A brief survey of the rather limited amount of research that has been done on the marking of writing shows that there remains a great deal of confusion with regard to the effectiveness of different marking strategies. Many second language teachers spend an inordinate amount of time marking students' texts (Zamel 80); according to Leki, written comments are time consuming, but teachers continue to write comments on students' papers because we sense that our comments help writers improve; because written comments seem more feasible and more thorough than conferences on every paper; and because, for most writing teachers, our jobs require us not only to evaluate our students' writing but to be able to justify our evaluations (58).

Perhaps not surprisingly, students also expect and require detailed responses to their papers from instructors, noting all errors (Leki 62).

However, Cohen and Cavalcanti, in a study on teacher marking practices, found that “teachers' feedback ... is unclear, inaccurate and unbalanced ...” (155); Fathman and Whalley, citing Sommers, state that “... most teacher comments are vague and do not provide specific reactions to what students have written” (179); and Zamel notes that “... teachers’ marks and comments usually take the form of abstract and vague prescriptions and directives that students find difficult to interpret” (79). While some evidence has been found that certain types of marking (specifically, drawing attention to errors rather than correcting them, and providing positive feedback rather than just negative prescription) do seem to improve student writing (Fathman and Whalley 187), this is contradicted by other studies which appear to demonstrate that no conceivable combination of praise, blame, commentary, diagnosis or correction “produced significant improvements...”
Method 1: A Text-Based Marking System

In other words, it would seem to be the case that, although writing instructors dedicate a large proportion of their time to detailed and complex marking practices, and their students expect them to, their responses and comments are frequently less than competent, and may have no effect whatsoever on the quality of their students' writing. This is a rather disheartening state of affairs.

Recently, writing instructors have begun to deal with a new factor in their work: the electronic document. Students are increasingly submitting computer files (text documents, email or word-processor documents) instead of the conventional hard copy. In addition, more and more writing is taught by distance education through online systems, and here the electronic submission and return of documents may become the primary form of interaction between student and instructor. The techniques and methodology of marking assume a greater significance in this context.

It is not my purpose to examine what kinds of responses teachers should give to students' papers. Rather, this paper will look at four possible technical approaches to receiving, marking up, and returning a student text in electronic form, together with their strengths and weaknesses. Some of these methods can help to improve the clarity of the document returned to the student, distinguishing comments on form, for example, from comments on content; they can increase the consistency of an instructor's responses to particular errors or error-types; and they will enable us to return to the student a text which is more intact, in the sense of being less invaded or defaced by an overlay of multicolored inks and scrawled comments. The methods outlined here range from a simple text-based system, for which no special software or knowledge is needed, to more complex solutions involving macro programming and special software.

In this approach, the instructor simply inserts a number of symbols into the text, indicating error types. The student is provided with a key to the symbols, and is expected to correct the errors. Longer notes can be included using a simple numbered footnote system. There are many text-based marking systems in use, and instructors tend to evolve their own systems according to their needs. The system shown here is in use by the Comenius Group for a Business English course taught by the Internet: http://www.comenius.com/writing/index.html.

The Comenius Web site demonstrates how the
instructor actually uses a special toolbar and macros to automate the marking process, but this is not necessary in order to use this method of marking.

This key is taken (with permission) from the Comenius Web site:

CORRECTION SYMBOLS KEY

][placed at the beginning of a long correction

[x] delete the word or words
 I want][for think[x] to go there.

[+] add the missing word or words
 Give me[+] the pencils.

[1],[2],...see the bottom of your assignment for a teacher comment

[1] Be careful of spelling mistakes in business correspondence

[] add a blank line
 Sincerely,
[]
[]
[]
 David Rogers

[#] mistake in number [singular/plural]
 I have three book[#].

[art] wrong or missing article
 This is [art] book.

[cap] capitalize or don’t capitalize the word or words
 I visited the][united states of america[cap].
 I like Strawberry [cap] ice cream.

[prep] mistake or missing preposition
 He lives at [prep] Madison Avenue.

[ww] wrong word
 I except[ww] your advice.
Among the advantages of this method are the fact that it is technologically simple; student texts can be submitted and returned by e-mail, without the need to ensure that instructor and students are using the same platform or the same software.

Among the advantages of this method are the fact that it is technologically simple; student texts can be submitted and returned by email, without the need to ensure that instructor and students are using the same platform or the same software. In addition, it is relatively easy for a student to edit or redraft an essay marked in this way, working directly on the marked text. Finally, this approach (along with the other three outlined in this article) allow the instructor to insert comments of any length. In traditional marking, the instructor is often constrained by the physical space available in the margins of a paper, and as a result comments are often inscribed in tiny handwriting, or reluctantly truncated. In all of the methods shown here, the instructor has unlimited space, because the electronic document expands as text is inserted.

However, this approach produces output that is less than satisfactory in a number of respects. In a simple text document, the instructor's comments and annotations are not distinguished from the student's original text except (in the example above) by being enclosed in square brackets. In a similar traditional marking system, pen color would be used to distinguish instructor's comments from the student's own writing. The text-based approach does not allow for this.
Method 2: Word-Processor Revision Tools

Most modern word-processing programs include a range of tools intended to be used for reviewing and revising documents. This system uses the colored highlighter, a revision tool available in recent versions of some word-processing programs. In this example, six basic colors are used as codes for simple error types. In addition, footnotes can be used to add longer comments where required.

These are the basic colors and the error-types they signify:

- **Yellow**: Spelling
- **Grey**: Punctuation/Capitalization
- **Red**: Verb error (tense or agreement)
- **Blue**: Noun error (number or form)
- **Purple**: Other grammatical error
- **Green**: Word choice error

In actual fact, word-processors usually allow a much wider range of colors to be used. However, in practice, colors which are not members of the basic system palette may not display correctly on a variety of platforms or in different applications (see below), and the system itself becomes difficult to apply and interpret easily when larger numbers of colors are used, since the colors (unlike the abbreviations in the previous method) carry no mnemonic value.

The following additional revision and text-formatting features can be used to make this system more flexible:
1. Underline and double-underline
2. Bold
3. Italic
4. Superscript and subscript
5. Font colors
6. Strikethrough (indicating text to be deleted)

The instructor would, of course, have to ensure that any of these textual features used for marking were not also used by the student for other purposes within the document.

This method has some advantages over text-based marking. The instructor's annotations are more easily distinguished from the original text. In addition, the prevalence of one error-type is immediately obvious because of its color, and error diagnoses (marked by highlighting) are clearly distinct from comments on content or structure (which would be footnotes).

However, a new set of limitations arises when we use these kinds of tools. Only the more recent versions of major word-processing programs support colored highlighting,
Method 3: Using a Toolbar with Macros

A macro is a small "program within a program", that is, a script which performs a sequence of actions within an application. Most word-processors, spreadsheets and other productivity software allow users to script or record macros to automate repetitive tasks. Macros can then be attached to buttons on the toolbar of the application, so that clicking on the button runs the macro, which performs the series of operations automatically. Macros can be used to automate the insertion of complex annotations into the text of a document, as shown in Figure 1 (see next page).

Here, when the instructor encounters an error (such as a spelling mistake), she selects the relevant text, then presses the button labelled "SP". This runs a macro which performs the following actions:

1. Double-underlines the selected text.
2. Turns that text red.
3. Inserts a blue superscript annotation "Sp".

Buttons for a range of error types are included on the
toolbar, as well as buttons for inserting a green superscript “Good” into the text, for inserting footnotes in green, and for changing selected text to different colors.

Student documents can be received as word-processor or text files, or as email, in this system. However, since enhanced textual features are used in the marking process,

This is a spilling mistake.

Figure 1.

some kind of document file must be returned to the student. There are four options:

1. Native file format: If the student is using the same word-processor, the document can be saved in the native format of the program.

2. Rich Text Format: RTF (discussed above) will preserve the textual features used here. The file can be attached to an email message.

3. HTML format: Most major word processors will now save files in HTML format (as WWW pages). The file can then be opened in any Web browser.

4. Printed format: If necessary, the file can simply be printed out for the student.

The first three options require that the file be attached to an email message or returned to the student on a disk.

This approach to electronic marking (first outlined in my article “Marking Student Work on the Computer”) has a number of advantages over those examined above. First, through the use of red, blue and green font colors (not visible in the illustration here) the instructor’s comments and error diagnoses are clearly distinguished from each other, and from the student text. In addition, the use of double-underline and superscript ensures that even if this
Method 4: A Special Marking Program

In April 1996, Roy Bowers posted on the World Wide Web a demonstration of the use of hypertext to mark a student text in such a way that the student would be able to interact with it (Bowers 1996). His example uses three frames. In the largest is the student text, which contains links. Clicking on a link causes a comment or error diagnosis to be displayed in one of the other frames. If the user requires more information (such as a full grammar explanation), then clicking on a link in the second frame will display a more detailed explanation in the third.

I was intrigued by this approach, but I could see two major objections to it. First, I was not happy with the use of frames, which at that time were not supported by many browsers. Also, using frames requires multiple documents; the student would be required to receive at least four files, and load the correct one into the browser, for the system to work. Secondly, Bowers had (as far as I know) no system for creating these pages efficiently; essentially, each had to be coded by hand. My marking program, Markin, is an attempt to overcome these difficulties.

The interface of the program works very much like the word-processor macro toolbar described above, and it will also output the marked essay in the form of a Rich Text Format document which can be viewed in a word-processor, using coloured superscript annotations and underlining to distinguish the marking from the original text. However, the program will also produce output in the form of a Web page. The student’s original text is intact at the beginning of the page. The text contains links, which jump to diagnoses or comments further down the page, as shown in Figure 2. In contrast to Roy Bowers’s frame-based approach, this uses a single Web page, which means that only one document needs to be sent to the student.
Here, the subject-verb agreement error ("my parents was...") becomes a link. When the student clicks on the link, the browser jumps to another part of the document where the error-type is displayed. Comments can be inserted in the same way, and more general feedback can be appended to the essay in colored text, along with a grade. The program automatically compiles a list of each error type and the number of times it has been made, so problem areas are immediately apparent. This gives the instructor a simple way of tracking a student's progress through multiple assignments. The program itself is not unlike a simple word-processor:

![An Example Marked Student Essay: My Early Childhood](image)

The text is marked using a toolbar of buttons similar to that used in Method 3, but this time the buttons can be quickly and easily customized to suit the level of the student and the marking preferences of the instructor. The program compiles the marked essay into a Web page automatically, and as well as the RTF and HTML output, it will also generate a text-only version of the page; this can be used if the student is not able to receive attachments.

When students interact with a document like this, instead of seeing a correction or a diagnosis directly, a two-stage process takes place. First, the presence of a link alerts the student to the fact that something is wrong. She may try to do the diagnosis herself. Then, she may click on the link to confirm her conclusion. The student text itself remains relatively intact and readable (it is not defaced by intrusive annotations) and moving between the text and the
associated annotations and buttons is simply a matter of clicking with the mouse. Besides error diagnoses, three other types of response can be provided for: praise annotations (using the bottom row of buttons), comments (linked to the text), and global feedback at the end of the essay, which can be coded in different colors.

Many other features have been added to the program since its initial development, to enable more rapid and consistent marking. The instructor can maintain a database of “useful text” snippets, which can be inserted into comments or feedback by selecting them from a list. This obviates the need to type out an explanation of a common point or issue repeatedly. Similarly, the instructor may build up a “useful links” database, containing links to useful Web pages; these references can be inserted wherever necessary, so it becomes easy to refer a student to a more detailed explanation of a particular point from the rapidly-expanding range of such resources available on the World Wide Web. Finally, the program is able to compile error statistics from multiple pieces of work, and output the results to a spreadsheet, so it is possible to do quite complex analyses of the work of particular groups of students, or of one student over a period of time.

"This approach has been in use at the University of Victoria for two semesters, and has proved very popular with both instructors and students."

Figure 3

Markin (called Markin32 in its most recent versions)
This approach has been in use at the University of Victoria for several years, and has proved very popular with both instructors and students. However, there are some drawbacks to using a system like this. Because of the limits of hypertext, the same portion of student text cannot be linked to two different responses. Also, the student cannot directly edit the HTML output itself to produce another draft (although she can edit the RTF or text-only versions); to overcome this, with my own students, I usually send back both an HTML version and an RTF version of each marked piece of work. Finally, the student has to be trained to receive an HTML file by e-mail and open it in a browser, and the instructor needs to master the use of the Markin program.

Conclusion

While none of the approaches described above is a perfect solution to the marking problem, all of them offer some improvement over traditional pen-on-paper marking. As education increasingly goes online, and marking electronic texts becomes part of the daily work of an increasing number of instructors, institutions will need to begin evaluating solutions such as these to develop systems and policies which enable the rapid return of electronic documents marked in a clear and helpful fashion. Ultimately, it is likely that large software companies will begin producing expensive commercial products aiming to fill this need. Meanwhile, most of the groundwork is being done by instructors themselves, and the more ideas generated and tested during this stage, the better able we will be to evaluate, and even to influence the development of, such commercial products.2

Works Cited

Fathman, Ann and Elizabeth Whalley. “Teacher response
to student writing: focus on form versus content.”
Kroll 178-190.

Notes

Copyright 1995-1997, The Comenius Group, comenius@interport.net.

The program Markin and macro/toolbar packages for WordPerfect 6.1 and above and MS Word 95 are available for download from: http://www.net-shopper.co.uk/creative/education/languages/martin.

An independent review of a new Windows 9x/NT version of Markin, Markin32, was published by The CALICO Review in May 1998, and can be seen at: http://www.arts.monash.edu.au/others/calico/review/markin.htm.

Martin Holmes is currently a programmer/consultant in the University of Victoria Language Centre. He holds a BA in English, an M.Phil, and the RSA DipTEFLA. He previously taught EFL for 15 years in several countries, and now provides Windows and Web-based programming services to support university language teaching and research.

46