Species Distribution Modeling (SDM) of Variable Tawny Rajah (Charaxes bernardus hierax) in some unusual habitats of West Bengal, India: implications for conservation

Authors

  • Asif Hossain a:1:{s:5:"en_US";s:48:"Department of Zoology, The University of Burdwan";}
  • Mukherjee Subha Shankar 1Department of Zoology, The University of Burdwan, Golapbag, Burdwan-713104, WB, India
  • Saurabh Purohit 2Watershed Organisation Trust (WOTR), Pune, Maharashtra and Forest Research Institute Deemed to be University, Dehradun, India
  • Soumyadip Bag Pandit Raghunath Murmu Smriti Mahavidyalaya, Bankura University, Bankura

DOI:

https://doi.org/10.17161/eurojecol.v11i2.21487

Keywords:

MaxEnt, SDM, Butterfly, Conservation

Abstract

Lepidopteran species serve as one of the most important pollinators in ecosystem and this species also coevolved with their nectaring plants. They regarded as one of the good indicators of ecosystem health due to their high sensitivity to the changes in environmental variables. There are numerous butterfly and moth species are found in India whose possible distribution in the geographic areas yet to be known. In our present study we try to find out the predicted distribution area of Variable Tawny Rajah (Charaxes bernardus hierax) in West Bengal by the use MaxEnt 3.4.4 program. It was observed that northern part of West Bengal consists of greater areas that contain suitable environmental conditions (maximum and moderate) than southern part of West Bengal. This type of study may helps to provide an idea about predicted distribution of Charaxes bernardus hierax in West Bengal and selection of conservation strategies for this butterfly species in particular geographical region.

References

A., Jiménez-Valverde & Lobo, J.M. (2004). Un método sencillo para seleccionar puntos de muestreo con el objeto de inventariar taxones hiperdiversos: el caso práctico de las familias Araneidae y Thomisidae (Araneae). Ecología, 18 297–308.

A., Jiménez-Valverde, & Hortal, J. (2003). Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Rev. Iber. Aracnol, 8, 151–161.

A., Jiménez-Valverde, J.F., Gómez Lobo, JM, A., Baselga,& Hortal, J. (2008). Challenging species distribution models: the case of Maculinea nausithous in the Iberian Peninsula. Annales Zoologici Fennici, 45, 200–210. https://doi.org/10.5735/086.045.0305

A.D., Tiple, V.P., Deshmukh, & Dennis, R.L.H. (2006). Factors infuencing nectar plant resource visits by buterflies on a university campus: implicatons for conservaton. Nota Lepidopterologica, 28, 213–224.

A.M., Barbosa, R., Real, J.,Olivero, & Mario Vargas, J. (2003). Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biological Conservation, 114, 377–387. https://doi.org/10.1016/S0006-3207(03)00066-1

B., Benito de Pando Peñas & de Giles, J. (2007). Aplicación de modelos de distribución de especies a la conservación de la biodiversidad en el sureste de la Península Ibérica. Geofocus, 7, 110–119. https://www.geofocus.org/index.php/geofocus/article/view/113

Baldwin, R.A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854-866. https://doi.org/10.3390/e11040854

C., Stefanescu, S., Herrando & Páramo, F (2004). Butterfly species richness in the north-west Mediterranean Basin: the role of natural and human-induced factors. Journal of Biogeography, 31, 905–915. https://doi.org/10.1111/j.1365-2699.2004.01088.x

F., Hernandez-Baz, H., Romo Gonzalez, J.M., Hernandez, & Pastrana, R.G. (2016). Maximum entropy niche-based modeling (Maxent) of potential geographical distribution of Coreura albicosta (Lepidoptera: Erebidae: Ctenuchina) in Mexico. Florida Entomologist, 99(3), 376-380. https://doi.org/10.1653/024.099.0306

Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge, 338 pp.

G.N., Das, S., Gayen, M., Ali, R.K., Jaiswal, E.A., Lenin, & Chandra, K. (2018). Insecta : Lepidoptera (Butterflies). In. Faunal Diversity of Indian Himalaya: Zoological Survey of India, Kolkata, 611–650.

GBIF.org GBIF Occurrence Download https://doi.org/10.15468/dl.jz9j8r

H., Barman, P. ,Paul, & Aditya, G. (2021). The arboreal microsnail Pupisoma dioscoricola (C. B. Admas, 1845) from West Bengal, India: morphology, plant preferences and distribution. Zoology & Ecology, 31, 148–57.

H., Romo & García-Barros, E. (2005). Distribución e intensidad de los estudios faunísticos sobre mariposas diurnas en la Península Ibérica e islas Baleares (Lepidoptera, Papilionoidea y Hesperioidea). Graellsia, 61, 37–50. https://doi.org/10.3989/graellsia.2005.v61.i1.5

H., Romo, R.E., Camero, E., García-Barros, M.L., Munguira, Martín Cano, J. (2014). Recorded and potential distributions on the Iberian Peninsula of species of Lepidoptera listed in the habitats directive. European Journal of Entomology, 111, 407–415. https://doi.org/10.14411/eje.2014.042Madrid

H.A., Coene, & Vis, R. (2008). Contribution to the butterfly fauna of Yunnan, China (Hesperioidea, Papilionoidea). Nota Lepidopterologica, 2,231–261.

I., Jacinto-Padilla, J., Lopez-Collado, C., JorgeLopez-Collado, & García-Garcíab, C.G. (2017). Species distribution modeling for wildlife management: Ornamental butterflies in México. Journal of Asia Pacific Entomology ,20(2), 627–636. https://doi.org/10.1016/j.aspen.2017.03.026

J., Dover & Settele, J. (2009). The influences of landscape structure on butterfly distribution and movement: a review. Journal of Insect Conservation. 13, 3–27. https://doi.org/10.1007/s10841-008-9135-8

J., Pearce & Ferrier, S. (2001). The practical value of modelling relative abundance of species for regional conservation planning: a case study. Biological Conservation, 98, 33–43. https://doi.org/10.1016/S0006-3207(00)00139-7

J.B.,Choi, N.Z., Win, G.Y., Han, E.Y., Choi, J., Park, & Park, J.K. (2021). Checklist of the family Nymphalidae (Lepidoptera: Papilionoidea) from Myanmar. Journal of Asia-Pacific Biodiversity, 14 (4), 544-556. https://doi.org/10.1016/j.japb.2021.06.010

K., Mainali, T., Hefley, L., Rie, & Fagan, W.F. (2020). Matching expert range maps with species distribution model predictions. Conservation Biology, 34, 1292–1304. https://doi.org/10.1111/cobi.13492

Kehimkar, I. (2016). Butterflies of India.Bombay Natural History Society, Mumbai.

Kosterin, O.E. (2020). Occasional photographic records of butterflies (Lepidoptera, Papilionoidea) in Cambodia: 3, Pursat, Siem Reap, Preah Vihear and Stung Treng Provinces in western, north-western and northern Cambodia. Acta Biologica Sibirica, 6, 293–338.

Kunte, K. (2000). Buterfies of Peninsular India. Universites Press (Hyderabad) and Indian Academy of Sciences (Bangalore) 147pp.

Kunte, K. (2007). Allometry and functional constraints on proboscis lengths in butterflies. Functional Ecology, 21(5), 982 – 987. https://doi.org/10.1111/j.1365-2435.2007.01299.x K., Kunte, S., Baidya, & Gosai, P. (2021). Charaxes bernardus (Fabricius, 1793) – Tawny Rajah. Kunte, K., S. Sondhi, & P. Roy (Chief Editors). Butterflies of India, v. 3.15. Indian Foundation for Butterflies.

L.K., Svancara, J.T., Abatzoglou, Waterbury, B. (2019). Modeling current and future potential distributions of milkweeds and the monarch butterfly in Idaho. Frontiers in Ecology and Evolution, 7,168.

M., Brambilla, & Ficetola, G.F. (2012). Species distribution models as a tool to estimate reproductive parameters: a case study with a passerine bird species. Journal of Animal Ecology, 81, 781–787. https://doi.org/10.1111/j.1365-2656.2012.01970.x

M., de Groot, F. V., Rebeušek Grobelnik, M., Govedič, A., Šalamun, & Verovnik, R. (2009). Distribution modelling as an approach to the conservation of a threatened alpine endemic butterfly (Lepidoptera: Satyridae). European Journal of Entomology, 106(1), 77–84. https://doi.org/10.14411/eje.2009.012

M., Doré, K., Willmott, B., Leroy, N., Chazot, J., Mallet, A.V.L., J.P.W. Freitas, G.H., Lamas , K.K., Dasmahapatra, C., Fontaine, & Elias, M. (2021). Anthropogenic pressures coincide with Neotropical biodiversity hotspots in a flagship butterfly group. Diversity and Distributions, 28, 2912–2930. https://doi.org/10.1111/ddi.13455

M.S., Wisz, R.J., Hijmans, J., Li, A.T., Peterson, C.H., Graham, Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distribitutions, 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

N. K., Gupta, P., Paul, H., Barman, & Aditya, G. (2022) The marsh slug, Deroceras laeve in Darjeeling Himalayas, India: First record and modelling of suitable habitats. Acta Ecologica Sinica, 42 (3) 432-438. https://doi.org/10.1016/j.chnaes.2022.07.003

N., Berkvens, J., Bonte, D., Berkvens, L., Tirry, & Clercq, De P. (2008). Influence 482 of diet and photoperiod on development and reproduction of 483 European populations of Harmonia axyridis (Pallas) (Coleoptera: 484 Coccinellidae). Biocontrol science,53, 211–221

N., Rawat, S., Purohit, V., Painuly, G.S., Negi, & Bisht, M. P. S. (2022). Habitat distribution modeling of endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. Ecological Informatics, 68, 101550. https://doi.org/10.1016/j.ecoinf.2021.101550

New, T.R. (2014). Lepidoptera and Conservation. John Wiley and Sons, Ltd., United Kingdom.

R. G., Pearson, C. J., Raxworthy, M., Nakamura, & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of biogeography, 34(1), 102-117.

R.A., Arnold & Jensen, R.B, (2022). A GIS-based species distribution model for the endangered Smith's blue butterfly, Euphilotes enoptes smithi (Lycaenidae). Journal of the Lepidopterists' Society, 76(4), 221-239. https://doi.org/10.18473/lepi.76i4.a1

R.B., Blair, & Launer , A.E. (1997). Butterfly diversity and human land use: species assemblages along an urban gradient. Biological Conservation, 80, 113–125. https://doi.org/10.1016/S0006-3207(96)00056-0

R.P. Anderson., & Martinez-Meyer, E. (2004) Modeling species' geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 116, 167–179. http://dx.doi.org/10.1016/S0006-3207(03)00187-3

S., Mukherjee, S., Banerjee, G.K., Saha, P., Basu, & Aditya, G. (2015). Butterfly diversity in Kolkata, India: an appraisal for conservation management. Journal of Asia Pacific Biodiversity. 8 (3), 210–221. https://doi.org/10.1016/j.japb.2015.08.001

S., Purohit & Rawat, N. (2021). MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district, India. Modeling Earth System and Environment, 8, 2051-2063. https://doi.org/10.1007/s40808-021-01205-5

S., Thapa, V., Chitale, S.J., Rijal, N., Bisht, & Shrestha, B.B. (2018). Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PloS one, 13(4), e0195752. https://doi.org/10.1371/journal.pone.0195752

S.J., Phillips, M., Dudík, & Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling, pp. 655–662 In Greiner R, Schuurmans D. [eds.], Proceedings of the 21st International Conference on Machine Learning, Alberta, Canada.

S.J., Phillips, M., Dudík, & Schapire, R.E. [Internet] Maxent software for modeling species niches and distributions (Version 3.4.4). http://biodiversityinformatics.amnh.org/open_source/maxent/.

S.J., Phillips, R.P., Anderson, & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Modelling, 190, 231–259.

S.S., Mukherjee & Hossain, A. (2022). Role of morphological variables of the visitor butterfly species in relation to their foraging behaviour on Lantana camara : Implication for conservation. Acta Ecologica Sinica, 42 (3), 143-148. https://doi.org/10.1016/j.chnaes.2020.11.003

S.S., Mukherjee & Hossain, A. (2021). Morphological variables restrict flower choice of Lycaenid butterfly species: implication for pollination and conservation. Journal of Ecology and Environment, 45, 32. https://doi.org/10.1186/s41610-021-00211-z

S.S., Mukherjee, D.,Goswami, & Hossain, A. (2022). First record of variable Tawny Rajah from Purulia, West Bengal, India. Bugs R All #227, In: Zoo's Print, 37(2), 01–03.

Y., Zhou, Y., Cao, H., Chen, Y., Long, F., Yan, C., Xu, & Wang, R. (2021). Habitat utilization of the Glanville fritillary butterfly in the Tianshan Mountains, China, and its implication for conservation. Journal of Insect Conservation, 16, 207–214.

Z., Cao, L., Zhang, X., Zhang, & Guo, Z. (2021). Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on maxent model. Sustain. 20: 11253. https://doi.org/10.3390/su132011253

Downloads

Published

2025-12-31

Issue

Section

Articles

How to Cite

Hossain, A., Subha Shankar , M., Purohit, S., & Bag, S. (2025). Species Distribution Modeling (SDM) of Variable Tawny Rajah (Charaxes bernardus hierax) in some unusual habitats of West Bengal, India: implications for conservation. European Journal of Ecology, 11(2). https://doi.org/10.17161/eurojecol.v11i2.21487