

MONITORING ROADKILL IN AMRAVATI, INDIA: A CITIZEN SCIENCE PROJECT

Mandar Pawgi^{1*}, Yogesh Joshi^{1*}, Sawan Deshmukh², Anoop Purohit³, Kedar Pawgi¹, Reuven Yosef⁴

¹Koola Wild Foundation, Munshi Complex, Ambapeth, Amravati 44601, India. ²Center for Animal Rescue and Study (CARS), "Abhiruchi", 31 Saurabh Colony, Kathora Naka VMV Road, Amravati 444604, India

³Independent conservationist, Kranti Colony, Behind Darga, Akoli Road, Amravati 444607, India. ⁴Ben Gurion University of the Negev, Eilat Campus, P. O. Box 272, Eilat 8810201, Israel. ORCID 0000-0003-4331-9866

*Corresponding Authors: Mandar Pawgi (mandarpawgi@gmail.com), Dr. Yogesh Joshi (joshiyogesh26@ gmail.com)

Abstract.

Roadkill is a global conservation problem, and India is no exception. Animal-vehicle accidents on roads are a leading cause of death for a variety of animal species both within and near protected areas. However, documentation of roadkills remains sparse due to field constraints and the absence of dedicated IT platforms. The lack of documentation and unavailability of traffic fatality data pose major limitations for government agencies and conservationists. In 2018, as part of a citizen science program to collect opportunistic data, we launched a free "ArRM" mobile app and website, <u>www.arrm.org.in</u>. In 2022, we conducted a systematic random survey of 10,500 km covering the entire road network in Amravati district, Maharashtra, India. Through citizen science initiatives and our concerted efforts, we documented 364 roadkills, comprising 336 wild species and 28 domestic species, representing a diverse array of 70 species. Our project aims to overcome the non-documentation of roadkills in the Amravati district and provide data on an interactive map that is freely accessible in the public domain. This will help wildlife authorities, conservationists, and policymakers plan or implement effective measures to reduce the number of wildlife killed on roads.

Key words: Roadkill, wildlife, citizen science, ArRM, Amravati

1. INTRODUCTION

Linear infrastructures (roads, power lines, water canals) are known to impact wildlife in various manners (population degradation, genetic isolation), the most obvious of which is animal-vehicular accidents (Ascensão et al. 2019). In and around protected areas, many endangered species are at risk from vehicular traffic. Roadkills are estimated to have a more pronounced impact on the mortality rates of various species compared to poaching (Ontiveros 2022).

India has a road network of over 600,000 km, making it the second largest in the world. There are also around three million registered vehicles in India. In 2021, the number of traffic accidents increased by an average of 12.6% compared to the previous year, 2020 (MoRTH 2022). However, all critical statistics available relate only to human deaths. Data on animal deaths are sporadic and regionally (Baskaran and Boominathan 2010, Behera and Borah 2010, Behera et al., 2021, Bhupathy et al. 2011, Jeganathan et al., 2018, Sur et al. 2018) or taxonomically limited (amphibians – Seshadri et al., 2009; birds – Siva and Neelnarayanan 2020). Additionally, there is a significant information gap regarding wildlife mortality, further exacerbating the lack of understanding in this area.

We aim to record and map roadkills across the entire road network in Amravati district (area 12,235 km²), Maharashtra state, India. While similar studies have been undertaken in India, this stands out as the first to comprehensively investigate roadkill incidents across various road sections at the district level. We wanted to analyse essential data such as numbers, seasonal variations, species, and to identify roadkill hotspots (Hadad et al. 2023). However, we focus on bringing all this data into an interactive mobile application and associated website and collecting as much data as possible in the long term. The main aim of this application and website is to build a database for collective documentation of roadkills and make it freely accessible for public use (cf. Vercayie and Herremans 2015). Ordinary citizens, political institutions, Forest Department employees, academicians, wildlife researchers, and all concerned people can contribute and benefit from the multi-featured mobile application that captures individual observations, geotags, and photos of roadkilled wildlife. All these and other information are also available on a separate web portal (www.arrm.org.in) for convenience. The data encompassed four vertebrate groups: mammals, birds, reptiles, and amphibians, spanning from July 2018 to December 2022.

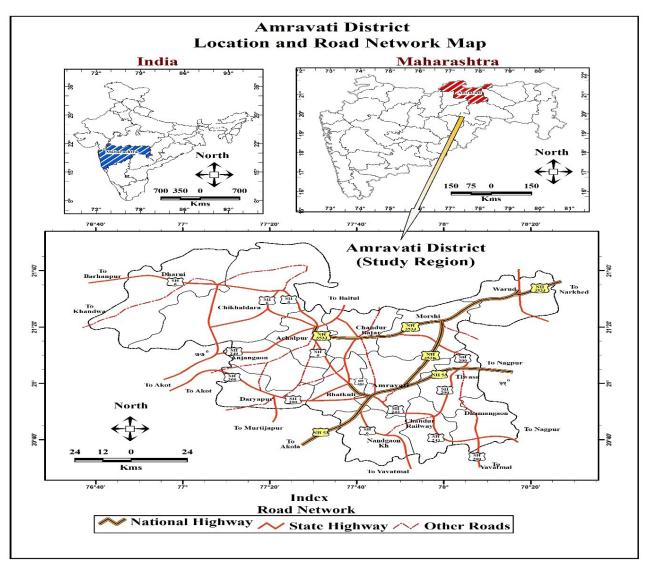


Figure 1. Amravati district and a major portion of the road network map of the study area (map by Dr. Sawan Deshmukh). NH denotes the National highway, and SH denotes the State highway.

2. STUDY AREA

Amravati district (21.1162°N, 77.6536°E) is in the northeast part of Maharashtra. The district is characterized by the Gavilgarh hills, a part of the Satpura range situated in the northern region. These hills vary in elevation from 350 m to 1178 m above mean sea level. This district has an excellent network of rural district roads, state highways, and national highways. (Fig. 1).

Notably, Amravati district is home to several wellknown protected areas, including the Melghat Tiger Reserve, one of the first eight tiger reserves declared in 1973. Due to its excellent network of protected areas and lakes, the district also serves as a hotspot for migratory birds. Numerous rare and important species of mammals, birds, reptiles, bats, spiders, and amphibians have been recorded in Amravati district, further highlighting its' ecological importance (e.g., Shelekar and Jadhao 2020, Mahadik et al. 2020) and making it one of the most biodiverse districts in the State.

3. Methods

Through popular and social media, citizens were encouraged to install the ArRM (Application for rescue and Roadkill Mapping) on their smartphones and to register roadkills. The opportunistic survey was conducted by 50 citizen science volunteers who systematically recorded roadkills while driving their regular routes throughout the study period.

In addition, we conducted 264 random surveys between December 2021 and July 2022 and collected 116 roadkilled wildlife species from the entire road network of Amravati district, spanning approximately 10,500 km (Table 1).

We rode the motorcycle at a constant, slow speed (> 20 km/h), followed by fixed times (in winter from 5 to 8 in the morning and evening and 6 to 9 a.m. in summer). We recorded all roadkills within 15 meters of the major roads and highways throughout the study area. We identified each encountered roadkill at the species level. Vital

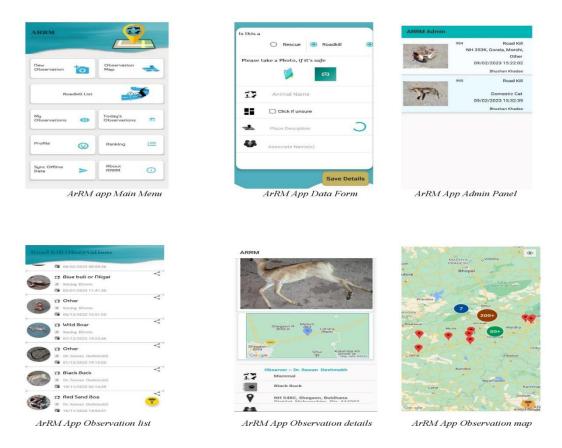


Figure 2. Screenshots of menus and features of the mobile application ArRM and www.arrm.org.in website.

information including photographs and geo-locations were captured using the mobile application, which was then updated in the application database and made accessible on the website www.arrm.org.in (Fig. 2). This interactive website is also freely accessible to the general-public or individuals interested in utilizing the data.

We have created an admin version of the ArRM mobile app to avoid duplicate records or double counting. In this version, observations are either approved or rejected. The data set is subsequently uploaded to the mobile application and website. Moreover, any misidentified species are rectified and crosschecked against database entries to ensure accuracy.

We emphasized and encouraged participants to record only fresh carcasses. We labelled roadkills that were difficult to identify or were in poor condition as "Other/Unidentified." After recording, all carcasses were carefully removed from the site to avoid double counting and mitigate the risk of scavengers being harmed at the location. Carcasses were identified with the help of field guides such as Menon (2014) for mammals, Grimmet and Inskipp (2011) for birds, Whitaker, and Captain (2004) for reptiles, and Das (2002) for amphibians, as well as various websites.

4. RESULTS

We only focussed on wild species collected during our study. With 210 contributions from citizen scientists (2018-2022) and 116 through our efforts (Dec 2021-Jul 2022), while ten samples could not be identified due to their poor condition, a total of 336 individual roadkills were registered (Table 1).

Month	Distance sampled	Roadkills				Monthly Total	No. Roadkills found	
	(Km)	Mammal	Reptile	Bird	Amphibian			
Dec-21	1,293.59	5	3	12	0	20	18	
Jan-22	1,887.37	5	3	4	0	12	38	
Feb-22	1,637.00	3	1	7	0	11	35	
Mar-22	1,284.99	2	2	1	0	5	33	
Apr-22	755.66	2	1	0	0	3	16	
May-22	917.66	5	4	1	1	11	13	
Jun-22	1,267.42	5	9	4	0	18	17	
Jul-22	1,427.44	4	28	4	0	36	21	
		31	51	33	1			
	10,471.13	116				116	191	

 Table 1. Monthly roadkill data of surveys by the Koola Wild Foundation, December 2021-July 2022.

 Table 2. List of roadkilled species on roads in Amravati District.

KWF denotes data collected by the Koola Wild Foundation and CS by Citizen Science.

Family	Common Name	Scientific Name	IUCN status	Road	Roadkilled	
	Mamm	als		KWF	CS	
Hyaenidae	Striped Hyena	Hyaena hyaena	NT	00	01	
Carnivora	Indian Fox	Vulpes bengalensis	LC	00	01	
Carnivora	Indian Golden Jackal	Canis aureus	LC	00	12	
Felidae	Jungle Cat	Felis chaus	LC	04	04	
Hystricidae	Indian-Crested Porcupine	Hystrix indica	LC	01	00	
Bovidae	Blackbuck	Antilope cervicapra	LC	01	07	
Bovidae	Nilgai	Boselaphus tragocamelus	LC	01	03	
Viverridae	Small Indian Civet	Viverricula indica	LC	03	02	
Suidae	Wild Pig	Sus scrofa	LC	01	05	
Herpestidae	Indian Grey Mongoose	Urva edwardsii	LC	03	03	
Sciuridae	Common-Palm Squirrel	Funambulus palmarum	LC	09	26	
Chiroptera	Bat spp			01	00	
Muridae	Indian Gerbil	Tatera indica	LC	05	01	
Lagomorpha	Indian Hare	Lepus nigricollis	LC	01	01	
Cercopithecidae	Indian Gray Langur	Semnopithecus entellus	LC	00	05	
•		1		30	71	
			Total	1	01	
	Repti	les				
Trionychidae	Indian softshell turtle	Nilssonia gangetica	EN	00	01	
Varanidae	Bengal Monitor Lizard	Varanus bengalensis	NT	00	06	
Pythoniade	Indian Rock Python	Python molurus	NT	00	02	
Boidae	Red sand Boa	Eryx johnii	NT	00	01	
Boidae	Common Sand Boa	Eryx conicus	NT	00	01	
Elapidae	Indian Spectacled Cobra	Naja naja	LC	02	04	
Elapidae	Common Krait	Bungarus caeruleus	LC	03	04	
Uropeltidae	Elliot's shieldtail	Uropeltis ellioti	LC	00	01	
Viperidae	Russel's Viper	Daboia russelii	LC	05	07	
Viperidae	Saw-scaled Viper	Echis carinatus	LC	03	02	
Colubride	Indian Egg Eater	Elachistodon westermanni	LC	01	06	
Colubride	Indian Smooth Snake	Wallophis brachyura	LC	00	01	
Colubridae	Banded Kukri	Oligodon arnensis	LC	08	03	
Colubridae	Banded Racer	Argyrogena fasciolata	LC	01	03	
Colubridae	Green Keelback	Macropisthodon plumbicolor	LC	07	03	
Colubridae	Checkered Keelback	Xenochrophis piscator	LC	04	07	
Colubridae	Striped Keelback	Amphiesma stolatum	LC	01	03	
Colubridae	Common Trinket	Coelognathus helena	LC	06	16	
Colubridae	Common Cat Snake	Boiga trigonata	LC	01	00	
Colubridae Common Wolf Snake		Lycodon aulicus	LC	04	03	
Colubridae	Barred wolf Snake	Lycodon striatus	LC	03	01	
Colubridae	Indian Rat Snake	Ptvas mucosa	LC	01	02	

Psammophiidae	Stout sand Snake	Psammophis longifrons	LC	00	02	
Agamidae	Indian Garden Lizard	Calotes versicolor	LC	04	01	
Typhlopidae	Beaked-worm Snake	Grypotyphlops acutus	LC	00	01	
Other/Unidentified				02	01	
				56	82	
			Total		38	
	Bird	S	1000			
Accipitridae	Shikra	Accipiter badius	LC	01	00	
Burhinidae	Indian Stone Curlew	Burhinus indicus	LC	00	01	
Picidae	Black-rumped Flameback	Dinopium benghalense	LC	00	01	
Rallidae	White Breasted Waterhen	Amaurornis phoenicurus	LC	00	01	
Phasianidae	Jungle Bush Quail	Perdicula asiatica	LC	01	00	
Dicruridae	Black Drongo	Dicrurus macrocercus	LC	01	00	
Paradoxornithidae	Yellow-eyed Babbler	Chrysomma sinense	LC	03	03	
Leiothrichidae	Common Babbler	Árgya caudata	LC	00	01	
Leiothrichidae			LC	01	01	
Caprimulgidae	Indian Nightjar	Caprimulgus asiaticus	LC	04	03	
Tytonidae	Barn Owl	Tyto alba	LC	01	03	
Strigidae	Spotted Owlet	Athene brama	LC	00	01	
Psittaculidae	Rose-ringed Parakeet	Psittacula krameri	LC	00	01	
Cuculidae	Greater Coucal	Centropus sinensis	LC	08	13	
Cuculidae	Common Hawk Cuckoo	Hierococcvx varius	LC	00	01	
Cuculidae	Asian Koel	Eudvnamvs scolopaceus	LC	02	00	
Cuculidae	Jacobin/Pied Cuckoo	Clamator jacobinus	LC	01	00	
Alcedinidae	White-throated kingfisher	Halcvon smvrnensis	LC	00	03	
Ardeidae	Great Egret	Ardea alba	LC	01	00	
Coraciidae	Indian Roller	Coracias benghalensis	LC	00	05	
Pvcnonotidae	Red-vented Bulbul	Pvcnonotus cafer	LC	06	11	
Ćolumbidae	Rock pigeon	Columba livia	LC	00	01	
Columbidae	Spotted Dove	Spilopelia chinensis	LC	00	02	
Sturnidae	Common Myna	Acridotheres tristis	LC	00	01	
Sturnidae	Brahminy starling	Sturnia pagodarum	LC	00	01	
Muscicapidae	Oriental-Magpie Robin	Copsychus saularis	LC	01	00	
Passeridae	House Sparrow	Passer domesticus	LC	00	01	
Corvidae	House Crow	Corvus splendens	LC	00	01	
Other/Unidentified		1		02	05	
				33	61	
			Total		94	
	Amphik					
Bufonidae	Common Indian Toad	Duttaphrynus melanostictus	LC	00	02	
Dicroglossidae	Indian Bullfrog	Hoplobatrachus Tigerinus	LC	01	00	
		-		01	02	
			Total		03	
	Grand Total				336	

The samples represent 70 wild species, including 15 mammals, 25 reptiles, 28 birds, and two amphibians (Table 2). Reptiles were the most affected group at 138 (40.8%), followed by mammals at 101 (30.1%), birds at 94 (28.0%), and amphibians were the least affected (0.9%). (Table 2) In addition, comparing the total number of observations reported by citizen science compared to our surveys shows that the former contributed considerably to the data set. During the study period, citizens reported 216 (64.3%) of the roadkill as compared to 120 (35.7%) we found on our surveys (Table 2).

The highest number of roadkills was observed in July 2022, whereas no roadkills were recorded during multiple months spanning from 2018 and 2022 (ESM 2). We also evaluated the seasonal variations for 2018-22 and found that the highest roadkill rate occurred from June to September during the peak monsoon season (ESM 2). The fewest casualties were recorded in the late winter and early summer months, specifically from December to March (ESM 2). During this study, we identified the roadkill hotspots in Amravati district and found that NH353K

(14.88%), NH353J (6.84%), and SH243 (15.47%) recorded the highest number of roadkills. (Fig 3).

5. **Discussion**

This study shows a high mortality rate in mammals, unlike other studies conducted in India (Seshadri et al., 2009; Baskaran, 2010; Somotiya et al., 2022). One possible explanation is that previous studies were conducted in regions characterized by high average rainfall, such as northeast India or the Western Ghats. The central Indian landscape is predominantly a dry habitat with fewer water bodies near roads. The roadkill of listed species (Striped Hyena, Small Indian Civet, Indian Fox, Indian Golden Jackal; Table 2, ESM 1) is of conservation concern.

In recent years, there has been a sharp increase in the population of herbivores such as nilgai (*Boselaphus tragocamelus*), blackbuck (*Antilope cervicapra*), and wild pigs (*Sus scorfa*) in rural areas (Narasimmarajan et al. 2014). On both sides of the roads, particularly in agricultural fields, herds of ungulates are frequently observed crossing the roads, thereby heightening the risk of roadkill incidents. This is similar to the results in Lithuania, where an increase in roe deer (*Capreolus capreolus*) led to an increase in the number involved in animal-vehicular accidents, especially during the anthropopause due to the COVID-19 pandemic (Balciauskas et al. 2023).

Herpetofauna often appears on roads on cold days because tar roads are much warmer than surrounding areas. In winter, they must sunbathe early in the morning and seek a warmer place, which leads to them often choosing roads. During the monsoon season, particularly during the pre-monsoon and the onset of the first rains, snakes emerge from their burrows and disperse in various directions. This dispersal increases their vulnerability to vehicular traffic. Our records include the endangered Indian softshell turtle, Bengal monitor lizard, red sand Boa, common sand boa, and the rare Elliot's shield-tail (Table 2, ESM 1).

Our study area has water pipes running parallel to at least three major roads. During hot, dry summers, birds cross the road to drink water from leaks in these pipelines (MP, pers. obs.). On early winter mornings, birds caught flies, insects, and other invertebrates after the fresh sunlight hit the surface. The seasonal blooming of flowers and fruits on trees also causes many species to fly across roads at increased frequencies, resulting in increased roadkills. During the breeding season and after the eggs hatch, their foraging in all directions increases significantly (MP, pers. obs.), resulting in a higher risk of vehicle collisions. We have recorded Indian Stone Curlew (*Burhinus indicus*), Indian Nightjar (*Caprimulgus asiaticus*), Jungle Bush Quail (*Perdicula asiatica*), Barn Owl (*Tyto alba*) amongst others (ESM 1).

Most studies of roadkills in India show the highest mortality rate in amphibians (Ganesh et al., 2007, Seshadri et al., 2009, Baskaran and Boominathan 2010, Bhupathy et al., 2011, Santhoshkumar et al., 2017, Jeganathan et al., 2018, Sur et al., 2022) because they move slowly. Additionally, amphibians tend to live and breed near wet areas such as ponds, streams, and water bodies, making roads near these places more prone to roadkills. Surprisingly, there were only three records of amphibians during our study. Citizen scientists may have missed amphibian carcasses due to their small size. Also, these carcasses disintegrate after an accident, making them difficult to identify. More careful sampling is required to improve amphibian records, particularly during the monsoon season. We are also considering conducting walking or bicycle surveys to improve amphibian data.

During this study, we identified the roadkill hotspots (Fig 3) in Amravati district and found that NH353K (14.88%), NH353J (6.84%), and SH243 (15.47%) recorded the highest number of roadkills. All these sections pass close to forest reserves, a dam, and grassland areas, as also reported by Ontiveros (2022). Linear structures near nature reserves or resources required by wildlife (food, water) are especially prone to wildlife-vehicle accidents

and require mitigation and education of drivers in these sections (da Rosa and Bager 2012). Mitigation can be in the form of speed-breakers or other structural barriers that prevent speeding and signs depicting the dangers to and from wildlife along specific highways. This is especially relevant to sections identified as roadkill hotspots.

In our study, citizen science provided significantly more data than our surveys and highlighted the importance of involving as many laypeople as possible in similar studies (Yosef and Tryjanowski 2022). Vercayie and Herremans (2015) state that citizen-provided roadkill data is critical to identifying methods for safer transportation and mitigating traffic fatality hotspots. Hadad et al. (2023) show how species-specific studies, on striped hyenas in their case, can contribute to a large-scale, nationwide assessment of roadkill hotspots.

6. Conclusion

Several parts of India have faced significant challenges in providing basic infrastructure facilities. The government's recent unprecedented push to address these challenges has created a major opportunity for linear infrastructure development. While a society's economic progress can be both a blessing and a curse for nature and wildlife, the expanded highway network and massive increase in vehicle purchases will pose a more significant threat in the future. Policymakers and implementers must plan future projects, considering a sustainable ecological framework. As infrastructure development projects progress, it is imperative that factors such as avoidance, prevention, and mitigation measures are accorded greater significance than ever before in the design and planning of linear projects. It is also crucial to regularly update and maintain roadkill data in and around various protected areas. Web-based reporting of wildlife observations, including wildlife-vehicle collisions, is a rapidly growing data source that helps understand the impacts of roads on wildlife and the effectiveness of mitigation measures (Fraser Shilling et al., 2015). Long-term collection of roadkill data can reliably answer broader ecological questions such as demographics, sex ratios, specieslevel population, and area occupancy. Collaborating with scientists from allied fields like climate change and environment impact assessment in roadkill studies could offer a comprehensive understanding of the challenges and solutions in roadkill prevention. Systematic documentation through rigorous sampling and citizen science, as well as the continuous availability of free roadkill data in public areas via dedicated IT platforms, will be crucial elements in all road ecology and wildlife protection activities.

ACKNOWLEDGMENTS

This study received no grants or funding. We thank all our citizen science contributors who helped gather the data. We also thank Sukrut Chaudhari for conducting the roadkill sampling in the study area. The dedicated rescuers team from the NGO CARS helped us immensely with data collection. Finally, we thank all the anonymous resource persons whose support and collaboration made this study possible.

DECLARATIONS

Funding: No funding was received for this research. Conflicts of interest/Competing interests: The authors declare that they have no conflict of interest. Availability of data and material: The updated datasets generated during and/or analysed during the current study are available from the website www.arrm.org.in. Ethics approval: No permits required. Consent to participate: Agreed by all authors. Consent for publication: Agreed by all authors. Authors' contributions: MP-conceptualisation; MP, YJ, RY – writing; MP, YJ, SD, AP, KP – planning, implementation; MP, YJ, RY– supervision, quality control, writing, analysis.

References

- Annual report 'Road accidents in India 2021 -Ministry of Road Transport and Highways (MoRTH) https://morth.nic.in/sites/default/files/RA_2021_ Compressed.pdf)
- Ascensão, F., A. Kindel, F. Z. Teixeira, R. Barrientos, M. D'Amico, L. Borda-de-Água and H. M. Pereira. 2019. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Global Ecology and Conservation 19:e00661. https://doi. org/10.1016/j.gecco.2019.e00661.
- Balciauskas, L., A. Kucas and L. Balciauskiene. 2023. Mammal roadkills in Lithuanian urban areas: A 15year study. Animals 13:3272. https://doi.org/10.3390/ ani13203272
- Basic road statistics of India, Ministry of Road Transport and Highways https://morth.nic.in/basic-roadstatistic-india
- Baskaran, N., and D. Boominathan. 2010. Road kill of animals by highway traffic in the tropical forests of Mudumalai Tiger Reserve, southern India. Journal of Threatened Taxa 2:753–759. https://doi.org/10.11609/ JoTT.o2101.753-9
- Behera, S., and J. Borah. 2010. Mammal mortality due to road vehicles in Nagarjunasagar-Srisailam Tiger Reserve, Andhra Pradesh, India. Mammalia 74:427– 430. https://doi.org/10.1515/MAMM.2010.059
- Behera, S., S. Nayak, P. K. Dash and S. K. Swain. 2021. Wildlife roadkill in Odisha, India: the threat to biodiversity needs to be addressed. Arxius de Miscellània Zoològica 19:151–159, https://doi. org/10.32800/amz.2021.19.0151
- Bila, M., F. Heiglb, Z. Janoškac, D. Vercayied and S. E. Perkinse. 2020. Benefits and challenges of

collaborating with volunteers: Examples from National Wildlife Roadkill Reporting Systems in Europe. Journal for Nature Conservation 54:125798. https://doi.org/10.1016/j.jnc.2020.125798

- Bhupathy, S., G. Srinivas, N.S. Kumar, T. Karthik and A. Madhivanan. 2011. Herpetofaunal mortality due to vehicular traffic in the Western Ghats, India: a case study. Herpetotropicos 5:119–126.
- Das, I. 2002. An Introduction to the Amphibians and Reptiles of Tropical Asia. Natural History Publications, Borneo. 207 pp.
- Da Rosa, C. A., and A. Bager. 2012. Seasonality and habitat types affect roadkill of neotropical birds. Journal of Environmental Management 97:1.5. doi: 10.1016/j.jenvman.2011.11.004
- Grimmett, R., C. Inskipp, and T. Inskipp, 2011. Birds of the Indian Subcontinent, Helm Field Guides.
- Hadad, E., J. Z. Kosicki, and R. Yosef. 2023. Spatial modelling of road collisions of Striped Hyena (*Hyaena hyaena*) in Israel. Ecological Research 38:664-675. doi:10.1111/1440-1703.12399.
- Hetman, M., Kubicka, A. M., Sparks, T. H., & Tryjanowski, P. (2019). Road kills of non-human primates: a global view using a different type of data. *Mammal Review*, 49(3), 276-283.
- Jeganathan, P., D. Mudappa, M.A. Kumar and T. S. Raman. 2018. Seasonal variation in wildlife roadkills in plantations and tropical rainforest in the Anamalai Hills, Western Ghats, India. Current Science 114:619–626. DOI: 10.18520/cs/v114/i03/619-626
- Mahadik, S. B., D. G. Godase, S. M. Patil, S. V. Pisal, P. S. Jadhav and S. B. Warake. 2020. Reanalysis of the impact of urbanization on bird species diversity around Amravati. Int. J. Agricult. Stat. Sci. 16:509-517.
- Morelli, F., Beim, M., Jerzak, L., Jones, D., & Tryjanowski, P. (2014). Can roads, railways and related structures have positive effects on birds?– A review. Transportation Research Part D: Transport and Environment, 30, 21-31.
- Ministry of Road Transport and Highways. 2022. Year End Review. https://pib.gov.in/PressReleasePage. aspx?PRID=1888480
- Narasimmarajan, K., S. Mahato, and A. Parida. 2014. Population density and biomass of the wild prey species in a tropical deciduous forest, Central India. Taprobanica 6:1-6. DOI:10.4038/TAPRO. V6I1.7053Ontiveros, Y., F. M. Cappa, N. Andino, C. M. Campos, C. E. Borghi and S. M. Giannoni. 2022. Mammal and bird diversity in a system of protected areas in Argentina. Biodiversity 23:61-71. https://doi. org/10.1080/14888386.2022.2099463
- Raman, T. S. 2011. Framing ecologically sound policy on linear intrusions affecting wildlife habitats. Nature Conservation Foundation, Mysuru, India. https://

www.conservationindia.org/resources/framingecologically-sound-policy-on-linear-intrusionsaffecting-wildlife-habitats

- Saarthi dashboard, Ministry of Road Transport and Highways https://sarathi.parivahan.gov.in/ SarathiReport/DashBoardGr.do
- Santos, S., Grilo, C., Shilling, F., Bhardwaj, M., Papp, C. R. 2022. Ecological solutions for linear infrastructure networks: The key to green infrastructure development. Nature Conservation 47:1-8. https:// doi.org/10.3897/natureconservation.47.81795
- Schwartz, A. L. W., Shilling, F. M., and S. E. Perkins. 2020. The value of monitoring wildlife roadkill. European Journal of Wildlife Research 66:18. https:// doi.org/10.1007/s10344-019-1357-4
- Seshadri, K. S., A. Yadev and K. V. Gururaja. 2009. Road kills of amphibians in different land use areas from Sharavathi River basin, central Western Ghats India. Journal of Threatened Taxa 1: 549–552. https://doi. org/10.11609/JoTT.o2148.549-52.
- Shelekar, A., and R. G. Jadhao. 2020. Study of avifaunal diversity in and around Mandwa Lake Near Dharni (Melghat) Tahsil, District Amravati (M.S), India. Int. J. of Life Sciences 8:199-204.
- Shilling, F., S. E. Perkins and W. Collinson. 2015. Wildlife/ roadkill observation and reporting systems, Chapter 62 In Handbook of Road Ecology (R. van der Ree, D. J. Smith, S. C. Grilo, eds.). https://onlinelibrary.wiley. com/doi/abs/10.1002/9781118568170.ch62
- Siva, T., and P. Neelanarayanan. 2020. Impact of vehicular traffic on birds in Tiruchirappalli District, Tamil Nadu,

India. Journal of Threatened Taxa 12:16352–16356. https://doi.org/10.11609/jott.5532.12.10.16352-16356

- Sur, S., P. K. Saikia and M. K. Saikia. 2022. Speed thrills but kills: A case study on seasonal variation in roadkill mortality on National Highway 715 (new) in Kaziranga-Karbi Anglong Landscape, Assam, India. Nature Conservation 47:87-104. https://doi. org/10.3897/natureconservation.47.73036
- Vercayie, D., and M. Herremans. 2015. Citizen science and smartphones take roadkill monitoring to the next level. Nature Conservation 11:29-40. http://dx.doi. org/10.3897/natureconservation.11.4439
- Vivek, M. 2014. Indian Mammals, A Field Guide. Hachette India Publications. 528 pp.
- Vaahan Parivahan dashboard, Indian Ministry of Road Transport and Highways https://vahan.parivahan.gov. in/vahan4dashboard/
- Waetjen, D. P., and F. M. Shilling. 2017. Large extent volunteer roadkill and wildlife observation systems as sources of reliable data. Frontiers in Ecology and Evolution 5:89. 10.3389/fevo.2017.00089
- Whitaker, R., and A. Captain. 2004. Snakes of India The Field Guide, Draco Books. 495 pp.
- Wuczyński, A., Kustusch, K., Stolarz, P., Wuczyński, M., & Morelli, F. Patterns of Wildlife-Vehicle Collisions in Poland: A Cross-Taxonomic Analysis of a Nationwide Citizen Science Dataset. Available at SSRN 4733401.
- Yosef, R., and P. Tryjanowski. 2022. Citizen science for future generations. Frontiers in Ecology and Evolution 10:847461. https://doi.org/10.3389/fevo.2022.847461

Electronic Supplemental Material

ESM 1. Examples of wildlife Roadkills during 2018-2022.

<u>Mammals</u>

Striped Hyena

Hyaena hyaena

Blackbuck

Antilope cervicapra

Nilgai

Boselaphus tragocamelus

Indian Fox

Vulpes bengalensis

Canis aureus

Small Indian Civet

Viverricula indica

<u>Reptiles</u>

Indian Soft-shell Turtle

Nilssonia gangetica

Stout sand Snake Psammophis longifrons

Elachistodon westermanni

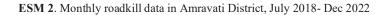
Red sand Boa

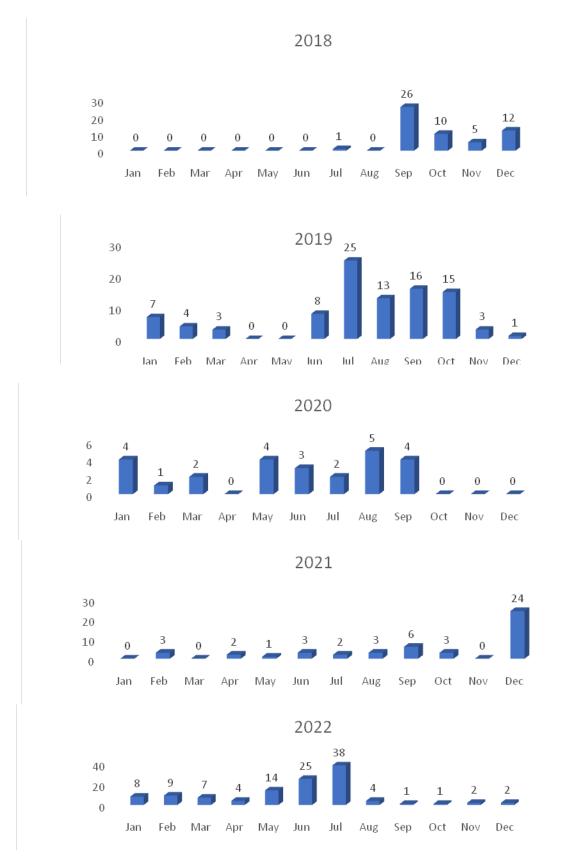
<u>Birds</u>

Indian Stone Curlew

Burhinus indicus

Caprimulgus asiaticus




Jungle Bush Quail

Barn Owl

Tyto alba

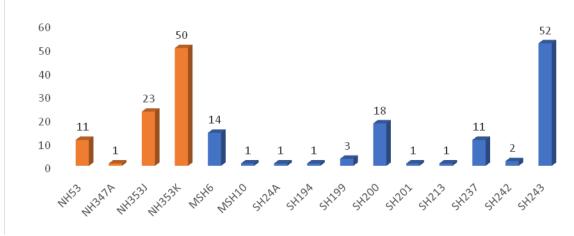


Figure 3: Highways registering highest roadkills during 2018-2022. NH denotes National Highway, SH State Highway.