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Abstract. 
Individual-based model of the dynamics of population with non-overlapping generation and explicitly introduced 

resources which are unequal partitioned  between competing individuals is analysed. It is investigated how individual 
variability in assimilation of different kinds of resources influences population dynamics. Following kinds of resources 
are considered: unlimited resources with linear or exponential growth and limited resources growing logistically or with 
seasonal dynamics. When resources are unlimited population dynamics exhibits oscillations of number of individuals 
and resources which sooner or later end in extinction of the population. An increase of individual variability increases 
extinction time. Population dynamics is different when resources growth is limited. Number of individuals in the popula-
tion initially increases until a certain level is reached, then fluctuates around that level. However, still greater individual 
variability guarantees greater persistence of the population, especially in rich environments.

Key words: individual-based model, individual variability, population dynamics, unlimited resource growth, limited 
resource growth

1. Introduction
 In the single population dynamics models considered 

in classical theoretical ecology, the resources used by in-
dividuals do not explicitly exist in the equations (Maynard 
Smith 1974, May 1976, Pielou 1977, Wissel 1989, Mur-
ray 1990). Explicitly, resources do exist in the Tilman’s 
model (Tilman 1977, 1982), which is a system of differ-
ential equations describing changes in species density and 
amount of resources constructed according to the princi-
ples of classical theoretical ecology. This is essentially a 
model of the laboratory culture of plankton organisms. 
Most often, however, the effect of resources on population 
dynamics is implicit in the density dependence of repro-
duction and mortality (Bazykin 1985, Begon & Mortim-
er 1996). Classical models have shaped ecologists’ ideas 
about the patterns of dynamics of ecological systems. In 
the case of a single population, this is the type of popula-
tion regulation that is represented by solutions of the logis-
tic equation (Nicholson  1933, 1958, Petrusewicz 1978).

These types of models are called black-box models by 
Kalmykov & Kalmykov (2015, 2024) and distinguished 
from white-box models. Black-box models are those 
whose mathematical structure and properties of the solu-
tions of the model equations are completely understood, 
while the biological interpretation is not clear. There can 
be a great deal of doubt as to what biological situation 
these models describe. In contrast, white-box models - 
most often individual-based models - are distinguished by 
the fact that they address a specific biological situation in 
addition to the understandable mathematical structure of 
the algorithm.

Including resources explicitly in a single population 
dynamics model involves resolving two issues. First, the 
nature of the resource dynamics has to be decided. Sec-
ondly, how these resources are shared between competi-
tors. Few, but very relevant from this point of view, studies 
indicate that resources are partitioned between competing 
individuals unequally (Yamagishi 1969, Łomnicki 1988, 
Weiner 1990, Jobling 1993, Nakano 1995, Wyszomirski 
& Weiner 2009,Wyszomirski et al. 1999)). The aim of this 
work is to show how the number dynamics of a single pop-
ulation depends on the nature of resource dynamics and 
on the degree of individual variability in resource parti-
tioning. The author also hopes to find in this way stronger 
and more biological justifications for classical patterns of 
single population dynamics.                                                                                                                         

To meet the requirements for white-box models, an 
individual-based model of a single population will be an-
alyzed. The individuals represent a parthenogenetic spe-
cies. The life cycle of individuals in this population begins 
with the larval stage. The larvae grow using the resources 
available in the environment. There is global and scramble 
competition for these resources between larvae (Nichol-
son 1954): each individual competes with all other indi-
viduals in the population by using the common resources. 
As stated earlier, this leads to uneven resource partitioning 
among competitors. The larvae complete their growth pe-
riod at the same time, develop into adults and lay eggs 
from which the next generation starts. The adults do not 
consume the resources and die after laying eggs.

Among other, resources with discontinuous dynamics 
will be considered. At the beginning of each generation of 
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larvae, a portion of the resource is available and later eaten 
by individuals. At the end of a generation, the resources 
that have not been used do not pass to the next generation, 
but there is a new portion, the same as before, exploited by 
the next generation. This could be a model of the dynam-
ics of annual, herbivorous insects using plant resources 
with seasonal dynamics (for example, a temperate decid-
uous forest). If the resources have continuous dynamics, 
i.e. the amount that remains after the death of adults is 
the initial resource for the next generation of larvae, and 
the unexploited resources are logistically increasing, this 
will be a model of the dynamics of annual, herbivorous 
insects in an environment without seasonal dynamics (e.g. 
temperate zone coniferous forest or tropical forest). In 
both of these interpretations, we assume that there is no 
migration of insects between neighboring trees. A version 
of the model with migration would allow simulations of 
outbreaks of forest insects (Uchmański 2019, 2024). And 
finally, a version of the model with continuous resources 
that, unexploited, grow linearly or exponentially will be 
analyzed. This could be models of the dynamics of herbiv-
orous plankton in a non-seasonal aquatic environment or 
in a seasonal environment, but then where the life cycle of 
animals is short enough that several generations can occur 
during a single summer season.

This work will use, in a modified form, the same mod-
el that has previously been used to analyze the effect of 
individual variability in the amount of resources obtained 
by competing individuals on the dynamics and persistence 
of a single population (Uchmański 1999, 2000a, 2000b, 
Grimm & Uchmański 2002). The modification will ad-
dress resource dynamics, which in earlier versions of the 
model describes only continuous resources renewed lin-
early.

2. The Model
The model describes the population dynamics of ani-

mals with non-overlapping generations and the dynamics 
of resources available to them. The lifecycle of individuals 
starts at the beginning of the season. They grow over the 
season and reproduce at the end of the season, then they 
die. Juveniles overwinter and start growing at the begin-
ning of the next season.

The growth rate of an individual is assessed as the dif-
ference between the rate of resource assimilation and the 
rate with which these assimilated resources are used for 
living costs. The rate of resource assimilation A and living 
costs as measured by the rate of respiration R are power 
functions of body weight w (Duncan & Klekowski 1975):

                   

where  a1, a2, b1 and b2 are parameters. This gives the fol-
lowing equation of individual growth (Majkowski & Uch-
mański 1980):

The rate of resource assimilation depends on the 
amount of resources available. The rate of assimilation 
A of a single individual isolated from interactions with 
other individuals of the same species, as a function of the 
amount of resources V can be described by the equation 
proposed by  Ivlev (1961):

where 
 a1,max, is the maximal value of parameter a1 reached 

when V = ∞ and s is constant parameters describing the 
rate of reaching this maximal value.

However, if individuals live together, they may com-
pete for resources. The resources are shared unequally be-
tween competitors. If individuals often compete, then the 
individual who acquired more resources in the past, will 
acquire more of them also in the future. A good measure 
of the cumulative amount of resources acquired by an in-
dividual in the past, accounting also for the energy costs of 
resource acquirement, is its actual weight. For this reason, 
the rate of assimilation  of an individual in the case of a 
group of competing individuals is described by Eq. (2.1) 
with additionally added dependence on the actual body 
weight of the individual according to the scheme below. 

 The passage of time was simulated on two time 
scales. Large time steps described the number of individu-
als in the population in successive generations, and small 
time steps contained within each large time step were used 
to simulate the growth of individuals during each gener-
ation and the dynamics of resources. It was assumed that 
processes such as assimilation, respiration and growth of 
each individual within a large time step are continuous 
processes. For this reason, the dynamics of resources with-
in a large time step and growth of each individual within 
this time step were described by an appropriate differential 
equations.

At each small simulation step, individuals with the 
lowest weight wmin  and the highest weight wmax are identi-
fied. The value of the parameter a1 for the lightest individ-
ual is described as

and that of the heaviest individual as
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The parameter a1 of individuals with intermediate weights 
are calculated by using interpolation between the values 
amin  for wmin and amax  for wmax. The analysis of the weight 
distributions of growing and at the same time competing 
individuals shows that these distributions are positively 
skewed (Uchmański 1985, Dgebuadze 2001). To obtain 
positively skewed weight distributions, a linear or convex 
function should be used for the above interpolation (Uch-
mański 1985, 1987, Uchmański & Dgebuadze 1990). The 
linear case has been chosen in the present model (Fig.1A). 

Between the  values of parameters smin and smax  of Eqs 
(2.5) and (2.6), there is an inequality 

When smin = smax,   individuals in even-aged population 
are equal.  Assimilation of each individual depends in the 
same way on V.  When  smin <  smax, individuals differ in 
the rate of assimilation. The degree of these differences 
increases with the increasing difference between smin and 
smax  or decreasing V. However, the  differences disappear 
for  V → ∞ (Fig. 1A). 

The greatest weight w∞ at successive small time steps 
of the simulation has a hypothetical individual which is 
growing under conditions V = ∞:

The maximum final weight w∞
end of an individual, asymp-

Fig 1. Resource partitioning among competing individuals and their growth in relation to the available amount of resources (Uchmański 2019). A - 
Shows how the values of parameter a1 were calculated for individuals that differ in actual body weight. The wmin  and wmax represent the lowest and the 
highest body weights in the current population. Sections of straight lines represent linear approximations to calculate the value of parameter a1 for indi-
viduals with body weights wmin  < w < wmax at various amounts of resources V. (1) - amount of resources V = ∞. The values of parameters a1  are the same 
for all individuals in the population, and equal to the maximum value amax. Successive lines (2, 3, 4 and 5) show the values of a1 for decreasing amounts 
of resources V. It can be seen that when V is decreasing, differences between individuals in the amount of assimilated resources are increasing. But the 
decrease in the amount of resources V accounts for a greater decline in assimilation for individuals with low body weights than for individuals with 
large weights. B and C - Growth curves of individuals obtained by the above presented method of the calculation of assimilation rate. The results of 
the simulation of growth are shown for several chosen individuals at a constant resource level V (B - V = 6x106 , C - V = 4x106 ). It can be seen that the 
differentiation of body weights increased with age of individuals, and a greater differentiation occurred at a lower resource level. The horizontal dashed 
line represents the threshold value of body weight wfak wmax

end. Individuals with the final body weight greater than the threshold value can reproduce.
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totically reached when assimilation is equal to respiration, 
for the growth described by equation (2.8) is

An individual growing under condition when V < ∞, 
after the end of growth will reach the weight wend  <  w∝

end. 
The number of juveniles produced by an individual after 
the end of growth is proportional to the difference between 
its final weight and some threshold weight:

where c is the parameter describing the intensity of prog-
eny production, and wfak  (0 < wfak < 1) says what part of  
the maximum end weight w∞

end given by Eq. (2.9) is the 
threshold weight for calculation of progeny production by 
an individual. Individuals with body weights lower than 
or equal to  the threshold weight die without producing 
progeny. The function round  rounds a real number to the 
nearest integer, as the number of juveniles can be only a 
natural number. The initial weights of juveniles of each 
individual are drawn from the normal distribution with a 
mean value w0, mean and variance w0,variance, but only from the 
interval [w0,min, w0,max ].

The number of individuals in the population Nt+1  at 
large time step t +1 conforms to the following equation 

where the summation is done over all Nt individuals pres-
ent in the population at large time step t. 

At the beginning of the initial large time step, the 
population consisted of N0 individuals. Their initial body 
weights are derived from a normal distribution with a 
mean value w0,mean and variance w0,variance  and are in the 
range  [w0,min , w0,max]. The initial amount of resources was 
V0. Within each generation, the equations describing the 
growth of individuals and the resource equation were 
solved by using the Euler method in 80 smaller time steps. 
This number of smaller steps allowed a good enough fit-
ting of the numerical solutions to the analytical solutions 
of the Eq. (2.8)  for an individual with the maximum 
weight. During each small time step, resources were used 
by growing individuals and renewed in different ways de-
pending on the version of the model. Weight increases at 
each smaller time step were calculated in the model with 
reference to the actual amount of resources available to 
individuals.

At each smaller time step, the highest and the lowest 
body weights were found, so that it was possible to calcu-
late assimilation by each individual with respect to their 
weight differentiation in the population, corresponding to 
the actual resource level available. For each individual, a 

growth curve  was assigned. When combined for all com-
peting individuals in the population, they form a character-
istic ”fan”  (Fig.1 B and C):  differences in weights among 
individuals increase with growth, and their magnitude de-
pends on growth conditions. This has been supported in 
many experiments and observations of the growth of com-
peting individuals in even-aged populations  (Uchmański 
1985).

After the end of growth, at the end of large time step, 
the number of juveniles for each individual was calculat-
ed, their initial weights were assessed, and the amount of 
resources available for the next generation was calculated 
according to the assumptions regarding resource dynamics 
adopted for a given version of the model. This allowed for 
the same calculations at successive generation. The sim-
ulation was stopped when Nt+1 = 0 or Vt+1 < 0. Standard 
values of the parameters used in  simulations are shown 
in Table 1.

3. Continuous Resources: Linear Case
The first considered version of the model was one 

in which resources were continuous and renewed linear-
ly by a constant amount. Resource continuity means that 
the amount of resources that was available at the end of 
the previous generation was later the initial amount of re-
sources in the next generation. These assumptions gives 
the following equation describing the resource dynamics 
during one generation:

where V  is the amount of resources, Ai is the resource 
assimilation by the i-th individual and g is the constant 
amount of resources added at each smaller time step. The 
summation is over all individuals present in the popula-
tion. The initial (at the beginning of the first large genera-
tion) amount of resource V0  was equal to 6.0x106 and the 
total amount of resource g with which the environment 
was renewed during the generation was equal to 2x106. 
The other parameters had standard values (Table 1). 

The population dynamics produced by the model with 
continuous and linearly renewed resources were charac-
terized by fairly regular oscillations in number and ac-
companying oscillations in the amount of resources. The 
population repeatedly went through phases of rapid in-
creases in number and then rapid declines. Sooner or later, 
at minimum abundance, the population goes extinct. The 
population extinction time depends on the degree of indi-
vidual variability. In all versions of the model discussed 
in this paper, the degree of individual variability is deter-
mined by the magnitude of the difference in the values of 
the parameters smax and smin: the larger it is, the greater the 
individual variability in the amount of assimilated resourc-
es and the weights of individuals. Fig. 2 shows the average 
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from 100 simulations extinction times of a population for 
different values of the parameters smin  and smax.  Figs. 3 and 
4 illustrate the dynamics of the population in more detail. 
The highest individual variability takes place in the upper 
left corner of the parameter space smin  and smax. Here, the 
population size repeatedly goes through phases of growth 
and decline without extinction on the time scale adopted 
in the simulations (1000 generations). The smallest indi-
vidual variability corresponds to the parameter values in 
the lower right corner of the parameter space smin  and smax. 
Here the population goes extinct most often after the first 
maximum and this happens after only a few generations. 
Between these two areas with extreme population extinc-
tion times we have dynamics with intermediate extinction 
times.

4. Continuous Resources: Exponential Case

In this version of the  model, the equation that describes 
resource dynamics  has the form:

where r is a parameter characterizing the rate of resource 
renewal.  The initial amount of resources was equal to V0 
(Tab. 1).

The types of population dynamics in the case of con-
tinuous and exponentially renewed resources are shown 
in the parameter space smin  and smax   for r = 0.001 in Fig. 
5. For a larger value of r = 0.002, the parameter space smin  
and smax   is illustrated in Fig. 6. In all areas of the parameter 
space in Figs. 5 and 6, the dynamics of population looks 
as in the earlier case of continuous and linearly renewed 
resources: population number and amount of resources are 
characterized by periods of increase and decrease until, at 
some generation, the population at minimum number goes 
extinct (see Figs 3 and 4). However, in the case of faster 
renewing resources (r = 0.002, Fig 6), the range of param-
eters for which the population persists longer than 1000 
generations disappears. 

5. Continuous Resources: The Logistic Case
In this version of the model with continuous resources, 
these were consumed during the season by growing in-
dividuals and renewed according to the logistic equation. 
The equation describing the resource dynamics was of the 
following form: 

where r and Vk are constant parameters describing the lo-
gistic regeneration of resources. The initial amount of re-
sources was equal to V0 .

Fig. 2. Continuous resources linearly renewed. Parameter space smin  and 
smax. Average for 100 simulations of population extinction times for dif-
ferent values of parameters smin  and smax (the values on the axes should 
be multiplied by 10-7 ). Simulations were run for a maximum of 1000 
generations. Empty circles - average extinction time less than 10 gener-
ations. Grey circles - average extinction time greater than or equal to 10 
generations and less than 100 generations. Half-filled circles - average 
extinction time greater than or equal to 100 generations and less than 
1000 generations. Fully filled circles - extinction time greater than or 
equal to 1000 generations. The remaining  parameters had standard val-
ues (Table 1).

Fig. 3. Continuous resources linearly renewed. Types of population dy-
namics corresponding to those areas of the parameter space smin  and smax 
from Fig. 3, which are characterized by short population extinction times. 
A - average extinction time greater than or equal to 10 generations and 
less than 100 generations, smin   = 0.45x10-6 and smax = 1.0x10-6 (grey circles 
in Fig. 2).  B - average extinction time less than 10 generations, smin   = 
0.55x10-6 and smax = 1.0x10-6 (empty circles in Fig. 2).
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Fig. 4. Continuous resources linearly renewed. Types of population dynamics corresponding to those areas of the parameter space smin  and smax from Fig. 
2, which are characterized by large population extinction times. A - extinction times greater than or equal to 1000 generations, smin   = 0.30x10-6 and smax = 
1.5x10-6, only 400 first generations are shown (fully filled circles in Fig. 2). B - average extinction time greater than or equal to 100 generations and less than 
1000 generations, smin   = 0.45x10-6 and smax = 1.5x10-6 (half-filled circles in Fig. 2).  

Fig. 5. Continuous resources exponentially renewed. Parameter space smin  
and smax for r = 0.001 (the values on the axes should be multiplied by 10-7). 
Average for 100 simulations of population extinction times for different 
values of parameters smin  and smax. Simulations were run for a maximum 
of 1000 generations. Empty circles - average extinction time less than 10 
generations. Grey circles - average extinction time greater than or equal to 
10 generations and less than 100 generations. Half-filled circles - average 
extinction time greater than or equal to 100 generations and less than 1000 
generations. Fully filled circles - extinction time greater than or equal to 
1000 generations. The remaining parameters had standard values (Table 1).

Fig. 6. Continuous resources exponentially renewed. Parameter space smin  
and smax for r = 0.002 (the values on the axes should be multiplied by 10-7). 
Average for 100 simulations of population extinction times for different 
values of parameters smin  and smax. Simulations were run for a maximum 
of 1000 generations. Empty circles - average extinction time less than 10 
generations. Grey circles - average extinction time greater than or equal to 
10 generations and less than 100 generations. Half-filled circles - average 
extinction time greater than or equal to 100 generations and less than 1000 
generations. The remaining parameters had standard values (Table 1).
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Fig. 7. Continuous resources logistically renewed. Parameter space smin  
and smax for r = 0.05, V0 = 6x106 and Vk = 6x106 (the values on the axes 
should be multiplied by 10-7 ). Average for 100 simulations of population 
extinction times for different values of parameters smin  and smax. Sim-
ulations were run for a maximum of 1000 generations. Empty squares 
- fixed point type population dynamics. Number of individuals is fixed 
at values 2 and shows no fluctuation. Fully filled squares - population 
number fluctuates around some larger values. Grey squares – fixed point 
type dynamics. The number of individuals is fixed at value greater than 2 
(it is equal to 10 for greater values of smin). Empty triangles - fixed point 
type dynamics. The number of individuals is fixed at value equal to 1. 
No population extinction was observed at any point of the above parts of 
the parameter space. Empty circles  - the population goes extinct at gen-
eration 2 or 3. The remaining parameters had standard values (Table 1).

Fig. 8. Continuous resources logistically renewed. Example of popula-
tion (A) and resource (B) for smin   = 048.x10-6,  smax = 1.1x10-6 (fully filled 
squares region in  Fig. 7),  r = 0.05, V0 = 6x106 and Vk = 6x106. The other 
parameters had standard values (Table 1).

Fig. 7  shows how the different types of population 
dynamics described by the model with continuous lo-
gistically renewed resources for V = 6x106 and r = 0.05  
are distributed in the parameter space smin  and smax. The 
dynamics of the population now has a different character 
than in the case of linearly or exponentially renewed con-
tinuous resources. 

The right-hand part of the parameter space is domi-
nated by the population dynamics, which is characterized 
initially by an increase, which then slows down and the 
population number settles showing small fluctuations (Fig. 
8). The level at which population number is fluctuating 
does not depend on the initial population size (Fig. 9). 
However, it linearly depends on the value of the param-
eter r (Fig. 10). In the right-hand side of parameter space 
shown in Fig. 7 large values of the parameter r do not lead 
to population extinction. For r greater than about 0.08, the 
population number is fixed at 2. Very small values of the 
r parameter (of the order of 0.0001) still give fluctuations 
in the number, although around very small values (a few 
individuals) and of very small ranges.

In the left-hand side of the parameter space smin  and 
smax shown in Fig. 7 different types of population dynamics 
exist. In the lower left corner of the parameter space quick 
population extinction will be observed. However, popu-
lation dynamics of the fixed point type dominates in the 
left-hand side of the parameter. Most often the population 

number fixes at value 2 and persists in this state. 
Changing of Vk parameter value  modifies details of 

population dynamics in all points of the parameter space 
smin  and smax and changes the distribution of its different 
types across this parameter space. Fig. 11 shows this pa-
rameter space for Vk = 12x106. The area where the popu-
lation number is fixed at 2 still exists, although it is much 
smaller. The area where the population number fluctuates 
around a certain value after an initial increase is greater, 
but has shifted significantly to the left. On the right side 
of the parameter space, there is an area where the popu-
lation goes extinct. It happens most often, after the first 
maximum in less than twenty time steps. Only on the left 
border of the area of population extinction, population  has 

Fig. 9. Continuous resources logistically renewed. Dependence of popu-
lation dynamics on initial population size. Following case are illustrated: 
N0 = 10, 100, 1000, 2000, 2500, 3000 and 4000 individual. Simulation 
results for smin   = 048.x10-6,  smax = 1.1x10-6, r = 0.05, V0 = 6x106 and Vk = 
6x106. The other parameters had standard values (Table 1).
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Fig. 10. Continuous resources logistically renewed. Dependence of av-
erage number of individuals in this phase of population dynamics when 
the population is not systematically increasing (for the 160 generations 
following the 40 initial generations) on vale of the parameter r for smin   = 
048.x10-6,  smax = 1.1x10-6, V0 = 6x106 and Vk = 6x106. The other param-
eters had standard values (Table 1). Standard deviations were not shown 
because they are very small.

Fig. 11. Continuous resources logistically renewed. Parameter space smin  
and smax for r = 0.05, V0 = 6x106 and Vk = 12x106 (the values on the axes 
should be multiplied by 10-7 ). Average for 100 simulations of population 
extinction times for different values of parameters smin  and smax. Sim-
ulations were run for a maximum of 1000 generations. Empty squares 
- fixed point type population dynamics. Number of individuals is fixed 
at values 2 and shows no fluctuation. Fully filled squares - population 
number fluctuates around some larger values. No population extinction 
was observed at any point of the above parts of the parameter space. Grey 
circles  - average extinction time greater than or equal to 10 generations 
and less than 100 generations. The remaining parameters had standard 
values (Table 1).

Fig. 12. Continuous resources logistically renewed. Example of popu-
lation (A) and resource (B) for smin   = 048.x10-6,  smax = 1.1x10-6 (grey 
circles region in  Fig. 12),  r = 0.05, V0 = 6x106 and Vk = 12x106. The other 
parameters had standard values (Table 1).

Fig. 13. Continuous resources logistically renewed. Dependence of av-
erage number of individuals in this phase of population dynamics when 
the population is not systematically increasing (for the 160 generations 
following the 40 initial generations) on vale of the parameter Vk for: A 
-  smin   = 0.48x10-6 and smax = 1.1x10-6 (fully filled squares region of the 
parameter space show in Fig. 7), B - smin   =  0.25x10-6 and smax = 1.1x106  
(empty squares region of the parameter space shown in Fig. 7). V0 = 
6x106  and r = 0.05, the other parameters had standard values (Table 1). 
Average values of number of individuals together with standard devia-
tions around them are shown. 
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several maxima, and then goes extinct after several dozen 
time steps. An example of such population dynamics is 
shown in Fig. 12.

Let us follow how changes in the value of the param-
eter Vk affect the nature of the population dynamics at two 
points in the parameter space smin and smax: one corresponds 
in Fig. 7 to the point where for Vk = 6x106, the population 
fluctuates around a certain value (Fig. 13A), and the other 
to the point where the number settles at a value of 2 (Fig. 
13B). At the first point, the nature of the dynamics persists 
over a relatively small range of changes in the value of Vk. 
The value around which the population fluctuates and the 
range of these fluctuations increase as Vk increases. For Vk 
of order 10x106, the population goes extinct. At the second 
point for Vk of order 10x106 the nature of the dynamics 
changes. It ceases to be a fixed point type dynamics. It 
starts to be characterized by fluctuations around a certain 
value, which increases significantly as Vk increases. The 
range of fluctuations around this value also increases, until 
it becomes so large that for Vk of the order of 20x106 the 
population goes extinct. This is because, as Vk increases the 
area of fixed point type dynamics in smin and smax parame-
ter space (for high individual variability) disappears, and 
the area of fluctuation around a certain value (for higher 
individual variability) and population extinction (for low 
individual variability) shifts to the left.

6. Discontinuous Resources and Renewed to 
Constant Amount at the Beginning 

of Each Generation
In the model with discontinuous resources, the resources 
were consumed by growing individuals during each gen-
eration and not renewed during it. The resources at the be-
ginning of the next generation Vt+1  were assumed to have 
nothing to do with the amount of resources at the end of 
the previous generation.  At the beginning of each gener-
ation the resources were renewed to some constant value 
according to equation:

where α is a fixed parameter. In the basic version of the 
model α = 1, which means that at the beginning of each 
generation resources are renewed to the value they had at 
the beginning of the first generation.

Fig. 14 shows the parameter space smin  and smax for 
α = 1.0. As in the case of logistically renewed resources 
two types of solutions dominate in the parameter space. 
In the right-hand side of the parameter space we observe 
an increase in the number of individuals and then small-
er or larger fluctuations within a certain range of values 
(Fig. 15). For the values of smin  and smax from the left-hand 
side of the parameter space, fixed point type dynamics 
is observed. Except for the bottom line, where smax is the 
smallest, the value at which the population size settles is 
2. Population extinction appears in the lower left corner of 
the parameter space for the smallest smax and smin values. 
Increasing the value of smin in this region of the parameter 
space leads to fixed-point dynamics. First, the population 

Fig. 14. Discontinuous resources renewed to constant value at the be-
ginning of each generation. Parameter space smin and smax for α = 1.0 (the 
values on the axes should be multiplied by 10-7 ). Average for 100 simu-
lations of population extinction times for different values of parameters 
smin  and smax. Simulations were run for a maximum of 1000 generations. 
Empty squares - fixed point type dynamics. The number of individuals 
is fixed at value equal to 2. Fully filled squares – number of individuals 
fluctuates around some larger values. Grey squares – fixed point type 
dynamics. The number of individuals is fixed at value greater than 2 (it 
is equal to 10 for greater values of smin). Empty triangles - fixed point 
type dynamics. The number of individuals is fixed at value equal to 1.  
No population extinction was observed at any point in above parts of the 
parameter space. Empty circles – population goes extinct in the second 
generation. The other parameters had standard values (Table 1).

 Fig. 15. Discontinuous resources renewed to constant value at the be-
ginning of each generation. Example of population (A) and resource (B) 
dynamics for parameter values smin  and smax  from the right side of the 
parameter space shown in Fig. 14 (fully filled squares region -  smin   = 
0.48x10-6 and smax = 1.1x10-6). The other parameters had standard values 
(Table 1). Resources are shown at the end of each generation. 
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size is set to 1, and then for larger values of the smin param-
eter to 10. 

In this part of parameter space smin  and smax, where for 
α = 1.0 population fluctuates, the level of these fluctua-
tions and their range depend on the amount of resources at 
the beginning of each generation (Fig. 16A). In the anoth-
er part of parameter space, where for α = 1.0 population 
number is fixed, increase in the value of the parameter α 
results in transition of population dynamics: it is fixed-
point type dynamics for small α and fluctuations of num-
ber for greater values of parameter α  (Fig.16B). In both 
cases an increase in the value of the parameter α results in 
an increase in the size of the population, but also signifi-
cantly increases the range of its fluctuations, which, with a 
sufficiently high value of the parameter α (of the order of 
2.5  in Fig. 14A and of the order of 5 in Fig. 14B ), leads to 
extinction. On the other hand, low values of parameter α 
(of the order of 0.75 and 1.0 respectively) are not the caus-
es of population extinction. The population size is then set 
to 2. The reason for the above dependence of population 
dynamics on the value of the parameter α is due to the 
same changes in the geometry of the smin  and smax parame-
ter space as previously observed for logistically renewable 
resources and different values of the parameter Vk.

7. Discussion
The dynamics of a single population with non-over-

lapping generations described by the above models de-
pends significantly on two factors. One is the individual 
variability in the amount of resources obtained from the 
environment, the main cause of which is intraspecific 

global competition for common for all individuals re-
sources. The second factor is the nature and the amount of 
the resource. This two factors are intertwined and in each 
version of the model they determine differently the num-
ber of individuals that reproduce and their characteristics. 
Also important is at what point in the history of the pop-
ulation what individuals, and how many of them, become 
important for the continued persistence of the population.

The population dynamics described by the above 
model with continuous and linearly renewed resources 
is characterized by oscillations of the population number 
and the amount of resources, which sooner or later end 
in the extinction of the population. The details of these 
dynamics very much depend on the degree of individu-
al variability. Population dynamics of identical or almost 
identical individuals is very simple. It starts with a low 
number of individuals and a relatively high resource level. 
In this situation, each individual can produce more than 
one juvenile, and the population number increases in suc-
cessive generations. This pattern of the initial dynamics 
of the population and its resources does not depend on 
the initial population number or on the rate of resource 
growth. Only the number of individuals at a maximum and 
the rate at which this maximum is reached depend on the 
model parameters. The resources which are exploited by 
increasing number of individuals start shrinking. Thus, the 
production of juveniles is declining. At a certain time step, 
an individual can produce only one juvenile, and this is 
the case of all individuals in the population, as they are 
identical. Because progeny production can be expressed 
only as natural numbers or zero, with a further decline in 
the resources progeny production drops to zero. The pop-
ulation goes extinct.

When individuals are variable the population dy-
namics will be significantly different, although the initial 
phases will be similar. After the first maximum, the pop-
ulation size and resources start declining. However, now 
the population does not go extinct after reaching the first 
minimum. This is so because in the population comprising 
variable individuals also at a low resource level there will 
be at least one individual whose weight will be sufficient 
for the production of at least one juvenile. As the number 
of individuals is low, then resources are exploited at a low 
rate and, renewed constantly, they start increasing. This is 
followed by an increase in the population number, and the 
cycle is repeated. The population can go through several 
cycles of growth and decline. However, sooner or later, it 
will happen that in the phase of a low number of individu-
als and low resource level there will be no individual able 
to reproduce, and the population will go extinct.

The above  pattern of population and resource dy-
namics is repeated for resources that are continuous but 
renewed exponentially. This shows that in order to achieve 
this type of population dynamics important is that resourc-
es are continuous and have the possibility of unlimited 

Fig. 16. Discontinuous resources renewed to constant value at the begin-
ning of each generation. Dependence of average number of individuals 
in this phase of population dynamics when the population is not sys-
tematically increasing (for the 160 generations following the 40 initial 
generations) on vale of the parameter α for: A -  smin   = 0.48x10-6 and smax 
= 1.1x10-6 (fully filled squares region of the parameter space show in Fig. 
14), B - smin   =  0.25x10-6 and smax = 1.1x10-6  (empty squares region of the 
parameter space shown in Fig. 14). The other parameters had standard 
values (Table 1). Average values of number of individuals together with 
standard deviations around them are shown.
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growth. The details of the resource dynamics are not im-
portant. In both cases of resource dynamics (linear and 
exponential), the importance of their continuity allows for 
a systematic decrease or increase in resources over many 
generations. Unlimited growth of resources means that 
when resources are poorly exploited by a small number of 
individuals in the initial phase of the above population cy-
cles, they grow to such values that systematically increase 
the population number and results in the appearance of the 
maximum in population number. When resources are con-
sumed intensively by a large number of individuals, this 
results in a systematic deterioration of resources in subse-
quent generations. This happens until a small number of 
individuals are present in the population and then individ-
ual variability comes into play. What becomes important 
at this point is whether there is at least one individual in 
the population capable of reproducing. If so, the popula-
tion starts to grow and the whole cycle repeats itself. Such 
population dynamics is sustained by the continuity of re-
sources, their unlimited growth when not exploited and 
individual variability.

For resources that are discontinuous and renewed at 
the beginning of each generation to some constant value 
or are continuous but renewed logistically, the number dy-
namics  looks very different. This shows that in these cases 
it is not the continuity or discontinuity of the resources that 
is important, but the fact that they grow in a limited way 
when they are not exploited.

These differences manifest themselves in two types of 
dynamics. For those ranges of smin and smax parameters val-
ues which  are responsible for the greatest individual vari-
ability (left side of the parameter  space of smin and smax), we 
have fixed point dynamics - the size of the population is 
set to 2. For areas with lower individual variability (right 
side of the parameter  space of smin and smax), we have an 
initial increase in population size, and then its fluctuations 
around a certain level.

Let us trace the development of this type of popula-
tion dynamics in the case of resources being renewed to 
the same value at the beginning of each generation. The 
initial population and resource dynamics are similar to 
those of continuous resource with unlimited growth - the 
population increases and the resources decrease. At the 
beginning the renewal rate of resources  is sufficient for 
most individuals in the generation to produce more than 
one offspring and population number to increase. Later 
with some relatively high population number, the amount 
of resource that occurs at the beginning of the generation 
is too small to ensure that all individuals in that genera-
tion have good conditions for growth and reproduction. 
During this generation, as a result of the growth of individ-
uals using the resources, their growth conditions become 
worse and worse. Since this generation is characterized by 
more or less variable individuals, at its end only a certain 
number of individuals will be able to reproduce, and their 

offspring will form the next generation. This next gener-
ation will encounter the same conditions in terms of re-
sources - their amount at the beginning of the next season 
will be the same as those encountered by their mothers. A 
kind of quasi-equilibrium is created between the amount 
of resources at the beginning of the generation and their 
dynamics within this generation, the variability of individ-
uals in terms of the amount of resources obtained, which 
influences the number of individuals in the current gen-
eration able to reproduce and the number of individuals 
in the next generation. These conditions begin to repeat 
themselves in subsequent generations. As a result, we start 
to observe a more or less constant number of individuals in 
successive generations. In the earlier models with continu-
ous linear or exponential resources that unlimited resource 
growth pulls the population up in a sense when it is small. 
It will not be the case for resources with limited growth.

Also in this version of the model, in which continuous  
resources are renewed logistically, a similar mechanism is 
working. Here, too, a balance is established between the 
process of recruiting individuals to the next generation 
and the nature of the resource dynamics. Unlike the case 
with discontinuous resources renewed to a constant value, 
this mechanism, because of their continuity, works now 
more precisely, resulting in less fluctuations in population 
and resources. Their logistic growth rate allows smooth 
increases and decreases in population size.

The extent of population fluctuations once these 
quasi-equilibrium conditions are established depends on 
the degree of individual variability measured by the dif-
ference between smax  and smin. If individual variability is 
low, fluctuations are greater. When individual variability is 
high, number of individuals in the population is the same 
from generation to generation. In the case of high indi-
vidual variability, when smin  is much smaller than smax, a 
strict hierarchy of individuals capable of reproduction is 
established, which, because the conditions for the growth 
of individuals are the same from generation to generation, 
is also repeated in subsequent generations. The greater the 
variability of individuals, the tighter this hierarchy is and 
the smaller the number of individuals capable of reproduc-
tion. A strict elite of individuals is formed, which is less 
numerous the greater the variability of individuals. This 
gives a fixed point type population dynamics. The popula-
tion dynamics is different when the individual variability 
is smaller, that is, when the difference between  smin   smax 
is smaller. Then the recruitment to the elite of individuals 
capable of reproduction is more open and their number in 
successive generations can vary with the accompanying 
fluctuations in the amount of resources. As a result of this, 
the population number will also fluctuate. 

The degree of individual variability depends not only 
on the difference between the values of the smax and smin 
parameters, but also on the level of resources. When it is 
small, the same difference in smax and smin causes greater 
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individual variability in the amounts of acquired resources 
than when there are more resources. Therefore, changes 
in the value of the parameter α in the case of discontin-
uous resources renewed to a constant value and the pa-
rameter Vk in the case of logistically renewed continuous  
resources cause characteristic changes in the distribution 
of different types of population dynamics in the parameter 
space smin and smax. This has been illustrated on the example 
of a model with logistic resources, but judging from the 
model’s response to changes in the value of parameter α, 
it will also take place in the case of a model with discon-
tinuous resources. When the environment is poor (for rela-
tively small values of the Vk parameter, for example for Vk 
= 6x106), the entire parameter space analyzed in the model 
is covered with solutions that give a persistent population 
dynamics. Increasing the level of resources (Vk = 12x106) 
gives sufficient individual variability for the persistence of 
the population only in the left part of the parameter space, 
where the differences between smax and smin are sufficiently 
large. In the right part of the parameter space, individual 
variation is too small to ensure this. Here we begin to ob-
serve the dynamics leading to the extinction of the popu-
lation.

Increasing the value of parameter Vk in the version 
of the model with logistic resources or of parameter α in 
the model with discontinuous resources for a given values 
of smin and smax, also increases the value around which the 
population number fluctuates and the range of these fluctu-
ations. If the number of individuals in a certain generation 
is small, the growth of individuals in conditions where re-
sources are high during that generation results in a large 
production of offspring at the end of that generation. This 
large number of individuals will be confronted with the 
same or similar resources in the next generation, but be-
cause there are more competing individuals, offspring pro-
duction will be smaller. This will cause a rapid decline in 
numbers in the next generation and, as a result, will lead to 
fluctuations in number of individuals. For a small individ-
ual variability and a sufficiently large value of parameter α 
or Vk, these fluctuations may be so large that the question 
arises about whether, in the case of a small number, there 
are individuals in the population capable of reproducing or 
whether, in the case of high number, the resource level is  
sufficiently high to support consumption of all individuals. 
If not, the population goes extinct because resources have 
been exhausted. This will happen with a lower level of 
resources for discontinuous resources than for continuous 
resources, as the latter are the cause of a more precise reg-
ulation of the system.

The significance of individual variability depends not 
only on the difference between smax and smin, but also on 
the absolute values of these parameters. Therefore, on the 
left side of the bottom line in the parameter space shown 
in Figs 7 and 14, there is an area where the population, 
despite the difference in the values of the parameters smax 

and smin, goes extinct within a few generations. This is be-
cause with sufficiently low resources, the value of the smax 
parameter is so small that even the heaviest individual is 
unable to produce offspring.

Individual variability in the amount of resources ob-
tained by competing individuals is very rarely studied by 
ecologists. For this reason, it is difficult to decide how 
large the range of individual variability is in actual popula-
tions. So, too, it is unclear what type of population dynam-
ics should be expected in real populations. On the other 
hand, the pattern of responses of individual variability to 
changes in the amount of resources for which individuals 
compete, proposed in this work, is supported by the shapes 
of the distributions of weights of individuals in even-aged 
populations (Uchmański 1985, Wyszomirski 1992). In any 
case, the analysis of population dynamics provided by the 
model presented in this work shows at least a spectrum of 
potential solutions to the model. 

8. Conclusions
The same mechanism describing the emergence of 

differences between individuals in the amount of acquired 
resources when the competition for common resources is 
global gives different population dynamics depending on 
the dynamics of the resources. This is also related to the 
different meanings of the term population persistence. For 
a resource that grows indefinitely as the population goes 
through phases of low abundance many times, an increase 
in persistence will mean an increase in the time to extinc-
tion of the population. When the resources grow in a lim-
ited way, the increase in persistence will mean a transition 
from the population dynamics which produces extinction 
of population to dynamics characterized initially by an in-
crease in numbers and then by its fluctuations around a 
certain value or to the fixed point type dynamics. 

In both of the above situations, individual variability 
is important for population persistence - population per-
sistence increases with increasing individual variability. 

As already mentioned in the introduction, unlimited 
growth of resources is characteristic of organisms such as, 
for example, herbivorous plankton using phytoplankton or 
bacteria. In this type of organism, little individual variabil-
ity can be expected, for example in the case of asexual 
reproduction (Kaliszewicz et al. 2005). The problem of 
extinction of such a population then arises, which will be 
particularly relevant in the case of an environment with 
poorly expressed seasonality (tropical zone lakes). Several 
mechanisms can be identified that increase the persistence 
of such populations such as, for example, different types 
of mortality (Uchmański 2023). The problem of extinction 
of a population with small individual variability seems to 
be less relevant in environments with well-expressed sea-
sonality (temperate zone lakes). Here, usually a couple of 
summer population maxima are followed by winter, forms 
of organisms that are able to overwinter emerge, the eco-
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logical mechanism that previously controlled the popula-
tion size ceases to function, so that the next spring every-
thing starts all over again. This effect will not be observed 
in regions without clear seasonality.

It is also worth noting that in ecosystems with in-
creased primary production due to, for example, higher 
temperatures (Uvarov 1931), maintaining the same extinc-
tion time for a population whose individuals use resources 
with unlimited dynamics will require an increase in indi-
vidual variability, as was shown in the example of popula-
tions of organisms using resources with exponential type 
dynamics. Thus, better food conditions do not necessarily 
automatically mean greater population persistence.

I the case of resources with limited growth greater 
population persistence is also achieved when individual 
variability is greater, but population persistence is already 
possible for less individual variability than in the case of 
unlimited resources. However, population persistence then 
means, as we already know, completely different popula-
tion dynamics. If we refer to the example with annual in-
sects, we can say that in the case of a resource with limited 
growth, we will observe what to some extent resembles 
the dynamics known from the classical logistic equation. 
After an initial phase of growth, the population will more 
or less fluctuate around a certain fixed value. Moreover, 
disturbed out of this state, it will return to it. The insects 
will thus form a somewhat stable population, although the 
dynamics will not be as smooth as those given by the dif-
ferential or difference version of the classical logistic equa-
tion. This is a natural result of the individual-based model. 
Such population dynamics will be observed regardless of 
whether resources have continuous or discontinuous dy-
namics. What is important is that their dynamics is limited. 
Thus, both insects from the evergreen forest of the tropical 
zone, the coniferous forest of the temperate zone and the 

deciduous forest of this zone will have similar dynamics.
For resources with limited dynamics, too little indi-

vidual variability leads to population extinction. How-
ever, the cause is now different. When the resource has 
limited dynamics, the population becomes extinct due to 
too large range of fluctuations in number. This will occur 
more often with sufficiently low individual variability in 
a resource-rich environment than in a resource-poor envi-
ronment. In the latter, even a population with low individ-
ual variability can be characterized by ‘logistic equation’ 
type dynamics. Thus in the rich, evergreen forests of the 
tropical zone (Pianka 1966), the individuals of a persistent 
population must be characterized by a sufficiently high de-
gree of individual variability, while in the poorer conifer-
ous forests of the temperate zone (Striganova & Porjadina 
2005), populations composed of less variable individuals 
may produce persistent dynamics. On the other hand, in 
regions without seasonality and with high primary produc-
tion, a population of sufficiently diverse individuals can 
reach a higher number than in a seasonal environment and 
persist despite its significant fluctuations.
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