons (wet vs dry), agricultural management 
(traditional vs intensified), and bat exclusion (money 
invested to crops with bats and without them) (Fig. 
5c). Experimental exclosure was the principal meth-
odology to assess this process (n = 6, 54.54%), but 

Figure 3. Seed dispersal performed by Neotropical bats: (a) component of the process assessed (b) variables (c) effects 
used in the studies. Colors of the variables are associated to the component studied. The number of studies is presented 
on the side of each bar.
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the ecosystem services approach was also important 
(n = 3, 27.27%). Overall, bats effect on the reduc-
tion of herbivory was evaluated through field exclu-
sion experiments. Only Tadarida brasiliensis Geof-
froy, 1824, and Micronycteris microtis Miller, 1898 

were assessed individually by using the ecosystem 
services approach and foraging studies. Eight plant 
species were evaluated in the reduction of herbivory 
component: Hybanthus prunifolius (Humb. & Bon-
pl. ex Schult.) Schulze-Menz, Psychotria horizon-

Figure 4. Pollination performed by Neotropical bats: (a) component of the process assessed (b) variables (c) effects used 
in the studies. Colors of the variables are associated to the component studied. The number of studies is presented on the 
side of each bar.

Figure 5. Arthropod suppression performed by Neotropical bats: (a) component of the process assessed (b) variables 
(c) effects used in the studies. Colors of the variables are associated to the component studied. The number of studies is 
presented on the side of each bar.
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talis Sw., Acalypha diversifolia Jacq., Croton bill-
bergianus Müll. Arg., Miconia argentea (Sw.) DC., 
Coffea arabica L., Theobroma cacao L., Inga edulis 
Mart.).  Of these, two are species of high economic 
interest for agriculture (coffee and cacao).

Nutrient cycling
Nutrient budgets (n = 9) and bat guano environ-

ment (n = 11) were the two components assessed 
in nutrient cycling process (Fig. 6a). Nutrient con-
centration (n = 6), stable isotopes (n = 2), and soil 
fertilization were the variables measured in nutrient 
cycling analysis, whereas invertebrate abundance (n 
= 8) and species richness (n = 10) were the variables 
measured to study bat guano environment (Fig. 6b). 
The effects analyzed in the studies included bat guild 
(bat guano from frugivorous, insectivorous and he-
matophagous), individual state (male, female, repro-
ductive stage), and bat roost (natural and artificial, 
distance to roost) (Fig. 6c). Bat guano sampled man-
ually from caves was the principal method for study-
ing both components of the function (n = 12). Bat 
species with more studies that analyzed bat guano 
were Eptesicus fuscus Palisot de Beauvois, 1796, and 
Desmodus rotundus Geoffroy, 1810 (n = 7, 41.17%). 
Other species analyzed included insectivores such 
as T. brasiliensis and Myotis velifer Allen, 1890, 
frugivorous from the genus Carollia, Platyrrhinus, 

Uroderma, Sturnira and omnivorous from the genus 
Phyllostomus and Tonatia.

Discussion
General advances 

The systematic review addressing ecological 
roles performed by Neotropical bats revealed a grow-
ing scientific production over the last two decades. 
However, I identified a large bias in the distribution 
of studies in terms of topics, study types, biomes, 
and altitude. The bulk of papers came from botani-
cal studies of pollination, foraging behavior of bats, 
and successional gradients of secondary forests (Fig. 
1b). This is reflected in the type of journals where 
the studies were published (botanical and ecological 
journals) and, more importantly, the conceptual per-
spective from which this body of literature was pro-
duced. That is, discussions of successional gradients, 
as well as pollination, have traditionally focused on 
plants (Muscarella & Fleming 2007; Fleming et al. 
2009). Nevertheless, in recent decades the focus has 
changed from merely botanical studies to compre-
hensive plant-animal interactions with the remark-
able technological advances both in animal and plant 
ecology (e.g. radiotracking, video recording, molec-
ular techniques). Further, the implementation of field 
exclosure experiments have allowed to differentiate 
the effect of bats between controls, other groups of 

Figure 6. Nutrient cycling performed by Neotropical bats: (a) component of the process assessed (b) variables (c) effects 
used in the studies. Colors of the variables are associated to the component studied. The number of studies is presented 
on the side of each bar.
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animals, and combined effects on important func-
tions such as pollination (Santiago-Hernández et al. 
2019), and arthropod suppression (Maas et al. 2019).

In sharp contrast, I found very few studies in 
mountain forests (> 2000 m) compared to lowland 
moist forests (< 500 m) (Fig. 2d). Biological research 
institutes and field stations have played a key role 
in the research of functional ecology in Neotropical 
ecosystems (Guariguata & Kattan 2002). Well-rec-
ognized research centers such as La Selva in Cos-
ta Rica, Barro Colorado in Panamá, Los Tuxtlas in 
Mexico, and several research institutions in Brazil 
have heavily contributed to understanding ecosys-
tem functioning of tropical lowland forests. Not-
withstanding, other biomes and ecoregions placed 
in highland forests such as Montane grasslands and 
Shrublands across the Andes remains little investi-
gated. Due to rapid-human transformation (Orme et 
al. 2005; Etter et al. 2008), extraordinary local en-
demism and high rates of Beta-diversity in Andes 
Mountains (Olson & Dinerstein 2002), this region 
offers an interesting scenario for studying bat eco-
logical roles under dynamic ecosystems.

Seed dispersal
Massive forest loss has resulted in a consider-

able expansion of secondary forest in the Neotropics 
(Brown & Lugo 1990; Hansen et al. 2013; Chazdon 
et al. 2016; Arroyo-Rodríguez et al. 2017). There-
fore, the study of natural regeneration has become a 
critical topic in conservation biology and restoration 
ecology, in which bats perform a central role. On one 
hand, bats disperse large quantities of seeds in a va-
riety of microsites, including open areas avoided by 
other dispersers, thus influencing forest structure and 
composition as well as regeneration and successional 
patterns (Galindo-González et al. 2000; Muscarel-
la & Fleming 2007; Henry & Joudard 2007; Cole 
et al. 2010). On the other hand, despite seed inges-
tion by bats do not enhance germination in general 
(Saldaña-Vázquez et al. 2019), viable seeds ingested 
are likely to be deposited at sites suitable for germi-
nation (Carvalho-Ricardo et al. 2014). Due to this, 
bats have a pivotal effect during ecological succes-
sion, especially in the first stages of forest recovery 
(Muscarella & Fleming 2007), therefore the interest 
on chiropterocory has been a matter of significant 
importance under the accelerated rates of landscape 
transformation (Fig. 2a).  

Nonetheless, further research is needed on un-
derstanding physiological features of bats related to 
germination success such as gut retention time, di-
gestive capacity, and gut size. Also, the effect of fruit 
secondary compounds on the digestive physiology 
of bats may provide a comprehensive explanation 
of germination rates (Baldwin & Whitehead 2015). 
It should be noted, however, the large bias in seed 
germination experiments on very few bat genera in-
cluding Artibeus, Carollia, Sturnira, and Platyrrhi-
nus along with seeds like Cecropia, Ficus, Piper, 
and Solanum (Oliveira & Lemes 2010; Oliveira et al. 
2013; Carvalho-Ricardo et al. 2014; Carvalho et al. 
2017). Since there are 22 genera of fruit-eating phyl-
lostomid bats (Muscarella & Fleming 2007), future 
research should examine germination in frugivorous 
bats other than the aforementioned genera. Howev-
er, not only obligatory frugivores can disperse seeds 
(Laurindo et al. 2020). Interestingly, other feeding 
guilds like insectivorous and carnivorous bats have 
shown diets that include fruits and may contribute at 
some extent to seed dispersal (Aranguren et al. 2011; 
Novaes et al. 2015; Laurindo et al. 2020), therefore 
germination treatments could test seed dispersal ef-
fectiveness for these species also (but see below).

Importantly, Neotropical frugivorous bats can 
disperse a variety of seeds in different ways other 
than seed ingestion. For instance, tent-roosting bats 
can disperse a remarkable diversity of large seeds 
(> 8 mm) in disturbed habitats, promoting forest re-
generation and maintaining a high diversity of plant 
species (Melo et al. 2009; Villalobos-Chaves et al. 
2020). It is unknown, however, to what extent Neo-
tropical fruit bats can aid functional redundancy in 
forest ecosystems where large frugivorous have been 
extirpated (Melo et al. 2009). Finally, the dispersion 
of diaspores attached to the fur has been poorly doc-
umented in bats, albeit it is likely not significant in 
comparison to endozoochory (Lobova & Mori 2004). 
Despite being a rare event, recording this kind of dis-
persion could complement our knowledge about seed 
dispersal performed by these mammals.

Pollination
Bats perform a prime function on plant fitness 

by enhancing their reproductive effectiveness in 
two essential components: (1) carrying a substan-
tial amount of pollen on their bodies and depositing 
myriad of pollen grains on stigmas (Fleming et al. 
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2009; Muchhala & Thompson 2010) and (2) promot-
ing outcrossing through carrying pollen over long 
distances among individuals, thus reducing levels of 
genetic subdivision between plant populations and, 
consequently, increasing the area of plant genetic 
neighborhoods (Fleming et al. 2009; Lacher et al. 
2019). Given the general assumption in pollination 
studies of include all interactions of floral visitors as 
effective no matter the contribution to plant fitness 
(Santiago-Hernández et al. 2019), in this systematic 
review, I considered as pollination effectiveness only 
fruit production, seed production, and pollen delivery 
on stigmas (Fig. 4b). Visitation frequency is not nec-
essarily an indicator of pollinator importance, since 
rare species may be more effective by bolstering seed 
set and fruit set (Santiago-Hernández et al. 2019).

The bulk of studies assessing effective pollina-
tion were focused on Pachycereeae tribe and its rela-
tionships between Leptonycteris, Glossophaga, and 
Choeroniscus species, however, other nectarivorous 
bats still lacks on proofs about their role on plant fit-
ness of other species. Moreover, the vast majority of 
these papers were concentrated on Desert and Xeric 
environments of Mexico (Fig. 2b), and the result-
ing evidence suggest a dependence of cacti species 
on bats in Tehucacán Valley (center of diversity of 
Pachycereeae), but a more generalized pollinator 
systems in intertropical regions (Valiente-Banuet et 
al. 1996; Valiente-Banuet et al. 2004). Even though 
Southern Mexico represents one of the most diverse 
regions of dry forests and xeric environments world-
wide (Olson & Dinerstein 2002), for many regions of 
South America, however, bat-dependence on cacti or 
other related plants is understudied. New configura-
tions between bats-flower systems can be discovered. 
To name a few examples, dry ecosystems of the Pa-
cific coast of northwestern South America is charac-
terized by unique species due to isolation (Olson & 
Dinerstein 2002), but thus far little is known about 
their pollination systems. Additionally, dry valleys 
and Andean enclaves remain poorly understood de-
spite represent an important genetic reservoir of spe-
cies (Soriano & Ruiz 2002).

A crucially urgent aspect of pollination ecology 
relies on the effect of bat activity on plant genetics 
since in this review less than 10% of studies assessed 
this component (Fig. 4a). It is important to clarify the 
impact of declines in bat populations on reductions 
in plant genetic diversity, especially in the flora of 
economic or ecological interest (Lacher et al. 2019), 

having that the bulk of vertebrate-pollinated plants 
display outcrossing breeding systems (Renner & 
Ricklefs 1995).

Arthropod suppression
Insectivorous bats constitute the more represen-

tative trophic guild in terms of species richness in 
the Neotropics as well as in the other world regions 
(Maas et al. 2016). More broadly, because of their 
high mass-specific metabolic rates, bats are known to 
be voracious feeders of night-flying insects (Kalka et 
al. 2008; Kalka & Kalko 2006; Lacher et al. 2019), 
a somewhat that is reflected in high feeding rates per 
night, which depending on the species and the sea-
son, may exceed 2/3 of the bat body mass in insect 
biomass during mid-lactation (Kunz et al. 1995). Ac-
cordingly, arthropod suppression by bats exert top-
down control, increasing plant fitness through the 
reduction of leaf damage (Kalka et al. 2008; Maas 
et al. 2016). It should be noted that several factors 
may influence the impact of bats on arthropod con-
trol; for instance, complex food webs in Neotropi-
cal ecosystems composed by different trophic levels 
(Karp & Daily 2014; Cassano et al. 2016), seasons 
(Williams-Guillén et al. 2008; Karp & Daily 2014), 
landscape context (Maas et al. 2019), and agricultur-
al managements (Cassano et al. 2016) can modulate 
the final effect of bats on arthropod suppression.

Bats consume a broad spectrum of arthropod 
preys including herbivorous insects like caterpillars, 
beetles, and grasshoppers (Kalka & Kalko 2006), but 
also predatory arthropods such as spiders and ants 
(Karp & Daily 2014; Maas et al. 2016; Cassano et 
al. 2016). Both circumstances trigger cascading ef-
fects with different results on plant fitness; preying 
directly on herbivore pests benefit plants by reducing 
herbivory and, conversely, intraguild predation in-
crease herbivory rates thus affecting plant survival. 
However, information in this regard is still limited 
and additional studies should assess cascading ef-
fects on different agricultural systems and landscapes 
managements across the Neotropical region. In par-
ticular, understanding how the spatial scale of anal-
ysis, either at local or landscape units, influences the 
effect of bats on herbivory is central to the design of 
effective conservation strategies (Librán-Embid et al. 
2017).

Importantly, exclosure experiments were the 
main study design performed to test the impact of 
bats on pest control. Nonetheless, some biases can 
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potentially underestimate the bat effect on arthropods. 
Firstly, aerial insectivores that capture their prey in 
the air during flight are far from plants assessed in 
the experiment (Maas et al. 2016). Secondly, mesh 
size of exclosures may filter insect species, excluding 
larger insect herbivores (Maas et al. 2016). Thirdly, 
using cages may change environmental conditions 
such as light, temperature, humidity, and wind, af-
fecting leaf features and, either directly or indirectly, 
insect survival. Further studies should analyze these 
potential biases when evaluating bat impact on insect 
predation. Also, variables other than leaf damage that 
are directly related to crop yield, such as fruit set have 
been little measured and are likely to be important, 
especially on crops of economic interests (Fig. 5b). 
In this review, I only found one paper assessing fruit 
production in coffee plantation (Librán-Embid et al. 
2017), hence I consider this variable should comple-
ment the standard measures of leaf damage in future 
research when evaluating this ecological process.

Approaches of ecosystem services provided by 
bats in pest control have stressed substantial econom-
ic savings in agricultural systems, suggesting the fun-
damental role of these mammals as an alternative to 
pesticides that pollute the environment and increase 
costs to human health and economical investment in 
crop management (Cleveland et al. 2006; Boyles et 
al. 2011; Maas et al. 2016). Nevertheless, in the revi-
sion, I only found this approach in the Brazilian free-
tailed bat (T. brasiliensis) (Cleveland et al. 2006) and 
a general estimation on fresh leaves saved per year 
by the action of the gleaning bat M. microtis (Kalka 
& Kalko 2006). It is critical to quantify the econom-
ic and ecological contribution of insectivorous bats 
to Neotropical ecosystems, agroforestry systems, 
plantations, and agricultural lands. However, this is 
a challenging task considering the lack of knowledge 
in the natural history of several species in terms of 
dietary information.

Nutrient cycling
Besides the top-down effects, fecal deposition or 

guano generated by bats may have substantial bot-
tom-up effects on terrestrial ecosystems (Emerson & 
Roak 2007) by influencing vegetation patterns within 
forests (Duchamp et al. 2010). Overall, animals play 
a prime role in nutrient movement on ecosystems 
(Lundberg & Morberg 2003; Doughty et al. 2016). 
Nutrient cycling has been studied mainly on large 
grazing mammals (e.g. ungulates) because of their 

importance on transporting macronutrients across 
several ecosystems and fertilizing nutrient-poor hab-
itats (Lacher et al. 2019). Notwithstanding, bats can 
fertilize trees that are used as roosting sites, increas-
ing nitrogen content in the tree soil and their seeds 
(Voigt et al. 2015). This is probably another type of 
mutualism between plants and bats that needs to be 
disentangled in the Neotropics as has been done in 
other regions. (Grafe et al. 2011).

Bearing in mind that connectivity between com-
munities is sustained by the redistribution of bio-
mass, often by mobile animals that translocate nu-
trients, for example, by consuming food resources in 
one habitat and subsequently urinate and defecate in 
other habitats (Lundberg & Morberg 2003; Emerson 
& Roak 2007), bats are very important mobile links 
considering their high home range and commuting 
distances every night (Bernard & Fenton 2003; Mel-
lo et al. 2008). Since primary production is limited 
by nutrients such as nitrogen and phosphorous (Vi-
tousek & Howarth 1991), bat guano is an essential 
input of nutrients and organic material that is still 
poorly known. Hot spot hypothesis establishes the 
potential effect of large bat colonies in the increase of 
nutrients (hot spot) by defecating within and nearby 
the roost tree (Pierson 1998; Duchamp et al. 2010). It 
should be noted, however, that I only found one pa-
per testing this hypothesis in the Neotropics (Voigt et 
al. 2015). Also, I consider that not only bat guano is a 
source of nutrients but urine, which is understudied.

 Considering the historical reductions in nutrient 
distribution capacity over worldwide (Doughty et 
al. 2016), coupled with the pivotal effects of mobile 
links in nutrient allocation (Lundberg & Morberg 
2003), the study of bat impact on nutrient cycling and 
redistribution in forests may provide not only a better 
understanding of ecosystem dynamics, but also may 
reinforce the idea of bats as natural fertilizers of for-
ests. Hence, I find important to keep examining the 
relationship between soil fertility and trees that host 
bat colonies because is a function that has been large-
ly neglected and is likely to have a considerable ef-
fect on nutrient allocation given the diversity of tree 
hollows used by bats (Kalko et al. 1999; Sampedro 
2008; Garbino & Tavares 2018). In addition, given 
the differences in nutrient concentration of bat guano 
between guilds, one would expect different function-
al consequences depending on the guild (Emerson & 
Roak 2007). Such consequences can be analyzed at 
different scales ranging from changes in invertebrate 
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diversity and food web dynamics in guano piles to 
effects on ecosystem processes such as decomposi-
tion and soil fertilization (Fig. 6b). Stable isotopes 
analysis can be helpful in this kind of study.

In particular, caves are ecosystems where bat 
guano represents a fundamental source of organic 
material from which complex food webs depend on 
(Gnaspini & Trajano 2000). Bat guano can also be 
considered a variable biotope characterized by a mo-
saic of microhabitats that harbor diverse biotic com-
munities ranging from bacteria and fungi decompos-
ers to an extensive set of arthropods and invertebrate 
groups (Ferreira & Martins 1999; Ferreira & Martins 
2007). Since bat guano is an ephemerous but para-
mount resource that sustains the biodiversity of cave 
environments, alteration on bat community structure 
is likely to have profound impacts on invertebrate 
communities (Salgado et al. 2014). Nevertheless, the 
current evidence on the trophic structure of bat guano 
communities is largely biased in Brazilian caves, and 
it is poorly known to what extent bat guano piles are 
relevant for invertebrate communities in other cave 
environments and with another set of bat species. 

Bats with multiple functions
Traditionally, bats have been classified according 

to the principal food item consumed and the gener-
al ecomorphological characteristics as an attempt to 
explain their critical ecosystem roles (Soriano 2000; 
Aguirre et al. 2003). Nonetheless, the increasing 
knowledge of bat ecology has shown that, depending 
on resource availability, physiological constraints, 
and ecological context, bats can include other food 
items into their diets, performing ecological roles 
other than the principal function assigned. For exam-
ple, some species such as Myotis nigricans Schinz, 
1821, and Antrozous pallidus LeConte, 1856, despite 
being considered as strictly insectivores are found 
to be potential seed dispersers (Novaes et al. 2015) 
and pollinators, respectively (Frick et al. 2013). In-
deed, it is surprising that A. pallidus was more effi-
cient as a pollinator than Leptonycteris yerbabuenae 
Martínez and Villa-R., 1940, that is assumed to have 
established a strength mutualism with the columnar 
cactus Pachycereus pringlei (S. Watson) Britton & 
Rose (Frick et al. 2013). Other insectivore-piscivore 
species such as Noctilio albiventris Desmarest, 1818 
include pioneer seeds in their diet during the rainy 
season in Neotropical savannas, thus having the po-

tential to transport and disperse seeds over open ar-
eas (Aranguren et al. 2011). These cases along with 
phytophagous bats that fulfill the double role of seed 
dispersers and pollinators such as L. curasoae Miller, 
1900 (Godínez-Alvarez et al. 2002; Ibarra-Cerdeña 
et al. 2005), L. yerbabuenae (Rojas-Martínez et al. 
2015; Santiago-Hernández et al. 2019), Artibeus 
watsoni Thomas, 1901 (Tschapka 2003; Melo et al. 
2009), and Glossophaga longirostris Miller, 1898 
(Nassar et al. 1997; Soriano & Ruiz 2002) represent 
other examples of bats with multiple functions.

Many of the aforementioned species are relative-
ly well-studied in terms of their natural history, which 
suggests how little we know about species’ autecolo-
gy. If novel roles have been found in these common 
species, to what extent other uncommon species that 
have rarely been subjected to ecological studies can 
contribute to multiple functions?  I believe that nat-
ural history studies can help to enhance our under-
standing of Neotropical bats not only in their basic 
biology of species but in their functionality.

Linking with functional traits
The functional trait-based approach is a reliable 

framework to address studies that better quantify eco-
logical processes (Luck et al. 2012; Castillo-Figueroa 
2018). Since the diversity of functional traits is a key 
predictor of ecosystem resilience (Núñez et al. 2019), 
the effect of human-induced habitat modifications on 
ecological processes can be assessed under this ap-
proach (Castillo-Figueroa and Pérez-Torres 2018). 
Broadly, species contributions to functional roles are 
categorized by the assignments of functional traits, in 
which one critical aspect is to know how traits gov-
ern the function (Lacher et al. 2019).  Even though 
there is not a formal protocol of functional traits for 
bats, the use of this approach could be important to 
establish the linkages between ecosystem function-
ing and bat traits. For instance, morphological and 
physiological traits potentially related to ecologi-
cal functions including gut size, bite force, lingual 
papillae, gut retention time, among others, may be 
useful to understand how ecosystem processes are 
influenced by bat features. This also could explain 
why some species are involved in multiple ecolog-
ical roles. I encourage to increase studies that use 
functional traits when studying ecosystem functions 
performed by bats.
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Conservation implications
To conserve bat-mediated ecological processes is 

urgently needed to mitigate major threats of bats such 
as logging and harvesting plants, habitat conversion 
by agriculture, bat persecution, human intrusions, 
and urban development, just to name a few pressures 
(Frick et al. 2019; Lacher et al. 2019). However, one 
of the main concerns regarding bat conservation is the 
scarcity of information on population status (Frick 
et al. 2019), which is more challenging in the Neo-
tropics since bat species richness is high but, at the 
same time, the support for research and conservation 
planning is limited. Given that several Neotropical 
plant species depend on bats in different ways either in 
pollination (Nassar et al. 1997; Valiente-Banuet et al. 
2004), seed dispersal (Galindo-González et al. 2000; 
Vleut et al. 2015), herbivory reduction (Kalka et al. 
2008; Williams-Guillén et al. 2009; Morrison & Lin-
dell 2012) or even in fertilization (Voigt et al. 2015), 
extirpation of bat species could trigger cascading ex-
tinction effects on ecosystem integrity. For example, 
with population decline or habitat modification that 
hampers bat movement, seed rain to disturbed areas 
is precluded, thus reducing soil seed banks and forest 
regeneration (Cortés-Delgado & Pérez-Torres, 2011; 
Lacher et al. 2019). Moreover, considering bats as 
important mobile links of nutrients (guano), genet-
ic materials (pollen and seeds), and processes (pest 
control), the impacts on bat species may influence 
ecosystem resilience (Lundberg & Morberg 2003), 
exacerbating the effects on environmental changes in 
the Neotropics.

Concluding Remarks
Bats are imperative to ecosystem functioning in 

the Neotropics. Significant roles in pollination, seed 
dispersal, arthropod suppression, and nutrient cycling 
have shown the importance of bats in ecological pro-
cesses, which has resulted in the increasing studies in 
the region over the past two decades. Despite this re-
markable increase I found, however, the large bias in 
studies across lowland ecoregions and biomes, high-
lighting the importance of performing investigations 
in highland biomes such as Montane Grasslands and 
Shrublands. There is a need to complement the cur-
rent scientific evidence with the inclusion of research 
that assesses other bat and plant species as well as 
other types of appraisals of the functions such as the 
trait-based approach. The contribution of bats to eco-
logical processes may depend on resource availabili-

ty, physiological constraints, and ecological context, 
but this has been largely overlooked. It is important 
to consider that bats can be linked to more than one 
ecological role. Finally, conservation of New world 
bats is critical to maintain the functionality of eco-
systems but, with the advancing threats that bats are 
facing combined with the lack of knowledge, pro-
found impacts are expected on Neotropical ecosys-
tems health.
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