TREATISE ON
INVERTEBRATE PALEONTOLOGY

Prepared under Sponsorship of
The Geological Society of America

The Paleontological Society The Society of Economic Paleontologists and Mineralogists
The Palaeontographical Society The Palaeontological Association

Directed and Edited by
RAYMOND C. MOORE

Part C
PROTISTA 2
SARCODINA
CHIEFLY “THECAMOEBIANS” AND FORAMINIFERIDA

By Alfred R. Loeblich, Jr., and Helen Tappan
with some systematic descriptions of Foraminiferida by R. Wright Barker, W. Storrs Cole, R. C. Douglass, Manfred Reichel, and M. L. Thompson

VOLUME 1

THE GEOLOGICAL SOCIETY OF AMERICA
and
THE UNIVERSITY OF KANSAS PRESS

1964

© 2009 University of Kansas Paleontological Institute
The *Treatise on Invertebrate Paleontology* has been made possible by (1) grants of funds from The Geological Society of America through the bequest of Richard Alexander Fullerton Penrose, Jr., for preparation of illustrations and partial defrayment of organizational expense and the United States National Science Foundation, in December, 1959, for completion of the *Treatise* project; (2) contribution of the knowledge and labor of specialists throughout the world, working in co-operation under sponsorship of The Geological Society of America, The Paleontological Society, The Society of Economic Paleontologists and Mineralogists, The Palaeontographical Society, and The Palaeontological Association; and (3) acceptance by The University of Kansas Press of publication without cost to the Societies concerned and without any financial gain to the Press.
TREATISE ON INVERTEBRATE PALEONTOLOGY

Directed and Edited by
RAYMOND C. MOORE

Assistants: DORIS E. NODINE ZELLER, LAVON McCORMICK, ROGER B. WILLIAMS, SHELIA M. KELSEY

Advisers: AGNES CREAGH (The Geological Society of America, Executive Director), G. ARTHUR COOPER (The Paleontological Society), N. D. NEWELL (The Society of Economic Paleontologists and Mineralogists), C. J. STUBBLEFIELD (The Palaeontographical Society), T. NEVILLE GEORGE (The Palaeontological Association), CLYDE K. HYDER (The University of Kansas Press, Editor).

PARTS

Parts of the Treatise are distinguished by assigned letters with a view to indicating their systematic sequence while allowing publication of units in whatever order each may be made ready for the press. The volumes are cloth-bound with title in gold on the cover. Copies are available on orders sent to the Publication Department of The Geological Society of America at 231 East 46th Street, New York 17, N.Y. The prices quoted very incompletely cover costs of producing and distributing the several volumes, but on receipt of payment the Society will ship copies without additional charge to any address in the world. Special discounts are available to members of sponsoring societies under arrangements made by appropriate officers of these societies, to whom inquiries should be addressed.

VOLUMES ALREADY PUBLISHED
(Previous to 1963)

Part D. PROTISTA 3 (chiefly Radiolaria, Tintinnina), xii+195 p., 1050 fig., 1954.

THIS VOLUME

Part C. PROTISTA 2 (Sarcodina, chiefly "Thecamoebians" and Foraminiferida), xxxi+900 p., 5311 fig., 1964.
VOLUMES IN PREPARATION (1963)

Part A. INTRODUCTION.
Part B. PROTISTA 1 (Chrysomonadida, Coccolithophorida, Charophyta, Diatomacea, etc.).
Part H. BRACHIOPODA.
Part J. MOLLUSCA 2 (Caenogastropoda, Opisthobranchia).
Part K. MOLLUSCA 3 (Cephalopoda General Features, Endoceratoidea, Actinoceratoidea, Nautiloidea, Bactritioidea). [Ready for press.]
Part M. MOLLUSCA 5 (Endocochlia).
Part N. MOLLUSCA 6 (Bivalvia).
Part R. ARTHROPODA 4 (Crustacea, Branchiopoda, Cirripedia, Malacostraca; Myriapoda; Hexapoda).
Part S. ECHINODERMATA 1 (Echinodermata General Features, Carpoidea, Cystoidea, Cyclocystoidea, Paracrinoidea, Eocrinoida, Edrioblastoidea, Blastioidea, Edrioasteroidea).
Part T. ECHINODERMATA 2 (Crinoidea).
Part U. ECHINODERMATA 3 (Echinozoa, Asterozoa).
Part X. ADDENDA, INDEX.

CONTRIBUTING AUTHORS

(Arranged by countries and institutions. Accompanying numbers are for cross reference from alphabetically arranged list, which follows.)

Australia.—Univ. ADELAIDE, (1) M. F. Glaessner; NATIONAL Univ., Canberra, (2) D. A. Brown; Univ. QUEENSLAND, Brisbane, (3) Dorothy Hill; SOUTH AUSTRALIA Geol. Survey, Adelaide, (4) N. H. Ludbrook.

Belgium.—Univ. LIÈGE, (5) Georges Ubaghs; Univ. LOUVAIN, (6) Marius Lecompte.

Denmark.—Univ. COPENHAGEN, (10) Chr. Poulsen, (11) H. W. Rasmussen.

Italy.—Univ. MODENA, (23) Eugenia Montanaro Gallitelli.

Netherlands.—Univ. LEIDEN, (26) H. Boschma, (27) L. B. Holthuis.

Poland.—WARSZAWA Acad. Sci., (37) Gertruda Biernat.

Sweden.—Univ. LUND, (38) Gerhard Regnéll; Univ. STOCKHOLM, (39) Ivar Hessland, (40) R. A. Reyment; UPPSALA Univ., (41) Valdar Jaanusson.

Switzerland.—Univ. BASEL, (42) Manfred Reichel.

United Kingdom.—Univ. BIRMINGHAM, (43) L. J. Wills; BRITISH MUS. (Nat. History), London, (44) Leslie Bairstow, (45) L. R. Cox, (46) Isabella Gordon, (47) S. M. Manton, (48) H. M. Muirwood; BRITISH PETROLEUM Co., Middlesex, (49) F. E. Eames; Univ. CAMBRIDGE, (50) O. M. B. Bulman,

Alphabetical List
(Numbers refer to preceding list arranged by countries and institutions.)
EDITORIAL PREFACE

The aim of the Treatise on Invertebrate Paleontology, as originally conceived and consistently pursued, is to present the most comprehensive and authoritative, yet compact statement of knowledge concerning invertebrate fossil groups that can be formulated by collaboration of competent specialists in seeking to organize what has been learned of this subject up to the mid-point of the present century. Such work has value in providing a most useful summary of the collective results of multitudinous investigations and thus should constitute an indispensable text and reference book for all persons who wish to know about remains of invertebrate organisms preserved in rocks of the earth’s crust. This applies to neozoologists as well as paleozoologists and to beginners in study of fossils as well as to thoroughly trained, long-experienced professional workers, including teachers, stratigraphical geologists, and individuals engaged in research on fossil invertebrates. The making of a reasonably complete inventory of present knowledge of invertebrate paleontology may be expected to yield needed foundation for future research and it is hoped that the Treatise will serve this end.

The Treatise is divided into parts which bear index letters, each except the initial and concluding ones being defined to include designated groups of invertebrates. The chief purpose of this arrangement is to provide for independence of the several parts as regards date of publication, because it is judged desirable to print and distribute each segment as soon as possible after it is ready for press. Pages in each part will bear the assigned index letter joined with numbers beginning with 1 and running consecutively to the end of the part. When the parts ultimately are assembled into volumes, norenumbering of pages and figures is required.

The outline of subjects to be treated in connection with each large group of invertebrates includes (1) description of morphological features, with special reference to hard parts, (2) ontogeny, (3) classification, (4) geological distribution, (5) evolutionary trends and phylogeny, and (6) systematic description of genera, subgenera, and higher taxonomic units. In general, paleoecological aspects of study are omitted or little emphasized because comprehensive treatment of this subject is given in the Treatise on Marine Ecology and Paleoecology (H. S. Ladd, Editor, Geological Society of America, Memoir 67, 1957), prepared under auspices of a committee of the United States National Research Council. A selected list of references is furnished in each part of the Treatise.

Features of style in the taxonomic portions of this work have been fixed by the Editor with aid furnished by advice from the Joint Committee on Invertebrate Paleontology representing the societies which have undertaken to sponsor the Treatise. It is the Editor’s responsibility to consult with authors and co-ordinate their work, seeing that manuscript properly incorporates features of adopted style. Especially he has been called on to formulate policies in respect to many questions of nomenclature and procedure. The subject of family and subfamily names is reviewed briefly in a following section.
of this preface, and features of *Treatise* style in generic descriptions are explained.

In December, 1959, the National Science Foundation of the United States, through its Division of Biological and Medical Sciences and the Program Director for Systematic Biology, made a grant in the amount of $210,000 for the purpose of aiding the completion of yet-unpublished volumes of the *Treatise*. Payment of this sum was provided to be made in installments distributed over a five-year period, with administration of disbursements handled by the University of Kansas. Expenditures planned are primarily for needed assistance to authors and may be arranged through approved institutions located anywhere. Important help for the Director-Editor of the *Treatise* has been made available from the grant, but no part of his stipend comes from it. Grateful acknowledgment to the Foundation is expressed on behalf of the societies sponsoring the *Treatise*, the University of Kansas, and innumerable individuals benefited by the *Treatise* project.

FORM OF ZOOLOGICAL NAMES

Many questions arise in connection with the form of zoological names. These include such matters as adherence to stipulations concerning Latin or Latinized nature of words accepted as zoological names, gender of generic and subgeneric names, nominative or adjectival form of specific names, required endings for some family-group names, and numerous others. Regulation extends to capitalization, treatment of particles belonging to modern proper names, use of neo-Latin letters, and approved methods for converting diacritical marks. The magnitude and complexities of nomenclatural problems surely are enough to warrant the complaint of those who hold that zoology is the study of animals rather than of names applied to them.

CLASSIFICATION OF ZOOLOGICAL NAMES

In accordance with the "Copenhagen Decisions on Zoological Nomenclature" (London, 135 p., 1953), zoological names may be classified usefully in various ways. The subject is summarized here with introduction of designations for some categories which the *Treatise* proposes to distinguish in systematic parts of the text for the purpose of giving readers comprehension of the nature of various names together with authorship and dates attributed to them.

CO-ORDINATE NAMES OF TAXA GROUPS

Five groups of different-rank taxonomic units (termed *taxa*, sing., *taxon*) are discriminated, within each of which names are treated as co-ordinate, being transferable from one category to another without change of authorship or date. These are: (1) species group (subspecies, species); (2) genus group (subgenus, genus); (3) family group (tribe, subfamily, family, superfamily); (4) suprafamilial group (suborder, order, subclass, class, subphylum, phylum). In groups (1), (2), and (3), the author of the first-published valid name for any taxon is held to be the author of all other taxa in the group which are based on the same nominate type and the date of publication for purposes of priority is that of the first-published name. Thus, if author A in 1800 introduced the family name X-idae to include 3 genera, one of which is X-us; and if author B in 1850 divided the 20 genera then included in X-idae into subfamilies called X-inae and Y-inae; and if author C in 1950 combined X-idae with other later-formed families to make a superfamily X-acea (or X-oidea, X-icae, etc.); the author of X-inae, X-idae and X-acea is A, 1800, under the Rules. Because taxonomic concepts introduced by authors B and C along with appropriate names surely are not attributable to author A, some means of recording responsibility of B and C are needed. This is discussed later in explaining use of "nom. transl." Taxa of group (4) are not regulated by the zoological Code (1961); they are discussed later under the heading "Suprafamilial Taxa."

The co-ordinate status of zoological names belonging to the species group is stipulated in Art. 46 of the present Rules; genus group in Art. 43 of the present Rules; family group in Art. 36 of the present Rules.

ORIGINAL AND SUBSEQUENT FORMS OF NAMES

Zoological names may be classified according to form (spelling) given in original publication and employed by subsequent authors. In one group are names which are
entirely identical in original and subsequent usage. Another group comprises names which include with the original subsequently published variants of one sort or another. In this second group, it is important to distinguish names which are inadvertent changes from those constituting intentional emendations, for they have quite different status in nomenclature. Also, among intentional emendations, some are acceptable and some quite unacceptable under the Rules.

VALID AND INVALID NAMES

Valid names. A valid zoological name is one that conforms to all mandatory provisions of the Rules. Such names are divisible into groups as follows: (1) "inviolate names," which as originally published not only meet all mandatory requirements of the Rules but are not subject to any sort of alteration (most generic and subgeneric names); (2) "perfect names," which as they appear in original publication (with or without precise duplication by subsequent authors) meet all mandatory requirements and need no correction of any kind but which nevertheless are legally alterable under present Rules (as in changing the form of ending of a super- or supra- familial name); (3) "imperfect names," which as originally published and with or without subsequent duplication meet mandatory requirements but contain defects such as incorrect gender of an adjectival specific name (for example, Spironema recta instead of Spironemota recta) or incorrect stem or form of ending of a family-group name (for example, Spironemidae instead of Spironematidae); (4) "transferred names," which are derived by valid emendation from either of the 2nd or 3rd groups or from a pre-existing transferred name (as illustrated by change of a family-group name from -inae to -idae or making of a superfamily name); (5) "improved names," which include necessary as well as somewhat arbitrarily made emendations allowable under the Rules for taxonomic categories not now covered by regulations as to name form and alterations that are distinct from changes that distinguish the 4th group (including names derived from the 2nd and 3rd groups and possibly some alterations of 4th group names).

In addition, some zoological names included among those recognized as valid are classifiable in special categories, while at the same time belonging to one or more of the above-listed groups. These chiefly include (7) "substitute names," introduced to replace invalid names such as junior homonyms; and (8) "conserved names," which are names that would have to be rejected by application of the Rules except for saving them in their original or an altered spelling by action of the International Commission on Zoological Nomenclature in exercising its plenary powers to this end. Whenever a name requires replacement, any individual may publish a "new name" for it and the first one so introduced has priority over any others; since newness is temporary and relative, the replacement designation is better called substitute name rather than new name.

It is useful for convenience and brevity of distinction in recording these groups of valid zoological names to introduce Latin designations, following the pattern of nomen nudum, nomen novum, etc. Accordingly, the groups are (1) nomina inviolata (sing., nomen inviolatum, abbr., nom. inviol.); (2) nomina perfecta (sing., nomen perfectum, abbr., nom. perf.); (3) nomina imperfecta (sing., nomen imperfectum, abbr., nom. imperf.); (4) nomina translata (sing., nomen translatum, abbr., nom. transl.); (5) nomina correcta (sing., nomen correctum, abbr., nom. correct.); (6) nomina substituta (sing., nomen substitutum, abbr., nom. subst.); (7) nomina conservata (sing., nomen conservatum, abbr., nom. conserv.).

Invalid names. Invalid zoological names consisting of originally published names that fail to comply with mandatory provisions of the Rules and consisting of inadvertent changes in spelling of names have no status in nomenclature. They are not available as replacement names and they do not preoccupy for purposes of the Law of Homonymy. In addition to nomen nudum, invalid names may be distinguished as follows: (1) "denied names," which consist of originally published names (with or without subsequent duplication) that do not meet mandatory requirements of the Rules; (2) "null names," which comprise unintentional alterations of names; and (3)
"vain or void names," which consist of invalid emendations of previously published valid or invalid names. Void names do have status in nomenclature, being classified as junior synonyms of valid names.

Proposed Latin designations for the indicated kinds of invalid names are as follows: (1) *nomen negatum* (sing., *nomen negatum*, abbr., *nom. neg.*); (2) *nomen nullum* (sing., *nomen nullum*, abbr., *nom. null.*); (3) *nomen vanum* (sing., *nomen vanum*, abbr., *nom. van.*). It is desirable in the *Treatise* to identify invalid names, particularly in view of the fact that many of the names (nom. neg., nom. null.) have been considered incorrectly to be junior objective synonyms (like *nom. van*), which have status in nomenclature.

SUMMARY OF NAME GROUPS

Partly because only in such publications as the *Treatise* is special attention to groups of zoological names called for and partly because new designations are now introduced as means of recording distinctions explicitly as well as compactly, a summary may be useful. In the following tabulation valid groups of names are indicated in boldface type, whereas invalid ones are printed in italics.

Definitions of Name Groups

nomen conservatum (nom. conserv.). Name otherwise unacceptable under application of the Rules which is made valid, either with original or altered spelling, through procedures specified by the zoological Code (1961) or by action of ICZN exercising its plenary powers.

nomen correctum (nom. correct.). Name with intentionally altered spelling of sort required or allowable under the Rules but not dependent on transfer from one taxonomic category to another ("improved name"). (See Code, Arts. 26-b, 27, 29, 30-a-3, 31, 32-c-i, 33-a; in addition, change of endings for categories not now fixed by Rules.)

nomen imperfectum (nom. imperf.). Name that as originally published (with or without subsequent identical spelling) meets all mandatory requirements of the Rules but contains defect needing correction ("imperfect name"). (See Code, Arts. 26-b, 27, 29.)

nomen inviolatum (nom. inviol.). Name that as originally published meets all mandatory requirements of the Rules and also is uncorrectable or alterable in any way ("inviolate name").

nomen negatum (nom. neg.). Name that as originally published (with or without subsequent identical spelling) constitutes invalid original spelling and although possibly meeting all other mandatory requirements of the Rules, is not correctable to establish original authorship and date ("denied name").

nomen nudum (nom. nud.). Name that as originally published (with or without subsequent identical spelling) fails to meet mandatory requirements of the Rules and having no status in nomenclature, is not correctable to establish original authorship and date ("naked name").

nomen nullum (nom. null.). Name consisting of an unintentional alteration in form (spelling) of a previously published name (either valid name, as *nom. inviol.*, *nom. perf.*, *nom. imperf.*, *nom. transl.*, or invalid name, as *nom. neg.*, *nom. nud.*, *nom. van.*, or another *nom. null.*) ("null name").

nomen perfectum (nom. perf.). Name that as originally published meets all mandatory requirements of the Rules and needs no correction of any kind but which nevertheless is validly alterable ("perfect name").

nomen substitutum (nom. subst.). Replacement name published as substitute for an invalid name, such as a junior homonym (equivalent to "new name").

nomen translatum (nom. transl.). Name that is derived by valid emendation of a previously published name as result of transfer from one taxonomic category to another within the group to which it belongs ("transferred name").

nomen vanum (nom. van.). Name consisting of an invalid intentional change in form (spelling) from a previously published name, such invalid emendations having status in nomenclature as junior objective synonyms ("vain or void name").

Except as specified otherwise, zoological names accepted in the *Treatise* may be understood to be classifiable either as *nominina inviolata* or *nominina perfecta* (omitting from notice *nominina correcta* among specific names) and these are not discriminated. Names which are not accepted for one reason or another include junior homonyms, a few senior synonyms classifiable as *nominina negata* or *nominina nuda*, and numerous junior synonyms which include both objective (*nominina vana*) and subjective (all classes of valid names) types; effort to classify the invalid names as completely as possible is intended.

NAME CHANGES IN RELATION TO GROUP CATEGORIES

SPECIFIC AND SUBSPECIFIC NAMES

Detailed consideration of valid emendation of specific and subspecific names is unnecessary here because it is well under-
stood and relatively inconsequential. When the form of adjectival specific names is changed to obtain agreement with the gender of a generic name in transferring a species from one genus to another, it is never needful to label the changed name as a nom. transl. Likewise, transliteration of a letter accompanied by a diacritical mark in manner now called for by the Rules (as in changing originally published broeggeri to broeggeri) or elimination of a hyphen (as in changing originally published cornuoryx to cornuoryx) does not require "nom. correct." with it.

GENERIC AND SUBGENERIC NAMES

So rare are conditions warranting change of the originally published valid form of generic and subgeneric names that lengthy discussion may be omitted. Only elimination of diacritical marks of some names in this category seems to furnish basis for valid emendation. It is true that many changes of generic and subgeneric names have been published, but virtually all of these are either nomina vana or nomina nulla. Various names which formerly were classed as homonyms are not now, for two names that differ only by a single letter (or in original publication by presence or absence of a diacritical mark) are construed to be entirely distinct.

Examples in use of classificatory designations for generic names as previously given are the following, which also illustrate designation of type-species, as explained later.

Kurnatiophyllum Thompson, 1875 [*K. concentricum; SD Gregory, 1917*] (=Kurnatiophyllum Thompson, 1876 (nom. null.); Cymatophyllum Thompson, 1901 (nom. van.); Cymatophyllum Lang, Smith & Thomas, 1940 (nom. van.)).

Stichophyuma Pomet, 1872 [*Manon turbinatum Römer, 1841; SD Rauff, 1893*] (Stichophyuma Vosmaer, 1885 (nom. null.); Stichophyuma Moret, 1924 (nom. null.)).

Stratophyllum Smyth, 1933 [*S. tenue*] (=Ethmosoplax Smyth, 1939 (nom. van. pro Stratophyllum); Stratophyllum Lang, Smith & Thomas, 1940 (nom. van. pro Stratophyllum Smyth) (non Stratophyllum Scheffen, 1933)).

Placotelia Oppilger, 1907 [*Porostoma marconi Fromentel, 1859; SD deLaubenfels, herein*] (=Plakotelia Oppilger, 1907 (nom. neg.)).

Walcotella deLaub., nom. subst., 1955 [pro Rha­palicus Schramm, 1936 (nom Förster, 1856)].

Cyrtoptopus Carruthers, 1867 [nom. correct.] Lapworth, 1873 (pro Cyrtoptopus Carruthers, (1867), nom. conserv. proposed Bulman, 1955 (ICZN pend.)).

FAMILY-GROUP NAMES; USE OF "NOM. TRANSL."

The Rules now specify the form of endings only for subfamily (-inae) and family (-idae) but the Code defines all family-group assemblages (taxa) as co-ordinate, signifying that for purposes of priority a name published for a unit in any category and based on a particular type-genus shall date from its original publication for a unit in any category, retaining this priority (and authorship) when the unit is treated as belonging to a lower or higher category. By exclusion of -inae and -idae, respectively reserved for subfamily and family, the endings of names used for tribes and superfamilies must be unspecified different letter combinations. These, if introduced subsequent to designation of a subfamily or family based on the same nominate genus, are nomina translata, as is also a subfamily that is elevated to family rank or a family reduced to subfamily rank. In the Treatise it is desirable to distinguish the valid emendation comprised in the changed ending of each transferred family group name by the abbreviation "nom. transl." and record of the author and date belonging to this emendation. This is particularly important in the case of superfamilies, for it is the author who introduced this taxon that one wishes to know about rather than the author of the superfamily as defined by the Rules, for the latter is merely the individual who first defined some lower-rank family-group taxon that contains the nominate genus of the superfamily. The publication of the author containing introduction of the superfamily nomen translatum is likely to furnish the information on taxonomic considerations that support definition of the unit. Examples of the use of "nom. transl." are the following.

Subfamily STYLININAE d'Orbigny, 1851

[nom. transl. Edwards & Hame, 1857 (ex Stylinidae d'Orbigny, 1851)]

Superfamily ARCHAEOCTONOIDEA

Petrunkevitch, 1949

[nom. transl. Petrunkevitch, 1955 (ex Archaeoctonidae Petrunkevitch, 1949)]
Superfamily CRIOCERATTACEAE Hyatt, 1900
[nom. transl. Wright, 1952 (ex Crioceratitidae Hyatt, 1900)]

FAMILY-GROUP NAMES; USE OF "NOM. CORRECT."

Valid emendations classed as nomina correcta do not depend on transfer from one category of family-group units to another but most commonly involve correction of the stem of the nominate genus; in addition, they include somewhat arbitrarily chosen modification of ending for names of tribe or superfamily. Examples of the use of "nom. correct." are the following.

Family STREPTELASMATIDAE Nicholson, 1889
[nom. correct. Wedekind, 1927 (ex Strepotelasmidae Nicholson, 1889, nom. imperf.)]

Family PALAEOSCORPIIDAE Lehmann, 1944
[nom. correct. Petrunkevitch, 1955 (ex Palaeoscorpionidae Lehmann, 1944, nom. imperf.])

Family AGLASPIDIDAE Miller, 1877
[nom. correct. Stormer, 1959 (ex Aglaspididae Miller, 1877, nom. imperf.)]

Superfamily AGARICICAE Gray, 1847
[nom. correct. Wells, 1956 (ex Agaricicidae Vaughan & Wells, 1943, nom. transl. ex Agaricicidae Gray, 1847)]

FAMILY-GROUP NAMES; USE OF "NOM. CONSERV."

It may happen that long-used family-group names are invalid under strict application of the Rules. In order to retain the otherwise invalid name, appeal to ICZN is needful. Examples of use of nom. conserv. in this connection, as cited in the Treatise, are the following.

Family ARIETITIDAE Hyatt, 1874
[nom. correct. Haug, 1885 (pro Arietidae Hyatt, 1875) nom. conserv. proposed Arkell, 1955 (ICZN pend.)]

Family STEPHANOCERATIDAE Neumayr, 1875
[nom. correct. Fischer, 1882 (pro Stephanoceratinen Neumayr, 1875, invalid vernacular name), nom. conserv. proposed Arkell, 1955 (ICZN pend.)]

FAMILY-GROUP NAMES; REPLACEMENTS

Family-group names are formed by adding letter combinations (prescribed for family and subfamily but not now for others) to the stem of the name belonging to genus (nominate genus) first chosen as type of the assemblage. The type-genus need not be the oldest in terms of receiving its name and definition, but it must be the first-published as name-giver to a family-group taxon among all those included. Once fixed, the family-group name remains tied to the nominate genus even if its name is changed by reason of status as a junior homonym or junior synonym, either objective or subjective. According to the Zoological Code, the family-group name requires replacement only in the event that the nominate genus is found to be a junior homonym, and then a substitute family-group name is accepted if it is formed from the oldest available substitute name for the nominate genus. Authorship and date attributed to the replacement family-group name are determined by first publication of the changed family-group name.

The aim of family-group nomenclature is greatest possible stability and uniformity, just as in case of other zoological names. Experience indicates the wisdom of sustaining family-group names based on junior subjective synonyms if they have priority of publication, for opinions of different workers as to the synonymy of generic names founded on different type-species may not agree and opinions of the same worker may alter from time to time. The retention similarly of first-published family-group names which are found to be based on junior objective synonyms is less clearly desirable, especially if a replacement name derived from the senior objective synonym has been recognized very long and widely. To displace a much-used family-group name based on the senior objective synonym by disinterring a forgotten and virtually unused family-group name based on a junior objective synonym because the latter happens to have priority of publication is unsettling. Conversely, a long-used family-group name founded on a junior objective synonym and having priority of publication is better continued in nomenclature than a replacement name based on the senior objective synonym.

Replacement of a family-group name may be needed if the former nominate genus is transferred to another family-group. Then the first-published name-giver of a family-group assemblage in the remnant taxon is to be recognized in forming a replacement name.
FAMILY-GROUP NAMES; AUTHORSHIP AND DATE

All family-group taxa having names based on the same type-genus are attributed to the author who first published the name for any of these assemblages, whether tribe, subfamily, or family (superfamily being almost inevitably a later-conceived taxon). Accordingly, if a family is divided into subfamilies or a subfamily into tribes, the name of no such subfamily or tribe can antedate the family name. Also, every family containing differentiated subfamilies must have a nominate (sensu stricto) subfamily, which is based on the same type genus as that for the family, and the author and date set down for the nominate subfamily invariably are identical with those of the family, without reference as to whether the author of the family or some subsequent author introduced subdivisions.

Changes in the form of family-group names of the sort constituting nomina correcta, as previously discussed, do not affect authorship and date of the taxon concerned, but in publications such as the Treatise it is desirable to record the authorship and date of the correction.

SUPRAFAMILIAL TAXA

International rules of zoological nomenclature as given in the Code (1961) are limited to stipulations affecting lower-rank categories (infrasubspecies to superfamily). Suprafamilial categories (suborder to phylum) are either unmentioned or explicitly placed outside of the application of zoological rules. The Copenhagen Decisions on Zoological Nomenclature (1953, Arts. 59-69) proposed to adopt rules for naming suborders and higher taxonomic divisions up to and including phylum, with provision for designating a type-genus for each, hopefully in such manner as not to interfere with the taxonomic freedom of workers. Procedures for applying the Law of Priority and Law of Homonymy to suprafamilial taxa were outlined and for dealing with the names for such units and their authorship, with assigned dates, when they should be transferred on taxonomic grounds from one rank to another. The adoption of terminations of names, different for each category but uniform within each, was recommended.

The Colloquium on zoological nomenclature which met in London during the week just before the XVth International Congress of Zoology convened in 1958 thoroughly discussed the proposals for regulating suprafamilial nomenclature, as well as many others advocated for inclusion in the new Code or recommended for exclusion from it. A decision which was supported by a wide majority of the participants in the Colloquium was against the establishment of rules for naming taxa above family-group rank, mainly because it was judged that such regulation would unwisely tie the hands of taxonomists. For example, if a class or order was defined by some author at a given date, using chosen morphologic characters (e.g., gills of pelecypods), this should not be allowed to freeze nomenclature, taking precedence over another later-proposed class or order distinguished by different characters (e.g., hinge-teeth of pelecypods). Even the fixing of type-genera for suprafamilial taxa might have small value, if any, hindering taxonomic work rather than aiding it. At all events, no legal basis for establishing such types and for naming these taxa has yet been provided.

The considerations just stated do not prevent the editor of the Treatise from making "rules" for dealing with suprafamilial groups of animals described and illustrated in this publication. At least a degree of uniform policy is thought to be needed, especially for the guidance of Treatise-contributing authors. This policy should accord with recognized general practice among zoologists, but where general practice is indeterminate or nonexistent our own procedure in suprafamilial nomenclature needs to be specified as clearly as possible. This pertains especially to decisions about names themselves, about citation of authors and dates, and about treatment of suprafamilial taxa which on taxonomic grounds are changed from their originally assigned rank. Accordingly, a few "rules" expressing Treatise policy are given here, some with examples of their application.

(1) The name of any suprafamilial taxon must be a Latin or latinized uninominal noun of plural form, or treated as such, (a) with a capital initial letter, (b) without diaecritical mark, apostrophe, diaeresis, or hyphen, and (c) if component consisting of a
numeral, numerical adjective, or adverb is used, this must be written in full (e.g., Stethostomata, Trionychi, Septemchitonina, Scorpiones, Subselliflorae). No uniformity in choice of ending for taxa of a given rank is demanded (e.g., orders named Gorgonacea, Milleporina, Rugosa, Scleractinia, Stromatoporoidea, Phalangida).

(2) Names of suprafamilial taxa may be constructed in almost any way, (a) intended to indicate morphological attributes (e.g., Lamellibranchiata, Cyclostomata, Toxoglossa), (b) based on the stem of an included genus (e.g., Bellerophontina, Nautilida, Fungiina), or (c) arbitrary combinations of letters, (e.g., Yuania), but none of these can be allowed to end in -idae or -inae, reserved for family-group taxa. A class or subclass (e.g., Nautiloidea), order (e.g., Nautilida), or suborder (e.g., Nautilina) named from the stem of an included genus may be presumed to have that genus (e.g., Nautilus) as its objective type. No suprafamilial name identical in form to that of a genus or to another published suprafamilial name should be employed (e.g., order Decapoda Latreille, 1803, crustacean, and order Decapoda Leach, 1818, cephalopods; subclass Chonetoidea Muir-Wood, 1955, and genus Chonetoidea Jones, 1928). Worthy of notice is the classificatory and nomenclatural distinction between suprafamilial and family-group taxa which respectively are named from the same type-genus, since one is not considered to be transferable to the other (e.g., suborder Bellerophontina Ulrich & Scofield, 1897; superfamily Bellerophontacea M'Coy, 1851; family Bellerophontidae M'Coy, 1851).

(3) The Laws of Priority and Homonymy lack any force of international agreement as applied to suprafamilial names, yet in the interest of nomenclatural stability and the avoidance of confusion these laws are widely accepted by zoologists above the family-group level wherever they do not infringe on taxonomic freedom and long-established usage. Authors who accept priority as a determinant in nomenclature of a suprafamilial taxon may change its assigned rank at will, with or without modifying the terminal letters of the name, but such change(s) cannot rationally be judged to alter the authorship and date of the taxon as published originally. (a) A name revised from its previously published rank is a "transferred name" (nom. transl.), as illustrated in the following.

Order CORYNEXOCHIDA Kobayashi, 1935
[nom. transl. Moore, 1955 (ex suborder Corynexochida Kobayashi, 1935)]

(b) A name revised from its previously published form merely by adoption of a different termination, without changing taxonomic rank, is an "altered name" (nom. correct.). Examples follow.

Order DISPARIDA Moore & Laudon, 1943
[nom. correct. Moore, 1952 (pro order Disparata Moore & Laudon, 1943)]

Suborder AGNOSTINA Salter, 1864
[nom. correct. Harrington & Leanza, 1957 (pro suborder Agnostiina Salter, 1864)]

(c) A suprafamilial name revised from its previously published rank with accompanying change of termination (which may or may not be intended to signalize the change of rank) is construed to be primarily a nom. transl. (compare change of ending for family-group taxa -idae to -inae, or vice versa, and to superfamily) but if desired it could be recorded as nom. transl. et correct.

Order ORTHIDA Schuchert & Cooper, 1931
[nom. correct. Moore, 1952 (ex suborder Orthoidea Schuchert & Cooper, 1931)]

(5) The authorship and date of nominate subordinate and superordinate taxa among suprafamilial taxa are considered in the Treatise to be identical since each actually or potentially has the same type. Examples are given below.

Order ENDOCERIDA Teichert, 1933
[nom. correct. Teichert, 1963 (pro order Endoceroidea Teichert, 1933)]

Suborder ENDOCERINA Teichert, 1933
[nom. correct. Teichert, 1963 (pro suborder Endoceracea Schindewolf, 1935, nom. transl. ex order Endoceroidea Teichert, 1933)]

Subclass ENDOCERATOIDEA Teichert, 1933
[nom. transl. Teichert, 1963 (ex superorder Endoceratoidea Shimanskiy & Zhuravleva, 1961, nom. transl. ex order Endoceroidea Teichert, 1933)]

(6) A suprafamilial taxon may or may not contain a family-group taxon or taxa having the same type-genus, and if it does, the respective suprafamilial and family-group taxa may or may not be nominate (having names with the same stem). The zoological Code (Art. 61) affirms that
“each taxon [of any rank] has, actually or potentially, its type.” Taxa above the family-group level which may be designated as having the same type-genus (such designations not being stipulated or recognized by any articles of the zoological Code) are considered to have identical authorship and date if the stem of names employed is the same (illustrated in preceding paragraph), but otherwise their authorship and date are accepted as various. Examples showing both suprafamilial and familial taxa in a group of spiders follow.

Class ARACHNIDA Lamarck, 1801
[nom. correct. Newport, 1830 (pro class—not family—Arachnidae Lamarck, 1801) (type, Araneus Clerck, 1757, validated ICZN, 1948)]

Subclass CAULOOSTRA Pocock, 1893
[type, Araneus Clerck, 1757]

Superorder LABELLATA Petrunkevitch, 1949
[type, Araneus Clerck, 1757]

Order ARANEIDA Clerck, 1757
[nom. correct. Dallas, 1864 (pro Araneidea Blackwall, 1861, pro Araneidae Latreille, 1801, pro Aranei Clerck, 1757, validated ICZN, 1948) (type, Araneus Clerck, 1757)]

Suborder DIPNEUMONINA Latreille, 1817
[nom. correct. Petrunkevitch, 1955 (pro Dipneumones Latreille, 1817) (type, Araneus Clerck, 1757)]

Division TRIONYCHI Petrunkevitch, 1933
[type, Araneus Clerck, 1757]

Superfamily ARANEOIDEA Leach, 1815
[nom. transl. Petrunkevitch, 1955 (ex Araneides Leach, 1815) (type, Araneus Clerck, 1757)]

Family ARANEOIDEAE Leach, 1815
[nom. correct. Petrunkevitch, 1955 (pro Araneideae Leach, 1815, pro Araneidae Leach, 1815) (type, Araneus Clerck, 1757)]

Subfamily ARANEINAE Leach, 1815
[nom. transl. Simon, 1892 (ex Araneideae Leach, 1815) (type, Araneus Clerck, 1757)]

TAXONOMIC EMENDATION

Emendation has two measurably distinct aspects as regards zoological nomenclature. These embrace (1) alteration of a name itself in various ways for various reasons, as has been reviewed, and (2) alteration of taxonomic scope or concept in application of a given zoological name, whatever its hierarchical rank. The latter type of emendation primarily concerns classification and inherently is not associated with change of name, whereas the other type introduces change of name without necessary expansion, restriction, or other modification in applying the name. Little attention generally has been paid to this distinction in spite of its significance.

Most zoologists, including paleozoologists, who have signified emendation of zoological names refer to what they consider a material change in application of the name such as may be expressed by an importantly altered diagnosis of the assemblage covered by the name. The abbreviation "emend." then may accompany the name, with statement of the author and date of the emendation. On the other hand, a multitude of workers concerned with systematic zoology think that publication of "emend." with a zoological name is valueless, because more or less alteration of taxonomic sort is introduced whenever a subspecies, species, genus, or other assemblage of animals is incorporated under or removed from the coverage of a given zoological name. Inevitably associated with such classificatory expansions and restrictions is some degree of emendation affecting diagnosis. Granting this, still it is true that now and then somewhat radical revisions are put forward, generally with published statement of reasons for changing the application of a name. To erect a signpost at such points of most significant change is worthwhile, both as aid to subsequent workers in taking account of the altered nomenclatural usage and as indication that not-to-be-overlooked discussion may be found at a particular place in the literature. Authors of contributions to the Treatise are encouraged to include records of all specially noteworthy emendations of this nature, using the abbreviation "emend." with the name to which it refers and citing the author and date of the emendation.

In Part G (Bryozoa) and Part D (Proforma 3) of the Treatise, the abbreviation "emend." is employed to record various sorts of name emendations, thus conflicting with usage of "emend." for change in taxonomic application of a name without alteration of the name itself. This is objectionable. In Part E (Arachnoidea, Porifera) and later-issued divisions of the Treatise, use of "emend." is restricted to its customary sense, that is, significant alteration in taxonomic scope of a name such as calls for noteworthy modifications of a diagnosis. Other means of designating emendations that relate to form of a name are introduced.
STYLE IN GENERIC DESCRIPTIONS

CITATION OF TYPE-SPECIES

The name of the type-species of each genus and subgenus is given next following the generic name with its accompanying author and date, or after entries needed for definition of the name if it is involved in homonymy. The originally published combination of generic and trivial names for this species is cited, accompanied by an asterisk (*), with notation of the author and date of original publication. An exception in this procedure is made, however, if the species was first published in the same paper and by the same author as that containing definition of the genus which it serves as type; in such case, the initial letter of the generic name followed by the trivial name is given without repeating the name of the author and date, for this saves needed space. Examples of these two sorts of citations are as follows:

Diplotrypa Nicholson, 1879 [*Favosites petropolitanus PANDER, 1830].
Chainodictyon Foerste, 1887 [*C. laxum].

If the cited type-species is a junior synonym of some other species, the name of this latter also is given, as follows:

Acervularia Schweigger, 1819 [*A. baltica (=*Madrepora ananas LINNÉ, 1758)].

It is judged desirable to record the manner of establishing the type-species, whether by original designation or by subsequent designation.

Fixation of type-species originally. The type-species of a genus or subgenus, according to provisions of the Rules, may be fixed in various ways originally (that is, in the publication containing first proposal of the generic name) or it may be fixed in specified ways subsequent to the original publication. Fixation of a type-species originally may be classified as automatic if the new genus was introduced for a single species (monotypy), or if the names of species referred to the genus are objectively synonymous. In addition, fixation of a type-species originally may be established in several ways by original designation, as by explicit statement given by an author, by use of typus or typicus as a new specific name, and by absolute tautonymy (e.g., Mesolobus mesolobus). According to convention adopted in the Treatise, the absence of indication as to the manner of fixing the type-species is to be understood as signifying fixation of the type-species in one way or another originally. Where an author wishes to specify the mode of original fixation, however, this may be done by such abbreviations as “M” (monotypy), “OS” (objective synonymy), and “OD” (original designation), the first- and last-mentioned being most common and the other very rare.

Fixation of type-species subsequently. The type-species of many genera are not determinable from the publication in which the generic name was introduced and therefore such genera can acquire a type-species only by some manner of subsequent designation. Most commonly this is established by publishing a statement naming as type-species one of the species originally included in the genus, and in the Treatise fixation of the type-species in this manner is indicated by the letters “SD” accompanied by the name of the subsequent author (who may be the same person as the original author) and the date of publishing the subsequent designation. Some genera, as first described and named, included no mentioned species and these necessarily lack a type-species until a date subsequent to that of the original publication when one or more species are assigned to such a genus. If only a single species is thus assigned, it automatically becomes the type-species and in the Treatise this subsequent monotypy is indicated by the letters “SM.” Of course, the first publication containing assignment of species to the genus which originally lacked any included species is the one concerned in fixation of the type-species, and if this named 2 or more species as belonging to the genus but did not designate a type-species, then a later “SD” designation is necessary. Examples of the use of “SD” and “SM” as employed in the Treatise follow.

Hexagonaria Gürich, 1896 [*Cyathophyllum hexagonum Goldfuss, 1826; SD LANG, SMITH & THOMAS, 1940].
Muriceides Studer, 1887 [*M. fragilis WRIGHT & STUDER, 1889; SM WRIGHT & STUDER, 1889].

Another mode of fixing the type-species of a genus that may be construed as a special sort of subsequent designation is action of
the International Commission on Zoological Nomenclature using its plenary powers. Definition in this way may set aside application of the Rules so as to arrive at a decision considered to be in the best interest of continuity and stability of zoological nomenclature. When made, it is binding and commonly is cited in the Treatise by the letters "ICZN," accompanied by the date of announced decision and (generally) reference to the appropriate numbered Opinion.

HOMONYMS

Most generic names are distinct from all others and are indicated without ambiguity by citing their originally published spelling accompanied by name of the author and date of first publication. If the same generic name has been applied to 2 or more distinct taxonomic units, however, it is necessary to differentiate such homonyms, and this calls for distinction between junior homonyms and senior homonyms. Because a junior homonym is invalid, it must be replaced by some other name. For example, *Callopora* Hall, 1851, introduced for Paleozoic trepostome bryozoans, is invalid because Gray in 1848 published the same name for Cretaceous-to-Recent cheilostome bryozoans, and Bassler in 1911 introduced the new name *Hallopora* to replace Hall's homonym. The Treatise style of entry is:

Hallopora Bassler, 1911, nom. subst. [pro Callopora Hall, 1851 (non Gray, 1848)].

In like manner, a needed replacement generic name may be introduced in the Treatise (even though first publication of generic names otherwise in this work is avoided). The requirement that an exact bibliographic reference must be given for the replaced name commonly can be met in the Treatise by citing a publication recorded in the list of references, using its assigned index number, as shown in the following example.

Mysterium Delaubenfels, nom. subst. [pro Mys trium Schrammen, 1936 (ref. 40, p. 60) (non Roger, 1862)] [*Mystrium porosum Schram men, 1936]*.

For some replaced homonyms, a footnote reference to the literature is necessary. A senior homonym is valid, and in so far as the Treatise is concerned, such names are handled according to whether the junior homonym belongs to the same major taxonomic division (class or phylum) as the senior homonym or to some other; in the former instance, the author and date of the junior homonym are cited as:

Diplophyllum Hall, 1851 [non Soshkina, 1939] [*D. caespitosum*].

Otherwise, no mention of the existence of a junior homonym generally is made.

Homonyms by misidentification. When an author uses a generic name for species not congeneric with the type-species, it is needful to record the misuse of the generic name, even though this is only determinable subjectively. In the Treatise homonyms by misidentification are cited in synonymies as illustrated in the following example.

Asmusia Pacht, 1849 [*A. membranacea*] [⇐*Posidonomya* Pacht, 1852 (non Bronn, 1834); *Estheria* Jones, 1856 (non Robineau-Desvoidy, 1830; nec Rueppell, 1837)].

Synonymic homonyms. An author sometimes publishes a generic name in two or more papers of different date, each of which indicates that the name is new. This is a bothersome source of errors for later workers who are unaware that a supposed first publication which they have in hand is not actually the original one. Although the names were separately published, they are identical and therefore definable as homonyms; at the same time they are absolute synonyms. For the guidance of all concerned, it seems desirable to record such names as synonymic homonyms and in the Treatise the junior one of these is indicated by the abbreviation "jr. syn. hom."

Identical family-group names not infrequently are published as new names by different authors, the author of the later-introduced name being ignorant of previous publication(s) by one or more other workers. In spite of differences in taxonomic concepts as indicated by diagnoses and grouping of genera and possibly in assigned rank, these family-group taxa are nomenclatural homonyms, based on the same type-genus, and they are also synonyms. Wherever encountered, such synonymic homonyms are
SYNONYMS

Citation of synonyms is given next following record of the type-species and if 2 or more synonyms of differing date are recognized, these are arranged in chronological order. Objective synonyms are indicated by accompanying designation "(obj.)," others being understood to constitute subjective synonyms. Examples showing Treatise style in listing synonyms follow.

Calapocia Billings, 1865 [*C. anticosensis; SD Lindström, 1883] [=Columnopora Nicholson, 1874; Houghtonia Rominger, 1876].

Staurocycla Haeckel, 1882 [*S. cruciata Haeckel, 1887] [=Coccostaurus Haeckel, 1882 (obj.); Phacostaurus Haeckel, 1887 (obj.)].

A synonym which also constitutes a homonym is recorded as follows:

Lyopora Nicholson & Etheridge, 1878 [*Palaeopora? favosa M'Coy, 1850] [=Liopora Lang, Smith & Thomas, 1940 (non Girty, 1915)].

ABBREVIATIONS

Abbreviations used in this division of the Treatise are explained in the following alphabetically arranged list.

Aalen., Aalenian
aff., affinis (related to)
Afghan., Afghanistan
Afr., Africa, -an
aggl., agglutinated
Ala., Alabama
Alb., Albanian
Alg., Algeria
Am., America, -n
apert., apertural
append., appendix
approx., approximately
Apt., Aptian
Aquitain., Aquitanian
Arch., Archipelago
Arct., Arctic
aren., arenaceous
Ariz., Arizona
Ark., Arkansas
art., article
Artinsk., Artinskian
AsiaM., Asia Minor
ASSR, Azerbaijan Soviet Socialist Republic
Atl., Atlantic
auct., auctorum (of authors)
Aust., Austria
Auvers., Auversian
av., average
Avon., Avonian
Bajoc., Bajocian
Baluch., Baluchistan
Barrem., Barremian
Barton., Bartonian
Bathon., Bathonian
Bav., Bavaria
B.C., British Columbia
Belg., Belgium, Belgique
BMNH, British Museum (Natural History)
Boh., Bohemia
Br. Hond., British Honduras
Br.I., Brit.I., British Isles
Brit., Britain, British
Bulg., Bulgaria
Burdigal., Burdigalian
C, Centigrade
C., Central
calc., calcareous
Calif., California
Callov., Callovian
C.Am., Central America
Cam., Cambridian
Campan., Campanian
Can., Canada
Caradoc., Caradocian
Carb., Carboniferous
Carib., Caribbean
Carn., Carnian
Carp., Carpath., Carpathians
Cat., Catalog
Cenoman., Cenomanian
cf., confer (compare)
Chatt., Chattian
cm., centimeter
Coll., Collection
Colom., Colombia
Conic., Coniacian
cosmop., cosmopolitan
Cr., Creek
Cret., Cretaceous
C.Z., Canal Zone
Czech., Czechoslovakia
Dan., Danian
Denm., Denmark
Dept., Department
Dev., Devonian
diagram., diagrammatic
diam., diameter
Distr., District
Dordon., Dordonian
E., East
Ecuad., Ecuador
ed., edition, editor
e.g., exempli gratia (for example)
emend., emendatus (-a)
Eng., England
Eoc., Eocene
Equat., Equatorial
equiv., equivalent
err., errore (by error)
Est., Estonia
et al., et alii (and others, persons)
etc., et cetera (and others, objects)
Eu., Europe
Exped., Expedition

© 2009 University of Kansas Paleontological Institute
REFERENCES TO LITERATURE

Each part of the Treatise is accompanied by a selected list of references to palaeontological literature consisting primarily of recent and comprehensive monographs available but also including some older works recognized as outstanding in importance. The purpose of giving these references is to aid users of the Treatise in finding detailed descriptions and illustrations of morphological features of fossil groups, discussions of classifications and distribution, and especially citations of more or less voluminous literature. Generally speaking, publications listed in the Treatise are not original sources of information concerning taxonomic units of various rank but they tell the student where he may find them; otherwise it is necessary to turn to such aids as the Zoological Record or Neave’s Nomenclator Zoologicus. References given in the Treatise are arranged alphabetically by authors and accompanied by index numbers which serve the purpose of permitting citation most concisely in various parts of the text; these citations of listed papers are enclosed invariably in parentheses and except in Part C, are distinguishable from dates because the index numbers comprise no more than 3 digits. The systematic descriptions given in Part C are accompanied by a reference list containing more than 2,000 entries; the index numbers for them are marked by an asterisk.

The following is a statement of the full names of serial publications which are cited in abbreviated form in the Treatise lists of references. The information thus provided should be useful in library research work. The list is alphabetized according to the serial titles which were employed at the time of original publication. Those following in brackets are those under which the publication may be found currently in the Union List of Serials, the United States Library of Congress listing, and most library card catalogues. The names of serials published in Cyrillic are transliterated; in the reference lists these titles, which may be abbreviated, are accompanied by transliterated authors’ names and titles, with English translation of the title. The place of publication is added (if not included in the serial title).

List of Serial Publications

[Académie Impériale de Metz, Mémoires. Metz.]

Académie Impériale des Sciences de St. Pétersbourg, Mémoires [Akademiya Nauk SSSR, Leningrad].

Académie des Sciences URSS, Comptes Rendus [Akademiya Nauk SSSR, Leningrad].

Academy of Natural Sciences of Philadelphia, Proceedings.

Accademia Gioenia delle Scienze Naturali di Catania, Bollettino. Sicily.

[Accademia dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. Memorie. Roma.]

1 R. or K. preceding a serial title stands for all forms meaning royal, imperial, e.g., Royale, Reale, Königliche, Kaiserliche, Kongelig, etc.
Hamburg Geologisches Staatsinstitut, Mitteilungen. Hamburgische Wissenschaftliche Anstalten, Jarh­buch.
Harvard University, Museum of Comparative Zoology, Bulletins; Memoirs; Breviora. Cambridge, Mass.
Hessisches Landesamt für Bodenforschung, Notiz­blatt; Abhandlungen. Wiesbaden.
Hiroshima University, Journal of Science.
Hokkaido University, Journal of the Faculty of Science.
Imperial Academy [of Japan], Proceedings. Tokyo.
India, Geological Survey of, Bulletins; Records; Memoirs (Palaeontology Indica). Calcutta.
India, National Institute of Sciences, Proceedings. New Delhi.
Indiana Department of Conservation, Geological Survey, Bulletins. Bloomington, Ind.
Ingenieur in Nederlandsch-Indie, Mijnbouw Ge­ologie. Bandeong.
Institut d'Egypte, Bulletin. Cairo.
Institut Genévois, Mémoires. Genève.
Institut Royal des Sciences Naturelles de Belgique; Bulletin; Mémorie (see Musée Royal d'Histoire Naturelle de Belgique).
Instituto Geológico y Minero de España, Boletín; Memorias; Notas y Comunicaciones. Madrid.
Iowa, State University of, Laboratory of Natural History, Bulletins; University of Iowa Studies (in Natural History). Iowa City, Iowa.
Johns Hopkins University, Studies in Geology. Balt­imore, Md.
Journal of Geology. Chicago.
Kansas, University of, Paleontological Contributions, Articles. Lawrence.
Kieler Meeresforschungen. Kiel.
Kommission für Untersuchungen der Deutschen Meere in Kiel, Jahresberichte.
Kyushu University Faculty of Science, Memoirs. Fukuoka.
Laboratoire Maritime de Dinard, Bulletin.
Linnean Society of London, Transactions.
Linnean Society of New South Wales, Proceedings. Sydney.
Lund Universitet, Årsskrift.
Lvovskogo Geologicheskogo Obshchestva pri Gos­sudarstvennom Universitete im Ivana Franko, Trudy. Lvov.
Lyon Faculté des Sciences, Laboratoire de Géologie, Travaux. Lyon.
Lyon, Université de, Annales.
Materialy po Geologii Poleznym Iskopаемым Azo­vo-Chernomorskye Upravlenie, Moskva.
Materialy po Istorii Fauny i Flory Kazakhstana. Alma Ata.
Meddelelser om Grønland (Kommissionen Viden­skeabelige Undersøgelser i Grønland). København.
México Universidad Nacional, Paleontología Méxi­cana; Instituto de Geología Boletín. México, D.F.
Michigan, University of, Museum of Paleontology, Contributions. Ann Arbor.
Missouri Geological Survey and Water Resources, Bulletins; Reports of Investigations. Rolla.
Missouri, University of, Technical Series Bulletins. Columbia.
Moskovskogo Obschestvo Ispytateley Prirody (So­ciété Impériale des Naturalistes de Moscou, Bulletin).
Musée royal d'Histoire naturelle de Belgique, Mémoires; Bulletin. Bruxelles.
Museo de Historia Natural de Mendoza, Revista.
Museo Libico di Storia Naturale, Annali. Tripoli.
Napoli, Università di, Museo Zoologico, Annuario. Napoli.
National Academy of Science (see United States).
National Research Institute of Geology (see Chi­nese).
Natural History Review. London.
Natural History Society of New Brunswick, Bulle­tin. St. John.
Naturforschende Gesellschaft in Basel, Verhand­lungen.

XXV
Revue de Zoologie et de Botanique Africaines, Bruxelles.
Rivista Italiana di Paleontologia, Parma.
Rivista Italiana di Paleontologia e Stratigrafia, Milano.
Rivista Italiana di Scienze Naturali, Bollettino, Siena.
Royal Irish Academy, Proceedings, Dublin.
Royal Society of Canada, Transactions, Ottawa.
Royal Society of London, Philosophical Transactions, Series A; Series B.
Royal Society of New Zealand, Transactions and Proceedings, Dunedin.
Royal Society of South Australia, Transactions; Memoirs; Proceedings, Adelaide.
Royal Society of Victoria, Proceedings, Melbourne.
Russische-Kaiserliche mineralogische Gesellschaft zu St. Petersburg, Verhandlungen [Vserossiyskoi Mineralogicheskoi Obshchestvo, Leningrad].
Saigon, Université de, Annales de la Faculté des Sciences, Saigon.
Saitama University [Japan], Science Reports.
San Diego Society of Natural History, Transactions, San Diego, Calif.
São Paulo, Universidade de, Faculdade de Filosofia, Ciências e Letras, Boletim.
Schlesische Gesellschaft für vaterländische Kulturen, Jahresbericht, Breslau.
Science, New York, Washington, D.C.
Senckenbergische Naturforschende Gesellschaft, Abhandlungen, Frankfurt am Main.
Service Géologique de l’Indochine, Mémoires, Saigon.
Service Géologique du Maroc, Division des Mines et de la Géologie, Notes, Rabat.
Serviço Geológico e Mineralógico do Brasil, Ministério da Agricultura, Monographias; Boletim, Rio de Janeiro.
Siebenburgischer Verein für Naturwissenschaften in Hermannstadt, Verhandlungen und Mitteilungen.
Smithsonian Contributions to Knowledge, Washington, D.C.
Smithsonian Institution, Harriman Alaska Series, Geology and Paleontology, Washington, D.C.
Smithsonian Miscellaneous Collections, Washington, D.C.
Societas de Ciencias Naturales “La Salle,” Memorias, Caracas.
Sociedad Cubana de Historia Natural, Memorias, Habana.
Società Geologica Italiana, Bollettino, Roma.
Società Italiana delle Scienze, Memorie, Trento.
Società Italiana di Scienze Naturali, Atti, Milano.
Società Naturalisti in Napoli, Bollettino, Napoli.
Società Toscana di Scienze Naturali Residente in Pisa, Memorie.
Societatis Regiae Scientarum Gottingensis, Commentationes.
Société Botanique de Genève, Bulletin, Switzerland.
Société Géologique du Nord, Annales, Lille.
Société Helvétique des Sciences Naturelles, Travaux; Comptes Rendus, Lausanne, Switz.
Société d’Histoire Naturelle de Paris, Mémoires.
Société Impériale des Naturalistes de Moscou, Bulletin, [Moskovskogo Obshchestvo Ispytateley Prirody].
Société Linnéenne de Lyon, Bulletin.
Société Linnéenne de Normandie, Bulletin, Caen.
Société Paléontologique de la Suisse, Mémoires. (Same as Schweizerische Paläontologische Gesellschaft.) Zürich.
Société de Physique et d’Histoire Naturelle de Genève, Mémoires.
Société Royale Malacologique de Belgique, Annales, Mémoires, Bruxelles.
Society of Economic Paleontologists and Mineralogists, Special Publications, Tulsa, Okla.
Southern California Academy of Sciences, Bulletin, Los Angeles.
Soventskaya Geologiya, Moskva.
Stanford University, Contributions of the Department of Geology, Palo Alto, Calif.
Státního Geologického Ustavu Československé Republiky, Věstník, Praha.
Stockholm Contributions to Geology (Acta Universitatis Stockholmiensis), Stockholm.
Suwomalainen Tiedeakatemian Toimitukala (Annales de l’Académie Scientifique Fennicae), Helsinki.
Svensk Faunistick Revy [1955, Zoologisk Revy], Stockholm.
Sveriges Geologiska Undersökning, Årskôf; Afhandlingar, Stockholm.
Systematic Zoology, Lawrence, Kans.
Tartu Ülikooli Geoloogia-Instituudi Toimestused, Acta et Commentationes Universitatis Tartuensis (Dorpatensis), Tartu, Estonia.
Tashkentskoi Gosudarstvennogo Universiteta im V. I. Lenin, Trudy, Tashkent.
Tennessee Department of Conservation and Com-
merce, Division of Geology, Bulletins. Nashville.
Termeszetrajzi Fuzetek. Budapest.
Texas, University of, Bulletins; Publications. Austin, Tex.

Tokyo Bunrika Daigaku, Science Reports.
Tokyo Kyoiku Daigaku, Science Reports.

United States Geological and Geographical Survey of the Territories, Annual Reports. Washington, D.C.

Texas, University of, Bulletins; Publications. Austin, Tex.

Tohoku University, Institute of Geology and Paleontology, Short Papers; Scientific Reports. Sendai, Japan.

United States National Museum, Bulletins; Proceedings. Washington, D.C.

United States National Museum, Bulletins; Proceedings. Washington, D.C.

Universitet Innsbruck, Schlerschriften, Veröffentlichungen zur Landeskunde von Südtirol. Innsbruck.

Üstredni Ústav Geologický Svazek, Sborník; Věstník. Praha.

Venezuela Ministerio de Minas y Hidrocarburos, Boletín de Geología. Caracas.

Verein der Freunde der Naturgeschichte in Mecklenburg, Archiv. Güstrow.

Verein der Preussische Rheinlands Westfalens, Verhandlungen, Köln.

Victoria Institute of Trinidad, Proceedings. Trinidad, B.W.I.

Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i København.

Videnskabelskab i Kristiania, Forhandlinger. Oslo.

Vsesoyuznyi Nauchno-Issledovatelskii Geologorazvedachnyi Naftyanoi Institut, Trudy. Moskva.

Vsesoyuznyi Nauchno-Issledovatelskii Institut Geofizicheskih Metodov Razvedki, Trudy. Moskva.

Zentralblatt für Mineralogie, Geologie und Paläontologie. Stuttgart.

Zoological Society of London, Proceedings; Transactions.

Zoologischer Anzeiger. Leipzig.

At the end of figure captions an index number is given to supply record of the author of illustrations used in the Treatise, reference being made either (1) to publications cited in reference lists or (2) to the names of authors with or without indication of individual publications concerned. Previously unpublished illustrations are marked by the letter "n" (signifying "new") with the name of the author.
Classification of rocks forming the geologic column as commonly cited in the Treatise in terms of units defined by concepts of time is reasonably uniform and firm throughout most of the world as regards major divisions (e.g., series, systems, and rocks representing eras) but it is variable and unfirm as regards smaller divisions (e.g., substages, stages, and subseries), which are provincial in application. Users of the Treatise have suggested the desirability of publishing reference lists showing the stratigraphic arrangement of at least the most commonly cited divisions. Accordingly, a tabulation of European and North American units, which broadly is applicable also to other continents, is given here.

Generally Recognized Divisions of Geologic Column

Europe

ROCKS OF CENOZOIC ERA

NEOGENE SYSTEM

- Pleistocene Series (including Recent)
- Pliocene Series
- Miocene Series

PALEOGENE SYSTEM

- Oligocene Series
- Eocene Series
- Paleocene Series

ROCKS OF MESOZOIC ERA

CRETACEOUS SYSTEM

Upper Cretaceous Series

- Maastrichtian Stage
- Campanian Stage
- Santonian Stage
- Coniacian Stage
- Turonian Stage
- Cenomianian Stage

Lower Cretaceous Series

- Albian Stage
- Aptian Stage
- Barremian Stage
- Hauterivian Stage
- Valanginian Stage
- Berriasian Stage

JURASSIC SYSTEM

Upper Jurassic Series

- Portlandian Stage
- Kimmeridgian Stage
- Oxfordian Stage

Middle Jurassic Series

- Callovian Stage (or Upper Jurassic)
- Bathonian Stage
- Bajocian Stage

North America

ROCKS OF CENOZOIC ERA

NEOGENE SYSTEM

- Pleistocene Series (including Recent)
- Pliocene Series
- Miocene Series

PALEOGENE SYSTEM

- Oligocene Series
- Eocene Series
- Paleocene Series

ROCKS OF MESOZOIC ERA

CRETACEOUS SYSTEM

Gulfian Series (Upper Cretaceous)

- Navarroan Stage
- Tayloran Stage
- Austinian Stage

Woodbianian (Tuscaloosan) Stage

Comanchean Series (Lower Cretaceous)

- Washitaian Stage
- Fredericksburgian Stage
- Trinitian Stage

Coahuilan Series (Lower Cretaceous)

- Nuevoleonian Stage
- Durangoan Stage

JURASSIC SYSTEM

Upper Jurassic Series

- Portlandian Stage
- Kimmeridgian Stage
- Oxfordian Stage

Middle Jurassic Series

- Callovian Stage (or Upper Jurassic)
- Bathonian Stage
- Bajocian Stage
Lower Jurassic Series (Liassic)
 Toarcian Stage
 Pliensbachian Stage
 Sinemurian Stage
 Hettangian Stage

TRIASSIC SYSTEM
 Upper Triassic Series
 Rhaetian Stage
 Norian Stage
 Carnian Stage
 Middle Triassic Series
 Ladinian Stage
 Anisian Stage (Virglorian)
 Lower Triassic Series
 Scythian Series (Werfenian)

ROCKS OF PALEOZOIC ERA
PERMIAN SYSTEM
 Upper Permian Series
 Tatarian Stage
 Kazanian Stage
 Kungurian Stage
 Lower Permian Series
 Artinskian Stage
 Sakmarian Stage

CARBONIFEROUS SYSTEM
 Upper Carboniferous Series
 Stephanian Stage
 Westphalian Stage
 Namurian Stage
 Lower Carboniferous Series
 Viséan Stage
 Tournaisian Stage
 Strunian Stage

DEVONIAN SYSTEM
 Upper Devonian Series
 Famennian Stage
 Frasnian Stage

Lower Jurassic Series (Liassic)
 Toarcian Stage
 Pliensbachian Stage
 Sinemurian Stage
 Hettangian Stage

TRIASSIC SYSTEM
 Upper Triassic Series
 (Not recognized)
 Norian Stage
 Carnian Stage
 Middle Triassic Series
 Ladinian Stage
 Anisian Stage
 Lower Triassic Series
 Scythian Stage

ROCKS OF PALEOZOIC ERA
PERMIAN SYSTEM
 Upper Permian Series
 Ochoan Stage
 Guadalupian Stage
 Lower Permian Series
 Leonardian Stage
 Wolfcampian Stage

PENNSYLVANIAN SYSTEM
 Kawviian Series (Upper Pennsylvanian)
 Virgilian Stage
 Missourian Stage
 Oklan Series (Middle Pennsylvanian)
 Desmoinesian Stage
 Bendian Stage
 Ardian Series (Lower Pennsylvanian)
 Morrowan Stage

MISSISSIPPIAN SYSTEM
 Tennesseean Series (Upper Mississippian)
 Chesteran Stage
 Metamerician Stage
 Waverlyan Series (Lower Mississippian)
 Osagian Stage
 Kinderhookian Stage

DEVONIAN SYSTEM
 Chautauquan Series (Upper Devonian)
 Conewangoan Stage
 Cassadagan Stage
 Senecan Series (Upper Devonian)
 Chemungian Stage
 Fingerlakesian Stage

© 2009 University of Kansas Paleontological Institute
Middle Devonian Series
 Givetian Stage
 Couvinian Stage
Lower Devonian Series
 Coblenzian Stage
 Gedinnian Stage

SILURIAN SYSTEM
 Ludlow Series
 Wenlock Series
 Landovery Series

ORDOVICIAN SYSTEM
 Cincinnatian Series (Upper Ordovician)
 Richmondian Stage
 Maysvillian Stage
 Edenian Stage
 Champlainian Series (Middle Ordovician)
 Mohawkian Stage
 Trentonian Substage
 Blackriveran Substage
 Chazyian Stage
 Canadian Series (Lower Ordovician)
 Trempealeauan Stage
 Franconian Stage
 Dresbachian Stage
 Albertan Series (Middle Cambrian)
 Waucoban Series (Lower Cambrian)

CAMBRIAN SYSTEM
 Croixian Series (Upper Cambrian)
 Trempealeauan Stage
 Franconian Stage
 Dresbachian Stage
 Albertan Series (Middle Cambrian)
 Waucoban Series (Lower Cambrian)

EOCAMBRIAN SYSTEM

ROCKS OF PRECAMBRIAN AGE

1 Considered by some to exclude post-Pliocene deposits.
2 Classed as division of Senonian Subseries.
3 Classed as division of Neocomian Subseries.
4 Includes Purbeckian deposits.
5 Interpreted as lowermost Jurassic in some areas.
6 Includes some Lower Triassic and equivalent to upper Thuringian (Zechstein) deposits.
7 Equivalent to lower Thuringian (Zechstein) deposits.
8 Equivalent to upper Autunian and part of Rotliegend deposits.
9 Classed as uppermost Cambrian by some geologists.
PART C

PROTISTA 2

SARCODINA
CHIEFLY "THECAMOEBIANS" AND
FORAMINIFERIDA

By Alfred R. Loeblich, Jr., and Helen Tappan

with some systematic descriptions of Foraminiferida by R. Wright Barker, W. Storrs Cole, R. C. Douglass, Manfred Reichel, and M. L. Thompson as recorded

VOLUME 1

CONTENTS

[Volume 1, p. i-xxxi, 1-510a; Volume 2, p. 511-900]

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>C2</td>
</tr>
<tr>
<td>Sarcodina, Rhizopoda, Lobosa</td>
<td>C5</td>
</tr>
<tr>
<td>Amoebida</td>
<td>C5</td>
</tr>
<tr>
<td>Mycetozoida</td>
<td>C8</td>
</tr>
<tr>
<td>"Thecamoebians"</td>
<td>C16</td>
</tr>
<tr>
<td>Granuloreticulosia, Athalamida</td>
<td>C54</td>
</tr>
<tr>
<td>Foraminiferida</td>
<td>C55</td>
</tr>
<tr>
<td>ReitlingereLLida</td>
<td>C787</td>
</tr>
<tr>
<td>Xenophyophorida</td>
<td>C789</td>
</tr>
<tr>
<td>Labyrinthulida</td>
<td>C794</td>
</tr>
<tr>
<td>Addendum</td>
<td>C795</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>C797</td>
</tr>
<tr>
<td>INDEX</td>
<td>C869</td>
</tr>
</tbody>
</table>

1 California Research Corporation.
2 University of California Los Angeles.
INTRODUCTION

The Sarcodina comprise one of the four main subdivisions of protozoans, and include those forms which have a single-celled protoplasmic body, amoeboid in form and nonflagellate during its principal stage, the cell wall without a thick pellicle and capable of forming pseudopodia, the characteristic locomotor apparatus of the subphylum. Included in the Sarcodina are large groups of organisms found as microfossils—"thecamoebians," foraminifers and radiolarians—as well as many equally large groups of nonshelled forms, some of which, because of parasitic habit, are more important to zoologists than to paleontologists.

As recently discussed by us (*1181), the Sarcodina may be subdivided into two major groups on the basis of types of pseudopodia and protoplasmic movements. One group is characterized by a protoplasmic movement based on differential pressure produced by contraction of a plasmagel cortex (semisolidified protoplasm), which results in a flow of plasmasol (liquefied protoplasm). This type of movement and lobose pseudopodia associated with it are characteristic of the orders Amoebida, Mycetozoa, and Arcellinida, which are regarded by us as belonging to the restricted class Rhizopodea. Remaining Sarcodina are characterized by a filament-streaming type of protoplasmic movement, regarded by JAHN & RINALDI (*984) as due to a shearing force between two adjacent, oppositely moving gel-like filaments within a pseudopod, and without the presence of a plasmagel cortex. Whether or not this explanation for the mechanism of movement is correct, there is an easily observed difference in the character of the pseudopodia, with their continual two-way movement of protoplasm, contrasting with the ebb and flow of protoplasmic movement in the Lobosia. The filament-streaming occurs in the subclasses Filosia and Granuloreticulosia of the Sarcodina, and also in the heliozoans, radiolarians, and acantharians (these last groups already covered in Treatise Part D), all of which were included as subclasses of the class Reticularea (*1181).

ACKNOWLEDGMENTS

In this work, involving a classification of a major part of the Rhizopoda, LOEBLICH & TAPPAN wish to acknowledge the generous assistance given by many colleagues. During 1953-1954 a year was spent in Europe studying types in various museums and institutions and collecting topotypes of type-species of various genera in England, France, Italy, Spain, Netherlands, Germany, and Austria. During this time, HELEN TAPPAN was a Fellow of the John Simon Guggenheim Foundation, and ALFRED R. LOEBLICH, JR., was on the staff of the U. S. National Museum, Smithsonian Institution. To both of these organizations we are greatly indebted for this opportunity to study and collect in Europe and thus settle many taxonomic problems, as well as broaden our general knowledge of the Foraminiferida.

We are especially grateful to the British Museum (Natural History), London, for courtesies extended to us during four months in London, and for their permission to study and reillustrate the types of BRADY, PARKER & JONES, and others, and to select and isolate lectotypes for many of these as noted in the following systematic descriptions. During this visit, an exchange was arranged through the Keeper of Zoology, Dr. W. H. PARKER, for specimens from the working slides of BRADY (not the figured or catalogued types) to be deposited in the U. S. National Museum in exchange for other identified types to be deposited in the British Museum. Certain of these exchange specimens were illustrated in the U.S. National Museum Bulletin 215 as BRADY paratypes in the U.S. National Museum. Because of later published comments by persons not connected with either institution (*79, p. 26) that there was no record of such an exchange and because the staffs of both museums had changed meanwhile, according to information given to us, the U.S. National Museum has returned...
these specimens to the British Museum; hence they are no longer in the U.S. National Museum.

Similarly, we express our appreciation to the Muséum National d'Histoire Naturelle, Paris, for permission to examine and re-study the Orbigny types on deposit there. Many lectotypes of the type-species of genera were also isolated with the assistance of Dr. P. Marie, and the permission of Dr. J. Roger, then of the Museum, and were so labeled during our studies in Paris in 1954. These are also indicated in the systematic descriptions.

While in Europe we received much assistance in the field or museums from the following persons. In Great Britain we were aided by Dr. T. Barnard, University College, London; Mr. D. Carter, Imperial College, London; Dr. R. Casey, Geological Survey, London; Dr. R. H. Cummings, Glasgow University; Mr. Dennis Curry, Middlesex; the late Mr. A. G. Davis, Dr. W. H. Parker, and Dr. N. Tebble, all of the British Museum (Natural History), London; Mr. G. Elliott, Dr. A. Smout and Dr. F. R. S. Henson, Iraq Petroleum Co., London; Dr. W. Pitcher, Imperial College, London; and Prof. A. Williams, Queens University, Belfast. In France valued help was received from Dr. P. Marie, Bureau des Recherches Géologiques et Minières, Paris; Dr. J. Roger, Muséum National d'Histoire Naturelle, Paris; Dr. J. Cuvillier, Laboratoire de Géologie Appliquée, Paris; Prof. R. Ciry, Dr. H. Tintant, and Dr. P. Rat, of the University of Dijon; Mme. Y. Gubler and Dr. M. Lys, of the Institut Français du Pétrole; M. V. Pérepaskine, Pau; Dr. J. M. Payard, Poitiers; Dr. M. Vignoux and M. Magne, University of Bordeaux; M. Duperie, Biarritz; Prof. M. Castera and Mlle. Villatte, University of Toulouse; and Prof. Corroy, Dr. S. Taxy-Fabre, and Dr. Catzigras, of the University of Marseille. In Italy we were aided in the field by Dr. E. Di Napoli-Alliata, Rome; Prof. B. Accordi, of the University of Ferrara; Prof. R. Selli, University of Bologna; and Prof. E. Montanaro-Gallielli, University of Modena. In Spain we were accompanied by Dr. J. R. Bataller, University of Barcelona. In the Netherlands, Drs. J. H. van Voorhuyzen, S. van der Heide, and van der Vaals, of the Netherlands Geological Survey, and Dr. J. Hoffer, The Hague, were extremely helpful. In Germany we were aided by Drs. H. Hiltermann and F. Schmid, Amt. für Bodenforschung, Hannover; Dr. H. Bartenstein, Mobil Oil, A. G., Celle; Dr. R. Giers, Hamm; Dr. E. Brand, Wintershall A. G. Kassel; Drs. H. Beckmann and F. Bettenstedt, Preussische Bergwerks and Hütten A. G., Hannover; Dr. H. G. Knipscheer, then of the Bavarian Geological Survey, Munich; Dr. E. Buck, Würzburg Geological Survey, and the late Dr. K. Feipel, Kirchheim u. Teck.

We have received specimens as gifts, exchanges, or loans, helpful to an understanding of many genera from Dr. H. V. Andersen, Louisiana State University, Baton Rouge; Dr. K. Asano, Tohoku University, Sendai, Japan; Dr. O. L. Bandy, University of Southern California, Los Angeles; Mr. D. J. Belford, Bureau of Mineral Resources, Canberra, Australia; Dr. P. J. Bermdéz, Ministerio de Minas e Hidrocarburos, Caracas, Venezuela; Prof. F. Bieda, Katedra Paleontologii A. G.-H., Krakow, Poland; Dr. H. Bolli, Shell Oil Company, Caracas, Venezuela; Dr. E. Boltovskoy, Buenos Aires, Argentina; Dr. F. Brotzen, Sveriges Geologiska Undersöking, Stockholm, Sweden; Mr. A. C. Collins, Geelong, Victoria, Australia; Miss I. Crespin, Bureau of Mineral Resources, Canberra, Australia; Dr. C. W. Drooger, Geological Institute, Utrecht, Netherlands; Dr. S. Geroch, Universityet Jagiellonski, Krakow, Poland; Dr. H. Hagn, University of Munich, Munich, Germany; Dr. A. F. M. M. Hauge, Geological Survey of Pakistan, Quetta; Dr. H. Höglund, Havsfiskelaboratoriet, Lysekil, Sweden; Dr. N de B. Hornibrook, New Zealand Geological Survey, Lower Hutt, New Zealand; Dr. I. de Klaz, Société des Pépèules d'Afrique Equatoriale, Port-Gentil, Gabon; Dr. E. Kristian-Tollman, Geologische Bundesanstalt, Vienna, Austria; Dr. Yolande Le Calvez, Bureau des Recherches Géologique et Minière, Paris; Dr. J. Malecki, Katedra Paleontologii, A.G.-H., Krakow, Poland; Dr. T. Matsunaga, Teikoku Oil Company, Tokyo, Japan; Miss F. L. Parker, Scripps Institution of Oceanography, La Jolla, California; Dr. V. Pokorny, Charles University, Prague, Czechoslovakia; Dr. A. Ramovs, University of
We have had considerable assistance in obtaining literature from the USSR from Prof. D. RAUZER-CHERNOUSOVA, Geological Institute, Academy of Sciences USSR, Moscow, who provided many papers and books and in addition photocopies of several papers not available in any library in the United States. Prof. B. V. Tkachenko, Director, Institut Geologii Arktiki, Leningrad, and Dr. A. A. Gerke of the same institute, were very helpful in assisting us in obtaining several rare publications of that institute. Prof. N. N. SUBBOTINA, Drs. N. K. BYKOVA, E. V. Myatlyuk, L. Dain, and N. A. VOLOSHINova obtained numerous Soviet articles for us, as well as photocopies of others. Drs. A. K. Bogdanovich, V. A. Krasheninnikov, R. L. Merklin, T. A. Moskalenko, V. G. Morozova, E. A. Reytinger, M. Ya. Serova, and A. S. Stoliyakov, of the Geological Institute, Academy of Sciences USSR, Moscow, and Dr. I. S. Suleymanov, Tashkent, Uzbek SSR, were very helpful in providing needed literature and information. Prof. A. V. Fursenko, Minsk, and Zoya SHCHEDRINA, Leningrad, provided much valuable information. We are indebted to Dr. E. V. Bykova, Geological Institute, Kazakhaya Academy of Sciences, Alma-Ata, for also providing for use in the Treatise many original photographic negatives of specimens described by her from Kazakhstan. Prof. A. D. MIKLUKHO-Maklay, Leningrad University, was very helpful in providing references to several genera described in the USSR and in aiding us in obtaining this material. Dr. K. V. MIKLUKHO-Maklay, of the same institution, was also helpful in providing literature. Drs. D. M. Khalilov and Ch. A. TAIROV, of the Geological Institute, Academy of Science, Azerbaidzhan SSR; Dr. O. K. KAPTARENKO-CHERNOUSOVA, Geological Institute, Academy of Science Ukraine SSR; and Dr. KH. M. SAIDOV, Oceanological Institute, Academy of Sciences, Moscow, furnished much useful information. Without this help from our colleagues in the Soviet Union we would not have had as complete a coverage of the genera described from the USSR represented in our portion of the Treatise.

The later stages of this work have also been greatly facilitated by the excellent interlibrary loan staff at the University of California, Los Angeles; in particular, Mrs. ESTHER EULER, Mr. E. MIGNON, and Mr. P. WARSHA were to be commended for the personal interest they took in our problems in preparing chapters in this volume of the Treatise. Without their willing efforts in obtaining many rare and old publications our task would have been immeasurably more difficult. The Department of Geology at the University of California Los Angeles also allowed us nearly full-time assistance of the departmental photographer for some months in preparation of certain of the illustrations.

We have benefited from discussion with members of the staff at the La Habra Laboratory of California Research Corporation and have had much help from Drs. M. A. Furrer, D. LEVANDOWSKI, and R. W. Rex in preparation of our typescript.

Finally we wish to express our appreciation to California Research Corporation and especially to Mr. R. F. FAULL, Vice-President, San Francisco; Mr. A. HILDEBRAND, Laboratory Director, La Habra; Dr. N. A. RILEY, Assistant Laboratory Director, La Habra; and to Dr. W. J. PLUMLEY, Geological Supervisor, La Habra; for their appreciation of basic science and for their encouragement and generous assistance given to the preparation of this volume, not only in nearly full-time work by A. R. LOEBLICH, but support in preparation of illustrations, X-ray and petrographic determinations and typing. Without such support, preparation of this volume would have been greatly delayed to say the least.

In the systematic sections which follow, the various groups are covered in the nor-
Mal zoological order, with brief diagnoses and synonyms given only to the subfamily level for the naked Sarcodina. Introductory discussions, glossaries, and references are given with each of the major sections devoted to groups that may be preserved in the fossil record. Morphological terms used in the diagnoses of the naked forms will be found in the glossaries of the related testaceous forms.

SARCODINA, RHIZOPODEA, LOBOSIA

Subphylum SARCODINA

Schmarda, 1871

[In synonymic citations superscript numbers indicate taxonomic rank assigned by authors (subphylum, class, subclass, section, division, dagger (†) indicates partim)] — [==Sarcodina Schmarda, 1871, p. 156; ==Sarcodina Hertwig & Lesser, 1874, p. 43; ==Sarcodina Lüken, 1866, p. 537; ==Sarcodina Calkins, 1905, p. 38; ==Sarcodina (Rhizopoda s.l.) Hoogenraad & De Groot, 1940, p. 24; — — [==Gymnomyxæa Lankester, 1878 &de Lannester, 1885, p. 838, 839; ==Pantostomatæ Kent, 1880, p. 34, 36, 37; ==Mastigamoebæa Cordes, 1960, p. 172, 187].

Unicellular organisms with amoeboid, nonflagellate principal stage, without a thick pellicle and capable of forming pseudopodia; majority not parasitic; cytoplasm differentiated, commonly into ecto- and endoplasm; some naked, others may have external or internal test, which may be membranous or chitinous, of secreted calcite, aragonite, silica, or strontium sulphate, or ruginous, calcareous or siliceous cement; reproduction by asexual division, or sexual reproduction by flagellate gametes, or more rarely amoeboid gametes. ?Precam., Cam.-Rec.

Class RHIZOPODEA

von Siebold, 1845

Pseudopodia lobose, very rarely filiform or anastomosing, naked forms with protoplasm differentiated into endoplasm and ectoplasm, and shelled forms with zonal differentiation of protoplasm frequent. Plasmodia may develop by fusion of individual amoebulae in some forms. Proto-plasmic movement by means of a flow of plasmagel caused by differential pressure due to contraction of plasmagel cortex (*984, p. 101). Miss.-Rec.

Subclass LOBOSIA

Carpenter, 1861

With characters of the class. Miss.-Rec.

AMOEVIDA

Order AMOEVIDA

Ehrenberg, 1830

Protista—Sarcodina

No thick pellicle or test; cytoplasm differentiated into hyaline and homogeneous ectoplasm and granulated or vacuolated endoplasm; pseudopodia blunt and broad (lobopodia); typically with single nucleus; flagellate stage may occur; reproduction asexual, commonly by binary fission; free-living in fresh or salt water, soil, or parasitic. Rec.

Superfamily PELOMYXACEA
Schulze, 1877

[In synonymic citations superscript numbers indicate taxonomic rank assigned by authors (suborder, Superfamily)]

— Pelomyxaceae Lohseich & Tappan, 1961, p. 252 (nom. transl. ex family Pelomyxidae Schulze, 1877);
— Amastigogonina Chatton in Grasse, 1952, p. 54;
— Hartmannellina, Chaoxina, Mayorellina, Flabellulina,
— Thecamoebina Bovee, 1960, p. 355 (non Thecamoebina Calkins, 1961)

No flagellate stage in life history, life cycle limited to amoeboid stage and a cyst. Rec.

Family PELOMYXIDAE Schulze, 1877

[All names referred to are of family rank; dagger(\dagger) indicates partim]—[Pelomyxidae Schulze, 1877, p. 26];
— Amoeba Ehrenberg, 1838, p. 125; Amoebeae Ehrenberg, 1838, p. 129 (nom. neg.), Amoebidae Dujardin, 1841, p. 226 (nom. neg.); Amoebaceae Diesing, 1848, p. 495;
— Amoebidae Maitland, 1851, p. 3; Amoebidae Perky, 1852, p. 188; Amoebidae Brown, 1859, p. 67; Amoebidae Schmarda, 1871, p. 160; Amoebidae Lobosa Bütschli in Brown, 1880, p. 176; Améthiodes Gadea Butsin, 1947, p. 15 (nom. neg.); Amoebidae Haeckel, 1894, p. 161 (nom. nud.); Amoebidae Chatton, 1925, p. 76 (nom. nud.);—[Thecamoebidae Chatton, 1913, p. 171;—Chaoxidae

Chaoxina in Grasse, 1953, p. 54;—Schizopyrzenidae Singh, 1951, p. 584 (nom. nud.);—Loebelia Blochmann, 1895, p. 12;—Wechselthierchen Ehrenberg, 1836, p. 125 (nom. neg., nom. nud.);

Amoebae commonly of large size, possessing one or more nuclei; movement by means of indeterminate pseudopodia (may appear in any position on the body), involving streaming of granular endoplasm; multiplication by binary or multiple fission. [Generally free-living, but a few are parasitic. Fresh or salt water or damp soil.] Rec.

The family name Amoebidae would have priority, except that the generic name Amoeba Ehrenberg, 1830 (pro Amiba Bory de St. Vincent, 1822), is a junior synonym of Chaos Linné, 1767. The family name Pelomyxidae has priority over the name Chaosidae, proposed as a substitute name for the Amoebidae. A representative species is illustrated in Figure 1.

Family THECAMOEBIDAE Chatton, 1925

[All names referred to are of family rank]—[Thecamoebidae Chatton, 1925, p. 76 (non order Thecamoebidae Delage & Héraud, 1896); Thecamoebidae Copeland, 1956, p. 201, 202 (nom. con.)]

Body commonly ovoidal to circular in outline, and without formation of pseudopodia during locomotion; surface covered with

Fig. 1. Pelomyxidae; 1, Chaos diffusius Müller, a representative pelomyxid protistan; 1a, living specimen enlarged to show ectoplasm (ec), endoplasm (en), nucleus (n), food vacuole (f), and contractile vacuole (c); 1b–d, outline views showing successive positions of pseudopodia during movement of an individual (*2117).
double-layered impermeable pellicle which may be longitudinally ridged. [Habitat sub-aerial, fresh water.] Rec.

The family Thecamoebidae, based on the genus Thecamoeba FROMENTEL (order Amoebida) is not related to the protozoans placed in the order Thecamoebida DELAGE & HÉROUARD, 1896 (=Testacea SCHULZE, 1854, Testacealobosa de SAEDELEER, 1934, etc.).

Family HYALODISCIDAE Poche, 1913

[All names referred to are of family rank] — [Hyalodiscidae Poche, 1913, p. 182; Hyalodiscidae COPELAND, 1956, p. 201, 202 (nom. van.)]

Discoidal body with granular endoplasm and thin layer of homogeneous ectoplasm, no pellicle, pseudopodia indeterminate (may appear in any position). [Marine and fresh water.] Rec.

Family HARTMANNELLIDAE Volkonsky, 1931

[Hartmannellidae SWONK, 1951, p. 584 (nom. transl. ex subfamily Hartmannellinidae Volkonsky, 1931, p. 330)]

Amoebae of small size, free-living in soil, coprophilous or parasitic. Separated by type of mitotic division (mesomitosis). Rec.

Family CHAETOPROTEIDAE Poche, 1913

[All names referred to are of family rank] — [Chaetoproteidae Poche, 1913, p. 172; Chaetoproteidae COPELAND, 1956, p. 163 (nom. van.)] — [Mayorellidae SCHEEPER, 1926, p. 12, 47; Mayorellidae COPELAND, 1956, p. 201, 202 (nom. van.)] — [Flabellulidae BOVEE, 1960, p. 335]

Amoebae of medium to large size; conical or tapering determinate pseudopodia (always appear in the same place on the body), anterior pseudopodium of clear, non-granular cytoplasm. [Fresh water and marine.] Rec.

Family ENTAMOEBAIDAE Chatton, 1925

[Superscript numbers denote taxonomic rank assigned by authors (Family; Subfamily)] — [Entamoebidae Chatton, 1925, p. 76] — [Entamoebidae Chatton in GRASSE, 1953, p. 60 (nom. transl.)] — [Endamoebidae CALKINS, 1926, p. 355; Endamoebidae Chatton in GRASSE, 1953, p. 53; Endamoebidae COPELAND, 1956, p. 201, 202 (nom. van.)] — [Entamoebidae EPSTEIN, 1926, p. 200, 208; Endamoebidae COPELAND, 1953, p. 50]

Parasitic amoebae, vegetative form small, generally occurring in the alimentary canal of the host, multiplication by binary fission, encystment common. Rec.

Previously regarded as synonymous, the genera Endamoeba LEIDY, 1879, and Entamoeba CASAGRANDI & BARBAGALLO, 1895, are now separated on the basis of nuclear characters.

Family PANSPORELLIDAE Chatton, 1953

[Pansporellidae CHATTON in GRASSE, 1953, p. 78; Sporamoebidae Chatton, 1925, p. 75, 76 (nom. nud.)]

Amoebae parasitic in arthropods, cysts give rise to spores from which arise binucleate amoebulae which develop into vegetative stage. Spores differ from those of the Sporozoa in being permeable. Rec.

Superfamily TETRAMITACEA Kent, 1880

Life cycle includes both flagellate and amoeboid stage. Originally classed with class Flagellata, or considered as separate order of the subclass Zoomastigina (*1064, p. 333), but due to possession of pseudopodia and loss of the flagellum during part of the life cycle they are here classed with the Amoebida. Rec.

Family TETRAMITIDAE Kent, 1880

Amoebae small, free or coprophilous, producing biflagellate forms, normally uninucleate, no spores, cysts very resistant. Rec.

Family MASTIGAMOEBIDAE Chatton, 1925

[All names referred to are of family rank; dagger(†) indicates parim] — [Mastigamoebidae Chatton, 1925, p. 76] — [Rizomastigidae BUSCHNELL in BROWN, 1884, p. 810 (nom. nud.)] — [Rizomastigidae AUTOY, 1907, p. 137] — [Rizomastigidae KUDO, 1939, p. 235; Rizomastigidae BOVEE, 1960, p. 355 (nom. nud.)]

Amoebae of medium to large size, with a flagellum during at least part of the life cycle, free or parasitic. Rec.

The family was credited to GOLDSCHMIDT (1907) by CHATTON (*810, p. 37), but GOLDSCHMIDT (*806) used the terms Rhizomastignae (p. 160) and Mastigamöben (p. 161) in the vernacular, not as latinized names, and none were used by GOLD-SCHMIDT in the sense of family names. The
family Rhizomastigina BUTSCHLI (1884) and corrected name Rhizomastigidae CALKINS (1901) are invalid, as *nomina nuda*. They were not based on the later described *Rhizomasix* ALEXEIEFF, 1911. The term Rhizoflagellates is a vernacular reference (in the synonymy of the Mastigamoebidae) to the order Rhizo-Flagellata KENT (1880). The earliest valid family reference is that of CHATTON (1925).

Family **PARAMOEBIDAE** Poche, 1913

[Paramoebidae Poche, 1913, p. 173; =*Paramebidos Gadea Buisán*, 1947, p. 15 (*nom. neg.*)]

Amoebae possessing a paranucleus in addition to the normal nucleus, may produce cysts which give rise to flagellate spores. *Rec.*

The authorship of this family was credited to SCHAUDINN by CHATTON (*810, p. 42*). However, SCHAUDINN only described the genus *Paramoeba* and gave no family. The family was first named by Poehe (1913). Furthermore, Calkins (*269, p. 456*) cites Doflein as the author of the family.

MYCETOZOIDA

CONTENTS

<table>
<thead>
<tr>
<th>Nature of Mycetozoans</th>
<th>C8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of Morphological Terms</td>
<td>C10</td>
</tr>
<tr>
<td>Systematic Descriptions</td>
<td>C11</td>
</tr>
<tr>
<td>Order Mycetozoida de Bary, 1859</td>
<td>C11</td>
</tr>
<tr>
<td>Suborder Sorophorina Lankester, 1885</td>
<td>C11</td>
</tr>
<tr>
<td>Suborder Plasmodiophorina Cook, 1928</td>
<td>C12</td>
</tr>
<tr>
<td>Suborder Eumycetozoina Poche, 1913</td>
<td>C12</td>
</tr>
<tr>
<td>Superfamily Ceratiomyxacea MacBride, 1892</td>
<td>C12</td>
</tr>
<tr>
<td>Superfamily Stemonitacea Fries, 1829</td>
<td>C12</td>
</tr>
<tr>
<td>Superfamily Trichiacea Fries, 1821</td>
<td>C13</td>
</tr>
</tbody>
</table>

NATURE OF MYCETOZOANS

Mycetozoans (Myxomycetes or Myxogastres) have been observed and described for some 300 years, and have been regarded as lower fungi by botanists and as protozoans by zoologists.

The plasmodium was first recognized by Fries (1829) who regarded the organisms (myxogastres) as fungi. Wallroth substituted the name Myxomycetes (slime fungi) in 1833, which is still their common botanical designation. De Bary (1859) transferred them to the animal kingdom, changing their name to Mycetoza, or fungus-animals, as he observed them in cultures.

Mycetozoans are characterized by the presence of a large multinucleate amoeboid body or plasmodium. Species are distinguished by the structures developed during spore formation, by the form and color of the sporangium and capillitium, and the color, size, and markings of the spores. Cosmopolitan in their distribution, they occur throughout the world wherever there is sufficient decaying vegetation and moisture for their support in decaying wood, stumps, dead branches, or decaying leaves or straw. Some are widely ranging, but others have a more limited distribution (e.g., tropics, alpine regions).

The Sorophorina are not always included in the Mycetozoa, as they have only a temporary plasmodium, formed at the time of sporulation, and not a truly vegetative plasmodium. Some form pseudospores rather than true spores in sporangia. Many are parasitic.
Mycetozoida

Fig. 2. Life cycle of Mycetozoida (diagrammatic) (*1585).

Eumycetozoina, or true mycetozoans, include three superfamilies, the Ceratiomyxacea (Exosporeae) and Stemonitacea and Trichiacea (Endosporeae). The Ceratiomyxacea develop colorless ovate spores on stalks arising from the fragile, white, branching and anastomosing filamentous structure on decayed wood. After dispersal, moistening causes the spore contents to swell, and the spore wall breaks apart, allowing the quadrinucleate protoplasmic contents to escape with an amoeboid movement. Nuclear division follows and the original spore contents divide into eight haploid uninucleate parts, each becoming a pyriform swarm cell by developing a flagellum. These probably fuse in pairs, although such fusion has not been observed in cultures. The resulting plasmodia are diploid, however, and live within decaying wood, only coming to the surface to produce the spores. Cushion-like aggregates appear at the surface, showing a dense network of protoplasm with granular streaming, the many nuclei then undergo a reduction division, and the protoplasm divides into numerous uninucleate “cells,” each developing into a single-stalked spore. The nucleus within this spore divides twice to form a quadrinucleate spore, which detaches easily, and the gelatinous sporophore dries up.

The Stemonitacea and Trichiacea (Endosporeae) have a plasmodium of granular protoplasm, containing numerous nuclei or vacuoles, commonly white, yellow, or pink, but more rarely purple or green, the color being constant in a species. Some also contain calcium carbonate granules. The protoplasm circulates in a network of veins, flowing rapidly in one direction for a time, then slowing and reversing direction, with a rhythmic backward and forward flow, longer in the direction in which the plasmodium is creeping. Spores are spherical, of cellulose-like composition, with an inner hyaline layer and an outer colored layer with warts and ridges.

The life cycle is rather complex, recent studies by Ross (*1585) having shown the presence of three main types (Fig. 2). A briefly flagellate type (I), and a more persistent flagellate type (II) are both found in the Physaridae (in Physarum, Fuligo and Physarella of the Physarinae and in Didymium of the Didymiineae). A completely flagellate type (III) is found in the Stemonitidae (Stemonitacea) and the Liceidae and Trichiidae (Trichiacea).

In the briefly flagellate type (I) the germinating spores give rise to myxamoebae, which soon produce flagella, but the flagellate stage lasts less than two or three days, when the flagella are withdrawn and the
cells become irreversibly amoeboid. After a vegetative stage of three to several days, syngamy occurs between two nonflagellate myxamoebae (gametes), resulting in a diploid zygotic nucleus; the amoeboid zygotes remain solitary for several hours, feeding on bacteria, and then coalesce in large numbers to form multinucleate plasmodia.

In type II, the spores give rise to flagellate swarm cells directly, or almost immediately, and the flagellate stage lasts from 48 to 130 hours. Syngamy occurs by posterior fusion of two flagellate swarm cells, and karyogamy occurs while one set of flagella is still extended. Flagella are retracted and the zygote becomes amoeboid shortly afterward. Mitosis occurs, resulting in binucleate and then multinucleate plasmodia, which then may also fuse with other plasmodia, although coalescence is rare among zygotes of this type.

In type III the spores produce flagellate swarm cells, which last longer than in the other two types, posterior fusion in pairs follows, and flagella persist during and after karyogamy before the zygote becomes amoeboid. Later mitotic divisions result in formation of a 32- to 64-nucleus plasmodium, which then may also fuse with others. Exposure of the plasmodium to dryness or cold is withstood by passing into a resting stage (sclerotium), the plasmodium aggregating in masses, discarding all refuse, and forming cyst walls around each mass containing 10 to 20 nuclei. The cysts dry to a horny consistency.

The plasmodium creeps to a dryer place before spores are formed. Sporangia develop a gelatinous wall, which becomes membranous. Each develops a stalk through which the protoplasm flows into the spherical head, a system of tubes (capillitium) forms within the sporangium, and some forms develop calcareous granules in the sporangium wall, in the tubes of the capillitium or stalk, or in all three. Sporangia may be solitary or clustered in an aethalium consisting of closely packed sporangia with imperfectly developed inner walls. Reduction division of nuclei occurs within the sporangia, each haploid daughter nucleus collecting protoplasm and developing spore walls. The capillitium may be modified to aid in spore dispersal.

GLOSSARY OF MORPHOLOGICAL TERMS

aethalium. Compound spore-bearing structure, formed by union of many sporangia, walls of inner sporangia being less developed.

amoebula. Small mass of protoplasm, containing single vesicular nucleus and contractile vacuoles; arises from germinating spore and by later development of flagellum gives rise to myxoflagellula or swarm spores.

capillitium. System of threads within sporangium, may be simple, branched, solid or tubular threads; assists in spore dispersal.

columella. Support for sporangium, attached to capillitium; solid or hollow, continuous with stalk of stalked sporangia.

cortex. Outer covering of aethalium.

elaters. Capillitium threads which are free, tubular, and marked with spiral bands (e.g., *Trichia*).

flagellum. Filamentous extension of cytoplasm, fine and threadlike and commonly in rapid motion; characteristic locomotor apparatus of Mastigophora, also found in swarm cells of Mycetozoa.

holozoic nutrition. Food supply consisting of ingested organisms (animals or plants).

karyogamy. Nuclear fusion, commonly associated with cytoplasmic fusion (plasmogamy), but not always simultaneous.

limax-form. Amoeboid body which under certain conditions may change to flagellate form.

lime-knots. Expansions in threads of capillitium containing granules of calcium carbonate.

meiosis. Reduction division in the nuclei, each half of nucleus then having half of chromosomes, resulting in haploid stage (as in gametes).

myxamoebae. Amoebulae which fuse to form plasmodium, without nuclear fusion.

myxoflagellula. Flagellate stage developing from myxamoebula, which arose from spore germination; myxoflagellulae may increase in number by binary fission and may ingest bacteria.

plasmodium. Multinucleate mass of naked protoplasm formed by fusion of swarm cells, with protoplasmic circulation; nuclei increase in number as plasmodium grows, but reduction division of nuclei occurs only at time of spore formation.

plasmogamy. Fusion of cytoplasm, as in union of gametes or association of amoebulae into plasmodium.

pseudocapillitium. Imperfectly developed walls of sporangia, resembling true capillitium.

pseudoplasmodium. Myxamoebae group before spore formation, but not fused to form true plasmodium (e.g., *Sorophorina*).

pseudospores. Formed directly from myxamoebae, without sporangia; have rigid walls but no thickening.

saprozoic nutrition. Food supply obtained from dissolved organic substance in water, ingested by osmosis through body surface.
Mycetozoida

C11

celotrum. Resting condition of plasmodium, consisting of numerous closely packed cellulose-walled cysts, each containing cytoplasm and 10 to 20 nuclei; may be formed when unfavorable conditions arise, and may last up to 3 years.

sporangium. Receptacle containing spores, developed by plasmodium commonly when food material is lacking.

spore. Commonly spherical, uninucleate bodies, 3 to 30 microns in diameter, formed by mitotic division of nuclei and division of cytoplasm within sporangium; provided with outer cellulose-like membrane; may germinate after moistening and give rise to amoebulae.

sporophore. Structure bearing spores on surface.

syngamy. Conjugation; fusion of 2 nuclei, accomplished by fusion of cytoplasm.

swarm cell. Myxoflagellate; pyriform, flagellate body, developed from amoeboid body (amoebula) arising from germinating spore.

SYSTEMATIC DESCRIPTIONS

Order MYCETOZOIDA de Bary, 1859

Myxamoeba aggregate for spore formation, but without a true plasmodium; no flagellate stage. Rec.

Family SAPPINIIDAE Olive, 1901

[nom. correct. Dolefin, 1909, p. 587 (pro family Sappinia­ceae Olive, 1901, p. 396)]

Myxamoebae form pseudospores (with rigid but unthickened walls) directly, without fruiting bodies. Rec.

Family POCHEINIDAE Loeblich & Tappan, 1961

Plasmodium incomplete, myxamoebae of "limax" form, may form pseudospores or true spores in a fruiting body on a short, thick stalk. Rec.

Family DICTYOSTELIIDAE Rostafinski, 1873

[nom. correct. Kudo, 1931, p. 190 (pro family Dictyosteli­ceae Rostafinski, 1875, p. 82, 86, 217, nom. transl. ex tribe Dictyosteliaceae Rostafinski, 1873, p. 4)]—[=Acraziaceae Van Tieghem, 1880, p. 322 (nom. neg.)]; =Acraziaceae Van Tieghem, 1898, p. 21 (nom. neg.); =Acraziaceae Hartog in Harker & Shipeley, 1906, p. 90; =Acraziaceae Poché, 1913, p. 177; =Acraziaceae Galiazzo in Bremek, 1947, p. 17 (nom. neg.)]; =Dictyosteliaceae Zoff, 1885, p. 134 (nom. nud.)]

Plasmodioc incomplete, myxamoebae of "limax" form, may form pseudospores or true spores in a fruiting body on a short, thick stalk. Rec.

Family DICTYOSTELIIDAE Rostafinski, 1873

[nom. correct. Kudo, 1931, p. 190 (pro family Dictyosteli­ceae Rostafinski, 1875, p. 82, 86, 217, nom. transl. ex tribe Dictyosteliaceae Rostafinski, 1873, p. 4)]—[=Acraziaceae Van Tieghem, 1880, p. 322 (nom. neg.)]; =Acraziaceae Van Tieghem, 1898, p. 21 (nom. neg.); =Acraziaceae Hartog in Harker & Shipeley, 1906, p. 90; =Acraziaceae Poché, 1913, p. 177; =Acraziaceae Galiazzo in Bremek, 1947, p. 17 (nom. neg.)]; =Dictyosteliaceae Zoff, 1885, p. 134 (nom. nud.)]
Proteoza—Sarcodina

Spores develop into myxamoebae or bi-flagellate swarm cells; either may fuse to form zygotes; zygotes from myxamoebae fuse to form plasmodia, whereas zygotes from swarm cells develop into plasmodia by nuclear division. Rec.

Superfamily CERATOMYXIDAE MacBride, 1892

Spores developed outside a sporophore. Rec.

Family CERATOMYXIDAE MacBride, 1892

Sporophores membranous, branched; spores white, borne singly on filiform stalks arising from an areolated sporophore. Rec.

Superfamily STEMONITACEAE Fries, 1829

Characters of suborder. Rec.

Suborder EUMYCETOZOA Poche, 1913

Spores develop into myxamoebae or bi-flagellate swarm cells; either may fuse to form zygotes; zygotes from myxamoebae fuse to form plasmodia, whereas zygotes from swarm cells develop into plasmodia by nuclear division. Rec.

Superfamily CERATOMYXIDAE MacBride, 1892

Spores developed outside a sporophore. Rec.

Family CERATOMYXIDAE MacBride, 1892

Sporophores membranous, branched; spores white, borne singly on filiform stalks arising from an areolated sporophore. Rec.

Superfamily STEMONITACEAE Fries, 1829

Characters of suborder. Rec.

Suborder EUMYCETOZOA Poche, 1913

Spores develop into myxamoebae or bi-flagellate swarm cells; either may fuse to form zygotes; zygotes from myxamoebae fuse to form plasmodia, whereas zygotes from swarm cells develop into plasmodia by nuclear division. Rec.

Superfamily CERATOMYXIDAE MacBride, 1892

Spores developed outside a sporophore. Rec.

Family CERATOMYXIDAE MacBride, 1892

Sporophores membranous, branched; spores white, borne singly on filiform stalks arising from an areolated sporophore. Rec.

Superfamily STEMONITACEAE Fries, 1829

Characters of suborder. Rec.

Suborder EUMYCETOZOA Poche, 1913

Spores develop into myxamoebae or bi-flagellate swarm cells; either may fuse to form zygotes; zygotes from myxamoebae fuse to form plasmodia, whereas zygotes from swarm cells develop into plasmodia by nuclear division. Rec.

Superfamily CERATOMYXIDAE MacBride, 1892

Spores developed outside a sporophore. Rec.

Family CERATOMYXIDAE MacBride, 1892

Sporophores membranous, branched; spores white, borne singly on filiform stalks arising from an areolated sporophore. Rec.

Superfamily STEMONITACEAE Fries, 1829

Characters of suborder. Rec.
Sporangia without calcareous deposits. Rec.

Subfamily COLLODERMINAE A. Lister & G. Lister, 1925

Sporangia distinct, sessile, with gelatinous outer wall. Rec.

Subfamily STEMOTINIDAE Fries, 1829

Sporangia distinct, commonly with stalk and columella. Rec.

Subfamily AMAUROCHAETINAE Rostafinski, 1873

Sporangia combined to form aethalium. Rec.

Superfamily TRICHIACEAE Fries, 1821
Family LICEIDAE Fries, 1821

Capillitium lacking or not forming system of uniform threads. Rec.

Subfamily CRIBRARINAE Rostafinski, 1873

Capillitium absent, or not forming system of uniform threads; sporangium wall membranous, with minute round granules. Rec.

Subfamily LICEINAE Fries, 1821

Capillitium absent, sporangium wall cartilaginous or membranous, capillitium absent. Rec.

Subfamily TUBIFERINAE Fries, 1889

Capillitium absent, sporangium wall membranous, without granular deposits, sporangia clustered, cylindrical or ellipsoidal. Rec.
Subfamily RETICULARIINAE Rostafinski, 1873
[nom. transl. LOEBLICH & TAPPAN, 1961, p. 265 (ex tribe Reticulariaceae Rostafinski, 1875, p. 6)]

Sporangia closely compacted, generally fused to form large bodies (acanthia), sporangium walls incomplete and perforated; no true capillitium, or may have few branching strands. *Rec.*

Subfamily LYCOGALINAE Rostafinski, 1873
[nom. transl. LOEBLICH & TAPPAN, 1961, p. 265 (ex tribe Lycogalaceae Rostafinski, 1873, p. 3)]

Sporanga forming aethalium, pseudo-capillitium consisting of branched colorless tubes. *Rec.*

Family TRICHIIDAE Fries, 1821
[nom. correct. DOFLEIN, 1909, p. 602 (pro family Trichocistii (Trichioidi) Fries, 1821, p. 1)]

Sporangia forming aethalium, pseudo-capillitium consisting of branched colorless tubes. *Rec.*

Subfamily ARCYRIINAE Rostafinski, 1873
[nom. correct. LOEBLICH & TAPPAN, 1961, p. 266 (pro subfamily Arcyriici SCHROEDER, 1886, p. 99, nom. transl. ex tribe Arcyriaceae Rostafinski, 1873, p. 15)]

Capillitium combined into elastic network of tubular threads branching at wide angles, threads smooth or with thickenings in form of cogs, rings, half-rings, spines or warts, or more rarely with free threads forming scantly network. *Rec.*

Subfamily PROTOTRICHINAE MacBride, 1899
[nom. transl. LOEBLICH & TAPPAN, 1962, p. 107 (ex family Prototrichiae MacBride, 1899, p. 179, 199)]

Capillitium abundant, of solid threads, coiled and hairylike or nearly straight and attached to the sporangium wall, simple or branching at acute angles. Sporangia normally sessile. (Four genera are commonly assigned to this taxon, Margarita LISTER, 1894 (upon which family Margaritidae DOFLEIN, 1909, was based), Dianema REX, 1891 (basis for family Dianemaceae MACBride, 1899), Prototrichia ROSTAFINSKI, 1876 (basis for family Prototrichiaceae MACBride, 1899), and Listerella E. JAHN, 1906 (basis for family Listerellaceae E. JAHN, 1928). The family names based on Dianema and Prototrichia are the oldest, but as Dianema was a homonym it was renamed Dianemina and the subfamily name Dianemininae proposed by the writers (*1177, p. 266). However, the family group name based on Prototrichia has priority, hence was transferred to subfamily status (*1185). Of the remaining genera, Margarita LISTER, 1894, is a junior homonym of Margarita LEACH, 1814, and M. LEACH, 1819, and Margarita LEA, 1836, and M. LEA, 1838, all proposed for mollusks. Margarita LISTER, 1894, was renamed Margaritella LOEBLICH & TAPPAN, 1962 (*1185, p. 108).] *Rec.*
NATURE OF ASSEMBLAGE

The orders Arcellinida and Gromida, together with part of the suborder Allogromiina of the order Foraminiferida, have been referred to collectively as Thecamoebians or Testacea by paleontologists. They include most of the fresh-water testaceous Rhizopodea. Zoological usage, however, has separated these groups for three-quarters of a century, primarily on characters of the pseudopodia, so that at present the Arcellinida are placed in the subclass Lobo­sia, class Rhizopoda, the Gromida in the subclass Filosia, and the Allogromiina in the subclass Granuloreticulosia; the latter two subclasses are assigned to the class Reticularea. Because of certain common characters observable to paleontologists, a single introduction may serve for all. The Allogromiina are herein discussed under the Foraminiferida.

Testaceans have been described and figured since the beginning of the nineteenth century. They are dominantly found in fresh water, on mosses, or in damp soil, but a few brackish or marine species occur. Some fossil forms have been found in lake deposits or in strata intercalated between coal seams. It seems probable that if more attention were given to these fresh-water forms, the number of genera reported as fossils would increase. The test is not as highly organized as that of the Foraminiferida, for commonly it consists of a simple unilocular saclike or saucer-shaped body which rarely exhibits modifications of the aperture and spinelike protuberances or other modifications. The test composition may be gelatinous, membranous, “chitinous,” or agglutinated, or may consist of loosely arranged or closely imbricated siliceous plates or scales, or in a single genus may have secreted plates of calcite. As relates to fossil shells and those of Recent dead testaceans, for which information supplied by the pseudopodia and cytoplasmic nature is lacking, only the test composition and form can be utilized for taxonomic studies. Occasionally the tests of fresh-water forms have been obtained in near-shore marine deposits or as contamination in strata collected from outcrops in stream beds; they have then been described as foraminifers, because of their supposed marine occurrence. Such occurrences at the generic level are mentioned in the systematic section of this chapter.

The protoplasm of testaceans is similar to that of the nontestaceous rhizopods,
showing a differentiation into ectoplasm and endoplasm. The number of nuclei varies in different genera.

Reproduction in the thecamoebians is commonly by simple fission, but some forms exhibit budding and a few also are reproduced sexually. Encystment may occur with the advent of unfavorable environmental conditions. Although not yet recognized as such in the fossil state, it is possible that the vegetative cysts may be preserved in sediments, particularly in inter-tongued marine and nonmarine strata or in strata associated with coals.

The food supply consists of other protists, flagellates, ciliates, unicellular green algae, desmids, diatoms, and even fragments of moss and lichens. It is difficult to observe the ingestion of food in testaceans provided with an opaque test. *Paulinella* apparently does not ingest food but obtains the required nourishment from chromatophore-like symbiotic algae which are always associated with it.

The Lobosia are treated systematically first in order that they be kept with the remaining thecamoebians. They may, however, actually be more highly advanced than the foraminifers and radiolarians, since they are dominantly of fresh-water or terri-genous habitat; some have symbiotic relationships with algae and the nontestaceous forms include many that are parasitic.

GLOSSARY OF MORPHOLOGICAL TERMS

anisogamy. Fusion of 2 unlike gametes (classed as macrogametes and microgametes) to form zygote during sexual reproduction of Mastigophora, Sporozoa, and possibly some Lobosia.
aperture. Opening in test or shell for protrusion of pseudopodia.
blepharoplast. Basal granule where flagellum is inserted, observed in Mastigophora and gametes of some rhizopods.
chromidia. Extranuclear chromat in granules scattered throughout cytoplasm or restricted to region closely adjacent to nucleus.
contractile vacuole. Differentiated spherical part of cell that regulates osmosis, alternately filling and enlarging and discharging liquid from cell interior to outside; may be one or many, occur either in anterior portion of cytoplasm or near nucleus in thecamoebians (found in fresh-water forms).
cyst. Inert and resistant cover which envelops protoplasm and protects it from adverse environmental conditions; may be resting cysts or re-

productive cysts; may form within test or just outside aperture; may give rise to uniflagellate spores which conjugate.
cytoplasm. Protoplasm, exclusive of nucleus, rich in proteids (albumen), poor in phosphorus.
diaphragm. Partial septum just below aperture or apertural neck, perforated for protrusion of pseudopodia (e.g., *Cucurbitella, Pontigulasia*).
diploid. Stage in life history in which nuclei contain full number of chromosomes; in sexual reproduction gametes contain half of this number, fusion of gametes to form zygote restoring diploid stage.
endolobopodia. Lobose pseudopodia in composition of which some endoplasm participates (e.g., Diffugiiidae, Arcellidae).
ectoplasm. Hyaline, unequally thick peripheral region of cytoplasm with outer portion composed of relatively stationary particles of plasmagel and inner portion consisting of plasmagel.
endoplasm. Central dark granular part of cytoplasmic mass containing food vacuoles, contractile vacuoles, and nuclei; in Lobosia characterized by constant movement, flowing from back to front of cell body, changing from gel (plasmagel) to liquid (plasmagel) state.
epipods. Protoplasmic filaments (ectoplasm) extending from central mass of protoplasm to inner wall of test when latter is not completely filled; modified pseudopodia.
exolobopodia. Lobose pseudopodia composed entirely of ectoplasm (e.g., *Cochliopodium, Amphizonella, Pseudochlamys*).
filipodia. Elongate pseudopodia of ectoplasm which may anastomose, their rapid movement serving for locomotion and transport of food into body for digestion.
fission. Asexual reproduction, either by longitudinal fission or transverse division.
flagellum. Fine filamentous extension of cytoplasm which commonly displays rapid motion; characteristic locomotor apparatus of Mastigophora and found in gametes of some rhizopods, different groups having 1, 2, or 3 flagella.
granuloreticulose pseudopodia. Linear pseudopodia which anastomose and bifurcate readily, with more solid axis (stereoplasm) and outer fluid portion (theoplasm) containing granules in continuous movement; may digest food outside of main body of protozoan.
haploid. Stage in life history in which nuclei have one-half of normal number of chromosomes, resulting from reduction division in nucleus; may be temporary (as in gametes) or represent a distinct generation (as in foraminifers).
bolophytic nutrition. Plantlike maintenance of life by utilization of water, carbon dioxide and other inorganic substances for manufacture of food, found in Protozoa which possess chlorophyll, characteristic of some Mastigophora and some sym-
biotic rhizopod associations in which algae act as chromatophores for host (e.g., Paulinella).

holozoic nutrition. Animal-like maintenance of life by utilization of food consisting of ingested organisms (animals or plants).

hyaline. Glassy clear.

isogamy. Type of sexual reproduction in which 2 nuclei fuse to form zygote.

lobopodia. Pseudopodia consisting of cytoplasmic mass with rounded termination which contains both ectoplasm and endoplasm (Lobosia), used for locomotion and transport of food into cell body for digestion.

lorica. Test or shell of thecamoebians.

meiosis. Reduction division in nuclei, each half of nucleus then having one-half of chromosomes, resulting in haploid stage (as in gametes).

mitosis. Nuclear division in which each half contains same number of chromosomes as parent nucleus; found in asexual reproduction or fission.

nucleus. More or less spherical, compact mass of chromatin surrounded by membrane, lying within cytoplasmic body and playing important part in development and functions of cell (e.g., digestion, test secretion); single individual may have one nucleus or many.

parasitic nutrition. Maintenance of life dependent on host, food being absorbed by osmosis from body fluid, digested food material, or cell substance of host.

peduncle. Mass of cytoplasm projecting from apertre, giving rise to pseudopodia; pseudopodial trunk.

pellicle. Membrane surrounding protozoan body, elastic and somewhat expansible.

plagiotome. Asymmetrically placed aperture or pseudostome (e.g., Centropyxis, Plagiopyxis, Bullinularia).

plasmagel. Outer, partially solidified, jelly-like cytoplasm; outer portion of plasmagel corresponds to ectoplasm.

plasmalemma. Elastic pellicle of plasmagel forming outer covering of amoeboid body.

plasmasil. Central fluid portion of cytoplasm.

plasmodamy. Fusion of 2 or more individuals commonly followed by encystment; results uncertain in thecamoebians, although nuclear divisions, sporulation, etc., have been reported.

protoplasm. Living matter comprising body of protozoan or other organism, divisible into cytoplasm and nucleus.

pseudochitin. Chitin-like substance composing some testacean tests, similar to keratin in containing sulfur, but also having inframicroscopic granules of opaline silica.

pseudopodia. Temporary or semipermanent cytoplasmic projections which serve for locomotion and food capturing; may occur as lobopodia (e.g., Lobosia), filopodia (e.g., Filosia), reticulopodia (e.g., Granuloreticulosa), or axopodia (e.g., Acantharia, Heliozoa).

pseudopodial trunk. Mass of cytoplasm projecting from aperture and giving rise to pseudopodia; peduncle.

pseudostome. Aperture in test from which pseudopodia protrude; may be simple opening or have definite structure (e.g., neck, oral apparatus, diaphragm).

reptulolobopodia. Lobose pseudopodia composed entirely of ectoplasm, rarely capable of anastomosing (e.g., Pterygana, Cryptodifflugia).

reticulopodia. Granuloreticulose pseudopodia which bifurcate and anastomose to form network.

rheoplasm. Granular outer fluid portion of granuloreticulose pseudopodia.

saprozoic nutrition. Maintenance of life by osmosis through cell wall of food consisting of organic substances dissolved in water.

sarcod. Protoplasm.

stercomata. Brown oval masses of debris within cytoplasm.

sterecomata. Relatively solid axis of granuloreticulose pseudopodia, surrounded by granular rheoplasm.

symbiosis. Mutually beneficial life association of 2 organisms; green algae live within some Lobosia and Filosia, being always present in some genera but occasionally in others; symbiotic blue-green algae (Cyanophyceae) occur in one genus (Paulinella).

thecamoebian. General term for all testaceous rhizopods exclusive of Foraminifera; commonly of fresh-water habitat, more rarely brackish to marine.

test. Shell or covering of protozoans; may be gelatinous, "chitinous," calcareous, or siliceous, composed of secreted platelets or solid wall, or formed of agglutinated foreign particles.

vacuoles. Globular inclusions in cytoplasm, may be contractile vacuoles or food vacuoles.

xanthosomes. Small refringent bodies, commonly very numerous, in cytoplasm.

zygote. Body formed by fusion of 2 gametes in course of sexual reproduction, zygote (haploid) containing twice as many chromosomes as each gamete (haploid).

GEOLOGICAL IMPORTANCE

Owing to the dominantly fresh-water habitat of thecamoebians and previous concentration of micropaleontologic studies on marine strata, few fossil occurrences of these organisms have been reported. Most, including Arcella, Trigonopyxis, Hyalosphenia, Heleopera, Nebela, and Cryptodifflugia among the Lobosia, have been described by protozoologists from Pleistocene deposits. **Silicoplastentina** has been found in the Pliocene, Cyclopyxis in the Miocene, Difflugia and Pontigulasia in the Eocene, and Pranli-
tina in the Mississippian. Among the Gromida, Pseudodiaphragma, Amphitrema, Archellia, Sphenodera, Trinema, and Corytion occur in Pleistocene deposits, Trachelleuglypha in Miocene strata, and Euglypha in Eocene beds.

Most living genera have wide geographic distribution and apparently some species occur in both hemispheres throughout a wide range of latitude. Their presence in marine strata (if not due to contamination) indicates the proximity of a shore line.

Order ARCELLINIDA Kent, 1880

Test or rigid external membrane present, with definite aperture for protrusion of lobose pseudopodia. Miss.-Rec.

Superfamily ARCELLACEA Ehrenberg, 1832

Test rigid, thinning and becoming more pliable toward variously shaped aperture; one or more nuclei. Rec.

Family MICROCYRCIIDAE de Saedeleer, 1934

Test membranous, in part rigid or semirigid, thinning and becoming more pliable toward variously shaped aperture; one or many nuclei. Rec.
protist—sarcodina

Fig. 3. Cochliopodiidae; 1, Cochliopodium; 2, Gocevia; 3, Chlamydomoeba (p. C19).

pseudopodia lobular or digitate; protoplasm not completely filling test; with 1 or 2 nuclei. [Fresh water.] Rec., Eu.—Fig. 4, 1. *M. flava (Greeff); side view showing subglobular form with pendent membranous margin, ×350 (*1435).

Amphizonella Greeff, 1866, *813, p. 323 [*A. violacea; OD]. Test double, inner layer membranous or chitinoid, outer layer thick and mucilaginous (diam., approx. 0.16 mm.); protoplasm dense, granular, violet in color; pseudopodia blunt to subconical, radiating from aperture; single nucleus and clear vacuoles. [Fresh water.] Rec., Eu.—Fig. 4, 2. *A. violacea; specimen showing subconical pseudopodia, approx. ×280 (*813).

Diplochlamys Greeff, 1888, *814, p. 104 [*D. leidyi; OD]. Test hemispherical or cup-shaped (diam., 80-100 μ), double, inner layer consisting of hyaline membrane with variable aperture, external covering of loosely attached foreign matter; aperture large, nuclei numerous (as many as 100). [Fresh water.] Rec., Eu.—Fig. 4, 3. *D. leidyi; ×400 (*302b).

Microchlamys Cockerell, 1911, *352, p. 136 [*Pseudochlamys patella Claparède & Lachmann, 1859, *345, p. 443; OD] (=Pseudochlamys Claparède & Lachmann, 1859, *345, p. 443 (non Lacordaire, 1848) (obj.)). Test discoidal or cup-shaped (diam., 40-45 μ), hyaline and flexible in young, rigid and brownish in adult, and may be punctate dorsally; pseudopodia short,
lobose; with central nucleus and several contractile vacuoles. [Fresh water.] Rec., Eu.—Fig. 4, 6. *M. patella* (Claparède & Lachmann); 6a, specimen with digitate pseudopod; 6b, top view; \(\times 500 \) (*300).

Parmulina Penard, 1902, *1435*, p. 206 [*P.

cyathus Penard, 1902; SD Penard, 1909, *1439, 1837); some pyriform in motion, discoid

Arcella (nom. an.) = *Arcella* (Sticholepis) operculata Ehrenberg, 1881, p. 45-55,

Cyathus Ehrenberg, 1872, *688, p. 245 (obj.);

=Arcella (Heterocomia) Ehrenberg, 1872, *688, p. 245 (type, *Arcella* (Heterocomia) peristicta Ehrenberg, 1872 = *A. peristicta* Ehrenberg, 1854; SD Loeflich & Tappan, herein);

Test membranous, transparent, chitinous, punctate or minutely cancellate, rarely spinose, hemispherical, recurved at circular to crenulate aperture (av. diam., 70 µ), young tests hyaline, adult brown; protoplasm centrally placed, attached to interior of test by threads of ectoplasm, may secrete gas vacuoles, to serve hydrostatic function, allowing individual to float, and later resorb vacuoles in order to settle; pseudopodia few, lobose, blunt; commonly binucleate, but in some species as many as 200 nuclei occur; 4 or more small contractile vacuoles; reproduction by "budling." (Leptocystis Playfair was separated from *Arcella* by its minute size (diam., 20 µ) and absence of any surface markings. Only empty tests were seen. As young specimens of *Arcella* show all these characters, *Leptocystis* appears to represent only the early growth stage or a small species of *Arcella*. *Antarcella* was originally described as a subgenus, later raised to generic rank, differing in having a single nucleus, whereas *Arcella* commonly had two, more rarely 3 to 40 or up to 200. Specimens with a single nucleus are rare, only one or two species being included, and as the number appears to vary even within a species, *Antarcella* is here regarded as synonymous. *Pyxidicula* was originally described as a subgenus of the diatom genus *Cyclotella* and the type-species was first described as a *Frustulia*, later variously referred to *Cymbella* and *Cyclotella*. It differs from *Arcella* only in being extremely small, in having a very wide aperture, a single nucleus and in lacking ornamentation, all features which may be characteristic of young *Arcella*. The type-species is approximately 20 µ in diameter, about the size of the smallest *Arcella vulgaris*.) [Brackish to fresh water.] Pleist.-Rec., cosmop.,—Fig. 5, 1-2. *A. vulgaris*, Rec., Eng.: 1a, young individual in movement; 1b-c, basal and side views of young, empty transparent tests, ×300 (×300): 2, top view of adult showing outstretched pseudopodia and cancellate test, ×200 (×200);—Fig. 5, 3. *A. arcelloides* (Playfair), Rec., Australia; 3a-b, side and top views, ×900 (×1599);—Fig. 5, 4. *A. atava* Collin, Rec., Fr.: 4a-b, side and basal views, ×720 (×374).—Fig. 5, 5. *A. operculata* (Agardh), Rec., Switz.; 5a-b, side and top views, ×1,200; 5c, enlarged margin, ×4,800 (×1435).
Family CENTROPYXIDAE Jung, 1942
[Centropyxidae JUNG, 1942, p. 255; family Monocyphia VÉJOVSKÝ, 1881, p. 138 (nom. nud.) (partim); family Conchulina WAILES, 1927, p. 153 (nom. nud.).]

Test chitinous, enclosing some foreign material, or with sandy layer, generally with dorsoventral symmetry; aperture ventral, with recurved margin, eccentric; single nucleus. Pleist.-Rec.

Centropyxis STEIN, 1859, *1835, p. 43 [*Arcella aculeata EHRENBERG, 1832, *664, p. 40; OD]
[*Echinopyxis CLAPARÉDE & LACHMANN, 1859, *345, p. 447 (obj.); Arcella (Centropyxis) EHRENBERG, 1872, *688, p. 245 (obj.); =Milletella RHUMBER, 1904, *1569, p. 250 (type, Reophax pleurostomelloides MILLER, 1899, *1284(c), p. 253; Armillitum RHUMBER, 1913, *1572(b), p. 349 (nom. van. pro Millitella, obj.)). Test chitinoid, colorless to brown, with or without some agglutinated material, discoid, circular or oval (diam., 0.1-0.4 mm.), may be ornamented with simple or bifid spines; aperture eccentric, circular or ovate; pseudopodia digitate. [Fresh water, but may be washed into shallow marine sediments.]

Pleist.-Rec., cosmop.—Fig. 6, 1-3. *C. aculeata (EHRENBERG), Rec., Eng.; 1a,b, base and edge
views, ×300 (*300); 2, specimen showing pseudopod (*1435); 3a, b, basal and edge views, ×300 (*957).—Fig. 6,4. C. pleurostomelloides (Millet), Rec., shallow marine sediments, Malay Arch.; 4a, b, basal and edge views, ×110 (*1284c).

Family PLAGIOPYXIDAE Bonnet, 1959

Test pseudochitinous, with foreign matter, bilaterally symmetrical, aperture with strongly overlapping margins; pseudopodia consisting of “exolobopodia” which arise from ectoplasmic layer and protrude from aperture; single nucleus; may have provisory encystment during temporary desiccation with formation of spheroidal precyst of very thin hyaline cuticle enclosing active cytoplasm, precyst rapidly dehisced when favorable conditions reappear; encystment normal if dehydration is prolonged, precyst membrane thickening and enclosed cytoplasm becoming inactive. Rec.

Only Plagiopyxis, characterized by ectoplasmic pseudopodia, was originally included in this family. The additional genera here included correspond to Plagiopyxis in test morphology, but information as to details of their pseudopodia is lacking.

Plagiopyxis Penard, 1910, *1440, p. 936 [*P. callida; OD]. Test rounded to oval (length, 0.09-0.13 mm.), with gray, yellow to brown agglutinated wall, aperture as in Bullinularia with lower lip extended within and parallel to outer upper lip for approximately one-third circumference of test; pseudopodia short, large and pointed, rarely observed. [In moss.] Rec., N.Am.-S.Am.-Eu.-Australia.—Fig. 7,5. *P. callida, Rec., Switz.: 5a, b, dorsal and ventral views; 5c, diagram, long. sec. (*1440).

Bullinularia Penard in Grasse, 1953, *810, p. 127 [*Bulinella indica Penard, 1907, *1438, p. 277; OD] [=Bulinella Penard, 1907, *1438, p. 277 (obj.) (non Fischer, 1898); Bullinula Penard, 1911, *1441, p. 225 (obj.) (non Sowerby, 1839)]. Test plano- to concavo-convex, elliptical as seen from above (diam., 0.16-0.2 mm.), composed of
siliceous material in chitinoid cement, most finely granular near aperture; aperture eccentric elongate slit with smooth, depressed lower lip and overhanging, perforate upper lip (pore diam. 2-3μ); character of pseudopodia unknown. [Fresh water.] Rec., Eu.-N.Am.-N.Z.-Asia-Java.—Fig. 7,1-3. *B. indica* (Penard), Netherlands; 1, basal view, ×270 (*955); 2a,b, Brit. Isles; basal and end view, ×200 (*302b); 3a, India, long. sec. showing apertural overlap; 3b, outline of aperture with overhanging upper lip shown as heavy line, lower lip as thin line (*1438).

Hoogenraadia Gauthier- Lièvre & Thomas, 1958, *774, p. 352 [*H. africana; OD]. Test similar to Plagiopyxis but ovate to pyriform in outline (length, 95-150μ); wall of siliceous platelets in

Fig. 7. Plagiopyxidae; 1-3, *Bullinularia*; 4, *Oopyxis*; 5, *Plagiopyxis*; 6, *Hoogenraadia* (p. C24-C26).
chitinoid cement; broad open aperture with lower margin incurved and strongly overhanging upper margin; living animal not observed. Rec., Afr. —Fig. 7,6. *H. africana, middle Congo; 6a-c, side, oblique, and apert. views, X345 (*774).

Oopyxis Jung, 1942, *1005, p. 294 [*O. cophostoma; OD]. Similar to Centropyxis but with much reduced aperture, and to Bullinularia but without apertural overlap. [Fresh water.] Rec., S.Am.—Fig. 7,4. *O. cophostoma; basal view, X618 (*1005).

Family TRIGONOPYXIDAE Loeblich & Tappan, n. fam.

Test pseudochitinous, with added foreign matter, radially symmetrical as in Diffugidae but with flattened or invaginated apertural margin, without external neck. Mio.-Rec.

—Trigonopsis Scheffelt, 1920, *1642, p. 168 (nom. null.) (obj.) (non Perty, 1833)]. Test hemispherical (diam. approx. 90μ), consisting of parchment-like membrane with included foreign mineral and vegetable matter; aperture triangular or triradiate, rarely quadrangular or irregular; pseudopodia unknown; nucleus large, spherical. Plesi.-Rec. N.-Am.-S.-Am.-Eu.-N.Z.-Java-Sumatra.

—Fig. 8,1,2. *T. arctica (Leidy), Rec.; 1a,b, Pa., basal, edge views; 2a,b, N.J., basal, edge views; x250 (*1127).

Cyclopyxis DeFlandre, 1929, *572, p. 330 [Ctenopyxis arcelloides Penard, 1902, *1435, p. 309; OD] [=Ctenopyxis (Cyclopyxis) DeFlandre, 1929, *572, p. 330; =Ctenopyxis (Cyclopyxis) Kufferath, 1932, *1065, p. 56 (nom. nud.); =Leptodermella Rhumbler, 1925, *1574, p. 177 (type, Pseudarcella arenata Cushman, 1930, *445, p. 15)]. Test plano-convex with radial symmetry, rarely with truncated margin (diam., 0.06-0.30 mm.); aperture circular, large, symmetrical; differing from Centropyxis in radial symmetry and from Trigonopyxis in large rounded, symmetrical aperture. [Cylindropyxis was defined as a subgenus to include species with truncating margins, resulting in a quadrate end view. Leptodermella differs only in its somewhat larger size.] [Fresh water.] Mio.-Rec., Java-S.-Am.-N.-Am.-Afr.-Eu.

—Fig. 8,3,4. *c. arcelloides (Penard), Rec.; 3a,b, Brit. Isles, basal and side views, x300 (*302b); 4a,b, Switz., basal and side views, enlarged (*1435).—Fig. 8,5. C. cylindrica (Kufferath), Rec., Afr.(Congo); 5a,b, basal and edge views, approx. x450 (*1065).—Fig. 8,6. C. arenata (Cushman), Mio., USA(Fla.); 6a,b, basal and edge views, x85 (*445).

Silicoplacentina Kováry, 1956, *1049, p. 269 [*S. hungarica; OD]. Test flattened, discoidal, larger forms somewhat elongate, commonly crushed in preservation (diam. 0.25-1.2 mm.); interior of chamber simple; wall thick, siliceous, granular in appearance, surface wrinkled, white; aperture at end of short projection, somewhat eccentric. Plio., Eu.(Hung.).—Fig. 8,7. *S. hungarica; 7a, edge view, X38; 7b, photograph of specimen, X40 (*1049).—Fig. 8,8. *S. sp., Pannonian; fragment, x62 (*1049).

Family HYALOSPHENIIDAE Schulze, 1877

Test pseudochitinous, with siliceous plates or scales, rounded or angular, may have added foreign matter; aperture elongate or rounded; single nucleus; pseudopodia largely composed of ectoplasm, but may have slight penetration of endoplasm near base (endolobopodia), rounded terminally during advance and retraction, but when retracting temporarily leave behind fine, structureless, hyaline pellicle (e.g., Nebela, Lesquerlesia) which tapers to point, resembles ectoplasm in appearance, and later pulls away from substratum to be resorbed. M.Eoc.-Rec.

The “pellicle” which is left behind by retracting pseudopodia but which never precedes advancing ones has been observed only in the Hyalospheniidae. Possibly such extensions have been mistaken in certain cases for pointed pseudopodia. The general appearance of the pseudopodia in Lesquerlesia spiralis is shown in Figure 9, A; they are composed largely of ectoplasm but contain a slight extension of the endoplasm (entire animal not shown). The appearance of an advancing pseudopod with rounded margin (Fig. 9, B) and of a regressing pseudopod (Fig. 9, C,D) is illustrated. The regressing pseudopod continues to display a rounded margin but leaves behind a thin, attenuated pellicle that is retracted slowly (*909).

Hyalosphenia Stein, 1859, *1835, p. 42 [*H. cinerea STEIN in SCHULZE, 1875, *1699b, p. 335 (=Diffugia ligata TATEM, 1870, *1879, p. 313); SD LOEBLICH & TAPPAN, herein] —[=Catharia LEIDY, 1874, *1123, p. 79 (type, Diffugia ligata

Fig. 9. Hyalospheniidae; A-D, successive stages in pseudopodial movement of Lesquerlesia spiralis (p. C30-C31).
Test ovoid or pyriform (length, 15-150μ), compressed, membranous, hyaline, surface may be pitted but never includes foreign matter; aperture terminal, elliptical; protoplasm pale and granular, occupying interior of shell and at-

Certesella Loeblich & Tappan, 1961, *1181, p. 215 [*Nebela maritales Certes, 1891, *307, p. L14]; OD [=[Penarditia (Nebela) Jung, 1942, *1005, p. 256, 317; *1006, p. 381 (nom. nud.) (non Penarditia Karl, 1930)]. Test pseudochitinous, flask-shaped (length 80-200μ) with large, very thin, almost transparent, polygonal plates; 6 large pores arranged in pairs, first pair facing midway on neck, other pairs perpendicular to these at base of neck, additional small pores occurring near aperture. [On moss.] Rec., S. Am.-S. Hemis.—Fig. 10,3. *C. maritales (Certes), Cape Horn; approx. ×300 (*307).

Helceola Leidy, 1879, *1127, p. 162 [*H. picta Leidy, 1879 (=Diffugia (Nebela) Sphagni Leidy, 1875, *1125, p. 157); OD]. Test ovate, compressed, transparent, amorphous scales covering chitinous membrane and presenting reticulated appearance, may have agglutinated foreign material at base; aperture, narrow, elliptical, giving notched appearance in edge view; nucleus single, posterior; pseudopodia numerous, thin, bifurcating. Plesi.-Rec., Eu.-N. Am.-S. Am.-E. Indies.—Fig. 12,4. *H. sphagni (Leidy), Rec., USA (N.J.); 4a-c, side, edge and top view of empty test, showing form of test and aperture; 4d, side view showing character of pseudopodia, ×330 (*1127).—Fig. 12,5,6. H. petricola Leidy, Rec., USA (N.J.); empty tests, showing siliceous plates, and agglutinated foreign matter near base; 5a,b, side views; 5b, edge view, ×115 (*1127).

Leptochlamys West, 1901, *2046, p. 325 [*L. ampullacea; OD(M)]. Shell ovoid, thin, transparent, chitinoid, circular in section (length, 48-55 μ), aperture circular, slightly eccentric; test filled by protoplasm; nucleus large, vacuoles absent; single, short, expanded pseudopodium. [Fresh water.]

Rec., Eu.—Fig. 10,2. *L. ampullacea, Wales; 2a, side view showing subglobular pseudopodium and large nucleus (n); 2b, outline from above, showing circular aperture and rounded sec., ×520 (*2046).

Lesquereusia Schlumberger, 1845, *1669, p. 255
[*L. jurassica; OD(M)] [=Lecquereusia SCHLUMBERGER, 1845, *1669, p. 255 (obj.) (nom. imperf.); Lesquereusia AGASSIZ, 1846, *6, p. 203, 208 (nom. correct.)]. Test compressed, ovoid or globose with asymmetrical neck, giving the appearance of a semispiral, up to 155 μ in length, wall a transparent chitinous membrane with closely interwoven vermiform pellets or more rarely agglutinated foreign matter; protoplasm partially filling the test with a narrow band of ectoplasm extending up through the neck to the rounded aperture; nucleus single, posterior in position; pseudopodia long, blunt, simple or bifid. [As brought out by CASH & HOPKINSON (301, p. 66) the correct name for the species with vermiform pellets is L. jurassica SCHLUMBERGER, and L. spiralis (EHRENBERG) correctly refers to the agglutinated species.] [Fresh water.] Rec.,
Protista—Sarcodina

C32

cosmop.—Fig. 10.6. *L. jurassica*, N.J.(6a,b), Switz.(6c); 6a,b, side and edge view, ×250 (*1127) ; 6c, enlargement of pellets ca. ×350 (*1435).—Fig. 10.7. *L. spiralis* (EHRENBerg), USA(N.J.); side view showing agglutinated test and elongate pseudopodia, ×250 (*1127).

Nebela LEIDY, 1875, *1125*, p. 156 [*Diffugia (Nebela) numata_ LEIDY, 1875*; SD LOEBLICH & TAPPAN, herein] =_Diffugia collaris_ EHRENBerg, 1874, *676*, p. 218, =_Nebela collaris_ (EHRENBerg) LEIDY, 1879, *1127*, p. 150 [=_Diffugia (Reticella) collaris_ EHRENBerg, 1872, *688*, p. 247 (type, _Diffugia (Reticella) collaris_ EHRENBerg, 1872, =_Diffugia collaris_ EHRENBerg, 1874, SD LOEBLICH & TAPPAN, herein) (non _Reticella Gray, 1870_); =_Cyphoderiopsis_ PLAYFAIR, 1918, *1459*, p. 669 (type, _Nebela longicollis_ PENARD, 1890, *1433*, p. 158; =_Nebela Bartos, 1898, *36*, p. 346 (nom. null.)) =_Argynnia_ JUNG, 1942, *1005*, p. 256, 302; *=1006*, p. 369, 371 (nom. nud.); =_Leidyella_ JUNG, 1942, *1006*, p. 369, 384 (nom. nud.); =_Umbonaria_ JUNG, 1942, *1005*, p. 256; *=1006*, p. 370, 382 (nom. nud.); =_Pterygia_ JUNG, 1942, *1005*, p. 310; *=1006*, p. 370, 382 (type, _P. carinulata_ JUNG, 1942 (non _Pteryrella Bolten, 1798, nec Laporte, 1832_); =_Schaudinnia_ JUNG, 1942, *1005*, p. 310; *=1006*, p. 369, 379 (nom. nud.) (non _SCHULZE, 1900_); =_Deflandria_ JUNG, 1942, *1005*, p. 256, 307; *=1006*, p. 369, 373 (nom. nud.)). Test thin, pseudochitinous, transparent, ovate, pyriform or elongate, compressed (length to 180μ), may have lateral chamber extensions; surface with numerous oval or circular plates or scales of variable size, or rarely rectangular or rodlike plates; protoplasm granular, colorless, but may contain colored food vacuoles; single nucleus; pseudopodia variable in number, blunt, rarely bifid, protoplasmic body attached to test interior by strands or bands of ectoplasm. [The type-species was stated by _DEFLANDRE_ (*576) to be _Nebela collaris_ (EHRENBerg) LEIDY, but this species was not among the six originally included by LEIDY (*1125) and accordingly is ineligible to be the type. The type is here designated as _Diffugia (Nebela) numata_ LEIDY, which is, however, a junior subjective synonym of _N. collaris_.] Pleist.-Rec., cosmop.—Fig. 12.1. *N. collaris_ (EHRENBerg). Rec., USA(N.J.); 1a-c, side, edge and top views, ×330 (*1127).—Fig. 12.2. _N. longicollis_ PENARD, Rec., Australia; 2a-b, lat. view and detail of aperture, ×440 (*1459).—Fig. 12.3. *N. ansata_ LEIDY, Rec., USA(N.J.); 3a, active individual with protoplasm filling shell, ×115; 3b, contracted protoplasm attached to shell by ectoplasmic threads, ×115 (*1127).

Porosia JUNG, 1942, *1006*, p. 369, 380 [*Nebela bigibbosa_ PENARD, 1890, *1433*, p. 161; OD(M)] [=_Alocodera (Nebela) JUNG, 1942, *1005*, p. 256, 313; *=1006*, p. 369, 380 (type, _Hyalosphenia cockayni_ PENARD, 1910, *1441*, p. 238)]. Like _Ceratella_, with large lateral pores which may be connected by internal tubes, but without smaller perforations in region of neck; oval, round, or elongate scales. Rec., Eu.—Fig. 19.4, 5. *P. bigibbosa_ (PENARD); 4a,b, side and edge views, G.Brit., ×300 (*302b); 4c, detail of large pores from test edge, G.Brit., ca. ×800 (*3031); 5, side view, showing protoplasm, pseudopodia and lateral pores, Switz., ca. ×200 (*1433).
and less regularly arranged plates), and in test size and proportions (Q. marina being much smaller and having a more pyriform outline and more distinctly separated neck.) [On sphagnum and moss. Eu.-Rec., Eu.-N.Am.-S.Am.-Ind.O. (Seychelles)-MalayArch.(Borneo)-Afr.—Fig. 11, Paraquadrula; 2-4, Diffugiidae; 5, Cucurbitella; 6, Loboforamina; 7, Prantlitina; 9, Sexangularia (p. C34-C37).]
Protista—Sarcodina

Fig. 14. Diagrams indicating the nature of pseudopodial movement in *Difflugia oviformis*, Rec. (entire animal not shown, arrows marking direction of movement); *A,B*, advance of lobose pseudopodium; *C*, bifurcating pseudopodium; *D,E*, retraction of pseudopodium showing undulatory margin, loss of rigidity, and gradual diminution without residual pellicle (*909*).

4. *Q. symetrica* (Wallich), Rec., Ger.; *4ab*, living individual showing pseudopodia and edge view of empty test, ×400 (*1689b*).

Family PARAQUADRULIDAE
Deflandre, 1953

[*nom. transl. Loeblich & Tappan, 1961, p. 268 (ex subfamily Paraquadruilidae Deflandre in Grasse, 1953, p. 130)*]

Test with quadrangular calcite plates covering a thin pseudochitinous pellicle; aperture ovate; one nucleus. *Rec.*

Paraquadruil Deflandre, 1932, *573*, p. 1346 [*Quadruil irregularis* Archer, 1877, *34a*, p. 113; OD]. Test minute (length, 30-38μ), subglobular to discoid, without neck or thickened apertural rim; wall a transparent chitinous membrane with surface of closely set, quadrangular calcareous plates which may have thickened rims; aperture ovate to slitlike; protoplasm colorless, granular; pseudopodia few, simple. [On moss.] *Rec.*, W.Eu.-Spitz.—Fig. 13, *1. P. irregularis* (Archer), Neth.; *1a,b*, side and edge views, ×360 (*957*).

Family DIFFLUGIIDAE Wallich, 1864

[*nom. transl. et correct. Tarasek, 1882, p. 225 (ex subfamily Difflogiidae Wallich, 1864)*]—[In synonymic citations superscript numbers indicate taxonomic rank assigned by authors (family, subfamily); dagger(†) indicates partim]

Test rarely pseudochitinous, generally composed of foreign particles, not of secreted plates; form variable but with axial symmetry and terminal aperture; one or many nuclei; pseudopodia rigid during progression, with movement normal, if extremely elongated they may become attenuated or abruptly change in diameter; when advance ceases, pseudopodia lose rigidity and become pliable and may bifurcate, margin becomes undulating, and pseudopod is then retracted to fuse with remaining cytoplasm, no pellicle remaining behind such as found in *Nebela*. *Miss.-Rec.*

Pseudopodial movement in the *Difflugia* is illustrated diagrammatically in Figure 14.

Fig. 15. Difflogiidae; 1,2, *Difflogia* (p. C34-C35).
"Thecamoebians"

![Diagram of thecamoebians](image)

1a. Maghrebia
1b. Protocucurbitella
1c. Test globular, elongate, pyriform, or acuminate, typically circular in section (length 15-450 μ, approx. 100 μ); wall with pseudochitinous base and variable amounts of agglutinated material; aperture rounded, may be somewhat produced; protoplasm occupying most of test, attached internally to it by threads of ectoplasm; nucleus large, single; one or more contractile vacuoles; pseudopodia few, simple or bifid, of colorless ectoplasm, more rarely including some granular endoplasm. [Fresh-water lakes and ponds.] M. Eoc.-Rec., cosmop.

2a. Cucurbitella Penard, 1902; *C. metcalifornioides* OD(M) [≡Cingodifflugia Jung, 1942, *1005, p. 255, 283 (nom. nud.)], Rec., Afr.(Morocco); 1a. side view of slightly angular specimen, aperture down; 1b. apertural view; 2a. side view of quadrangular specimen with spinelike projections; 2b. basal view; all ×490 (*774).

3a. Difflugia Lamark, Rec.; USA(N.J.), 2a, elongate individual with projecting pseudopodia, ×200; USA(Pa.), 2b, empty test of common form, ×200 (*1127); Eu., 3, lectotype, here designated (*1116, pl. 17, fig. 5). — Fig. 13.4. D. regularis (Jung), Rec., S.Am.(Chile); 4a,b, side and top views, ×580 (*1005). — Fig. 15,1,2. D. maroccana (Gauthier-Liévré & Thomas), Rec., Afr.(Morocco); 4a, side view of quadrangular specimen with spinelike projections; 4b, apertural view; 2a, side view of quadrangular specimen with spinelike projections; 2b, basal view; all ×490 (*774).

4a. D. protoeiformis Lamark, Rec.; USA(N.J.), 2a, elongate individual with projecting pseudopodia, ×200; USA(Pa.), 2b, empty test of common form, ×200 (*1127); Eu., 3, lectotype, here designated (*1116, pl. 17, fig. 5). — Fig. 13.4. D. regularis (Jung), Rec., S.Am.(Chile); 4a,b, side and top views, ×580 (*1005). — Fig. 15,1,2. D. maroccana (Gauthier-Liévré & Thomas), Rec., Afr.(Morocco); 4a, side view of quadrangular specimen with spinelike projections; 4b, apertural view; 2a, side view of quadrangular specimen with spinelike projections; 2b, basal view; all ×490 (*774).

5a. D. protoeiformis Lamark, Rec.; USA(N.J.), 2a, elongate individual with projecting pseudopodia, ×200; USA(Pa.), 2b, empty test of common form, ×200 (*1127); Eu., 3, lectotype, here designated (*1116, pl. 17, fig. 5). — Fig. 13.4. D. regularis (Jung), Rec., S.Am.(Chile); 4a,b, side and top views, ×580 (*1005). — Fig. 15,1,2. D. maroccana (Gauthier-Liévré & Thomas), Rec., Afr.(Morocco); 4a, side view of quadrangular specimen with spinelike projections; 4b, apertural view; 2a, side view of quadrangular specimen with spinelike projections; 2b, basal view; all ×490 (*774).
C36 Protista—Sarcodina

Magherea Gautter-Lievre & Thomas, 1958, *774, p. 350 [*M. spatulata; OD]. Test agglutinated (length 95-125μ), similar to Diffugia but with large protuberances (commonly 4) at apertural shoulder, directed toward aperture; aperture rounded, with border of closely spaced sand grains; pseudopodia elongate, lobose. [Marshes.] Rec., A.f. (Algeria).—Fig. 16.I. *M. spatulata; 1a,b, side views; 1c, apert. view; 1d, apert. area showing pseudopodia; all ×225 (*774).

Pontigulasia Rumphuer, 1895, *1568b, p. 105 [*P. compressa Rumphuer, 1905; SD Loeblich & Tappan, herein, =P. rumblesi Hopkinson in Cash & Hopkinson, 1909, *301, p. 162 (non Diffugia compressa Carter, 1864, *288, p. 22, =Pontigulasia compressa (Carter) Cash & Hopkinson, 1909, *301, p. 62).] Like Diffugia but with constriction forming neck and internal transverse diaphragm at position of constriction, with perforations for extrusion of pseudopodia around or through internal diaphragm; test 120-170μ in length; nucleus single; pseudopodia lobose. [On moss, in lakes.] Ec. (*1984, p. 334), Rec., Eu.-N.Am.-S.Am.-Afr.—Fig. 17.1. *P. rumblesi Hopkinson, Rec., Ger.; 1a,b, lat., apert. views, ×144; 1c, long. sec. showing internal diaphragm, ×238 (*1568b).

Prantlitina Vašček & Růžička, 1957, *1984, p. 334 [*P. prantli; OD] (=Prantlitina (Prantlitiopsis) Vašček & Růžička, 1957, *1984, p. 337 (type, P. (Prantlitiopsis) sturi)]. Test ovate, flattened, agglutinated (length, 0.31-0.65 mm.), probably on pseudochitinous base as deformation is common, thick-walled, inner cavity of test simple; aperture simple, elongate, terminal slit. [Fresh-water deposits.] U.Carb.(Namur.), Eu. (Czech.).—Fig. 13.7. P. sturi Vašček & Růžička; 1a,b, lat., apert. views, ×70 (*1984).—Fig. 13.8. *P. prantli; 8a,b, lat., apert. views, ×70 (*1984).

Protocucurbitella Gaughter-Lievre & Thomas, 1960, *775, p. 593 [*P. coroniformis; OD]. Test 200-230μ in length, similar in appearance to Loboforamina but with slight constriction below lobate aperture similar to diaphragm of Cucurbitella, broad opening in irregular diaphragm. [Marshes and swamps.] Rec., Afr.-Madag.—Fig. 16.2. *P. coroniformis, Afr.; 2a,b, lat., apert. views, ×170; 2c, detail of aperture, ×380 (*775).

Pseudopontigulasia Van Oye, 1956, *1977, p. 347 [*P. gessneri; OD(M)]. Similar to Loboforamina but with numerous projecting toothlike foldings of pseudochitinous apertural margin rather than infolding of entire margin into few large lobes; about 60μ in length. [Fresh water.] Rec., S.Am.—Fig. 17.2. *P. gessneri, Venez.; 2a,b, side and oblique views showing apert. teeth; approx. ×550 (*1977).
Sexangularia Averintsev, 1906, *59, p. 163 [*S. parvula; OD(M)]. Test elongate (length 0.12-0.18 mm.), lagenoid in outline, hexagonal in section; wall chitinoid, with rare agglutinated material; pseudopodia short and lobose; protoplasm attached to interior by strands of ectoplasm. [Fresh water.] Rec., Eu.—Fig. 13,9. *S. parvula; 9a, b, side view showing protoplasm and transv. sec. of test, \times 275 (*59).

Superfamily CRYPTODIFFLUGIACEA
Jung, 1942

[Cryptodillugiidae Jung, 1942, p. 257] [C. reticulosa; De Saedeleer, 1934, p. 7, 21; C. reticulosa Deplanche in Grasé, 1953, p. 132; C. reticulosa Bowes, 1960, p. 359]

Pseudopodia of ectoplasm, pointed or bifurcating, anastomosing. Pleist.-Rec.

Family CRYPTODIFFLUGIIDAE
Jung, 1942

[Cryptodillugiidae Jung, 1942, p. 257]

Test membranous to pseudochitinous. Pleist.-Rec.

Cryptodiillugi Penard, 1890, *1433, p. 168 [*C. oviformis; OD(M)] [=Geococcus Francé, 1913, *737, p. 28 (type, G. vulgaris Francé, 1913) (non Geococcus Green, 1902)]. Test chitinoid, ovoid, tiny, 15-18 μ in maximum diameter, round in section; small rounded aperture at slightly narrowed end which may have internal ridge at its margin, producing invaginated appearance; protoplasm clear, filling test or leaving gap at aboral end; nucleus rounded, clear; single contractile vacuole; few pseudopodia, narrow and elongate. [Fresh water and soil.] Pleist.-Rec., Eu.—Fig. 18,1-4. *C. oviformis, Rec., Ger.; 1,
empty test; 2a, b, individual showing pseudopodia and contractile vacuole, same 5 minutes later; 3, specimen with detritus in apert. region; 4a, b, specimens showing contractile vacuole, elongate pseudopodia, and nucleus with dark, round nucleolus; all approx. ×600 (*1433). — Fig. 18.5. C. vulgaris (France), Rec., Ger.; 5a, photomicrograph; 5b, e, encysted individuals; 5d, beginning of pseudopodial extrusion; all ×400 (*345).

Difflugiella CASH, 1904, °299, p. 218, 224 [*D. apiculata; OD*]. Test up to 400 in length, ovoid, circular in section, pseudochitinous, flexible, transparent; protoplasm colorless, granular; with 2 or 3 vacuoles and inconspicuous nucleus; pseudopodia of 2 kinds, active lobular or digitate ones with short, acute apiculate terminations protruding centrally from aperture, other pseudopodia longer, narrower, tapering, projecting from each side and showing less tendency to alteration. [Fresh water.] Rec., Eu.—Fig. 18.6. *D. apiculata*, Eng.; side view, ×500 (*299).

Petalopella LOEBLICH & TAPPAN, 1961, °1181, p. 216 [*Petalopus diffusus CLAPAREDE & LACHMANN, 1859, °345, p. 442; OD*] [*=Petalopus CLAPAREDE & LACHMANN, 1859, °345, p. 442 (obj.), (non KIRBY & SPENCE, 1828, nec MORTON-SCHOLSKY, 1845)*]. Test membranous, ovoid, region of pseudopodal origin truncate; nucleus not observed; pseudopodia variable, may have single pseudopod which ramifies into many branches, or number of thickened pseudopodia spreading and flabelliform or clavate at their extremities and retractable into body. [Known only from the original description, the nominal genus (a homonym) was renamed, since the pseudopodial character differentiates it from other described genera.] [Fresh water.] Rec., Eu.—Fig. 18.7. *P. diffusus* (CLAPAREDE & LACHMANN), Germ.; 7a–c, views showing different pseudopodal characters, approx. ×300 (*345).

Wailesella DEFLANDRE, 1928, °570, p. 37 [*Cryptodiella eboreanensis WAILES in WAILES & PENARD, 1911, °2031, p. 24; OD*]. Test small, length, 28–280, transparent, smooth, chitinoid, elongate oval, slightly compressed; aperture circular, placed somewhat obliquely in relation to the longitudinal axis; protoplasm colorless, granular; single nucleus with large nucleolus, 1–2 contractile vacuoles; pseudopodia few, short, pointed or digitate. [On sphagnum.] Rec. E. USA-Alaska-Can.—Fig. 18.8. *W. eboreanensis* (WAILES), Ire.; 8a, oblique view of living specimen; 8b, e, apert. and side views, ×1,300 (*2031).

Family PHRYGANELLIDAE JUNG, 1942 [Phryganellidae JUNG, 1942, p. 257]

Test arenaceous. **Pleist.-Rec.**

Phryganella PENARD, 1902, °1435, p. 418 [*P. nidulus PENARD, 1902; SD LOEBLICH & TAPPAN, herein*] [*=Phryganella NEAVE, 1940, °1348c, p. 733 (nom. null.); =Geopyxella BONNET & THOMAS, 1955, °171, p. 419 (type, G. sylvicola)*]. Similar to *Diffugia*, 0.16–0.22 mm. in length, but with pseudopodia varying from broad lobate ex...
pansions to narrow, digitate and pointed, extending radially; multinucleate, up to 400. [Only the test of *Geopyxella* was described. This seems analogous to *Phryganella*, but the synonymy can only be proven by a study of pseudopodial and other characters]. [On moss] *Pleist.-Rec., India-W.Eu.-N.Am.*—Fig. 19, J. *P. nidulus*, Rec., Switz.; 1a-c, apert., oblique, and aboral views, approx. X170 (*1435*).—Fig. 19,2. *P. sylvicola* (Bonnet & Thomas), Rec., Fr.; 2a,b, apert. and edge views, X320 (*171*).

Class RETICULAREA Lankester, 1885

[nom. correct. Loeblich & Tappan, 1961, p. 216 (pro class Reticularia Lankester, 1885, p. 845)]—[=Rhizopoda asphycta Hauckel, 1862, p. 211]

Unicellular organisms with amoeboid principal stage; pseudopodia in form of filopodia, reticulopodia, or axopodia; may have secreted or agglutinated skeleton; protoplasmic movement by active shearing or sliding between adjacent gel-like filaments moving in opposite directions in same pseudopod, and in absence of a plasmagel cortex (*984*). [The class Reticularea, as redefined, includes the subclasses Filosia, Granuloreticulosia, Radiolaria, Heliozoia, and Acantharia (*1181, p. 216*).] *Precam., Cam.-Rec.*

Subclass FILOSIA Leidy, 1879

[nom. transl. Loeblich & Tappan, 1961, p. 269 (ex suborder Filosa Leidy, 1879, p. 23, 189)]—[In synonymic citations superscript numbers indicate taxonomic rank assigned by authors; (Class, Section, Order); dagger(1) indicates partim] —[=Filosat Lankester, 1885, p. 838; =Filosa monostomata Averianov, 1907, p. 100; =Filosa Chatton, 1927, p. 76; =Filosa Rhumbler, 1913, p. 339; =Affilosia Rhumbler, 1913, p. 339 (nom. van.); =Filosa Deblonde in Grasse, 1953, p. 132] —[=Protoplastat Hauckel, 1870, p. 56; =Protoplastat Leidy, 1879, p. 23; =Monohalamia Hauckel, 1862, p. 232]

Pseudopodia filiform, tapering, branching and rarely or not anastomosing. *M.Eoc.-Rec.*

Order ACONCHULINIDA de Saedeleer, 1934

[nom. correct. Loeblich & Tappan, 1961, p. 269 (pro order Aconchulina Deblonde in Grasse, 1953, p. 92, nom. transl. ex suborder Aconchulina de Saedeleer, 1924, p. 6, 24)]

Naked amoebae with filiform pseudopodia. *Rec.*

Family PENARDIIDAE Loeblich & Tappan, 1961

[Penardiidae Loeblich & Tappan, 1961, p. 269; =family Reticulosa Cash, 1904, p. 222 (partim) (nom. Reticulosa Carpenter, Parker & Jones, 1862, nom. nud.)]
Protista--Sarcodina

Order GROMIDAE Claparede & Lachmann, 1859

[Gromida CLAPAREDE & LACHMANN, 1859, p. 461—] [In synonymic citations superfamily numbers indicate taxonomic rank assigned by authors (Family, Subfamily, Superfamily, Group); dagger (‡) indicates partim] —[=Gromiidae LANGE, 1865, p. 895; =Gromiidae Delages & HÉRIOUD, 1896, p. 37; =Gromiidae CASH, 1909, p. 38; —[=Monostégium d'Orbigny in de la Sagra, 1839, p. xxvii, 1 (nom. neg.); —Lepamoebae Haeckel, 1870, p. 56; =Pseudogromiidae SCHMARDHA, 1871, p. 162; =Imperforata LANGE, 1885, p. 885; =Testacea BLOCHMANN, 1895, p. 14; =Imperforata Blochmann, 1895, p. 14; =Pseudogromiidae SCHMARMER, 1896, p. 67; =Chlamydoideas filosa testacea SCHMURD, 1906, p. 388; =Testaciatae BODELAR, 1906, p. 372; =Selenopodae ZINNIK, 1908, p. 78; =Testaeosilia de S.aed, 1913, p. 6, 27; =Monotalskeg GABELEH, 1947, p. 17 (nom. neg.); =Testaciatae DEFLANDRE in GRASS, 1938, p. 133; =Testaeosilia BOWEY, 1960, p. 355]

Amoebae with filopodia, shell or lorica always with distinct aperture. Uniflagellate gametes (Gromia). M.Eoc.-Rec.

Superfamily GROMIACEA Reuss, 1862

[=pom. correct, LOEBLICH & TAPPAN, 1961, p. 269 (pro superfamily Gromidiidae POCHE, 1913, p. 173, nom. transl. ex family Gromidae REUSS, 1862, p. 362)] —[In synonymic citations superfamily numbers indicate taxonomic rank assigned by authors (Superfamily, Family group); dagger (‡) indicates partim] —[=Foraminiferae Monostomata REUSS, 1862, p. 362 (nom. nud.); =Lepamoebae HAECKEL, 1870, p. 56; =Pseudogromiidae Schmardha, 1871, p. 408; =Chlamydoideas filosa testacea Schmursd, 1906, p. 388; =Testaciatae Bödelar, 1906, p. 372; =Selenopodae Zinnik, 1908, p. 78; =Testaeosilia de s.aed, 1913, p. 6, 27; =Monotalskeg Gabeleh, 1947, p. 17 (nom. neg.); =Testaeosilia Deplanke in Grasse, 1938, p. 133; =Testaeosilia Bowey, 1960, p. 355]

Test chitinoid, without distinct siliceous scales or plates, but commonly with agglutinated foreign material. Pleist.-Rec.

Family GROMIIDAE Reuss, 1862

[=pom. correct, Eimer & Fickert, 1899, p. 670 (pro family Gromidae REUSS, 1862, p. 362)] —[In synonymic citations superfamily numbers refer to taxonomic rank assigned by authors (Family, Subfamily, Superfamily, Group); dagger (‡) indicates partim] —[=Gromidae CARPENTER, 1861, p. 470; =Gromidae CLAU, 1872, p. 108; =Gromidae SCHWAGER, 1876, p. 484; =Gromidae Butschi in BONH, 1880, p. 185; =Gromidae Delages & Héroud, 1896, p. 116; =Gromidae De Saedelle, 1934, p. 6, 47; =Gromidae Gadea Builán, 1947, p. 17 (nom. nud.); =Pseudogromiidae S. aed, 1913, p. 6, 32; =Pseudogromiidae S. aed, 1913, p. 233; =Pseudogromiidae S. aed, 1913, p. 6, 44; =Chlamydoideas TAYLOR, 1882, p. 239; =Chlamydiaceae TAYLOR, 1882, p. 233; =Pseudogromiidae S. aed, 1913, p. 6, 32; =Monostomata LANGE, 1885, p. 845 (nom. nud.); =Monostomiaceae SCHMARMER, 1947, p. 17 (nom. nud.); =Pseudogromiidae RUMBER, 1995, p. 93, 95 (nom. nud.); =Nuditestiaceae RUMBER, 1995, p. 93, 94 (nom. nud.); =Pseudogromiidae S. aed, 1913, p. 6, 32; =Pseudogromiidae S. aed, 1913, p. 6, 32] [Also =Gromidae Haeckel, 1894, p. 190]

Test membranous or pseudochitinous, rigid or slightly flexible, without distinct plates or scales, but with some siliceous elements, and commonly with foreign material. Pleist.-Rec.

Gromia DUJARDIN, 1835, *632, p. 338 [*G. oxi­formis DUJARDIN, 1835, *634(a), p. 345; SD (SM), Dujardin, 1835) [=Arcellina DuPLESSIS, 1876, *1460, p. 100 (type, A. marina) (non Arcellina Carter, 1856); =Hyalopis SCHMARDHA, 1894, *1641, p. 14] (type, Gromia dujardinii SCHULTZ, 1854, *1695, p. 55). Test basically spherical to ovoid (diam., 0.15-3.0 mm.), may be deformed and lobate when living in dense growth, or flattened at extremities; wall transparent to colorless or apertural rim may be brownish, regarded as consisting of 2 layers (JEPPE, *990; HEDLEY, *891), inner structureless membrane and outer perforated layer originally described as having irregularly prismatic structure (chitinoid?), 2-20 μ in length and insoluble in HCl, but dissolved in caustic potash, perforations shown to be radial canals, under electron microscope, and the inner layer shown to be finely granular ectoplasm (*892); aperture broad, round or oval, terminal, surrounded by apertural apparatus which consists of narrow tubuliferous ring at outer margin of base of conspicuous, hyaline, flexible collar, the area surrounding the oral capsule lacking perforations in electron micrographs, 9 to 20 simple lobes or fimbriate septal bars radiate inward from edges of collar, restricting the opening; the oral capsule has numerous fine tubules or fibrils as seen by electron microscope; granular protoplasm filling test, contains food particles, numerous small refringent bodies (xanthosomes), sand grains and abundant brown oral mass of debris (stercomata) which results in opaque brown color; multinucleate, spherical nuclei (diam., 3.5-5μ); pseudopodia arising from clear ectoplasm in pseudopodial trunk are thick, very elongate, hyaline and nongranular; asexual and sexual reproduction, uniflagellate flagellulae having been variously referred to as gametes (*1106) which fuse, or as asexual "swarm spores" (*990). [VALKANOV, 1938, reported fusion of gametes, and dimorphism in size of adults, resulting from the sexual and asexual generations in G. dujardinii (*1973). [Marine.] Rec., Eu.-N.Am.— Fig. 21.1-4. *G. oxi­formis, 1, living animal showing pseudopodia, Fr.; X10 (*632); 2a,b, thick perforated layer with thinner supposed membranous layer and surface view showing perforated "prisms," Eng.; X1,750; 3, flagellate gamete, Eng.; X4,000 (*1106); 4a,b, oral apparatus, top view and vert. sec., USA (Calif.); X50 (*41).— Fig. 21.5. G. dujardinii SCHULTZ, Italy; X36 (*1695).— Fig. 22.1-3. *G. oxi­formis, electron micrographs (*892); 1, section of shell showing canal passing radially through
wall, $\times 15,800$; 2, oblique section of shell (dark area in upper right), showing honeycomb membrane that extends diagonally across figure and cytoplasm (lower left), $\times 137,000$; 3, section of oral capsule showing tubules of which it is composed, with connecting filaments, $\times 82,000$. *Amochogromia* Giard, 1900, *787*, p. 377 [*A. cinabarina* OD(M)]. Solitary or in small colonies

Fig. 21. Gromiidae; 1-5, Gromia; 6,7, Capsellina; 8, Bargoniella (p. C40-C42).
of 10 to 12; test irregularly ovoid, but variable during movement (length to 2 mm.), with hyaline, elastic test completely filled by homogeneous, finely granular, red protoplasm; nucleus spherical, eccentric, large (diam., 160 μ); pseudopodia extended from single opening, elongate; never figured. [Marine, associated with cirripeds.] Rec., Eu. (Italy). — FIG. 21.8. *B. amylacea* (Bargoni), Sicily; enlarged (*700).

Bargoniella Loeblich & Tappan, 1961, p. 1181, p. 216 [*Salpicola amylacea* Bargoni, 1894, *80, p. 43; OD] [*Salpicola* Bargoni, 1894, *80, p. 43 (obj.) (non Richardi, 1880)]. Test ovoid with “cellulose” wall; aperture terminal with thickened collar from which pseudopodial trunk emerges; protoplasm granular, filling test, pale in young but opaque in adult; nucleus large; reproduction by binary fission; pseudopodia elongate, bifurcate, probably filose, and ramifying in tunicate Salpa upon which it is parasitic. [Originally regarded as a parasitic foraminifer, this genus was referred to the Filosa (*1569, p. 202) because of its evident filose pseudopodia. A search for type material on the tunicates *Salpa mucronata* and *S. democratica* in the region of Messina, Sicily, could determine without doubt the systematic position of this genus.] [Marine.] Rec., Eu. (Italy). — FIG. 21.8. *B. amylacea* (Bargoni), Sicily; enlarged (*700).

Capsellina Penard, 1909, p. 1439, p. 290 [*C. bryorum*; OD] [*Rhogostoma Bélá, 1921, *107, p. 305 (type, *R. schuessleri* Bélá)]. Test ovoid, slightly compressed laterally (diam., 12-40 μ); wall of 2 layers, outer one membranous, grayish to dark brown, with small chitinous or siliceous agglutinated particles, inner one transparent, pearl-gray, flexible; aperture narrow elongate slit in depression; one or many contractile vacuoles; nucleus very large, single, with 3 to 6 nucleoli; reproduction by division; pseudopodia filopodia, without anastomosing. [On moss.] Rec., Eu.— FIG. 21.6. *C. bryorum*, Switz.; 6a-c, broad side with contracted protoplasm showing large nucleus; oblique and apert. views, ×750 (*1439). — FIG. 21.7. *C. schuessleri* (Bélá), Ger.; side view showing pseudopodia, ×1,700 (*107).

Chlamydophrys Cienkowski, 1876, p. 341, p. 39 [*C. stercorea; OD]. Test ovoid, hyaline, with short neck, rather rigid but capable of deforma-
"Thecamoebians"

1. Protoplasm divided into 2 zones by dark equatorial zone of granules, oral area of protoplasm being rich in vacuoles, aboral end with transparent protoplasm containing single nucleus with nucleolus; pseudopodial trunk arising from neck, from which numerous, fine, nongranular pseudopodia arise.

2a. Clypeolina

2b. Clypeolina

2c. Clypeolina

3. Diaphorodon

4a. Nadinella

4b. Nadinella

4c. Nadinella

4d. Chlamydophrys

5. Chlamydophrys

Fig. 23. Gromiidae; 1, Frenzelina; 2, Clypeolina; 3, Diaphorodon; 4, Nadinella; 5, Chlamydophrys (p. C42-C46).
pseudopodia extend. [Fresh water.] Rec., Eu.—Fig. 23, 5. *C. stercorea, Ger.; side view showing dark equat. zone, large nucleus, and delicate pseudopodia, X760 (*341).

Clypeolina PENARD, 1902, °1435, p. 459 [*C. marginata; OD(M)]. Test grayish, oval or elliptical (length, 80-140\(\mu\)), composed of 2 layers, outer cover of 2 strongly compressed chitinoid valves with distinct border flange, bearing flat, irregular, siliceous scales which are larger toward center of test and separated by smaller scales, inner cover consisting of membranous sac; aperture elliptical to linear; nucleus large, round, with large nucleolus, single contractile vacuole; pseudopodia filiform, elongate, narrow, branching; reproduction by binary fission, each half appropriating one of outer valves and secreting another new one. [Fresh water.] Rec., Eu.—Fig. 23, 2. °C. marginata, Switz.; 2a-c, side, edge, and top views approx. X250 (*1435).

Diaphorodon ARCHER, 1869, *31, p. 394 [*D. mobile; OD]. Test large, ovoid (length, 60-113\(\mu\)), membranous, with agglutinated cover and with thick covering of fine, rigid, hyaline, apparently pseudochitinous bristles which were originally thought to be pseudopodia; pseudopodia long, filose, branching; single nucleus, placed posteriorly; aperture terminal, of varying shape; 1 or 2 contractile vacuoles toward apertural end. [Fresh water.] Rec., Eu.—Fig. 23, 2. °D. mobile, G. Brit.; X200 (*302a).

Frenzelina PENARD, 1902, °1435, p. 463 [*F. reniformis; OD(M)]. Test thin, hemispherical (diam., 26-30\(\mu\)), with some siliceous particles, aperture equal to diameter of test; protoplasmic body rounded, ovoid, slightly reniform, covered by thin, flexible membrane, with considerable separation between this and outer test; apertural orifice of inner membrane narrowed, round, and may protrude slightly; nucleus central, one contractile vacule, numerous very fine pseudopodia, rigid, simple or bifurcate, leading from pseudopodial trunk. [Fresh water.] Rec., Eu.—Australia.—Fig. 23, 1. °F. reniformis, Switz.; 1a, side view showing pseudopodial trunk, outer test and inner membrane, approx. X1,000; 1b, top view, approx. X700 (*1435).

Lagunculina RHUMBLER, 1904, *1569, p. 248 [*Ovulina urnula GRUBER, 1884, °833, p. 497; OD(M)] [*=Ovulina GRUBER, 1884, °833, p. 497 (obj.) =Arlagunculina RHUMBLER, 1913, *1572b, p. 349 (obj.) (nom. van.)]. Test flask-shaped (length, 0.15 mm.), with everted phialine apertural neck; wall finely arenaceous, finer-grained and less densely packed in apertural region; one nucleus. [Similar in general appearance to *Urnulina GRUBER, but in view of the questionable pseudopodial characters of both genera, they are left distinct for the present.] [Shallow marine, on wood and rocks.] Rec., Eu.—Fig. 24, 1. °L. urnula (GRUBER), Italy (Genoa Harbor); 1a, b, side view of stained test and living specimen showing pseudopodia, X300 (*833).

Lecythium HERTWIG & LESER, 1874, *921, p. 117 [*Aralia? hyalina EHRENBERG, 1838, °668, p. 134; OD(M)] [*=Pamphagus Bailey, 1853, °66, p. 347 (type, P. mutabilis Bailey, 1853) =Pamphagus THUNBERG, 1815, =Baileya AVERT INSEV in SCHOUTEDEN, 1906, °1675, p. 382 (pro Pamphagus Bailey, 1853) =Troglodytes GABRIEL, 1876, °759, p. 536 (type, T. zoster) (non Troglydyes MOEHRING, 1758, nec GEOFFROY, 1812) =Phonergates Buck, 1878, °251, p. 20 (type, P. vorax Buck, 1878 (non Phonergates STÅL, 1853)). Test spherical to pyriform (length, 30-45\(\mu\)), thin, flexible, colorless or translucent, no foreign matter; aperture terminal, circular, on

© 2009 University of Kansas Paleontological Institute
short neck; protoplasm colorless, granular, filling test; nucleus large, with central nucleolus, posterior in position; one contractile vacuole; pseudopodia numerous, narrow, elongate, branching. [Fresh water on moss.] Rec., Eu.-N.Am.—Fig.

25.2. *L. hyalinum* (Ehrenberg), Geit.; 2a,b, side and aboral views, approx. ×500 (*921).

Nadinella Penard, 1899. *1434, p. 82 [*N. tenella; OD*]. Test flask-shaped (length, 50-55μ), pseudodochitinous, with small agglutinated scales par-

Fig. 25. Gromiidae; 1, Pseudodiffugia; 2, Lecythium; 3, Penardeugenia (p. C44-C46).
particularly at aboral end, compressed; aperture narrow, grooved at each side with broad hyaline collar surrounding aperture; protoplasm clear, not completely filling test; nucleus at aboral end; one contractile vacuole; pseudopodia elongate, narrow, filiform. [Fresh water. Rec., Eu.—Fig. 23,4. *N. tenella, Switz.; 4a,b, aboral and side views, approx. X500; 4c,d, aperture from larger side and from edge, enlarged (*1434).

Penardeugenia Deflaurde in Deflaurde-Rigaud, 1958, *578, p. 29 [*Pamphagus bathybioticus Penard, 1904, *1436, p. 413; OD] [=Eugenia Averintsev, 1906, *59, p. 263 (obj.) (non Gould, 1855, nec Martens, 1860; nec Robineaud-Desvoidy, 1863; nec Hall, 1867)]. Test globular (diam., 35-45μ), thin-walled, hyaline, with small, triangular, siliceous platelets regularly arranged, test covered by short pointed siliceous bristles, enlarged at their base; aperture terminal, round to elliptical owing to rather flexible margin; protoplasm granular, colorless, with large nucleus containing small nucleolus at aboral end of test; large, round, active contractile vacuoles near aperture; pseudopodia filiform, tapering. [Fresh water.] Rec., Eu.—Fig. 25,3. *P. bathybiotica (Penard), Switz.; 3a, side view, approx. X875; 3b, apert. area, enlarged; 3c, detail of plate arrangement, approx. X1,700 (*1436).

Pseudodiffugia Schlumberger, 1845, *1669, p. 256 [*P. gracilis; OD(M)]. Test ovoid to globular (length, 20-65μ), pseudochitinous, usually rigid, with some foreign matter; aperture large, rounded, terminal; single nucleus and single contractile vacuole; pseudopodia filiform, very elongate, simple or branching. [Fresh water.] Pleist.-Rec., Eu.—Fig. 25,1. *P. gracilis, Rec., Switz.; 1a-d, aboral, side and apert. views of variously shaped tests, X250 (*1435).

Urnulina Gruber, 1884, *833, p. 496 [*U. diffugiaeformis; OD] [=Anurnulum Rhumbler, 1913, *1572b, p. 349 (obj.) (nom. van.)]. Test ovate (length, approx. 0.8 mm.), somewhat nar-
rowed at aboral end; wall of foreign matter and densely packed siliceous grains, some of which may be secreted by animal; aperture broad, at flattened end of test, with clear rim; pseudopodia originally illustrated as filose and hyaline, but only observed once, and description leaves doubt as to their true character. [Marine.]

Superfamily EUGLYPHACEA

Family EUGLYPHIDAE Wallich, 1864

Test composed of variously shaped siliceous scales. *M.Eoc.-Rec.*

Subfamily EUGLYPHINAE Wallich, 1864

Test hyaline, symmetrical, elongate, composed of rounded siliceous scales, aperture rounded to elongate; one nucleus. *M.Eoc.-Rec.*
Protista—Sarcodina

[Fresh water in moss, sphagnum and submerged vegetation.] M.Eoc.-Rec., cosmop.—Fig. 27,1-4.
*E. tuberculata Dujardin; 1, side view of test referred by Dujardin to E. alveolata, Rec., Fr.;
×340 (*636); 2, side view showing pseudopodia,
Rec., Br.I., ×400 (*302a); 3a,b, side and apert.

Fig. 27. Euglyphidae (Euglyphinae; 1-10, Euglypha) (p. C47-C49).
views showing plate arrangement, Rec., Br.I., X600 (*302a); 4a,b, oval and circular body scales, X1,000; 4c, apert. scale, X2,000, Rec., Br.I.—Fig. 27.5. E. alveolata DuJardin, Rec., Fr.; lectotype (*636, pl. 2, fig. 9) herein designated, X340.—Fig. 27.6. E. ciliata Ehrenberg, Rec., Br.I.; 6a, apert. scales, X1,600; 6b, body scales and spines, X2,000 (*302a).—Fig. 27.7. E. rotunda Wailes, Rec., Br.I.; 7a-c, apert. scales, X1,000 (*302a).—Fig. 27.8. E. strigosa Ehrenberg, Rec., Br.I.; apert. scales, X1,600 (*302a).—Fig. 27.9. E. mucronata Leidy, Rec., Br.I.; terminal spines, X1,000 (*302a).—Fig. 27.10. E. compressa Carter, Rec., Br.I.; spines, X1,000 (*302a).—Fig. 27.11. E. reticulata (Penard), Rec., Switz.; approx. X630 (*1435).

Ampullaria Van Oye, 1956, *1977, p. 353 [*A. rotunda; OD(M)]. Test lagenoid (length, 110μ), circular in section, with elongate tubular neck distinctly separated from ovate body; small oval plates overlapping to appear hexagonal, plates of neck smaller, irregular and not overlapping, capable of movement; aperture terminal, rounded; protoplasmic details unknown. [Fresh water.] Rec., S.Am. (Venez.).—Fig. 28.1. *A. rotunda; X400 (*1977).

chitinoid lip rather than denticulate apertural margin; test covered with elongate oval scales (length, 40-75 μm), imbricated as in *Euglypha*; living animal unknown. [*Hyalina Jung* was described as having a netlike surface rather than imbricate scales. Its similarity to *Heteroglypha* in appearance suggests that the network may actually denote the presence of scales; hence the genus is regarded as probably synonymous]. [Fresh water on sphagnum.] Rec., Afr.-S.Am.—Fig. 28,2,3. *H. delicatula*, Congo; 2a-c, side, edge, and top views, ×580 (*1909*); 3, edge view showing plate arrangement, ×580 (*1909*).—Fig. 28,4. *H. neta* (Jung), Chile; 4a,b, side and edge views, ×583 (*1005*).

Paranebe1a Jung, 1942, *1005, p. 257, 327 [*P. dentatula; OD*] [= *Euglyphidion* Bonnet, 1960, *170, p. 1* (type, *E. enigmaticum*)]. Test ovate, compressed (length, 30-172 μm), with granular, medium to dark brown wall in which scattered irregular rounded plates are embedded; aperture rounded, with slightly thickened lip and finely scalloped or weakly dentate margin; living animal unknown. [Fresh water.] Rec., S.Am.-Eu.—Fig. 28,7. *P. dentatula*, Chile; side view, ×310 (*1005*).—Fig. 28,8. *P. enigmatica* (Bonnet), Fr. (Hautes-Pyrenees); side view showing siliceous scales of 2 sizes, ×1,320 (*170*).

Placocista Leidy, 1879, *1127, p. 221 [*Euglypha spinosa* Carter, 1865, *289, p. 290; OD*] [= *Placocysta* Blochmann, 1886 (fide *302a, p. 42) (nom. van.)]. Test ovate (length, 65-175 μm), compressed, lenticular in section, composed of oval to circular imbricated siliceous scales; aperture elongate, with flexible border, without toothed apertural scales of *Euglypha* or denticulate pseudochitinous margin of *Sphenoderia*; protoplasm gray to colorless, granular, particularly in central area, and may contain symbiotic algae; nucleus large, posterior; 2 or more contractile vacuoles; pseudopodia filose and branching, generally arising from protruding pseudopodial trunk. [Fresh water on sphagnum.] Rec., Eu.-N.Am.—Fig. 28,5,6. *P. spinosa* (Carter), Br.1.; 5a-c, side, edge and basal views, ×300 (*302a*); 6, spines, ×800 (*302a*).

Sphenoderia Schlumberger, 1845, *1669, p. 256 [*S. lenta; OD(M)*] [= *Assulina* Ehrenberg, 1872, *688, p. 246* (type, *Diffugia seminulum* Ehrenberg, 1848, *677, p. 379; SD Loeblich & Tappan, herein); = *Hologlypha* Ehrenberg, 1872, *688, p. 246* (type, *Diffugia (Assulina) lenta* Schlumberger, Ehrenberg, 1872, = *Sphenoderia lenta* Schlumberger, 1845, obj., SD Loeblich & Tappan, herein)]. Test ovoid to globular (length, 30-150 μm), compressed, hyaline, colorless to brown, membranous, covered with regularly arranged, circular, oval, or hexagonal siliceous scales, which do not extend to cover neck, as in *Euglypha*, but leave bare a thin chitinous dentate membrane or collar around oval or elliptical terminal aperture; protoplasm commonly colorless to gray; nucleus large, toward posterior end; 1 or 2 contractile vacuoles; pseudopodia filose, may bifurcate. [Fresh water on
FIG. 30. Euglyphidae (Trinematinae; 1,2, Trinema; 3,4, Corythion) (p. C53).

—Fig. 29,1. S. seminulum (EHRENBERG), Rec., USA(N.J.); 1a-c, side, edge, and top views (1a, living specimen), ×500 (*1127).—Fig. 29,2.

*S. lenta, USA(N.J.); 2a,b, side views of empty tests, ×500 (*1127).

Tracheleuglypha DEFLANDRE, 1928, *570, p. 40

[*Euglypha dentata VEJDOVSKÝ, 1882, *2000, pl. 2, figs. 1F, 1J, 1K; OD] [=?Geamphorella BONNÉT, 1959, *169, p. 180 (type, G. lucida)]. Like Euglypha but without apertural scales; like Sphenoderia but aperture circular rather than elongate; length of test, 35-100µ. [PENARD (*1435) described Euglypha dentata as having only rounded scales, with a denticulate membranous collar projecting above the last row of scales, and this character was regarded as of generic importance by DEFLANDRE (*570). However, the original figures of VEJDOVSKÝ (here redrawn, Fig. 29,4a-c) show dentate apertural scales. Either these original figures are erroneous or the genus is a synonym of Euglypha. Only a study of topotype material can solve the problem]. [Fresh water, on moss and sphagnum.]
Protista—Sarcodina

Miocene - Rec., Europe, Africa, North America, South America, Asia, Indomalay, Australia, (Seychelles) - Australia.

Fig. 29, 3a, T. dentata (Vejnovský), Rec.; 3a, b, side views of living specimen and empty test; Switzerland, approx. X 600, 3c, arrangement of scales, showing cementing material at scale extremities, enlarged (*1435); 4a-c, exterior, interior after reproductive fission, and apertural area showing pseudopodia, Czech.

Fig. 31. Cyphoderiidae; 1-3, Cyphoderia; 4, Campascus (p. C53-C54).
FIG. 32. Paulinellidae; 1, Paulinella (p. C54).

approx. ×600 (*2000).--FIG. 29.5. T. lucida (Bonnet), Rec., Fr.; side view, ×440 (*169).

Subfamily TRINEMATINAe Hoogenraad & de Groot, 1940
[nom. correct. LOEBLICH & TAPPAN, herein (ex Trineminae (Monostomina) Hoogenraad & de Groot, 1940, p. 24)]

Test with bilateral symmetry and eccentric aperture. Pleist.-Rec.

Trinema Dujardin, 1841, *636, p. 249 [*T. acinus, =Diffugia enchelys Ehrenberg, 1838, *668, p. 132; OD(M)] [=Trinème Dujardin, 1836, *634b, p. 198 (nom. neg.); Arcella (Homoeochlamys) Ehrenberg, 1872, *688, p. 244 (type, Arcella (Homoeochlamys) enchelys Ehrenberg, 1838, =Diffugia enchelys Ehrenberg, 1838, SD LOEBLICH & TAPPAN, herein)]. Test small (length, 20-100µ, av. 50µ), hyaline, elongate ovate, with overlapping circular siliceous plates; aperture circular, lateral at narrowed end of test and somewhat invaginated; protoplasm colorless; nucleus posterior with one or more nucleoli; pseudopodia filose, very narrow, few. [Fresh water.] Pleist.-Rec., Eu.-N.Am.-S.Am.-Australia.—Fig. 30,1,2. *T. enchelys (Ehrenberg), Rec., Ia-c, living animal, side and edge views of empty tests, USA(N.J.), ×500 (*1127); 2c, portions of test showing different types of scales, Br.1., ×1,000 (*302a).

Corythion Taránek, 1882, *1876, p. 232 [*C. dubium; OD]. Like Trinema but with non-imbricated oval siliceous plates, length of test, 25-65µ. [Fresh water.] Pleist.-Rec., Eu.-S.Am.-N. Am.—Fig. 30,3,4. *C. dubium, Rec., Czech.; 3, empty test, ×1,000 (*1876); 4a,b, side and edge views, ×500 (*1876).

Family CYPHODERIIDAE de Saedeleer, 1934
[nom. transl. Jung, 1942a, p. 257 (ex tribus Cyphoderini de Saedeleer, 1934, p. 6); family REVOLVENTIIDAE Rhumbler, 1895a, p. 94, 95 (nom. nud.)]

Test elongate, generally recurved near anterior end, composed of very small rounded siliceous scales, aperture simple or with a thin, hyaline, disc-shaped collar. Rec.

Cyphoderia Schlumberger, 1845, *1669, p. 255 [*C. margaritacea, =Diffugia ampulla Ehrenberg, 1840, *669, p. 199; OD(M)] [=Alloidictya Ehrenberg, 1872, *688, p. 247 (type, Diffugia (Reticella) lagena Ehrenberg, 1872, =Diffugia lagena Ehrenberg, 1843, SD LOEBLICH & TAPPAN, herein)]; =Ampullaria Wernick in Ehrenberg, 1872, *688, p. 234 (type, Diffugia ampulla Ehrenberg, 1840); =Schaudinnula Averintsev, 1906, *60, p. 311 (type, S. arcelloides); =Feuerbornia Jung, 1942, *1005, p. 257, 326 (type, F. lobophora)]. Test flask- or retort-shaped, with curved neck, rounded to triangular in section, 60-190µ in length, commonly about 100µ, with thin pseudochitinous, yellowish to colorless wall covered with cemented siliceous discs or imbricated scales; aperture terminal, oblique, circular in outline; protoplasm granular, grayish, with crystalline inclusions, not completely filling test; nucleus large, posterior; 1 or 2 contractile vacuoles near aperture; pseudopodia few, long, filose,
simple, bifurcating. [Fresh water, on sphagnum.] Rec., Eu.-N.Am.-S.Am.—Fig. 31,1. *C. am­pilla (Ehrenberg), Ger.; 1a, living animal showing light-colored nucleus, 2 contractile vacuoles and imbricated plates, X600 (*1698b); 1b, specimen with apert. membrane attached to sand grain, X400 (*1698b). — Fig. 31,2. C. arcelloides (Averintsev), USSR; 2a,b, side and edge views, X470 (*669); 2c, detail of surface, enlarged (*669). — Fig. 31,3. C. lobophora (Jung), Chile; 3a,b, side views, 3b showing proto­plasm, nucleus, and scalloped apert. margin, X470, X588 (*1005).

Campascus Leidy, 1877, *1126, p. 294 [*C. cornu­tus; OD(M)]. Similar to Cyphoderia, but pseudo­chitinous pellicle covered with amorphous scales lacking uniformity of shape or arrangement (*302a, p. 83) or with scattered sand particles (*1127, p. 205) (length of test, 50-140μ). [Fresh water.] Rec., N.Am.-Eu.—Fig. 31,4. *C. cornutus Leidy, USA(Utah); 4a-c, side, edge, and apert. views, X250 (*1127).

Family PAULINELLIDAE

de Saedeleer, 1934

[nom. transl. et correct. Ledebur & Tappan, 1961, p. 271 (ex order Granuloreticulosa de Saedeleer, 1934, p. 7, 50); class Granuloreticulosa De Blainville in Grasse, 1853, p. 139]

Order ATHALAMIDA Haeckel, 1862

[nom. correct. Ledebur & Tappan, 1961, p. 271 (pro order Athalamina Haeckel, 1862, p. 211)]—[In synonymic citations superscript numbers refer to taxonomic rank assigned by authors (Order, Suborder); dagger(†) indicates partim] —[Homogenea Lankester, 1877, p. 442; =Amoeba hastata Bütschli in Bronn, 1880, p. 176; =Acynospira DELAGE & HÉROUD, 1896, p. 66 (nom. reg.); =Acynospirida DELAGE & HÉROUD, 1896, p. 66; =Amebiculics Rhumbler, 1913, p. 339; =Athalamina de Saedeleer, 1934, p. 7, 50]

Lacking test or shell, pseudopodia may arise from any position on surface. Rec.

Family BIOMYXIDAE

Ledebur & Tappan, 1961

[Biomyxidae Ledebur & Tappan, 1961, p. 271; =family Amoeba reticulosa Bütschli in Bronn, 1880, p. 178 (partim; nom. nud.); =family Reticulosa Blochmann, 1895, p. 14 (nom. nud.) (non Reticulosa Carpenter, Parker & Jones, 1862)]

Cytoplasm granular, without division into ectoplasm and endoplasm. [Only the type genus of this nontestaceous family is discussed.] Rec.

Biomyxa Leidy, 1875, *1124, p. 125 [*B. vagans; OD(M)]. Naked protists of variable size and extremely variable form, constantly motile; protoplasm finely granular and colorless, with numerous minute contractile vacuoles and oil globules; nucleus large, distinct; pseudopodial prolongations filamentous, freely branching, anastomosing and reticulose, with pronounced granular streaming throughout body and pseudopodia. Rec., N.Am.—Fig. 33. *B. vagans, USA(N.J.); specimen on sphagnum, X250 (*1127).
GENERAL FEATURES

INTRODUCTION

The next following paragraphs, quoted from the preface to an "Introduction to the Study of Foraminifera" (*281, p. vii-ix), published a century ago, serve well as initial statements chosen for description of these organisms in the present volume.

The study of the Rhizopod type in general, and of the Foraminifera in particular, has peculiar features of interest to the Physiologist, the Zoologist, and the Geologist... The Physiologist has here a case in which those vital operations which he is accustomed to see carried on by an elaborate apparatus, are performed without any special instruments whatever, a little particle of apparently homogeneous jelly changing itself into a greater variety of forms than the fabled Proteus, laying hold of its food without members, swallowing it without a mouth, digesting it without a stomach, appropriating its nutritious material without absorbent vessels or a circulating system, moving from place to place without muscles, feeling (if it has any power to do so), without nerves, propagating itself without genital apparatus, and not only this, but in many instances forming shelly coverings of a symmetry and complexity not surpassed by those of any testaceous animals.

Again, there are certain peculiarities about the Foraminifera which make this group singularly adapted for that kind of comparison, at once minute and comprehensive, amongst large numbers of individual forms, which should be the basis of all Zoological systematization... the special feature of interest which this group has for the Geologist [is] that there is strong reason to regard a large proportion of the existing Foraminifera as the direct lineal descendants of those of very ancient geological periods... It may at once be conceded that no other group affords anything like the same evidence, on the one hand of the derivation of a multitude of distinguishable forms from a few primitive types, and on the other of the continuity of those types through a vast succession of geological epochs.

Foraminifers were first recorded in the literature in the 5th century B.C. by Hero-dotus, who noted the nummulites in the rocks of which the Egyptian pyramids were constructed, but not until nearly 2,000 years later were they recognized as being the fossil remains of organisms. This was by Agricola (1558 A.D.). The smaller foraminifers were first described by Beccarius in 1731, but then, and for the next century, all those described were variously regarded as worms, cephalopods, gastropods, or corals, and many species were described originally as belonging to Nautilus, Orthocera, or Serpula.

The early foraminiferal literature of the late 18th and early 19th centuries (Batsch, de Blainville, Bosc, Breyn, Broderip, Bruguière, Cuvier, von Fitchel & von Moll, de Haan, Lamarck, Latreille, Montagu, de Montfort, Soldani, Schröter, Walker) is concerned with conchology and refers to Mollusca (Testacea), Cephalopoda, Zoophytes, Radiata (corals), and Vers (worms). Numerous generic, specific, and familial names now recognized for the Foraminiferida actually antedate the general recognition of these organisms as For-
tozoa, yet many of the generic distinctions were valid and remain so today. Both of the later commonly applied designations for this large group of protozoans were first proposed under the assumption that they were actually cephalopods. The class Polythalamia BREYN, 1732 (=Polythalamia of many later publications), was originally defined as a new class of the molluscan Testacea (not the later protozoan Testacea or Thecamoebida) and LINNÉ later considered the Polythalamia among the nautiloids. The name Foraminifera also was originally proposed by O'ORBIGNY, 1826, as an order, to separate the Cephalopodes Foraminiferes, whose shells merely had openings in the septa, from the Cephalopodes Siphoniferes, whose shells had an intercameral siphon. DUFARCEL first demonstrated the protozoan nature of these organisms in 1835, yet even after acceptance of this relationship was general, some species and even genera now placed in the Foraminiferida were still variously described originally as gastropods, bryozoans, corals, worms, or algae; also others, the true affinities of which lie with these above-mentioned groups or others, were described as foraminifers.

The first large-scale systematic work was that of d'ORBIGNY, 1826, in which 5 families, 52 genera, and 544 species were recognized. Because d'ORBIGNY worked with many fossil-bearing strata, he was strongly impressed with the changes in microfauna throughout geologic time. Since he defined genera and species within narrow limits and cited their geologic occurrence as well, this early taxonomic work also represents the earliest biostratigraphic application of this group of organisms. A relatively large number of d'ORBIGNY's type-specimens are preserved in the Muséum National d'Histoire Naturelle, Paris, and studies of them by us have attested to the general accuracy and reliability of his observations. With this auspicious beginning, the development of the stratigraphic use of foraminifers closely paralleled the taxonomic studies in Europe.

While the early Continental workers concentrated on stratigraphic application of the Foraminiferida and description of the faunas (e.g., d'ORBIGNY, REUSS, TERQUEM, BERTELIN) the English workers in general concentrated on morphologic studies and description of Recent faunas (e.g., BRADY, CARTER, WILLIAMSON, HERON-ALLEN, EARLAND). Because of the necessity of using a microscope in their study, many early students of foraminifers were professional physicians, surgeons, and pharmacists, and morphological details were described with great accuracy and illustrated with meticulous care and beauty. In fact, it is difficult to find a "modern innovation" in the technique of study of the Foraminiferida that was not foreshadowed by these early publications—life cycles, wall composition and structure, lamellar character, canal systems, dimorphism, tooth plates, protoplasmic streaming, and other features. Only the interpretations and relative importance of the various factual data have changed. The English laid less importance on the stratigraphic occurrence of foraminifers, however, and allowed a greater range of variability for all taxonomic categories of these "primitive" forms, a tendency existing to this day among English protozoologists who still use the 1884 classification of families proposed in BRADY'S Challenger monograph (*993).

In the late 19th century the German protozoologists studied living foraminifers and based their "natural" classifications on the biology of these organisms, as well as on general morphology of the tests (e.g., NEUMAYR, RHUMBLER, EIMER & FICKERT, SCHUBERT) and utilized to varying extent the geologic occurrence and law of recapitulation to determine ancestries and relationships. Although the stratigraphic and geologic use of foraminifers had been recognized since the time of d'ORBIGNY, economic importance of the group was not recognized until about 1917, when micropaleontology was first applied to exploration for petroleum. This importance has come to be a somewhat mixed blessing. The focus of attention on the group led to a "population explosion" of micropaleontologists and foraminiferologists. Though it supplied an incentive for the study of foraminifers by a great number of excellent and competent workers, it led to an almost overwhelming quantity of publications, with resultant multiplicity of names, repetition of effort, and a tendency in some quarters to regard fora-
Foraminiferida—Introduction

Foraminifers as stratum labels—merely objects of use for identification of geologic age or local beds. This had two unfortunate results. Many of the hastily prepared generic and specific descriptions are almost completely useless, because workers did little more than give names (often improper or incorrect ones) to useful stratigraphic curiosities. They left the task of preparing needed careful morphological descriptions, determining the nature of intraspecific variations, and the like for later revisers who undertake the examination of type specimens, topotypes, and other comparative material. The decline in careful morphological studies was accompanied by a similar decline in quality of illustration. With amazement and chagrin one compares the hand-colored drawings and lithographs of Brady, Carpenter, Gümbel, von Möller, and Schultz, and the beautiful photographs of thin sections published by Douville, Schlumberger, and others of the late 19th century with the caricatures and out-of-focus photographs found in many modern systematic publications. Fortunately, some outstanding modern exceptions do not merit these criticisms.

A second unfortunate aspect of economic interest in the Foraminiferida and the resultant deluge of faunal-stratigraphic literature is its very abundance, which is enough to overwhelm even conscientious specialists. Numerous articles have been published with a provincial outlook and little reference to what had been done previously or was being done on similar faunas elsewhere. The resultant multiplicity of names proposed in different areas for a single organism hampers the very use in correlation which had originally supplied the impetus for studies of the group. A small assemblage of planktonic species from the mid-Cretaceous recently restudied (Loeblich & Tappan, 1961, *1183) showed, on the basis of topotypes and comparison of original types, that for 60 specific names proposed, 27 were valid, the remainder synonyms, and during the year or so the article was in press before publication, another half dozen articles appeared describing additional “species” of these stratigraphically important forms.

Probably in large part because of their geologic application, the great majority of current publications on foraminifers, whether taxonomic, morphologic, or stratigraphic, are written by paleontologists rather than zoologists. The protozoologists have more and more concerned themselves with the fresh-water and parasitic protozoans and their biochemical, physiological, and ecological nature, and less and less interested themselves in the Foraminiferida, or, indeed, in protozoan taxonomy generally. This is well illustrated by contrasting the articles on foraminifers given in the 9th edition of the Encyclopaedia Britannica (1879) with those of three-quarters of a century later. In 1879 Carpenter's coverage of the assemblage occupied 17 double-columned quarto pages, which contained detailed discussion of their taxonomy, morphology, and living habits as known to that date (before the appearance of the monumental Challenger volume of Brady in 1884). In 1956, despite the great quantity of information supplied by an average of 500 articles annually on foraminifers, the enlarged Encyclopaedia Britannica devoted less than four pages to these animals, and about one-half of that was concerned with their role in historical and petroleum geology!

The stress on stratigraphic application of foraminifers is unfortunate. Because most paleontologists have geological rather than biological training, not only have they been lax at times in adhering to the rules of nomenclature but they have seemed to disregard the zoological meaning of binary nomenclature. Clearly, some have had scant recognition of the zoologists’ concept of species. Numerous specimens have been named as representatives of a new species when obviously they have been selected from a variable population; commonly the selected specimens are growth stages of a single form, isolated from a single sample of rock or dredged from the sea floor. Similarly, some species or genera have been regarded as ancestral to others which actually appeared earlier in the geologic record than the supposed ancestor. Biological information has not been greatly utilized in classification and too little experimental work or life studies have been made on foraminifers. Although thousands of species and genera are named, the complete
life history of but a handful is known. It is only in recent years that paleontologists have begun to realize the importance of more information about the living animals, their present-day ecology, and the factors controlling their distribution. More emphasis is again being placed on their biology and detailed morphology, instead of their geologic occurrence only, and many of the promising lines of research hinted at by Carpenter, Lankester, Brady and others are now being realized.

It is hoped that the present volume summarizes the state of present knowledge on the Foraminiferida, and if many facts of seeming unimportance are included, it is because we firmly believe that advances in the future may be in directions or along lines scarcely glimpsed today, but which may nevertheless be suggested by the work of some earlier investigator.

MORPHOLOGY AND BIOLOGY

TERMINOLOGY

At the outset of discussions of morphological and biological aspects of the Foraminiferida, it is desirable to introduce the rather numerous terms which have come to be employed in studies of these protists. For this purpose a glossary of the terms, alphabetically arranged, is inserted here.

GLOSSARY OF MORPHOLOGICAL TERMS APPLIED TO FORAMINIFERIDA

aboral. Opposite to oral side or end.
A\textsubscript{1} generation. Plurinucleate megalospheric forms.
A\textsubscript{2} generation. Uninucleate megalospheric forms.
acanthus (pl., acanthi). Secondary deposit in endothyrid chamber floor, sharply pointed but not curved toward anterior.
accessory apertures. Test openings that do not lead directly into primary chambers but extend beneath or through accessory structures (e.g., bulae, tegilla), found in planktonic foraminifers.
acervuline. Chambers in irregular clusters (e.g., Acervulina).
adventitious. Formed of foreign particles (e.g., in agglutinated tests).
agglutinated. Foreign particles bound together by cement.
alar projection. Winglike extension of test.
alveolus (pl., alveoli). Minute blind cavity in shell wall (e.g., in keriotheca of some fusulinids) or blind chamberlet opening only toward back, opposite to direction of coiling (e.g., Alveolinidae).
alveolar. Having numerous honeycomb-like small cavities (e.g., Fusulinacea).
amoeboid. Having form of Amoeba, with lobopodia.
annular. Cyclical or ringlike.
annulus (pl., annuli). Ring or circle of chambers.
anterior. Direction toward aperture.
anteotheca. Final septal face in fusulinaceans.
aperture. Opening or openings from chamber of test to exterior.
arborescent. Branching in treelike manner.
areal aperture. Aperture in face of final chamber of test.
areal bulla (pl., bullae). Blister-like structure covering multiple areal apertures (e.g., Globigerinatella).
arenaceous. Composed of sand or other foreign particles (e.g., in some agglutinated tests).
areolate. Divided into small spaces on larger surface.
argillaceous. Composed of clay or mud (e.g., in some agglutinated tests).
attic. Very small, uppermost (abaxial) chamberlet in superposed chamberlets of a shell voluton (e.g., Flosculinella, Alveolinella).
autogamy. Fertilization of gametes from same parent.
axial fillings. Deposits of dense calcite, developed in axial regions of some fusulinaceans, formed probably at same time as excavation of tunnel or foramina and formation of chomata and parachomata.
axial section. Slice bisecting test in plane coinciding with axis of coiling and intersecting proloculus (e.g., fusulinaceans, alveolinids, nummulitids).
axial septulum (pl., septula). Secondary or tertiary septum located between primary septa (e.g., Verbeekinidae), its plane approximately parallel to axis of coiling, and thus observable in sagittal (equatorial), parallel, and tangential sections; includes primary axial septula and secondary axial septula.
axis. Imaginary line around which spiral or cyclical shell is coiled, transverse to plane of coiling.
axostyle. Internal extension from blepharoplast to extremity in gametes of Miliolacea.
B-form. Microspheric form.
basal layer. Varyingly thick, comparatively uniform deposit of shell substance in adaxial part of test volution, adherent to abaxial wall (roof) of preceding volution (e.g., Alveolinidae).
biconvex. Having both sides convex or more or less inflated.
bifid. Divided into 2 branches.
biforaminate. Having both protoforamen (primary aperture) and deuteroforamen (secondary aperture) (e.g., Discorbis).
biformed. Proposed by Lister as substitute for dimorphic, referring to shells with growth plan that changes during ontogeny.
Foraminiferida—Morphology and Biology

bilamellar. Walls of each chamber consisting of 2 primarily formed layers.

biloculine. Shaped like Pyrgo ("Biloculina"), with 2-chambered exterior part of test.

biserial. Having chambers arranged in 2 rows.

biumbilicate. Having central depression (umbilicus) on each side of test (e.g., planispiral forms).

biumbonate. Having 2 raised umbonal bosses (e.g., Lenticulina).

blepharoplast. Small compact granule, in which flagella are inserted (in flagellate gametes of foraminifers).

boss. Round and raised or knoblike ornamental structure.

buccal aperture. Tunnel opening between chambers of fusulinids; foramen.

buccal apparatus. Oral or apertural structure (e.g., bulla (pl., bullae). Blister-like structure that par­

boss. Round and raised or knoblike ornamental structure.

chamber. Test cavity and its surrounding wall, formed at single short growth stage in multilocu­

chamberlet. Subdivision of chamber produced by axial or transverse septula.

chitin. Horny substance occurring in some invertebrates (e.g., arthropods), erroneously re­

choma (pl., chomata). Revolving ridgelike deposit of dense shell substance delimiting tunnel (e.g., Fusulinidae).

chromidia. Extrannuclear chromatin granules, scat­t ered throughout cytoplasm or clustered around nucleus.

clavate. Club-shaped, inflated terminally.

convolute. Evolute, enrolled, referring to test with all whorls visible.

cornuspirine. Having tubelike planispirally coiled test (e.g., Cyclogyra="Cornuspira").

costa. Raised ridge or rib.

costate. Having raised ridges or costae.

cribrate. Perforated with round holes, sieve-like.

cuniculus (pl., cuniculi). Tunnel-like continuous cavity formed by strong septal fluting, opposed folds of adjacent septa meeting to form continu­ous spiral sutures with vaulted arches between, serving to connect adjoining chambers from one foramen to next (e.g., Verbeekinidae).

cyclomorphosis. Changes in form during life cycle (ontogeny).

distal. Direction away from proloculus in direction of growth.

dorsal. Opposite to ventral side; spiral side of trochoid forms.

dentritic. Branched, treelike.

deuteroconch. Chamber immediately adjoining pro­

loculus and formed next after it.

deuteroforamen. Aperture independent of tooth plate in some enrolled foraminifers.

deuterpore. Groups of protopores fusing into single larger pore cavity in outer wall.

diagonal section. Slice cutting axis of coiling ob­

liquely.

diaphanotheca. Relatively thick, light-colored to transparent layer of spirothecal wall next below tectum in fusulinid foraminifers.

dimorphism. Occurrence in single species of 2 dist­

ct forms; megalospheric and microspheric tests (gamont and schizont generations).

diploid. Stage in life history in which nuclei con­

tain full number of chromosomes, gamont generation in foraminifers containing half of this number and fusion of gametes to form zygote restoring diploid stage of schizont generation.

distal. Direction away from proloculus in direction of growth.

dorsal. Opposite to ventral side; spiral side of trochoid forms.

diagnostic section. Slice bisecting central chambers of test.

diagnostic aperture. Opening of chamber.

canalicate. Possessing series of fine tubular cavi­

ties.

cancellate. Having honeycomb-like surface.

carina. Keel or flange.

carin band. Imperforate marginal area (poreless margin) between keels of test (e.g., Globotrune­
canidae).

cellules. Subdivision of marginal chamberlets in outer part of marginal zone, formed by primary and secondary partitions (e.g., Orbitolinidae).

central complex. Core or central zone in which chamber passages bifurcate and Anastomose in reticulate pattern (e.g., Orbitolinidae).

central section. Slice bisecting central chambers of test.

cameral aperture. Opening of chamber.

cameral foramina, or other passages leading to

central foramina, or other passages leading to

chamber that invariably is connected by pores, inter­

cameran foramina, or other passages leading to

similar inclosures or to exterior.

chamber passages. Radial corridors consisting of centrally directed extensions of marginal cham­

berlets (e.g., Orbitolinidae).

chitin. Horny substance occurring in some invertebrates (e.g., arthropods), erroneously re­

ported in foraminifers.

choma (pl., chomata). Revolving ridgelike deposit of dense shell substance delimiting tunnel (e.g., Fusulinidae).

chromidia. Extrannuclear chromatin granules, scat­t ered throughout cytoplasm or clustered around nucleus.

clavate. Club-shaped, inflated terminally.

corongyrene. Having tubelike planispirally coiled test (e.g., Cyclogyra="Cornuspira").

costa. Raised ridge or rib.

costate. Having raised ridges or costae.

cribrate. Perforated with round holes, sieve like.

cuniculus (pl., cuniculi). Tunnel-like continuous cavity formed by strong septal fluting, opposed folds of adjacent septa meeting to form continu­ous spiral sutures with vaulted arches between, serving to connect adjoining chambers from one foramen to next (e.g., Verbeekinidae).

cyclomorphosis. Changes in form during life cycle (ontogeny).

cyst. Resistant cover over entire foraminifer, com­

monly formed of agglutinated debris, for protection during chamber formation or asexual reproduction, or may enclose 2 or more in­
dividuals in plastogamic sexual reproduction (first reported by Brady in Cibicides, but com­ mon to many other forms).

cytoplasm. Protoplasm, exclusive of nucleus, rich in proteids (albumen), poor in phosphorus.

dendritic. Branched, treelike.

deuteroconch. Chamber immediately adjoining pro­

loculus and formed next after it.

deuteroforamen. Aperture independent of tooth plate in some enrolled foraminifers.

deuterpore. Groups of protopores fusing into single larger pore cavity in outer wall.

diagonal section. Slice cutting axis of coiling ob­

liquely.

diaphanotheca. Relatively thick, light-colored to transparent layer of spirothecal wall next below tectum in fusulinid foraminifers.

dimorphism. Occurrence in single species of 2 dist­

ct forms; megalospheric and microspheric tests (gamont and schizont generations).

diploid. Stage in life history in which nuclei con­

tain full number of chromosomes, gamont generation in foraminifers containing half of this number and fusion of gametes to form zygote restoring diploid stage of schizont generation.

distal. Direction away from proloculus in direction of growth.

dorsal. Opposite to ventral side; spiral side of trochoid forms.

diagnostitic section. Slice bisecting central chambers of test.

cameral aperture. Opening of chamber.

canaliculate. Possessing series of fine tubular cavi­
ties.

cancellate. Having honeycomb-like surface.

carina. Keel or flange.

carinar band. Imperforate marginal area (poreless margin) between keels of test (e.g., Globotruncanidae).

cellules. Subdivision of marginal chamberlets in outer part of marginal zone, formed by primary and secondary partitions (e.g., Orbitolinidae).

central complex. Core or central zone in which chamber passages bifurcate and Anastomose in reticulate pattern (e.g., Orbitolinidae).

central section. Slice bisecting central chambers of test.

cameral aperture. Opening of chamber.

canaliculate. Possessing series of fine tubular cavi­
ties.

cancellate. Having honeycomb-like surface.

carina. Keel or flange.

carinar band. Imperforate marginal area (poreless margin) between keels of test (e.g., Globotruncanidae).

cellules. Subdivision of marginal chamberlets in outer part of marginal zone, formed by primary and secondary partitions (e.g., Orbitolinidae).

central complex. Core or central zone in which chamber passages bifurcate and Anastomose in reticulate pattern (e.g., Orbitolinidae).

central section. Slice bisecting central chambers of test.

cameral aperture. Opening of chamber.

canaliculate. Possessing series of fine tubular cavi­
ties.

cancellate. Having honeycomb-like surface.

carina. Keel or flange.

carinar band. Imperforate marginal area (poreless margin) between keels of test (e.g., Globotruncanidae).

cellules. Subdivision of marginal chamberlets in outer part of marginal zone, formed by primary and secondary partitions (e.g., Orbitolinidae).

central complex. Core or central zone in which chamber passages bifurcate and Anastomose in reticulate pattern (e.g., Orbitolinidae).

central section. Slice bisecting central chambers of test.

cameral aperture. Opening of chamber.

canaliculate. Possessing series of fine tubular cavi­
ties.

cancellate. Having honeycomb-like surface.

carina. Keel or flange.

carinar band. Imperforate marginal area (poreless margin) between keels of test (e.g., Globotruncanidae).

cellules. Subdivision of marginal chamberlets in outer part of marginal zone, formed by primary and secondary partitions (e.g., Orbitolinidae).

central complex. Core or central zone in which chamber passages bifurcate and Anastomose in reticulate pattern (e.g., Orbitolinidae).

central section. Slice bisecting central chambers of test.

cameral aperture. Opening of chamber.

canaliculate. Possessing series of fine tubular cavi­
ties.

cancellate. Having honeycomb-like surface.
and different in shape and arrangement from other chambers; nucleocoech.

eudoplasm. Central part of cytoplasmic mass, commonly granulated.

eutosolenian. Having internal tubelike apertural extension (e.g., Oolina).

ephiebic. Pertaining to adult stage in ontogeny.

eipidermal layer. Imperforate outer layer, commonly present in Lituolidae.

epitheca. Secondary deposit in inner wall of some fusulinids; tecturium.

equatorial. Located in median plane normal to axis of coiling.

equatorial aperture. Symmetrical opening of planispiral test, commonly interiomarginal but may be areal or peripheral.

equatorial section. Slice of test in equatorial plane (sagittal section).

equitant. Inverted V-shaped.

evolute. Tending to uncoil; chambers nonembracing.

exogenous. Added to outside.

external furrow. Linear depression on outer surface of test where wall bends downward (adaxially) into septum; coincides in position with septal suture (e.g., Fusulinidae, Alveolinidae) (syn., septal furrow).

extraumbilical aperture. Opening in final chamber of test not connecting with umbilicus, commonly sutural midway between umbilicus and periphery.

extraumbilical-umbilical aperture. Opening in final chamber of test that extends along its forward margin from umbilicus toward periphery, thus reaching extraumbilical point (outside umbilicus) (e.g., Globorotalia).

filamentous. Threadlike, composed of filaments.

filose. Threadlike.

fimbriate. Having fringed appearance.

fissure. Deep cleft, as in test of Fissurina.

fistulose. Having tubular irregular growth in apertural region (common in polymorphins).

flabelliform. Shaped like fan.

flagellum (pl., flagella). Whiplike structure, used in locomotion in Mastigophora and found in gametes of some foraminifers; gametes either biflagellate or triflagellate.

flange. Plate-like marginal extension along chambers (e.g., Sphaeroidinella) or bordering aperture as highly developed apertural lip (e.g., Hantkenina).

flexostyle. Tubular enrolled chamber of test immediately following proloculus (e.g., Amphisorus and other Miliolacea).

floor. Bottom wall of superposed chamberlet (e.g., Alveolinidae).

fluting. See septal fluting.

foramen (pl., foramina). Opening between chambers located at base of septa (e.g., Fusulinidae) or areal in position; in various foraminifers may represent previous aperture or be formed sec-

donarily (not equivalent to pore of perforate test (see perforate).

fossettes. Grooves paralleling periphery (e.g., on surface of Elphidium tests).

fusiform. Spindle-shaped, tapering at each end.

gamete. Reproductive cell with haploid chromosome number, capable of fusing in pairs to form new individual (zygote); observed in foraminifers are amoeboid gametes, biflagellate gametes, and triflagellate gametes, each characteristic of distinct groups of genera or families.

gamont. Generation which forms gametes in sexual reproduction, commonly with megaspheric test (A-forms).

gerontic. Senile stage in ontogeny.

glomospirine. Having irregularly wound coiled tubular chamber (e.g., Glomospira).

granular hyaline wall. Perforate, lamellar part of test composed of minutely granular calcite, seen between crossed nicols as multitude of tiny flecks of color; granules equidimensional, variously oriented.

granuloreticulose pseudopodia. Bifurcating and anastomosing extensions of protoplasm with relatively solid axis (stereoplasma) and granular fluid outer portion (rheoplasma) with granules in continuous movement; may digest food outside main body of animal.

hamulus (pl., hamuli). Hook-shaped secondary deposit on chamber floor in endothyrids, point of hook directed toward aperture of test.

haploid. Stage in life history in which nuclei have one-half normal number of chromosomes; resulting from reduction division in nucleus, may be temporary (only in gametes) or represent a distinct generation (in foraminifers).

hemisepa. Partial septa between normal ones and subdividing chambers (e.g., some Lituolacea).

heterokaryotic. Having nuclei of differing types (e.g., vegetative and reproductive).

hispid. Covered with fine, short hairlike spines.

hologamic. Having biflagellate gametes, all similar, emitted by isolated parents, not associated in pairs (plastogamy) or groups (syzygy); gametes may be free-living for many days before fusing to produce zygotes.

hyaline. Glassy clear, transparent.

hypodermis. Reticulate layer beneath outer imperforate layer in wall of some Lituolacea (e.g., Cyclammina).

imperforate. Without pores, sometimes used for porouseline tests (e.g., Miliolacea), and in describing ornamentation (e.g., pillars, keels, carinal band) of normally perforate forms.

infralaminal accessory aperture. Opening in planktonic foraminiferan test leading to cavity beneath accessory structures (bullae, tegilla), and at margin of these structures (e.g., Catapsydrax).

inframarginal sulcus. Deep indentation of apertural face of test (e.g., Alabamina); infundibulum; scrobis septalis.
infundibulum. Deep indentation of scrobis septalis or basal indentation of apertural face of test (e.g., Alabamina); inframarginal sulcus.

intercameral. Located between chambers.

intercameral foramen. Opening between successive chambers, may be secondarily formed or represent earlier aperture.

interio-areal aperture. Opening in chamber face, not at its base; areal.

interiomarginal aperture. Basal opening in test at margin of final chamber, along final suture; in coiled forms may be umbilical, extraumbilical, or equatorial in position.

interseptal. Located between septa.

intralaminal accessory aperture. Opening in planktonic foraminiferal test leading through accessory structures (bullae, tegilla) into cavity beneath them, not directly into chamber cavity (e.g., Rugoglobobinella).

intrasepal. Located within septum (e.g., canal system).

intraumbilical aperture. Opening of test located in umbilicus but not extending outside of it.

involute. Strongly overlapping; in enrolled forms, intraumbilical aperture. Opening of test located in intraseptal. Located within septum (e.g., canal system).

interseptal. Located between septa.

intralaminal accessory aperture. Opening in planktonic foraminiferal test leading through accessory structures (bullae, tegilla) into cavity beneath them, not directly into chamber cavity (e.g., Rugoglobobinella).

labial aperture. Opening formed by free parts of apertural lip, not directly opening to chamber of test; accessory aperture.

labyrinthic. Having complex spongy wall with interlaced dendritic channels perpendicular to surface, characteristic of some agglutinated foraminifers: alveolar, vacuolar, vesicular.

lamellar. Composed of thin platelike layers of labyrinthic. Having complex spongy wall with interlaced dendritic channels perpendicular to surface, characteristic of some agglutinated foraminifers: alveolar, vacuolar, vesicular.

megalospheric. Having large proloculus, commonly representing gamont generation, adult test smaller than agamont.

microgranular. Microscopically granulose, referring to wall composed of minute calcite crystals (e.g., Parathuraminacea, Endothyacea), probably originally granular but possibly recrystallized; granules may be aligned in rows perpendicular to outer wall, resulting in fibrous structure.

microsomes. Fine refringent, colorless, slightly elongate granules in central area of cytoplasm; slightly tinted gray by ferric hematoxyline and brown-violet by feulgen (e.g., Cibicides, Peneroplis, Planorbolina, Elphidium).

microspheric. Having small proloculus, commonly representing agamont (schizont) generation, adult test large.

milioline. Formed as in Miliolacea, commonly with narrow elongate chambers, two to whorl, added in differing planes of coiling.

mitosis. Nuclear division in which each resultant half contains same number of chromosomes as parent nucleus; characteristic of asexual reproduction, fission, schizogony.

monolamellid. Referring to lamellar hyaline tests with single-layered septa and wall of last-formed chamber.

multilocular. Many-chambered test of unicellular organism.

multiple tunnels. Series of openings in test chamber produced by resorption of lower (adaxial) parts of septa.

murus reflectus. Sutural indentation of apertural face of test, longitudinally and obliquely folded below aperture (e.g., Osangularia).

neanic. Youthful stage in ontogeny.
neoplastic. Stage immediately after embryonic stage in ontogeny.

nucleoconch. See embryonic apparatus.

nucleolus. Small spherical body within nucleus, which has characteristic reaction to some stains.

nucleus. More or less spherical, compact mass of chromatin surrounded by membrane, lying within cytoplasmic body and having important parts in development and functions of cell (e.g., digestion, test secretion); single cell may have one nucleus or many.

oblique section. Slice through test cut in direction neither parallel to axis of coiling nor normal to it.

open. Aperture or other opening in test.

palmate. Flat, resembling hand with outspread fingers.

parachomata. Ridges of dense calcite developed between adjacent foramina in tests having multiple foramina, developed in some fusulinaceans (e.g., Verbeekinidae, Neoschwagerininae).

parallel section. Slice through test in plane normal to axis of coiling but not through proloculus.

perforate. Punctured, referring to walls of test pierced by numerous pores that are distinct from apertures, foramina, and canals; characteristic of calcareous hyaline tests, although some others may exhibit it.

periembyronic chambers. Neoplastic parts of test formed on ventral side partially surrounding proloculus (e.g., Orbitolinidaceae).

peristome. Raised rim around aperture of test.

phialine. Having everted rim on apertural neck, as on neck of vial or bottle.

phlocnothecae. Thin, dense, diaphragm-like partitions that extend across chambers of test at various angles and in various parts of chamber (e.g., Pseudofusulinina).

planispiral. Coiled in single plane.

plastogamy. Fusion of adults by umbilical surface at time of sexual reproduction, ensuring fertilization of gametes.

plectogyrall. Coiling in different planes; strectospiral.

plectographic. Coiling in different planes; strectospiral.

plicate. Having folds, ribs, or ridges.

podostyle. Pseudopodial trunk that comprises mass of cytoplasm projecting from aperture of monothalamous foraminifers for giving rise to pseudopodia.

polymorpheine. Similar in shape to Polymorphina.

polymorphism. Morphologically different forms of same species which may be result of different generations.

polymorpha. Composed of numerous chambers.

polyvalent individuals. Vegetative association, accidental, and probably due to crowding, resulting in specimens with two or more embryonal apparatuses always of same generation (micro- or megaspheric) and of approximately same age; not related to plastogamy.

porcelainous. Having calcareous, white, shiny, and commonly imperfect wall resembling porcelain in surface appearance; shows low polarization tints between crossed nicols and has majority of crystals with e-axes tangential, or more rarely arranged radially; commonly brown in transmitted light.

pore plug. Minute, single, organic, microporous plates lying at base of external pores in certain foraminifers.

porticus (pl., portici). Distinctly asymmetrical apertural flaps, originally defined as being imperfect (e.g., Ticinella, Praeglobotruncana).

postseptal passage. Opening that interconnects all chamberlets of same chamber, located between wall and septum at back of chamber (e.g., Alveolinidae).

preseptal passage. Opening that interconnects all chamberlets of same chamber, located in anterior part of chamber (e.g., Alveolinidae).

primary aperture. Main opening of test, may be only one or accompanied by secondary (accessory) apertures (protoforamen of Horker).

primary axial septulum (pl., septula). Major partition of chamberlet with plane approximately parallel to axis of coiling, seen in sagittal sections (e.g., Lepidolina, Yabeina).

primary septulum (pl., septula). Major partition of chamberlet; includes primary axial and primary transverse septula (e.g., Neoschwagerininae).

primary transverse septulum (pl., septula). Major partition of chamberlet; includes primary axial and primary transverse septula (e.g., Neoschwagerininae).

proloculus (pl., proluculi). Initial chamber of foraminiferal test.

proloculus pore. Single circular opening in proloculus leading to next-formed chamber of test (e.g., Fusulinidae).

protheca. Primary elements of fusulinid wall, comprising diaphanotheca and tectum.

protoforamen. Opening of test associated with fully developed or rudimentary tooth plate.

protoplasm. Living matter comprising body of protozoan, as well as cells of other organisms; consists of cytoplasm and nucleus.

protoplasmic body.

protopore. Single fine opening which is rounded at least on inner wall; perforation.

proximal. Nearer to proloculus in direction of growth.

pseudoapertural. Pseudopodial trunk that comprises mass of cytoplasm projecting from aperture of monothalamous foraminifers for giving rise to pseudopodia.

pseudochambers. Partially subdivided test cavity, indicated by slight protuberances or incipient septa (e.g., Tournayellidae).

pseudochitin. Chitin-like proteinaceous material which comprises some protozoan tests, similar to keratin in containing sulfur but including inframicroscopic granules of opaline silica.
pseudopodia. Temporary or semipermanent cytoplasmic projections serving for locomotion, attachment, and capture of food; in foraminifers have form of reticulopodia.
pseudopodial trunk. Pedistyle, comprising mass of cytoplasm that projects from aperture, giving rise to pseudopodia, present in monothalamous forms only.
psuedumbilicus. Wide or narrow, deep depression between inner umbilical chamber walls, where sharply angled umbilical shoulder occurs (e.g., Globorotalia).
pycnotheca. Dense layer of wall penetrated by septal pores, wedged between tectum and keriotheca of septal face (antetheca) of some fusulinids (e.g., Schwagerininae).
quinqueloculine. Having five externally visible chambers as result of growth in varying planes about elongate axis (e.g., Quinqueloculina).
radial. Direction from pole or axis to any part of circumference of test (e.g., radial septa).
radial microstructure. Construction of calcareous pseudoumbilicus. Wide or narrow, deep depression between inner umbilical chamber walls, where sharply angled umbilical shoulder occurs (e.g., Globorotalia).
radial zone. Chamber portion between marginal zone and central complex of test with essentially radial elements (e.g., Orbitolinidae).
radiate aperture. Opening associated with numerous diverging slits (e.g., Nodosariacea).
rectilinear. Growing in a straight line.
relict apertures. Short radial slits around umbilicus of test which remain open when umbilical portions of equatorial aperture are not covered by succeeding chambers (e.g., Planomaliniidae); even when secondarily closed, elevated apertural lips or flanges remain visible around umbilicus (e.g., Planomalina, Hastigerinoides).
reticulate. Like network, referring to ornamental ridges at surface of test or inner meshwork (e.g., Cyclammina).
retral processes. Backward-pointing extensions of chamber cavity and enclosed protoplasm, located beneath external ridges on chamber wall and ending blindly at chamber margins (e.g., Elphidium).
rhizopodia. Bifurcating and anastomosing pseudopodia.
rugose surface. Rough irregular ornamentation, may form ridges (e.g., Rugoglobigerina).
sagittal section. Slice through test perpendicular to axis of coiling and passing through proloculus (equivalent to equatorial section).
sarcode. Protoplasm of protozoan.
schizogamy. Formation of embryos asexually by division of plurinucleate schizont; same as schizogyne, agamogony.
schizont. Generation which divides asexually to form embryos; commonly with microspheric test (B-form); agamont.
scrobis septalis. Infra marginal asymmetrical indentation or concave surface of apertural face of test, may be deep (e.g., Alabamina); infundibulum, infra marginal sulcus.
secondary apertures. Additional or supplementary openings into main chamber cavity, may be areal, sutral, or peripheral in position.
secondary axial septulum (pl. septula). Minor partition of chamberlet reaching short distance downward (adaxially) from spiro theca, with plane approximately parallel to axis of coiling, located between primary axial septula (e.g., Neoschwagerininae).
secondary septulum (pl. septula). Minor partition of chamberlet reaching downward (adaxially) from spiro theca (e.g., Neoschwagerininae).
secondary transverse septulum (pl. septula). Minor partition of chamberlet with plane approximately normal to axis of coiling (e.g., Neoschwagerininae).
septal flap. Extension of each lamella in Rotaliacea, formed on inner side of chamber over distal face of previous chamber, resulting in secondarily doubled septa.
septal fluting. Folding or corrugation of septum (and antetheca) transverse to axis of coiling, generally strongest in lower (adaxial) part of septum and toward poles.
septal foramen. Intercameral opening, may be homologous with aperture or secondarily formed.
septal furrow. Same as external furrow.
septal pore. Small perforation in septum (and antetheca) in fusulinids.
septulum (pl. septula). Ridge extending downward adaxially, from lower surface of spiro theca so as to divide chambers partially (e.g., Neoschwagerininae).
septum. Partition between chambers, commonly consisting of previous outer wall or apertural face, may have single layer (monolamellid), be secondarily doubled enclosing canal systems (e.g., rotalids), or be primarily double (bilamellid).
sessile. Attached, sedentary.
sieve-plate. (1) Minute discoidal plate with numerous circular, triangular, and polygonal micro pores arranged in concentric rows, contained in pore canal of certain foraminifers. (2) Equivalent to trematophore.
sigmoid. S-shaped.
sigmoid line. Sigmoid or with sigmoid axis (e.g., Sigmoilina).
siphon. Internal tube extending inward from aperture, entosolenian (e.g., Oolina).
tomastic nucleus. Vegetative nucleus not taking part in reproduction, found in heterokaryotic foraminifers.
spinose. Having fine elongate solid spines on surface of test (e.g., Hastigerinella), each spine comprising single calcite crystal, elongated along c-axis.

spiral canals. Part of canal system in umbilical region, parallel and inside lateral chamber margins (e.g., Elphidium).

spiral side. Part of test where all whorls are visible (e.g., trochospiral forms), also commonly called dorsal side.

spirilline. Comprising planispiral nonseptate tube enrolled about globular proloculus (e.g., Spirillina).

spirotheca. Outer or upper wall of test in fusulinaceans.

spiroumbilical. Interiomarginal aperture extending from umbilicus to periphery and finally onto spiral side.

stercomata. Brown oval masses of debris within cytoplasm; fecal pellets.

stereoplasm. Axis of granuloreticulose pseudopodia, relatively solid, surrounded by granular rheoplasm; noted in Peneroplis, Elphidium, not visible in most agglutinated types.

stolon. Prolonged extension of body, commonly tubelike projections connecting chambers in orbitoids.

stomostyle. Thickened outer membrane invaginated in cytoplasm of apertural region from which pseudopodial trunk emerges.

strepitospiral. Coiled like ball of twine.

striate. Marked by parallel grooves or lines.

subsequent. Having slight protuberances or incipient septa that form pseudochambers (e.g., Tournayellidae).

supplementary apertures. Secondary openings in test which may be additional to primary aperture and thus independent of it; in some forms may completely replace primary aperture.

supplementary multiple areal apertures. Subordinate openings in tests, may have primary equatorial aperture associated with supplementary areal apertures which are thus shown to be secondary (e.g., Cribrohantkenina).

supraembryonic area. Circular apical area over megalospheric proloculus in some orbitolinds; central boss mamilla.

sutural supplementary apertures. Relatively small sutural openings, which may be single or one per suture (e.g., Rotalipora), or multiple, with many openings along the sutures (e.g., Candea); may be restricted to spiral side (e.g., Truncorotaloides), restricted to umbilical side (e.g., Rotalipora), or present on both sides (e.g., Candea).

suture. Line of union between two chambers or between two whorls (spirul suture).
Foraminiferida—Morphology and Biology

asexually (as schizonts); originally thought to be represented by three forms in all species (schizont, uninucleate "gamont," plurinucleate "gamont," respectively indicated as B, A1 and A2 generations) but this has never been demonstrated in cultures.

triserial. Chambers arranged in three columns, high trochospiral with three chambers in each whorl.

trochoid. Trochospiral, rotaloid, rotaliform; chambers coiled spirally, evolute on one side, involute on other.

trochospiral. Trochoid, rotaliform; spirally coiled in involute spire; may be filled with aperture.

tuberculate. Covered with tubercles or small rounded prominences.

tubulospine. Chamber produced radially into long hollow extension (e.g., Schackojina).

tumulus (pl., tumuli). Secondary deposit on chamber floor appearing in cross section as more or less symmetrical node with rounded summit (e.g., endothyrids).

tunnel. Resorbed area at base of septa in central part of test in many fusulinids, facilitating communication between adjacent chambers.

umbilical depression. Closed, shallow, axial depressed area formed by curvature of overlapping chamber walls in involute spire; may be filled by thickenings or knob.

umbilical side. Involute side in trochospiral forms, with only chambers of final whorl visible around umbilicus; also called ventral side; commonly with aperture.

umbilical teeth. Triangular modification of apertural lip, those of successive chambers in forms with umbilical aperture giving characteristic serrate border to umbilicus (e.g., Globoquadrina).

umbilicate. Having one or more umbilici. umbilicus (pl., umbilici). Space formed between inner margins of umbilical walls of chambers belonging to same whorl; may be restricted by apertural lips or projections of chamber margins or by pillars or plugs.

umbo. Central round, elevated structure in discoidal forms; commonly due to lamellar thickening (e.g., Lentuculina), may occur on one or both sides of test.

umbonate. Having umbo, on one or both sides (biomboinate).

unilocular. Monothalamous, single-chambered.

uniserial. Having chambers arranged in a single row.

upper keriotheca. Abaxial (upper) part of keriotheca characterized by fine alveolar structure (e.g., Schwagerina).

upper tectorium. Abaxial secondary layer of spirotheca next above tectum (e.g., Profusulinella).

vacuole. (1) Globular inclusion in cytoplasm; includes contractile vacuoles, food vacuoles. (2) Cavities, especially irregularly shaped ones, in test wall.

ventral. Pertaining to inferior side of test, commonly used for umbilical side; opposite to dorsal; commonly apertural side.

vitreous. Hyaline, having appearance and luster of glass.

whorl. Single turn or volute of coiled test (through 360 degrees).

xanthosome. Small refringent, brown or yellowish, globular inclusions in cytoplasm, commonly very numerous, possibly products of excretion.

zygote. Result of fusion of two gametes in process of sexual reproduction, zygote (haploid) containing twice as many chromosomes as each gamete (haploid).

THE LIVING ANIMAL

Although foraminifers are unicellular or acellular organisms, this is no longer regarded as synonymous with simple or primitive. Considerable variation exists among living forms in size, habit, habitat, life cycles, pseudopodial character, and test morphology. In extinct genera represented by fossils, morphology of the test affords the only basis for identification and classification, but as this appears to be closely related to living functions, a comparison with similar living forms may be used for determining relationships. Discussion of the characters of the test is given in the following chapter, but because much important information can also be obtained from living forms, a summary of present knowledge of living foraminifers is introduced here with notice of subjects likely to be of use or interest to paleontologists and taxonomists.

PROTOPLASMIC BODY

As in the Amoebida, the protoplasm is differentiated into an outer layer of relatively clear ectoplasm and an inner, darker-colored endoplasm. In forms with a single aperture, the ectoplasm may be condensed into a single apertural plug (stomostyle). In those with multiple apertures or perforations, the ectoplasm may be more dispersed and less evident, forming only a thin outer layer. The test is always a secretion of endoplasm, pseudopodia. The endoplasm is restricted to the already-constructed chambers. It may be variously colored in shades of yellow, yellowish-brown, greenish-brown, salmon-rose, orange-red, or crimson, some of the colors being due to pigments and others to various inclusions or symbionts.

The peripheral zone, or outer few chambers of multicellular forms, lacks microsomes but is crowded with exogenous in-
Inclusions consisting of nutritive particles or prey, debris of objects that have served as food (e.g., empty frustules of diatoms), various mineral grains, symbionts, and parasites. Other inclusions result directly from the metabolic activity, such as the pigments, which may be dissolved in fat globules, the brownish globular xanthosomes that are probably products of excretion, and the granules. The protoplasm external to the test in many planktonic forms is highly areolated, and contains numerous fat globules as an aid in buoyancy. In the multilocular forms, a central area of dense plasma which surrounds the nucleus contains an abundance of tiny refringent granules or microsomes, numerous small vacuoles, pigments, and fat globules. In young individuals the vegetative outer zone is dominant, for the animals eat much and grow rapidly. In adults the dense central area is proportionately greater, finally comprising the entire protoplasmic body just before reproduction occurs.

In unilocular forms, the endoplasm is relatively homogeneous and the various inclusions uniformly spaced, although the proportion of excretory products and metabolic debris may be comparatively large.

NUCLEUS

All foraminifers have one or more nuclei. The nuclei are typically spherical, those of agglutinated or pseudochitinous unilocular genera having a thick membrane and being never deformed. Nuclei of higher forms are apparently more plastic, particularly in species having numerous relatively narrow foramina. The nuclei increase in size with growth of the individual, the largest recorded one being visible to the naked eye and up to 0.6 mm. in diameter (*Bathytemplon filiformis*, with tests up to 50 mm. in length).

Recent studies by Grell (1956, *819*) have shown that some forms (e.g., *Glabratella*, *Rubratella*) are heterocaryotic. In such genera, some of the nuclei are wholly vegetative (somatic), taking part only in normal day-to-day existence, but later they disintegrate and do not enter into nuclear divisions (generative) at time of reproduction. Those that are homokaryotic (all nuclei similar in form and function) include *Patellina* and *Spirillina*.

The nuclear structure and processes of nuclear divisions have been described minutely for some species, but because of their relative unimportance for the paleontologist, they are not here discussed in detail (see works of Arnold, Grell, Le Calvez, Myers, and Rhumbler).

A nuclear dimorphism also exists, the megalospheric (gamont) generation being uninucleate and the microspheric (schizont) generation being more commonly plurinucleate. The mononucleate forms are most frequent, however, and probably represent the most primitive form. The simplest foraminifers, such as the unilocular forms with agglutinated or pseudochitinous test, are mononucleate throughout the vegetative existence of both the gamont and schizont forms. Some more highly organized species also are not known to have more than one nucleus at any time (e.g., *Globigerina*, apogamic *Oolina*, and *Neoconorbina*).

Plurinucleate forms, when present, are always schizont, the many nuclei arising from an early multiplication of nuclei from the original zygote. The monoosphalic forms have a very short multiciliate stage, as the nuclear division occurs just preceding the asexual cytoplasmic division. The schizonts of more highly organized forms (e.g., *Planorbulina*, *Elphidium*, *Peneroplis*), with flagellate gametes in the reproductive stage, have early nuclear divisions which continue throughout vegetative life. The plastogamic genera with amoeboid gametes (e.g., *Patellina*) develop four nuclei early in the schizont stage but show no further nuclear activity until just before the reproductive stage.

PSEUDOPODIA

The most important functions of the pseudopodia are concerned with capturing and digesting prey and expelling debris. Other functions are those of constructing the test, forming protective cysts, and making temporary or semipermanent attachment to the substratum.

The pseudopodia of foraminifers are invariably of granuloreticulose type, comprising very elongate linear extensions of the protoplasm which readily bifurcate and anastomose. The pseudopodia are but little thicker than the granules of plasmatic origin streaming along them. Commonly they have
a relatively solid axis (stereoplasm) surrounded by a more fluid layer (rheoplasm). The solid axis and granular streaming are the most characteristic features, since variation in the amount of anastomosing occurs. The movement of the pseudopodia is characteristically rapid but it varies somewhat in different forms and at different times in the life cycle of an individual. Protruding from the aperture in many of the monothalamous genera is a distinct pseudopodial trunk (podostyle) from which the finer pseudopodia extend.

Some of the Lagynacea with podostyle are nearly immobile. They (e.g., Amphistrema, Micrometula, Diplophrys) have fewer granules and less active pseudopodia, with less prominent anastomosing and less pronounced streaming, than others (e.g., Lieberkuehnia) with thicker pseudopodia, more numerous granules, and motile pseudopodia, as in the higher forms of foraminifers.

Many agglutinated species exhibit no visible axis in the pseudopodia, but an increase in the amount of available potassium may cause it to appear.

The granular streaming was first observed by Dujardin (1835) and well described by many later workers (e.g., Schultze, 1863; Leidy, 1879; Brady, 1884) who carefully distinguished this type of pseudopodial movement from the amoeboid movements of the Amoebida and Arcellinida. Leidy was the first to separate the three groups called Lobosa, Filosa, and Foraminifera (with granuloreticulose pseudopodia) using their pseudopodial nature as basis.

Certain benthonic forms have relatively rigid pseudopodia, which help to anchor the specimens in soft sediments, allowing them to stand erect (e.g., Hippocrepina) (Fig. 34). Others, with fragile pseudopodia, and those with apertures at both ends, lie horizontally, their anastomosing pseudopodia apparently playing an important role in binding detritus of loose sedimentary bottoms (*1379).

In highly spinose planktonic species the pseudopodia extend along the radiating spines and the protoplasmic granules appear to stream up and down their surface.

Pseudopodial form may also vary in different growth stages. The pseudopodia of the sessile adult Iridia, which arise from a pseudopodial trunk, are very elongate, homogeneous, and without apparent axis in the adult; they anastomose, display rapid granular circulation of 400-500μ per minute, and show rapid movement of the pseudopodial extremities. The young embryo resulting from asexual reproduction, which has a temporarily pelagic existence, possesses a globular body with elongate, radiating and nonanastomosing pseudopodia. Only with retraction of the elongate rigid pseudopodia does it become benthonic and attached and begin to develop a test.
GAMETES

During the sexual phase of reproduction, gametes are produced. In a few genera all of the parent nuclear material is utilized in making them, the resultant gametes being relatively large (40-50μ in diameter) and amoeboid both in appearance and mode of locomotion. This is true only in rather few genera (e.g., Allogromia and plastogametic forms such as Patellina, Spirillina, and Rubratella). Other plastogametic forms (e.g., Glabratella) have trilagellate gametes about 8μ in diameter. The great majority of foraminifers yet studied are hologametic. They produce extremely small and numerous, unequally bilagellate gametes. The gametes of different genera are similar in having two flagella of unequal length inserted in a blepharoplast; they contain a single nucleus and one or more fatty inclusions, commonly one but two in Hemi-sphaerammina bradyi. Differences in the gametes of different species are in body size of the gamete, length of the two flagella, number of fatty inclusions, and presence or absence of an axostyle (present in the Milio-laceae). The gametes vary in size from 2μ in length and 1.2μ in breadth (Iridia diaphana) to 6μ in length and 3.5μ in width (Hemi-sphaerammina crassa). The two flagella vary in size from 3μ (length of smaller) and 8μ (length of larger) (e.g., Planorbula medi-terranensis), to 5μ and 20μ respectively (e.g., Hemi-sphaerammina crassa). The majority of hyaline calcareous genera have gametes about 3μ long, the larger flagellum being approximately three times the body length. The agglutinated and pseudochitin-ous, unilocular genera commonly have larger gametes (3-6μ in length) with flagella three to four times the gamete body length.

CYSTS

Cysts are formed at many stages in the life of most benthonic foraminifers. Temporary cysts are formed for protection during secretion of new chambers, for protection in schizogy (multiple fission cysts), and over pairs of gamont tests in syzygy or groups of these in association during gamogy. Even irregular feeding cysts may develop; these consist largely of debris resulting from the feeding process (Fig. 35).
CHAMBER FORMATION

The process of chamber formation has been described in *Patellina* (*1335), *Glabratella* (*1339), and *Discorbinella* (*1109). In each of these genera the protective cyst which is formed and sealed to the substratum, consists of a thin membrane and debris collected by the pseudopodia. When the cyst is completed, the pseudopodia withdraw; the test and cyst then are separated opposite the last chamber by an expanding mass of clear cytoplasm which extends the width of a chamber below and beyond the margin. Indication of calcification of the surface membrane of the forming chamber first appears as bright points in reflected light. Pseudopodia extend through minute pores along the margin and the calcification gradually increases, shown as an increase in the amount of light reflected from its surface. In *Patellina* about 5 hours is required for completion of a chamber (*1335). In *Glabratella* it can be seen that a new layer of calcite is added to the entire test at the time of formation of the new chamber. In *Tretomphalus* it has been observed that the pores are due to deposition of shell material around the base of short pseudopodia extending through the pseudochitinous membrane to the wall of the cyst and that they are not formed secondarily after the wall is completed. About 12 hours is required for making an adult chamber in *Glabratella* (*1339).

In *Discorbinella* (Fig. 36) chamber formation is similar; the test and growth cyst around the margin are shown (Fig. 36,1), with pseudopodia extending out to the cyst margin. Rapid circulation of granules occurs at this time. The main pseudopodia then retract, leaving only fine extensions to the cyst (Fig. 36,2), and the border changes in refringence, with perforations of a thin pseudochitinous pellicle that appears, showing as small, conical spaces (Fig. 36,3). This pellicle, which is the first element of the test, first becomes enriched with lime salts at tiny points (e.g., *Patellina*), which by gradual coalescence produce the calcareous test. The pseudopodia then protrude from...
the new aperture and the completed chamber fills with ectoplasm. About 8 hours is required for making a chamber in *Patellina*. The test is secreted by the ectoplasm and the pseudopodia, the endoplasm being found only in previously constructed chambers (*1109).

POLYVALENCE

In some large discoidal species, a random specimen may exhibit two or more embryonal stages (Fig. 37). This is an accidental vegetative association, not equivalent to the plastogamy found in the reproductive cycle of some species. The polyvalent specimens always are of the same generation and of approximately the same size, probably because of crowding in the growth cyst. In this type of individual the cytoplasm fuses, whereas the nuclei do not. The first chamber developed after fusion is twice the normal size for that stage (*1109).

SYMBIONTS

Various species of foraminifers have symbiotic zooxanthellae consisting of unicellular blue-green or green algae, which aid in food production by means of photosynthesis. *Peneroplis* and *Globigerina* contain such zooxanthellae (Fig. 38, *2068*). The ciliate *Stylonychia* reportedly swims around the pseudopodia and shell of *Peneroplis*, or even into its last chamber, without being disturbed by the foraminiferal pseudopodia; apparently it helps to keep the foraminifer clean (*1627).

PARASITES

Some foraminifers may have other protozoans as parasites. *Elphidium crispum* has been reported to have the coccidian *Trachosphera planorbilinae* (Le Calvez) in the protoplasm of larger chambers or extending throughout the test, so that eventually the *Elphidium* is destroyed. Nematode worms may also be parasitic on them (*1340). Various Recent and fossil tests may be observed with large, irregularly spaced perforations in the walls, the punctures being due to parasites or predators of some sort. One foraminifer (*Oolina marginata*) is itself a parasite on other species and captures and ingests the circulating protoplasmic granules of the host.

LIFE HISTORY

Probably no other group of organisms can compete with the Foraminiferida in low percentage of described living species in which the life history is known. Only 15 to 20 species have been thoroughly studied, though some information is available for about twice as many. A few generalizations may be made, however.

A paleontologist is gratified to learn that generic and suprageneric separations made almost solely on morphology and structure of the test generally accord with available information on life histories. Thus, simpler genera with a single-chambered test of pseudochitin or pseudochitin combined with agglutinated particles also have simpler life histories. They are commonly mononucleate in both the schizont and gamont forms until just before the reproductive process.
The more complex life cycles and higher degree of nuclear differentiation and dimorphism, accompanied by the occurrence of flagellate gametes, are found in genera with more complex multilocular tests.

Patellina and _Spirillina_, in which differentiation of the test and its unusual wall structure originally led to placing them in a distinct family, also show distinctive nuclear characters; they have quadrinucleate schizonts, a syzygial reproductive phase, and amoeboid gametes.

All _Miliolacea_ yet studied, classified in this group because of their distinctive porcelaneous test, have a distinctive form of gamete with axostyle.

Because such information may aid in constructing a truly natural classification, present knowledge of life cycles of foraminifers is here briefly summarized. It would be helpful to have life studies of many foraminifers, particularly of genera belonging to superfamilies as yet unstudied. For example, no life history of a species with aragonite test (Robertinacea) now is available and none of the perforate granular _Cassidulinacea_ (e.g., _Pleurostomella_, _Faustina_, _Nonion_, _Anomalina_, _Cassidula_) are known in detail. Complete life histories of the planktonic genera are unknown. None of the _Buliminacea_ have been studied and very little is known of the _Nodosariacea_ (except the aberrant parasitic _Oolina_), or of multilocular agglutinated forms. In view of the great variety exhibited by those studied to date, it is almost certain that equally important distinctions will be observed when representatives of some of these other large groups are studied.

In general, two methods of reproduction are known in the foraminifers and normally these alternate in occurrence. An asexual reproduction consists of simple multiple fission (schizogony), in which the entire protoplasmic content of the parent test normally is utilized. The adult that eventually produces these asexually formed embryos is variously termed the schizont or agamont. Because asexually formed embryos normally are larger than the sexually formed ones, they develop a larger first chamber of the test (proloculus) and grow to form the adult megalospheric test of the gamont generation. The megalospheric gamont later produces gametes, the fusion of which to form a zygote produces a young schizont with microspheric test. A nuclear dimorphism is also present, the schizont having a diploid chromosome number, whereas the gamont is haploid. This alternation of morphologically similar diploid and haploid generations parallels the alternation of generations in lower plants and is unlike any other animals, which normally have cell nuclei with diploid chromosomes, and only haploid gametes. Various modifications of this general pattern of alternation of generations are observed. Reproduction by simple fission or by fragmentation and regeneration may occur, especially in some large agglutinated forms, but this is not part of the usual dimorphic cycle; it is discussed under "Life Habits."

REPRODUCTIVE CYCLE OF “PRIMITIVE” FORMS

The simplest kinds of foraminifers possess pseudochitinous or agglutinated unilocular tests. Genera studied in relative detail include _Iridia_ (Le Calvez, 1936, *1104), _Nemogullmia_ (Nyholm, 1956, *1378), and _Myxotheca_ (Fjøyn, 1936, *736; Grell, 1958, *821) of the Lagynidae, which are alike in having biflagellate gametes, and _Allogromia_ (Arnold, 1955, *45) of the Allogromiidae, which has amoeboid gametes.

The least complex cycle is probably that characteristic of _Myxotheca_ (Fig. 39). The adult schizont with diploid nuclei has a reduction division (meiosis) prior to the onset of asexual reproduction. The protoplasm also is divided among the resultant nuclei for making the young gamont embryos. Upon escape from the parent, the young gamont has a vegetative period of growth, the resultant adult gamont being similar to the adult schizont until the reproductive phase begins. At this time a great many tiny, biflagellate gametes are formed. These are released into the open sea, and conjugation occurs outside the parent test, although not necessarily with those from another adult, for in isolated cultures, gametes from a single parent have been observed to fuse. The zygote thus formed, with diploid chromosome number, then grows into the adult schizont. In this form, no sexual differentiation of the gamonts is seen, the form being monoecious (gametes of a single parent may fuse).
A modification of this life cycle is shown by *Iridia* (Fig. 40). The adult diploid schizont is uninucleate and is relatively scarce in nature. With onset of schizogony, a cytoplasmic purification occurs, debris and waste products being excreted before the occurrence of nuclear divisions which yield approximately 40 daughter nuclei. The parent cytoplasm is divided among these nuclei to form the young haploid mononucleate embryos. The parent test is commonly dissolved for their dispersal. At least in some
species the embryo soon retracts the originally reticulose pseudopodia, contracts to a spherical form, puts forth many elongate, nonanastomosing pseudopodia, and becomes pelagic for a few hours or a day, doubtless in order better to insure their dispersal. Then the radiate pseudopodia retract, the animal becomes benthonic, attaches to the
substratum, and develops a pseudochitinous test. The adult gamont of these unilocular forms is identical in appearance to the adult schizont, although the gamonts are far more abundant. Gamogony begins with cytoplasmic purification, followed by disintegration of the large nucleus and development of the micronucleus, its numerous nuclear divisions resulting in many millions of tiny gametes, each with a nucleus, an oil inclusion, and two flagella of unequal length. The gametes are emitted at night, fusing with those of other adults to form zygotes, the young schizonts. Culture data indicate a primitive sexuality, and unlike Myxotheca, the gametes of a single parent will not combine to form zygotes, two parents being required (dioecious). The complete cycle requires about a year, schizogony occurring in winter and gamogony in summer.

Cytoplasmic purification of the uninucleate gamont at the onset of gamogony in Nemogullmia closes both apertures with balls of detrital material. The cytoplasmic and nuclear divisions to form gametes occur first in the central areas of the elongate test and then spread to both ends. The escape of the gametes is not through the original apertures but through openings formed in the pseudochitinous test; commonly large groups of gametes are extruded at one time in lumps of cytoplasm containing oil droplets. These break apart within an hour or so, liberating the free-swimming, biflagellate gametes. The entire protoplasmic content is consumed in the production of gametes. The schizont is multinucleate (*1378).

In Allogromia laticollaris both schizont and gamont are multinucleate, gametes are amoeboid, and fusion may occur autogamously within the parent test (both gametes from the same parent as in Myxotheca, i.e., monoecious); the zygote enlarges and only finally emerges as multinucleate diplonts. The cycle is complicated in that a series of haploid schizont generations may be produced before schizogony occurs and a series of diploid generations may be produced by schizogony before gamogony occurs. Asexual budding may also take place (*45).

Unilocular agglutinated species (e.g., Hemisphaerammina bradyi, Ammodisacea) have a similarly simple life cycle, with biflagellate gametes. The young embryos

Fig. 41. Horizontal sections of Elphidium crispum, enlarged (*1340).—1. Megalospheric gamont, with large proloculus and single large nucleus (n).—2. Microspheric schizont, with minute proloculus and many nuclei (n).
formed in schizogony leave the parent test with only a pseudochitinous cover; the agglutinated test is developed later.

DOMINANT REPRODUCTIVE CYCLE OF MULTILOCULAR FORAMINIFERS AND SOME MODIFICATIONS

The most commonly occurring cycle is characterized by isolated adult gamonts (holomictic) having numerous nuclear divisions. The many resulting biflagellate gametes are released into the open sea and may be free-swimming for a number of days before they fuse in pairs to form zygotes. The young diploid schizont has three to five nuclear divisions early in its existence, hence it is multinucleate. The adult schizont has a larger test than the gamont. At the beginning of schizogony an agglutinated protective covering cyst is formed over the animal, and nuclear reduction division occurs so that the gamont embryos, adult, and gametes are all haploid and the schizont diploid. In species with an annual cycle, the schizont is most common during the winter and the gamont, of shorter life span, is found during the summer months. Other species may require two to four years for a complete cycle. Some modifications of this general form are shown by *Elphidium, Ammonia, Discorbis, Tretomphalus* and *Planorbulina*, almost as many variations being known as species studied.

Elphidium crispum (Rotaliacea)

The common species, *Elphidium crispum*, occurs in large numbers near Plymouth, England, and on account of its availability was one of the earliest to be studied. The life cycle was first observed by Lister (1895, *1149*) and the true meaning of dimorphism in foraminifers elucidated thereby. Later investigations by Jepps (1942, *992*) and Myers (1943, *1340*) added details to the original study. Now it is known that the multinucleate adult schizont has a microspheric test with small proloculus (diam, approx 10μ) (Fig. 41, 2, 42). Asexual division of the schizont results in many young megalospheric uninucleate gamonts, each with a proloculus of 50 to 70μ in diameter. Commonly two chambers are developed before the gamont escapes from the parent test to grow into the adult (Fig. 41, 1). At the beginning of gamogony the animal ceases to feed, all waste matter is discarded, the

© 2009 University of Kansas Paleontological Institute
vegetative nucleus disappears, and successive nuclear divisions of the generative micronucleus result in the development of many biflagellate gametes. These are released into the open ocean in large numbers and conjugate with those from other parents, resorbing the flagella to form the young schizont. Rapid nuclear divisions
occur so that the schizont is multinucleate throughout its existence. In temperate regions the life span of each individual is about a year and the complete cycle requires two years in tide pools, whereas below low tide level three to four years may be required, the specimens being larger and having more numerous chambers in this environment. In tropical regions the life span is about six months and the complete cycle requires one year. Growth and reproduction are largely confined to the spring months. An occasional schizont fails to have the normal nuclear reduction division and remains diploid, resulting in a megalospheric form which reproduces asexually as a schizont. This is a form of trimorphism, but is not an obligatory part of the cycle.

Ammonia beccarii has a similar cycle, which may be termed holotrimorphic, as the gamont may produce microspheric schizonts, which give rise to megalospheric schizonts that in turn produce gamonts.

Some forms with intralocular schizogony (e.g., *Discorbis vilardeboanus* auct., *non* D'ORBIGNY) have developing embryos that dissolve much of the interior and ventral face of the parent schizont test before they escape. For this reason many such microscopic tests are destroyed during the reproductive cycle and accordingly are rare in the fossil record, being preserved only when the living animal met death before completion of the cycle.

Tretomphalus bulloides (Discorbacea)

The alternation of generations is complicated in this form by development of a pelagic stage (Fig. 43). The microspheric schizont has 16 to 24 chambers and contains 18 to 20 nuclei. It is usually protected beneath a cystlike structure; hence, the closely appressed lower or umbilical surface commonly is deformed to agree with the surface of the substratum. A "growth" cyst is also formed when schizogony commences. In about three days the 80 to 225 young embryos have each developed two or three chambers. They then dissolve the umbilical surface of the parent to make their escape. An additional chamber or two is formed the next day, by which time the young have dispersed from the empty, now disintegrated parent test. After developing 13 to 18 chambers, the gamont again forms a growth cyst, ectoplasm extruded from the ventral surface expands to a globular form and finally secretes a large hemispherical float chamber over the entire umbilical surface. The cytoplasm simultaneously develops a large gas bubble which occupies most of the chamber and the animal then pushes out of the cyst to float to the surface. The development of the planktonic stage requires 18 to 24 hours and biflagellate gametes are simultaneously developed within the cytoplasm. The floating gamonts move slowly beneath the surface film by means of long pseudopodia and when two individuals approach closely, their pseudopodia anastomose, bringing the tests together with their float chambers facing each other. The gametes are then discharged in streams from the floating tests through the larger pores of the float chambers and they fuse to form young schizonts. About 12 hours later the float fills with water and the empty test sinks to the bottom. The young schizont also sinks to the bottom and grows to form the benthonic microspheric adult.

Planorbulina mediterranensis (Orbitoidacea)

This is an attached form, and unlike *Elphidium*, dimorphism is not reflected in test size but only in size of the proloculus, which is 11 to 14μ in diameter in the microspheric schizont (about 4 per cent of the specimens) and 23 to 56μ in diameter in the megalospheric form (about 96 per cent). Just before schizogony the protective crust over the test is reinforced by excreted debris. During schizogony only a small part of the parent protoplasm is used for the developing embryos. The 60 to 100 young embryos at first have only a pseudochitinous membrane, which becomes calcified after the embryo has developed four chambers, by which time much of the parent test has been dissolved. After formation of the fifth chamber, the young dislodge the protective covering or cyst and escape, moving some millimeters away before attaching to the substratum and proceeding with growth. In this species occasional trimorphism occurs, with some uninucleate and some multinucleate gamonts, but this is not reflected in size of the proloculus; hence, no trimorphism of the test is seen, only of the nuclei. According to Le Calvez (*1106*) the microspheric forms in cultures produce...
only typical uninucleate gamonts. The adult gamont in gamogony has rapid nuclear divisions, producing many biflagellate gametes which escape in a cloud, commonly at night, into the open sea and may be freeswimming for many days before fusion. The cycle of Planorbulina is somewhat more complex than that of Ammonia and may be termed paratrimorphic. Thus, the schizont may produce either uninucleate or multinucleate diploid megalospheric forms, each of which may produce schizonts or the multinucleate one may produce uninucleate forms first.

The life cycle of imperforate, porcelaneous foraminifers is similar. That of Peneroplis pertusus (Forskål) was studied early by Winter (1907, *2068) (Fig. 44). The adult schizont with about 40 chambers divides asexually to form many small embryo gamonts, which develop a spherical proloculus and tubular enveloped second chamber or spiral passage before breaking free. The proloculus of the young schizont is distinctly perforate, similar to hyaline calcareous forms, but later chambers have the characteristic imperforate porcelaneous wall. This species also has many tiny symbiotic algae or zooxanthellae (Cryptomonas). The gamont grows to maturity (about 21 chambers) and then produces numerous flagellate gametes. These were originally described as uniflagellate. According to Le Calvez (1950, *1106), the long blepharoplast characteristic of the miliolacean gametes may have been mistaken for a flagellum, and the two very fine true flagella were not seen by Winter. Fusion of the gametes results in the production of a new schizont generation.

An interesting variation to the general rule that all parent cytoplasm is utilized in producing the next generation was observed in a small miliolid, referred to Spiroloculina, kept in isolation cultures. In schizogony, part of the parent protoplasm moved outside the test into the reproductive cyst to produce the embryonic young, but some of the protoplasm remained in the parent test and then resumed feeding in a normal vegetative existence. After some time (three days to a month) another group of young was produced by schizogony from the same adult (*44).

Other species that have been studied and found to have similar life cycles include Nebecularia lucifuga, Quinqueloculina seminulum, Q. suborbicularis, Triloculina circularis, T. rotunda, Discorbis bertholotti, Cibicides lobatulus, Cyclocibicides verruculatus, and Eponides repandus. Of these, the Miliolacea are characterized by a distinctive type of gamete, with long axostyle. The young gamonts have also been observed in other genera, although complete cycles and gametes have not been identified for all of these.

REPRODUCTIVE CYCLE OF PLASTOGAMIC SPECIES WITH TRIFLAGELLATE GAMETES

Plastogamic genera that have triflagellate gametes are here included in the Glabratellidae, with such genera represented as Glabratella (synonym, Conorbella) and Angulodiscorbis. Most of these species had previously been placed in Discorbis, but the generic separation, originally based solely on test morphology, here also is upheld by distinctive reproductive characters. The pairing or association of tests which precedes gamogony had been noted long before its true nature was determined, for it was variously thought to be plastogamy (a modified asexual reproduction), or a reproduction by budding (Heron-Allen, 1915, *904). Myers (1933, *1334) used the term syzygy, to which Jepps (1933, *993) objected because of its prior use in a somewhat different sense in the minute wormlike sporozoans known as gregarines. This has been observed in Glabratella patelliformis, G. pulvinata, G. ornatissima, G. opercularis and G. parisiensis (Myers, 1940, *1339), G. mediterranensis (Le Calvez, 1950, *1109), and G. sulcata (Grell, 1958, *820c).

The multinucleate schizont reaches maturity at about two to two and a half months of age, the final chamber commonly being smaller than several which had preceded it (Fig. 45). Schizogony begins with the development of a rigid protective cyst composed of diatom frustules and other debris, the nuclei moving through chambers farther from the proloculus, the larger nuclei dividing in Glabratella patelliformis and all nuclei doing so in G. opercularis. Globules of cytoplasm then separate around each nucleus to form about 30 to 120 young schizonts, the number varying somewhat in different species. Not all of the parent cytoplasm is utilized in forming the mononu-
cleate embryos, which develop a plasma membrane, then an outer ectoplasmic layer; moving about within the parent test by means of pseudopodia, they consume this remaining cytoplasm and much of the calcium walls and septa of the parent test. A

Fig. 44. Life cycle of *Peneroplis pertusus* (*2068*).
second and rarely a third chamber is added and about 70 hours after commencement of the schizogonic cyst, the umbilical wall of the test is completely dissolved, allowing the two- or three-chambered young to move out. The nucleus increases in size and may remain in the proloculus or move to whatever chamber is approximately central in the series. The adult gamonts may have from 6 to 16 chambers. These associate in pairs, fusing by the umbilical surfaces commonly in such position that the apertures are opposed, moving and rotating for this purpose by means of the pseudopodia. The fused pairs may move for some distance over the substratum, then become cemented to it. At times three or four tests of varying size may associate at once. The septa and umbilical surface are resorbed and the protoplasts fuse in the intervening space. Multiple nuclear divisions rapidly produce the numerous (250 to 300 per gamont) small spherical triflagellate gametes. Two of the flagella are of equal length and beat in unison, the third being somewhat longer and trailing. Only about 10 per cent of the gametes fertilize; the remainder are consumed by those which develop. The zygote retains the flagella until it has enlarged to about two-thirds the size of the protoplasmic mass in a schizont proloculus. An ectoplasmic layer develops and a thin perforate test wall forms within it, the proloculus diameter depending on the amount of growth occurring before its secretion. Two or three chambers are formed before the cement attaching the associated tests is dissolved for dispersal of the young. From 18 to 32 young schizonts normally develop from an associated pair of tests.

Megalospheric tests of *Glabratella patelliformis* are sinistrally coiled, whereas microspheric ones are dextrally coiled. Among the plastogamic species in general, the schizont form is relatively large and low-spired, the gamont being smaller and more conical. Le Calvez (1952, *1110) noted that different specific names have been applied to the two generations in many instances. The complete cycle with alternation of generations in this species requires 64 days or more (*1339). Because certain specimens would fuse only with certain others in laboratory experiments, possible sexuality is suggested even though no morphologic differences could be observed (*1109). This type of reproduction has apparently occurred in the foraminifers since Eocene times, for according to Le Calvez (*1109) fossilized species from the Lutetian of the Paris basin show the open umbilical area similar to the present-day empty tests that have separated after resorp-
tion of the septa and umbilical surface during the plastogamic process.

REPRODUCTIVE CYCLE OF PLASTOGAMIC AND SYZYGIAL SPECIES WITH AMOEBOID GAMETES

This type of reproduction is characteristic of the Spirillinacea and has been thoroughly described for *Spirillina vivipara* by Myers (1936, *1337*) and for *Patellina corrugata* by Myers (1935, *1336*), Le Calvez (1938, *1106*), and Grell (1958, *821*; 1959, *820d*). It also occurs in *Rubratella* and was described by Grell (1958, *820b*, *821*). In most species with amoeboid gametes the microspheric and megalospheric tests are reversed as compared with the majority of foraminifers with flagellate gametes, because the gamont generation commonly has a small proloculus (hence microspheric), and the schizont generation a large one (therefore megalospheric).

![Life cycle of Spirillina vivipara (*1337*)](image_url)
The species *Spirillina vivipara* probably has the least complex type of life cycle (Fig. 46). In this form no definite period of chamber development is recognized, growth and secretion of the test being more or less continuous during vegetative existence. The multinucleate schizont commonly has a larger test (diam., 125-152μ), consisting of two and three-fourths to three and one-half whorls, an ovoid proloculus, and a somewhat constricted early part of the spirally wound chamber. In some specimens the
final whorl may have a sharp bend so that the tubular chamber turns toward the umbilical depression. At maturity a reproductive cyst is formed from debris collected by the pseudopodia from the immediate vicinity and plastered over the dorsal side of the test, laterally sealing it to the substratum. Two nuclear divisions follow, all nuclei dividing at once so as to commonly form 12 young, or more rarely 16. This nuclear division is followed by migration of the multinucleate cytoplasm from the test into the cyst or brood chamber. Cytoplasmic differentiation and multiple fission follow, each nucleus forming a new mononucleate juvenile gamont. The proloculus of the young test is secreted immediately, its development beginning even before the multiple fission. When about three-fourths of the first whorl of the coiled chamber is complete, the cyst is ruptured and the 12 to 16 young gamonts escape. The adult gamont commonly has only one and a half whors and an average diameter of 60 to 78 μ; the proloculus is subglobose and the spiral chamber is uniformly graduated from the proloculus. At maturity, two to four of the gamont tests group in association, or syzygy, and form an agglutinated protective cyst when about to undergo schizogony. The number of nuclei is somewhat variable, but two successive mitoses form quadruple the number of nuclei. These collect cytoplasm after moving out of the test into the cyst cavity and form the uninucleate embryo gamonts. After about two days the young gamonts escape, having resorbed most of the ventral wall and septa of the parent test as a source of calcium carbonate. The new embryonic tests consist of the proloculus and a spiral chamber of about one and three-fourths whors. After growth these gamonts associate in a reproductive cyst in groups of two to nine, with synchronous development of the gamogony. Nuclear divisions result in eight large amoeboid gametes within each test, the haploid number of chromosomes being 12. These gametes fuse inside the cyst with gametes from other parent tests to form the zygotes, and any that fail of fertilization are consumed as food by the successful ones. Nuclear divisions, cytoplasmic reorganization, and test secretion follow to complete the cycle. According to Grell (1958, *821), a sexual differentiation occurs in the adult gamonts and no association will develop unless at least one of each “sex” is present. Furthermore, in an association of three tests (common in nature), the total number of zygotes will be only that of the lesser number of gametes of one sex. If two plus-individuals (each with three nuclei originally) and one minus-individual (with originally four nuclei) associate, the former developing 12 plus-gametes and the latter eight minus-gametes, the number of embryos will
be eight, the remaining plus-gametes not developing. GRELL noted that in *Patellina*, the gamonts and gametes of the plus-sex were somewhat more compactly built than the minus-sex. He also noted that the reduction division from diploid to haploid chromosome number occurs at the beginning of schizogony, so that the gamont generation is always haploid.

Rubratella intermedia is a very tiny species with only a few thin-walled chambers, each with internal radial partition formed simultaneously with the chamber (Fig. 48). The adult schizont normally has four to seven chambers, the gamont one to five. This species is heterokaryotic, having one somatic or vegetative nucleus and commonly five generative nuclei, or more rarely only one to as many as seven generative ones. The inner chamber walls of the schizont are dissolved when the protoplast moves out of the test for multiple fission, and formation of the young embryos occurs outside the parent test. The gamont always has only a single nucleus occupying the proloculus, which commonly is larger than that of the schizont, although size varies somewhat in both generations. With the beginning of gamogony, the inner walls are dissolved and two tests fuse by their umbilical surfaces in plastogamy. The somatic nucleus disintegrates and the remaining nu-
Foraminiferida—Morphology and Biology

clei divide to form the amoeboid gametes. These fuse to form the new schizont generation (*820b). This reproductive cycle is like that of the Glabratellidae in showing plastogamy and like the Spirillinidae in having amoeboid gametes. Sexuality is also shown in Rubratella (Fig. 49). In plastogamic pairs where one gamont is larger than the other the resultant gametes are of proportional size and the resultant zygotes without exception show pairing of gametes and nuclei of dissimilar size (*821).

REPRODUCTION OF SPECIES WITH AUTOGAMOUS FERTILIZATION OF AMOEBOID GAMETES

The life cycle of species of Rotaliella have been described by Grell (1954, *818; 1957, *820a). Similar to the Spirillinidae in having a quadrinucleate schizont generation and in the development of amoeboid gametes, they differ in lacking the plastogamic habit and in having autogamous fertilization within a single parent test (Fig. 50). The schizont nuclei are of two types, one being larger and one smaller. The larger type is vegetative in character and apparently of use only in growth and development of the individual, not taking part in the reproductive phase. The three smaller generative nuclei each have two nuclear divisions which form 12 new embryonic gamonts, and at this time the larger vegetative nucleus disintegrates. The young and adult gamonts are uninucleate, the nucleus being situated in the proloculus. In gamogony this nucleus divides and forms large amoeboid gametes which then fuse in pairs within the same parent test (autogamy). Both generations in species of Rotaliella are characterized by a small number of chambers (five or six only) (*818).

REPRODUCTION IN APOGAMIC SPECIES

A few species have been studied which apparently have lost the sexual reproductive stage and only reproduce by simple fission. Among these is Neoconorbina orbicularis. Le Calvez (1950, *1109) observed eight successive schizogonic generations in cultures of this species without the appearance of gamogony. The specimens are invariably mononucleate and the number of embryos formed is never large.

Another aberrant form without sexual reproduction is Oolina marginata. It is an ectoparasite on various discorbid species (e.g., Rosalina). At the time of reproduction, Oolina leaves the host, moving outside the ring of debris which normally surrounds Rosalina. Lying on its side, Oolina constructs a large hemispherical chitinoid cyst around the apertural region; then the cytoplasm dissolves the internal entosolenian tube and moves out of the test into the cyst. Schizogony occurs, the single nucleus and protoplasm divide into two to six fragments, each of which secretes a separate test, breaks free from the parent test, and returns to reinfest the host. This cycle is repeated about every ten days.

Although they reproduce only asexually, without production of gametes, adult specimens of both Neoconorbina and Oolina are uninucleate. The single nucleus and the small size and simple test of Oolina all are
suggestive of the gamont generation; hence, these apogamic genera may actually be represented by a gamont generation that reproduces by haploid parthenogenesis, so that the unilocular *Oolina* may be the megalospheric form and the microspheric generation may no longer exist. Bisexuality occurs in some foraminiferal species and disappearance of the gamonts of one sex may have resulted in the loss of sexual reproduction.

BUDDING AND FRAGMENTATION

In addition to reproductive cycles characterized by alternation of generations, some genera are reproduced by other methods. Fragmentation is especially characteristic of large agglutinated species (e.g., *Bathy­siphon, Astrorhiza*). In *Bathy­siphon* fragmentation occurs periodically and growth commonly occurs only at one end of the test. In accidental fragmentation, observed in some species, the missing parts may be regenerated and thus many specimens with repaired or restored tests are found in fossil assemblages.

Budding has been reported in certain calcareous genera, but the paired tests were interpreted erroneously as denoting plastogamic reproduction. True budding has been reported in *Halyphysema*. One or more swollen areas develop at the free end of the attached test; these gradually detach and fall to the substratum as subspherical forms with walls of sponge spicules and detritus. The scars left by detachment from
the parent are soon repaired and the globular specimens move over the substratum by means of fine elongate pseudopodia. After about two days, a basal disc develops, resulting in the normal attached form.

LIFE HABITS

HABITAT

Foraminiferida are aquatic, dominantly marine protozoans, but some Lagynacea occur in fresh waters. Others are relatively tolerant and live in either brackish or marine water. Most genera are benthonic, occurring from tide pools to all known depths. Some are free-living and move slowly about over the bottom or along their algal supports by means of their elongate pseudopodia. Others occur on sandy or gravelly bottoms, where their pseudopodia may anastomose in the substratum and act as a binding agent. Some attach themselves permanently or temporarily to various seaweeds, corals, or other organisms such as mollusks, and can be found even on fragments of these organisms. Permanent attachment by means of a cement persists after death of the animal and fossil adherent foraminifers are commonly found attached to pelycopod fragments. Others may hold positions only temporarily or may be well attached during life to an alga or other readily decayable matter. These are commonly freed by its disintegration so that the specimens appear free, the attachment during life being indicated by a flattened or irregularly contorted appearance of the formerly attached side. Some foraminifers live within empty tests of other foraminifers or in polychaete worm tubes, and a few are actually parasitic on other foraminifers. A small number of genera are planktonic (Globigerinacea); some may have short pelagic stages in various parts of their life history (e.g., Iridia, Tretomphalus). The flagellate gametes of some species are pelagic. Foraminiferida occur in all latitudes, although some genera and species are restricted to tropical latitudes and others to polar regions.

The distribution of foraminiferal species probably is controlled by temperatures required both for existence and for reproduction. Some species tolerate temperatures from near freezing to 34°C, but the lower limit for reproductive activity is approximately 25°C. Laboratory experiments have shown that optimum temperatures for some species differ slightly from those in which they occur in nature, suggesting that such occurrences are near the limit for successful maintenance of the species. In general, a greater variety of forms occurs in warm, shallow waters, but approximately equal numbers of specimens may be found in many different environments. They have even been reported from fresh, brackish and salt water in the Sahara, at some distance from the present coast.

FEEDING HABITS

Food utilized by foraminifers consists dominantly of diatoms when these are available. Other organisms, both vegetable (algae) and animal (e.g., small crustaceans) may also be utilized. In some species (e.g., Elphidium, Peneroplis) a paralyzing effect of the pseudopodia on the prey has been reported but in others (e.g., Myxotheca) the prey may struggle for some time after capture. Calcituba feeds on filamentous algae. Patelina utilizes diatoms, infusoria, copepods, and nauplius larvae. Peneroplis consumes diatoms and algae, spores, small crustaceans, flagellates, and ciliates. Globigerina relies upon symbiotic zooxanthellae but also captures copepods. Globorotalia utilizes both radiolarians and diatoms as food (*1627). Astrorhiza has been noted to have extremely adhesive pseudopodia when feeding, capable of capturing and holding a wide variety of small organisms. It appears that the prey of this organism may be killed by exhaustion or suffocation, rather than by any paralyzing effect (*249). In some large species (e.g., Elphidium) the digestion of the food is carried on by the pseudopodia outside of the test. In others, especially unilocular species and those with a relatively large aperture (e.g., Miliolidae), the prey is drawn into the animal for digestion. Waste products (e.g., empty diatom frustrules) may remain in the cytoplasm until just before reproduction occurs or the waste may be condensed into small pellets (stercomata) as in Peneroplis. The tiny brown xanthosomes also appear in the protoplasm after feeding and are excreted from time to time. During feeding a mucus-
like covering of the animal may entangle debris and such a feeding cyst is left behind when the foraminifer moves on to another area. Feeding cysts left behind by Elphidium (Fig. 35) are composed of empty diatom frustules, xanthosomes and other debris which commonly occurs in clusters near canal openings and in the pseudopodial tracks, suggesting that the purpose of the canal system in the Rotaliacea may be for the extrusion of the xanthosomes (*993, p. 71).

TEST

The test or shell of foraminifers may be relatively simple or, on the other hand, extremely complex. Adults may range in diameter from 0.02 to 110.0 mm. The wall may be membranous or pseudochitinous, constructed of agglutinated fragments held in organic, ferruginous, calcareous, or siliceous cement, or composed of secreted calcite or aragonite of varying microstructure. Because only the test occurs fossilized and because a majority of all foraminiferids have been described by paleontologists, many living species and genera have been differentiated largely or entirely by features of the shell. Mostly features of test morphology are paralleled by similarly important differences in the soft parts, cytoplasm, and nuclei, or by distinctive living habits and reproductive processes. Hence, classification based on shell characters seems not too far from a "natural" one. Mentioned briefly under different taxonomic headings in the systematic section, features of wall composition, structure, and test morphology are here outlined as a basis for later discussions.

WALL COMPOSITION AND MICROSTRUCTURE

Pseudochitinous Tests. Some of the most primitive single-chambered species have thin, easily deformable test walls that have been variously regarded as chitinous, chitinoid, pseudochitinous, keratinous, proteinaceous or tectinous. The organic material in the test of Peneroplis has been shown to give a protein (albuminoid) chemical reaction; hence, it is unrelated to true chitin (Averintsev, 1903, *58). Many later studies have confirmed this early work. Hedley (1958, *889) stated that the organic matrix of the agglutinated wall of Halyphysema contains an acid mucopolysaccharide containing sulfuric acid groups. An organic sheath underlying the test wall gives the reaction of a carbohydrate, and apparently a protein is also present; hence, it is regarded as a mucopolysaccharide or mucoprotein.

A proteinaceous or pseudochitinous wall is present in many thecamoebians and is characteristic of the foraminifer superfamily Lagynacea (Fig. 51,1). Many genera with this type of test are known in present-day faunas, but owing to their fragility they are scarce in the fossil record. A number of "chitinous" forms have been reported from acid residues of limestones (e.g., Paleozoic of the Baltic region) and are here in-
cluded in the Lagynacea. Because of the method of extraction, however, it is uncertain whether or not these may have also had an additional layer of calcite or agglutinated particles which was destroyed by the acidizing. Such a basal organic layer is present in agglutinated, hyaline, and porcelaneous calcareous secreted tests, and, as mentioned under discussion of chamber formation, is usually the originally formed wall layer, which then becomes calcified or adds foreign matter to its surface. It is preserved in decalcified preparations of living forms and in some fossil ones as well, as for example in so-called microforaminifera (Wetzel, 1957, *2049).

Agglutinated Tests. Many foraminifers have tests which are partially formed organically but which also include a varying proportion of extraneous matter. Variations in this type of test wall may be shown in degree of selectivity of the foreign matter utilized, in composition of the material in which it is embedded, and in presence or absence of structures in the agglutinated or secreted layer. The foreign particles utilized in test construction reflect to some extent the local environment, so that in carbonate facies the agglutinated species may utilize carbonate grains. The density, specific gravity, and surface texture of the grains are apparently the important factors in selection of grains (*1627). Material commonly utilized includes quartz grains, various heavy minerals, clay or carbonate fragments or grains, and organic debris, including tests of smaller foraminifers, radiolarians, coccoliths, fragments of molluscan shells (e.g., Inoceramus prisms), and sponge spicules (Fig. 51,2).

The type of material utilized has been regarded as a feature of taxonomic importance by some authors (Hofker, 1953, *940; Avnimelech, 1952, *63). Noting that some species and genera are selective in the construction of their agglutinated tests, they have used its components as a basis for generic and specific differentiation. Such procedure is not to be recommended, because variations in selection of materials are indicated both in natural occurrences and in laboratory experiments. Thus Slama (1954, *1798) raised several species of Ammobaculites in cultures that in nature had tests of silt-sized or smaller particles or some fine sand grains. When placed in aquaria with quartz beach sand, this material was utilized for building the test. When silicon carbide abrasive powder was added to the substratum, this was immediately incorporated in later chambers of tests with a coarse-grained early portion. Buchanan & Hedley (1960, *249) have noted that Astrorhiza limicola, found on differing types of substrate, utilized these differing materials in their tests. In cultures it readily used powdered glass and "Perspex" shavings for test construction and repair.

Similar conclusions may be reached by a mineralogical comparison of substratum (or enclosing strata) and foraminiferal test walls. Lacroix (1926, *1073) has reported that dredgings from an area in the Faroe Islands supplied specimens of numerous common species that normally have finely arenaceous tests (e.g., Cystammina paucicolula, Haplophragmoides canariensis, Tropchammina squamata, T. rotaliformis, T. globigeriniforme, Spiroplectammina bifornis) all of which utilized calcareous coccoliths as extraneous material. The coccoliths could be dissolved in acid, leaving only the pseudochitinous base. The test of Discamina was observed by Lacroix (*1077) to be composed of sand in some localities, of sponge spicules in others, and to include black grains of volcanic glass in the Azores. Dick (1928, *592) found Bathysiphon argenteus in the Clyde estuary to contain numerous needles of rutile and flakes of mica in its test, the rutile crystals being regularly laid at right angles to the long axis of the shell. Similar rutile-bearing tests were located around the Scottish coast and across the North Sea as far as Norway, apparently coinciding with a disintegrating outcrop of rutiliferous schist on the sea floor; this schist was recognized to occur in the first-mentioned area.

Gignoux & Moret (*788) and Bonne (*172) also have noted that in many genera considered to have granular calcareous tests the wall structure actually was finely agglutinated; the calcareous grains derived from local lime-mud depositional environments were difficult to recognize because the cementing material also was calcareous. Venglensky (1960, *2003) has reported Miocene species with tests constructed of chalcedony grains (similar grains occurring in the
local clays). We have observed that Flabellammina washiensis in the Oklahoma and Texas Lower Cretaceous (Albian) has an arenaceous test in sandy strata and utilizes coarse shell fragments in the "oyster beds" of Gryphaea washiensis; in the Duck Creek Formation the test consists largely of agglutinated minute calcareous spheres (so-called Oligostegina).

In making X-ray analyses SWITZER & BOUCOT (1955, *1859) determined that agglutinated foraminifers include calcite, aragonite, quartz, feldspar, pyroxene, magnetite, hornblende, biotite and volcanic glass in their tests. They concluded (*1859, p. 533) that "although certain genera may choose sponge spicules rather than sand grains, they do so through a preference for certain shapes. It is most unlikely that sand grains of the same shape and size but different mineralogical composition can be distinguished by the organism. . . . The percentage of these minerals pyroxene, hornblende, and feldspar in each test is variable probably being a function of the random distribution of the mineral grains on the sea bottom."

Although the actual material used for test construction appears variable, many species have characteristic ways of orienting the fragments, such as the lengthwise alignment of sponge spicules in Marsipella and Halyphysema, the perpendicular alignment of rutile crystals in Bathysiphon, and the well-known example of Psammosphaera with a single elongate spicule carefully centered across its test. Specimens of Gaudryina nansuhakensi in the Lower Cretaceous of Alaska and Canada commonly have finely agglutinated tests with dark mineral grains aligned along the sutures and outlining the chambers.

Suleymanov (1960, *1856), in a study of Upper Cretaceous Textularia, concluded that some species had different selective power in the same biotope, but that the species showed some variation in particles utilized according to different biotopes, and were influenced by the availability of materials. Buchanan & Hedley (1960, *249) have reported that when Astrorhiza limicola tests were disintegrated, the size range of particles used in the test was almost exactly the same as that of a sample of the bottom sediment from which it came and varied similarly from one locality to the next. In cultures, a portion of the test wall was removed from specimens that were then left in a container without any available grains. A membrane was secreted to cover the damaged area. If sediment was then made available, it would be added over the membrane.

The extraneous material used in test construction may be variously cemented by organic cement, calcium carbonate, hydroxides or carbonates of iron, and possibly also hydrates of silica.

In Astrorhiza, the organic cement has the consistency of a rigid gel. Apparently it is composed of a protein-carbohydrate material with at least some acid mucopolysaccharide (*249).

A similar composition was noted for Halyphysema (*889). A chitinoid or pseudo-chitinous lining has been reported for many agglutinated forms, but apparently is not present in all (e.g., Astrorhiza). In desiccated specimens dried and shriveled protoplasm may coat the interior surface of tests and appear to be an organic lining; it is not present in fresh material, although an organic membrane may be formed in repairing damage to the test. An inner organic sheath present in Halyphysema consists of a protein and carbohydrate complex, either a mucopolysaccharide or mucoprotein.

Iron has been reported in the tests of many agglutinated forms, either as iron salts in the organic layer (Lacroix, *1073), iron phosphate cement (Carpenter, *277), iron oxide, or iron carbonate cement (Fauré-Fremiet, 1911, *713; Vinogradov, 1953, *2007). Iron is especially dominant in Cyclammina cancellata and Cribrostomoides latidorsatum, resulting in a characteristic red-brown color. Rhabdammina is high in Fe₂O₃ and occurs in abundance in the Barents Sea, where it may be an agent in iron enrichment of the sediments.

The presence of iron in the test is undoubted, but the question remains as to whether this is secreted by the animal. It is yet unproven, but the iron possibly may have been present already on sand grains of the sediment which was utilized in test construction (*249).

Siliceous cement has been reported in various members of the Rzehakinidae (e.g., Miliammina).
The microstructure of agglutinated foraminiferal walls has not been much studied. Some forms are known to have a simple layering, with smoothly finished inner wall, coarser-grained central portion, and finer-grained surface covering. In addition, many agglutinated tests have fine tubules piercing the wall, which give a fibrous appearance in section (Moebius, 1880, *1293). The tubules may be slightly irregular, branching or anastomosing and opening at the outer surface as tiny perforations (Fig. 52). The tubules and perforations are 1 to 4 μ in diameter, but they end blindly at the inner pseudochitinous membrane; hence they are not comparable to the perforations of calcareous foraminifers. A possible osmotic connection through the pseudochitinous layer has been postulated (*1075). However, some agglutinated genera apparently do have pseudopodial connections through the wall perforations (e.g., Psammosphaera).

Porcelaneous Tests. The terms porcelaneous and hyaline were first used by Williamson (1858, *2065), the porcelaneous wall being described as “an opaque calcareous substance having a porcelainous aspect, and presenting, when seen by transmitted light, a rich brown or amber colour.”

Carpenter (1856, *271a) separated some of the same groups of foraminifers on the basis of the presence or absence of perforations in the wall for extrusion of pseudopodia. Those lacking such perforations, called Imperforata, had pseudopodia extending only from the aperture, whereas the Perforata commonly had pseudopodia protruding from the perforations in all visible chambers, as well as from the main aperture. Reuss (1862, *1552) and Carpenter (1861, *272) included both porcelaneous and arenaceous foraminifers in the Imperforata, Carpenter adding the membranous forms to the group. The presence of perforations was soon demonstrated in the agglutinated foraminifers, however, and Rhumbler (1894, *1567) also showed that the embryonic chamber of Peneroplis was perforated, though the adult test is typically porcelaneous (Fig. 53). This was later observed also in the alveolinellids and Keramosphaera. Nevertheless, it has been conceded generally that the porcelaneous tests have a distinct structure. Cornish & Kendall (1888, *387) suggested that the porcelaneous ones were probably composed of aragonite rather than calcite, because they typically exhibit an opaque chalky appearance. Attempts to check this on the basis of specific gravity were inconclusive. They stated that porcelaneous foraminifers were less resistant to carbonic acid than calcareous ones, that the resistance was related to shell structure, and that opacity in fossils accompanied instability of the test in carbonated water. Others disagreed and Chapman (1904, *318) stated that the porcelaneous wall was probably not aragonite, since porcelaneous species were found in the Australian Permo-Carboniferous. Because of the instability of aragonite, it would not be expected to be found in strata so old.

Fig. 52. Wall structure of Textilavia agglutinans (*1075).—1. Fragment of wall showing internal surface of chamber with perforations at bottom and section through wall with irregular perforations, X 100.—2. Exterior surface of fragment showing tiny pores between sand grains, X 500.

Fig. 53. Juvenile specimen of Peneroplis pertusus with globular, finely perforate proloculus and enrolled spiral passage, X 850 (*2068).
He added that "traces of anomalous biaxial figures under convergent polarized light" were not suggestive of calcite, and believed the porcelaneous test probably to be a mixture of organic matter and lime carbonate ("conchite"). X-ray studies by Mayer (1932, *1238) definitely showed that porcelaneous tests (e.g., *Orbitolites*, *Peneroplis*, *Quinqueloculina*) were composed of calcite and not aragonite.

Magnesium carbonate was reported to occur with calcite in many foraminiferal tests (Vinogradov, 1953, *2007), and a higher percentage (5-12.5 per cent) of the test was found to be MgCO₃ in porcelaneous tests (e.g., *Orbitolites*, *Pyrgo*). It is not present as dolomite, for it was never found in the correct ratio of MgCO₃ to CaCO₃; the form in which it does occur is unknown. Chavez (1954, *328) analyzed a number of porcelaneous and hyaline tests for MgCO₃. The percentage of MgCO₃ was found to be highest in tests from warm waters. Unfortunately, the specimens examined were not identified specifically. Most of the porcelaneous forms were from Bermuda, Florida Keys, and Palau (water temperatures 23.0° to 28.0°C) and contained 11.5 to 15.9 per cent of MgCO₃. One specimen of *Triloculina* from Maine (water temperature 6.0°C) had only 6.7 per cent MgCO₃. Most of the hyaline species examined were from colder water. He concluded that three factors influenced the magnesium content—skeletal mineralogy, water temperature, and "phylogenetic level of the organism." Vinogradov (1953, *2007) regarded the occurrence of MgCO₃ as a characteristic of porcelaneous foraminifers (5-12.5 per cent) in contrast to hyaline calcareous ones (3-5 per cent). This was based on a total of 17 species examined by Vinogradov, as compared with 23 species studied by Chavez. In view of the small amount of data yet available, the relative importance of these factors is still undetermined. It is not known whether magnesium is an important genetic factor of the porcelaneous wall or an accidental inclusion, perhaps resulting from environmental factors.

Lacroix (1923, *1072) described a "chitinous" base to the porcelaneous test, stating that when Recent specimens were decalcified the residue was a fine transparent membrane which completely lined the chamber interior. Slightly yellowish in thicker areas, it is resistant both to dilute and concentrated acetic acid, hydrochloric acid, sulfuric acid, and nitric acid, and it is not attacked by ammonium, potassium or sodium hydroxides. However, hypochlorites (Javel water, liqueur of Labarraque) rapidly dissolved it. He regarded the substance as similar to insect wings and therefore composed of chitin. He noted that it is alterable like an albuminoid substance and might be destroyed in dead specimens. Porcelaneous species become membranous or "chitinous" in low-salinity areas (e.g., estuaries, brackish-water lagoons); hence, the "chitinous" membrane was regarded as the basis, which is normally impregnated with calcareous salts. It has been concluded that true chitin does not occur in protozoans, the substance being proteinaceous instead. Protein was reported by Vinogradov (1953, *2007) to be present in the tests of *Miliolidae*. Cushman & Warner (1940, *533) reported the presence of cryptocrystalline calcite and chitin mixed throughout the wall of *Cornu­spira* (=*Cyclogyra*), *Sigmoilina*, *Massilina* (with some foreign matter also), *Peneroplis*, *Sorites*, *Archaia*, *Marginopora*, and *Alveolinella*.

Wood (1949, *2073) studied porcelaneous tests optically and stated that in ordinary light they appear to be homogeneous, and "between crossed nicks the test invariably shows low polarization tints, greys and yellows of the first order, whatever the thickness of the section. . . . In a number of forms . . . a multitude of tiny flecks may be observed between crossed nicks, which are the individual crystals of the wall." The crystals are roughly equidimensional, subangular, and not elongated, approximately 1.5μ in diameter, and without constant crystal orientation (which explains the low polarization colors, since the crystals compensate for each other within the thickness of the section), although in some forms a preferred orientation seemed recognizable in specimens from the same locality. The porcelaneous test also shows a tendency toward recrystallization, the crystals becoming slightly larger and the characteristic brown color disappearing. The test remains opaque, however, "the light being lost by scattering and total internal reflection at the multitude of boundaries."
The cause of brown color in Recent porcelaneous foraminifers was thought by SOLLAS (1921, *1811) to be due to scattering of light by the tiny crystals and by CUSHMAN & WARNER (1940, *533) to be caused by organic matter (pseudochitin). WOO (1949, *2073) commented that the organic matter left in decalcified specimens was colorless. On the basis of spectrographic and X-ray analysis of Recent and fossil specimens, he noted that a Recent specimen in X-ray showed smaller lattice spacings and a crystal size between 0.5 and 5μ. The smaller spacing was regarded as possibly due to some magnesium or iron substituted for the calcium. In the fossil form the lattice spacing is identical to that of pure CaCO₃ and the crystal size greater than 5μ. Spectrographic analysis showed that lead was present in Recent but not fossil tests, suggesting that the brown color might be due to traces of lead.

Some porcelaneous genera and species may have a surficial arenaceous coating over the characteristic porcelaneous wall (e.g., Ammonassilina, Dentostomina, Nodobaculina, Nubeculina, Schlumbergerina, Sigmolipsis, Siphonaperta, some Quinqueloculina).

Microgranular Tests. Paleozoic calcareous foraminifers belonging to the Parathuramminacea, Endothyraeceae, and Fusulinacea have a distinctive wall structure. It consists of very tiny calcite crystals which are equidimensional, subangular, and tightly packed. In thin sections the wall commonly appears dark, because of loss of light by reflection and internal refraction. The crystals are of similar size in specimens from different areas and not comparable to grain size of the surrounding matrix; hence, the granularity seems to be a characteristic of the shell itself rather than predominantly an agglutination of calcium carbonate particles from the sea bottom, although some foreign matter may be included. Secreted secondary deposits also occur in older chambers, further suggesting a secreted origin of the entire test. When the granules are regularly aligned, the resultant wall is fibrous or pseudofibrous in appearance. Various genera may have more than one wall layer (up to four layers) in differing combinations of microgranular and fibrous layers. Recrystallization may obscure the different layers.

Microstructure of the sort just noted was first described by BRADY (1876, *193), who regarded it as agglutinated calcareous grains in a calcareous cement. He was followed in this belief by others, including CUSHMAN (1948, *486). VON MÖLLER, 1878 (*1568b), stated that Endothyra was not arenaceous but perforate. Others described the endothyroid test as arenaceous or subarenaceous. GALLOWAY & HARLTON (1928, *763) regarded calcareous species as primitive and arenaceous ones as derived later, describing the wall of Endothyra as “calcareous, thick, opaque, imperforate, without or with inner, meshwork layer, not of agglutinated particles,” and stating that the “exceedingly fine calcite crystals ... resulted from the crystallization of the original calcareous walls....” WOOD (1949, *2073) noted the resemblance of the granular endothyroid wall to that of recrystallized alveolinids and regarded as uncertain “whether the test of an Endothyra has recrystallized from a minutely crystallized secreted test or was secreted in nearly its present state.” It was probably not agglutinated and not recrystallized from the radial hyaline type of wall, since crystals tend to increase in grain size when recrystallization occurs. Some genera seem to be particularly susceptible to such recrystallization (e.g., Loeblichia) (CUMMINGS, *398; FOMINA, *728).

REYTLINGER (1950, *1560) divided Paleozoic smaller foraminifers into six groups based on wall structure, as follows: (1) dark micrograined walls with very fine calcite grains and fine perforations; (2) walls of gray or yellow color, consisting of small, elongate, light-colored grains resulting in a fibrous appearance, and including some large angular grains, such walls being susceptible to differentiation into two layers; (3) coarse-grained and agglutinated walls with much calcareous cement; (4) coarsely perforated walls (e.g., Bradyina) with simple to dentritic pores and possibly with agglutinated material; (5) hyaline-radial perforate walls which may have an interior darker layer (e.g., Archaeidiscidae, some Nodosariidae); and (6) micrograined walls of grayish, yellowish or brownish color (e.g., Agathammina). REYTLINGER regarded only groups 1, 5, and 6 as secreted, the others being walls consisting of mixed agglutinated and secreted material. She concluded that wall structure was not a stabilized feature...
but might vary according to local conditions. All of the above-mentioned wall variations are found in the suborder Fusulinina, as here recognized, the more complex walls of numerous layers characterizing the more advanced genera.

Hyaline Calcareous Tests with Perforate Radial Walls. Foraminiferida with hyaline calcareous perforate walls have long been recognized as having differing optical characteristics when viewed with polarized light. SORBY (1879, p. 64) stated, “Their shell is often composed of small prisms of calcite having their principal axis perpendicular to the surface of the shell. The result is that each cell gives rise to a black cross and colored rings when seen with polarized light. In some cases, however, the calcite has not been deposited symmetrically round each cell, but occurs in smaller radiate groups, and occasionally nothing can be seen but granules without definite optical arrangement.” Not until 70 years later were these differences regarded as significant in classification. WOOD (1949, *2073) systematically examined hundreds of species from many families under polarized light and found that the larger percentage of hyaline tests had a perforate radial microstructure and that most of those with perforate granular structure were dominantly members of a few families. In the dozen years since then an increasing number of descriptions have included such optical characteristics as part of the diagnoses. Additional studies (both published and previously unpublished observations herein included) have resolved many of the seeming anomalous situations noted by WOOD.

Wood examined intact small specimens (e.g., *Lagena*) which between crossed nicols showed a black cross with concentric rings of color, “closely mimicking a typical (negative) uniaxial interference figure . . . the test is built of crystals of calcite with their c-axes normal to the spherical surface.” Each spine of *Globigerina* is a single crystal of calcite and because of its elongation along the c-axis of the crystal, extinction in polarized light is absolutely straight. The hyaline appearance thus is due to the radial wall structure, but radially built tests are only hyaline in appearance when thin-walled and finely perforate. The hyaline appearance is less noticeable in forms with a considerably thickened test or with coarser pores (which bend the light rays, reflecting and refracting the light). Larger or thicker specimens must be crushed or thin-sectioned in order to obtain required information. In the systematic part of the present work, generic descriptions state that the test is granular or radial only if the type-species has been examined to determine this character. We have checked this by the method of crushing specimens, believing it to be the most reliable. Although placement in one or another family or superfamily should so indicate, it has been impossible to obtain specimens for examination of all type-species and because superficially similar species may actually not be congeneric, the use of some other species is inconclusive for placement of a genus.

KRASHENINNIKOV (1960, *1052) divided radial microstructure into coarsely radial, finely radial, and indistinctly radial types, noting that some modification of the structure might occur in the ornamentation and that the inner part of the wall best shows the permanent or characteristic microstructure.

Hyaline foraminiferal species, unlike microgranular-fibrous or porcelaneous ones, do not include agglutinated matter in the wall except for particles accidentally intruded during chamber formation. The species described as *Globulina arenacea* Brotzen (1948, *241) and reported by Bignot & Neumann (1962, *138) as possessing a hyaline test with superficial agglutinated layer, does not belong to this genus, but should be referred to *Nouria, Uvigerinammina*, or some similar form. As noted below, not only are hyaline radial walls commonly composed of calcite crystals, as stated by Wood, but aragonite-walled genera also have such a radial microstructure, some having an almost porcelaneous appearance because of their thicker walls (e.g., *Epistomina*). In some perforate, radial-walled genera portions of the wall may be imperforate (septa, supplementary deposits) but the microstructure is radial, nevertheless.

Hyaline Calcareous Test with Monocrystalline Walls. The Spirillinidae tend to have tests composed of a single crystal of calcite, or more rarely consisting of several large crystals with irregular boundaries.
They are not of radial hyaline appearance. The pores pass through the single crystal, not between crystals as in the hyaline radial forms, hence are angular in outline and irregularly distributed.

Hyaline Calcareous Tests with Perforate Granular Walls. As originally noted by Sorby (1879, *1813) not all foraminiferal tests show a characteristic black cross in polarized light, but instead, some have a granular appearance. Wood (1949, *2073) stated, “Seen between crossed nicols such forms show a multitude of tiny flecks of colour.” Their minutely granular nature is visible in thin section, the granules being equidimensional and sutured together. A faint speckled appearance of the surface is noted in polarized light, owing to different grain orientations and resultant differences of refractive index. Some granular forms may even appear granular in reflected light, whereas others are so thin-walled as to appear hyaline; accordingly, the only reliable method of determining wall structure is by crushing or sectioning a specimen and viewing it with polarized light.

Ehrenbergina hystrix Brady was stated by Wood (1949, *2073) to have a radically built wall, whereas E. hystrix glabra Heron-Allen & Earland was described as having granular microstructure. This has been cited commonly as proof of the unreliability of this wall character for taxonomy. Interestingly, E. hystrix was stated by Hoffker (1951, *928c) to be biserial throughout and to have apertural furrows and a complete tooth plate similar to that of Buliminella; hence, relationship to that genus was postulated. Other species of Ehrenbergina (e.g., E. pacifica) do not have such apertural furrows and were said to have a triserial base of two whorls before the biseriality developed and to have a tooth plate similar to Cassidella (=?Fursenkoina). The apertural appearance of E. hystrix glabra as originally illustrated also appears much closer to the Caucasinidae and Cassidulinidae—in fact Heron-Allen & Earland themselves (1932, *916, p. 360) stated that they regarded it as “merely spinose variations of the dominant local species E. pupa . . . and that it would have been more correctly placed as var. spinosa of E. pupa, than as var. glabra of E. hystrix.” According to Wood (1949, *2073), the wall of E. pupa is granular in structure. Apparently here also species of two distinct genera were erroneously associated and incorrect relationships postulated because of their nomenclatural association.

Spicular Tests. Carterina, the only known representative of this wall type, has a test composed of numerous elongate fusiform spicules each consisting of a single crystal of calcite, with its c-axis parallel to the length of the spicule.

Mineralogical Composition of Calcareous Walls. As previously noted, hyaline calcareous foraminifers may have a perforate radial, perforate granular, monocristalline or spicular microstructure. They may also be divided into two main groups on the basis of their mineralogical nature, that is, composed of calcite (hexagonal crystal form of \(\text{CaCO}_3 \)) or aragonite (orthorhombic form). In early studies porcelaneous forms were thought to be aragonitic, but later this was disproved.

Investigations of tests of Globigerina and Amphistegina by Bütschli (1908, *256) have indicated that they consist of calcite. Clarke & Wheeler (1922, *346) tested Polytrema with cobalt nitrate (Meigen’s reaction) and Schmidt (1924, *1673) examined Lagena and Globigerina, this work showing that all have calcitic shells.

Mayer (1932, *1238) X-rayed various porcelaneous species as well as the hyaline “Globigerina cretacea,” G. marginata (=Globotruncana), Nummulites laevigatus, Operculina ammonoides, and Fusulinia sp., proving that all have walls composed of calcite.

Nevertheless, Bandy (1954, *73) determined that a few genera were aragonitic, using Meigen’s reaction. These included Hoeglundina, Ceratobulimina, Pseudobulimina, Lamarckina and Colomia, as well as Bigenerina irregularis from the Gulf of Mexico. Of approximately 2,000 species contained in the 35 samples treated, only 11 were found to have aragonite tests (4, Cretaceous; 4, Eocene; 3, Recent). A few Miocene specimens of Hoeglundina did not give a good reaction. The Colomia was also checked by X-ray analysis. Bandy concluded that “(1) aragonite is quite stable in the shells of mollusks, (2) the cementing mate-
rial in some arenaceous Foraminifera may prove to be aragonite, and (3) there is no very close relationship between the genera represented by the aragonitic species in the study."

TROELSEN (1955, *1952) believed that a systematic value of test composition was indicated, because (excepting Colomia and Bigenerina) the foraminifers examined by BANDY and found to be aragonitic all belong to the Ceratobuliminidae and Robertiniidae. TROELSEN made additional tests for aragonite, also by Meigen's reaction, using samples from Lower Cretaceous, Paleocene, lower Eocene, middle Oligocene, lower Miocene, upper Pliocene, Pleistocene, and Recent deposits. Ten samples and additional isolated specimens included some 28 species found to be aragonitic, all belonging to these two families. Genera identified by TROELSEN as aragonitic include Lamarckina, Ceratobulimina (Ceratobulimina), C. (Ceratocancris), Cerobertina, Epistomina, Epistominoides, Robertina, Robertinoidea, Geminospira, Alliata, and Cushmanella. Specimens of Alabama, Osangularia, Pulsiphonina, Eponidella, Asterigerina, and Asterigerinata, all of which had been referred to the Ceratobuliminidae but previously stated by TROELSEN to be unrelated to this family on the basis of internal structure, when examined by Meigen's reaction, were found to have calcitic tests, thus upholding earlier morphologic separation.

BRAY (1944, *204) regarded Meigen's reaction as less reliable than X-ray analysis, stating that calcite of small particle size might give an aragonite reaction. In addition, small amounts of magnesium at times gave an erroneous aragonite reaction, both with Meigen's reaction (cobalt nitrate test) and by means of Feigl's reagent (manganese sulfate solution containing silver sulfate). BRAY cited other methods for testing calcite and aragonite, such as specific gravity (2.72 for calcite, 2.93 for aragonite), solubility in H₂CO₃, and optical methods (calcite being optically uniaxial, aragonite biaxial), but regarded results obtained from these as unreliable. The chemical methods are particularly unreliable if the material has a slightly chalky consistency. Possibly these reasons explain the aragonite reaction of Bigenerina noted by BANDY, using the cobalt nitrate method. Erroneous results may have been due to small particle size of the cement or agglutinated grains, or the agglutinated particles might have been aragonitic. No sufficient proof seems to indicate that the cement itself is aragonitic and an X-ray determination would be of interest in this connection.

A discussion of the X-ray powder diffraction method has been given by SWITZER & BOUCOT (1955, *1859), with data on a number of genera tested by them. They noted that all porcelaneous forms examined were calcitic, as had been observed earlier, that most hyaline forms also were calcitic, and that aragonitic ones included only those previously noted by BANDY & TROELSEN (Colomia, Hoeglundina, Ceratobulimina). A Recent Textularia was found to contain both calcite and aragonite, and a few calcitic forms were found to be replaced or filled with heulandite.

TODD & BLACKMON (1956, *1939) substantiated TROELSEN's statement as to the generic significance of mineralogical composition, concluding that aragonitic genera are related at the family level. A description was given of their method. In a few instances the X-ray analysis of an unbroken specimen indicated the presence of minor amounts of aragonite with the calcite. After specimens were dissected and detrital material removed from the interior, diffraction patterns were taken of the cleaned test fragments. Each such fragment was found to consist of only one of the minerals.

Although secretion of calcite and aragonite may be variable in some higher organisms, or both may be secreted in different shell layers in some forms, this does not apply to the foraminifers. Specimens of an aragonitic genus are invariably aragonitic, regardless of ecologic or geologic occurrence, those tested by TODD & BLACKMON ranging in depth from 27 to 494 fathoms and in latitude from the tropics to the Arctic.

In 1879 SORBY (*1813) stated, "Rose long ago suggested that the presence of well-preserved shells of some genera along with mere casts of other genera might be attributed to the fact that those which are preserved were calcite and those removed were..."
aragonite.” Sorby also noted that living *Mytilus edulis* has a shell wall with an outer calcitic layer and an inner aragonitic layer. In raised beaches the shells of this species showed the outer calcitic layer well preserved, whereas the inner layer (aragonite) had been completely removed. He added, "If this is the case in different layers of the same shell, why should it not happen in different shells which are composed entirely of the one or of the other mineral?"

We have examined many specimens of foraminifers of many ages and from many localities, without ever having seen a specimen of a normally aragonitic genus that was converted to calcite; included are fossils as old as Early Jurassic (*Reinholdella*). From strata of any age, specimens referable on a purely morphologic basis to the Epistomininae, Ceratobulimininae, and Robertinidae have always been found to be aragonitic if any shell material is preserved. Under conditions unfavorable for preservation of aragonite, the wall is dissolved or otherwise destroyed, so that only a steinkern remains (e.g., *Epistomina*), although normally calcitic genera are preserved as complete tests. Possibly size or shell structure may have an effect in accentuating this factor in preservation of foraminifers.

Chemical Composition of Calcareous Walls. Very few detailed analyses have been made of the tests of foraminifers. A few were given by Brady (1884, *200*) and Clarke & Wheeler (1922, *346*); these have been summarized in tabular form by Vinogradov (1953, *346*). Table 1. At that time only 17 analyses of calcareous foraminifers, including both hyaline and porcelaneous species had been published. Benthonic species were shown to have up to 12.52 per cent of MgCO₃, but planktonic species had less. He also noted that early stages of *Sphaeroidinella dehiscens* and *Globorotalia menardii* were low in MgCO₃, as in *Globigerina*. Chave’s (*328*) examina-

Table 1. Composition of Tests of Calcareous Foraminiferida

<table>
<thead>
<tr>
<th>Species</th>
<th>CaCO₃</th>
<th>MgCO₃</th>
<th>Fe₂O₃</th>
<th>SiO₂</th>
<th>Family</th>
<th>Locality</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globigerina bulloides</td>
<td>93.14</td>
<td>0.57</td>
<td>1.72</td>
<td>1.57</td>
<td>Globigerinida</td>
<td></td>
<td>*200</td>
</tr>
<tr>
<td>G. bulloides</td>
<td>91.32</td>
<td>0.30</td>
<td>2.72</td>
<td>1.83</td>
<td>Globigerinida</td>
<td></td>
<td>*200</td>
</tr>
<tr>
<td>G. bulloides</td>
<td>92.54</td>
<td>0.87</td>
<td>1.25</td>
<td>1.36</td>
<td>Globigerinida</td>
<td></td>
<td>*200</td>
</tr>
<tr>
<td>Pulvinulina menardii</td>
<td>77.02</td>
<td>3.67</td>
<td>3.98</td>
<td>(15.33)</td>
<td>Globorotaliida</td>
<td>40°34′N, 66°09′W</td>
<td>*346</td>
</tr>
<tr>
<td>Operculina complanata</td>
<td>93.60</td>
<td>4.8</td>
<td>0.1</td>
<td>0.9</td>
<td>Nummulitida</td>
<td></td>
<td>*200</td>
</tr>
<tr>
<td>Sphaeriodinella dehiscens</td>
<td>84.38</td>
<td>1.79</td>
<td>4.94</td>
<td>8.89</td>
<td>Globigerinida</td>
<td>Philippine Is.</td>
<td>*346</td>
</tr>
<tr>
<td>Amphistegina lessonii</td>
<td>92.85</td>
<td>4.9</td>
<td>trace</td>
<td>0.3</td>
<td>Amphisteginida</td>
<td>Cape Verde Is.</td>
<td>*200</td>
</tr>
<tr>
<td>Orbitolites complanata laciniata</td>
<td>86.46</td>
<td>12.52</td>
<td>0.68</td>
<td>0.58</td>
<td>Soritidae</td>
<td>Fiji, Pacific</td>
<td>*200</td>
</tr>
<tr>
<td>O. complanata laciniata</td>
<td>88.2</td>
<td>8.8</td>
<td></td>
<td>0.3</td>
<td>Soritidae</td>
<td>Fiji, Pacific</td>
<td>*200</td>
</tr>
<tr>
<td>O. complanata laciniata</td>
<td>88.74</td>
<td>9.55</td>
<td></td>
<td>0.14</td>
<td>Soritidae</td>
<td>Fiji, Pacific</td>
<td>*200</td>
</tr>
<tr>
<td>O. complanata laciniata</td>
<td>87.91</td>
<td>10.50</td>
<td></td>
<td>0.11</td>
<td>Soritidae</td>
<td>Fiji, Pacific</td>
<td>*200</td>
</tr>
<tr>
<td>O. marginatis</td>
<td>89.01</td>
<td>10.55</td>
<td>0.13</td>
<td>0.31</td>
<td>Soritidae</td>
<td>Tortugas, Fla.</td>
<td>*346</td>
</tr>
<tr>
<td>Orbiculina adunca</td>
<td>89.76</td>
<td>10.04</td>
<td>0.09</td>
<td>0.11</td>
<td>Soritidae</td>
<td>Key West, Fla.</td>
<td>*346</td>
</tr>
<tr>
<td>Quinqueloculina auberiana</td>
<td>90.11</td>
<td>9.33</td>
<td>0.56</td>
<td></td>
<td>Miliolidae</td>
<td>Tortugas, Fla.</td>
<td>*346</td>
</tr>
<tr>
<td>Polymerina mineaccum</td>
<td>88.76</td>
<td>11.22</td>
<td>0.02</td>
<td></td>
<td>Miliolidae</td>
<td></td>
<td>*346</td>
</tr>
<tr>
<td>Biloculina sp.</td>
<td>92.05</td>
<td></td>
<td></td>
<td></td>
<td>Miliolidae</td>
<td></td>
<td>*200</td>
</tr>
</tbody>
</table>

1. Given as percentages of ash.
2. Currently recognized specific names given in square brackets.
3. Index numbers refer to authors in "References" (p. 797).
4. Combined Fe₂O₃ and SiO₂.
Table 2. Grouped Percentages of Elements in Tests of Calcareous Foraminiferida

<table>
<thead>
<tr>
<th></th>
<th>>10</th>
<th>10-1</th>
<th>1-0.1</th>
<th>0.1-0.01</th>
<th>0.01-0.001</th>
<th><0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphistegina radiata (Red Sea)</td>
<td>Ca</td>
<td>Si, Mg, Na, Sr</td>
<td>Al</td>
<td>Mn, Fe</td>
<td>Ti, Pb, Sn, Cr, V, Cu, Ag, Ba, B</td>
<td></td>
</tr>
<tr>
<td>Amphistegina radiata (Bikini)</td>
<td>Ca</td>
<td>Mg, Sr</td>
<td>Si, Na</td>
<td>Al, Fe</td>
<td>Mn, Ti, Cr, V, Cu, Ba, B</td>
<td>Pb, Ag</td>
</tr>
<tr>
<td>Calcarina defrancii (Bikini)</td>
<td>Ca</td>
<td>Mg, Na, Sr</td>
<td>Si</td>
<td>Al</td>
<td>Mn, Ti, V, Cu, Ba, Fe, B</td>
<td>Pb, Ag, Cr</td>
</tr>
<tr>
<td>Amphisorus hemprichii (Red Sea)</td>
<td>Ca</td>
<td>Si, Mg, Sr, Na</td>
<td>Al</td>
<td>Mn, Ti, Cr, V, Cu, Fe, Ba, B</td>
<td>Pb, Ag</td>
<td></td>
</tr>
</tbody>
</table>

Spectrographic and X-ray analyses of 11 species of planktonic foraminifers have been made by EMILIANI (1955, *704), who found the shell material to be nearly pure calcite, with about 0.11 per cent of strontium substituted for calcium in the calcite structure. Small amounts of several elements were present, but most of these apparently were contaminants, only the silica and manganese being regarded as possibly associated with the shell material. Manganese incrustations were observed on the surface of some tests; hence this may also be a contaminant even when no incrustations are visible. Trace elements were examined in planktonic foraminifers by KRINSLEY (1960, *1056). Of seven elements studied (Mn, Ti, Al, Mg, Sr, Cu, Ni) manganese concentration seemed to be related to locality and possibly to age rather than to species; the amount of magnesium observed was complicated by sedimentary magnesium that could not be successfully removed from the sample; the aluminum and titanium were also regarded as contaminants; the copper appeared constant with respect to geographic location, but not to species; and the strontium appeared to be biogenic and relatively stable from one sample to another.

Walls of Lamellar Character. Foraminiferal tests of agglutinated, microgranular, and porcelainous microstructure commonly are nonlamellar, each chamber being added separately, commonly without noticeable overlap of earlier formed chambers by later ones. In contrast, hyaline calcareous forms are lamellar, for with each new chamber added a layer (lamella) is added over the exterior of the entire previously formed test.
so that the early chambers have much thicker walls than late ones, with the distinct layers visible in section. This has been recognized by workers for more than a century. Recently the lamellar character has been restudied and three distinct types were noted. SMOUT (1955, *1804) observed that the Rotaliidae have a lamellar test, lamellae being added also against the face of the previously formed chamber but enclosing a space between the septal layers which functions as a canal system. He separated from the superfamily Rotaliidea (=Rotaliacea) the forms with single-layered septa, which he placed in the superfamily Discorbidea (=Discorbacea). REISS (1958, *1530) substantiated this division but added a third (bilamellid) type of wall, with primarily doubled septa. REISS regarded the lamellar characters as more reliable than wall microstructure (hyaline perforate, radial, granular) or than apertural features (utilized in suprageneric classification by HOFKER, 1951, *928c). Both microstructure and lamellar characters are cited in the classification here used. Unfortunately, not all genera have been checked to date as to lamellar characters or microstructure, and the placement of some may need to be changed when additional information is available. All genera for which this is known have statements to that effect in the generic descriptions. Lamellar nature is best demonstrated in thin sections of tests with perforate radial wall structure, those with granular walls showing less distinct parting lines between successive lamellae. In any form recrystallization in preservation may obliterate visible layering.

The simplest type of septa and test wall in multilocular foraminifers was defined by CARPENTER, PARKER & JONES (1862, *281) as having the septum “that divides each chamber from its successor being formed solely by the anterior wall of the older, which serves as the posterior wall of the newer.” In agglutinated species and most microgranular and porcelaneous calcareous genera the new chamber attaches to the previous one, but little overlap or layering occurs (Fig. 54). In some porcelaneous forms (e.g., Planispirinella) an involute coil may result in the appearance of layering in axial sections, but equatorial sections show the test to be nonlamellar.

In hyaline calcareous species, a layer of shell material is added over all exposed parts of the test at the time each new chamber is added, earlier parts of the test thus developing a secondarily thickened wall (supplementary skeleton or secondary deposits). The septa remain unthickened (Fig. 55,1). This monolamellar wall is characteristic of the Nodosariacea, Buliminacea, and Robertinacea of present classification, and is also found in simpler families of the Cassidulinae (e.g., Nonionidae, Caucasinidae, Pleurostomellidae).

Calcareous foraminifers having a rotaliid type of lamellar wall structure are distinguished by the presence of doubled septa. In addition to the new chamber and layer of shell material deposited over the test exterior, a septal flap is formed against the previous apertural face, resulting in a double septum. The new apertural face is monolamellar, the earlier septa being secondarily doubled; a cavity remains between the two septal layers forming part of a canal system. This canal system and the secondarily doubled septa were first utilized taxonomically by CARPENTER, PARKER & JONES (1862, *281), as a basis for generic separation of the larger discoidal foraminifers. More recently SMOUT (1955, *1804) separated the superfamilies Discorbidea and Rotaliidea on the basis of distinction between monolamellar and rotaliid septa with enclosed canal system (Fig. 55,2).

In foraminifers with bilamellar structure, the wall of each new chamber is double, with an outer layer covering the new cham-
Protista—Sarcodina

Fig. 55. Diagrammatic sections of lamellar tests.—1a, 2a, 3a. Equatorial sections showing lamellar development.—1b, 2b, 3b. Final three chambers showing their lamellar character (last added chamber and lamella indicated by stippled pattern) (*2117).

TEST, CHAMBER FORM AND ARRANGEMENT

Chamber form and arrangement and resultant test form are extremely varied in the Foraminiferida. Chamber form may be globular or spherical, ovate, pyriform, tubular, cyclical, hemispherical, clavate, radial, elongate, tubulospinate, angular (conical, rhomboid, truncate) or fistulose (Fig. 56).

Chamber arrangement may be rectilinear, arcuate, zigzag, planispiral (evolute, involute), peneropline, low or high trochospiral, biconvex, plano-convex, with elevated spiral side (spiroconvex) or elevated umbilical side (umbilicoconvex), streptospiral, milloine, uniserial, biserial, triserial, quadriserial, or multiserial. Biformed or triformed tests may result from various combinations of these (Fig. 57).

According to form of the chamber itself unilocular tests may be irregular in outline,
tubular, globular, hemispherical, conical, enrolled, dendritic, arborescent, stellate, radiate, or bifurcating (Fig. 58). Multilocular tests may have any of the above forms, or be flabelliform, lanceolate or palmate, lenticular, umbilicate, umbonate, discoidal or

Fig. 56, 1-16. Shapes of chambers in foraminiferal tests (*2117).
fusiform (Fig. 59). Chamber form and arrangement are not always visible externally, although a knowledge of this is required in any detailed study of foraminifers. When not externally visible, the chamber arrangement may be determined in various in-

Fig. 57, 1-14. Arrangement of chambers in foraminifer tests (*2117).
Foraminiferida—Morphology and Biology

DIMORPHISM

The alternation of sexual and asexual generations in the life cycle of foraminifers has been discussed above in treating the life history. The resultant dimorphism may be of various kinds. Morphologic dimorphism of the test is most commonly indicated by the term dimorphism, referring to megaspheric and microspheric tests. Such dimorphism was known before its cause was determined.

A nuclear dimorphism occurs in foraminifers also, the microspheric form commonly being plurinucleate and the megaspheric one uninucleate.

Evolutive dimorphism consists of the alternation of a microspheric schizont, which by asexual division results in megaspheric embryos that develop into the adult gamont. The megaspheric gamont has sexual reproduction, production of gametes and fertilization resulting in a new microspheric generation.

The three forms of dimorphism are not entirely compatible in all foraminifers,
morphologic dimorphism being true only in multilocular forms with flagellate gametes and nonplastogamic reproduction. As shown in the life history of *Patellina*, the megalospheric and microspheric tests (as indicated by size of proloculus) are not indicative of the gamont and schizont generations, as they were in *Elphidium*. Even

Fig. 59, 1-12. Shapes of foraminiferal tests (*2117).*
nuclear dimorphism is not constant, since some species have uninucleate schizonts during their entire vegetative life.

In addition to two characteristic generations it was observed that megalospheric tests may occur with differing proloculus sizes. This was thought to represent a sexual differentiation (male and female) in the gamont generation. It was determined later that in certain species, some "megalospheric" forms may be plurinucleate and reproduce asexually as schizonts, whereas other megalospheric specimens were uninucleate and reproduced sexually. This was

Fig. 60, 1-6. Structure of foraminiferal tests indicated by microradiographs, enlarged (*888).
then thought to represent three distinct generations in the life cycle and was described by Hofker (1925, *926) as trimorphism. It was assumed to be obligatory in all species, the two megalospheric forms being referred to as the A₁ and A₂ generations and the microspheric as the B generation. Hofker (1930, *928, p. 104) stated, "No student in living or fossil Foraminifera must be content, when describing Foraminifera, if he describes not at least three forms of a single species." With additional information available from culturing, it has been shown that these three generations do not occur regularly and are never present in some species. In others sexual reproduction may even be lost entirely, resulting in an apogamic cycle. Simple dimorphism may be difficult to recognize among fossils, for gamogony in some genera results in destruction of the parent test; hence, the microspheric generation is much rarer in dead populations or fossil assemblages than in living populations. Measurements of proloculus size (Le Calvez, 1938, *1106) in very numerous juvenile specimens produced asexually from the same parent test showed that young sister gamonts of Planorbula mediterranensis exhibited proloculus variation of 31 to 54 μ, and the proloculi of the parent schizonts varied from 27 to 44 μ. Adult gamonts producing gametes showed a proloculus size range of 28 to 48 μ. Thus, no trimorphism is indicated and even the microspheric and megalospheric generations cannot be determined solely by size of proloculus in this species. Le Calvez concluded that the size of the proloculus and the size of the embryonic form is defined at schizogony and depends exclusively on the ratio of volume of maternal protoplasm to number of daughter nuclei. The size of later chambers formed in free life depends on constant genetic factors of the individual species and two variables—surface tension of the protoplasm and that of the surrounding medium (water). Examination of numbers of individuals at different times in the year suggest that seasonal modifications (temperature, salinity, density) had relatively little effect on chamber form.

The variations known to occur in the life cycle of a living species complicates the problem of systematics. Whereas statistical analysis of certain measurements in some invertebrates can determine the validity of species, the information available to date shows that so great variability occurs in foraminifers that Hofker (1930, *928b), was led to state, "A specific name may never be based upon . . . differences in the shape and measures of the chambers."

An interesting feature of microspheric forms (with smaller proloculus) is their more varied test morphology. A species with wholly biserial megalospheric form may be represented by a microspheric form with basal planispiral coil, or early triserial or trochospiral development. Relationships to other genera in the same family are commonly indicated by the earliest-formed chambers of the microspheric test. This has been regarded as a recapitulation of ancestral characters by some specialists, but by others thought to indicate the direction of evolution and to suggest the adult characters of the descendants to come. Morphologic information and the geologic record must both be utilized in order to determine which is correct.

In contrast to the suggestion that varying forms were the result of a trimorphic cycle, Le Calvez concluded that in foraminifers of regular growth, the volume of any chamber is proportional to the quantity of protoplasm occupying pre-existing chambers, whatever the number of chambers and the form considered. In megalospheric Pyrgo the proloculus has a diameter of 400 μ. For this quantity of protoplasm a microspheric test would have 12 chambers and show an early quinqueloculine coiling followed by a triloculine stage. The second chamber of megalospheric Pyrgo would bypass these stages and have the same form and position as the thirteenth chamber of the microspheric test. A megalospheric specimen with proloculus diameter of 150 μ (similar in volume to a microspheric test of eight chambers) would have a triloculine arrangement of the first three chambers and then a biloculine development. Le Calvez did not consider the microspheric stages as a recapitulation of their geologic history but merely a specific character and regarded it as the more stable form having a maximum number of morphological characters. Thus (*1106, p. 315) a megalospheric form of
any size, when commencing free life and growth, will organize its consecutive chambers in approximately the way that would follow in the microspheric test with initial portion of the same plasmic volume. He restricted the term trimorphism to indicate

Fig. 61, 1-14. Location and form of primary apertures in foraminiferal tests (*2117).
only test morphology where it was occasionally recognizable, saying that this was not intended to indicate any biologic conclusions.

TEST OPENINGS

A foraminiferal test may have various intercameral openings as well as openings to the exterior. These include primary, secondary, or accessory apertures and their modifications, canal openings and stolons, and tiny perforations in the wall.

Apertural Form, Position, and Modifications. Apertural openings include the primary aperture or main opening or openings in unilocular tests or in the final chamber of multilocular tests, as well as various secondary or accessory apertures which may be present. The aperture may consist of a single opening or of many openings which differ in shape and position. The aperture may be single or multiple, and rounded, slitlike, arcuate, radiate, loop-shaped, cruciform, dendritic, or cribrate. The apertural position may be at the open end of the chamber, terminal, subterminal, interiomarginal (basal), areal, equatorial, peripheral, umbilical, extralaminal-umbilical or spirulumbilical (Fig. 61).

The additional openings which are formed by folding of the attached portion of the tooth plate in some genera (e.g., especially Robertinoides, Pseudobulmina), and which are always connected with canals in the tooth plate were termed supplementary foraminas by Hofker. These and other supplementary openings may be areal, peripheral, sutural (single or multiple), may be relict apertures, or may be connected with internal partitions or canal systems. Accessory apertures are those which do not open directly into the chamber cavity but into cavities formed by various modifications of the aperture, such as bullae or tegilla. They may be intralaminal or intralaminal in position (Fig. 62).

Apertural external modifications include presence of an apertural lip, flange, bulla, tegilla, phialine lip, an apertural tooth, simple, bifid or complex, apertural flap, or valvular tooth and umbilical teeth (Fig. 63). Internal modifications consist of entosolenian tube, hemicyclindrical siphon, tooth plates, and secondary partitions.

Many hyaline foraminifers have internal partitions or tooth plates associated with the aperture. When these are present the aperture connected with the tooth plate was termed the protoforamen by Hofker (1951, *928c, *936). When two main openings are present, that not associated with the tooth plate was termed a deuteroforamen. Other (biforaminate) foraminifers were regarded as originally having had both a protoforamen and deuteroforamen, but if the protoforamen and tooth plate are reduced or lost, this leaves only the deuteroforamen. Although such features undoubtedly have occurred in some forms, it is not possible to be certain in every instance whether a protoforamen or deuteroforamen is present; hence these terms, which express theoretical concepts, are not here used in the morphologic descriptions, since to do so would require acceptance of supposed relationships that are doubtful or even strongly controversial. A solely morphological terminology is therefore preferable. Some relationships originally postulated by Hofker on the basis of tooth plates, protoforamen, and deuteroforamen have later been upheld by study of life cycles, cytology, test mineralogy, and microstructure; hence this feature is certainly of major importance, though function of the tooth plate in the living animal is not yet known. Problematical also is the question as to whether all so-called “tooth plate foraminifera” are closely related, as postulated by Hofker. If related to a physiologic function of the animal, a tooth plate may have developed at more than one time, just as similar test form, chamber arrangement, or apertural character may appear in agglutinated, porcelaneous, or hyaline lineages. In the Treatise classification, apertural “tooth plate” development is regarded as an advanced apertural feature which developed independently in various lines. Thus, the entosolenian tube in the Glandulinidae, the internal siphon in the Pleurostomellidae, and the tooth plates of the Buliminidae, Bolivinitidae, and Cauca­sinidae, or the internal partitions of the Ceratobuliminidae and Robertinidae are here regarded as convergent rather than divergent features. Each of these groups may be more closely related to other types that lack tooth plates than to families that possess them (Fig. 64).
Canal System and Stolons. Canal systems found in the Rotaliacea and Orbitoidacea are complexes of essentially tubular cavities within the shell material, commonly occurring between the two layers of the septal wall (intraseptal canals). Fissures are homologous with canals. Canals may be described according to their position (e.g.,

Fig. 62. Type of supplementary apertures (1-6) and accessory apertures (7-11) in foraminiferal tests (2117).
intraseptal, marginal, lateral, or umbilical) and they may vary a great deal in complexity and ramification. They are presumed to result from protoplasmic currents which cause open spaces to remain when shell laminae are formed (Fig. 65). Stolons may

Fig. 63, 1-14. Modifications of apertures in foraminiferal tests (*2117).
result from simple radial canals that become intercameral connections.

Perforations and Pore Plates. Perforations occur in the walls of most hyaline foraminifers and in some agglutinated forms, serving for the passage of pseudopodia. The size, arrangement, and placement of the pores seem to be an important systematic characteristic, as is the area of the test that is perforate or imperforate—for example, only the lower portion of the chambers of certain Buliminidae and Bolivinidae is perforate, the apertural area and apertural face is nonperforate in many genera, and the tooth plates always lack pores. Hofker (1951, *934, p. 38) stated that “within a particular species they are of constant size and distribution over the wall, so that many closely related species . . . can be distinguished very easily by means of the size of their pores.” He has described the pore size or pore-index of many species. The geologically older species are commonly more finely perforate, the younger ones having coarser pores. The same may be found in an individual ontogeny, early chambers being finely perforate and later ones more coarsely perforate. The primitive simple pores were termed protopores by Hofker (1951, *928c). Besides protopores, secondary test thickening in lamellar foraminifers may enclose a number of protopores, so that many pores open in the interior of the test but converge in the walls to fewer larger pores at the outer surface (deuteropores). All deuteropores have a diameter greater than 2µ and are commonly irregular in shape. They may be restricted to only one side of the test or may be interspersed among the protopores. Considerable variation may occur in size and shape of pores in an individual specimen, but the pore pattern is characteristic of the species.

Dark discs within pores at the level of each successively formed lamina were noted by Le Calvez (1947, *1108) and similar discs were described by Jahn (1953, *981) as sieve plates and by Arnold (1954, *42), as pore plugs which have a diameter of 2 to 6µ and thickness of 0.5 to 3µ. They may serve a filtering purpose for the pseudopodia (*43). The sieve plates may be seen in decalcified specimens and are particularly well shown in electron micrographs (Fig. 66).

Ornamentation. In hyaline foraminifers ornamentation may consist of pillars, ribs, ridges, cancellations, keels, flanges, spines, nodes, etc., largely consisting of thickened, imperforate shell matter of various forms, or modifications of the apertures or wall perforations (Fig. 67).

Pillars were considered by Smout (1954, *1803) to be formed in different ways, most
Fig. 65. Canal systems and stolons in foraminifers.—1. Portion of axial section of Nummulites laevigatus showing marginal cord (m) and spiral canal (c), enlarged (*928a).—2. Equatorial section of decalcified Calcarina spengleri, canal system shown dark, located in region of spines, X95 (*928a).—3. Canal system of Nummulites complanatus, diagrammatic (*928a).—4. Decalcified section of Lepidocyclina favosa showing diagonal and annular stolons, enlarged (*1998).
other types of ornamentation being ascribable to one or another of these modes of origin (Reiss, 1958, *1530). (1) Inflational. Pillars formed by local thickening of imperforate shell material along lines radiating from the center or axis of the test, each lamina adding to the thickening; most papillae, spines, striae, costae, ribs, and keels are similarly formed (Fig. 68,1). (2) Textural. Some pillars and keels or carinal bands may be differentiated only by a distinctive appearance of the shell material, such as lack of perforation or tubulation; some ornamentation may be formed by combinations of inflational and textural types (Fig. 68, 2). (3) Incised. Fissures may isolate some portions of shell material at the surface and intercept a number of laminae. Incised pillars may appear externally as granules, less rounded in form than inflational pustules, and incised inflational pillars may be distinguished (Fig. 68,3).

Coiling Ratios. In 1938 Cosijn (*388) made a series of statistical studies on foraminifers, one of which was based on the observation that trochospirally coiled shells
may vary in direction of coiling (dextral, sinistral). Specimens of *Globorotalia menardii* were studied from five well samples and one Recent dredging from the Kei Islands, Netherlands East Indies, with results summarized in Table 3.

Fig. 67, 1-13. Ornamentation of foraminiferal tests (*2117*).
Foraminiferida—Morphology and Biology

Dominantly sinistral coiling was observed, except in specimens from a depth of approximately 200 m., where dominantly dextral coiling was observed.

Gandolfi (1942, *768) noted that geologically older tests of *Rotalipora appennina* exhibited random coiling (approximately equal numbers of dextral and sinistral), whereas geologically younger ones were dominantly dextral.

Bolli (1950, *157), who studied coiling directions in various species of *Globorotalia* and *Globotruncana*, observed random coiling in geologically earliest representatives of a species, whereas later ones developed a preference for either dominantly right or left coiling. He observed that species of *Globotruncana* and *Rugoglobigerina* tended to be dextrally coiled, whereas species of *Globorotalia* tended toward sinistral coiling. He postulated that, in a limited region, coiling ratios might give an indication of relative stratigraphic position of isolated outcrops. Some species of the Globigerinidae developed sinistral coiling, but others became dextrally coiled (Figs. 69, 70).

Vasicek (1953, *1982) made similar studies of coiling ratios of foraminifer tests in the Tortonian of Moravia. He postulated that the coiling ratio might differ in different generations of a species. Because of seasonal or other factors affecting relative numbers of microspheric and megalospheric forms produced, regular fluctuations in coiling ratios might result. Coiling ratios were plotted from various well samples, the resultant oscillations being regarded as possibly due to local influx of materials from a different source. The coiling changes seem to be limited to megalospheric specimens and the changes are distributed both stratigraphically and geographically.

Table 3. Direction of Coiling in Foraminifer Tests

<table>
<thead>
<tr>
<th>Sample (depth in m.)</th>
<th>Sinistral (per cent)</th>
<th>Dextral (per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Recent (dredged)</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>201-209</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>211-215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401-404</td>
<td>98.5</td>
<td>1.5</td>
</tr>
<tr>
<td>604</td>
<td>97</td>
<td>3</td>
</tr>
<tr>
<td>1007</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>1627</td>
<td>89</td>
<td>11</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
Fig. 69. Percentages of sinistrally coiled *Globorotalia fohsi* in the Miocene of Trinidad, showing change from random to dominantly sinistral tests with lapse of geologic time (*164*).

Geographic variation in coiling ratios in Recent North Atlantic *Globorotalia truncatulinoides* has been demonstrated by Ericson, Wollin & Wollin (1954, *708*) (Fig. 71). According to evidence from submarine cores, the provinces indicated appear to have long been in existence, the southern right-coiling province for some 10,000 years. The central left-coiling province apparently came into existence in Recent time during the last 2,000 years. It was also noted that *G. truncatulinoides* was dominantly coiled sinistrally during the Pleistocene.

Although no explanation was given originally as to the cause of these provinces defined by dissimilar coiling of foraminiferal tests, Bandy (*75*) suggested that temperature controls were probably effective and that the Gulf Stream carried dextral populations northward along the eastern coast of North America.

Our comparison of the indicated loca-
tions of the provinces with distribution of cold and warm currents suggests that the right-coiling provinces reflect the presence of warm currents (e.g., Guinea Current, North Equatorial Current, Gulf Stream, the West Wind Drift and North Atlantic

Fig. 70. Percentage of sinistrally coiled globigerinid tests in Oligocene-Miocene deposits (*164).
Drift). The last two can thus be correlated with the two indentations of the right-coiling province in the central North Atlantic (Fig. 71).

The provinces indicated by left-coiled tests are placed in areas of cold currents (e.g., Canaries Current, Labrador Current). Cold Labrador waters apparently extend their influence across the Gulf Stream into the central Atlantic. The dominantly sinistral coiling during Pleistocene time agrees with this suggested hypothesis based on tests of *G. truncatulinoides*. Low temperatures are known to affect reproduction in various genera of foraminifers and this may be a factor in the effect of temperature on the distribution of test coiling.

Bandy (1960, *75) noted changes in coiling ratios of *Globigerina pachyderma* tests in Pliocene and Pleistocene deposits of southern California. In the Arctic and Antarctic area coiling in this species is dominantly (98 per cent) sinistral, whereas in temperate and tropical areas it is dominantly (up to 98 per cent) dextral. Modern populations off southern California, which have been dextral for about 11,000 years, as indicated by radiocarbon dating, were preceded by sinistral populations of the late Pleistocene. Pliocene strata have domi-
nantly dextral populations; hence, change in coiling ratios of foraminiferal tests may be used for placement of the Pleistocene-Recent boundary.

A similar use of coiling ratio fluctuations was made by NAGAPPA (1957, *1344) to determine the Laki-Ranikot boundary (Paleocene-Eocene) in Pakistan.

ECOLOGY AND PALEOECOLOGY

GENERAL DISCUSSION

Foraminiferida occur at present in nearly all marine and brackish-water environments, as well as more rarely in fresh water (Allogromiidae). They are abundant in present-day sediments, varying in abundance from about 1,000 to 2,500,000 living individuals to a square meter of the sea floor, averaging about 10,000 per sq. m. in the outer shelf of the Gulf of Mexico to 90,000 per sq.m. in the Mississippi delta region. Some species have a seasonal abundance, varying in accordance with their respective reproductive cycles. Others are present in about the same abundance and size range throughout the year (*1454).

Because of their wide geographic range and large numbers, as well as long geologic history, foraminifers afford an excellent source of paleoenvironmental data.

In general, broad latitudinal zones of temperature affect distribution of foraminifers and on open coastlines faunal zones also correspond roughly to depth, with some fluctuations due to unusual higher- or lower-than-normal salinity. In uniformly shallow or partially enclosed basins, such as probably were represented in geosynclinal deposits in the geologic past, presumably lessened variations of temperature and depth would reduce the importance of these factors, so that limiting controls could be, in varying proportions, character of the substratum, salinity, and availability of food and oxygen.

The oceanographic condition of the basin was considered primary in importance to foraminiferal distribution by SAD (1951, *1615). In the most common type, where the bottom waters are aerated by sinking of the surface waters, distribution of foraminifers was stated to be controlled by the amount of food and texture of the substratum. These factors may also account for the apparent depth zonation. In basins where the bottom water is stagnant and non-oxygenated, as in the Black Sea, the sediments are black and amount of oxygen is the limiting factor.

The occurrence of benthonic species is controlled to a great extent by physical factors of depth, temperature, amount of light, turbidity and turbulence of the water, character of the bottom sediments, chemical factors of water salinity and available elements, and biological factors of available food supply, symbiotic organisms, parasites, and predators. Planktonic foraminifers are influenced by the same chemical and biologic factors, but the important physical influences are temperature, currents, turbulence, and turbidity. Benthonic fossils thus aid in determining the paleoenvironmental factors of depth, temperature, salinity, bottom conditions, and to a lesser extent amount of light. An important use of faunal assemblages is in the recognition of ancient near-shore, lagoon or marsh deposits and determination of ancient shore lines.

Knowledge of the characteristic depths of various faunas also allows use of them to identify displaced faunas (displaced into deeper water), as in the San Diego Trough and Sigsbee Deep (*1453, *1961), or changes in sea level and resultant depth of water (*1961) and may aid in determining paleocurrents and water masses. The ratio of living specimens to total assemblage of benthonic foraminifers may suggest relative rates of deposition of sediment. Large populations of empty tests in unit amounts of sediment suggest slow sedimentation, whereas small populations indicate rapid deposition.

According to KRASCHENINNIKOV (1960, *1053) different faunal facies occur at the same depths, depending on rate of sedimentation and bottom characters. Thus, with mobile water and rapid sedimentation at shallow depths the Elphidiidae predominate, whereas with quiet water and slower sedimentation at the same depth porcelaneous forms are most abundant (e.g., Miliolidae, Peneroplidae), as well as at-
Attached forms (e.g., *Nubecularia*, *Planorbulina*). In clastic deposits (sandy clays) dominant families are the Textulariidae, Discorbidae, Rotaliidae, Elphidiidae, and Nonionidae. In shallow waters of algal facies, *Cibicides* is abundant, along with the Polymorphinidae, Cassidulinidae, Discorbidae, and Textulariidae. With increased depth, where algae are less abundant, the Cassidulinidae increase and representatives of the Buliminidae and Chilostomellidae appear. Genera of the latter two families occur also in still deeper water where algae are absent, as do the Nodosariidae and planktonic families. In reefy facies many attached foraminifers are found and others adapted to living in reef cavities occur. Studies of these facies in Miocene strata of a broad area on the Russian Platform have led to correlation of zones distinguished in deposits of different facies.

Planktonic species may be found in a great variety of lithofacies, as their occurrence is limited largely by temperature and character of the water masses and currents. They may indicate broad latitudinal temperature zones, allowing recognition of low-latitude, mid-latitude, and high-latitude assemblages. Mixed planktonic faunas were stated by Phleger (1960, *1454) to occur in areas where water masses converge or where part of the fauna or empty tests representing it were relict from a previous environment. Abundant planktonic faunas are characteristic of offshore oceanic water masses. Ratios of total benthonic to total planktonic population may be directly related to depth and distance from shore.

Fig. 72. Distribution of warm and cold waters in Sea of Okhotsk and Bering Sea, with inset figures indicating vertical interchange of warm-water (heavy stippled pattern) and cold-water (light stippled pattern) masses in the Okhotsk-Bering Sea areas (*A*) and Sea of Japan area (*B*) (P. V. Ushakov in *1431*).
This is modified by bottom topography, however, since numbers of benthonic foraminifers increase over submarine highs.

Modern ecologic studies have commonly recorded depth and temperature data, as well as information on salinity and currents to some extent. Less information is available as to sediments and nature of substrates. Almost nothing is known of the influence of biologic factors such as food supply, symbionts, and parasites. Actual controlling factors in distribution are not always certain, in part because of paucity of data from controlled laboratory experimentation as to the tolerance limits of foraminifers, except for salinity and temperature effects.

The complexity of the problem of foraminiferal distribution is well illustrated by recent detailed ecologic studies by SAIDova (1960, *1617; 1961, *1618) in the Okhotsk Sea (Table 4). In this area temperature variations reflect a mixing of warm and cold currents which is not correlative with depth (Fig. 72, 73). Twenty-one distinct foraminiferal assemblages were recognized, based on 650 surface samples and cores (Fig. 74). Each assemblage was characteristic of certain depth, temperature, and bottom sediment. Nine of the assemblages are characteristic of the shelf area, nine of the shelf slope, and three of the deeper central area.

Of the nine shelf-area assemblages, depths were all less than 250 feet, yet the assemblages varied greatly in species and specimens (the latter from 50 to more than 800 in 50 grams), and they varied also from approximately equal calcareous and arenaceous species to nearly 100 per cent calcareous species. On the average, finer bottom sediment (e.g., area of assemblage 8) had the poorest faunas and coarser sediment (e.g., area of assemblage 2) of the same depth and temperature had a much more abundant fauna.
TABLE 4. Foraminiferal assemblages of the Okhotsk Sea
[Compiled from SAIDOVA (*1617, *1618)]

<table>
<thead>
<tr>
<th>Depth in Meters</th>
<th>Bottom Character</th>
<th>Temperature °C</th>
<th>Salinity (%)</th>
<th>Number of Specimens in 50 gm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9. SHELF ASSEMBLAGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Shantar Island assemblage: Quinqueloculina seminullm, Q. arctica, Pseudopolymorphina atlantica, Elphidium orbiculare, E. clavatum, Elphidella arctica</td>
<td>20-80</td>
<td>coarse and fine sand</td>
<td>variable</td>
<td>100 (calc.)</td>
</tr>
<tr>
<td>2. West and central coast assemblage: Textularia gracilina, Verneuilina advena, Nonionellina labradorica, Elphidium orbiculare, E. clavatum, E. sp. 1</td>
<td>30-120</td>
<td>sand, coarse silt</td>
<td>−1.5° to 5°C</td>
<td>30.0</td>
</tr>
<tr>
<td>3. Northeast and Kamchatka coast assemblage: Nonion grateloupi, Elphidium clavatum, Ammobaculites foliaceus, Textularia gracilina, Verneuilina advena, Adercotryma glomerata</td>
<td>200</td>
<td>sand, coarse silt</td>
<td>+1.5 to 3°C</td>
<td>33.25</td>
</tr>
<tr>
<td>4. North Sakhalin coast assemblage: Islandiella californica, Nonion grateloupi, Elphidium clavatum</td>
<td>200</td>
<td>sand</td>
<td>0 to +5°C</td>
<td>less than 33.5</td>
</tr>
<tr>
<td>5. South Sakhalin and Hokkaido coast assemblage: Nonionellina labradorica, Elphidium clavatum, Recurviroides contortus</td>
<td>200</td>
<td>sandy silt</td>
<td>0 to 1.5°C</td>
<td>33.5</td>
</tr>
<tr>
<td>6. Kurile Island coast assemblage: Cibicides variabilis, Islandiella californica, Angulogerina angulosa</td>
<td>150</td>
<td>sandy</td>
<td>+2°</td>
<td>33.5</td>
</tr>
<tr>
<td>7. Northern shelf assemblage: Islandiella californica, Cassidulina sp., Angulogerina angulosa</td>
<td>100-250</td>
<td>silty clay and fine to coarse silt mud</td>
<td>−1.5 to 0°C</td>
<td>33.25 to 33.5</td>
</tr>
<tr>
<td>8. Central northern shelf assemblage (north of Iony Island and Kasho-</td>
<td>150</td>
<td>fine mud</td>
<td>−1.5</td>
<td>33.0 to 33.5</td>
</tr>
<tr>
<td>varo-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Iony Island region assemblage (confluence of Pacific and Okhotsk water masses): Eurybiotic species only, but abundant, Islandiella californica, Uvigerina peregrina, Angulogerina angulosa</td>
<td></td>
<td>sand, pebbles</td>
<td>−1.5 to 2.3°C</td>
<td>33.5 to 34.5</td>
</tr>
<tr>
<td>10-18. SHELF-SLOPE ASSEMBLAGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. North slope, north of Kasho-</td>
<td>250-750</td>
<td>fine silt-clay mud</td>
<td>0 to +1.5°C</td>
<td>33.5 to 33.75</td>
</tr>
<tr>
<td>varo-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. North slope, south of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Tinro Valley region assemblage: Angulogerina angulosa, Adercotryma glomerata, Haplophragmoides colubriensis, Bolivina decussata, Uvigerina peregrina, Valvulineria ochotica</td>
<td>200-800 sand, fine to coarse silt, silty clay, clay diatomaceous ooze</td>
<td>+1° to +2°C</td>
<td>33.5 to 33.75</td>
<td>100-15 (calc.) (aren.)</td>
</tr>
<tr>
<td>12. South Kamchatka slope assemblage: Stainforthia concava, Uvigerina peregrina, Elphidium sp. 2, Nonion scaphum, Chilostomellina fimbriata, Globobulimina pacifica</td>
<td>250-1000 coarse silt, fine silt, silty clay mud</td>
<td>+1.5 to +2.35°C</td>
<td>33.5 to 34.25</td>
<td>300 (calc.) 10-15 (aren.)</td>
</tr>
<tr>
<td>13. North Sakhalin Island slope assemblage: Uvigerina peregrina, Elphidium sp. 2, Nonion scaphum, Islandiella norcrossi</td>
<td>150-750 coarse silt, fine silt, silty clay ooze</td>
<td>+2°C to 0°C</td>
<td>33.5 to 34.0</td>
<td>100-300 (calc.) aren. as single specimens</td>
</tr>
<tr>
<td>14. Shmidtia Trough west slope assemblage: Eurybiotic species, Bolivina subspinescens, Islandiella norcrossi, Valvulineria ochotica</td>
<td>600-1250 silt clay or diatomaceous clay ooze</td>
<td>+1.5 to 2.3°C</td>
<td>34.0</td>
<td>100+ (calc.) 25- (aren.)</td>
</tr>
<tr>
<td>15. Lebedia Trough assemblage: Valvulineria ochotica, Islandiella norcrossi, Uvigerina peregrina</td>
<td>400-900 silt clay, diatomaceous clay ooze</td>
<td>+1.5 to 2.3°C</td>
<td>33.75 to 34.25</td>
<td>100-300 (calc.) aren. as single specimens</td>
</tr>
<tr>
<td>16. South Kamchatka base of slope assemblage: Stainforthia concava, Angulogerina angulosa, Adercotryma glomerata, Pullenia subcarinata, Bolivina subspinescens, Islandiella norcrossi, Valvulineria ochotica, Globobulimina pacifica</td>
<td>550-1250 silty clay, diatomaceous clay ooze</td>
<td>+2°C to 2.4°C</td>
<td>34.0 to 34.25</td>
<td>500+</td>
</tr>
<tr>
<td>17. South Sakhalin and Hokkaido slope assemblage: Haplophragmoides colombiense, Islandiella norcrossi, Globobulimina pacifica</td>
<td>200-250 to 1500 fine silt, silty clay mud</td>
<td>+1.5 to 0°C</td>
<td>33.5 to 34.0</td>
<td>100-300 (calc.) aren. as single specimens</td>
</tr>
<tr>
<td>18. Kurile Islands slope assemblage: Angulogerina angulosa and rare specimens of other species</td>
<td>200-3000 coarse silt, fine mud silt</td>
<td>+2°C</td>
<td>34.6</td>
<td>100-300 (calc.) aren. as single specimens</td>
</tr>
</tbody>
</table>

CENTRAL OKHOTSK SEA ASSEMBLAGES

19. Central Okhotsk Sea submerged platform assemblage: Uvigerina ochotica, Gyroidina soldani, G. orbicularis, Cassidulina delicata, Islandiella norcrossi, Valvulineria ochotica, Bulimina buchiana	600-1500 silt, diatomaceous clay ooze	+2°C to 2.4°C	34.0 to 34.5	300+ (calc.) aren. as single specimens
20. Deryugina Depression assemblage: Pyrgo fischeri, Bulimina inflata, Cyclammina cancellata, Bolivina subaenariensis	1300-1740 diatomaceous clay ooze	2.3°C	34.5	50- (calc.) aren. as single specimens
21. Southern deepwater trough assemblage: Melonis pompilioides, Millolina reussi, Reophax guttifer	1500-3300 silty clay, diatomaceous clay ooze	+1.8° to +2°C	34.5 to 34.7	5- (calc.) aren. rare to 0.
Arenaceous species were found to be extremely rare even in the deeper assemblages, despite size of the sea and water depths. The Sea of Okhotsk has approximately the same area and maximum depth as the Gulf of Mexico; yet no planktonic species were observed, the Kurile Island chain apparently serving as an effective barrier.

Because of difficulties inherent in attempting to reproduce marine environments in the laboratory, most of the ecological data available is based on “field studies” of living foraminiferal populations, recently summarized by Phleger (1960, *1454).

TEMPERATURE

On present continental shelves three bathymetric water layers are distinguished—a seasonal layer of greatest temperature variation, a permanent thermocline with gradual change in temperature, and a deep-bottom water layer (Fig. 75). Measurements of surface-water temperature alone, therefore, do not necessarily define thermal characteristics of the water mass. In partially enclosed basins, temperature has a lessened effect on faunal distribution (*1615). Variations in distribution with depth in such areas are not a function of...
temperature; for example, in the Red Sea an approximate difference of only 2°C is found in the temperature of top and bottom waters (*1613), and in the Java Sea only 0.5°C temperature variation in the water column is measured.

Laboratory studies have shown that minimum and maximum temperatures affect the survival of a species, as well as its reproduction and repopulation. Within these limits an effect of seasonal variations, varying according to the species, may be observed. Some species can withstand wide temperature variations and show no seasonal change in size range. Others apparently are more strongly controlled by temperature and reproduce only in the warmer seasons. Species most strongly influenced by seasonal variations are benthonic forms living in shallow waters and planktonic forms living within the seasonal water layer. The present latitudinal control of planktonic species results in recognizable low-latitude, mid-latitude, and high-latitude assemblages. Similar temperature variations occurring in the geologic past may somewhat complicate long-range correlation by means of planktonic species. Bradshaw (1959, *185) noted four planktonic assemblages in the northern and equatorial Pacific (Fig. 76, 77). These assemblages roughly agree with latitudes, but are even more closely related to sea surface temperature, affected by major currents.

Experimental laboratory cultures have shown that growth and reproduction occur as long as environmental factors are favorable, but as these (e.g., temperature, salinity) depart from optimal values, rate of growth and frequency of reproduction decline. Cultures of "Streblus beccarii var. tepida" showed that at least 13 chambers were developed before reproduction occurred, but if temperature and salinity were unfavorable the specimen might continue growth and chamber addition for longer times. "The organism may thus finally reproduce at a larger size and with a greater number of chambers than would be true under more favorable circumstances. . . . [Thus] larger specimens of the same species would be expected in the unfavorable environments and the smaller specimens under the most favorable conditions" (Bradshaw, 1957, *184). Phleger (1960, *1454) noted that in areas of optimum conditions and large living populations small specimen size "does not indicate a 'depau­perate' fauna, but indicates unusually favorable conditions and therefore rapid reproduction." Concurrent rapid sedimentation might result in the accumulation of only a meager population in the sediment. "Un­usually large specimen size may, therefore, indicate growth under marginal conditions." The occurrence of extremely large "species" of Haplophragmoides (e.g., H. gigas, H. topagorukensis) in the Canadian and Alaskan Cretaceous shallow-water deposits may
have been due to inhibiting temperatures or other unfavorable conditions. The occurrence of smaller forms in more offshore strata may thus not be a replacement by different species, but merely environmental size control. Restraint must be used in species delimitation with such marginal populations, as size characteristics are relatively unreliable.

Similarly, ecologically produced "dwarfed faunas" of invertebrates (as opposed to the pseudo-dwarfed faunas due to sorting ("pebble necrocoenosis" of Tasch, 1953, *1878) should contain relatively large foraminiferal specimens. The giant forms of *Endothyra* in the Salem and St. Louis Limestones associated with a "dwarfed" invertebrate fauna of brachiopods and gastropods would therefore seem to be normal for a highly unfavorable environment, instead of an anomalous occurrence, and thus not necessarily proof that true dwarfing did not occur, as suggested by Tasch. The size of *Endothyra* probably bears no relationship to cannibalism in ciliates that results in gigantism, as suggested by Lalicker (1948, *1080), especially as foraminifers are dominantly vegetarian, feeding largely on diatoms and other microscopic plant life.

DEPTH

Phleger (1960, *1454) regarded depth as the most important environmental factor, stating that "benthonic foraminiferal faunas are zoned offshore according to depth of water." A marked boundary in mid-latitudes at approximately 70-125 m. depth is found world-wide, marking the lower limit of the seasonal temperature layer. Other recognizable faunal-depth boundaries on the continental shelf are at 20-30 m. and at 50 m., and at 1,000 m. and possibly at 2,000 m. on the continental slope. That at about 1,000 m. may be at the bottom of the permanent thermocline, and that at 2,000 m. possibly may be due to hydrostatic pressure, since pressure at this depth is approximately 200 atmospheres, a suggested tolerance limit for some bacteria and possibly for other organisms as well. The other boundaries were considered by Phleger more difficult to explain physically. Probably they are related to the substrate.
Distinct faunas occur in each of the minor environments. Those of coastal lagoons can be distinguished from adjacent near-shore open-ocean assemblages. Deltaic marshes with rapid sedimentation have a characteristic fauna which is surprisingly similar throughout a wide geographic range, whether brackish or hypersaline in character. Sand lagoon barriers may have a mixture of species representing open-ocean, lagoon, and marsh benthonic environments, those from the open ocean commonly showing physical sorting.

Although some genera have limited depth ranges, use of individual species allows better zonation. A few species have almost world-wide occurrence within their depth zones.

The depth zonation in the Red Sea was stated by Said (1950, *1613) to be controlled by organic content of the water and nature of the substrate and not by temperature variation. Furthermore, he reported that benthonic species are abundant near coast lines regardless of depth. Bottom topography has some effect, however, as unusually large foraminiferal numbers were found to be associated with submarine hills.

WATER-COLUMN DISTRIBUTION OF PLANKTONIC SPECIES

Planktonic species may occur at different depths within the water column. Also, they may migrate up or down in the water column diurnally or with growth and may live at different depths in different areas in order to adjust to local water temperature and density.

Bradshaw (1959, *185) noted that planktonic specimens are less abundant in samples collected directly from the sea surface than from slightly deeper tows. The highest concentration occurs at depths of 6 to 30 m. and the greatest number never below 100 m. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Bradshaw (1959, *185) noted that planktonic specimens are less abundant in samples collected directly from the sea surface than from slightly deeper tows. The highest concentration occurs at depths of 6 to 30 m. and the greatest number never below 100 m. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Bradshaw (1959, *185) noted that planktonic specimens are less abundant in samples collected directly from the sea surface than from slightly deeper tows. The highest concentration occurs at depths of 6 to 30 m. and the greatest number never below 100 m. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Bradshaw (1959, *185) noted that planktonic specimens are less abundant in samples collected directly from the sea surface than from slightly deeper tows. The highest concentration occurs at depths of 6 to 30 m. and the greatest number never below 100 m. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.

Some diurnal migration apparently occurs, concentration at the surface being greater during daytime in the North Atlantic, off Bermuda, and in the Pacific (*185), suggesting that foraminifers migrate upward during the day and descend at night, possibly owing to effects of oxygen production by symbiotic algae. This may also be the reason for the greatest plankton populations in the uppermost 30 m. zone. Most pronounced decrease in number with depth occurs between 50 and 100 m.; relatively few specimens were noted below 200 m.
time represented by the material is unknown. Some seasonal changes in fauna occur even within a single year. Production of specimens in laboratory cultures under controlled temperature conditions might give data to whether the oxygen-isotope method is valid for foraminiferal shells, reducing the number of variables in using large numbers of specimens for a single determination.

CHARACTER OF SUBSTRATE

Phleger (1960, *1454) regarded character of the substrate as a relatively unimportant environmental factor except for foraminifers requiring a surface for attachment (e.g., *Cibicides*) and for those associated with calcareous bioherms. Otherwise he regarded depth as the controlling factor. However, most published environmental studies are based on continental shelf areas adjacent to open coasts. No experimental evidence is available concerning effects of the substrate, though they appear to be important in some regions. Phleger stated that “although temperature has an importance rôle in influencing the distribution of species in the open seas with a large thermocline, it apparently does not influence zonation in shallow or partially enclosed basins. . . . In basins without a marked thermocline the availability of food, oxygen, the character of the substratum, or the salinity may be the dominant factor, either singly or in combination.” Thus, in the Java Sea, where temperature does not vary more than half a degree between the surface and bottom at 30 to 50 m., just as distinct a zonation is found as off California, where the depth range amounts to 2,000 m. and temperature variations of 15°C occur (Myers & Cole, 1957, *1343).

Myers (1945, *1342) reported that at shallow depths in the Java Sea, in an area of dominantly carbonate facies, “each type of bottom produces a distinct population of Foraminifera.” Only species living on seaweeds or attached to dead corals occur in the lagoons and platforms back of reef areas, as a result of scouring action of the surf. In the zone of living corals below low-tide level, living foraminifers are also associated only with seaweed or dead corals. On sandy mud bottoms immediately adjacent to the reefs a totally different population occurs; this consists of particularly large species. On heavy mud bottoms even larger species with more flattened tests are found, for these are adapted to glide over soft sediments. Farther from land only the smallest species occur, because the fine muds are almost a water suspension. In this environment larger or heavier species would sink below the surface muds. Coarse quartz sand bottoms indicate current sorting and species are commonly small forms with a brief life span. Morishima (1948, *1314) found similar bottom control in shallow bays of the Inland Sea of Japan. Since maximum depth was 30.5 m. and maximum temperature fluctuation within the water column only 1 to 2°C, depth and temperature were unimportant factors, salinity and bottom characters being the controlling elements.

Said (1950, *1613) noted a directly proportional relationship of foraminiferal number and median diameter of sediment in the Red Sea, coarser sediments containing the greater concentrations of benthonic foraminifers. Also directly proportional was the amount of total organic content. In another limited region—a lagoonal marsh off North Carolina—D. N. Miller (1953, *1282) noted that “substratum conditions appear to have the most effect on faunal population. Shifting sands produced the highest arenaceous/calcareous ratio for Foraminifera. Compact, organic, argillaceous sands produced depauperate fauna. Fine clean sands carried the most abundant populations.” A similar substrate control was observed in Recent Arctic foraminiferal faunas off Point Barrow, Alaska, by Loeblich & Tappan (1953, *1162) where faunas were most abundant and diversified in an offshore zone with gravelly bottom, and much restricted in the nearer shore mud zone. Heavy winter storms during 1949-1950 carried large quantities of mud over some previously observed gravel zones. In samples dredged after this influx of mud only dead invertebrates were found and the foraminiferal fauna was much reduced, probably to a greater extent than was indicated by the number of specimens found, since no information was available as to
whether or not the observed foraminiferal tests contained protoplasm or were dead shells, either antedating the catastrophe, or later transported into the area.

SALINITY, OXYGEN, TRACE ELEMENTS

Species of foraminifers that can tolerate wide limits of salinity, such as those found in marshes, are found in both brackish and hypersaline waters. With lowered salinity the number of species is reduced, but the number of specimens of stenohaline forms is very great, either owing to lessened competition or increased available organic matter.

The limiting effect of salinity on growth and reproduction has been mentioned in connection with experimental data on temperature control. Either too high or too low salinities for a given species tend to retard its reproductive cycle. In brackish water in the Etang de Canet, France, general size and variety of foraminifers were found to decrease inland. The number of species in the brackish water was greatly restricted (only seven), all with calcareous relatively thin tests and lessened ornamentation. The number of individuals was high, however (J. Le Calvez & Y. Le Calvez, 1951, *1111).

Some foraminifers have even been reported from continental saline waters, when these contain chlorides of sodium or magnesium. They have been recorded from springs in the Kara-Kum desert in central Asia. Living foraminifers were found in fresh-, brackish-, and salt-water springs, irrigation ditches, and drainage canals of the Oued Rhir, a continental desert in Algeria, more than 400 km. (250 mi.) from the nearest coast, the species being euryhaline forms now present along the coast. Genera reported include *Ammodiscus, Miliammina* and *Trochammina* (all common), *Anomalina* (varying abundance), and rare *Nonion, Cibicides*, and *Ophthalomidium*. *Trochammina* was found even in springs where the water was potable (pH of 7.2). The occurrence is difficult to explain except as a possible remnant of an earlier inland sea (Gauthier-Liévre, 1935, *772).

In some enclosed basins, such as the Black Sea, where little exchange between surface and bottom waters exists, the bottom water is stagnant and unoxygenated, bottom sediment is black, and decomposing phytoplankton releases H₂S and NH₄ under almost anaerobic conditions. Oxygen becomes the limiting factor. Both number of species and total benthonic foraminiferal number (number of specimens in one gram) is reduced, and the specimens are small. This may be an instance of retardation of growth due to lower metabolism (Said, 1951, *1615*). The known inhibiting effect of H₂S on nuclear fission in *Amoeba* also suggests a possible retardation of the orderly succession of generations in foraminifers, resulting in their decreased abundance. A similar occurrence of a depauperate fauna in organic clays under anaerobic conditions was noted by D. N. Miller (1953, *1282*), many specimens containing pyrite grains inside the chambers.

J. Le Calvez & Y. Le Calvez (1951, *1111) noted that within the brackish waters of the Etang de Canet, the greatest influence on vitality of foraminifers and their ability to multiply was the oxygenated nature of the bottom. Thus, black putrid clays at 0.90 m. and salinity of 23.37 contained no foraminifers, whereas sandier, cleaner samples at the same depth and salinity from locations farther inland contained up to 256 individuals in a cubic centimeter.

"Dwarfed" thin-shelled specimens of *Heterostegina* 1.5 mm. in diameter which occur in down-dip shales of the Anahuac formation ("Oligocene") of Texas, noted by Lalicker (1948, *1080*), may have been due to a similar environment. Tests belonging to this genus normally have a diameter of 4.3 mm. in the usual calcareous sand facies formed in a clean, shallow-water environment.

Said (1950, *1613) noted that in the well-oxygenated Red Sea total numbers of benthonic foraminifers are directly proportional to nitrogen percentage (organic content). In the Red Sea basin an increase in oxygen resulted in even fewer foraminifers, probably owing to lessened organic content.

The inverse ratio in abundance of radiolarians and foraminifers in modern seas
and in fossil assemblages may be due to the amount of dissolved silica available, since radiolarian deposits commonly are associated with areas of volcanic activity or with bentonite deposits. The turbidity factor of ash falls would restrict benthonic foraminiferal assemblages, but the limitation of the planktonic species may be chemically controlled in this instance.

Very few data are available as to effect of the presence or absence of trace elements. Bóltovskoy (1956, *165) noted a depauperate foraminiferal fauna on the Argentine shelf between the Straits of Magellan and San Julián. As no other cause was apparent, an investigation of the shells of some species was made to determine the presence of unusual elements. Specimens of two species (Quinqueloculina seminulum, Buccella frigida) were examined from the depauperate fauna and from a more normal area south of Tierra del Fuego. Elements found in the shells of both species in both regions include Ca, Fe, Mg, Si, Sr, and Ti; Buccella also had Al and Quinqueloculina also had Mn and Sn at both localities. The sole element found only in San Blas Bay (depauperate zone) specimens of both species was Pb. Lead salts may decrease the plant (diatom) productivity, and the reduced food supply result in impoverished foraminiferal faunas.

CURRENTS

Because of their small size, empty tests of foraminifers may be sorted, reworked, and transported by currents or gravity in the same way as are mineral grains of similar size and conformation. They may be carried into areas in which they were not living and similarly may live in areas where empty tests, because carried away, are not deposited. Currents aid in dispersal of species, especially of planktonic forms; they also transport the flagellate gametes and young embryonic individuals of various species. In some studies of present-day assemblages comparison of specimens actually containing protoplasm with those found only as empty shells has aided in determining relationships of bioocoenoses to thanatocoenoses. Shifflett (1961, *1733) from a study of living and dead populations in the Gulf of Mexico based on 12
shallow-water samples noted that faunal variations are great in short lateral distances. Comparison of living and dead assemblages so observed yields information on changing conditions and possible displaced faunas (Fig. 78).

D. J. Carter (1951, *283) noted that in current-controlled assemblages the size ratios of foraminiferal specimens are similar to size ratios of sediments, the foraminiferal shells behaving as an integral part of the sediment. Foraminifers in the Coralline Crag of Suffolk (England) were shown to be a current-drifted faunal assemblage, only a few species (e.g., Cibicides lobatulus, Planorbulina mediterranensis) not being related directly to the sedimentary size fraction. The latter species live attached to algae, hence were probably indigenous to the locality.

F. D. Smith (1955, *1800) made a study of the ratio of planktonic specimens to the total assemblage in the Gulf of Mexico and Mississippi Sound, for the purpose of testing its value as an indication of nearness to shore line, depth of water, and topographic anomalies such as offshore islands. In an unobstructed area of the Gulf a correlation between depth and percentage of planktonic specimens to total foraminiferal number was found. Use of similar methods in fossil sediments would indicate the direction of the shore line. Where islands occur in the Mississippi Sound, they obstructed the transportation of planktonic tests. A sharp decrease in percentage of planktonic species in adjoining areas in fossil material might indicate the presence of former reefs or barrier islands (Fig. 79).

A depth oscillation chart was devised by Israelsky (1949, *979) by determining percentages of calcareous benthonic species of foraminifers in assemblages from varying depths. The depth significance of species obtained from a well penetrating Miocene sediments in Louisiana was determined by their relative abundance as compared to that of Ammonia beccarii (as indicator of shallow to brackish environment) and Uvi-gerina spp. (regarded as indicating deeper
Five assemblages interpreted to represent certain depths were distinguished and percentages of each assemblage in the various samples were plotted in order to identify marine cycles of deepening or shoaling water (Fig. 80). These oscillations could be adapted for correlation within a limited area, and with enough points of control, could be used to determine true time planes in a region (marked by stratigraphic position of deepest assemblages in different places or of shallowest assemblages in wholly marine sequences).

Biofacies maps have been constructed by Upshaw & Stehli (1962, *1971) by plotting percentages of planktonic specimens in foraminiferal assemblages, using these to indicate direction toward a coastline and fluctuations in distance to it (Fig. 81). A "departure map" was prepared for the same area by plotting percentages of specimens of planktonic, calcareous benthonic, and arenaceous benthonic foraminifers (Fig. 81).
DEPARTURE MAP

Fig. 82. "Departure map" based on shelf-edge foraminiferal assemblages, showing optimum assemblage for a selected environment and distances both shoreward and seaward from its location (*1971).

arenaceous benthonic foraminifers (Fig. 82). In the example used, the edge of the continental shelf off the west coast of Florida was regarded as a selected target environment comprising a sandy zone in a region of carbonate facies; in buried sediments it could serve as a potential petroleum reservoir. By plotting percentages of the three foraminiferal assemblages on a triangular diagram (Fig. 83) the optimum percentages for this environment were determined to be 16 per cent arenaceous benthonic foraminifers, 43 per cent calcareous benthonic, and 41 per cent planktonic specimens (square marked "F" in Fig. 83). When additional samples were plotted, departure from the optimum could be determined by distance from F, regardless of direction. The data plotted on a map (Fig. 82) indicate the departure from the optimum environment both seaward and shoreward; it marks the location of the continental shelf margin. Similar local maps could be utilized to locate ancient offshore bars or submarine highs. This method has the advantage of not requiring specific identifications for preparation of the graph and map.

TURBIDITY

The depth to which light penetrates in the sea is limited by turbidity of near-surface waters, which depends on the amount of material carried by it in suspension. In relatively clear water, photosynthesis probably occurs to a depth of about 50 m., thus to some extent limiting the production of the food supply (diatoms and other unicellular algae), as well as symbiotic zooxanthellae known to occur in some foraminifers. In highly turbid water suspended matter reduces the depth of light penetration, with corresponding reduction of the food supply and growth of symbiotic algae found especially in planktonic and some benthonic calcareous species. Arenaceous foraminifers seem to be less affected by turbidity than others, and Stainforth (1952, *1834, p. 43) has even suggested that assemblages of them dominated by large robust species, are turbidity-controlled. The robust Haplophragmoides, Verneuililoides, and Uvigerinammina assemblages found in many Cretaceous deposits of northern Alaska and the Carpathian flysch appear to be at least partially turbidity-controlled. The turbidite nature of enclosing sediments substantiates this assumption. As mentioned in discussion of temperature, unusually robust foraminifers may indicate delayed reproduction and marginal living conditions, such as the limited faunas in this facies suggest.

Bentonitic sediments and other highly siliceous rocks commonly contain radiolarians and diatoms. These organisms occur in inverse ratio to numbers of foraminifers, suggesting that ash falls may have been important contributors to the turbidity, allowing survival of planktonic siliceous
forms but greatly reducing the calcareous foraminiferal faunas.

PHLEGER (1960, *1454, p. 113) has stated that no direct evidence is available concerning an effect of turbidity on foraminiferal distribution, but the very similar arenaceous faunas found in flysch-type deposits of Trinidad, northern Alaska, and the Carpathian Mountains strongly suggest that such a factor is important.

TURBULENCE

Strong surface winds produce turbulence of water bodies which agitates the bottom of shallow waters and makes them turbid. Water mixing is general. Replenishment of nutrients in upper water layers allows an increased production of phytoplankton. Turbulence in fine-grained sediments may bury foraminifers and hence restrict their occurrence. A faunal boundary in the region of San Diego, California, at a depth of about 13-20 fathoms was interpreted by UCHIO (1960, *1961) as base of the turbulent zone.

RELATION OF FORM OF TEST TO HABITAT

MYERS (1945, *1342) noted that many foraminifers show a relationship between form of the test and environment. Heavily spined shells are characteristic of tropical or subtropical climates in protected bays or seas affected by infrequent storms. In the Java Sea species living in quiet water attached to seaweeds are commonly strongly spinose, the spines protruding in all directions. Thin discoidal tests may be found on seaweeds and may show evidence of attachment (e.g., Planorbulina). Species that move about over a firm muddy bottom commonly are discoidal or much-flattened trochospiral or may have spines in a single plane. On soft muddy bottoms the spines tend to be long and attenuated in one plane. The tests of species living on firmer sandy bottoms may have a much-thickened central area. Lenticular forms occur on algal fronds and on heavy mud bottoms. The shape of tiny species seems to be less influenced by environment and their distribution may be extended by turbulence and current action. Planktonic forms commonly have globular chambers, bear numerous spines, or have broad flat carinate tests.

A similar general correlation of test form with depth was suggested by BANDY (1960, *74). Among agglutinated foraminifers the simpler forms are characteristic of bays and lagoons, whereas labyrinthic forms and those with siphonate chambers are found in central and outer parts of shelf areas and bathyal zones. Among porcelaneous forms, diverse miliolids are abundant in bays and the inner shelf but large biloculine types occur in bathyal depths. Discoidal and fusiform types inhabit the inner and central shelf, those with internal chamberlets more commonly in the central and outer shelf.

Calcareous perforate species with pillars (e.g., Rotaliidae, Calcarinidae) occur in the inner shelf; those with striae and costae are common in the outer shelf or bathyal zone. Coarser ornamentation and larger size are characteristic of deeper water assemblages.

STRATIGRAPHIC DISTRIBUTION

Although foraminifers are unicellular and therefore theoretically belong among more primitive forms of animal life, many higher invertebrates have an earlier geologic record. It seems probable that earliest foraminifers were similar to the present-day Lagynidae and Allogromiidae, with membranous or pseudochitinous tests. Agglutinated matter may have been gradually added to this as in living Myxotheca, but the fragility of such tests has prevented their preservation in the Precambrian geological record. According to VINOGRADOV (1953, *2007), the absence of Precambrian animals with calcareous skeletons possibly is due to a greater amount of CO₂ in the atmosphere and ocean water of early earth history, increasing the solubility of CaCO₃. Some Precambrian calcareous algae are known, but since these may take CO₂, CO₃, and HCO₃ from the water, they would be enabled to precipitate the CaCO₃. VINOGRADOV postulated that the most ancient Proterozoic animals were probably naked and planktonic (similar to present-day invertebrate larvae); he suggested that earliest coverings of the body may have been of organic protein, cellulose, or chitin.
CAMBRIAN AND ORDOVICIAN
The geologically oldest pseudochitinous foraminifers yet described apparently are the allogromiid genera *Chitinodendron* (U. Cam.), *Archaeochitosa* (Ord.), and *Chitinolagena, Labyrinchochitinia*, and *Maylisoria* (U.Ord.). The oldest recorded agglutinated forms belong to Cambrian and Ordovician Astrorhizidæ—*Bathyssiphon* (L. Cam.), *Hyperammina* (L.Ord.), *Astrorhiza* (M.Ord.), and *Rhabdammina* (U.Ord.)—and Ordovician Saccamminidæ (*Ordovicina, Kerionammina, Psammosphaera, Pseudastrorhiza, Stegnammina, Tholosina*). The oldest known calcareous foraminifer is of Ordovician age, and belongs to the Parathuramminacea, family *Moravamminidæ* (*Saccaminopsis*).

All of these early representatives, regardless of test composition, are simple forms having a single chamber or clusters of chambers, the original shape of which is doubtful, since irregular form of the fossils may be due to crushing of the soft pseudochitinous or weakly reinforced test. The pseudochitinous forms have a scattered geologic record from Cambrian to the present, but as they have mainly been obtained from acid residues, the pseudochitinous material alone being preserved, they may in life have been further protected by a calcareous or agglutinated test. The earliest calcareous forms known have been found in thin-sectioned limestones; greater search for them by similar methods of examination may show that they have much wider occurrence in early Paleozoic limestones than present records suggest.

SILURIAN
By Silurian time a fairly diverse assemblage of foraminifers is known, representing in addition to above-mentioned forms, in the Allogromiidæ, *Archaeochitini* and *Xenotheka* and in the Saccamminidæ, *Blastammina, Sorophaera, Saccammina, Lagenammina, Stomasphaera, Thurammina, Amphicervicidae, and Colonammina*. The first enrolled tubular forms, grouped in the Ammodiscidæ, appear in the Silurian, with *Ammodiscus, Glomospira, Turritella, Tolypammina, Lituotuba, and Ammolagenæ*. The Silurian also saw a further expansion of microgranular calcareous genera and the appearance of the earliest Nodosinellidæ (*Iligata, Eolagena*).

DEVONIAN
A few additional agglutinated genera of the Astrorhizidæ (*Hipposecrena*), Saccamminidæ (*Ceratammina, Hemisphaerammina, Webbinelloidea, Weikkoella*), and Ammodiscidæ (*Psammonyx, Trepeilopsis*) appeared first in the Devonian, but this period is characterized largely by great expansion of microgranular forms with first appearance of the Parathuramminidæ (*Parathurammina, Archaeosphaera, Bisphera, Cribrosphaeroides, Irregularina, Quasituberitina, Rausserina, Urainella*). All of the Devonian parathuramminids, except for *Palachemonella* reported from Germany, are known only from Russia, where they have been studied extensively in thin-sectioned limestones. The Caligellidæ are represented by *Caligella* and *Shuguria*, both from the Russian platform, the Moravamminidæ by *Earlandia, Paratikhinella, Pseudoglomospira, Moravammina, Kettermannina*, and *Vasicekia*, all known from the west European and Russian Devonian; the Nodosinellidæ are represented by the earliest *Tuberitina, Tubeporina, Umbellina, Eovolutina, Nodosinella, Frondilina, Hippornia, Lunucammina*; the Colaniellidæ by *Multiseptida*, and the Ptychocladiidæ by *Tscheryndacevella*. The family Semitextularidæ appeared in the Devonian and is restricted to it (*Semitextularia, Paratextularia, Pseudopalymula*); and the earliest Tourneyellidæ (*Tourneyella, Brunsiina, Septabrunsiina*) and first Endothyridæ (*Nanicella, Renothyra, Quasiendothyra, Rectoseptaglomospiranella*) are found here also.

MISSISSIPPIAN AND PENNSYLVANIAN
In Carboniferous times foraminifers began to appear in sufficient abundance locally to be of importance in rock-making, endothyrid limestones occurring in the Mississippian and fusulinid beds throughout the Perm-Carboniferous. A few additional simple agglutinated genera appeared in the Carboniferous (especially Ammodiscidæ), but the most important developments were in beginnings of the more complex agglu-

© 2009 University of Kansas Paleontological Institute
tinated forms (Lituolacea), the earliest porcaneous calcareous genera, and the great expansion of microgranular calcareous genera, especially Endothyra and Fusulinacea, the latter first appearing in the Late Mississippian (Chesteran). Among important first appearances were the Hormosinidae (Reophax), Lituolidae (Haplophragmoides, Trochaminoides, Ammobaculites), Textulariidae (Spiroplectamnia, Textularia), Trochaminidae (Trachammina), and Ataxophragmoididae (Mooreinella). Among newly introduced porcaneous foraminifers, the tubular enrolled Fischerinidae first appeared in the Mississippian (Cyclogyra, Agathammina, Hemigordius) and additional genera arose in the Pennsylvanian, particularly attached types (Orthoverella, Calciverteilla, Calcitornella, Plummerinella). The first chambered genus to appear was Eosigmoilina (Ophthalmidiinae).

The dominant members of Carboniferous assemblages were microgranular calcareous genera (especially the Endothyra and Fusulinacea). A few simpler genera also made their first appearance including Moravaminididae (Earlandinita, Lugtonia, Turrispiroides), Ptychocladidae (Ptychocladia, Aoujgalia, Stacheia, Stacheoides, Fourstonella, Palaeonubecularia), Palaeotextulariidae (Palaeotextularia, Chimacammina, Cribrigerinina, Deckerrillina, Palaeobigenerina), Tetrataxidae (Tetraauxis, Polytaaxis, Valvulinella), Biseriamminidae (Biseriammina, Gloivialvulina), new Tournayellidae (Forschia, Forschitella, Glomospiroides, Lituottobella), Endothyridae (Loeblichia, undisputed Endothyra, Endothyranella, Parendothyra, Paraplectogyra, Haplophragmella, Cribrospira, Klubovella, Endothyranopsis, Chernyskinella, Bradyina, Glyphostomella, Janischewskina), early Archaediscidae (Archaediscus, Brunsia, Permodiscus), and Lasiodiscidae (Lasiodiscus, Howchinia, Monotaxinoides).

The most characteristic and striking of the late Paleozoic foraminifers are the fusulinids, which arose as close-coiled forms with short axis in the Upper Mississippian (Chesteran), derived from an endothyrid ancestor. The fusulinids rapidly increased in diversity, length of coiling axis, and internal complexity.

PERMIAN

The agglutinated, microgranular, and porcaneous types of foraminifers were all represented by additional genera in the Permian, probably the more striking of these being those with internal complexity such as the agglutinated Oryctoderma, the microgranular Colaniella (Colaniellidae), Pachyphloia (Nodosinellidae), and Lasiotrochus (Lasiodiscidae). The porcaneous genera with enrolled zigzag chambers (Flectospira, Meandrospira) and others with complex interior (Pseudovermiporella) appeared in the Permian. The final expansion of the Fusulinacea occurred, many developing long, attenuated tests and highly fluted septa. All became extinct at the close of the Permian.

A minor but important constituent of the Permian foraminiferal fauna comprise forerunners of the perforate hyaline groups, which are earliest representatives of the Nodosariidae (Nodosaria, Asterocolum, Dendritina, Frondicularia, Pseudonodosaria, Pseudotristix, Lingulina, Lingulonodosaria).

TRIASSIC

The known Triassic faunas are mostly from latest Triassic rocks, very little being known of the earlier Triassic. The oldest representatives of the arenaceous Schizaminidae (Schizammina), Verneullininae (Gaudryina) and Valvulininae (Valvulina), the first porcaneous Soritidae (Trasina), and last of the microgranular forms (Tetraauxis) occur in the Triassic. The faunas known are dominated by the Nodosariidae, mostly the same genera that began in the Permian but in the Triassic represented by more ornamented forms, as well as the additional genera Lenticulina, Marginulina, Vaginulina, and Vaginulinopsis.

The earliest representatives of several families were Triassic species of Polymorphinidae (Pyrulinoides, Sagoplecta), Bolivinitidae (Brizalina), Involuitinidae (Involuitina, Autotortus, Paalzovella, Seminvoluta, Trocholina), and questionably Spirillinidae (Spirillina) and Ceratobuliminidae (Epistomina). In addition, a peculiar mid-Triassic fauna from Austria has been reported to contain the oldest Discorbidae (Diplotremina, Duostomina, Variostoma).
Foraminiferida—Stratigraphic Distribution

and Anomaliniidae (Asymmetrina, Involutina, Plagiostomella), although nothing is known of the microstructure or lamellar character of these genera. If additional study upholds these reported occurrences, we may say that by Triassic time most of the superfamilies of calcareous foraminifers had been introduced (but not the Rotaliacea, Globigerinacea, and Orbitoidacea).

JURASSIC

During the Jurassic Period dominant members of the faunas were the Nodosariacea, represented by many genera, many with ornately ribbed surfaces, but with such great intraspecific variation that generic limits are difficult to delineate. The earliest attached Polymorphinidae also are found in the Jurassic, as are the first Glandulinidae.

In some areas a great expansion of the Lituolidae, Pavonitinidae, and Dicyclinidae occurred, with first appearance of many forms having a complex interior. Among porcelaneous forms were the earliest Nubeculariaceae, Nodobaculariinae, Miliolidae (Quinqueloculina), and Rhapydionininae. The Turrilinidae began in the Jurassic (Praebulimina), as did the first of many genera of the Spirillinidae (Spirillina, Conicospirillina, Miliospirella, Planispirillina, Terebralina, Turrispirillina).

The earliest planktonic foraminifers apparently were Jurassic forms representing the Guembelitriinae (Gubkinella). The first Nonionidae (Allomorphina) and Ceratobuliminidae (Conorboides, Praelamarckina, Pseudolamarckina) appeared. Additional genera of the Epistominidae, which in large part are characteristic of Jurassic strata (Epistominita, Epistominoides, Garantella, Hoeglundina, Rectoepistominoides, and Reinholdella), are recorded.

CRETACEOUS

Foraminiferal limestones of Cretaceous age include the earliest miliolid limestones belonging to the Lower Cretaceous and orbitolinid, alveolinid, and orbitoidid limestones occurring in the Upper Cretaceous. Locally, various agglutinated genera also appeared in great numbers (e.g., Criratina in the Texas mid-Cretaceous) and the earliest fossil planktonic oozes are Early Cre-}

Cretaceous in age. Numerous additional agglutinated genera are noteworthy, including some with a labyrinthic interior (e.g., Cribratina, Haploystichae, Hormosinidae). The first Rzehakiniidae (Rzehakina, Milaminina, Psamminopelis, Silicosigmoilina) are found in Cretaceous beds and many new Lituolidae (Ammobaculoides, Ammotium, Buccicrenata, Bulbophragmium, Cyclammina, Duxia, Chofiatella, Flabellammina, Hemicyclammina, Martiguesia, Navarella, Pseudochofrietella, Spiroyclina, Sornayina, Coscinophragmina, Manorella, Loisitua, Phenophragmina, Stomatostochea, Acrulammina, Arenonina). A similar great expansion, with appearance of a great many additional genera, occurred in the Ataxophragmididae, Pavonitinidae, Dicyclinidae, and Orbitolinidae (locally limestone-forming), the orbitolinids being represented by Orbitolina, Dictyoconus, Iraquia, and Simplorbilitina.

Among imperforate calcareous forms were the earliest Spiroloculinidae (Spiroloculina) and many genera of the Miliolidae (including earliest Miliolinae and Fabulariinae), additional Soritidae (earliest Meandropsininae) and earliest Alveolinidae, all of Late Cretaceous age. These became extremely abundant and important in forming limestone.

The hyaline calcareous foraminifers of the Cretaceous are characterized by a great expansion of coiled genera representing most of the superfamilies. In the Buliminaceae, new forms of the Turrilinidae include Buliminella, Neobulimina, Pyramidina, Rectobulimina, Sporobulimina, Sporobuliminella, and Lacosteina; in the Bolivinitidae are Bolivina, Bolivinoides (especially in the later Cretaceous), Gabonella, Grimsdaleinella, Loxostomoides, and Tappanina. The Eouvigerinidae first appeared in the Early Cretaceous (Eouvigerina) and became important in the Late Cretaceous (Siphogenerinoides). In the Uvigerinidae earliest genera are the Late Cretaceous Orthokarstenia and Pseudouvierina. New Discorbidae are Conorbina, Eoeponidella, Epistominella, Eurycheilostoma, Bagotina, and Valvulinera. The oldest known Patellininae occur in Lower Cretaceous rocks; also, the oldest Rotaliacea, represented by the Rotaliidae (Rotalia, Kathina, Pararo-
PALEOCENE

The Paleocene has a truly transitional foraminiferal fauna which includes many genera and species of smaller foraminifers that were present in the Late Cretaceous (Maastrichtian) and persisted into the earliest Paleocene (Danian). Many new forms (especially planktonic genera and larger foraminifers) had their beginning in the Paleocene, however, and many characteristic Cretaceous forms had then completely disappeared.

Among new larger foraminifers are the porcelaneous Fasciolites and Orbitolites, together with the earliest Nummulites, Miscellaneous (Nummulitidae), Discocyclina, and Pseudophragmina (Discocyclinidae). Among smaller foraminifers, new nodosariaceous genera (Polymorphina, Glandulina) and buliminacean genera (including the earliest Buliminidae, Bulimina, Globobulimina, Praeglobobulimina) appeared. With them are new Rotaliacea (first Elphidiidae, Protelphidium, Elphidiella, Laffiteina, and new Rotaliidae, Lockhartia, Thalmannita). Other additions to the fauna include the granular-walled Florilus (Nonionidae), Gyroidina (Alabaminidae), and Boldia, Coleites, and Melonis (Anomalinidae).

The most striking change with advent of Paleocene time was in the character of planktonic assemblages. The abundant Cretaceous families Rotaliporidae, Globotruncanidae, and Schackoinidae disappeared completely at the close of the Maastrichtian, as did nearly all of the Heterohelicidae (only Heterohelix and Bifaria remaining). Two new forms (Woodringina, Chiloguembelina) appeared in the Danian. The Globigerinidae became the most important planktonic family in Paleocene time, when they were represented by Globigerina, Globobunusa, and Subbotina. The earliest Hantkeninidae (Globanomalina) and Globorotaliidae (Turborotalia and Globorotalia) also appeared.

EOcene

Eocene time was marked by a great expansion of many groups of foraminifers. The Nummulitidae became abundant, forming limestones, their characteristic occurrence in rocks of this age leading to the
common use of the term "Nummulitic" (Nummulitique), synonymous with "Paleogene" throughout much of Europe. The Lepidocyclinidae (Lepidocyclina, Pseudolepidina, Helicolepidina, and Helicostegina) began in the Eocene. Alveolinid limestones were also formed in the early and middle Eocene, and miliolid limestones were deposited in the Eocene of France. Many shallow-water genera made their first appearance in the Paris Basin in Eocene time. Other genera which appeared in the Eocene were the ataxophragmiid genera Fabularia, Articulina) miliolids with complex apertures or interiors, and species such as Dendritina, Archaias, Spirolina, Somalina, Yaberinella). The Plectofrondiculariinae (Nodosariidae) first appeared, with Amphimorphina, Plectofrondicularia, and Bolivinella represented. Among the Buliminacea were new forms of Turrilinidae (Turrilina, Bagatella, Buliminellita), Eouviergerinidae (Siphonodosaria), Sphaeroidinidae (Sphaeroidina), Pavonininae (Reussella, Chrysalidina, Tubulogenerina), and Uvigerinidae (Ungerina, Euvigerina, Hopkinsina, Kolesnikovella, Rectuvigerina, Siphogenerina, Tijarinia, Uvigerinella). New Discorbidae (Discorbis, Cancris, Pipersia), Glabratellidae (Glabratella, Heronallenia), first Siphoninidae (Siphonia, Siphonides, Siphoninella), and new Epistomariidae (Epistomaria, Elphidioides, Nutallides) are recorded from Eocene deposits. Among the Rotaliacea were the first Biarritzina, Dictyoconoides, Chapmannia, Ferayina (Rotaliidae), Elphidium, Polystomellina, and Porosorotalia (Elphidiidae). New bilamellid genera include Eponides (Eponididae), the Planorbulinidae (Planorbilina, Linderina, Planorbulinella), Gyspina (Acervulinidae), many Cymbaloporidae (Cymbaloporella, Fabiania, Gunteria, HalkYardia), and Homotrematidae (Sporadotrema, Victorriella, Eorupteria). Among the granular-walled forms were the first Cassidulina, Ehrenbergina, Globocassidulina (Cassidulinidae), Almarna, Ganella, and Queraltina (Almaeninae). New aragonitic forms include Stomatoholita, and Schlosserina (Epistominiidae) and Robertina, Cerobertina, and Pseudobulimina (Robertinidae).

New planktonic genera of the Globigerinidae include Globigerinoides, Globobquadridina, Globigerapsis, and Porticulasphaera, and genera that developed apertural bullae (Catapsydrax, Globigerinitheka) appeared in the middle Eocene. In middle and late Eocene time the planktonic genera Hantkenina, Crisbrohanikenina, and Clavigerinella are represented.

OLIGOCENE AND MIOCENE

Some larger foraminifers are particularly characteristic of mid-Tertiary formations, among them the Miogypsinae (Miogypsinidae, Miogypsinoides), which are restricted to Oligocene and early Miocene strata, and the Lepidocyclinidae, which also were locally abundant. A number of additional genera appeared in the Miocene, among them complex Soritidae (Sorites, Amphisorus, Marginopora) some Rotaliidae (Ammonia, Pegidia, Rupertia), Bolivinitidae (Bolivinita), Calcarinidae (Baculogypsinia), and Anomaliniidae (Discanomalina, Hansawaia, Holmanella). Planktonic foraminifers developed a modern aspect with the first appearance of many additional genera of the Hantkeniniinae (Hastigerina, Beella, Cassigerinella) and Globigerinidae (Orbulina, Candea, Sphaeroidinella, Sphaeroidinellopsis, Globigerinitella, Globigerinella, Globigerinoita, Tinophodella).

PLIOCENE AND PLEISTOCENE

A few additional genera first appeared in the Pliocene, among them Pseudorotalia (Rotaliidae), Cellanthis (Elphidiidae), Pulleniatina (Globigerinidae), Sestronophora (Eponididae), Carbeanella (Cibicididae), and Allhatina, Alliatella, and Geminospira (Robertinidae). In the Pleistocene Asterorotalia (Rotaliidae) and Hyalinea (Cibicididae) have been reported. Many generic and suprageneric ranges are still imperfectly known. Because of rapid changes in taxonomy based on more detailed morphology and newer methods of study it has been impossible to reallocate all previously described species. Many need additional study in order to determine true relationships and correct placement; hence, many generic and familial ranges will undoubtedly be extended somewhat eventually.
CLASSIFICATION

INTRODUCTION

"Classifications may be complex but the process of classifying is essentially simple. . . . Man has discriminative capacities far beyond his ability to remember the details and he escapes from this dilemma only by classifying his concepts" (BLACKWELDER, 1959, *140, p. 204). According to WHITTAKER (1959, *2057) a natural classification should consist of internally coherent taxa, subject to clear definition and delimitation, and based on the consideration of a maximum number of characteristics. A supposed evolutionary unit (common descent) should underlie the classification, whose organization (number, arrangement, and ranking of taxa) should embody our understanding of major relationships, summarize existing knowledge, and express evolutionary relations.

Foraminiferida are one of the few living animal groups, classification of which has been largely constructed on the basis of shell morphology, a fact which may have convenience for paleontologists who have only skeletal parts with which to work but which has handicapped serious students in attempts to understand natural relationships, as in the matter of dimorphism. In spite of their abundance, ease of culture, and relatively large size, foraminifers are among the most neglected of protozoans by zoologists, inasmuch as "They make no dramatic impact on human life like the famous parasites" (SANDON, 1957, *1628, p. 7). Hence, not only taxonomic description of species and genera but also major attempts at classification have largely been made by paleontologists. Zoological and protozoological texts commonly have followed one or another recent classification, though some have objected to the number of subdivisions recognized, as did JEPES (1956, *993, p. 87), who wrote: "It seems better then for the present that a zoologist should adhere to Brady's simpler classification, remembering always that it certainly needs modification in accordance with the characteristics of the living organisms."

Fortunately, not all protozoologists are so narrow in outlook as to ignore three-quarters of a century of studies since the appearance of BRADY'S Challenger Report, and instead of deploiring the erection of a classification based in large part on the fossil record, they regard this as a unique opportunity to use evolutionary data, which is all too rare for a majority of the Protozoa. An apparently common misconception among paleontologists is that the Protozoa are to be regarded as "simple" forms, as indicated by the recent statement "More than 20,000 Recent and fossil species, subspecies and varieties of Foraminifera have been named, and they are arranged under a most elaborate and complex classification of superfamilies, families, and genera. Note that this group of organisms belongs to the one-celled Protozoa. They are the simplest forms in the animal kingdom, and, so far as known, they did not give rise to any of the more complex forms" (RAINWATER, 1960, *1497, p. 47).

By way of contrast are following recent statements by protozoologists: "The Protozoa can not be considered simple in any sense of the word. Each individual is complete in that it contains often within a single cell the facilities for performing all of the body functions for which a vertebrate possesses many organ systems. This concentration of functions into a small bit of protoplasm does not result in simplicity, but only in a reduction of the fundamental problem to a state where the machinery for performing each body function is not so readily visible. The fact that the machinery is not so visible does not imply that it does not exist or that if it does, it is simpler in nature" (JAHN & JAHN, 1949, *983, p. 3).

"Through the processes of organic evolution, they [Protozoa] have undergone cytological differentiation and the Metazoan histological differentiation" (KUDO, 1954, *1064, p. 5). Although foraminifers may have been an "end-of-the-line" development within the Protozoa or Protista, other living Protozoa are regarded as being very similar to the forerunners of all present living organisms. "The modern view holds that photosynthetic phytoflagellates, . . . were probably ancestral not only to the Protozoa proper but also to the entire plant and animal kingdoms . . . the curious choanoflagellates have been considered progenitors of the . . . sponges by a number of systematists" (*385, p. 183). "Whether Proto-
zoa are considered unicellular or acellular, there is practically universal agreement among biologists that they must have served as the source from which the Eumetazoa arose" (*385, p. 184). "The Eumetazoa may have arisen from either a colonial phytoflagellate of some sort or a ciliate-like progenitor. The primitive eumetazoan is postulated to have been a hydrozoan cnidarian in the first case, an acel turbellaria in the second" (*385, p. 187).

In some more recent discussions certain flagellates are regarded as most primitive, the rhizopods representing one branch of evolution from these, the ciliates and Metazoa another. The same primitive flagellate type doubtless gave rise to the higher plants along another line of evolution.

CORLISS (1962, *386, p. 37) stated that the science of systematics is divisible into three phases: "alpha taxonomy, the first or earliest stage, essentially limited to production of conventional descriptions of species and groups of species; beta taxonomy, the synthetic phase, concerned with proposals and treatment of schemes of natural classification embracing all levels in the taxonomic hierarchy; and finally the gamma stage, presumably the ultimate goal of all taxonomy, devoted principally to problems of evolutionary relationships at intraspecific populational levels." He added that "in general, the protozoologist is still in the dark ages of stage one, although for practical reasons . . . he must attempt a bit of beta taxonomy concomitantly."

As the study of microscopic organisms began somewhat later than that of larger ones, the past 150 years has been largely devoted to the alpha taxonomy of CORLISS, namely, description of the many species in living and fossil faunas. Not all work is of equivalent quality in descriptions currently appearing or in comparison with earlier and later studies. Much careless descriptive work, with disregard of the species concept and lack of sufficient examination of previous publications has led to an unquestionably large number of synonyms in some groups, although "lumping" has persisted in others. Either extreme obscures relationships and destroys usefulness of the forms for ecologic, taxonomic, or stratigraphic purposes. Monographic treatments of any group will bring out many examples of synonymy but will also show unjustified use of the same name with too-wide limits and it is safe to assume that undoubtedly many valid species and genera remain yet to be described.

BLACKWELDER (1959, *140) noted that 95 per cent of all described animals are invertebrates and that the Protozoa alone represent 5 per cent of all known animals, being roughly equivalent in number to all known vertebrates. The foraminifers represent about half of all known Protozoa (LEVINE, 1962, *1132), or about 2.5 per cent of all known organisms. No one would recommend placing all vertebrates, living and fossil, in a mere 10 families, as JEPHS (1956, *993) recommended for the foraminifers, yet the vertebrates are a far more compact group in mode of reproduction or in chemical composition of the skeleton, and shorter in geologic duration than foraminifers. The classification adopted herein includes 95 families of Foraminiferida, of which 33 are extinct. If this number of families seems excessive, one may point out that it includes 21,433 Recent and fossil species (up to 1958), according to a recent estimate given by LEVINE (1962, *1132), based on published indices and the Zoological Record. This is undoubtedly too low a figure, since none of these has a representative coverage of species or genera published in the Soviet Union. [As example, some 67 foraminiferal genera omitted from the Zoological Record for the years 1957-1958 are included in the present Treatise volume. We have made no attempt to check the coverage of specific names.] Nevertheless, LEVINE'S figures are a fair estimate. In comparison, LEVINE recorded 4,790 species for ciliated Protozoa (approximately one-fifth as many as for foraminifers), although interestingly enough, numbers of living foraminifers and living ciliates are very close (4,163 foraminifers, 4,776 ciliates). In contrast to the 62 families here recognized for living foraminifers, CORLISS (1962, *386) stated that the ciliates are organized in 130 families. A similar ratio for classification of living and fossil foraminifers would allow for 750 families!

PREVIOUS CLASSIFICATIONS

"As is the case with all other groups of organic beings, few authorities agree in the
classification of the Rhizopods . . .” (Leidy, 1879, *1127, p. 6). This is certainly true of the foraminifers. From the five families originally recognized by d’Orbigny (1826, *1391) to the 50 used by Cushman (1948, *486), 62 by Sigal in Piveteau (1952, *1458), or the 72 utilized in Osnovy Paleontologiy by Rauzer-Chernousova & Fursenko (1959, *1509) considerable variation is indicated in relative importance assigned to the characters utilized and in the resultant number of taxonomic divisions.

DE BLAINVILLE, 1825

The earliest classification of foraminifers using latinized group names was that of de Blainville (1825, *142) in which these names were classed as included with cephalopods. Each of the ten families, assigned to two orders, was based largely on shape of the test and included genera from two groups (Orthocerata, for example, including Belemnites, Orthoceras, and Hippurites with the foraminiferan Nodosaria). Statement of de Blainville’s classification is given in Table 5.

| TABLE 5. Classification of Foraminiferida by de Blainville, 1825 (*142) |
|-----------------------------|-----------------------------|
| Type Malacozoa (Malacozoaires) |
| Class Cephalopoda (Céphalophores) |
| Order Cellulacea (Cellulacés) |
| Families Spherulacea (Sphérolacés) — Planulacea (Planulacés) — Nummulacea (Nummulacés) |
| Order Polythalamaceae (Polythalamacés) |
| Families Orthocerata (Orthocérés) — Lituacea (Lituacés) — Cristacea (Cristacés) — Ammonacea (Ammonacés) — Nautilacea (Nautilacés) — Turbinacea (Turbinacés) — Turriculacea (Turriculacés) |

D’ORBIGNY, 1826

D’Orbigny (1826, *1391) first utilized the term “foraminifères,” although only in French vernacular, to subdivide the Cephalopoda into two orders, those with siphons (Order Siphonifères) and those lacking siphons (Order Foraminifères). The families were based upon chamber arrangement (uniserial; bi- or triserial; enrolled trochospiral or planispiral; milioline, and biserial enrolled, in the order given). Names of the several groups are given in Table 6.

| TABLE 6. Classification of Foraminiferida by d’Orbigny, 1826 (*1391) |
|-----------------------------|-----------------------------|
| Order Foraminifères, nov. |
| Families Les Stichostégues, nov.—Enallostégues, nov.—Héliostégues, nov.—Sections Turbinoides, nov.—Ammonoides, nov.—Les Agathistégues, nov.—Les Enthomostégues, nov. |

CROUCH, 1827

A classification by Crouch (1827, *397) closely followed that of de Blainville but transferred the Spherulacea to the Polythalamia and changed the family terminations, as indicated in Table 7.

| TABLE 7. Classification of Foraminiferida by Crouch, 1827 (*397) |
|-----------------------------|-----------------------------|
| Order Cephalopoda |
| Division I. Polythalamous Cephalopoda |
| Families Orthocerata—Lituolata—Cristata—Sphaerulata—Radiolata—Nautilacea—Ammonacea |

D’ORBIGNY, 1839

In 1839 d’Orbigny in de la Sagra (*1611) elevated his original families based on chamber arrangement to the rank of orders, adding the Monostégues for unilocular forms and erecting ten families within these orders, some based on generic names and others merely on descriptive terms. D’Orbigny’s classification of 1839 appears in Table 8.

| TABLE 8. Classification of Foraminiferida by d’Orbigny, 1839 (*1611) |
|-----------------------------|-----------------------------|
| Class Foraminifères |
| Order Monostégues |
| Order Stichostégues |
| Families Equilateralidae—Inequilateralidae |
| Order Héliostégues |
| Families Nautiloidae—Turbinoidae |
| Order Entomostégues |
| Families Asterigerinidae—Cassidulinidae |
| Order Enallostégues |
| Families Polymorphinidae—Textularidae |
| Order Agathistégues |
| Families Miliolidae—Multiloculidae |

SCHULTZE, 1854

Schultze (1854, *1695) gave the following classification of the Rhizopoda (Table 9).
TABLE 9. Classification of Foraminiferida by Schultze, 1854 (*1695)

NUDA

TESTACEA

MONOTHALAMIA
Families Lagynidae — Orbulinida — Cornuspirida

POLYTHALAMIA

Group HELICOIDEA
Families Miliolida—Turbinoida (Subfamilies Rotalida; Uvellida; Textilarida; Cassidulinida) — Nautiloida (Subfamilies Cristellarida; Nonionida; Peneropliida; Polystomellida) — Alveolinida—Soritida

Group Rhabdoidea
Family Nodosarida

Group SOROIDEA
Family Acervulinida

CARPENTER, PARKER & JONES, 1862

In 1862, two classifications appeared almost simultaneously, one by Carpenter, Parker & Jones (*281) in England, and the other, based largely on fossil faunas, by Reuss (*1552) in Austria. The former divided the Rhizopoda into three orders, that referring to foraminifers being termed the order Reticularia. Major subdivisions were based on test structure, the Imperforata (Table 10) including pseudochitinous, porcelaneous, and arenaceous “families,” and the Perforata including a hyaline, perforate family, another incorporating planktonic forms and a third comprising tests with canal systems.

TABLE 10. Classification of Foraminiferida by Carpenter, Parker & Jones, 1862 (*281)

Order RETICULARIA
Suborder IMPERFORATA
Families Gromida—Miliolida—Lituolida
Suborder PERFORATA
Families Lagenida—Globigerinida (Subfamilies Globigerinina; Textularinae; Rotalinae)—Nummulinida

REUSS, 1862

A more detailed classification was given by Reuss (*1552) with many additional family names, as outlined in Table 11.

TABLE 11. Classification of Foraminiferida by Reuss, 1862 (*1552)

FORAMINIFERA POLYMERA, nov.
Families Rhabdoidea Schultze (Subfamilies Nodosaridea, nov.; Vaginulinidea, nov.; Frondicularidea, nov.; Glandulinidea, nov.; Pleurostomellidea, nov.) — Cristellaridea Schultze—Polymorphinidea (d’Orbigny), nov.—Cryptostegia, nov.—Textilaridea Schultze — Cassidulinida d’Orbigny—Miliolidea Schultze (Miliolidea genuina, nov.; Fabularidea d’Orbigny)—Orbitulinidea, nov.—Peneropliidea Schultze—Lituolidea, nov.—Uvellidea (Ehrenberg), nov.—Rotalidea—Polystomellidea, nov.—Nummulinida, nov.

A postscript to Reuss (1862, *1552, p. 394) gave a revised classification based also on test composition and structure. In this classification (Table 12) the Gromidea were omitted, being transferred to the testacean groups.

TABLE 12. Classification of Foraminiferida by Reuss (*1552, p. 394, postscript)

FORAMINIFERA with imperforate shell
With agglutinated test
Lituolidea—Uvellidea
With porcelaneous calcareous test
Squamulinidea? — Miliolidea (Cornuspirida; Miliolidea genuina; Fabularidea)—Peneropliidea—Orbitulinidea

FORAMINIFERA with porous shell
With glassy, finely porous calcareous test
Spirillinidea—Ovulitidea—Rhabdoidea (Lagenidea; Nodosaridea; Vaginulinidea; Frondicularidea; Glandulinidea; Pleurostomellidea)—Cristellaridea — Polymorphinidea—Cryptostegia—Textilaridea—Cassidulinida
With very finely perforate calcareous test
Rotalidea
With calcareous test with canal system
Polystomellidea—Nummulinida

JONES, 1875

Jones in Griffith & Henfrey (1875, *824) removed arenaceous foraminifers from the Imperforata of Carpenter, Parker & Jones (1862, *281), and added more subdivisions as shown in Table 13.

TABLE 13. Classification of Foraminiferida by Jones (*824)

IMPERFORATE OR PORCELANEOUS FORAMINIFERA
Families Nubecularida—Miliolida—Peneroplida—Orbiculinida—Dactyloporida
ARENACEOUS FORAMINIFERA
Parkeriada—Lituolida

PERFORATE OR HYALINE FORAMINIFERA
Lagenida—Polymorphinidea—Buhminida — Textilarida — Globigerinida (Globigerinina; Rotalina; Polystomellina; Nummulinina)
SCHWAGER, 1877

In SCHWAGER's classification (1877, *1705) test composition and chamber arrangement were combined. The first four subdivisions of the perforate calcareous forms were those with uniserial chambers in one plane, the next three had uniserial chambers in a spire, the eighth had two or more series of chambers, and the ninth was complex. A similar subdivision of the agglutinated forms had three uniserial groups, and one with two or more rows of chambers. In imperforate tests, the first two had chambers in a single series of cyclical arrangement, the third had chambers in more than one series, and the fourth had a complex structure. SCHWAGER's classification is recorded in Table 14.

Table 14. Classification of Foraminiferida by SCHWAGER, 1877 (*1705)

<table>
<thead>
<tr>
<th>Perforate Calcareous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Families Lagenoidea — Rhabdoidea — Dentalinoidea (Subfamilies Dentalinidae; Pullenidae; Nummulitidae) — Cristellaroidae — Polymorphinidae — Buliminidea (Buliminidae; Rotalidae) — Globigerinidae (Globigerinidae; Planorbilinidae) — Textularidea (Textulariidae; Cryptostegia) — Tinoporidea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agglutinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trochamminidea — Lituloidae — Ataxophragmidea — Plecanioida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calcareous Imperforate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornuspiridea — Peneropliidea — Milolidea — Dactyloporidea — Receptaculitidea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chitinous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gromidea</td>
</tr>
</tbody>
</table>

BRADY, 1884

BRADY's classification in the "Challenger" Report (1884, *200), was based largely on his incomparable studies of Recent foraminifers. Although he discarded the suborders Imperforata and Perforata, his 10 families were similar to the 6 families and 3 subfamilies used by CARPENTER, PARKER & JONES (1862, *281), with addition of the Astrorhizidae and Chilostomellidae. Most of these were subdivided into additional subfamilies. The major groupings of families by BRADY, as shown in Table 15, bear considerable resemblance to those here regarded as superfamilies or suborders.

The classification used by LANKESTER (1885, *1093) in the Encyclopaedia Britannica followed that of BRADY, but changed the family and subfamily terminations.

Table 15. Classification of Foraminiferida by BRADY, 1884 (*200)

<table>
<thead>
<tr>
<th>Subkingdom Protopoza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Rhizopoda</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order Foraminifera (Reticularia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Families Gromidae — Milolidae (Subfamilies Nubecularinae; Milolininae; Hauerininae; Peneroplidinae; Alveolininae; Keramospheerinae) — Astrorhizidae (Astrorhizinae; Pilulininae; Saccamininae; Rhabdammininae) — Lituolidae (Lituolinae; Trochamminiae; Endothyridae; Loftusinae) — Textulariidae (Textulariinae; Bulimininae; Cassidulininae) — Chilostomellidae — Lagenidae (Lageninidae; Nodosarinae; Polyplacophorininae; Ramulininae) — Globigerinidae — Rotalidae (Spirillininae; Rotalinae; Tinopininae) — Nummulinidae (Fusulininae; Numulitinae; Cycloclypeinae; ?Eozooninae).</td>
</tr>
</tbody>
</table>

RHUMBLER, 1895

RHUMBLER (1895, *1568A) further subdivided the arenaceous families, removed the Endothyridae from the Lituolidae and Fusulininae from the Nummulinidae of BRADY, combining them in a single family; he also removed the Spirillininae from the Rotalidae (early recognizing the distinctiveness of this group), and combined the remainder of BRADY's Globigerinidae, Rotalidae, and Nummulinidae into a single family. His arrangement of foraminifer assemblages is shown in the following outline (Table 16).

Table 16. Classification of Foraminiferida by RHUMBLER, 1895 (*1568A)

| Families RHABDAMMINIDAE (Subfamilies Myxothecininae; Astrorhizinae; Saccamininae; Rhabdammininae; Hippocrepininae; Girvanellinae) — AMMODISCIDAE — SPIRILLINIDAE — NODOSINELLIDAE — MILIONILIDAE (Nubecularininae; Milolininae; Hauerininae; Peneroplidinae; Alveolininae) — ORBITOLIDAE — TEXTULARIIDAE (Textulariinae; Bulimininae; Cassidulininae) — NODOSARIDAE (Nodosarinae; Lagenidae; Nodosarinae; Polyplacophorininae; Ramulininae) — ENDOTHYRIDAE (Endothyridae; Fusulininae) — ROTALIDAE (Rotalinae; Tinopininae; Globigerininae; Polyplacophorininae; Nummulitinae). |

DELAGE & HÉROUARD, 1896

DELAGE & HÉROUARD (1896, *580) combined CARPENTER's Imperforata and Perforata (as orders) with BRADY's classification within the subclass Foraminiferiae, elevating BRADY's families to tribes or suborders and his subfamilies to families, resulting in a total of 24 families (Table 17).
Foraminiferida—Classification

Table 17. Classification of Foraminiferida by Delage & Herouard, 1896 (*580)

Subclass Foraminiferae
Order Imperforida
Suborder Gromidae
Families Hauerinae—Peneroplinae—Alveolininae—Keramosphaerinae
Suborder Arenaciidae
Tribe Astrorhizina
Families Astrorhizinae—Saccamminae
Tribe Lituolina
Families Lituolinae—Trochamminae—Endothyridae

Order Perforida
Suborder Lagenaide
Families Lageninae—Nodosarinae—Poly morphinae—Ramulinae
Suborder Chilostomellidae
Suborder Textularidae
Families Textularinae—Buliminae—Cassidulina
Suborder Globigerinidae
Suborder Rotalidae
Families Spirillinae—Rotalinae—Tinopori nae
Suborder Nummulitidae
Families Fusulininae—Polystomellinae—Nummulitinae—Cycloclypeinae

Eimer & Fickert, 1899
Eimer & Fickert (1899, *692) redefined many of the earlier proposed families, and erected many descriptive names that were not based on those of included genera, as follows (Table 18).

Table 18. Classification of Foraminiferida by Eimer & Fickert, 1899 (*692)

Astrorhizidae
Families Protocystidae—Astrorhizidae
Siphonoforaminifera (Tubulata)
Families Rhabdamminidae—Dendrophyridae
—Saccorhizidae
Cystoforaminifera (Vesiculata)
Families Gromidae—Psammophoeraidae—Saccamminidae—Kyphamminidae
Ascoforaminifera (Utriculata)
Families Ammosa conidae—Serpuleidae
Stichostegia
Psammostichostegia
Families Hyperamminidae—Aschenonellidae
Titanostegia
Family Nodosaridae
Textularidae
Families Opisto-Dischistidae (Cri brosida; O culosa)—Pavoninidae—Dichistidae (Cri brosida; Oculosa)—Opisto-Trichistidae (Cri brosida; Oculosa)—Trichistidae—Buliminidae—Frondicularidae

Lister, 1903
Lister in Lankester (1903, *1094) used a classification similar to that of Brady but elevated families to the rank of orders and subfamilies to families, the only exceptions being that the subfamilies Cycloclypeinae and Eozooninae were omitted. Lister also gave a long discussion of the features of dimorphism, which he recognized as occurring in nearly all families.

Schubert, 1921
Schubert (1921, *1694) proposed a classification with families similar to those of Brady but with additions which included six main groups, Protammida and Metammida for unilocular and multilocular agglutinated forms, the Porcellanea for porcelaneous forms, and Basistoma, Telostoma, and Schizostoma, based on apertural features. The Basistoma have an interiomarginal or basal aperture, the Telostoma a terminal aperture that is radiate, simple, rounded or specialized. The Schizostoma have a slitlike aperture (e.g., Valvulina) or a modified one (e.g., Bulimina), or cribrate ones developed from these. Schubert’s classification is as follows (Table 19).

Table 19. Classification of Foraminiferida by Schubert, 1921 (*1694)

Protammida
Metammida
Basistoma
Families Endothyridae (Endothyridae; Fusulininae)—Rotalidae (Truncatulininae; Pulvinulinae; Globigerinidae; Rotalinae; Discorbininae; Patellininae)—Orbitoididae—Nummulitidae
Porcellanea
Families Cornuspiridae—Miliolidae—Nubecularidae—Orbitolitidae (Orbitolinidae; Orbiculinidae)—Keramosphaeridae—Alveolinidae
Telostoma
Families Nodosaridae (Nodosarinae; Cristellari nae)—Polymorphinidae
Schizostoma
Families Valvulinidae (Valvulininae; Textulari nae)—Buliminidae (Bulimininae)
CUSHMAN, 1925

CUSHMAN followed BRADY in classification of the foraminifers in his early publications on these protozoans of the Atlantic and Pacific Oceans, and as late as 1925 this differed only by addition of a few subfamilies. CUSHMAN's arrangement is shown in Table 20.

Table 20. Classification of Foraminiferida by Cushman, 1925 (1925)

<table>
<thead>
<tr>
<th>Families</th>
<th>Subfamilies</th>
<th>Genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gromidae</td>
<td>Astrorhizidae</td>
<td>Saccamminidae, Hyperamminidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lituolidae, Cassidulinidae</td>
</tr>
<tr>
<td></td>
<td>Textulariidae</td>
<td>Spiroplectinae, Textulariinae, Verneulininae, Bulimininae, Cassidulinae</td>
</tr>
<tr>
<td></td>
<td>Laginidae</td>
<td>Lageninae, Nodosariinae, Polyomorphininae, Uvigerininae</td>
</tr>
<tr>
<td></td>
<td>Chilostomellidae</td>
<td>Globigerinidae, Trophyidae</td>
</tr>
</tbody>
</table>

CUSHMAN, 1927

In 1927 CUSHMAN replaced the Gromidae by the Allogromiidae, and elevated various subfamilies to family status, with the result that 15 arenaceous families (instead of three), and six porcelaneous families (instead of one) were distinguished. The calcareous and agglutinated subfamilies of the Textulariidae were separated, with recognition of the Heterohelicidae, Buliminae, and Cassidulinidae, and trochospiral hyaline forms were divided into a number of families and subfamilies. The previously recognized ten families were increased to 45. CUSHMAN's 1927 classification is summarized in Table 21.

Table 21. Classification of Foraminiferida by Cushman, 1927 (1927)

<table>
<thead>
<tr>
<th>Order Foraminifera:</th>
<th>Families</th>
<th>Subfamilies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foraminiferida d'Orbigny, 1826</td>
<td>Allogromidae</td>
<td>(Myxothecinae, Allogromiinae)</td>
</tr>
<tr>
<td></td>
<td>Saccamminidae</td>
<td>(Psammosphaerinae, Saccamininae, Pelosininae)</td>
</tr>
<tr>
<td></td>
<td>Hyperamminidae</td>
<td>(Hyperammininae, Dendrophryinae)</td>
</tr>
<tr>
<td></td>
<td>Lituolidae</td>
<td>(Spirophragminiinae, Textulariinae)</td>
</tr>
<tr>
<td></td>
<td>Verneulinidae</td>
<td>(Valvulinidae, Fusulinidae)</td>
</tr>
<tr>
<td></td>
<td>Nummulitidae</td>
<td>(Neusinidae, Silicinidae, Milolidae, Ophalimididae, Cucurritinae, Nodobacularininae, Ophalimidinae, Nubecularininae)</td>
</tr>
<tr>
<td></td>
<td>Fischerinidae</td>
<td>(Trocchanminidae, Globoturritelinae, Ammosphaerulininae)</td>
</tr>
<tr>
<td></td>
<td>Placopilitidae</td>
<td>(Placopilininae, Polyphragminiinae)</td>
</tr>
<tr>
<td></td>
<td>Orbitolinidae</td>
<td>(Orbitolininae, Terebrulininae, Uvigerininae)</td>
</tr>
<tr>
<td></td>
<td>Nummolitidae</td>
<td>(Peneroplidae, Peneroplinae, Peneroplistiinae)</td>
</tr>
<tr>
<td></td>
<td>Miliolidae</td>
<td>(Cornuspirininae, Nodobacularininae)</td>
</tr>
<tr>
<td></td>
<td>Ophiomorphaidae</td>
<td>(Ophiomorphininae, Polystomellinae, Cycloclypeinae)</td>
</tr>
<tr>
<td></td>
<td>Miliolidae</td>
<td>(Nodosariinae, Lageninae)</td>
</tr>
<tr>
<td></td>
<td>Polyomorphinidae</td>
<td>(Polyomorphininae, Ramulininae, Nonionidae)</td>
</tr>
<tr>
<td></td>
<td>Nummulitidae</td>
<td>(Fusulininae, Verbeekininae)</td>
</tr>
<tr>
<td></td>
<td>Loftusilidae</td>
<td>(Fischnidae, Terebrulininae, Uvigerininae)</td>
</tr>
<tr>
<td></td>
<td>Hantkeninidae</td>
<td>(Hantkenininae, Bolivinitinae, Plectofrondicularinae)</td>
</tr>
<tr>
<td></td>
<td>Membraniferidae</td>
<td>(Membraniferininae, Membraniferinae, Membraniferinae)</td>
</tr>
<tr>
<td></td>
<td>Rotaliidae</td>
<td>(Rotalinae, Turritaritella, Turritaritellinae)</td>
</tr>
<tr>
<td></td>
<td>Textulariidae</td>
<td>(Textulariinae, Verneulininae, Bulimininae, Cassidulinae)</td>
</tr>
</tbody>
</table>

GALLOWAY, 1933

The classification of GALLOWAY (1933, 1933) recognized 35 families and his was the first attempt to cite authors and dates for the family categories, as well as to recognize priority in suprageneric classification. Thus, some family names differed from the previous classifications even when included genera were the same. Many features were similar to the classification of RHUMBLER (1895), which recognized the Spirillinidae, Endothyridae, and Nodosellidae as separate families. Greater subdivision of the hyaline calcareous families was made although with somewhat different grouping as compared with CUSHMAN's classification. GALLOWAY's arrangement is outlined in Table 22.

Table 22. Classification of Foraminiferida by Galloway, 1933 (1933)

<table>
<thead>
<tr>
<th>Order Foraminifera d'Orbigny, 1826</th>
<th>Families</th>
<th>Subfamilies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagynidae</td>
<td>(Subfamilies Lagyninae, Allogromiinae)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saccamminidae</td>
<td>(Psammosphaerinae, Saccamininae, Pelosininae)</td>
</tr>
<tr>
<td></td>
<td>Hyperamminidae</td>
<td>(Hyperammininae, Dendrophryinae)</td>
</tr>
<tr>
<td></td>
<td>Lituolidae</td>
<td>(Spirophragminiinae, Textulariinae)</td>
</tr>
<tr>
<td></td>
<td>Verneulinidae</td>
<td>(Valvulinidae, Fusulinidae)</td>
</tr>
<tr>
<td></td>
<td>Nummulitidae</td>
<td>(Neusinidae, Silicinidae, Milolidae, Ophalimididae, Cucurritinae, Nodobacularininae, Ophalimidinae, Nubecularininae, Fischerinidae, Trochamminidae, Placopilitidae, Orbitolinidae, Nummolitidae, Miliolidae, Ophiomorphaidae, Membraniferidae, Rotaliidae, Textulariidae, Verneulinidae, Bulimininae, Cassidulinae)</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
CHAPMAN & PARR, 1936

CHAPMAN & Parr in 1936 (*325) grouped 33 families into 3 superfamilies, one for the pseudochitinous Allogromiidae, one for all perforate hyaline calcareous families, and one for remaining arenaceous and porcelaneous forms. The families were similar to those of CUSHMAN’S 1927 classification, but among the agglutinated group, the Neusinidae were omitted and Placoplistinidae and Orbitolinidae reduced to subfamily status, and the calcareous Nonionidae, Hantkeninidae, Amphisteginidae, Calcarinidae, Cymbaloporidae, Globochitellidae, Ammonolidae, Planorbulinidae, Rupertiidae, and Homotremaidae of CUSHMAN were reduced to subfamilies. The classification of CHAPMAN & Parr is given in Table 23.

TABLE 23. Classification of Foraminiferida by Chapman & Parr, 1936 (*325)

Order Foraminifera

Superfamily ALLOGROMIIOIDEA

Allogromiidae (Subfamilies Myxothecinae; Allogromiinae)

Superfamily SPIRILLINOIDEA

Spirillinidae — Nodosariidae (Nodosariinae; Lagenidae) — Polymorphinidae (Polymorphininae; Ramulininae) — Buliminidae (Turrilininae; Bulimininae; Virgulininae; Reussellinae; Uvigerininae) — Cassidulinae — Pleurostomellidae — Heterohelicidae (Heterohelicinae; Globulinae; Bolivinitinae; Plectoforhelicinae; Eouvigerininae) — Rotalidae (Discorbinae; Cymbaloporinae; Rotulininae; Pegidiinae; Siphonininae; Baggininae; Cibicidinae; Planorbulininae; Rupertiinae; Homotreminae; Amphistegininae; Calcarininae) — Chlastomellidae (Globigerininae; Orbulininae; Pulleniatininae; Candeininae; Hantkenininae; Globochitellinae) — Orbitoididae (Lepidorbitoidinae; Orbitoidinae; Omphalocyclus; Miyogypsininae; Discocyclininae) — Nummulitidae (Nonioninae; Nummulitinae)

Superfamily Ammodiscoida

Ammodiscidae (Ammodiscinae; Tolypammininae) — Hyperamminidae (Hyperammininae; Dendrophryinae) — Saccamminidae (Psammosphaerinae; Saccammininae; Pelosininae; Webelininae) — Rhizamminidae (Rhizammininae; Botellininae) — Astrorhizidae — Ophtalmididae (Corpuspininae; Nodobacularinae; Ophtalmidinae; Nubecularinae) — Nodosariidae — Fischineridae — Soritidae (Peneroplinidae; Archaiasinae; Orbitolininae) — Alveolinellidae
GLAESSNER, 1945

GLAESSNER (1945, *796) recognized 37 families, grouped into seven superfamilies. Two arenaceous superfamilies were distinguished, one of unilocular and the other of multilocular families. Another superfamily included the Endothyridae and Fusulinidae and still another included porcelaneous forms; the hyaline families were divided into three superfamilies, one for the Lagenidae and Polymorphinidae, one for most biserial and elongate genera, and a third for all spirally enrolled and discoidal forms. Most families were similar to those of CUSHMAN'S 1927 classification except that the Spirillinidae and Discorbidae were recognized as distinct families and the Hantkeninidae, Anomalinidae, Rupertiidae, and Homotremidae were included in other families. GLAESSNER'S arrangement of foraminifer suprageneric taxa is shown in Table 24.

Table 24. Classification of Foraminiferida by Glaessner, 1945 (*796)

Superfamily Buliminidea
Buliminidae (Turrilininae; Bulimininae; Reussellinae; Uvigerininae; Plectofrondicularininae; Bolivininae) — Cassidulinidae — Ellipsoidinidae — Chilostomellidae
Superfamily Rotalidea
Spirilllinidae (Spirilllininae; Patellininae) — Discorbidae (Discorbinae; Siphonininae; Anomalinae) — Globigerinidae (Globigerininae; Hantkenininae) — Globorotalidae — Gumbelinidae — Planorbulinidae (Planorbulininae; Rupertiinae) — Cymbaloporidae — Nonionidae — Ceratobuliminae — Amphisteginidae — Rotaliidae — Calcarinidae — Miogypsinae — Orbitoididae (Omphalocylininae; Orbitoidinae; Helicoledininae) — Discocyclinidae — Camerinidae (Camerininae; Heterostegininae)

CUSHMAN, 1948

In the last edition of his text, CUSHMAN (1948, *486) recognized 50 families, adding five to the 45 families of his 1927 classification. Changes in subfamilies were made. Table 25 lists only families in which additional subfamilies were recognized (marked by an asterisk) or subfamilies were omitted (indicated by enclosure within square brackets), together with the five added families (marked by two asterisks).

Table 25. Family-group Taxa of Foraminiferida added by Cushman (1948, *486) to his 1927 Classification

Saccaminidae (Psammomphena; Saccamininae; Pelosininae; *Webbinellinae) — Reophaciidae (Aschernollinae; Reophacinae; *Sphaeramininae) — Ammodiscidae (*Ammodiscinae; *Tolypammininae) — Lituolidae (Haplophyrafininae; *Endothyrinae; Lituolinae) — Valvulinidae (*Valvulininae; *Eggerellinae) — Fusulinidae (Mollers, 1878; Fusulininae Rhumbler, 1895 [Verbeekininae]; *Schwagerininae Dunbar & Henbest, 1930; *Neoschwagerininae Dunbar, nov. [Verbeekininae Staff & Wedekind, 1910; *Neoschwagerininae Dunbar & Condra, 1927] — Silicinidae (*Involulininae; *Rzehakininae) — Ophthalmididae (Cornuspirinae; *Nodobaculinae; *Nodophthalmidinae; Ophthal-mulininae; Nubeculariinae) — Tachomminidae (Tachommininae; Globotextularinae; Ammosphaeroidininae; *Tetralaxinae) — Camerinidae (Camerininae; Heterostegininae; *Archaediscinae; *Camerininae; *Heterohelicidae (Heterohelicinae; *Pavonininae; *Gumbelininae; Bolivininae; *Spiroplectininae; Plectofrondicularininae; Uvigerininae) — Buliminidae (Turrellininae; Bulimininae; Reussellinae; Uvigerininae; Plectofrondicularininae; Bolivininae) — Cassidulinidae — Ellipsoidinidae — Chilostomellidae — Rotaliidae (Spirilllininae; Patellininae) — Discorbidae (Discorbinae; Siphonininae; Anomalinae) — Globigerinidae (Globigerininae; Hantkenininae) — Globorotalidae — Gumbelinidae — Planorbulinidae (Planorbulininae; Rupertiinae) — Cymbaloporidae — Nonionidae — Ceratobuliminae — Amphisteginidae — Rotaliidae — Calcarinidae — Miogypsinae — Orbitoididae (Omphalocylininae; Orbitoidinae; Helicoledininae) — Discocyclinidae — Camerinidae (Camerininae; Heterostegininae)
Foraminiferida—Classification

HOFKER, 1951

The next major revision of foraminiferal classification was by Hofker (1951, *928c) in the third part of his report on the “Siboga” foraminifers. Some of the non-perforate agglutinated and porcelaneous genera were treated in the earlier reports, but in the third part the agglutinated forms with apertural tooth (Valvulinidae) were regarded as the source of most hyaline foraminifers, and all were considered to belong to the order Dentata of the subclass Foraminifera. In this classification major partition into suborders was on the basis of apertural characters, the Protoforaminata having a single aperture (protoforamen) with internal tooth plate, the Biforaminata having an additional second aperture (deuteroforamen), and the Deuteroforaminata having only the deuteroforamen, the original protoforamen having been reduced. Attention was focused on the previously neglected tooth plates and internal partitions as important guides in determining relationships. A number of new families were erected for different trochospiral hyaline groups, a total of 23 families being included in the three suborders. Hofker's classification is recorded in Table 26.

Table 26. Classification of Foraminiferida by Hofker (1951, *928c)

Subclass Foraminifera
Order Dentata
Suborder Protoforaminata
Families Valvulinidae—Bolivinidae—Buliminidae—Bulimulinidae—Buliminae—Uvigerinidae
Cassidulinidae
Suborder Biforaminata
Ceratobuliminidae—Cibicidae—Eponidae—Epistominae—Laticarinidae—Alabamae—Robertinae—Camerinidae
Suborder Deuteroforaminata (or Conorbida)
Conorbidae—Rotalidae—Pulvinulidae—Marginolamellidae—Amphisteginidae—Cymbaloporettidae—Valvulinidae—Tinoporidae—Globigerinidae

SIGAL, 1952

The classification used by Sigal (*1458) divided the foraminifers into three suborders, one for single-chambered forms, one for tubular forms—both straight tubular and enrolled ones with agglutinated, porcelaneous, or hyaline tests—and a third for remaining chambered forms, making this suborder comparable to the so-called “polythalamians” of 18th and 19th century usage. The third suborder was divided into six superfamilies, one containing agglutinated forms, one the fusulinids, one the porcelaneous groups, and three the hyaline perforate foraminifers (Lagenidea, Buliminidea, Rotalidea). Fewer subfamilies were recognized, but a total of 62 families was included. Sigal's classification is presented in Table 27.

Table 27. Classification of Foraminiferida by Sigal in Piveteau (1952, *1458)

Order Foraminifera
Suborder Uniloculinae
Superfamily Lagenidea
Families Saccamminidae—Rhizamminidae—Astrorhizidae

Suborder Biloculinae
Hyperamminidae—Ammodiscidae—Coronospiridae—Spirillidae—Involutinidae

Suborder Pluriloculinae
Superfamily Lituolidea
Reophaciidae—Haplophragmiidae—Textulariidae—Silicodentulidae—Trochaminidae (Trochamminiae; Textratinae)—Placospilidae—Psychlocadiidae—Verneulinidae (Eggerellinae; Valvuliniae; Verneulliniae; Ataxophragmiinae)—Neusinidae (appendix)—Litulinidae (Litulinae; Loftusinae)—Orbitolinidae—Endothyridae

Superfamily Fusulinoidea (by R. Ciry)
Fusulinidae (Fusulininae; Schwagerininae)—Neoschwagerinidae (Verbeekininae; Neoschwagerininae)

Superfamily Miliolidea
Ophthalmididae (Nodophthalmidinae; Opalthalmininae; Nubeculariinae)—Miliolidae—Fischeridae—Peneroplidae (Spirolininae; Meandropsininae; Orbitolitinae; Keramospheerinae (appendix))—Alveolinidae—Paramiliolidae (appendix)

Superfamily Lagenidea
Lagenidae (Lenticulininae; Lageninae; Stilostomellinae)—Poly morphinidae (Polymorphininae; Ramulininae)—Enantimorphinidae

Superfamily Buliminidea
Buliminidae (Turrilininae; Bulimininae; Reus-
POKORNÝ, 1958

Pokorný (1958, *1478) recognized nine superfamilies, adding to those of Sigal the Spirillinidea, distinguished as a separate superfamily. Among his 60 families were included the Semitextulariidae, Tournayellidae, Lasiodiscidae, Archaeodiscidae, and Loftusiidae. His classification is summarized in Table 28.

Table 28. Classification of Foraminiferida by Pokorný (1958, *1478)

Class Granuloreticulosa de Saedeeleer, 1934
Order Foraminifera d’Orbigny, 1826
Superfamily Allogromiidea
Superfamily Astrorhizidea
Families Saccamminidae (Psammosphaerinae; Saccamininae; Pelosininae) — Astrorhizidae — Orbitoididae (Ormphacolychinae) — Orbitoidinae. Pseudorbitoidinae. Clypeorbinidae — Discyclinidae (Discyclininae; Orbitoclypeinae) — Amphisteginidae — Helicopectinidae — Lepidocyclinidae

Superfamily Milolidea
Ophthalmidiidae (Cornuspirinae; Ophthalmoi- niidae: Nubeculininae) — Milolidea — Peneroplidae — Alveolinidae — Keramospheeridae

Superfamily Nodosariidea
Nodosariidae — Polymorphinidae — Enantiomorphinidae

Superfamily Buliminidea
Buliminidae (Turrilininae; Bulimininae; Reusellinae; Uvigerininae; Plectofrondicularinae; Bolivininae) — Cassidulinidae — Chilostomellidae — Nonionidae — Ellipsodinidae

Superfamily Spirillinidea
Spirillinidae (Spirillininae; Patellininae)

Superfamily Rotalidea
Discorbidae (Discorbinae; Siphonininae; Baggininae; Anomalininae) — Planorbulinidae — Rupertiidae (Rupertiinae; Homotrematinae) — Pseudorbitoididae — Lepidocyclinidae — Helicolepidinidae — Lepidocyclinidae — Miogvpsinidae — Orbitoididae — Pseudorbitoididae — Lepidocyclinidae — Helicopectinidae — Lepidocyclinidae — Miogvpsinidae

REISS, 1958

Reiss (1958, *1530) published a revised classification of perforate hyaline foraminifers based on the lamellar character of the walls and septa. In addition to five superfamilies with nonlamellar tests (these groups not being subdivided or discussed), he recognized five superfamilies of lamellated foraminifers, although the Monolamellidea and Bilamellidea (and Biloculinidea) were invalid according to rules of nomenclature since they were not based on the name of an included genus. In part, families were those proposed by Hofker, but some invalid families were indicated (e.g., Hyalovirgulinidae) and others were placed conflictingly in two superfamilies (i.e., Orbitoididae, “Pulvinulinidae”). In spite of these defects, Reiss’ studies re-emphasized the importance of wall structures in many of the smaller foraminifers as well as in the so-called “larger foraminifera.” The classification is recorded in Table 29.
TABLE 29. Classification of Foraminiferida by Reiss (1958, *1530)

NONLAMELLAR TESTS
- Superfamily Astrorhizidea (agglut., pseudo-chitin.)
- Superfamily Endothyrida (calc. complex)
- Superfamily Lituoidea (pseudo-chitin, agglut., "fibrous," microgran.)
- Superfamily Miliolidea (cryptocrystalline, "porcelain.")
- Superfamily Biloculinidea (agglut., porcelain, radiate)

LAMELLAR, CALCIQUEOUS PERFORATE TESTS
- Superfamily Lagenidea (radiate microstructure)
 Families Lagenidae—Polymorphinidae—Enantiomorphinidae
- Superfamily Buliminidea (Protoforaminata) (radiate and granular microstructure)
 Buliminidae — Buliminellidae — Virgulinidae — Hyalovirgulinidae — Uvigerinidae — Bolivinidae — Cassidulinidae — Chilosomellidae
- Superfamily Monolamellidea (radiate and granular microstruct.)
 (A) Biforaminata
 Ceratobuliminidae — Epistominidae — Robertinidae — Nonionidae — Alabaminiidae — Eponididae — Parrelloididae — Siphoninidae
 (B) Deuteroforaminata
 Conorbidae — "Pulvinulinidae" (pars) — Valvulineriidae — Asterigerinidae — Plano-norbulinidae

Superfamily Rotalidea (bi- and deuteroforaminata, radiate)
Rotaliidae — Rupertiidae — Miscellanidae — Nummulitidae — Baculogyripinidae — Elphididae — Miogypsinidae — Orbitoididae

Superfamily Bilamellidea (deuteroforaminata, radiate and granular)
Gavelinellidae — "Pulvinulinidae" (pars) — Anomaliniidae — Globigerinidae — Hantkeninidae — Gumbelinidae — Globorotaliidae — Cymbaloporettidae — Amphistegiinidae — Helicoledinidae — Discocyclinidae — Orbitoididae (pars)

RAUZER-CHERNOUSOVA & FURSENKO, 1959

In 1959 a classification of foraminifers directed by RAUZER-CHERNOUSOVA & FURSENKO (*1509) and including the work of many Soviet micropaleontologists was published in Osnovy Paleontologii. This classification utilized 13 orders, 14 superfamilies, and 72 families. Major differences from other published arrangements consisted in

© 2009 University of Kansas Paleontological Institute
Superfamily Lituolidea Reuss, 1861
 Lituolidae Reuss, 1861 (Haplophragmellinae Reytinger, subfam. nov.; Lituolinae Reuss, 1861; Subfamiliae incertae)—Silicinidae Cushman, 1927 (Involutininae Cushman, 1940; Rzehakininae Cushman, 1940)

Order Endothyrida
 Endothyridae H. B. Brady, 1884 (Endothyrinae H. B. Brady, 1884; Chernysheva, subfam. nov.; Plectogyrinae Reytinger, subfam. nov.; Endothyranopinae Reytinger, subfam. nov.)—Lituolinidae Reuss, 1861; Subfamiliae incertae)—Silicinidae Cushman, 1927 (Involutininae Cushman, 1940; Rzehakininae Cushman, 1940)

Order Fusulinida
 Fusulinidae von Moller, 1878
 Ozawainellidae Thompson & Foster, 1937 (Staffellininae A. D. Miklukho-Maklay, 1949; Ozawainellinae Thompson & Foster, 1937)—Fusulinidae von Moller, 1878 (Fusulinellinae Staff & Wedekind, 1910; Fusulininae von Moller, 1878; Eofusulininae Rauzer-Chernousova & Rosovskaya, subfam. nov.)—Schwagerinidae Dunbar & Henbest, 1930 (Schwagerininae Dunbar & Henbest, 1930; Polydiexodininae A. D. Miklukho-Maklay, 1953)

Order Textulariida
 Textulariidae d’Orbigny, 1846 (Palaeotextulariinae Galloway, 1933; Textulariinae d’Orbigny, 1846)

Order Ataxophragmiida
 Trochamminidae Schwager, 1877—Ataxophragmiidae Schwager, 1877 (Verneullininae Cushman, 1911; Valvulininae Cushman, 1927; Ataxophragmellinae Schwager, 1877)—Orbitolinidae Martin, 1890—Placophragmidinae Cushman, 1928 (Placophragmellinae Cushman, 1928; Coscinophragmidinae Thalmann, 1950)—Tettraxidinae Galloway, 1933—Biseriamminidae N. E. Chernysheva, 1941

Order Milolida
 Superfamily Milolidea d’Orbigny, 1839
 Coraspirididae Reuss, 1861—Ophthalmostraeinae Cushman, 1927—Milolidae d’Orbigny, 1839—Familiae incertae

Superfamily Alveolinidea Schultze, 1854
 Peneropolidae Schultze, 1854—Alveolinidae Schultze, 1854

Order Lagenida
 Lagenidae Schultze, 1854 (Umbellinae Fursenko, subfam. nov.; Lageninae Schultze, 1854; Colonellinae Fursenko, subfam. nov.; Nanicellinae Fursenko, subfam. nov.; Lenticulinae Sigal, 1952)—Enantioenomorphinae Marie, 1941—Polymorphininae d’Orbigny, 1846 (Polymorphininae d’Orbigny, 1846; Ramulininae H. B. Brady, 1884)—Pseudopalmulidae E. V. Bykova, fam. nov.

Order Rotalida
 Superfamily Discorbida Cushman, 1927
 Discorbidae Cushman, 1927 (Discorbinae Cushman, 1927; Baggatellinae Cushman, 1927; Eponinae Hofker, 1951)—Siphonellinae Cushman, 1928 (Siphonellinae Cushman, 1927; Almaeninae Myatlyuk, subfam. nov.)—Pseudopallidae Voloshinova, 1952—Chapmanidae Galloway, 1933

Superfamily Ceratobuliminidea Glaessner, 1937
 Epistominae Broten, 1942—Ceratobuliminidea Glaessner, 1937—Robertinidae Sigal, 1952—Asterigerinidae d’Orbigny, 1839

Superfamily Nonionidea Schultze, 1854

Superfamily Globigerinidea Carpenter, 1862
 Globigerinidae Carpenter, 1862 (Globigerinellinae Carpenter, 1862; Orbulinae Schultze, 1854; Pulemielininae Cushman, 1927; Candeininae Cushman, 1927)—Hantkeninidae Cushman, 1924—Globorotalids Cushman, 1927 (Globorotaliidae Cushman, 1927; Globotruncanidae Broten, 1942; Globorotaliidae Cushman, 1927; Rugoglobigerininae Subbotina, subfam. nov.)

Superfamily Rotalinidea Reuss, 1860
 Rotalinidae Reuss, 1860—Elphidiidae Galloway, 1933 (Elphidiinae Galloway, 1933; Cribroelphidiinae Voloshinova, 1958)

Order Nummulitida
 Nummulitidae Carpenter, 1859 (Nummulitellinae Carpenter, 1859; Miscellaneinae Sigal, 1952; Siderolitinae Sigal, 1952; Heterostegininae Galloway, 1933)—Miogypsiniidae Tan Sin Hok, 1936—Orbitoididae Prever, 1904 (Omphalocyclininae Vaughan, 1920; Orbitoidinae Prever, 1904; Pseudorbitoidinae Rutten, 1935; Lepidorbitoidinae Silvestri, 1907)—Discocyclinidae Vaughan & Cole, 1940 (Discocyclininae Vaughan & Cole, 1940; Orbitoclypeininae Brömstedt, 1946)—Lepidocyclinidae Scheffen, 1932 (Helicolepidininae Tan Sin Hok, 1936; Lepidocyclininae Tan Sin Hok, 1936)

Order Buliminida
 Buliminidae Jones, 1876 (Bulimulininae N. K. Bykova, subfam. nov.; Virgulininae Cushman, 1927; Baggatellinae N. K. Bykova, subfam. nov.; Bulimininae Jones, 1876; Reussellinae Cushman, 1933; Caucasininae N. K. Bykova, subfam. nov.; Uvigerininae Cushman, 1913)—Fleustostomelidae Reuss, 1860—Cassidulinidae d’Orbigny, 1839
Order Heterohelicida

Bolivinitidae Cushman, 1927 (Bolivininae Glaessner, 1937; Bolivinitinae Cushman, 1927; Plectofrondicularinae Glaessner, 1945; Laco­steininae Sigal, 1952) — Heterohelicidae Cushman, 1927

Foraminifera. Familiae incertae sedis

Chilostomellidae H. B. Brady, 1881 (Allomorphininae Cushman, 1928; Chilostomellinae H. B. Brady, 1881; Seabrookiinae Cushman, 1928; Allomorphinellinae Cushman, 1928; Sphaeroidininae Cushman, 1928) — Archae­discidae N. E. Chernysheva, 1948 — Lasiodiscidae Reytlinger, fam. nov. — Spirillinidae Reuss, 1861 (Spirillininae Reuss, 1861; Patellini­nae Rhumbler, 1906)

CLASSIFICATION ADOPTED IN TREATISE

Ideally, classification of the Foraminiferida, as of other animals, should be based on complete morphological data (e.g., characters of the test, protoplasm, inclusions in the protoplasm, nucleus), obtained by all known suitable techniques, as well as on information concerning reproductive processes (e.g., modifications of the alternation of generations, gametes), life habits and habitat, geologic ranges, and ontogenetic changes. As far as knowledge is available, we have attempted to follow this procedure in the present classification. Because of the paucity of information yet available on living foraminifers, the taxonomic divisions are necessarily based largely on characters of the test, though additional data of all sorts are included and utilized when possible.

Wall composition and microstructure of the test are regarded by us as primary in importance for classifying the Foraminiferida, for these skeletal features are determined by the nature of the secreting protoplasm. Thus, the basic chemical composition, and radial or granular arrangement of the crystals is utilized for distinguishing characters judged to have most significance for definition of suborders and superfamilies. Within a suborder, the unilocular or multilocular nature of the test is considered important (superfamily rank) in the lower groups (agglutinated and microgranular forms), but the few unilocular tests among hyaline calcareous forms appear in each case to be probably secondarily simplified, as also evidenced in Oolina, for example, by its parasitic habit and loss of the sexual generation in reproduction.

Of secondary importance is mode of chamber and septal addition (lamellar nature of hyaline tests), and whether chambers are added in uniserial, planispiral, or low to high trochospiral arrangement, or modifications or combinations of these.

In interpreting wall composition to be primary in importance, we conclude that the same chamber arrangement and form of test may have developed in independent lineages by parallel evolution, without indicating interrelationship of the similarly shaped shells. Thus, planispiral (or uniserial, or biserial, or trochospiral) forms may have developed independently in forms with arenaceous, porcelaneous, microgranular, hyaline radial (calcitic or aragonitic), and hyaline granular walls. The development of bilamellar septal structure also seems to have occurred independently in forms with radial and granular walls.

Apertural characters and modifications of them are regarded as next in importance. The Nodosariacea, for example, dominantly have radite apertures, some with modifications such as the entosolenian tubes of the Glandulinidae. The Buliminacea possess a basically loop-shaped aperture and internal tooth plate, but modifications in the direction of terminal or even multiple apertures occur with differing form and arrangement of the chambers.

Chamber form and arrangement are considered to be third in importance, followed by the free-living or attached nature of the animal.

The classification incorporates many features utilized in previous ones which differ from one another mainly because of the dissimilar emphasis placed by different workers on features such as wall composition, perforation, microstructure, layering, test shape, chamber number, chamber form and arrangement, apertural position, and modifications of these.

We believe that a relatively detailed suprageneric classification, with suborders, superfamilies, families, and subfamilies should aid in grouping like forms. By utilizing critically as many characters as possible in constructing this classification, it is hoped
to emphasize the need for more detailed descriptions of all new species and genera, as well as redescription whenever possible of inadequately treated earlier ones.

The Treatise classification of Foraminiferida recognizes five suborders of these protists, defining them mainly on the basis of wall composition of their test. The suborders are named Allogromiina (membranous and pseudochitinous tests), Textulariina (agglutinated tests), Fusulinina (calcareous microgranular tests), Miliolina (porcelaneous calcitic tests), and Rotaliina (hyaline perforate calcareous tests). Seventeen superfamilies are distinguished within these suborders on the basis of the unilocular or multilocular nature of tests (Textulariina, Fusulinina) and character of wall microstructure (Fusulinina, Rotaliina). The Rotaliina include ten superfamilies—Nodosariacea, with monolamellar walls of radially built calcite and radiate terminal apertures; Buliminacea, with monolamellar walls of radially built calcite forming a highspired test with loop-shaped aperture and internal tooth plate; Discorbacea, with enrolled trochospiral tests and monolamellar walls of radially built calcite; Spirillinacea, also with monolamellar walls and with test commonly forming a single crystal, reproduction in association, with amoeboid gametes; Rotaliacea, with walls of radially built calcite and secondarily doubled septa making a canal system; Globigerinacea, foraminifers of planktonic habit with walls of radially built calcite forming a coarsely perforate test with bilamellid septa; Orbitoidacea with walls of radially built calcite and bilamellid septa; Cassidulinacea, with walls of granular calcite, some families monolamellid, others bilamellid; Carterinacea, with walls composed of calcite spicules, each consisting of a single crystal; and Robertsonacea, with walls of radially arranged aragonite forming internally subdivided chambers.

Although many genera are definitely placed within this framework, others have been insufficiently described to allow unquestioned assignment of them without restudy. When possible, such restudy has been undertaken, but specimens of some type-species have not been available for sectioning and X-ray or petrographic analysis in order to determine the wall microstructure, chemical composition, and lamellar character. Since the generic assignment of other species presumed to belong in a given genus may be questionable it was considered necessary always to check the type-species in order to determine reliably the wall structure of each genus. When these features are known, they are indicated in the generic diagnoses, but if not, statements concerning wall structure are omitted, indicating that its characters have yet to be studied. Some genera may require transfer to other families and superfamilies after the walls of their tests have been properly investigated. Generic and specific identification of them commonly does not necessitate recourse to these methods, but original placement within suprageneric categories requires it.

OUTLINE OF CLASSIFICATION

The following outline of the classification of the Foraminiferida summarizes taxonomic relationships, geologic occurrence, and numbers of recognized genera and subgenera in each family group and higher-rank taxon. Where a single number is given, it refers to genera; where two numbers are given, the second indicates subgenera. Authorship of the systematic descriptions is also indicated by recording with each division the initial letters of the author's name (B for Barker, C for Cole, D for Douglass, L-T for Loeblich & Tappan, R for Reichel, TH for Thompson).

The stratigraphic distribution of suborders, superfamilies, families, and subfamilies of Foraminiferida recognized in the Treatise is indicated graphically in Fig. 83A. Stratigraphic distribution of families plotted in order of first known appearance in the geologic record is shown graphically in Fig. 83B.

Main Divisions of Foraminiferida

Allogromiina (suborder) (47). U.Cam.-Rec. (L-T)
Lagynacea (superfamily) (47). U.Cam.-Rec. (L-T)
Lagynidae (18). Rec. (L-T)
Allogromiidae (29). U.Cam.-Rec. (L-T)
Textulariina (suborder) (293). Cam.-Rec. (D.L-T)
Ammodiscacea (superfamily) (84). Cam.-Rec. (L-T)
Astrohizidae (22). L.Cam.-Rec. (L-T)
Astrorhizinacea (5). M.Ord.-Rec. (L-T)
Rhizammininacea (3). L.Cam.-Rec. (L-T)
Hippocrepininae (7). *L.Ord.-Rec.* (L-T)
Botellininae (1). *Rec.* (L-T)
Dendrophryinae (6). *Pl.ist.-Rec.* (L-T)
Schizammininae (2). *?Trias., Rec.* (L-T)
Saccammininae (41). *Ord.-Rec.* (L-T)
Pammphorininae (8). *M.Ord.-Rec.* (L-T)
Saccammininae (12). *Ord.-Rec.* (L-T)
Hemiphrasininae (10). *Ord.-Rec.* (L-T)
Diffusulininae (11). *M.Ord.-Rec.* (L-T)
Ammodiscidae (19). *Sil.-Rec.* (L-T)
Ammodiscinae (12). *Sil.-Rec.* (L-T)
Tolypammininae (7). *Sil.-Rec.* (L-T)
Lituolacea (*superfamily*) (209). *Miss.-Rec.* (D,L-T)

Hormosinidae (13). *Miss.-Rec.* (L-T)
Aschemonininae (2). *Cret.-Rec.* (L-T)
Hormosininae (9). *Miss.-Rec.* (L-T)
Cribrotritinae (2). *Cret.* (L-T)
Nouridinae (1). *?Eoc., Rec.* (L-T)
Rzehakinae (8). *L.Cret.-Rec.* (L-T)
Lituolidae (57). *Carb.-Rec.* (L-T)
Haplophragmoidinae (9). *Carb.-Rec.* (L-T)
Sphaerammininae (3). *Rec.* (L-T)
Cyclammininae (11). *Jur.-Rec.* (L-T)
Spirocyclininae (4). *Jur.-U.Cret.* (L-T)
Loftusininae (2). *Jur.-Cret.* (L-T)
Lituolinae (18). *Carb.-Rec.* (L-T)
Placospilinae (7). *Miss.-Rec.* (L-T)
Coscinophragmatinae (3). *U.Cret.-Rec.* (L-T)

Textulariidae (21). *Carb.-Rec.* (L-T)
Spiroleptamininae (5). *Carb.-Rec.* (L-T)
Textulariinae (7). *Penn.-Rec.* (L-T)
Pseudobolivininae (4). *M.Jur.-Rec.* (L-T)
Plectocerovoidinae (1). *L.Cret.* (L-T)
Tawtiwininae (4). *Eoc.-Rec.* (L-T)
Trochamminidae (15). *Carb.-Rec.* (L-T)
Trochammininae (14). *Carb.-Rec.* (L-T)
Remaneicinae (1). *Rec.* (L-T)
Ataxophragminidae (61). *Penn.-Rec.* (L-T)
Verneuilinae (17). *U.Trias.-Rec.* (L-T)
Globotextulariinae (14). *Penn.-Rec.* (L-T)
Valvulininae (14). *U.Trias.-Rec.* (L-T)
Ataxophragmininae (16). *L.Cret.-Rec.* (L-T)
Pavonitinidae (15). *U.Jur.-Rec.* (L-T)
Pfenderininae (8). *U.Jur.-U.Cret.* (L-T)
Pavonitininae (7). *L.Cret.-Rec.* (L-T)
Dicyclinidae (13). *?U.Trias., Jur.-M.Eoc.* (L-T)
Cyclolininae (3). *L.Cret.-U.Cret.* (L-T)
Dicyclininae (10). *?U.Trias., Jur.-M.Eoc.* (L-T)
Orbitolinidae (5). *L.Cret.-Eoc.* (D,L-T)

Fusulinina (*suborder*) (183;2). *Ord.-Trias.* (L-T,TH)

Parathuramminaceae (*superfamily*) (23). *Ord.-Carb.* (L-T)
Parathuramininae (11). *Dev.-L.Carb.* (L-T)
Caligellidae (2). *Dev.-L.Carb.* (L-T)
Moravamininae (10). *Ord.-Carb.* (L-T)
Earlandinae (6). *Ord.-Carb.* (L-T)
Moravamininae (4). *M.Dev.-M.Carb.* (L-T)
Endothyraeaceae (*superfamily*) (72). *L.Sil.-Trias.* (L-T)

Nodosinellidae (11). *L.Sil.-Perm.* (L-T)
Tubertininae (3). *L.Sil.-U.Carb.* (L-T)
Umbellininae (3). *Sil.-Dev.* (L-T)
Nodosinellinae (5). *U.Dev.-Perm.* (L-T)
Colaniellidae (2). *U.Dev.-U.Per.* (L-T)
Pychocladidae (7). *Dev.-Perm.* (L-T)
Pychocladinae (1). *U.Penn.* (L-T)
Stachelininae (6). *Dev.-Perm.* (L-T)
Palaeeotextulariidae (5). *Carb.-Perm.* (L-T)
Semitextulariidae (3). *Dev.* (L-T)
Tetrataxidae (3). *Miss.-Trias.* (L-T)
Biseraminidae (3). *L.Carb.-Perm.* (L-T)
Tournayellidae (9). *U.Dev.-U.Per.* (L-T)
Endothyridae (23). *Dev.-Perm.* (L-T)
Locibichininae (5). *Dev.-Perm.* (L-T)
Endothyridinae (10). *U.Dev.-Perm.* (L-T)

Haplophragmellinae (3). *L.Carb.-M.Carb.* (L-T)

Endothyranopsinae (2). *L.Carb.* (L-T)
Bradyininae (3). *Carb.* (L-T)
Archaeidiscidae (5). *L.Carb.-Perm.* (L-T)
Lasiodiscidae (4). *L.Carb.-U.Per.* (L-T)

Fusulinacea (*superfamily*) (88;2). *U.Miss.-U.Per.* (TH)

Ozawainellidae (7). *U.Miss.-U.Per.* (TH)
Staffelliidae (5). *U.Penn.-Perm.* (TH)

Fusulinidae (50;2). *U.Carb.(M.Penn.)-U.Per.* (TH)

Schubertellinae (10). *U.Carb.(M.Penn.)-U.Per.* (TH)

Fusulininae (20). *U.Carb.(M.Penn.)-U.Per.* (TH)

Schwagerininae (20;2). *U.Carb.(M.Penn.)-U.Per.* (TH)

Verbeekinidae (12). *Perm.* (TH)
Verbeekininae (5). *Perm.* (TH)

Neoschwagerininae (7). *U.Per.* (TH)
Nominal Fusulinacean Genera of Uncertain Status (14). *Carb.-Perm.* (TH)

Nomina Nuda (5). (TH)
Nomen Inquirendum (1). (TH)

Miliolina (*suborder*) (145;4). *Carb.-Rec.* (L-T,TH)

Miliolacea (*superfamily*) (145;4). *Carb.-Rec.* (L-T,TH)

Squamulinidae (1). *Rec.* (L-T)
Fischerinidae (21). *Carb.-Rec.* (L-T)
Cyclogyrinae (12). *Carb.-Rec.* (L-T)
Fischerininae (4). *Jur.-Rec.* (L-T)
Calcivertellinae (5). *Penn.-Jur.* (L-T)
Nubeculariidae (28). *M.Carb.-Rec.* (L-T)
Nubeculariinae (7). *Jur.-Rec.* (L-T)

Ophithalmidinae (10). *M.Carb.-Rec.* (L-T)
Spiruroloculininae (3). *U.Cret.-Rec.* (L-T)
Nodobucalariinae (7). *Jur.-Rec.* (L-T)
Discosporininae (1). *M.Mio.-Rec.* (L-T)

Miliolidae (48). *Jur.-Rec.* (L-T)
Quinqueloculininae (19). *Jur.-Rec.* (L-T)
Miliolinellinae (4). *Eoc.-Rec.* (L-T)

Miliolinae (12). *U.Cret.-Rec.* (L-T)
Fabulariinae (8). *U.Cret.-Rec.* (L-T)
Tubinellinae (5). *M.Eoc.-Rec.* (L-T)

© 2009 University of Kansas Paleontological Institute
Protista—Sarcodina

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Superfamily</th>
<th>Family</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodosariacea</td>
<td>Nodosariinae</td>
<td>Nodosariidae</td>
<td>(49) Perm.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Rotaliinae</td>
<td>Rotaliidae</td>
<td>(5) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliidae</td>
<td>(31) U.Cret.-Rec. (C.L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliidae</td>
<td>(12) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliidae</td>
<td>(11) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cuvillierinidae</td>
<td>(11) U.Cret.-Mio. (C.L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Chapmaninidae</td>
<td>(4) M.Eoc.-Mio. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Pegulinidae</td>
<td>(2) Mio.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cuvillierinidae</td>
<td>(11) U.Cret.-Mio. (C.L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Chapmaninidae</td>
<td>(4) M.Eoc.-Mio. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Pegulinidae</td>
<td>(2) Mio.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rupertiinidae</td>
<td>(2) Mio.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliidae</td>
<td>(31) U.Cret.-Rec. (C.L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliidae</td>
<td>(12) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliidae</td>
<td>(11) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cuvillierinidae</td>
<td>(11) U.Cret.-Mio. (C.L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Chapmaninidae</td>
<td>(4) M.Eoc.-Mio. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Pegulinidae</td>
<td>(2) Mio.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rupertiinidae</td>
<td>(2) Mio.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Calcariinae</td>
<td>(5) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Elphidiidae</td>
<td>(13) Paleoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Elphidiidae</td>
<td>(9) Perm.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Faujasinidae</td>
<td>(4) M.Eoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Nummulitidae</td>
<td>(8;3) U.Cret.-Rec. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Nummulitidae</td>
<td>(5) U.Cret.-Rec. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cyclocyclidae</td>
<td>(3;3) Eoc.-Rec. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Miogypsinae</td>
<td>(2;2) M.Oligo-Mio. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Globigerinacea</td>
<td>(superfamily)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Heterohelicidae</td>
<td>(12) M.Jur.-Oligo. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Guembelitriinae</td>
<td>(3) M.Jur.-Eoc. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Heterohelicidae</td>
<td>(8) L.Cret.-Oligo. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Planomalinae</td>
<td>(4) L.Cret.-Paleoc. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Schackoinidae</td>
<td>(2) L.Cret.-U.Cret. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliporidae</td>
<td>(3) Cret. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Heidbergellinae</td>
<td>(3) L.Cret.-U.Cret. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Rotaliporidae</td>
<td>(2) L.Cret.-U.Cret. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Globotruncanidae</td>
<td>(5) U.Cret. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Hantkeninidae</td>
<td>(7) Paleoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Hantkeninidae</td>
<td>(4) Paleoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Hantkeninidae</td>
<td>(2) Eoc. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cassignellinidae</td>
<td>(1) Oligo-Mio. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Globorotaliidae</td>
<td>(3) Paleoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Globorotaliidae</td>
<td>(2) Paleoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Truncorotaliidae</td>
<td>(1) L.Eoc.-M.Eoc. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Globigerinidae</td>
<td>(22) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Globigerinidae</td>
<td>(10) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Sphaerooidinellinae</td>
<td>(2) Mio.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Orbulinidae</td>
<td>(4) Eoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Catapsydracinae</td>
<td>(6) M.Eoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Orbitoidae</td>
<td>(superfamily)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Eponiidae</td>
<td>(13) Paleoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Amphisteginidae</td>
<td>(4) U.Cret.-Eoc.-Rec. (B)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cibicidae</td>
<td>(14) Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cibicidae</td>
<td>(11) Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Planorbulinidae</td>
<td>(4) Eoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Acervulinidae</td>
<td>(6) Eoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cymbaloporidae</td>
<td>(9) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Homotremaidae</td>
<td>(7) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Homotremaidae</td>
<td>(3) Eoc.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>victorinellinae</td>
<td>(4) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Orbitoididae</td>
<td>(4;4) Paleoc.-Rec. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Discocyclinidae</td>
<td>(3;6) Paleoc.-Eoc. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Lepidocyclinidae</td>
<td>(4;4) Paleoc.-Rec. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Pseudorbitoididae</td>
<td>(3) U.Cret. (C)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Cassidulinae</td>
<td>(superfamily)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Pleurotomellidae</td>
<td>(13) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Pleurotomellidae</td>
<td>(11) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Wheelerellidae</td>
<td>(2) U.Cret. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Annulopatellinidae</td>
<td>(1) Mio.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Caucasinae</td>
<td>(7) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Fursenkoininae</td>
<td>(6) U.Cret.-Rec. (L-T)</td>
</tr>
<tr>
<td>Protista-Sarcodina</td>
<td>Protista-Sarcodina</td>
<td>Caucasinae</td>
<td>(1) U.Cret.-Mio. (L-T)</td>
</tr>
</tbody>
</table>
Foraminiferida—Classification

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOGROMIIINA</td>
<td>Lagynaceae</td>
</tr>
<tr>
<td></td>
<td>Lagynidae</td>
</tr>
<tr>
<td></td>
<td>Allogromiidae</td>
</tr>
<tr>
<td>TEXTULARIIINA</td>
<td>Ammodiscaceae</td>
</tr>
<tr>
<td></td>
<td>Astrorhizidae</td>
</tr>
<tr>
<td></td>
<td>Astrorhizinae</td>
</tr>
<tr>
<td></td>
<td>Rhizommininae</td>
</tr>
<tr>
<td></td>
<td>Hippocrepininae</td>
</tr>
<tr>
<td></td>
<td>Botellininae</td>
</tr>
<tr>
<td></td>
<td>Dendrophyrinae</td>
</tr>
<tr>
<td></td>
<td>Schizammininae</td>
</tr>
<tr>
<td></td>
<td>Sacammininae</td>
</tr>
<tr>
<td></td>
<td>Psammospheraeinae</td>
</tr>
<tr>
<td></td>
<td>Sacammininae</td>
</tr>
<tr>
<td></td>
<td>Hemisphaerammininae</td>
</tr>
<tr>
<td></td>
<td>Diffusilininae</td>
</tr>
<tr>
<td></td>
<td>Ammodiscidae</td>
</tr>
<tr>
<td></td>
<td>Ammodiscinae</td>
</tr>
<tr>
<td></td>
<td>Tolypammininae</td>
</tr>
<tr>
<td>LITUOLACEA</td>
<td>Hormosinidae</td>
</tr>
<tr>
<td></td>
<td>Aschemonellinae</td>
</tr>
<tr>
<td></td>
<td>Hormosininae</td>
</tr>
<tr>
<td></td>
<td>Cribratininae</td>
</tr>
<tr>
<td></td>
<td>Nouridae</td>
</tr>
<tr>
<td></td>
<td>Rzehakinidae</td>
</tr>
<tr>
<td></td>
<td>Lituolidae</td>
</tr>
<tr>
<td></td>
<td>Haplophragmoidinae</td>
</tr>
<tr>
<td></td>
<td>Sphaerammininae</td>
</tr>
<tr>
<td></td>
<td>Cyclammininae</td>
</tr>
<tr>
<td></td>
<td>Spiroclininae</td>
</tr>
<tr>
<td></td>
<td>Loftusinae</td>
</tr>
<tr>
<td></td>
<td>Lituolinae</td>
</tr>
<tr>
<td></td>
<td>Placopsisinae</td>
</tr>
<tr>
<td></td>
<td>Coscinophragmatinae</td>
</tr>
<tr>
<td></td>
<td>Textulariidae</td>
</tr>
<tr>
<td></td>
<td>Spiroplectammininae</td>
</tr>
<tr>
<td></td>
<td>Textularinae</td>
</tr>
<tr>
<td></td>
<td>Pseudobolivinae</td>
</tr>
<tr>
<td></td>
<td>Plectoeruvroidinae</td>
</tr>
<tr>
<td></td>
<td>Tawitawinae</td>
</tr>
<tr>
<td></td>
<td>Trochamminidae</td>
</tr>
<tr>
<td></td>
<td>Trochammininae</td>
</tr>
<tr>
<td></td>
<td>Remaneicinae</td>
</tr>
<tr>
<td></td>
<td>Atoxophragmiidae</td>
</tr>
<tr>
<td></td>
<td>Verneullininae</td>
</tr>
<tr>
<td></td>
<td>Globotextularinae</td>
</tr>
<tr>
<td></td>
<td>Valvulininae</td>
</tr>
<tr>
<td></td>
<td>Atoxophragmiinae</td>
</tr>
</tbody>
</table>

Fig. 83A. Stratigraphic distribution of suprageneric taxa of Foraminiferida (*2117).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavonitinidadae</td>
<td>Pfenderininae</td>
<td>Pavonitininae</td>
<td>Dicycliniidae</td>
<td>Cyclolininae</td>
<td>Dicycliniinae</td>
<td>Orbitolinidae</td>
<td>FUSULININA</td>
<td>PARATHURAMMINACEA</td>
<td>Parathuramminidae</td>
<td>Caligellidae</td>
<td>Moravamminidae</td>
<td>Earlandiniinae</td>
<td>Moravammininae</td>
<td>ENDOTHYRACEA</td>
<td>Nodosinellidae</td>
<td>Tuberitininae</td>
</tr>
<tr>
<td>Family</td>
<td>Devon</td>
<td>Mississippian</td>
<td>Pennsylvanian</td>
<td>Permian</td>
<td>Trias</td>
<td>Jurassic</td>
<td>Cretaceous</td>
<td>Palaeocene</td>
<td>Eocene</td>
<td>Oligocene</td>
<td>Miocene</td>
<td>Pliocene</td>
<td>Pleistocene</td>
<td>Recent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischerininae</td>
<td></td>
</tr>
<tr>
<td>Calcivertellinae</td>
<td></td>
</tr>
<tr>
<td>Nubeculariidae</td>
<td></td>
</tr>
<tr>
<td>Nubeculariinae</td>
<td></td>
</tr>
<tr>
<td>Ophthalmidiinae</td>
<td></td>
</tr>
<tr>
<td>Spiriloculininae</td>
<td></td>
</tr>
<tr>
<td>Nodobaculariinae</td>
<td></td>
</tr>
<tr>
<td>Discospirininae</td>
<td></td>
</tr>
<tr>
<td>Miliolidae</td>
<td></td>
</tr>
<tr>
<td>Quinqueloculininae</td>
<td></td>
</tr>
<tr>
<td>Miliolinellinae</td>
<td></td>
</tr>
<tr>
<td>Miliolinae</td>
<td></td>
</tr>
<tr>
<td>Fabulariinae</td>
<td></td>
</tr>
<tr>
<td>Tubinellinae</td>
<td></td>
</tr>
<tr>
<td>Barkerinidae</td>
<td></td>
</tr>
<tr>
<td>Soritidae</td>
<td></td>
</tr>
<tr>
<td>Peneroplinae</td>
<td></td>
</tr>
<tr>
<td>Meandropsininae</td>
<td></td>
</tr>
<tr>
<td>Rhapydionininae</td>
<td></td>
</tr>
<tr>
<td>Archaisininae</td>
<td></td>
</tr>
<tr>
<td>Soritinae</td>
<td></td>
</tr>
<tr>
<td>Keramosphaerinae</td>
<td></td>
</tr>
<tr>
<td>Alveolinidae</td>
<td></td>
</tr>
<tr>
<td>ROTALIINA</td>
<td></td>
</tr>
<tr>
<td>NODOSARIACEA</td>
<td></td>
</tr>
<tr>
<td>Nodosariidae</td>
<td></td>
</tr>
<tr>
<td>Nodosariniinae</td>
<td></td>
</tr>
<tr>
<td>Plectofrondiculariinae</td>
<td></td>
</tr>
<tr>
<td>Lingulininae</td>
<td></td>
</tr>
<tr>
<td>Polymorphinidae</td>
<td></td>
</tr>
<tr>
<td>Polymorphininae</td>
<td></td>
</tr>
<tr>
<td>Webbinellinae</td>
<td></td>
</tr>
<tr>
<td>Ramulininae</td>
<td></td>
</tr>
<tr>
<td>Glandulinidae</td>
<td></td>
</tr>
<tr>
<td>Glandulininae</td>
<td></td>
</tr>
<tr>
<td>Seabrookiinae</td>
<td></td>
</tr>
<tr>
<td>Oolininae</td>
<td></td>
</tr>
<tr>
<td>BULIMINACEA</td>
<td></td>
</tr>
<tr>
<td>Turritilinidae</td>
<td></td>
</tr>
<tr>
<td>Turritilinae</td>
<td></td>
</tr>
<tr>
<td>Lacosteinidae</td>
<td></td>
</tr>
<tr>
<td>Sphaeroidinidae</td>
<td></td>
</tr>
<tr>
<td>Bolivinittidae</td>
<td></td>
</tr>
<tr>
<td>Islandiellidae</td>
<td></td>
</tr>
<tr>
<td>Eouvigerinidae</td>
<td></td>
</tr>
<tr>
<td>Buliminidae</td>
<td></td>
</tr>
<tr>
<td>Buliminae</td>
<td></td>
</tr>
<tr>
<td>Pavonininae</td>
<td></td>
</tr>
<tr>
<td>Uvigerinidae</td>
<td></td>
</tr>
<tr>
<td>DISCORBACEA</td>
<td></td>
</tr>
<tr>
<td>Discorbidae</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 83A (continued).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discorbinae</td>
<td></td>
</tr>
<tr>
<td>Baggininae</td>
<td></td>
</tr>
<tr>
<td>Glabratellidae</td>
<td></td>
</tr>
<tr>
<td>Siphoninidae</td>
<td></td>
</tr>
<tr>
<td>Asterigerinidae</td>
<td></td>
</tr>
<tr>
<td>Epistomariidae</td>
<td></td>
</tr>
<tr>
<td>SPIRILLINACEA</td>
<td></td>
</tr>
<tr>
<td>Spirillinidae</td>
<td></td>
</tr>
<tr>
<td>Spirillininae</td>
<td></td>
</tr>
<tr>
<td>Patellininae</td>
<td></td>
</tr>
<tr>
<td>Rotaliellidae</td>
<td></td>
</tr>
<tr>
<td>ROTALIACEA</td>
<td></td>
</tr>
<tr>
<td>Rotaliidae</td>
<td></td>
</tr>
<tr>
<td>Rotaliinae</td>
<td></td>
</tr>
<tr>
<td>Cuvillierininae</td>
<td></td>
</tr>
<tr>
<td>Chapmanininae</td>
<td></td>
</tr>
<tr>
<td>Pegidiinae</td>
<td></td>
</tr>
<tr>
<td>Rupertininae</td>
<td></td>
</tr>
<tr>
<td>Calcarinidae</td>
<td></td>
</tr>
<tr>
<td>Elphidiidae</td>
<td></td>
</tr>
<tr>
<td>Elphidiinae</td>
<td></td>
</tr>
<tr>
<td>Faujasininae</td>
<td></td>
</tr>
<tr>
<td>Nummulitidae</td>
<td></td>
</tr>
<tr>
<td>Nummulitinae</td>
<td></td>
</tr>
<tr>
<td>Cycloclypeiniae</td>
<td></td>
</tr>
<tr>
<td>Miogypsinidae</td>
<td></td>
</tr>
<tr>
<td>GLOBIGERINACEA</td>
<td></td>
</tr>
<tr>
<td>Heterohelicidae</td>
<td></td>
</tr>
<tr>
<td>Guembelitrininae</td>
<td></td>
</tr>
<tr>
<td>Heterohelicinida</td>
<td></td>
</tr>
<tr>
<td>Planomalindae</td>
<td></td>
</tr>
<tr>
<td>Schackoinidae</td>
<td></td>
</tr>
<tr>
<td>Rotaliporidae</td>
<td></td>
</tr>
<tr>
<td>Hedbergellinae</td>
<td></td>
</tr>
<tr>
<td>Rotaliporinae</td>
<td></td>
</tr>
<tr>
<td>Globotruncanidae</td>
<td></td>
</tr>
<tr>
<td>Hantkeninidae</td>
<td></td>
</tr>
<tr>
<td>Hastigerininae</td>
<td></td>
</tr>
<tr>
<td>Hantkenininae</td>
<td></td>
</tr>
<tr>
<td>Cassigerinellinae</td>
<td></td>
</tr>
<tr>
<td>Globorotaliidae</td>
<td></td>
</tr>
<tr>
<td>Globorotaliinae</td>
<td></td>
</tr>
<tr>
<td>Truncorotaloidinae</td>
<td></td>
</tr>
<tr>
<td>Globigerinidae</td>
<td></td>
</tr>
<tr>
<td>Globigerininae</td>
<td></td>
</tr>
<tr>
<td>Sphaeroidinellinae</td>
<td></td>
</tr>
<tr>
<td>Orbulininae</td>
<td></td>
</tr>
<tr>
<td>Catapsydracinae</td>
<td></td>
</tr>
<tr>
<td>ORBITOIDACEA</td>
<td></td>
</tr>
<tr>
<td>Eponididae</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 83A (continued).
Foraminifera: Classification

<table>
<thead>
<tr>
<th>Family</th>
<th>Subfamily</th>
<th>Order</th>
<th>Class</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cibicididae</td>
<td>Planulininae</td>
<td>Cam.</td>
<td>Foram.</td>
<td>Cibicidinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ord.</td>
<td>Foram.</td>
<td>Planorbulinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sil.</td>
<td>Foram.</td>
<td>Acervulinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dev.</td>
<td>Foram.</td>
<td>Cymbaloporidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miss.</td>
<td>Foram.</td>
<td>Homotrematidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Penn.</td>
<td>Foram.</td>
<td>Heteromorphidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perm.</td>
<td>Foram.</td>
<td>Acinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trias.</td>
<td>Foram.</td>
<td>Discocyclinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jur.</td>
<td>Foram.</td>
<td>Lepidocyclinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cret.</td>
<td>Foram.</td>
<td>Helicolepidininae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paleoc.</td>
<td>Foram.</td>
<td>Pseudorbitoididae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eoc.</td>
<td>Foram.</td>
<td>CASSIDULINACEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oligo.</td>
<td>Foram.</td>
<td>Pleurostomellinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mio.</td>
<td>Foram.</td>
<td>Pseudostomatellinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plio.</td>
<td>Foram.</td>
<td>Involutinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleist.</td>
<td>Foram.</td>
<td>Nonionidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rec.</td>
<td>Foram.</td>
<td>Alabaminidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Osangulariidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Anomalinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Carterinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>ROBERTINACEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Ceratobulinitidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>CASSIDULINACEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Pleurostomellinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Pseudostomatellinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Involutinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Nonionidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Alabaminidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Osangulariidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Anomalinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Carterinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>ROBERTINACEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Ceratobulinitidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>CASSIDULINACEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Pleurostomellinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Pseudostomatellinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Involutinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Nonionidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Alabaminidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Osangulariidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Anomalinidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Carterinacea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>ROBERTINACEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Ceratobulinitidae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>CASSIDULINACEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Pleurostomellinae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foram.</td>
<td>Pseudostomatellinae</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrorhizidae</td>
<td></td>
</tr>
<tr>
<td>Allogromiidae</td>
<td></td>
</tr>
<tr>
<td>Moravamminidae</td>
<td></td>
</tr>
<tr>
<td>Saccamminidae</td>
<td></td>
</tr>
<tr>
<td>Nodosinellidae</td>
<td></td>
</tr>
<tr>
<td>Ammodiscidae</td>
<td></td>
</tr>
<tr>
<td>Semitextulariidae</td>
<td></td>
</tr>
<tr>
<td>Parathuramminidae</td>
<td></td>
</tr>
<tr>
<td>Ptychocladidae</td>
<td></td>
</tr>
<tr>
<td>Endothyridae</td>
<td></td>
</tr>
<tr>
<td>Caligellidae</td>
<td></td>
</tr>
<tr>
<td>Colaniellidae</td>
<td></td>
</tr>
<tr>
<td>Tournayellidae</td>
<td></td>
</tr>
<tr>
<td>Palaeotextulariidae</td>
<td></td>
</tr>
<tr>
<td>Biseriamminidae</td>
<td></td>
</tr>
<tr>
<td>Archaediscidae</td>
<td></td>
</tr>
<tr>
<td>Lasiodiscidae</td>
<td></td>
</tr>
<tr>
<td>Tetrataxidae</td>
<td></td>
</tr>
<tr>
<td>Hormosinidae</td>
<td></td>
</tr>
<tr>
<td>Lituolidae</td>
<td></td>
</tr>
<tr>
<td>Textulariidae</td>
<td></td>
</tr>
<tr>
<td>Trochamminidae</td>
<td></td>
</tr>
<tr>
<td>Fischerinidae</td>
<td></td>
</tr>
<tr>
<td>Ozowainellidae</td>
<td></td>
</tr>
<tr>
<td>Staffellidae</td>
<td></td>
</tr>
<tr>
<td>Ataxophragmiidae</td>
<td></td>
</tr>
<tr>
<td>Nubeculariidae</td>
<td></td>
</tr>
<tr>
<td>Fusulinidae</td>
<td></td>
</tr>
<tr>
<td>Verbeekinidae</td>
<td></td>
</tr>
<tr>
<td>Nodosariidae</td>
<td></td>
</tr>
<tr>
<td>Polymorphinidae</td>
<td></td>
</tr>
<tr>
<td>Spirillinidae</td>
<td></td>
</tr>
<tr>
<td>Ceratobuliminidae</td>
<td></td>
</tr>
<tr>
<td>Schizamminidae</td>
<td></td>
</tr>
<tr>
<td>Involutinidae</td>
<td></td>
</tr>
<tr>
<td>Dicyclinidae</td>
<td></td>
</tr>
<tr>
<td>Soritidae</td>
<td></td>
</tr>
<tr>
<td>Bolivinitidae</td>
<td></td>
</tr>
<tr>
<td>Discorbitidae</td>
<td></td>
</tr>
<tr>
<td>Anomaliniidae</td>
<td></td>
</tr>
<tr>
<td>Miliolidae</td>
<td></td>
</tr>
<tr>
<td>Glandulinidae</td>
<td></td>
</tr>
<tr>
<td>Nonionidae</td>
<td></td>
</tr>
<tr>
<td>Pleurostromellidae</td>
<td></td>
</tr>
<tr>
<td>Heterohelicidae</td>
<td></td>
</tr>
<tr>
<td>Pavonitinidae</td>
<td></td>
</tr>
<tr>
<td>Turritinidae</td>
<td></td>
</tr>
<tr>
<td>Barkerinidae</td>
<td></td>
</tr>
<tr>
<td>Rotaliporidae</td>
<td></td>
</tr>
<tr>
<td>Orbitolinidae</td>
<td></td>
</tr>
<tr>
<td>Rzhahkinidae</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 83B. Graph showing stratigraphic distribution of families of Foraminiferida plotted according to relative time values (*2117).
Foraminiferida—Classification

Ceratobuliminidae (21). *?Trias., Jur.-Rec.* (L-T)
Ceratobulimininae (10). *Jur.-Rec.* (L-T)
Epistomininae (11). *?Trias., Jur.-Rec.* (L-T)
Robertinidae (10). *U.Cret.-Rec.* (L-T)

Nomina Nuda (68). (L-T)
Unrecognizable Genera (90). (L-T)
Generic names erroneously applied to Foraminiferida (39). (L-T)

Fig. 83B (continued).
Protoplast body protected by test composed of one or more interconnected chambers; wall may be imperforate, finely or coarsely perforate, primitively "chitinous," but may be variously modified, and composed of agglutinated particles, or of secretion, rarely of silica or argonite, more commonly of calcite, which may be porcellaneous, fibrous, or granular, hyaline-microgranular, or hyaline-radiate in structure, consisting of single layer or with two or more layers and may have canal system consisting of single layer or with two or more layers and may have canal system of varying complexity; commonly with one or more large openings or apertures in addition to smaller wall perforations which may be present; granuloreticulose pseudopodia protrude from apertures and perforations; reproduction characterized by alternation of asexual and sexual generations, although one generation may be secondarily repressed; gametes commonly flagellate (2-3 flagella) or more rarely amoeboid. [Habitat almost entirely marine to brackish waters but a few may occur in fresh waters; free-living, benthonic or pelagic, or attached to a substratum, rarely parastic.]

Protista—Sarcodina

SYSTEMATIC DESCRIPTIONS

Order FORAMINIFERIDA Eichwald, 1830

[...]

Suborder ALLOGROMIINA Loeblich & Tappan, 1961

[...]

Test membranous or pseudochitinous, may have ferruginous encrustations or more rarely small quantities of agglutinated material. U.Cam.-Rec.

Superfamily LAGYNACEA

Schultze, 1854

[...]

Characters of the suborder. U.Cam.-Rec.

Within this superfamily some genera are known to possess flagellate gametes and others amoeboid gametes. As so few have yet been studied in culture, the genera are separated into families on the basis of test composition, although, in addition, all those known to have flagellate gametes are placed in the Lagynidae and those with amoeboid gametes in the Allogromiidae.

Family LAGYNIDAE

Schultze, 1854

[...]

Family ALLOGROMIIDAE

Schultze, 1854

[...]
Test small, membranous to pseudochitinous and may have ferruginous encrustations or rarely agglutinated matter; may form colonies; aperture single, or numerous apertures not localized; gametes biflagellate.
(Myxotheca, Nemogullmia, Iridia, Cystophrys?). Rec.

Lagynis SCHULTZE, 1854, 1695, p. 56 [*L. baltica; OD] [=Diffugia (Exastula) EHRENBERG, 1872, *658, p. 245 (type, Diffugia (Exastula) baltica SCHULTZE, 1854, SD LOEBLICH & TAPPAN, herein, (obj.); Platum SCHULTZE, 1875, 1698a, p. 115 (type, P. parvum SCHULZE, 1875)]. Test transparent, membranous, hyaline, elastic, elongate and ovate in shape or may be slightly flattened at one side, length 0.05 mm.; aperture small, rounded, terminal to slightly eccentric, with narrow lip; protoplasm not completely filling test, granular, central zone containing dark granules, oral portion being light in color; one or two small contractile vacuoles; nuclei large, light-colored and spherical, nearly filling width of test and located near aboral end; pseudopodia thin, elongate, branching and granular. [Marine.] Rec., Eu.—Fig. 84.1. *L. baltica, Baltic Sea; showing granular protoplasm with band of dark granules, posterior end with only a few bands of protoplasm, not filling test, and elongate granular pseudopodia, X180 (*1695).—Fig. 84.2. L. parva (SCHULZE), Baltic Sea; 2a,b, side and edge views showing test form, large, oval, light-colored nucleus, and dark, granular band of protoplasm, X800 (*1698a).

Apogromia DE SAEDDELEER, 1934, 1609, p. 76 [*Microgromia mucicola ARCHER, 1877, 34a, p. 121, =Mikrogromia mucicola ARCHER, DE SAEDDELEER, 1609, p. 76; OD]. Test 8-15μ in length, like Cystophrys but without internal septum at neck and therefore with symmetrical pseudopodial trunk. [Fresh water; marine species referred to this genus by some authors belong to Kibisiodytes.] Rec., Eu.—Fig. 84.3. *A. mucicola (ARCHER), Belg.; with ferruginous coating, X2,000 (*1609).

Belaria DE SAEDDELEER, 1934, 1609, p. 79 [*B. bicorpor; OD(M)]. Test 13-16μ in length, like Cystophrys but with symmetrical septum at base of neck and central perforation for extrusion of pseudopodial trunk; one contractile vacuole. [Fresh water.] Rec., Eu.—Fig. 84.4. *B. bicorpor, Belg.; X2,000 (*1609).

Boderia Weight, 1867, 2082, p. 335 [*B. turneri; OD] [=Arboderium RHUMBERL, 1913, 1572b, p. 343 (obj.) (nom. van.)]. Test conical to plate-like, membranous, colorless, length, 1.5-6.0 mm.; protoplasm brown or orange; single large nucleus or more rarely as many as 9 or 10 grouped in 2 clusters; pseudopodia few, commonly 3 or 4, protruding in bundles from openings at angles of plate-like membrane; exhibits strong protoplasmic streaming. [Marine.] Rec., N.Sea.—Fig. 90.2. *B. turneri; plate-like test and long reticulose pseudopodia; approx. X3 (*2082).

Cystophrys ARCHER, 1869, *29, p. 259, pl. 17 [C. haekeliana=Gromia socialis ARCHER, 1869, *30, p. 322, *31, p. 390; OD] [=Mikrogromia HERT-WIG, 1874, 917, p. 33 (type, Gromia socialis ARCHER, 1869) (obj.); Microgromia ARCHER 1876, *32, p. 343 (nom. van.)]. Test small, length 25-35μ, spherical to pyriform, circular in section, may occur in colonies or small groups; aperture circular, terminal, commonly produced on short neck which is internally provided with asymmetrical septum resulting in asymmetrical development of pseudopodial trunk; protoplasm granular, only partially filling test; one contractile vacuole; pseudopodia elongate, may bifurcate or anastomose and arise from a distinct pseudopodial trunk; reproduction by longitudinal or transverse division and also by development of biflagellate "zoospores." [Although commonly referred to Mikrogromia (or its erroneous emendation Microgromia) the generic name Cystophrys clearly has priority. ARCHER originally included two species, C. haekeliana and C. oculea, and although the type was not designated in the test it was effectively determined in the original publication by the citation as gen. et sp. nov. for C. haekeliana and only sp. nov. for C. oculea on the explanation for plate 17.] [Fresh water.] Rec., Eu.—Fig. 85.1-3. *C. haekeliana; Brit.I. (1), Belg. (2), Ger. (3); 1a, solitary individual, X300; 1b, colony, X250 (*302a); 2, individual showing internal septum, X2,000 (*1609); 3, loosely aggregated colony with one specimen (a) showing transverse division, approx. X250 (*917).

Diplophys BARKER, 1868, 81, p. 123 [*D. archeri; OD (M)]. Test thin, hyaline, spherical and homogeneous, diam., 8-20μ, with simple circular aperture at each pole, may form colonies up to 30-60μ diam. which have amoeboid movement and may divide; protoplasm colorless, transparent, granular; single nucleus with single nucleolus; several contractile vacuoles and oil globules always present; pseudopodia elongate, radiating, straight or bifurcating, protruding from both apertures; reproduction by fission or tetrad division. [Fresh water.] Rec., Eu.—Fig. 84.5,6. *D. archeri, Ger. (5), Neth. (6); 5, side view of single specimen, approx. X1,000 (*921); 6a, apert. part of test with pseudopodia, X1,500; 6b, tetrad division, X600; 6c, colony of small embryonic individuals, X600 (*957).

Echinogromia SCHRODER, 1907, 1676, p. 345 [*E. multifilicrenistra; OD] [=Arechionogromium RHUMBERL, 1913, 1572b, p. 344 (obj.) (nom. van.)]. Test spherical, or rarely blunt-triangular, wall membranous, hyaline, thickness approx. 2μ; diam., 0.5-1.0 mm.; 4 to 8 circular apertures with rim 16-20μ thick, outer secondary sheath with diam. approx. 3 mm., not closely attached to test, composed of abundant sponge spicules which show traces of protoplasm, probably from pseudopodia; protoplasm completely filling test, not differentiated into ecto- and endoplasm; 1 to 4 nuclei, approximately 0.2 mm. diam., no nucleoli; pseu-
dopodial character unknown. [Marine.] Rec., Antarctic.—Fig. 85.5. *E. multifenestrata; 5a, test showing apertures, X25; 5b, specimen with outer sheath, X15 (*1676).

Heterogromia Dr Sædeleer, 1934. *1609, p. 82 [*H. intermedia; OD]. Test 9-11μ in length, like *Apogromia* but with numerous peripheral contractile vacuoles. [Fresh water.] Rec., Eu.—Fig. 85.4. *H. intermedia, Belg.; X2,000 (*1609).

Iridia Heron-Allen & Earland, 1914, *910a, p. 371 [*I. diaphana; OD]. Test attached, hemispherical or irregularly dome-shaped chamber with short irregularly tubular or branching projections; wall pseudochitinous or with some agglutinated
Protista—Sarcodina

material on pseudochitinous base; apertures at ends of tubular projections; pseudopodia in adult elongate, bifurcating, and arising from stomostyle; reproductive cycle with asexual division, young developing free or pelagic stage ensuring their dispersion, during which globular body has non-

Fig. 86. Lagynidae; 1-7, Iridia (p. C167-C169).
anastomosing, elongate, radiating pseudopodia; within few to 24 hours young become bentonic, resorb pseudopodia, attach to substratum, and develop test; this stage gives rise to biflagellate gametes (flagella unequal in length) which after fusion give rise to adult schizont indistinguishable from gamont (*1104). [Previously this genus has been placed with attached Saccamminidae (*486) or Astrorhizidae (*762). Here it is assigned to the Lagynidae because of its basically pseudo-chitinous test, stomostyle, and biflagellate gametes. Somewhat similar Allogromiidae have amoeboid gametes.] Rec., Air.-Carib.-Medit.—Fig. 86,1-5. *I. diaphana, Medit.; 1, detached adult schizont from beneath, showing asexually formed young, X25; 2, embryo after leaving parent test, showing pseudopodal trunk, X135; 3, pelagic stage with radiating pseudopodia, X150; 4, beginning of bentonic sedentary stage, showing stomostyle and normal pseudopodia, X115; 5, attached stage with small pseudopodia in process of test construction, normal pseudopodia extending beyond, X115 (*1104). Fig. 86,6,7. *I. diaphana, Madag.-Str. (Kerimba Arch.); 6a,b, upper and lower surfaces of empty test, showing agglutinated covering; 7, irregular test, X49 (*2117).—Fig. 87. 1. Lucida Le Calvez, Medit.; biflagellate gamete. X6,000 (*1103).

Kibisidytes Jepps, 1934, *991, p. 125 [*K. marinus; OD (M)]. Test small, saclike, brown, length, 1.0-14μ, commonly with ferruginous surface encrustation; aperture single, rounded; protoplasm opaque, only partially filling test; nucleus single; no contractile vacuole; pseudopodia delicate; granular, branching, but fairly short; reproduction by binary fission. [Lives in surface film of sea water or attached to floating objects in sea.] Rec., Eu.—Fig. 88,5. *K. marinus, Scot.; 5a,b, living specimen showing test variation; 5c, stained specimen showing nucleus, X1,575 (*991).

Microcometes Ciekiowski, 1876, *341, p. 46 [*M. paludosa; OD]. Simple, rounded, membranous, transparent and pliable test which may have irregular, brown ferruginous crust, diam. 7-22μ, with 3 to 5 openings; protoplasm opaque, occupying about half interior of test and containing food inclusions; central nucleus; 1 to 6 contractile vacuoles; pseudopodia long, delicate, branching, granular. [Fresh water, among algae.] Rec., Eu.—Fig. 88,1,2. *M. paludosa, USSR (1). Brit.I. (2); 1, X1,000 (*341); 2, X1,450 (*991).

Myxotheca Schaudinn, 1893, *1640, p. 18 [*M. arenigera; OD]. [=Armymytxotheca Rhumbler, 1913, *1527b, p. 343 (obj.) (nom. van.)]. Basically spherical to hemispherical form, diam. 0.16-0.56 mm., with gelatinous covering; commonly with loosely attached sand grains or other foreign matter; protoplasm granular, reddish, lacking separation into ecto- and endoplasm; single, large nucleus (39-75μ diam.); pseudopodia may appear at any position, up to 4 or 5 cm. in length, granular, and exhibit streaming. [Marine.] Rec., Eu.—Fig. 89,1. *M. arenigera, Adriatic Sea; 1a, contracted specimen showing partially agglutinated upper surface covering; 1b, same with altered form, from opposite lower side, showing extended pseudopodia and central nucleus; 1c, transv. sec. showing nucleus, agglutinated upper surface, and clear lower surface, approx. X300 (*1640).

Nemogullmia Nyholm, 1953, *1375, p. 105 [*N. longevarabilis; OD]. Test free or in empty worm tubes and foraminiferal tests, elongate, 1.6-19.0 mm. in length, smooth, transparent, white or pale red, chitinoid, straight or convoluted, may have constrictions in wall and bear some agglutinated detritus; temporary small apertures at ends of test; protoplasm opaque, commonly containing oil droplets; one or more nuclei; pseudopodia reticulate; reproduction by means of biflagellate gametes which develop within test after apertures are temporarily closed, multinucleate individuals reproducing by fission, specimens with single nucleus giving rise to gametes. [Marine.] Rec., Eu.—Fig. 90,4,5. *N. longevarabilis, Sweden (Gullmar Fjord); 4, agglutinated detritus on elongate test, X5 (*1378); 5, specimen showing pseudopodia extending from apertures at ends of test, X1.4 (*1375).

Ophiostuba Rhumbler, 1894, *1568a, p. 604 [*O. gelatinosa; OD] [=Arophiotubus. Rhumbler, 1913, *1527b, p. 350 (obj.) (nom. van.)]. Test, 2-5 mm. in length, firm convoluted membrane, rigid and chitinoid in appearance, without agglutinated matter, filling large empty tests of other foraminifers in which they are suspended by threadlike filaments, end of tube extending through aperture of sheltering test, with numerous radiating branches which are also protected by rigid membrane and may be individually convoluted; protoplasm reticulate under high magnification; nuclei small and numerous. [Marine.]
Protista—Sarcodina

Rec., N. Atl.-N. Sea.—Fig. 90.3. O. gelatinosa, N. Atl.; convoluted body within empty test (s) of Saccammina, showing threadlike filaments (f) by which it is suspended and branching terminus of test (t), X50 (1568a).

Plagiophrys Claparède & Lachmann, 1859, 345,

Fig. 88. Lagynidae; 1,2, Microcometes; 3-4, Pseudoditrema; 5, Kibisidytes (p. C169, C172).
Foraminferida—Allogromiina—Lagynacea

p. 453 [*P. cylindrica; SD Rhumbler, 1904, *1569, p. 201] [Arplagiophrym Rhumbler, 1913, *1572b, p. 343 (obj.) (nom. van.)]. Test membranous, flexible, approx. 0.13 mm. in length, elongate, sides subcylindrical, apertural margin scalloped; pseudopodia numerous, filose, granular; nucleus and contractile vacuole unknown. (?Fresh water.) Rec., ?Ger.—Fig. 84,7. *P. cylindrica; side view, approx. ×160 (*700).

[Plagiophyris was described in Berlin from a bottle of water and algae of unknown source; two originally included species were *P. cylindrica and *P. spherica. Some later references to the type-species seem questionable. Penard (1902, *1435, p. 442) stated that *P. cylindrica might belong to Diaphorodon and that *P. spherica was identical to Pamphagus hyalinus (=Lecythinum), but de-

Fig. 89. Lagynidae; 1, Myxotheca (p. C169).
scribed a new species as *Plagiophrus parvipunctata*. DeFLANDRE in GRASSÉ (1953, *810, p. 137) regarded *P. parvipunctata* as the only species belonging to the genus, but this species was not in the original list of species. RHUMBALE was correct in designating *P. cylindrica* as type.

Protista—Sarcodina

Pseudoditrema DeFLANDRE in GRASSÉ, 1953, *810*, p. 143 [*Ditrema mikrous* DE SAEDELSEER, 1934, *1609*, p. 89; OD]. Similar to *Microcometes* but with only 2 opposite apertures; test 9-25µ in

Fig. 90. Lagynidae: 1, Schultzella; 2, Boderia; 3, Ophiotuba; 4,5, Nemogullmia (p. C166, C169-C170, C173).

© 2009 University of Kansas Paleontological Institute
Foraminiferida—Allogromina—Lagynacea

length, ferruginous coating may occur; protoplasm partly filling test, containing numerous granules and contractile vacuoles; pseudopodia very thin, elongate, bifurcating and anastomosing. [Fresh water.] Rec., Eu.—Fig. 88,3,4. *P. mikrous (De Saedeleer), Eng. (3), Belg. (4); 3, living specimen (regarded as Microcometes paludosus); X1,450 (*991); 4, living specimen, X2,000 (*1609).

Rhumblerinella Schmidt, 1929, *1674, p. 353 [*R. bacillifera; OD]. Test irregular, ellipsoidal or spherical, 0.7 mm. in length; superficial layer of protoplasm contains numerous small, elongate, calcite spicules approx. 5μ long secreted by animal, densely packed and apparently without binding cement, some foreign matter may be agglutinated outside this plasma layer; no distinct aperture; large round nucleus with firm birefractive membrane; pseudopodia elongate, fine, with pronounced granular streaming, may be produced from any portion of test, but are predominantly around lateral margins. [Marine.] Rec., Eu. (N.Sea).—Fig. 91,1,2. *R. bacillifera, Helgoland; 1a, entire specimen, X47; 1b, margin with pseudopodia, X80; 1c, isolated calcite spicules in polarized light, X800 (*1674).

Schultzella Rhumbler, 1904, *1569, p. 197 [*Lieberkuhnia diffusa Gruber, 1884, *833, p. 484; OD] [=Schultzzia Gruber, 1888, *834, p. 36 (obj.) (non Grimm, 1876; nec Graff, 1882); Arschultzelloidum Rhumbler, 1913, *1572b, p. 343 (obj.) (nom. van.)]. Test globular or hemispherical, diam. 0.22 mm., gelatinous, without foreign material; protoplasm finely granular, colorless; nuclei small, numerous; several vacuoles and oil globules; pseudopodia may protrude in any position through irregular holes in gelatinous cover. [Marine.] Rec., Eu.—Fig. 90,1. *S. diffusa (Gruber), Italy; X150 (*1569).

Family ALLOGROMIIDAE Rhumbler, 1904

Test pseudochitinous or with agglutinated matter on pseudochitinous base; forms known to show alternation of generations (e.g., Allogromia) have amoeboid gametes. U.Cam.-Rec.

Allogromia Rhumbler, 1904, *1569, p. 203 [*Craterina mollis Gruber, 1884, *833, p. 488; OD] [=Craterina Gruber, 1884, *833, p. 488 (obj.) (non Curtis, 1826; nec Bory de St. Vincent, 1827); Arrogromiina Rhumbler, 1913, *1572b, p. 343 (obj.) (nom. van.)]. Test free,
ovate to spherical, with thin pseudochitinous test, 0.08-0.5 mm. in length, may have agglutinated foreign matter; aperture terminal, rounded, with entosolenian tube serving as sheath for pseudopodial trunk; pseudopodia granular, much elongate and anastomosing, with typical protoplasmic streaming; reproduction both by asexual schizogamy and sexual, with production of amoeboid.
Foraminiferida—Allogromiina—Lagynacea

gametes but haploid and diploid adults morphologically similar. [Marine and fresh water.] Rec., Eu.-N.Am.—Fig. 92.1. A. ovoides RHUMBLER, Adriatic Sea; anastomosing pseudopodia arising from pseudopodial trunk, ×35 (*1695).—Fig. 92.2. *A. mollis (GRUBER), Italy; 2a, living example, ×100; 2b, enlargement showing inverted aperture (*833).—Fig. 92.3. A. latissimare ARNOLD, USA (Fla.); diagram, sec. of test to show entosolenian tube or peduncular sheath, enlarged (*40).

[WAILES in CASH, WAILES and HOPKINSON (1915, *502a, p. 138) stated that Dujardin's Gromia fluvialis, 1837, should be considered as type of Allogromia. De SAEDLER (1934, *1369, p. 203) did not describe a new genus, but specifically stated that Allogromia was a nom. nov. for Craterina GRUBER. The type-species must therefore be the same as that of Craterina GRUBER (C. mollis GRUBER) as stated by RHUMBLER (*509, p. 204.).

Archaeochitinina EISENACK, 1954, *694, p. 54 [*A. gotlandica; OD]. Test free, unilocular, semiglobular; wall chitinous; aperture consisting of small pores or openings at end of short tubuli. L.Sil., Eu.—Fig. 93.1. *A. gotlandica, Llandov., Sweden (Gotl.); 1a, side view, ×140; 1b, apertures, enlarged (*694).

Archaeochitosa EISENACK, 1959, *695, p. 91 [*A. lobosa; OD]. Test pseudochitinous membrane, forming single irregular chamber; one or more circular to oval apertures at ends of tubular extensions from central portion. Ord.-Jur., Eu.—Fig. 93.2. *A. lobosa, Ord. (Echinophaseritenkalk), Est.; ×50 (*695).

Ceratostina CARTER, 1880, *296, p. 448 [*C. globularis; SD GALLOWAY, 1933, *762, p. 294]. Similar to Placopinella in having dark brown pseudochitinous wall and attached, subglobular, irregularly arranged chambers, but differing in presence of stoloniferous intercameral connections and stoloniferous extensions from final chamber; differs from Hospitella in being attached but not parasitic, and in having more closely, less regularly arranged chambers. Rec., Ind.O.—Fig. 93.4, 5. *C. globularis, 4, 5, entire individuals, approx. ×25 (*296).

[The original figures and description of this genus are quite similar to Placopinella, but as the types of Ceratostina were not found (stated to be in Liverpool Free Museum, but apparently destroyed during World War II) both genera are tentatively recognized, though additional material may prove their identity. Specimens of the type-species of Placopinella do not show the stoloniferous features described for Ceratostina.]

Chitinodendron EISENACK, 1937, *693b, p. 236 [*C. bacciferum; OD]. Thin pseudochitinous branching tubes, which terminate in oval sac-like chambers that commonly are axially symmetrical. U.Cam.-Sil., USA-Eu.(Est.-Ger.).—Fig. 93.3. *C. bacciferum, M.Ord.(Llanvirn.), Est.; ×60 (*693b).

Chitinolagena E. V. BYKOVA, 1961, *260, p. 31 [*C. gutta; OD]. Test unilocular, with inflated base and wide elongated neck; wall chitinoïd, dark brown, of labyrinthine structure; aperture terminal. [Chitinolagena is here recognized as a foraminifer, as interpreted by BYKOVA, but possibly should be placed with the Chitinozoa which it strongly resembles in form.] U.Ord.(Caradoc.), USSR(Kazakh.).—Fig. 94. *C. gutta; holotype, long. sec., ×330 (*2112).

Chitanosaccus SMITTER, 1956, *1802, p. 285 [*C. zulnensis; OD]. Test irregular, elongate, cylindrical sac, 0.65 mm. in length; pseudochitinous, somewhat flexible, with some foreign matter,
colorless to reddish-brown; aperture terminal, rounded, single; protoplasm filling test; pseudopodia branching and anastomosing. [Brackish water, sublittoral.] Rec., S.Afr.—Fig. 92.4-6. *C. zuluensis, Zululand: 4,5, empty test and one with protruding pseudopodia: 6a,b, side, top views, approx. ×60 (*1802).

Dactylosaccus RUMBLER, 1894, *1568a, p. 601

Fig. 95. Allogromiidae: 1, Dactylosaccus; 2, Dendrotuba; 3, Micrometula; 4, Lieberkuehnia; 5, Penardogromia (p. Cl76-C177, Cl79, Cl81).
Foraminiferida—Allogromiina—Lagynacea

Free-living or inhabiting empty foraminiferal tests; elongate, to 4 mm. in length, hyaline, chitinous; sausage-shaped or convoluted tube, enlarging somewhat toward apertural end, from which lobose protruberances extend giving rise to pseudopodia; protoplasm with small vacuoles; 1 or 2 globular nuclei. [Marine, 40-250 m.] Rec., N.Atl.-N.Sea.—Fig. 95,1. *D. verniformis, N.Atl.; ×45 (*1568a).

Dendrotuba Rhumbler, 1894, *1568a, p. 606 [*D. nodulosa; OD] [=Arctactylosaccum Rhumbler, 1913, *1572b, p. 343 (obj.) (nom. van.)]. Test, 0.75-5.0 mm. in length, growing inside empty foraminiferal tests and attached by rigid and tough threadlike filaments, tube much convoluted, may be branched, even in size except for some knotlike swellings; wall resistant, chitinous sheath with ringlike constrictions; ends of tube tapering or clavate; nucleus single, large, approximately as wide as protoplasmic body, diam. 87-138 μ, variable in position. [Marine, cold water.] Rec., N.Atl.—Fig. 95,2. *D. nodulosa; portion of tube with central constriction (c), threadlike filaments (f), large ovoid nucleus (n) and chromatin granules in nucleus (g), ×250 (*1568a).

Diplogromia Rhumbler, 1904, *1569, p. 214 [*Gromia brunnieri BLANC, 1886, *145, p. 362; SD Cushman, 1928, *439, p. 60] [=Arripiplogromiium Rhumbler, 1913, *1572b, p. 344 (obj.) (nom. van.); Allogromia De Saedeleer, 1934, *1609, p. 67 (obj.)]. Test free, ovoid or pyriform, length, 0.06-0.25 mm.; wall 0.02 mm. thick, composed of small siliceous particles and foreign matter held in gelatinous cement; aperture terminal, round, extensible; protoplasm yellowish and extending from aperture in asymmetrical pseudopodial peduncle, protoplasmic body covered with fairly thick mucilaginous layer which separates it from external test and which apparently was originally regarded as an inner hyaline layer, though no trace of such 2-layered character can be seen in thin sections (*1437, p. 69); nucleus large, spherical, may have many smaller nuclei; vacuoles small, generally numerous; pseudopodia numerous, long, commonly anastomosing. [Fresh water.] Rec., Eu.—Fig. 96,1. *D. brunnieri (BLANC), Switz.; ×110 (*1569).

Hospitella Rhumbler, 1911, *1572a, p. 92, 227 [*H. fulva; OD (M)] [=Arhospitellum Rhumbler, 1913, *1572b, p. 440 (obj.) (nom. van.); Hospitellum Rhumbler, 1913, *1572b, p. 468 (obj.) (nom. van.)]. Test attached, pseudo-chitinous, brownish, imperforate, commonly occurring in empty tests of other foraminifers; chambers globular to ovate or flask-shaped with stoloniferous necks, in uniserial or irregularly branching arrangement, or may be closely piled on each other, influenced by size and shape of cavities in occupied test, neck and aperture may pierce shell of this test. [Differs from Placospinella in flask-shaped chambers and apparently parasitic habit. The type-species, regarded as fixed by monotypy as *H. fulva*, is the only described species included by Rhumbler; *H. fusca* was mentioned (*1572a, p. 227) but not described and thus is a nomen nudum.] Rec., Atl.—Fig. 97,2. *H. fulva; ×95 (*1572a).

Labyrinthochitinia E. V. Bykova, 1961, *260, p. 58 [*L. tassistkoiensis; OD]. Test free or attached, subglobular to subellipsoidal, with inner partitions resulting in numerous somewhat indistinct cham-
berlets that intercommunicate by labyrinthine canals; wall thin, dark brown, chitinoid, labyrinthic in structure; no aperture other than canal-like wall openings. U.Ord.(Caradoc.), USSR(N. Kazakh.).—Fig. 98,1,2. *L. tassikoliensis; 1, holotype, 2, paratype, x330 (*2112).
Fig. 98. Allogromiidae; 1,2, Labyrinthochitinia (p. C177-C178).

Lieberkuehnia CLAPARÈDE & LACHMANN, 1859, *345, p. 464 [*L. wagneri; OD (M)] [=Alieberkuehniun RHUMBLER, 1913, *1572b, p. 343 (obj.) (nom. van.)]. Test 60-350μ in length, oval or spherical, membranous, smooth or thinly covered with foreign matter; aperture single, lateral or subterminal, may be narrow slit; protoplasm clear, slightly yellowish, distinctly granular with ribbon-like pseudopodial trunk extending through aperture and giving rise to pseudopodia or layer of protoplasm that may almost envelop test; one to many spherical nuclei, 80-150 in type-species; numerous contractile vacuoles; pseudopodia elongate, anastomosing, with pronounced granular streaming; reproduction by fission. [Fresh water and marine.] Rec., Eu.—Fig. 95.3. *L. hyalostratiata (bottle of water in Berlin from unknown source); approx. X100 (*281).

Marsupulina RHUMBLER, 1904, *1569, p. 249 [*M. schultzei; OD (M)] [=Armarsupium RHUMBLER, 1913, *1572b, p. 349 (nom. van.) (obj.)]. Test ovate, ellipsoid or reniform, 0.2 mm. in length; wall chitinoid, may be partially or wholly covered with deposit of amorphous, granular calcite; aperture rounded, eccentric; nucleus single; pseudopodia granulose. [Marine.] Rec., Eu.—Fig. 96.2. *M. schultzei, Medit. (Italy); X60 (*1569).

Maylisoria E. V. BYKOVA, 1961, *260, p. 31 [*M. pseudoscheda; OD] [=Alexandrella E. V. BYKOVA, 1958, *259, p. 880 (nom. nud.) (non Chevreux, 1911: nec TonnosR, 1926)]. Test free, irregularly ovate; wall thick, yellowish or brownish-gray, chitinoid and microgranular, labyrinthine in structure, pierced by narrow tubular pores or canals; without aperture other than tubular canals. U.Ord. (Caradoc.), USSR (C Kazakh.).—Fig. 99.1,2. *M. pseudoscheda; 1a, holotype, X330; 1b, diagram showing structure; 2, paratype, X330 (*2112).

Micrometula NYHOLM, 1952, *1374, p. 15 [*M. hyalostratiata; OD]. Test elongate, 0.7-1.2 mm. in length, tapering, imperforate, hyaline and chitinoid with fine longitudinal striations; rounded aperture at larger end, smaller temporary opening may be present at opposite end; cytoplasm without inclusions, although some detrital particles may accumulate at aperture; one nucleus. [Marine.] Rec., Eu.—Fig. 95.3. *M. hyalostratiata, Sweden (Gullmar Fjord); 3a, side view showing striated test (s) and nucleus (n), X100, 3b, long. sec. showing nucleus (n), X110 (*1374).

Protista—Sarcodina

Because *Nudellum* was described as chambered and with sand grains attached to chitinoid wall, *Chitinosiphon* was recently proposed. Not only are the genera synonymous, but their type-species are identical. No attached sand occurs on topotypes of *Reophax membranae*, hence pos-

Fig. 100. Allogromiidae; 1, *Phainogullmia*; 2, *Rhynchogromia*; 3, *Pleurophrys* (p. C181).
sibly extraneous material was originally mistaken for an agglutinated test. The specimens illustrated for Chiromi-
siphon include the holotype of C. rufulescens; 3.14 mm. in
length, and paratypes 1.49 to 2.9 mm. in length, the type
of R. membranacea being about 1.4 mm. in length. Both
type-species were described from deep water in the
Atlantic.

52 [*Microgromia elegantula Penard, 1904, *1436, p.
416, OD] (= Paralieberkuehnia De Saedeleer, 1932,
*1375, p. 619 (nom. nud.).) Test, 20-25μ in
length, thin, hyaline, pseudochitinous, rounded; portion
protoplasm encloses brilliant grains, only partially
filling test as globular mass, restricted toward aperture
into pseudopodial trunk; nucleus subcentrally;
very large contractile vacuole near base of pseudopod-
ial trunk; pseudopodia very fine, straight, long,
granular and exhibit slow granular streaming.
[Fresh water.] Rec., Eu.—Fig. 96.3. *P. el-
egantula (Penard), Belg.; specimen with strong
pseudopodial trunk and elongate pseudopodia,
x×500 (*1609).

Penardogromia Deflandre in Grasse, 1953, *810,
567; OD (M)]. Test elongate, 220-230μ in
length, tubular or fusiform, straight to slightly
arcuate, thin, delicate, translucent, yellowish,
consisting of extremely small platelets in clear ground-
mass, suggesting small longitudinal striations;
aperture terminal; protoplasm yellowish,
constricted toward aperture into distinct pseudopodial
trunk; nucleus spherical, with large nucleoli, more
rarely as many as 20 nuclei; small contractile
vacuole; pseudopodia anastomosing and fil-
amentous, extending from trunk. [Deflandre
cited the type-species as "Gromia linearis var.
Penard, 1902," but in 1902 Penard described no
form under this name, only "Gromia linearis spec.
nov."] [Fresh water.] Rec., Eu.—Fig. 95.5. *P. lin-
erinis (Penard), Switz.; approx. x×250 (*1435).

Phainogullmia Nyholm, 1955, *1377, p. 466 [*P.
arata; OD]. Test cylindrical, 0.2-1.4 mm. in
length, tapering at both ends, yellowish-brown,
glossy, opaque, consisting of chitonoid lamellae;
aperture at each end of test; food vacuoles in
protoplasm; single nucleus; pseudopodia reticulose,
extending from both apertures. [Deflandre
referred to other foraminifers; wall pseudochitinous,
in length, tapering at both ends, yellowish-brown,
glossy, opaque, consisting of chitonoid lamellae;
aperture at each end of test; food vacuoles in
protoplasm; single nucleus; pseudopodia reticulose,
and extending from both apertures; asexual repro-
duction by formation of numerous nuclei, each
accumulating protoplasm and becoming a new
embryo, no sexual reproduction observed. [Ma-
rine.] Rec., Eu.—Fig. 100.1. *P. aurata, Sweden
(Gullmar Fjord); 1a, b, partially and fully ex-
tended pseudopodia, x×75 (*1377).

Placopilinella Earland, 1934, *653, p. 95 [*P.
aurantiaca; OD]. Test tiny, commonly attached
to other foraminifiers; wall pseudochitinous, with
some ferruginous cement; numerous rounded,
plano-convex chambers, commonly arranged in
double row, single row, or rarely with 3 chambers
abreast, but without regularity in mode of in-
crease or decrease, and without definite arrange-
ment; no visible aperture nor evidence of com-
munication between chambers. Rec., Atl.—Fig.
97.1. *P. aurantiaca (hypotype BMNH ZF3659),
x×218 (*2117).

[A single specimen found by Earland showed an apparent
early spiral development of the chambers, and he there-
fore considered the genus related to Placopilina. How-
ever, this was apparently an accidental arrangement, since
none of the other specimens show any indication of coil-
ing. The composition of the wall also seems to exclude
this genus from the Placopilinidae, as likewise absence
of an aperture or opening between chambers, and the com-
plete absence of regularity of chamber arrangement. Be-
cause of the pseudochitinous wall, it is here placed in
the Allogromiidae. It differs from Ceratina and Hostiella
in the absence of any visible aperture or stoloniferous in-
tercameral necks.]

Pleurophrye Claparède & Lachmann, 1859, *345,
p. 454 [*P. sphaerica; OD (M)]. Test ovate,
length, 30-72μ, of organic matter in which small
foreign bodies and sand grains are cemented;
aperture rounded; protoplasm wholly filling test;
pseudopodia reticulose, granular. [Lithocolla
Schultze, 1874, regarded as a synonym of this
genus (*762, p. 45), is now considered to be a
heliozoan]. [Fresh water and marin.] Rec., Eu.
—Fig. 100.3. *P. sphaerica, Ger.; 3a, b, side and basal views, approx. x×300 (*1609).

Rhyncogromia Rumbler, 1894, *1568a, p. 590
[*R. variabilis; OD] (= Arrhyncogromium
Rumbler, 1913, *1572b, p. 344 (obl.) (nom.
van.)). Test elongate-ovate, 0.28-0.92 mm. in
length; wall single-layered, containing numerous
elongate or plateike secreted bodies and some
foreign matter; living in tests of other foramin­i-
feras; aperture at one end of test, second aperture
rarely at opposite end; 1 to 3 globular nuclei.
[Marine.] Rec., N.Sea-N.Atl.—Fig. 100.2. *R.
variabilis, N.Atl.; showing nucleus (n), ectoplasm
(e), foreign bodies (b) and secreted platelets (p),
x×220 (*1568a).

Rhynchococcus Rumbler, 1894, *1568a, p. 595,
*600 [*R. immigrans; OD] (= Arrhynchococcus
Rumbler, 1913, *1572b, p. 344 (obl.) (nom.
van.)). Test ovate to elongate, length, 0.24-0.9
mm., rounded at ends, may be somewhat inflated
toward apertural margin; wall thin, elastic, homo-
genous, thickened toward aperture and with
inverted entosolenian tube; similar apertures may
occur at both ends; parasitic in tests of larger
foraminifers or may occur in empty tests; nucleus
globular. [Marine.] Rec., N.Atl.-N.Sea.—Fig.
101., 1.2. *R. immigrans, N.Atl. (1), France (2); 1,
showing nucleus (n) and foreign bodies (b),
x×64 (*1568a); 2a, b, transv. and long. secs. of
apert. end showing entosolenian tube, x×200
(*1102).

86; OD]. Test ovate to pyriform, 0.2-0.6 mm.
in length, with thick, white, double-layered wall,
outer layer with cemented, granular siliceous in-
clusions and inner, hyaline layer, homogeneous
and thickened at aperture which is rounded, ter-
minal, asymmetrical, and inverted; protoplasm
yellowish, clear and colorless toward aperture
where it extends as pseudopodial trunk; single
large spherical nucleus, to 50μ in diam., or,
rarely, more than one; pseudopodia long, nu-
merous, anastomosing. [Fresh water.] Rec., Eu.
—Fig. 101.3, 4. *S. gemma (Penard), Switz.
(Lake Leman); 3, exterior showing pseudopodia, approx. ×100; 4, sectioned specimen showing 2-layered wall, protoplasmic body, and inverted neck, enlarged (*1434).

Shepheardella Siddall, 1880, *1737, p. 131 [*S. taeniformis; OD] [=Shepheardia Siddall, 1880, *1737, pl. 15 (nom. null.); Arshepheardellum Rhumbler, 1913, *1572b, p. 343 (obj.) (nom. van.); Tinogullmia Nyholm, 1954, *1376, p. 36 (type, T. hyalina)]. Test elongate, 1.0-7.5 mm in length, tubular, straight to slightly arcuate, tapering at both ends, wall firm, flexible, trans-

Fig. 101. Allogromiidae; 1, 2, Rhynchosaccus; 3, 4, Saedeleeria (p. C181-C182).
Foraminiferida—Allogromiina—Lagynacea

parent, colorless, chitinoid; small aperture at each end; protoplasm yellowish, coarsely granular, with pronounced streaming, accumulating in small lump at each end and thinly coating exterior of test also; pseudopodia extending in outspread network from both apertures, rapid streaming within pseudopodia. [Siddall described the central oval body as a nucleus, but Nyholm stated that the similar oval body in Tinogollinia was a vacuole and that the nucleus was visible only in sections.]

[Marine.] Rec., Eu.—Fig. 102, 1. *S. tenuiformis*, Eng.; 1a, side view of slender test and long, branched pseudopodia, ×12; 1b, aperture, ×170 (*1737). Thalamophaga Rhumbler, 1911, *1572a, p. 229 [*T. ramosa; SD Loeblich & Tappan, herein] [=Orbitophaga Schlumberger, 1903, *1663, p. 276 (nom. neg.); Orbitophaga Rhumbler, 1911, *1572a, p. 230 (type, O. ramosa, =Thalamophaga ramosa Rhumbler, 1911, SD, Loeblich & Tappan, herein, obj.); Marsupophaga Rhumbler, 1911, *1572a, p. 231 (type, M. ramosa, =Thalamophaga ramosa Rhumbler, 1911, SD, Loeblich & Tappan, herein, obj.); Tubophaga Rhumbler, 1911, *1572a, p. 232 (type, T. ramosa, =Thalamophaga ramosa Rhumbler, 1911, SD, Loeblich & Tappan, herein, obj.); Nummophaga Rhumbler, 1911, *1572a, p. 232 (type, N. ramosa, =Thalamophaga ramosa Rhumbler, 1911, SD, Loeblich & Tappan, herein, obj.); Arthalam pogum Rhumbler, 1913, *1572b, p. 410 (obj.).] Attached forms which burrow in test of other foraminifers and consist of inflated, irregular chambers 2-8 μ in diam., connected by stolon-like tubes which may branch and may resorb calcite of occupied test so that very thin chitinoid wall of “parasite” merely lines such burrows. [The names Orbitophaga, Nummophaga, Marsupophaga, and Tubophaga, used by Rhumbler to indicate burrowing foraminifers of Thalamophaga type found on different shells (e.g., Orbitolites, Nummulites), were not accompanied by any named species.] Rec., Atl.—Fig. 97.6. *T. ramosa; enlarged (*1572a).—Fig. 97.7. *T. incerta* (Rhumbler); ×80 (*1572a). Turriclavula Rhumbler, 1911, *1572a, p. 85 [*T. interjecta; OD]. Test small, approx. 0.15 mm. in length; wall membranous or with small inclusions; chambers few, uniserial, rectilinear; aperture terminal, slitlike. Rec., Atl.—Fig. 97.5. *T. interjecta*, Cape Verde Is.; ×320 (*1572a). Xenotheka Eisenack, 1938, *693b, p. 239 [*X. kinoskoma; OD]. Test attached, consisting of globular chamber with long tubular neck; wall pseudochitinous; rounded aperture at end of tubular neck. [This genus is similar to Ammolagena of the Tolypamininae, but has a pseudochitinous wall. Since the tests were from acid residues, an outer agglutinated layer may have been present but destroyed, and if so, the genus would be a synonym of Ammolagena. Lacking evidence of such an agglutinated layer in Xenotheka it is here recognized as belonging to the Allogromiidae.] Sil., Eu.—Fig. 97.8. *X. kinoskoma*, E. Prussia [Poland]; paratype, ×60 (*700).
Test irregular, spheroidal or tubular and straight, branching or enrolled; nonseptate or only irregularly constricted; wall agglutinated, simple or labyrinthic; aperture simple.

Cam.-Rec.

Family ASTRORHIZIDAE Brady, 1881

Subfamily AMMODISCINAE Brady, 1881

Superfamily AMMODISCACEA Reuss, 1862

Test composed of agglutinated foreign matter held by various cements. Cam.-Rec.
A. sphaerica). Test free, spherical, consisting of single chamber with few radiating tubular extensions; wall agglutinated, incorporating sand and sponge spicules with much cement; apertures at open ends of tubular extensions. [differs from Astrorhiza in having a globular instead of discoid center and only a few irregularly placed tubular arms. Rec., Atl. — Fig. 103.2. *A. rara*, Antarctic; X14 (*2063). — Fig. 103.3,4. A. sphaerica (HERON-ALLEN & EARLAND), S. Atl. (S. Georgia Is.); 3, lectotype, here designated and refigured (*914d, pl. 2, fig. 5), X48; 4, coarse-textured paratype refigured (*914d, pl. 2, fig. 10), X48 (*2117).

Radicula CHRISTIANSEN, 1958, *338, p. 51 [*R. limosa; OD]. Test free, large, to 15 mm. in length, with numerous (to 15) very elongate, tubular, irregularly bifurcating and tapering arms, to 0.8 mm. max. diam., but lacking distinct central chamber; wall with pseudochitinous lining and outer very fine-grained agglutinated layer; apertures at open ends of tapering arms. Rec., Eu. — Fig. 104.1. *R. limosa*, Drobak Sound, Oslo Fjord, Norway; holotype, X8 (*338).

Rhabdammina M. Sars in Carpenter, 1869, *274, p. 61 [*R. abyssorum; OD] [=Rhabdammina M. Sars, 1869, *1629, p. 248 (nom. nud.); Rhabdammina M. Sars in Carpenter, 1868, *273, p. 171, 172 (nom. nud.); Rhabdammina Eimer & Fickert, 1899, *692, p. 595 (type, R. linearis BRADY, 1879, *196a, p. 37, SD LOEBLICH & TAPPAN, herein); Arrhabdamminum Rumbler, 1913, Fig. 103. Astrorhizidae (Astrorhizinae; 1, Astrorhiza; 2-4, Astrammina; 5, 6, Rhabdammina) (p. CI84-CI86).
Test tubular, both ends open. \textit{L.Cam.-Rec.}

Test simple or branching tube; wall thin, with finely arenaceous groundmass and irregular covering of larger fragments, which may consist of larger sand grains, radiolarians, Globigerina shells, and other foreign matter (e.g., \textit{Challenger} locs. 146, 299); apertures at open ends of tubular branches. \textit{Rec.}, cosmop.—\textit{Fig. 105.2. \textit{R. algaeformis}, Ind.O.; *118 (\textit{2117}).}—\textit{Fig. 105.3. \textit{R. indivisa \textit{Brady}, N.E.Atl.O.; *7.5 (\textit{2117}).} [The type of wall is distinctly affected by type of substratum, varying from an arenaceous wall with some radiolarian tests, to a wholly calcareous covering of tiny specimens of \textit{Globigerina}. The genus \textit{Tetrulorhiza} and \textit{Tetulorhizina} were introduced for forms with wall composed of tests of other foraminifers agglutinated on a chitinous base. Since the type-species of \textit{Rhizammina} commonly contains large quantities of tests of \textit{Globigerina} (as in the specimen figured), the mentioned forms are regarded as congeneric.]

\textbf{Bathyphosphammina \textit{M. Sars} in \textit{G. O. Sars}, 1872, *1630, p. 251 [*\textit{V. filiformis}; OD] [=\textit{Rhabdamminella de Folin}, 1881, *724, p. 140 (\textit{nom. nud.}); \textit{Rhabdamminella de Folin}, 1887, *726a, p. 115 (type, \textit{R. prismaeigna}); \textit{Arthathysphammina \textit{Rhumbler}, 1913, *1572b, p. 352 (\textit{nom. van.}); \textit{Hippocrepellina \textit{Heron-Allen \& Earlend}, 1932, *914d, p. 254 (type, \textit{H. hirudinea}); \textit{Arenosiphon \textit{Grubbs}, 1939, *832, p. 544 (type, \textit{A. gigantea}); \textit{Piasmophosphammina \textit{Avnimelech}, 1952, *63, p. 64 (type, \textit{Bathyphosphammina \textit{Avnimelech}, 1952, p. 66; \textit{V. filiformis}, Rec., Pac.O., *8 (\textit{2117}).}—\textit{Fig. 105.5. \textit{B. gigantea (\textit{Gruibbs}), Sil. (Niagaran), USA (III); *16 (\textit{2117}).}—\textit{Fig. 105.6. \textit{B. arenacea \textit{Cushman}, Rec., Pac.O.; holotype, refigured, *39 (\textit{2117}).}—\textit{Fig. 105.7. \textit{B. flexilis \textit{Hoglund}, Rec., N.Sea; long. sec. showing imbricated layers of \textit{G. mica grains in fine-grained groundmass, *880 (\textit{924}).}—\textit{Fig. 105.8-10. \textit{B. hirudinea (\textit{Heron-Allen \& Earlend}), Rec.}, S. \textit{Ad. (S.Georgia Is.); \delta, lectotype, here designated and figured, one of original syntypes but not figured previously (BMNH-ZF 3300); 9, top view of paratype, also figured by \textit{Heron-Allen \& Earlend} (914d, pl. 1, fig. 10) (BMNH-ZF 3300); 10, paratype, long. sec. redrawn, specimen figured (914d, pl. 1, fig. 9) (BMNH-ZF 3301); all *41 (\textit{2117}).}

\textit{Bathyphosphammina} differs from \textit{Rhizammina} in having a regular or slightly tapered, nonbranching tubular test. \textit{Hippocrepellina} was defined as having slightly constricted apertures and a smoothly finished, transversely wrinkled wall. None of these characters serve to separate it from \textit{Bathyphosphammina}. Furthermore, sectioned specimens of \textit{Hippocrepellina} described by \textit{Heron-Allen \& Earlend} (914d, p. 258) showed the cavity "more or less completely filled with an ingested mass of foodstuffs, principally diatoms, and it depends upon the compactness of this mass whether the test preserves its outline after death, or suffers distortion and compression." This seems also to indicate congeneric status with \textit{Bathyphosphammina}, since these filled sections were probably derived waste-filled sections of the test, similar to those described in the type-species of \textit{Bathyphosphammina}. The "aperture constrictions" may be due to contraction of the semiflexible test when dried.

\textbf{Marsipella \textit{Norman}, 1878, *1363, p. 281 [*\textit{M. elongata}; OD (M)] [=\textit{Armarapelliellum \textit{Rhumbler}, 1913, *1572b, p. 351 (obj. (\textit{nom. van.})]. Test free, consisting of single undivided tubular, cyl-
indical, or elongate-fusiform chamber, which may be slightly twisted; wall of agglutinated sand, sponge spicules, or tests of other foraminifers; apertures at open ends of tube. U.Ord.-Rec., cosmop.—Fig. 105, 1. *M. elongata, Rec., N.Atl., X14 (*2117).

Subfamily HIPPOCREPININAE Rhumbler, 1895

[Hippocrepininae RHUMBLER, 1895 (*1568A, p. 83)]—[All names are of subfamily rank]—[=Hyperammininae CUSHMAN, 1910, p. 59; =Arhippocrepina RHUMBLER, 1913, p. 352 (nom. van.)]

Test free, globular proloculus continuing

Fig. 104. Astrorhizidae (Astrorhizinae; 1, Radicula; 2,3, Vanhoeffenella) (p. C185-C186).
into nonseptate tube; aperture at open end of tube. *L. Ord.-Rec.*

Hippocrepina PARKER in G. M. DAWSON, 1870, *565*, p. 177 [*H. indivisa*; OD] [=Arhippocrepum RHUMBLER, 1913, *1572b*, p. 352 (obj.) (nom. van.); Hyperamminella CUSHMAN & WA-

© 2009 University of Kansas Paleontological Institute
Foraminiferida—Textulariina—Ammodiscacea

Ters, 1928, *535, p. 36 (type, H. elegans) (non de Folin, 1881, 1887); Hyperamminoides Cushman & Waters, 1928, *537, p. 112 (nom. subst. pro Hyperamminella Cushman & Waters, 1928, non de Folin)]. Test free, elongate, tapering, may have irregularly spaced transverse constric-

Fig. 106. Astrorhizidae (Hippopreminae; 1, Gialiarella; 2, 3, Hyperammina; 4, Pseudohyperammina; 5, 6, Faculella; 7-9, Protobotellina; 10, 11, Hippocrepina; 12, Saccorhiza) (p. C188-C190).
Hyperammin~sponge spicules partially closing open narrowed later portion. Jop. 168) regarded type·("378, '394, p. 56 abyssorum (G. M. DAWSON), but without morphologic basis for separation from Giraliarella CRESPIN, 1958, Hyperammina BRADY, 1878, p. 433 Protista-Sarcodina --FIG. 106,1. angular to quadrate section; wall finely agglu­views of holotype, X40, XI04 (*394).

Indivisa, elongata; OD U. Del •. -Ree., ALLMAN, 1869; side and top views, X44 ('2117).--FIG. 106,1a,b, outline; wall thin, finely agglutinated; aperture terminal, rounded, constricted. [Protobotellina differs from Botellina in having a non-labyrinthic interior, in being cylindrical, and in lacking an inflated bulbous base. It differs from Jaculella in its cylindrical instead of conical, flaring form. It is very like Bathysiphon except for being closed at one end. Sectioned specimens contain a black "protoplasm" reminiscent of the waste-filled discarded sections of Bathysiphon, but the closed base of agglutinated material and single aperture serve to separate Protobotellina from Bathysiphon.]

Giraliarella CRESPIN, 1958, *394, p. 56 [*G. angu- lata; OD]. Similar to Hypercippina but with tri­angular to quadrate section; wall finely agglu­tinated with siliceous cement. Perm., W. Alaska.——FIG. 106,1. *G. angulata; 1a,b, side and top views of holotype, X40, X104 (*394).

Hyperammina BRADY, 1878, *195, p. 433 [*H. elongata; OD]. Similar to Hyperammina but with tri­angular to quadrate section; wall finely agglu­tinated with siliceous cement. Perm., W. Alaska.——FIG. 106,1. *G. angulata; 1a,b, side and top views of holotype, X40, X104 (*394).

Protohyperammina CRESPIN, 1958, *394, p. 55 [*P. radiostoma; OD]. Test similar to Hippo­crepina but with less rapid flaring and subo­vate outline; wall thin, finely agglutinated; aperture ovate, with thickened border and radially ar­ranged elongate grooves extending outward from apertural opening. Perm., W. Australia.——Fig. 106,4. *P. radiostoma; X45 (*394).

Saccorhiza EIMER & FICKERT, 1899, *692, p. 670 [*Hyperammina ramosa Brady, 1879, *196a, p. 33; OD (M)]. Test free, with subglobular pro­loculus and long dichotomously branching tubular undivided chamber of nearly uniform diameter throughout; wall thick, agglutinated, consisting of medium to fine sand grains, commonly with abundant sponge spicules fastened almost at right angles to outer surface, giving very spinose, bristling appearance; apertures formed by open ends of tubes. [Saccorhiza differs from Hyperam­mina in its branching character.]. L. Miss.-Rec., Atl.-Pac.—Fig. 106,12. *S. ramosa (BRADY), Rec., N.Pac.; lectotype (here designated and re­drawn, BMNH-ZF 3602), X22 (*2117).

Subfamily BOTELLININAE

Chapman & Parr, 1936 [Botellinaceae CHAPMAN & PARR, 1936, p. 146]

Globular proloculus with nonlabyrinthic interior followed by elongate, tubular, un­divided chamber with labyrinthic interior; wall agglutinated, with inner pseudochitin­uous lining. Rec. Botellina CARPENTER, JEFFREYS & THOMSON, 1870,
Foraminiferida—Textulariina—Ammodiscacea

Test elongate, cylindrical, with bulbous proloculus and undivided tubular later portion nearly filled with arenaceous, labyrinthic mate-

Fig. 107. Astrorhizidae (Botellininae; 1-3, Botellina); Schizamminidae; 4, 5, Itinienella; 6-10, Schizammina (p. C190-C194).
Protista—Sarcodina

Subfamily DENDROPHRYINAE

Haeckel, 1894

[nom. transl. CUSHMAN, 1927, p. 14 (ex Dendrophryida HAECKEL, 1894, p. 185)]

Test attached, commonly branching or occurring in clusters. *Pleist.-Rec.*

Dendrophyra T. S. WRIGHT, 1861, *2081*, p. 122

[*D. erecta; SD CUSHMAN, 1918, *411a*, p. 85]

[*Piasmatoendron* NORMAN in BRADY, 1881, *197*, p. 98 (type, *P. arborescens*); =*Aridendrophylum* RHUMBLER, 1913, *1572b*, p. 345 (obj.) (nom. van.)]

Test attached by proloculus, later elongate, nonseptate, branching tubular portion growing erect and spreading; wall with pseudochitinous lining and outer agglutinated layer, may have ferruginous cement; apertures at open ends of tubular branches. [*Piasmatoendron* has been recognized for some delicately branched species, but the differences are of only specific nature. *Pleist.-Rec., Atl.*—Fig. 108,1. *D. erecta*, Rec., N.Atl.(off Scot.); X18 (*2117).—Fig. 108,2. *D. arborescens* (NORMAN), Rec., N.Atl.(off Scot.); X13 (*2117).]

Test commonly attached, with early expanded basal chamber or pad containing ramifying passages which converge to central cavity, or may grow free, with bulbous early portion, later development consisting of elongate tube which may branch dichotomously, or more than one such nonseptate tube may arise from basal expansion; wall fragile, consisting of fine sand grains and sponge spicules aligned in direction of test growth, upon pseudochitinous base; apertures are simple terminal openings at slightly constricted ends of branches, with spicules projecting somewhat beyond remainder of wall. [The “crown” of projecting spicules is somewhat less prominent in actual specimen than in restoration figured by HERON-ALLEN & EARLAND (*911, pl. 2, fig. 12), which has been recopied as representing a complete specimen. The actual types show fragmental material such as that here illustrated.] *Rec., S.Pac.—Fig. 108,3,4. *D. arborescens*, Rec. off N.Z.; 3, lectotype (here designated and redrawn, BMNH-ZF 3608), showing basal expansion: 4, paratype (BMNH-ZF 3609), showing branching, both X22 (*2117).]

Haliphysema BOWERBANK, 1862, *183*, p. 1105

[*H. tumanowiczii; OD (M.) =*Gastrophysema HAECKEL, 1877, *849*, p. 4, 8, 24 (type, *Squatulina scopula* CARTER, 1877, *290*, p. 311) (nom. subst. pro *Haliphysema* tumanowiczii BOWERBANK, 1862) SL ORLOCH & TAPPAN, here-in (obj.); *Haliphysema* HAECKEL, 1877, *849*, p. 1 (nom. van.); *Arhaliphysemum* RHUMBLER, 1913, *1572b*, p. 352 (nom. van.).] Test attached, with internally subdivided, spreading basal expansion and later erect conical or clavate chamber, which is tubular and even bifurcating in some species; wall agglutinated, that of basal expansion fine-grained and may include fragments of sponge spicules, erect portion with sand, other foraminal tests, or numerous elongate sponge spicules oriented in direction of test growth; aperture terminal and rounded, may be obscured by cluster of spicules; pseudopodial network with pronounced granular streaming, many nuclei. *Rec., Atl.-Carib.-Pac.—Fig. 108,6,7. *H. tumanowiczii*, Eng.(Sussex); 6, lectotype (BMNH-ZF 3652), X57; 7, several paratypes showing attachment, X17 (*1153).—Fig. 109, living specimen, showing pseudopodial network, X70 (*1034).]

Normanina CUSHMAN, 1928, *436*, p. 7 [*Haliphysema confertum* NORMAN, 1878, *1363*, p. 279; OD]. Test free, consisting of central mass from which tubular portions radiate, individual tubes expanding distally into globular or conical masses; wall of tubular portion flexible, agglutinated, composed of medium-sized grains; apertures not observed in type-species. *Rec., Atl.—Fig. 108,8. *N. conferta* (NORMAN), off Greenl.; 8a, holotype (redrawn, BMNH-ZF 3657), entire specimen, X48; 8b, single individual, X105 (*2117).]

Nubeculariella AVERINTSEV, 1911, *62*, p. 8 [*N. birulai; OD*]. Pseudochitinous tube with agglutinated coating, some grains so large as to suggest attachment to substratum; rounded aperture at somewhat flaring open end of tube. *Rec., Arctic O.—Fig. 108,5. *N. birulai; approx. X28 (*6?).

Syringammina BRADY, 1883, *199*, p. 159 [*S. fragilissima; OD*] =*Arysyringamnum* RHUMBLER, 1913, *1572b*, p. 345 (obj.) (nom. van.)]. Test free or attached, consisting of bulbous base with many branching or anastomosing tubes forming rounded mass; wall finely agglutinated; apertures at ends of tubular portions. *Rec., N.Atl.(Faroe Channel).—Fig. 108,9. *S. fragilissima; X3.3 (*2117).]

Family SCHIZAMMINIDAE

Nørvang, 1961

[Schizamminidae NØRVANG, 1961, p. 171]

Test free, nonseptate, tubular, and dichotomously branching or spheroidal, may be flattened, interior cavity not subdivided;
wall agglutinated with organic cement, nonporous but with interstitial canals filled by protoplasm, no inner lining, but outer covering of tectine present; apertures consisting of simple rounded openings at ends of branches. \(? \text{Trias, Rec.} \)
Schizammina Heron-Alen & Earland, 1929, *914a, p. 103 [*S. labyrinthica; SD Cushman, 1930, *447, p. 73] [=Psammomiphon Rhumbler, 1911, *1572a, p. 43 (type, Nodosinella wedmoironis Chapman, 1895, *312, p. 320) (non Psammomiphon Vine, 1882); Arpsammomiphon Rhumbler, 1913, *1572b, p. 440 (nom. van.)]. Test free, consisting of nonseptate tube, dichotomously branching in single plane; wall finely agglutinated, exterior smoothly finished, interior labyrinthic but chamber cavity rather smoothly finished between pore openings, exterior with few transverse wrinkles; apertures at open ends of tubular chamber. [Differs from Rhizammina in possessing a labyrinthic wall.]

?Trias. (Rhaet.), Eng.; Rec., Atl.—Fig. 107.6,7. *S. labyrinthica, Rec., off French Equat. Afr. (6), off Gabon (7); 6, lectotype (here designated and redrawn, BMNH-ZF 3653), X5.2 (*2117); 7, sectioned paratype, X10 (*2117).—Fig. 107.8-10. S. wedmoironis (Chapman), Trias. (Rhaet.), Eng.; 8,9, ext. views, X5; 10, long. sec., X5 (*1572a).

Jullienella Schlumberger, 1889, *1653, p. 213 [*J. foetida; OD (M)]. Test large, flabelliform, or may have large fan-shaped portions extending in 2 directions from central attachment, margin produced into numerous tubules; wall firm, finely agglutinated, with much ferruginous cement, insoluble in hydrochloric acid, labyrinthic, surface transversely wrinkled, interior irregularly subdivided by series of intermittent radiating ridges which are not reflected on exterior; interior surface with many large pores which constrict within wall to connect with smaller openings at outer surface; apertures numerous, comprising small rounded openings at ends of tubular extensions along periphery; reddish-brown. Rec., Afr. (Liberia).—Fig. 107.4,5. *J. foetida, topotypes; 4, ext., showing flabelliform test, growth ridges, and apertures on tubular extensions, X2; 5a,b, fragments of surface and int., with discontinuous radiating ridges and large pores, X10 (*1166).

Family SACCAMMINIDAE
Brady, 1884
[nom. correct. Eimer & Fickert, 1899, p. 671 (pro family Saccamminida Lankester, 1885, p. 846, nom. transl. ex subfamily Saccammininae Brady, 1884, p. 64)]—[All names of family rank; dagger(†) indicates parim]—
 [=Arenacidos Gadea Buisán, 1947, p. 17 (nom. neg.)];
 =Protocystidae Eimer & Fickert, 1899, p. 665 (nom. nud.);
 =Kyphamminidae Eimer & Fickert, 1899, p. 672 (nom. nud.);
 =Ammosconidae Eimer & Fickert, 1899, p. 673 (nom. nud.);
 =Pilulinidae Lankester, 1895, p. 190;
 =Pilulinida Haekel, 1894, p. 190;
 =Pilulinida Lankester, 1903, p. 141;
 =Saccamminidae Delage & Hérouard, 1896, p. 130;
 =Psammophaeidae Haekel, 1894, p. 185;
 =Psammophaeidae Eimer & Fickert, 1899, p. 670;=Steg­
 =Rammindae Moreman, 1930, p. 48)

Test free or attached, subglobular, or in groups; aperture absent, single, or multiple. Ord.-Rec.

Subfamily PSAMMOSPHAERINAE
Haekel, 1894
[nom. transl. Cushman, 1927, p. 11 (ex family Psammophaeida Haekel, 1894, p. 185)]—[All names of subfamily rank]—[=Steg­
 =Rammindae Moreman, 1930, p. 48]

Test free, globular or with several loosely joined chambers, no aperture. M.Ord.-Rec.
Foraminiferida—Textulariina—Ammodiscacea

Psammosphaera Schulze, 1875. *1697, p. 113 [*P. fusca; OD] [=Arpsammosphaera Rumbler, 1913. *1572b, p. 347 (obj.) (nom. van.); Psammella Rumbler, 1935, *1574, p. 167 (type, P. frankei) (nom. Lendenfeld, 1887, nom. nud.); Pilulla Rumbler, 1935. *1574, p. 150 (type, P. exigua)]. Test free, single chamber, commonly globular; wall with thin pseudochitinous inner layer and outer, firmly cemented agglutinated layer; aperture indefinite. [Separate generic names have been proposed for forms with varying proportions of pseudochitin and sand and with varying grain size in the agglutinated wall. These are regarded here as of specific value only.] M.Ord.-Rec., N.Am.-S.Am.-Eu.-Australia-Antarctic.—Fig. 110.1. *P. fusca, Rec., Atl.; 1a,b, ext. views, with side broken to show interior, ×30 (2117). —Fig. 111.1. P. frankei (Rumbler) forma sphaeroidea Rumbler, Rec., Ger.(Kieler Bucht); test broken open, showing remains of protoplasmic body, ×50 (1574).—Fig. 111.2. P. frankei (Rumbler) forma ellipsoidea (Rumbler), ext., ×50, Rec., Ger.(Kieler Bucht); ext., ×50 (1574).—Fig. 111.3. P. exigua (Rumbler), Rec., Ger.(Kieler Bucht); in balsam, ×180 (1574).

Amphifenestrella Rumbler, 1935. *1574, p. 169 [*A. wiesneri; OD]. Test free, discoidal, flat sides of transparent pseudochitin, with peripheral area of agglutinated material; no definite apertures or tubular extensions of chamber. [Differences from Vanhoeffenia in lacking tubular extensions at angles of the test and in lacking definite apertures.] Rec., Ger.—Fig. 111.4. *A. wiesneri, Kieler Bucht; peripheral agglutinated border and transparent pseudochitinous side through which protoplasmic contents can be seen, ×50 (1574).

Blastammina Eisenack, 1932, *693a, p. 261 [*B. polymorpha; OD]. Test free, consisting of one or rarely more than one hemispherical rounded to subangular chamber, may be irregularly grooved or infolded; wall with brown, pseudochitinous layer sparsely covered with mosaic of sand grains; no distinct aperture. Sil., Eu.—Fig. 111.5-7.

Fig. 110. Saccamminidae (Psammosphaerinae; 1, Psammosphaera; 2, Sorosphaera; 3-5, Stegnammina) (p. C195-C196).
Protista—Sarcodina

B. polymorpha, Sweden(Gotl.); 5, neotype, ×67 (*694); 6, hemispherical form, ×58 (*693a); 7, irregularly grooved, ×40 (*695a).

Ceratammina Ireland, 1939, *796*, p. 194 [*C. conica*, OD]. Test free, unilocular, conical and slightly depressed: wall agglutinated of fine, well-cemented sand grains; aperture not apparent. *L.Dev., N.Am.*—Fig. 111,8. *C. conica*, Helderberg, USA(Okla.); ×40 (*796).

Pseudastrophiza Eisebeck, 1932, *693a*, p. 259 [*P. silicara; OD*] (=*Pavasellites* O. Wetzel, 1951, *2048*, p. 113 (type, *P. hospitalis*). Test of agglutinated quartz grains, with numerous (commonly 3-7) short, thick radiating arms, which are closed terminally, thus differing from *Astrophiza*; aperture not visible. *Ord.-Paleoec., Eu.(Ger.-Est.); N.Am.(III.).*—Fig. 111,9. *P. silicara*, Ord., Est.; neotype, ×50 (*694*).—Fig. 111,10. *P. hospitalis* (Wetzel), Paleoec. (Dan.), Ger., ×115 (*2048).

Sorocammina Brady, 1879, *96a*, p. 28 [*S. confusa*; OD (M)] (=*Thuramminopsis* Häusler, 1883, *853*, p. 69 (type, *T. candiculata*); *Astartothamnella* Rühmiber, 1913, *1572b*, p. 347 (obj.) (nom. van.). *Sorocammina* Rühmiber, 1913, *1572b*, p. 347 (obj.) (nom. null.); *Piastravumpha* Rühmiber in Wiesner, 1931, *2063*, p. 80 (type, *P. conoforma*); *Arenosphaera Schiedrina*, 1939, *1724*, p. 95 (type, *A. perforata*); *Dalmbica Frentzen*, 1944, *747*, p. 325 (type, *D. gracilis*). Test free, consisting of variously arranged globular chambers with no apparent order of development; wall agglutinated of rather coarse grains and loosely cemented so that tests are easily broken; no distinct aperture apparent, communication of protoplasm with exterior probably between loosely cemented grains. *Sorocammina* differs from *Piastravumpha* in consisting of numerous loosely joined chambers. The type specimen of *S. confusa* in the British Museum (Natural History) has disintegrated since its original description, probably owing to its extremely fragile nature. *Sil.-Rec., Eu.-N.Am.-Arctic-Antarctic.*—Fig. 110,2. *S. confusa*, Rec., Atl.; ×22 (*2117*).—Fig. 111,11. *S. conoforma* (Rühmiber), Rec., Antarctic; ×23.5 (*2063*).—Fig. 111,12. *S. gracilis* (Frentzen), Jur., Ger.; approx. ×30 (*794*).—Fig. 111,13. *S. robusta* (Frentzen), Jur., Ger.; holotype, approx. ×20 (*794*).—Fig. 111,14. *S. perforata* (Schiedrina), Rec., USSR(Kara Sea); 14a, 3-chambered specimen with last one broken; 14b, portion of test wall, ×40 (*1724*).

Stegeammina Moreman, 1930, *1309*, p. 49 [*S. cylindrica*; OD] (=*Raibosammina Moreman*, 1930, *1309*, p. 50 (type, *S. circinata*); *Thekammina* Dunn, 1942, *648*, p. 326 (type, *T. quadrangularis*). Test free, subcylindrical to angular, straight to curved; wall thin, agglutinated, well cemented; without definite aperture. *Modifications of chamber shape are not regarded as generic in importance. Thekammina was defined for a subquadrangular species, but one species of Stegarnaminna is triangular; hence, they are believed to be congeneric. Raibosammina was regarded as being slightly irregular and in having a chamber interior of varying diameter.* *Ord.-Rec., N.Am.*—Fig. 110,3. *S. cylindrica*, Sil., USA(Okla.); lectotype (here designated and redrawn), ×62 (*2117*).—Fig. 110,4. *S. micacea* (Moreman), Ord., USA(Okla.); *a,b, side and end view, ×83 (*2117*).—Fig. 110,5. *S. quadrangularis* (Dunn), Sil., USA(III.); ×24 (*648*).

Subfamily SACCAMMININAE Brady, 1884

Test free, definite aperture. Ord.-Rec.

Test free, single globular chamber; wall with pseudochitinaceous base and outer agglutinated layer, firmly cemented; aperture rounded, may be produced on short neck. Sil.-Rec., N.Am.-Eu.-Atl.-Pac.-Antarctic.—Fig. 112,1. *S. sphaerica*, Rec., Atl.; ×47 (*2117*).

constricted neck. It differs from Bathysiphon in being relatively short and closed at one end.] Perm.-Rec., N.Z.-Australia.—Fig. 112,2. *B. corbuliformis, Rec., N.Z. (off Great Barrier Is.); 2a, b, side and top views of topotype, X28 (*2117).—Fig. 112,3. B. rudis (PARK), Perm.,

Fig. 111. Saccamminidae (Psammosphaerinae; 1-3, Psammosphaera; 4, Amphifenestrella; 5-7, Blastammina; 8, Ceratammina; 9,10, Pseudastrorhiza; 11-14, Sorosphaera; 15-17, Storthosphaera) (p. C195-C196).
Fig. 112. Saccaminidae (Saccamininae; 1, Saccamina; 2-4, Brachysiphon; 5,6, Pelosphaera; 7,8, Pelosina; 9, Pitulina) (p. C198-C201).
Foraminiferida—Textulariina—Ammodiscacea

Fig. 113. Saccamminidae (Saccammininae; 1, Causia; 2, Lagenammina; 3-7, Ordovicina; 8, Stomasphaera; 9-13, Pelosina) (p. C200-C202)
FIG. 114. Saccamminidae (Saccammininae: 1,2, Pelosphaera) (p. C201).

Australia; X28 (*394).—Fig. 112, 7. A. australis (CRESHAIN), Perm., W.Australia (Carnavon Basin); X39 (*394).

Causia RHUMBLER, 1936, *576, p. 171 [*C. inindica; OD]. Test free, unilocular, circular in plan, convex above and concave below, may have marginal flange; wall of pseudochitin with small amount of fine-grained agglutinated foreign matter; aperture small, rounded, at center of concave lower side. Rec., N.Sea.—Fig. 113, 1. *C. inindica, Helgoland; la, dorsal view, but with small rounded ventral aperture visible through semitransparent pseudochitinous wall, X200; lb, diagram. edge view of marginal flange, X110; lc, diagram. vert. sec., X110 (*576).

Lagenammina RHUMBLER, 1911, *572a, p. 92, 111 [*L. laguncula; OD(M)] [=Arlangenammum RHUMBLER, 1913, *572b, p. 348 (obj.) (nom. var.)]. Test single flask-shaped chamber; wall with pseudochitinous inner layer, densely covered with agglutinated material; aperture terminal, produced on neck. Sil.-Rec., N.Am.-Atl.—Fig. 113, 2. *L. laguncula, Rec., N.Atl., X218 (*572a).

Ordovicina EBENACK, 1938, *693b, p. 234 [*O. oligostoma; OD] [=Amphitreomoida EBENACK, 1938, *693b, p. 235 (type, A. citroniforma); Amphitreomoida THALMANN, 1941, *1897e, p. 648 (nom. var.): Shidelarella DUNN, 1942, *648, p. 328 (type, S. bigbuspidata); Croneiella DUNN, 1942, *648, p. 334 (type, C. typa); Gastroammina DUNN, 1942, *648, p. 335 (type, G. williamsae)]. Test free, single ovate to irregularly shaped chamber, wall with pseudochitinous base and agglutinated outer layer; one or more apertures at ends of slight projections. [Because of the dominantly pseudochitinous wall and thin agglutinated layer, the fossil tests are commonly somewhat distorted, suggesting that restricted generic limits should not be based on test shape alone.] Ord.-Sil., N.Am.-Eu.—Fig. 113, 3. *O. oligostoma, Ord., Est.; X95 (*694).—Fig. 113, 4. O. citroniforma (EBENACK), Ord., Baltic; hypotype, X140 (*694).—Fig. 113, 5. O. bigbuspidata (DUNN), Sil., USA(III); X35 (*648).—Fig. 113, 6. O. typa (DUNN), Sil., USA(III); X27 (*648).—Fig. 113, 7. O. williamsae (DUNN), Sil., USA (Mo.); X27 (*648).

Pelosina BRADY, 1879, *196a, p. 30 [*P. variabilis; SD CUSHMAN, 1910, *404a, p. 45] [=Arpelosoma RHUMBLER, 1913, *572b, p. 348 (obj.) (nom. can.)]. Test free, subcylindrical, elongate, fusiform, nonseptate; wall thick, may be irregularly constricted, finely agglutinated, with thin, pseudochitinous base, well-preserved specimens with fine tubular extensions at either end; pseudochitinous lining may protrude farthest at one end; apertures at open end of tubular extension at one or both ends. Cret.-Rec., Eu.-Sib.-Atl.-Arctic-Antarctic.—Fig. 112, 7; 113, 9. *P. variabilis, Rec., off N.Z. (112, 7), off Sweden (113, 9); 112, 7, topotype, X8 (*2117); 113, 9, specimen showing membranaceous dendritic “appendages,” probably preserved pseudopodia, X17 (*924).—Fig. 112, 8. *P. bicaldata (PARK), Rec., off Kerguelen Is.; X44 (*1429).—Fig. 113, 10. *P. sphaeriloculum HöGLOUND, Rec., off Sweden; X17 (*924).—Fig. 113, 11. *P. distoma MILLETT, Rec., Malay Arch.: 11a,h, side and apert. views, X115 (*1284).—Fig. 113, 12, 13. *P. canda (MONTANARO GALLITELLI), Cret., N. Italy; 12, holotype,
HOGLUND (1924) regarded the broader end of the test as apical and the smaller end as oral. In well-preserved specimens extremely delicate dendritic "appendages" at the broad end were regarded as holdfasts, though he also stated that they might be preserved threads of pseudopodia with adherent particles of bottom sediment, since his material was preserved in alcohol immediately after sampling. The latter explanation seems to us more likely, the broader end then appearing to be the apertural end, and in dried specimens (such as the illustrated toptype) it contains an opening. The opposite end had a few thin dendritic tubes in HOGLUND's material, which could well have served as holdfasts. Pelosinella, Milletina, and Caudammina all were defined for species with openings at both ends, but because of the delicate nature of the tests, this is doubtless due to the state of preservation of the dried or fossil material upon which the species were based. Simple saclike species previously placed in Pelosina should be referred to Saccammininae.

Pelosphaera HERON-ALLEN & EARLAND, 1932, *914d, p. 255 [*P. cornuta; OD(M)]. Test free, roughly spherical, with 2 or more projecting fragile, flexible, conical tubes of fine mud, equal in length to test diameter, repeatedly bifurcating near extremity, as in Pelosina, tubes commonly destroyed in dead specimens, so that test resembles Saccammina; wall with inner imperforate pseudochitinous layer and outer agglutinated layer: cement soft, flexible on surface but firm and smooth internally and may appear somewhat fibrous between grains in interior; aperture single, with distinctive oral apparatus consisting of pseudochitinous entosolenian tube with inner gel-like capsule. Rec., S.Georgia Is.-Antarctic.——Fig. 112.5,6; 114.1,2. *P. cornuta, off S.Georgia (112.5,6), Antarctic (114.1,2): 112.5, lectotype (here designated, *914d, pl. 2, fig. 14, and redrawn), X10 (*2117); 112.6, paratype (*914d, pl. 2, fig. 15, redrawn), broken to show interior, X10 (*2117); 114.1, diagram. sec. through apertural region (a) and showing chitinous layer (c), entosolenian tube with gel-like oral capsule (o), X155 (*890); 114.2, fragment of alcohol-preserved test, showing fine-grained, repeatedly bifurcating, tubular extensions, X12.5 (*653).

Pilulina CARPENTER, 1870, *275, p. 5 [*P. jeffreysii CARPENTER, 1875, *276, p. 532; SD (SM) CARPENTER, *276, p. 532] [=Arpilunula RHUMBLER, 1913, *1572b, p. 349 (nom. van.)]. Test free, globular: wall thick, of agglutinated loosely aggregated sand and sponge spicules, resulting in delicate test; aperture elongate slit, somewhat as in Fissurina, elevated on very slightly produced ridge. [Differs from Saccammina in the elongate slitlike aperture.] Rec., Atl.-Pac.-Antarctic.——Fig. 112.9. *P. jeffreysii, N.Atl.; 9a,b, side, apert. views, X13 (*2117).

Saccamminoides GEROCH, 1955, *783, p. 54, 57, 60 [non IRELAND, 1956] [*S. carpathicus; OD]. Test free, consisting of few rapidly enlarging, irregularly arranged chambers; wall agglutinated, with siliceous cement; apertures rounded in each of last 2 or 3 chambers, may be slightly produced. [This genus is very similar to Sorosphaera except

FIG. 115. Saccamminidae (Saccammininae; 1,2, Saccamminoides; 3, Thuammina; 4,5, Teknitella) (p. C201-C202).
for the presence of distinct apertures in the chambers.] L.Eoc., Eu.(Pol.)—Fig. 115,1,2. *S. carpathicus*, W. Carpathians; 1,2, holotype and paratype, ×33 (*783).

Stomaphaera Mound, 1961, *1321*, p. 28 [*S. brasfieldensis* (OD)]. Test free, single subspherical or somewhat subangular chamber; wall agglutinated, medium to coarsely arenaceous, poorly to well cemented, surface rough; aperture single small, rounded opening. L.Sil., N.Am.—Fig. 113,8. *S. brasfieldensis*, USA(Ind.); holotype, ×100 (*1321).

Technitella Norman, 1878, *1363*, p. 279, 281 [*T. legumen*; SD Cushman, 1910, *404a*, p. 47] [=Dioecia de Folin, 1887, *726a*, p. 115 (type, D. richardi)]; Hyperamminella de Folin, 1881, *724*, p. 140 (non Cushman & Waters, 1928) (nom. nud.); Hyperamminella de Folin, 1887, *726a*, p. 114 (non Cushman & Waters, 1928), no species named; Artechnitella Rhumbler, 1913, *1572b*, p. 350 (obj.) (nom. van.). Test free, consisting of single elongate, oval, fusiform or cylindrical chamber; wall thin, composed of longitudinally aligned sponge spicules, with some sand grains; aperture terminal, rounded, may be on short neck. [Technitella differs from Pelosina in having a thin wall composed largely of sponge spicules, instead of a thick layer of fine agglutinated material on a pseudochitinous inner layer.] Oligo.-Rec., S.Am.-Australia-Atl.-Antarctic.—Fig. 115,4. *T. legumen*, Rec., off Ire.; 4a,b, side and top views of holotype (here refigured, BMNH ZF3628), ×64 (*2117).—Fig. 115,5. T. richardi (de Folin), loc. and mag. not given (*726a).

Thurammina Brady, 1879, *196a*, p. 45 [*T. papillata*; SD Cushman, 1910, *404a*, p. 57] [=Thyrammina Rhumbler, 1904, *1569*, p. 236 (obj.) (nom. van.); Arthryammina Rhumbler, 1913, *1569*, p. 347 (obj.) (nom. van.). Test free, single, nearly globular chamber; wall thin, finely agglutinated, surface smoothly finished; apertures several, commonly situated on small mammillate protuberances. [Differs from Saccam-

Subfamily HEMISPHAERAMMININAE

Loeblich & Tappan, 1961

Test attached, consisting of one or more subglobular or hemispherical chambers. Ord.-Rec.

Hemisphaerammina Loeblich & Tappan, 1957, *1172*, p. 223 [*H. batilleri; OD*] [=Faurilella Summerston, 1958, *1858*, p. 555 (type, F. di­cantha)]; Iridiella Shchelovina, 1962, *1726a*, p. 57 (type, I. marisalbi). Test attached, consisting of single hemispherical chamber, may have bordering flange; wall agglutinated, with considerable cement; no apparent aperture. [This genus includes the agglutinated species previously referred to Webbinella, as the type-species of Webbinella, W. hemisphérica Parker, Jones & Brady, is an attached polymorphinid (*1172).] M.Dev.-Rec., Eu.-USSSR-N.Am.-Atl.—Fig. 117,1. *H. batilleri*, U.Cret.(U.Santon.), Sp.; holotype, ×12 (*1172).—Fig. 117,2. H. bradyi Loeb­lich & Tappan, Rec., off Eng.; holotype, ×33 (*1172).—Fig. 117,3. H. marisalbi (Shch­elovina), Rec., White Sea; 3a, dorsal view; 3b, ventral view, ×30 (*1726a).—Fig. 116. H. crassia (Le Calvez), Rec., Atl.; biformellate ga­metes, ×3,000 (*1106).

Ammopomphix Loeblich, 1952, *1152*, p. 82 [*Urnula quadrupla Wiesner, 1931, *2063*, p. 82; OD*] [=Urnula Wiesner, 1931, *2063*, p. 82 (obj.) (non Claparède & Lachmann, 1857)]. Test attached when living, nearly circular in outline, flat on attached side, convex above, commonly consisting of 4 or more nearly equal chambers, usually symmetrically arranged, with few chambers in single whorl, or with outer ring of chambers; sutures depressed, septa visible from base on unattached specimens, thickness nearly equal to that of outer wall, which is finely arenaceous and white to yellowish, attachment nearly circular to that of outer wall, which is finely arenaceous and white to yellowish, attachment wall very thin, delicate, translucent, and may be broken off when loosened from attachment, leaving chambers open ventrally; apertures rounded, dorsal, one at summit of each chamber. Rec., Antarctic-Arctic.—Fig. 117,7. *A. quadrupla* (Wiesner), Antarctic (Weddell Sea); ×146 (*2117).

Amphicervicis Mound, 1961, *1321*, p. 29 [*A. elliptica; OD*]. Test attached, hemispherical, elliptical to circular in outline, with 3 chambers internally similar to Psamosphaera but completely enveloped by large final chamber, base flattened to concave; wall thick, agglutinated, fine- to medium-grained and well-cemented, surface smooth; 2 apertures, each a simple, round
FIG. 117. Saccamminidae (Hemisphaerammininae; 1-3, Hemisphaerammina; 4, Sagenina; 5, Colonammina; 6, Tholosina; 7, Ammopemphix; 8,9, Webbinelloidea) (p. C202, C204-C205).
opening somewhat produced, and at opposite extremities of test. L.Sil., N.Am.—Fig. 118.1,2. *A. elliptica, USA (Ind.): 1ab, side and end view of holotype: 2, paratype showing 3-chambered interior; both \(\times100 \) (*1321).

Colonammina Moreman, 1930. *1309, p. 55 [*C. verrucsa; OD] [=Psammoscene Rhumbler in Wiesner, 1931, *2063, p. 85 (nom. nud.); Psammoscene Thalmann, 1934, *1896, p. 243 (type, *P. craterula Rhumbler, 1931)]. Similar to *Amnopenaphis*, but consisting of solitary chambers only, may have surrounding flange; single aperture at summit of chamber. Sil., Rec., N.Am.-Antarctic.—Fig. 117.5, *C. verrucsa, SIl., USA (Okla.): 5a,b, top and edge views, \(\times162 \) (*2117).

Saccamminis Ireland, 1960, *978, p. 1217 [pro Saccamminoides Ireland, 1956, *977, p. 841 (non Gerech, 1955)] [*Saccamminoides multicellatus Ireland, 1956, *977, p. 841; OD]. Attached, similar to *Tholosina*, but with more than one hemispherical chamber, commonly in linear series: aperture terminal, at end of slight protuberance, against attachment. U.Penn., N.Am.—Fig. 118.3, *S. multicellatus (Ireland), Virgil., USA (Kans.): 3ab, top and edge views, \(\times80 \) (*977).
Saccodendron RHUMBLER, 1935, *1574, p. 173 [*S. heronallenii; OD]. Test attached, hemispherical to ovate chamber with one or more elongate, bifurcating, tubular extensions arising from peripheral area; may grow free of attachment; wall agglutinated; apertures at ends of tubes. Rec., Eu.—Fig. 118,4-6. *S. heronallenii; Ger, (4,5, figured as *S. heronallenii RUMBLER forma latericum RHUMBLER, 1935), Sweden (6); 4,5, side views, X40, X50 (*1574); 6, specimen attached to *Rhabdammina, X7.5 (*924).

Sagenina CHAPMAN, 1900, *314, p. 4 [pro Sagenella BRADY, 1879, *196a, p. 41 (nom. Hall, 1851) [*Sagenella frondescent Brady, 1879, *196a, p. 41; OD(M)]] [=Arseragenum EIMER & FICKERT, 1899, *692, p. 672 (obj.)]. Test attached throughout, consisting of dichotomously or irregularly branching tubes, finely agglutinated; apertures at open ends of tubes. Eoc.-Rec., Phil.-Japan-S.Pac.—Fig. 117,4. *S. frondescent (Brady), topotype, Rec., S.Pac.(Admiralty Is.): X10 (*2117).

Tholosma RHUMBLER, 1895, *1568A, p. 82 [*Placopilina bulla BRADY, 1881, *196c, p. 51; OD CUSHMAN, 1918, *411a, p. 63] [=Pseudoplacopilina EIMER & FICKERT, 1899, *692, p. 672 (obj.)]. Artholosma RHUMBLER, 1913, *1572b, p. 345 (obj.) (nom. van.). Similar to *Hemisphaerammina, but with 2 or more apertures flush with attachment or commonly at ends of irregular protuberances, just above base of test. Ord.-Rec., Atl.-Antarctic-N.Am.—Fig. 117,6. *T. bulla (Brady), Rec., Atl.; 6a,b, side and top views, X20 (*2117).

Webbinelloidea STEWART & LAMPE, 1947, *1838, p. 534 [*W. simill; OD] [=Sorospheroidea STEWART & LAMPE, 1947, *1838, p. 534 (type, *S. polygonia)]. Test attached, without visible aperture as in *Hemisphaerammina, but with numerous chambers in linear or spreading arrangement, as in *Ammopemptophus or *Saccamminis. M.Dev., N.Am.—Fig. 117,8. *W. simill; USA (Ohio): X40 (*1838).—Fig. 117,9. W. polygonia (Stewart & Lampe), USA(Ohio); X40 (*1838).

Subfamily DIFFUSILININAE Loeblich & TAPPAN, n. subfam.

Test free or attached, with interior partially subdivided into chamberlets. M.Ord.-Rec.

Diffusilina HERON-ALLEN & EARELAND, 1924, *912, p. 614 [*D. humilis; OD]. Test attached, commonly to algae. irregular in outline, consisting of mass of intricately ramifying tubes with finely agglutinated wall; apertures inconspicuous at ends of 1 to 4 small pustules on outer surface; dark-colored protoplasm completely filling test. [Differs from *Verrucina in its very irregular character and unevenly spaced apertures.] Rec., S.Pac.-Atl.—Fig. 119,1,2. *D. humilis, S.Pac.(Lord Howe Is.): 1,2, top views, X26 (*2117).

Crichtionina GOES, 1894, *804, p. 14 [*C. mamilla; SD RHUMBLER, 1904, *1569, p. 229] [=Arserhchinia RHUMBLER, 1913, *1572b, p. 346 (obj.) (nom. van.)]. Test attached, commonly to *Rhabdammina, or later detached, subspherical to hemispherical, single chamber incompletely divided by ingrowth of wall which appears to form partial septum; wall thick, finely agglutinated, of sand, sponge spicules and foraminifer tests, surface commonly roughened owing to dislodgement of some larger fragments embedded in wall; no apparent aperture in globular forms but tubular chitinous or agglutinated projection which terminates in rounded aperture may occur at one side, probably only at one stage in life history (*924). [Redescription of the type-species by HÖGLUND (*924) based on the original material of Goës requires modification of the generic definition.] Rec., Atl.-Pac.-Carib.-N.Sea.—Fig. 120,1-4. *C. mamilla, N.Sea(Skagerak); 1, ext. and sec. showing internal septum, X17; 3, sec. of another specimen, X30; 4, specimen with tubular projection and rounded aperture, X17 (*924).

Daitrona LOEBLICH & TAPPAN, 1961, *1181, p. 218 [*Crichtionina lens GOES, 1896, *805, p. 24; OD]. Test free, 2-4 mm. diam., lenticular in section, rounded to oblong in plan; single chamber subdivided by radial semisepa or secondary partitions, projecting inward from wall, may subdivide test almost completely; wall finely agglutinated, loosely cemented; no localized aperture. [Differs from *Crichtionina in being free and in having numerous radiating secondary partitions subdividing the chamber. Differs from *Oryctoderma in having a thin wall with secondary partitions nearly completely segmenting the test, rather than a thick wall with labyrinthine passages connecting the smoothly finished inner cavity to the exterior.] Rec., Pac.—Fig. 120,5-7. *D. lens (Goës); 5a,b, side, edge views; 6,7, horiz. and vert. secs., X11 (*805).

Discobotellina COLLINS, 1958, *375, p. 342 [*D. biperforata; OD]. Test discoidal, single chamber, with concentric growth rings; 2 distinct forms in type-species (may represent alternating generations), one discoidal with central inflated area, other slightly elliptical in outline, with 2 eccentric slodeke perforations which pass through test, apparently migrating outward by resorption and regrowth at margins as test enlarges; wall agglutinated, with thick inner layer of loosely cemented large grains, and thin, fine-grained, well-cemented outer layer, imperfect except at peripheral margin where interstitial spaces communicate with labyrinthine interior. Rec., Australia.—Fig. 119, 6-8. *D. biperforata; S.Queensl.(6), Great Barrier Rec(7,8); 6a,b, side, edge views of holotype (perforated form), X1.8 (*375); 7a,b, side, edge views...
Fig. 119. Saccamminidae (Diffusilininae: 1-2, Diffusilina: 3-5, Weikkoella: 6-8, Discobotellina: 9, Kerio-
Fig. 120. Saccamminidae (Diffusilininae; 1-4, Crithionina; 5-7, Daitrona; 8, Oryctoderma; 9-12, Pseudowebbinella) (p. C205, C208).
of paratype, X3 (*375); 8, specimen broken to show internal structure, X4 (*375).

Kerionammina Moreman, 1933. *1310, p. 397 [*K. is the OD]. Test attached, irregularly spreading; wall agglutinated, with labyrinthic interior, subdivided into more or less regular chamberlets; apertures rounded, at ends of tubular extensions from peripheral margin. [Originally placed in the family Neusinidae because of its labyrinthic character, later it was removed to the Saccamminidae (*486). Neusina is a junior synonym of Stannospiphyllum and belongs to the Xenophyophorida rather than to the Foraminiferida.] M.Ord., N.Am.—Fig. 119,9. *K. is the OD]. Test attached, consisting of single hemispherical chamber, internally partially subdivided by short radial partitions projecting inward from the peripheral margin; wall agglutinated; no distinct aperture. [Pseudowebbinella resembles Crithionina externally, but has a more complex internal subdivision. It resembles Daitrona in the inner structure but differs in the attached character.] Rec., Eu.(N. Sea)-USSR(White Sea).—Fig. 120,9-12. *P. goesi (Höglund), N. Sea; 9, ext. of specimen attached to Rhadammina; 10, sectioned specimen showing internal subdivision; 11, surface of discoidal specimen; 12a,b, transversely sectioned specimen, X17 (*924).

Thuramminoides Plummer, 1945. *1468, p. 218 [*T. sphaeroidalis; OD]. Test free, subglobular to compressed; wall finely agglutinated, interior labyrinthic; no visible aperture, or with openings at ends of short protuberances. L.Penn.-M.Penn., N.Am.; Mesoz., USSR.—Fig. 121,1-5. *T. sphaeroidalis, L.Penn., Tex.(2), M.Penn., Tex. (1,3-5): 1, holotype; 2, small globular paratype; 3-5, paratypes with large protuberances, labyrinthic test, broken specimen showing pitted inner surface; all X48 (*2117).

[This genus was defined as having a labyrinthic or spongy interior, and in the type-species varying from a smooth surface to a papillate one. Examination of the original types strongly suggests that these include more than one species and possibly more than one genus. The holotype and one paratype have a compressed circular form, with smoothly finished surface; another paratype shows large protuberances bearing small rounded openings.]

© 2009 University of Kansas Paleontological Institute
Fig. 122. Ammodiscidae (Ammodiscinae: 1a, Ammodiscus; 3, Glomospirella; 4, 5, Ammodiscoides; 6, Glomospira; 7, Turrilabella) (p. C210, C212).
chamber, aperture formed by open end of tube. *Sil.-Rec.*

Subfamily AMMODISCINAE Reuss, 1862

[nom. transl. RHUMBLER, 1904, p. 27s (ex family Ammodiscinae REUSS, 1862)]

Test free, planispiral, or irregularly coiled. *Sil.-Rec.*

as in early stage of Ammodiscoides, evolve and not close-coiled or high-spired as in Turritellula, aperture at open end of tube. Cret.-Eoc., Eu.-N. Am.—Fig. 124,1. *A. apica* TAIROV & KUZNETSOVA, L.Cret., USSR; 1–e, approx. ×100 (*1861).

Baiissunella ARAPPOVA, 1961, *27A*, p. 151 [*B. mirkamalovae; OD*]. Test free, large, to 6.0 mm. diam., discoidal, periphery rounded; oval proloculus followed by tubular second chamber, which in section is seen to have slight growth constrictions giving appearance of pseudochambers, plane of coiling may vary slightly with growth; spiral suture obscure; wall of 2 layers, inner one with angular quartz grains in large amount of calcareous cement, exterior layer of microgranular calcite; aperture a rounded areal opening. U.Cret. (U.Cenom.), USSR (Uzbek).—Fig. 124,9–11. *B. mirkamalovae*, Baiissun-Tau, Uzbek SSR; 9a,b, ext. (paratype) (stated to be lateral views, but one drawing apparently reversed, or that of fig. 9b may be in transmitted light), ×5; 10, transv. sec. showing growth constrictions in early coil, ×8; 11, long. sec. showing change in plane of coiling which produces sigmoid appearance, ×9 (*27A*). [This genus was made the monotypic representative of a new subfamily Baiissunellinae, because of the "two-layered" wall and "pseudochambers." As the proportions of cement and agglutinated matter vary in many Ammodisci-
nae, it is here placed in this subfamily. The genus is tentatively recognized, although the large size of this subfamily is unusual for Cretaceous Ammodiscidae; possibly examination may prove it to be a calcareous worm tube. It was described from Upper Cretaceous (lower Turonian) in the *Truncamminulopsis multiformis* zone where it is associated with *Pseudoglobotruncana stephani*. It is regarded by us as late Cenomanian in age.

Psammonyx Döderlein, 1892, *598, p. 145 [*P. vulcanicus*; OD] [*=Arpsammonyx Rumbler, 1913, *1572b, p. 386 (obj.) (nom. var.)]. Test similar to *Ammodiscus*, but with tubular chamber compressed, evolute and tending to uncoil; aperture terminal, may have slight bordering lip. Dev., USA (Okla.); Rec., Japan.—Fig. 124.5-7. *P. vulcanicus*, Rec., Japan: 5a,b, side and edge views of enrolled form; 6a,b, uncoiled forms; all X1.7 (*1576*).

Spirillinoidea Rumbler, 1938, *1576, p. 174 [*S. circulicincta*; OD]. Test consisting of a planispiral and evolute to slightly trochospirally coiled undivided tubular chamber; wall pseudochitinous, imperforate, with the outer whorl bordered by an agglutinated layer; aperture at the open end of the tubular chamber. Rec., N.Sea.—Fig. 124, 8. *S. circulicincta*, Helgoland, X200 (*1576*).

Turritellula Rumbler, 1904, *1569, p. 283 [*pro Turritellopsis Rumbler, 1895, *1568A, p. 84 (nom. null., fide Rumbler, 1904, *1569, p. 289, corr. Turritellopsis Rumbler)] (non Sars, 1878)]. [*T. circulicincta* S. IDALL, 1878, *1736, p. 46; SD Schellwien, 1898, *1644, p. 265] [*=Arturritellium Rumbler, 1913, *1572b, p. 387 (obj.) (nom. van.)]. Test free, elongate, high-spired; proloculus followed by long undivided close-coiled tubular 2nd chamber; wall finely agglutinated, reddish or yellowish, grading from more deeply colored proloculus to lighter terminal portion; aperture at open end of tube. Sil.-Rec., Eu.-N.Am.-Arctic-Antarctic.——Fig. 122.7. *T. circulicincta*, Rec., N.Am.(off Baffin Is): 7a,b, opposite sides of test, X100 (*1162*).

Uzbekistania Suleymanov, 1960, *1855, p. 18 [*Glomospirella* (Usbekistania) mubarekensis; OD] [*=Glomospirella (Usbekistania) Suleymanov, 1960, *1855, p. 18 (obj.)]. Test free, consisting of spherical proloculus and undivided tubular 2nd chamber coiled in high spire around vertical axis, with final stage planispirally coiled at axis nearly perpendicular to original axis; wall agglutinated, of minute quartz grains in insoluble, probably siliceous cement; aperture at open end of tube. Tur.-Rec., USSR (Uzbek).——Fig. 125, 1-4. *U. mubarekensis*, Paleoc., Bukhara (1-3), U.Enc., Amu Darya Basin (4: 1-3, holotype and paratypes: all X100 (*1855*).
Subfamily TOLYPAMMININAE
Cushman, 1928

[Tolypamininae CUSHMAN, 1928, p. 103]

Test attached, proloculus followed by tubular second chamber, coiled or irregular. Sil.-Rec.

Tolypammina RHUMBLER, 1895, *1568A, p. 83
[*Hyperammmina vagans BRADY, 1879, *196a, p. 33; OD(M)] (=Serpulella EJMER & FICKERT, 1899, *692, p. 674 (obj.); Adhaerentina PAALZOW, 1935, *1406, p. 28 (type, Adhaerentina permiana PAALZOW, 1935)). Test attached, large globular proloculus followed by long undivided tubular 2nd chamber of smaller diameter which winds irregularly over surface of attachment; wall agglutinated with considerable cement, commonly reddish; aperture at open end of tubular chamber. [Differs from Lituostoma in lacking the early stenospiral coil and in having an irregularly winding later stage.] U.Sil.-Rec., Eu.-N.Am.-N.Z.-Australia-Antarctic-Atl.-Pac.—Fig. 126,1. *T. vagans (BRADY), Rec., S.Atl.; X19 (*2117).—Fig. 126, 2. T. permiana (PAALZOW), Perm.(Zech.), Ger.; X8 (*1406).

Ammodiscella IRELAND, 1956, *977, p. 845 [*A. virgilenis; OD]. Similar to Hemidisculus, but attached. U.Penn.(Virgil.), USA(Kans.).—Fig. 126,7. *A. virgilenis; 7a, top view; 7b, attached side; 7c, cross sec.; all X53 (*977).

Fig. 126. Ammodiscidae (Tolypamininae: 1,2, Tolypammina; 3, Ammolagenia; 4, Trepeilopsi; 5, Ammodiscella; 6, Serplliopsis; 7, Ammodiscella; 8-12, Lituostoma) (p. C213-C214).
Ammolagenana Eimer & Fickert, 1899, *692, p. 673 [*Trochammina irregularis (d'Orbigny) var. clavata Jones & Parker, 1960, *998, p. 304; OD (M)] [=Ammolaganina RHUMBLER, 1913, *1572b, p. 346 (obj.) (nom. van.)]. Test attached, lagenaoid, with elongate tubular neck; wall with pseudochitinous inner layer and finely agglutinated outer layer; aperture terminal, rounded. Sil.-Rec., Ger.-Atl.-Carib.-Medit.—Fig. 126.3. *A. clavata (Jones & Parker), Rec., Gulf Mex.; ×20 (*2117).

Ammovertella Cushman, 1928, *436, p. 8 [pro Ammodiscus (Pammorphis) Schellwien, 1898, *1644, p. 265 (non Pammorphis Fitzinger, 1826)] [*Ammodiscus (Pammorphis) inversus Schellwien, 1898, *1644, p. 266; OD] [=Ar­pammorphum RHUMBLER, 1913, *1572b, p. 387 (obj.) (nom. van.)]. Test attached, proloculus followed by elongate undivided tubular 2nd chamber which progresses in zigzag fashion, later bends closely adjacent to earlier ones; wall agglutinated, with considerable cement; aperture at open end of tube. Penn.-Rec., Eu.-N.Am.-Carib. —Fig. 126.5. *A. inversa (Schellwien), U. Carb., Eu.(Carnic Alps), enlarged (*1509).

Lituituba RHUMBLER, 1895, *1568a, p. 83 [*Serpula filum SCHMID, 1867, 1672, p. 583; SD Schellwien, 1898, *1644, p. 265] [=Ammon­nema Eimer & Fickert, 1899, *692, p. 685 (obj.); Artius tubu­rum RHUMBLER, 1913, *1572b, p. 386 (obj.) (nom. van.); Thalmannina MAJZON, 1943, *1203, p. 64, 154 (type, *T. nothi)]. Test free or attached, early stage irregularly coiled undivided tube as in Glomospira, later stage uncoiling and becoming rectilinear; aperture at end of tube. [Specimens with irregular early coil are found in many assemblages, and do not warrant generic separation.] Sil.-Rec., cosmom.—Fig. 126.8. *L. filum (Schmid). Perm.(Zech.), Ger.; enlarged (*193).—Fig. 126.9. *L. lituita (BRADY), Rec., Carib.; ×20 (*2117).—Fig. 126.10. *L. irregularis TAPPAN, L.Jur., N.Alaska; 10, showing irregular character, ×48 (*1874); 11, irregular specimen, ×28 (*1874).—Fig. 126.12. *L. nothi (MAJZON), Flasch, Hung.; ×36 (*1203).

Serpulopsis Girty, 1911, *790, p. 124 [*Serpula insita WHITE, 1878, *2054, p. 37; OD] [non *Serpula insita KITTL, 1913]. Test free or attached, may be somewhat embedded in host; proloculus followed by coarse-coiled tube of 1 or 2 solutions, then with tube of irregular growth, enlarging slowly; wall agglutinated; aperture at open end of tube. [Originally regarded as an annelid, Serpulop­sis (Treatise Part W, p. 160) was considered by Henk­ert (1960, *898, p. B386) to be a foraminifer.] Penn., USA(Okla.-Ind.).—Fig. 126.6. *S. insita (White). USA(Okla.); attached tubes on surface of brachiopod, ×1.3 (*791).

Terepilopsis Cushman & Waters, 1928, *535, p. 38 [*Turritellula grandis Cushman & Waters, 1927, *534, p. 149; OD]. Test tubular undivided chamber in high trichospiral coil as in Turritellula but attached commonly to spines of "Productus," with final portion of tubular chamber reverting and growing straight across previous whorls; aperture at open end. U.Decr.-Perm., N.Am.-Eu.—Fig. 126.4. *T. grandis (Cushman & Waters), M. Penn., USA(Tex.); high-spired test and reverted tubular chamber which may have been attached to algae, as central area is open, ×53 (*2117).

Superfamily LITUOLACEA

de Blainville, 1825

[nom. correct. LOEBLICH & TAPPAN, 1960, p. 277 (pro superfamily Lituoloidea GLAESENER, 1945, p. 93, ex family Lituolidae BLAINVILLE, 1825)]—[In synonymic citations superscript numbers refer to taxonomic rank assigned by authors (tribus, family group, superfamly); dagger(*) indicates partim|—[=Lituolida DELAGE & HERZOG, 1906, p. 133; =Litulidace BROMMANN, 1906, p. 176|—=Enclino­segiat Eimer & Fickert, 1899, p. 682; =Orth­okinostegiat Eimer & Fickert, 1899, p. 685; =Tusul­ni­dium RHUMBLER in KUKENTHAL & KRUMBAECH, 1923, p. 86; =Nodosalidiat RHUMBLER in KUKENTHAL & KRUMBAECH, 1923, p. 86].

Multilocular, typically coiled spirally or uncoiled or straight, reduction of chambers in each whorl may result in triserial or biserial arrangement; chambers simple or labyrinthisch; wall siliceous or agglutinated, with calcareous, siliceous, or ferruginous cement; aperture single or multiple. Miss.-Rec.

Family HORMOSINIDAE

Haeckel, 1894

Test free, chambers arranged in straight or curved series; wall agglutinated, aperture terminal. Miss.-Rec.

Subfamily ASCHEMONELLINAE

Eimer & Fickert, 1899

[nom. transl. CUSHMAN, 1910, p. 80 (ex family Aschemonel­lidea EIMER & Fickert, 1899)] [=Aschemonellinia RHUMBLER, 1913, p. 439 (nom. van.)].

Irregular chambers in rectilinear arrangement. Cret.-Rec.

Aschemonella BRADY, 1879, *196a, p. 44 [*A. scabra: OD (M)] [=Aschemonellum RHUM­BLER, 1913, *1572b, p. 440 (nom. van.)]. Test free, consisting of tubular or inflated chambers in single or commonly branching series; wall thin, finely to coarsely agglutinated, firmly cemented; apertures several, rounded, at ends of tubular necks. Cret.-Rec., Atl.-Pac.-Eu.—Fig. 127.1. *A. scabra, Rec., N.Pac. (Challenger Sta-
Fig. 127. Hormosinidae (Aschemonellinae; I. Aschemonella; 2,3, Kalamopsis) (p. C214-C215).

Subfamily HORMOSININAE Haeckel, 1894

Chambers typically in regular rectilinear series; wall agglutinated, interior simple; aperture single or multiple. Miss.-Rec.

Hormosina BRADY, 1879, *196a, p. 56 [*H. globulifera; SD CUSHMAN, 1910, *404a, p. 93] =Rehamomum RHUMBLER, 1913, *1572b, p. 441 (nom. van.). Test similar to Reophax but with very large globular chambers; wall finely arenaceous, with abundant cement and smoothly finished; aperture on produced neck.Jur.-Rec., Atl.-Pac.-Eu.-Carib.-Medit.-Antarctic.—Fig. 128,4,5. *H. globulifera, Rec., Atl.; 4a, side view of microspheric form; 4b, top view; 5, side view of single-chambered specimen; all X20 (*2117).

Auerinella FRENGUÉLLI, 1953, p. 46 [*A. fujiae; OD]. Test similar to Reophax, but very small, about 0.175 mm. long, insoluble in HCl, somewhat roughened surface; aperture elliptical, on subcylindrical neck. Pliet., S.Am.—Fig. 129, 1. *A. fujiae; 1a, photograph of surface; 1b, median plane; 1c, outline drawing, all X600 (*746).

Nodosinum HOFKER, 1930, *928b, p. 121 [*Nodosinella gau슬licum RHUMBLER, 1913, *1572b, p. 453, 459, 460, 461; =Arnodinum py-gaussicum RHUMBLER, 1913 (sic). However, it was named Nodosinella gau슬licum by RHUMBLER (followed by the added "new nomenclature" he was then proposing). HOFKER stated (*929b, p. 122) that he gave the species the name Nodosinum gau슬licum; hence the specific name py-gaussicum is merely a nomen vanum synonym.]

Polychasmina LOEBLICH & TAPPAN, 1946, *1154, p. 242 [*P. poa-pawensis; OD]. Test free, flattened, composed of linear series of chambers; wall thick, coarsely arenaceous; aperture terminal, consisting of single row of elongate slits, paralleling flattened sides of test. L.Cret. (Alb.), USA (Tex.).—Fig. 128,6,7. *P. paw-pawensis; 6a,b, side and top views of broad, flattened specimen; 7, side view of narrower form, X10 (*2117).

Protoschista EMER & FICKERT, 1899, *692, p. 605, 677 [*Littulina findens PARKER, 1870, *565, p. 176; OD (M)]. Test free, consisting of series of chambers which are normally regularly uniserial, commonly branching from protocolus and forming 2 or 3 uniserial series of slightly inflated chambers, nearly equal in size throughout; wall agglutinated, with comparatively little cement, surface rough; aperture circular, at ends of series of chambers. [Protoschista differs from Reophax in developing a branching habit of growth.] Rec., Atl.-Arctic.—Fig. 130,4. *P. findens (PARKER), Alaska; X66 (*1162).

Psammolungulina SILVESTRI, 1904, *1760, p. 247 [*Lingulina papillosa NEUGEBOREN, 1856, *1351, p. 97; OD]. Test elongate, uniserial, similar to Reophax with agglutinated wall but with elongate, arcuate terminal aperture. U.Cret.-Plio.-Eu.—Fig. 129,2. *P. papillosa (NEUGEBOREN), Mi.-Plio., Rumania; 2a,b, side, top views, enlarged (*700).

Test free, elongate, nearly straight or arcuate; chambers few, increasing in size as added; sutures nearly horizontal, obscure to moderately constricted; wall agglutinated, with comparatively little cement, surface rough; aperture terminal, rounded, at end of distinct tubular neck. Miss.-Rec., cosmop.——Fig. 128,1. *R. scorpiurus, Rec., Gulf Mex.; side view, X45 (*2117).——Fig. 128, 2. R. angusta (Schubert), L.Oligo., S.Tirol; holotype, sectioned, X66 (*700).——Fig. 128,3. R. delicatula (Bermúdez & Key), Rec., Carib.; 3a, side view, portion of penultimate chamber wall removed to show interior, X13; 3b, terminal portion, X28 (*2117).

[Reophax differs from Hormosina in lacking the very distinct apertural neck and globular chambers of the latter. From Proteus it is distinguished by its lack of branching habit of growth. Proteina Williamson has been shown to be a Reophax (*1166, p. 7), as based on the type-species. Silicina was shown (*1875, p. 210) to be unrecognizable, as two of the three original specimens of TerqueM were indeterminate fragments and the last was a fragment of Reophax. Ammofrondicularia was...}
based on a fragment in section, and although the base was not present on the type, it apparently also belongs to Reophax. Cim'sina was originally distinguished from Reophax by the presence of an internal tube (*129). Restudy of the holotype shows that the "internal tube" merely represents the apertural neck of earlier chambers preserved within succeeding chambers, hence is not a valid basis for separation.

Sulcophax Rhumbler in Wiesner, 1931, *2063, p. 93 [*S. claviformis; OD (M)]. Test similar to Reophax but aperture curved slit, which may be in slight depression on terminal face. Rec., Antarctic-N.Am.—Fig. 128,8. *S. claviformis; 8a,b, side and apert. views, X40, X70 (*2063).

Fig. 129. Hormosinidae (Hormosininae; 1, Auerinella; 2, Psammolingulina; 3-6, Nodosinum) (p. C215).
broader than high, arranged in single series, but regularly bifurcating so that adult test is composed of numerous dichotomously bifurcating and chambered branches; sutures distinct, horizontal, slightly constricted; wall agglutinated, very thick, traversed by large radially arranged pores which can be seen in broken specimens; apertures terminal on ends of branches, usually single, but

Fig. 130. Hormosinidae (Hormosininae; 1-3, Thomasinella; 4, Protoschista) (p. C215, C217-C219).
rarely double, probably in later chambers just prior to bifurcation. U.Cret. (Cenoman.), Alg.-Tunisia-Egypt-Venez.—Fig. 130.1,2. *T. punica, Tunisia; 1a, holotype, ×15.5; 1b-d, apert. views, ×15.5; 2, enlarged portion of broken specimen, canals perforating wall, ×30 (*2117).—Fig. 130.3. *T. guaricoensis (BOLL), M.Cret., Venez.; 3a,b, side and edge views of holotype, ×26 (*163).

Although well described and figured nearly 70 years ago, this genus was generally overlooked because of the relative inaccessibility of the publications until the figures and description were copied by ELLIS & MISSISSIPPI (*700). The first placement of the genus in a specific family was that by SIGAL (1956, "Hil.", p. 104) who placed it in the "Haplophragmiidae (fam. Lituolidae, sous-famille Haplophragmoidinae pour Mayne)," regarding it as related to *Ammodiscus* and *Flabellammina*. Approximately three months later OMARA ("1389, p. 885) independently published a redescription of the genus and placed it in the Reophacidae on the basis of an ontogenetic series he obtained from Egypt.

Fig. 131. Hormosinidae (Cribrarininae; 1,2, *Haplophyte*; 3-5, *Cribrarina*) (p. C220).
Subfamily CRIBRATININAE
Loechlich & Tappan, n. subfam.

Test free, elongate; chambers in a rectilinear series; wall agglutinated; interior labyrinthic; aperture terminal. Cret.

Cribratina Sample, 1932, *1624, p. 319 [*Nodosaria texana CONRAD in EMORY, 1857, *705, p. 159; OD]. Test free, large, to 10 mm. in length, elongate, uniserial and rectilinear, chambers closely appressed, sutures straight, horizontal, constricted; wall agglutinated, medium- to coarse-grained, with calcareous or ferruginous cement; labyrinthic; aperture terminal, cribrate, with numerous irregular, subangular openings on produced portion of terminal face. [Although previously regarded as a synonym of Haplostichote, the present genus differs in having a multiple aperture.]

Loechlich & Tappan, n. subfam.

Haplostichote Reuss, 1861, *1549, p. 15 [*Dentalina foedissima REUSS, 1860, *1548, p. 189; OD] [*Arehaplostichotum Rhumbler, 1913, *1572b, p. 446 (obj.) (nom. van.)]. Test free, large, elongate, up to 7 or 8 mm. in length, consisting of numerous, uniserially arranged, gradually enlarging and closely appressed chambers; sutures horizontal, constricted; wall agglutinated, interior labyrinthic; aperture terminal, rounded, somewhat produced. U.Cret., Eu.—Fig. 131,1,2. *H. foedissima (Reuss), Ger.: approx. ×10 (*1549).

[Haplostichote is here restricted to include only species with single terminal aperture, as in the type-species. It differs from Reophax in its much larger size, labyrinthic interior, and closely appressed chambers. Small species with a single aperture and simple interior belong to Reophax, those with slitlike aperture are placed in Pseudomolluscula, and those with a terminal multiple aperture and labyrinthic interior are referred to Cribratina.]

Family NOURIIDAE
Chapman & Parr, 1936

([nom. transl. Loeblich & Tappan, 1961, p. 279 (ex subfamily Nourininae CHAPMAN & PARR, 1936, p. 191)])

Chambers in loose spiral or biserial, strongly overhanging laterally; aperture terminal. ?Eoc.-Rec.

Nouria Heron-Allen & Earland, 1914, *910a, p. 375 [*N. polymorphinoides; SD CUSHMAN, 1927, *433, p. 189]. Test free, elongate, rounded in section; 2 to 5 elongate chambers which are first arranged in polymorphine spiral, later biserial; sutures obscure, little depressed; wall thin, externally smooth, rough within, of mineral grains, shell fragments, or sponge spicules; aperture terminal, round or oval, some with slight lip. ?Eoc., Rec., Eu.-Pac.-Carib.-Kerimba Arch.-N.Ne.-Atl.——Fig. 132,1,2. *N. polymorphinoides, Rec., Kerimba Arch.; 1, side view of lectotype (here designated, BMNH-ZF 3622, *910a, pl. 37, fig. 7); 2, top view of paratype, ×36 (*2117).

Family RZEHAKINIDAE
Cushman, 1933

Test free, proloculus followed by tubular chambers, about half coil in length and added in various planes, as in calcareous imperforate Miliolidae; wall siliceous or agglutinated, generally insoluble in acid. L.Cret.-Rec.

Rzehakina Cushman, 1927, *431, p. 31 [*Silicinellidae epigona RZEHAK, 1895, *1605, p. 214; OD]. Test ovate in outline, compressed; chambers a half coil in length, planispiral and involute; aperture at open end of chamber, somewhat constricted. U.Cret.-Paleoc., cosmop.—Fig. 133,1-3. *R. epigona (RZEHAK), Paleoc., Eu.(Aus.); 1a,b, side and top views, ×60 (*2117); 3, long. sec., enlarged (*1605).

Ammodinifluma Earland, 1934, *653, p. 98 [*A. trihedra; OD]. Test free, roughly triangular in outline, planispiral, evolute; chambers 3 to whorl, wedge-shaped; aperture large, simple, at end of final chamber. *Ammodinifluma was originally considered to belong to the Ammodiscinae, close to Litutothida. It differs from Litutothida in being distinctly chambered and coiled throughout.] Rec., Antarctic.—Fig. 133,7. *A. trihedra; lectotype (here designated, *653, pl. 3, fig. 22, BMNH-ZF 400); 7a,b, opposite sides; 7c, edge view, ×105 (*2117).

Foraminiferida—Textulariina—Lituolacea

hydrochloric acid; aperture rounded, with infolding of wall to form tooth. L.Cret.-Rec., N.Am.-Antarctic-Eu.—Fig. 134, 1, 2. M. earlandi LOEBLICH & TAPPAN, Rec., S.Atl.(S.Georgia Is.); 1a-c, lectotype; 1a,b, opposite sides; 1c, top view; 2, sectioned specimen to show quinqueloculine plan, X105 (*1166).

Psamminopelta TAPPAN, 1957, *1875, p. 211 [*P.

Rzehakinidae (Rzehakininae; 1-3, Rzehakina; 4,5, Silicosigmolina; 6, Psamminopelta; 7, Ammoflinina) (p. C220-C222).
Similar to Spirosigmoilinella but planispiral and evolute throughout and without any sigmoid development; aperture without tooth. [Differs from Rzehakina in being evolute and symmetrically planispiral in coiling.] L.Cret.-U.Cret., N.Am.(Alaska).—Fig. 133,6. *P. bowsheiri*, side view of holotype, X62 (*2117).

Silicosigmoilina Cushman & Church, 1929, *500*, p. 502 [*S. californica; OD] [=Silicosigmoilina (Bramletteia) Israelsky, 1951, *980*, p. 10 (type, S. (B.) perplexa)]. Test with chambers half coil in length, planispirally arranged in early stages, later sigmoid; aperture described as lacking tooth, but small tooth or infolding of inner margin occurs in young specimens, slight compression of aperture in later stages obscuring its character somewhat. [Bramletteia was described as a subgenus for the species with a "toothlike" projection at the aperture. As this is also found in the type-species of Silicosigmoilina, the generic definition only requires modification and Bramletteia is a synonym.] U.Cret.-Paleoc., N.Am.-S.Am.-Japan-Eu.—Fig. 133,4. *S. californica*, U.Cret., USA (Calif.); 4a,b, side and top views of paratype showing aperture and short toothlike projection, X66 (*2117).—Fig. 133,5. S. perplexa Israelsky, Paleoc., USA (Calif.); 5a-c, opposite sides and top view of holotype, X143 (*2117).

Spirolocammina Earlend, 1934, *653*, p. 109 [*S. tenuis; OD]. Test minute, elongate; chambers evolute and nearly planispiral, but with slight sigmoid curve of long axis; aperture produced on neck, without tooth. Rec., Antarctic.—Fig. 134, 3. *S. tenuis; 3a-b*, side and top views, X102 (*2117).

Spirosigmoilinella Matsunaga, 1955, *1237*, p. 49
[*S. compressa; OD]. Early stage sigmoid in development as in Silicosigmoilina, later chambers in single plane; aperture rounded, on short neck, and lacking tooth. L.Mio.-M.Mio., Japan.—Fig. 134,4. *S. compressa; 4a,b, side and top views showing rounded aperture and slightly inflated central portion due to early sigmoid development, X62 (*2117).
Trilocularena Loeblich & Tappan, 1955, *1166, p. 13 [*Miliammina circularis Heron-Allen & Earland, 1930, *914c, p. 44; OD]. Chambers in triloculine arrangement; aperture with broad shallow tooth formed by infolding of margin. Rec., Antarctic.—Fig. 134, 5. *T. circularis

Fig. 136. Lituolidae (Haplophragmoidinae: 1-3, Cribrostomoides; 4, 5, Daxia; 6, Trochamminoides; 7, 8, Thalmannammina; 9, Recurvoides; 10, Discammina) (p. C225-C227).

© 2009 University of Kansas Paleontological Institute
Foraminiferida—Textulariina—Lituolacea

C225

(HERON-ALLEN & EARLAND); 5a,b, opposite sides; 5c, top view, ×36 (*1166).

Family LITUOLIDAE

de Blainville, 1825

[nom. correct. SCHULZE, 1877, p. 28 (pro family Lituacea and Lituocèles de Blainville, 1825, p. 380)]—All names of family rank: dagger (‡) indicates *partim*—[=Les Lituolacées LAMARCK, 1809, p. 313 (nom. nec.); =Lituolata CROCHET, 1827, p. 40; =Lituoloideae BROOKS, 1839, p. 321; =Lituolaceae AGASSIZ, 1844, p. 15; =Lituolidae REUS, 1862, p. 308; =Lituolida CARPENTER, 1861, p. 470; =Lituolideae SCHWAGER, 1876, p. 482; =Lituolidae GÜMBEL, 1889, p. 22; =Lituolina LANKESTER, 1885, p. 847; =Lituolleta HÉCOCK, 1894, p. 164; =Lituolidae DELAGE & HÉCOCK, 1896, p. 132; =Polyphragmidae HOPPER, 1930, p. 124; Haplophragmidae EIMER & MAYNE, 1952, p. 43]. Test planispirally coiled, in having the greatest dimension of family rank; dagger indicates equal or microgranular calcite, interior simple to labyrinthic, epidermal layer imperforate; aperture single or multiple. *Carb.-Rec.*

Subfamily HAPLOPHRAGMOIDINAE

Mayne, 1952

[Haplophragmoidinae MAYNE, 1952, p. 43].

Test free, coiled, interior simple, not labyrinthic, no alveolar hypodermis. *Carb.-Rec.*

Haplophragmoides CUSHMAN, 1910, *404a, p. 99 [*Nevionia canariensis* D'ORBIGNY, 1839, *86, p. 128; OD] [=Robulammina MONTANARO GALLETTELLI, 1947, *1299A, p. 189 (type, Haplophragmoides? robulus); Asinovispira TAKAYANAGI, 1960, *1863, p. 74 (type, Lenticulina? teshioensis ASANO, 1950, *51, p. 21)]. Test planispirally coiled, involute; wall agglutinated, aperture an equatorial interiomarginal slit. *Robulammina was based on a very small species in flysch sediments of the Apennines where compression of the agglutinated species results in a considerable amount of distortion. Asinovispira was separated on the basis of its siliceous cement, but as the type-species occurs in Cretaceous mud and siltstones, possibly the cement is a product of replacement in fossilization.] *Carb.-Rec.* cosmop.—Fig. 135,1. *H. canariensis* (D'ORBIGNY), Rec., Philip.; 1a,b, side and edge views, ×44 (*2117).—Fig. 135,2. *H. robulus* (MONTANARO GALLETTELLI), U.Cret., Italy (Apen­

Adercotryma LOEBLICH & TAPPAN, 1952, *1159, p. 141 [*Lituola glomerata* BRADY, 1878, *195, p. 433; OD]. Test free, planispiral, subglobular or ovate, elongate in direction of coiling axis, slightly asymmetrical; aperture interiomarginal, forming low slit or arch near umbilicus on one side, and closer to umbilicus than to periphery, or may be lacking in final chamber. *Adercotryma differs from Haplophragmoides in being somewhat asymmetrical, completely involute rather than slightly evolve, in having the greatest dimension in the axis of coiling, and in the asymmetrical placement of aperture, which is found near the umbilicus on one side rather than in the plane of coiling at the periphery, or it may even be lacking completely in the final chamber.] *Carb.-Rec.* Atl.-Pac.—Fig. 135,1. *A. glomerata* (BRADY), Greenl.; 4a-c, side and edge views, ×100 (*1159).

Cribrostomoides CUSHMAN, 1910, *404a, p. 108 [*C. bradyi* (=Lituola subglobosum G. O. SARS, 1871); OD] [=Labrosira HÖGLUND, 1947, *924, p. 141, 145 (type, Haplophragmium crassimargo NORMAN, 1892, *1364, p. 17)]. Similar to *Haplophragmoides* but with areal aperture consisting of single elongate slit in young, and dentate slit or row of areal pores in very large individuals. *[The original types of both Cribrostomoides and Labrosira, here regarded as synonymous, have been re­studied by us, and a lectotype is here designated, *1299A, figs. 1(9), 2(5); 2c, edge view, ×212 (*2117).]—Fig. 135,3. *H. teshioensis* (ASANO), U.Cret., Japan; 5a,b, edge and side views, ×26 (*1863).
Discammina Lacroix, 1932, *1076, p. 2 [*D. fallax Lacroix, 1932 (=Litoulina irregularis var. compressa Goës, 1882, *801, p. 141, =Haplophragmium emaciatum Brady, 1884, *200, p. 305); OD (M)]. Test planispiral, slightly evolute, to 1.5 mm. in diam., interior divided by thin straight septa, which may show at surface as sutural constrictions or be obscured by coarse wall texture; wall coarsely agglutinated on pseudochitinous membrane? and may include quartz grains, sponge spicules, or volcanic fragments in ferruginous cement; aperture low interiomarginal equatorial; aperture small, areal, with distinct bordering lip. During the injection treatment Lacroix noted that the test was apparently imperforate, since the glistening entered only at the aperture. This was regarded as evidence for a pseudochitinous base to the agglutinated test. The type-species was noted by Lacroix (*1077) to be a junior synonym of both Litoulina irregularis var. compressa Goës, 1882, and Haplophragmium emaciatum Brady, 1884. Although Rhaphidohelix (p. 894) was also regarded as identical, this last appears to be distinct, and is probably a trochosorial rather than planispiral form. The correct name for the type-species thus is Discammina compressa (Goës).

Recruvoides Earlard, 1934, *653, p. 91 [*R. contortus; OD]. Test free, subglobular; coiling stelo­spiral, with few chambers in each whorl, later whorls in differing planes so that exterior somewhat resembles Trochammina, although only earlier periphery and not all earlier whorls are visible from spiral side; wall agglutinated, thin; aperture small, areal, with distinct bordering lip. [Coiling may vary from distinctly stelo­spiral throughout to nearly planispiral, with an abrupt change of 90° in the plane of coiling during development.] Mio.-Rec., Antarctic-Carib.-Eu.-N. Am.-Atl.-Pac.—Fig. 136.9. *R. contortus, Rec., Antarctic; 9a,b, opposite sides; 9c, edge view; all ×44 (*2117).—Fig. 138.1. R. trochos­miniforme Höglund, Rec., Sweden; diagram of progressive change in coiling plan, ×175 (*924).—Fig. 138.2. R. laevigatum Höglund, Rec., Sweden; sectioned specimen showing position of aperture and change in direction of coiling, ×155 (*924).

Thalmannammina Pokorny, 1951, *1473, p. 477 [*Haplophragmium subturbinatum Grzbowski, 1897, *836, p. 280; OD] [=Recruvoidella Uchô, 1960, *1961, p. 53 (type, R. parkerae)]. Similar to Recruvoides, but with interiomarginal aperture, not areal in position. Eoc.-Rec., Eu.-Atl.-Pac.—Fig. 136.7. *T. subturbinata (Grzbowski), Eoc., Eu.; 7a,b, opposite sides; 7c, edge view; ×105 (*2117).—Fig. 136.8. T. parkerae (Uchô), Rec., Calif.; 8a, side view; 8b, edge view showing interiomarginal aperture, ×50 (*1961).

Trochammina Cushman & Brönnimann, 1948, *498, p. 17 [*T. irregularis; OD]. Test free, en­rolled, early portion planispiral, later portion may develop irregular inflated chambers; sutures radial in planispiral portion; wall agglutinated; apertures

Fig. 138. Litoulidae (Haplophragmoidinae; 1,2, Recurvoides) (p. C226).
areal, single or multiple in planispiral portion, variable in position on irregular later chambers, surrounded by prominent raised lips. [Trochamminita differs from Trochammina in being planispiral in the early stage and in having multiple areal apertures in the adult.] Rec., Carib.-USA (La.).—Fig. 135,5-7. *T. irregularis, Trinidad, W. Indies; 5a,b, side and edge views, ×112; 6, side view, ×82; 7a-c, opposite sides and edge view, ×82 (*1631).

Trochamninaoides Cushman, 1910, *404a, p. 97 [*T. proteus Karrer, 1866, *1021, p. 494; OD). Similar to Haplophragmoides but coiling involute, aperture large, interiomarginal, with slightly thickened lip. Carb.-Rec., cosmop. —Fig. 136.6. *T. proteus (Karrer), Rec., Gulf Mex.; 6a,b, side, edge views, ×17 (*2117).

Subfamily SPHAEARAMMININAE Cushman, 1933

[Sphaerammininae Cushman, 1933, p. 87]

Test planispiral and involute, with later chambers almost completely overlapping and enclosing earlier ones; wall agglutinated; aperture areal, with incurved rim and projecting tooth. Rec.

Sphaerammina Cushman, 1910, *403, p. 439 [*S. ovalis; OD]. Test large, 1-2 mm. in length, consisting of planispiral series of strongly overlapping chambers, with little other than final chamber visible externally; wall finely arenaceous; aperture areal, slitlike to rounded, with simple to elongate tooth. [The generic definition is here emended to delineate planispiral instead of rectilinear development, as evidenced by dissected topotypes of the type-species.] Rec., Phil.—Fig. 139,1-3; 140.1. *S. ovalis; 139,1, holotype, ×35; 139,2a,b, side and edge views of topotype, chambers strongly overlapping, aperture areal, ×28; 139,3, horiz. half-section, showing planispiral coiling with approximately 5 chambers to each whorl but strong chamber overlap, so that only 3 are visible externally, apert. margin incurved, distinct apert. tooth seen in 3 chambers, ×28; 140,1a-d, apert. variation in specimens of S. ovalis, showing tooth and modifications, ×40 (all *2117).

Ammosphaerulina Cushman, 1912, *405, p. 228 [*A. adhaerens; OD). Test attached, otherwise

Fig. 139. Lituolidae (Sphaerammininae; 1-3, Sphaerammina; 4, Ammosphaerulina) (p. C227-C228).

Fig. 140. Lituolidae (Sphaerammininae; 1, Sphaerammina) (p. C227).
similar to *Sphaerammina*, with completely overlapping chambers, approx. 0.75 mm. in diam. Rec., Malay Arch. (Indon.). — Fig. 139, 4. *A. adhaerens*; holotype attached to *Saccorhiza*, partially broken to show enveloping spherical chambers, ×44 (*2117).

Canepaia BOLTOVSKOY, 1961, *166*, p. 74 [*[C. brasiliensis; OD]*]. Test free, subspherical, with strongly overlapping chambers, commonly only last 1 or 2 chambers visible externally, chamber arrangement asymmetrical, apparently planispiral as in *Sphaerammina*; wall agglutinated, septa in inner portion of wall very fine-grained, outer wall with some larger grains in fine-grained base; aperture small, rounded to irregularly elongate, with inward projecting lip which in broken specimens may give appearance of interseptal pillar. [Canepaia differs from *Sphaerammina* as herein redefined in the simple nondentate aperture. Because of strong similarity to *Sphaerammina* and absence of a rectilinear development, *Canepaia* is here transferred from the Reophacidae, where it was placed originally, to the Sphaeramminidae.] Rec., S.Am. (Brazil). — Fig. 141, 1, 2. *C. brasiliensis*; 1a, b, side and apert. views of topotype with strongly overlapping chambers and elongate aperture; 2, dissected specimen showing globular proloculus, overlapping later chambers with portions of inner entosolenian apertural necks appearing as interseptal pillars, ×72 (*2117).

Subfamily CYCLAMMININAE Marie, 1941

[Cyclaminininae *Marie, 1941, p. 257*] [=Choffatellinae *Maync, 1958, p. 1*]

Planispiral to uncoiling; wall with reticulate near-surface meshwork beneath imperforate epidermal coating and commonly with labyrinthic interior; aperture single or multiple. *Jur.-Rec.*

Cyclamina BRADY, 1879, *196a*, p. 62 [*[C. cancellata; OD (M)]*] [=Cyclamina *BRADY in Nor- man in JEFFREYS, 1876, *987*, p. 214 (nom. nud.)*]. Test planispirally coiled, involute; chambers low, broad, numerous, with complex interior, reticulate hypodermis beneath imperforate outer layer; wall finely agglutinated, both walls and septa strongly labyrinthic, with intricate network of branching and anastomosing passages; aperture consisting of equatorial interiomarginal slit and series of rounded pores with raised margins scattered over face. Cret.-Rec., cosmop. —Fig. 142, 1-4. *C. cancellata*, Rec., Atl. (1-3), Rec., Philip. (4); 1a, b, side and edge views, ×14 (*2117); 2,3, equat. and axial secs., ×18 (*1248); 4, equat. sec., ×20 (*894).

Alveolophragmium SUIKREDINA, 1936, *1723*, p. 312 [*[A. orbiculatum; OD]*]. Test planispiral, involute, similar to *Haplophragmoids*, but with complex interior; wall with inner alveolar structure below imperforate outer layer; aperture equatorial and areal, with bordering lips. Rec., Arctic-Sea of Japan. — Fig. 143, 1, 2. *A. orbiculatum*, Sea of Japan; 1a, b, side, edge views, ×12; 2, sec. showing labyrinthic interior, ×25 (*1509).

Choffatella SCHLUMBERGER, 1905, *1665*, p. 763 [*[C. decipiens; OD]*]. Test planispiral, involute, chambers numerous, broad and low, tending to increase in breadth somewhat in adult so that whorls are higher; wall with imperforate outer layer and alveolar inner layer, regularly spaced partitions; aperture linear series of pores in slight depression extending vertically up apertural face. *L.Cret.*, Medit.-USA-Mex.-Carib.-S. Am. (Venez.)-Afr.-W.Eu. — Fig. 143, 3, 6. *C. decipiens*; Port. (3), Venez. (4, 6), Switz. (5); 3a, b, side and edge views of paratype, matrix attached to one side, ×24 (*2117); 4, tang. sec.; 5, median sec., microspheric; 6, equat. sec., megalospheric; 4-6, ×30 (*1239).

Feurtillia MAYNC, 1958, *1245*, p. 1 [*[F. frequens; OD]*]. Test coiled to uniserial, like *Ammobaculites* but wall complex, with reticulate subepidermal
meshwork; aperture elongate vertical slit in plane of coiling. *Jur.* (Purbeck.)—L.Cret. (U. Valang.), Eu. (Switz.).—Fig. 144,1-3. *F. frequens*, Jur., Switz.; 1a-c, holotype, opposite sides, and apert. views; 2,3, median and axial secs. of para­types showing thick septa, x64 (*1245).

Hemicyclammina Maync, 1953, *1242, p. 148 [*H. sigali* OD]. Test planispiral, involute, interior...
incompletely divided by "semisepta," or discontinuous septa projecting 0.5-0.8 distance across chamber cavity; outer wall labyrinthic, septal walls simple; aperture obscure in type-species, but apertural face depressed. U.Cret. (M.Cenoman.), N.Afr. (Alg.).—Fig. 142,6,7. *H. sigali; 6a,b, side

Fig. 143. Lituolidae (Cyclamminiae; 1,2, Alveolophragmium; 3-6, Chofoflatalla; 7-9, Pseudochofoflatalla) (p. C228, C233).
and edge views of holotype, ×58 (*2117); 7, sec. showing labyrinthic wall and semisepta, ×35 (*1242).

Martiguesia Maync, 1959, *1248, p. 21 [*M. cyclamminiformis*; OD]. Test planispiral in early stage, later tending to uncoil, wall with outer imperforate layer over alveolar subepidermal layer, which forms labyrinthic spongy mass filling cham-

Fig. 144. Lituolidae (Cyclammininae; 1-3, *Feurtillia*; 4-6, *Mesoendothyra*) (p. C228-C229, C232-C233).
Protista—Sarcodina

Cyclamminida; aperture terminal, cribrate. U.Cret. (Santon.), Eu. (Fr.)—Fig. 145, 1-3. *M. cyclamminiformis; 1, side view of holotype, X40; 2, axial sec. megalospheric paratype; 3, equat. sec. microspheric paratype; 2,3, X20 (*1248).

Mesoendothyra Dain, 1958, *265, p. 19 (*M. izu-

Fig. 145. Lituolidae (Cyclamininae; 1-3, Martiguesia; 4-6, Pseudocyclammina; 7-9, Torinosuella) (p. C231-C233).
miana; OD]. Test enrolled and involute, early coiling plectogyrall; wall agglutinated, outer layer imperforate and interior coarsely alveolar, septa with single imperforate layer; aperture an interiormarginal slit. U.Jur.(Kimmeridg.), Eu.(Ukraine).

Fig. 144,4-6. *M. imziana*; side, edge views of holotype, \(\times 72 \) (*265); 5a,b, median and vert. secs., \(\times 50 \) (*265); 58,68, median and vert. secs. redrawn, \(\times 68 \) (*1509).

Pseudochoffatella DELOFFRE, 1961, *582, p. 105 [*P. cuvillieri; OD] [non LEUPOLD & MAYNC, 1935, *1131, p. 132 (nom. nud.)]. Test free, large, compressed, 7-12 mm. long, 0.9-1.2 mm. thick, early stage enrolled, later uncoiled; chambers numerous, interior labyrinthic, chambers only partially subdivided; wall agglutinated, with quartz grains embedded in much calcareous cement; aperture undetermined. [Pseudochoffatella is known only from nonoriented sections, hence certain important characters are yet unknown.]

L.Cret.(Apt.). Eu.(Fr.-Sp.).—Fig. 143,7-9. *P. cuvillieri*, Fr.; 7,8, oblique horiz. sec.; 9, transv. sec. showing large size and labyrinthic wall, all \(\times 17 \) (*582).

Pseudocyclammina YABE & HANZAWA, 1926, *2091, p. 10 [*Cyclusminina litus YOKOYAMA, 1880, *2096, p. 26; OD] [=Pseudochoffatella LEUPOLD & MAYNC, 1935, *1131, p. 132 (nom. nud.) (non DELOFFRE, 1961)]. Test enrolled in early stage, later uncoiling as in *Lituola*, but with irregular reticulate outer layer and thick, conspicuous labyrinthic inner layer in both walls and septa; aperture cribrate, of numerous irregularly spaced openings on terminal face. [Differs from *Lituola* in its complex wall, and from *Choffatella* in its cribrate aperture, rather than vertical series of pores.]

U.Jur.-U.Cret.(Santon.). Japan-Eu.-Carib.-Malay Arch.(Sumatra).—Fig. 145,4-6. *P. litus* (YOKOYAMA), U.Jur.(Kimmeridg.), Japan (5,6), U.Jur.(Kimmeridg.-Portland.), Pol. (4); 4, side view, \(\times 20 \); 5, median sec., \(\times 20 \); 6, equat. sec., \(\times 12 \) (*all 1247).

Reticulophragmium MAYNC, 1955, *1244, p. 557 [*Alceolophragmium venesuelanum MAYNC, 1952, *1241, p. 142; OD]. Similar to *Alceolophraggium*, but with interiomarginal aperture, bordered only by lip at upper margin. Mio.-Rec. S. Am.(Venez.)-Malay Arch.(Java).—Fig. 142,5.*R. venesuelanum* (MAYNC), Mio., Venez.; 5a,b, side and edge views; surface meshwork reflecting internal reticulate layer, \(\times 62 \) (*2117).

Torinosuella MAYNC, 1959, *1250, p. 6 [*Chofofatella peneropiformis YABE & HANZAWA, 1926, *2091, p. 11; OD]. Planispiral, similar to *Choffatella* in early stage but uncoiling and with broad low uniserial chambers in later stage; wall finely arenaceous, with imperforate outer layer and inner alveolar layer forming meshwork; aperture terminal, cribrate. U.Jur.(Kimmeridg.-L.Cret.(Hauteriv.)). Japan-Eu.(Port.-Switz.-Yugo.).—Fig. 145,7-9. *T. peneropiformis* (YABE & HANZAWA), U.Jur.(Kimmeridg.), Port. (7), U.Jur., Japan (8,9); 7a,b, side, top views, \(\times 40 \) (*1250); 8,9, median and transv. secs., \(\times 40 \) (*1250).

Subfamily SPIROCYCLININAE

Munier-Chalmas, 1887

[non transl. MAYNC, 1950, p. 538 (ex family Spirocdinidae Munier-Chalmas, 1887)]

Septa simple, chambers subdivided by secondary radial septula into chamberlets, interior labyrinthic, walls and septa divided by ramifying, anastomosing channels, alveolar-reticulate hypodermis beneath epidermal coating. Jur.-U.Cret.

Spirocyclina Munier-Chalmas, 1887, *1325, p. 333 [*S. choiart; OD]. Test free, coiled, large, slightly trochospiral, nearly involute; chambers broad, low, increasing rapidly in breadth, subdivided internally by numerous transverse radial partitions beneath alveolar layer, forming secondary chamberlets which show at surface as reticulations when specimen is dampened; wall agglutinated, fine-grained, with much cement; aperture consisting of 2 vertical rows of pores in slight depression at either side of apertural face.

U.Cret.(Senon.), Eu.(Fr.).—Fig. 146,1-2. *S. choiart; 1a-c, opposite sides and edge of lectotype (designated by MAYNC, *1247, showing double row of apertural pores, \(\times 17 \) (*2117); 2, sectioned specimen, \(\times 14 \) (*1247).

Anchispirocyclina JORDAN & APPLIN, 1952, *1003, p. 3 [*A. henbesti JORDAN & APPLIN, 1952 (=Dicyclina lusitanica EGGER, 1902, *660, p. 585); OD] [=Trematoctyclina CHOFFAT, 1885, *337B, p. 23 (nom. nud.)]. Iberina Munier-Chalmas, 1902, *1327, p. 350 (type, *Dicyclina lusitanica* EGGER, 1902, *660, p. 585) (non Iberina SIMON, 1881)]. Test enrolled, spreading, reniform or discoidal; broad, low chambers planispiral in early stage, increasing in breadth and curvature, especially in microspheric forms, becoming peneroplilne to reniform in outline, or chambers may become cyclical, resulting in discoidal test; chambers internally subdivided by somewhat irregular interseptal pillars, which project backward from each septum toward previous one, septa with numerous openings (as in *Choffatella*) spaced among interseptal pillars; wall with imperforate outer layer and alveolar subepidermal layer, and may have undivided chamber cavity immediately beneath this layer, with interior intricately divided by numerous interseptal pillars forming distinctly labyrinthic appearance; aperture cribrate. [MAYNC (1959, *1249, p. 39-40) noted the synonymy of *Iberina* and *Anchispirocyclina*, suppressing the latter as junior synonym. As *Iberina* Munier-Chalmas, 1902, is a junior homonym of *Iberina* SIMON, 1881, *Anchispirocyclina* is here re-instated as the valid name of this genus.] U.Jur.(Kimmeridg.-L.Cret.(L.Valang.)), S.Eu.-N.Afr.-SE. USA-Carib. (Cuba).—Fig. 147,1-10. A. lusitanica (EGGER),
FIG. 146. Lituolidae (Spirocyclininae; 1,2, Spirocyxima; 3,4, Sornayina) (p. C233, C236).

U.Jur., Port. (1,3,5,6), U.Jur., USA (N.Car.) (7-10), L.Cret.(L.Valang.), Port. (2,4); 1a-c, opposite sides and edge of neotype, ×3.2; 1d, edge enlarged to show apertural pores, ×15; 2, megalospheric form, ×24; 3, megalospheric section, ×24; 4, median sec. of microspheric form, ×7; 5, portion of median sec. of microspheric form, ×14; 6, trans. sec. of microspheric form, ×8.3; 7, sec. of microspheric test, holotype of "A. henbesti," ×64; 8, sec. of megalospheric form, para-type of "A. henbesti," ×20; 9, 10, oblique equat. sec. and subaxial sec. of microspheric form, ×18 (1-6, *1249; 7-10, *1003).

Orbitammina BERTHELIN, 1893, *135, p. lxxiii [*Orbicula elliptica d'ARCHIAC, 1843, *36, p. 375; OD]. Test large, compressed, reniform, with lateral borders recurved and overlapping to give discoidal appearance, to 22 mm. in diam., surface with fine concentric striae when slightly abraded, primary chambers broad, low and semiannular, subdivided into secondary chamberlets approx. 0.06 mm. in diam., with one or more perforations connecting successive chamberlets, chamber subdivisions not quite extending to outer lamella, so that opening connects all chamberlets of single chamber adjacent to outer wall, which is granular-calcareous, probably agglutinated with calcareous cement, imperforate. [Differs from Spirocyxima in the absence of a subepidermal alveolar layer.] U.Jur. (Bathon.), Eu. (Fr.).—Fig. 148, 1-3. *O. elliptica (d'ARCHIAC); 1a, neotype, ×2;
1b, same specimen with early peneropline stage restored, X1.7; 2, part of equat. sec., X20; 3a, schematic drawing of axial sec. along line AB of 3b, showing chambers of secondary chamberlets and connecting perforations; 3b, superficial equat. sec. along line XY of 3a, X87 (all *172).

Fig. 147. Lituolidae (Spirocyclininae; 1-10, Anchispirocyclina) (p. C233-C234).
Protista—Sarcodina

Sornayina Marie, 1960, *1224*, p. 320 [*S. fossascensis; OD*]. Test free, planispiral to asymmetrical, trochospiral, chambers numerous, low and broad, tending to uncoil slightly in later stages; wall agglutinated with considerable cement, imperforate epidermal layer overlying subepidermal alveolar zone, primary chambers subdivided by somewhat irregular transverse partitions perpendicular to septa below alveolar zone, septula progressively reduced to pillars or knobs farther inward, nearly continuous median partition at center dividing test equally; aperture cribrate, filling most of apertural face. [*Sornayina* differs from *Spirocyclina* in its less regularly spaced secondary septula, smaller number of chambers in each whorl, and in having a cribrate aperture, instead of a double vertical row of pores.] *U.Cret.* (Coniac.), Eu.(Fr.).—Fig. 146,3,4. *S. fossascensis; 3a,b, side and edge of holotype, X 17 (*1224); 4, median sec. of megalospheric topotype, showing reticulate subepidermal layer and primary chambers partially subdivided by secondary septula, X 18 (*1251).*

Subfamily LOFTUSINAE Brady, 1884 [*nom. correct. LOEBLICH & TAPPAN, 1961, p. 280 (pro subfamily Loftusinae Brady, 1884, p. 67)*]

Test fusiform, planispiral, involute, with numerous low whorls; wall agglutinated, interior labyrinthic; aperture multiple, along base of apertural face. *Jur.-Cret.*

Loftusia Brady in Carpenter & Brady, 1870, *278*, p. 739, 751 [*L. persica; OD (M)*]. Test large, to 80.0 mm. in length, free, fusiform, planispirally enrolled, with elongate axis of coiling; primary septa strongly oblique to regularly enrolled spiral lamina, secondary septula perpendicular to primary septa; wall agglutinated, enclosing tests of smaller foraminifers and mineral fragments in calcareous cement, thin spiral lamina largely of calcareous granules closely cemented. *U.Cret.* (Maastricht.), SW.Asia-Eu.(Balkans.).—Fig. 149,1-4. *L. persica, Iran; 1, ext., X1; 2, tang. long. sec. in reflected light, showing alveolar appearance of layer beneath thin epidermis, X22.5; 3, transv. sec., part showing separate epidermal layer, alveolar subepidermal layer, and secondary septula, X33; 4, transv. sec. in Canada balsam, in transmitted light, X5 (*278).*

Paracyclammina Yabe, 1946, *2086*, p. 259 [*L. bemmeleni Silvestri, 1932, *1786*, p. 89; OD*]. Test to 10 mm. in diam., short axis of coiling, numerous low whorls; septa oblique, thick, perforate, no secondary septa; wall agglutinated, with much cement, coarsely alveolar layer near surface. [*Paracyclammina* differs from...]

© 2009 University of Kansas Paleontological Institute
Pseudocyclammina in the large number of its closely coiled whorls and strongly oblique septa, like those of *Loftusia*. It differs from *Loftusia* in its short axis of coiling and absence of secondary septa or pillars. *UJur.-L.Cret.*, Malay Arch. (Sumatra).—Fig. 150,1-3. *P. bemmeleni*

Fig. 149. Lituolidae (Loftusiinae; 1-4, *Loftusia*) (p. C236).
Fig. 150. Lituolidae (Loftusiinae; 1-3, Paracyclammina) (p. C236-C238).

(Silvestri), L.Cret.; 1, megalospheric juvenile, sec. in plane of symmetry, X 14; 2, slightly oblique long. sec. of megalospheric adult, X 14; 3a, long. sec. perpend. to plane of symmetry of megalospheric adult, X 14; 3b, central part of 3a, X 24 (all *1786).

Subfamily LITUOLINAE de Blainville, 1825
[nom. transl. Brady, 1884, p. 65 (ex family Lituacea de Blainville, 1825)] [=Haplophragmiinidae Cushman, 1927, p. 19]
Similar to Haplophragmoidinae but spire uncoiling in adult, or cyclical, interior simple.

Lituola Lamarck, 1804, *1085b, p. 242 [*L. nautiloidea Lamarck, 1804 (=Lituolites nautiloidea Lamarck, 1804, *1085b, p. 242); SD Cushman, 1920, *411b, p. 69] [=Lituolites Lamarck, 1804, *1085b, p. 242 (obj.); Stylolina Karrer, 1877, *1023, p. 371 (type, S. lapugyensis); Cribrospirrella Marie, 1941, *1215, p. 28 (type, Lituolites difformis Lamarck, 1804, *1085b, p. 243)]. Test large, early portion planispirally coiled, later rectilinear; wall agglutinated, with interior structure of walls and septa simple; aperture terminal, cribrate. [Differs from Ammobaculites in having a multiple aperture and from Haplophragmium in having an early planispiral, rather than streptospiral, coil. Stylolina has been regarded as a synonym of Haplophragmium (*762), but because of its multiple aperture, is here classed as a synonym of Lituola.] U.Trias.-Rec., cosmop.—Fig. 151,1-3. *L. nautiloidea, U.Cret.(Campan.); 1a,b, side, edge views of neotype, X16 (*2117); 2a,b, side, top views of tootype, X16 (*2117); 3, median sec., showing simple walls and septa, X17 (*1240).

Ammoastuta Cushman & Brönnimann, 1948, *498, p. 17 [*A. salsa; OD] [=Praeammoastuta Bursch, 1952, *255, p. 915 (type, P. alberdingi)]. Ovate to flabelliform, compressed test with low, rapidly broadening chambers in curved, semienrolled series, similar to calcareous isomorph Astacolus; wall finely agglutinated on inner pseudochitinous layer, interior simple; aperture transverse areal slit near center of terminal face of final chamber, secondary apertures consisting of cribrate openings at lower end of final chamber (nearest proloculus). U.Eoc.-Rec., N.Am.(USA)-W.Indies(Trinidad)-S.Am.(Venez.-Ecuad.)-C. Am.(Panama). —Fig. 151,4. *A. salsa, Rec., USA(La.); 4a,b, side and edge views, X130 (*2117).—Fig. 151,5. A. alberdingi (Bursch), Oligo., Venez.; 5a,b, side, edge views, X174 (*2117).

[Mayre (*1240, p. 43) stated that the genus lacks an early coiled portion and is therefore "not a lituolid foraminifer." Bursch (*255, p. 915) placed it in the Reophacinae. As it shows apparent derivation from a coiled form, however, we regard it as closely related to such forms as Flabellamina and retain it within this subfamily. It shows no affinity to the uniseri.al Reophacidae. The presence of cribrate apertures in Praeammoastuta alberdingi Bursch]
was noted by Saunders (*1633, p. 84), who therefore classed that genus as a synonym of Ammobaculites.

Ammobaculites Cushman, 1910, *404a*, p. 114

[*Spirolina agglutinans* d’Orbigny, 1846, *1395*, p. 137; OD]. Test free, early portion close coiled, later uncoiled and rectilinear, rounded in section;

![Image of Foraminiferida-Textulariina-Lituolaceae](Fig. 151. Lituolidae (Lituolinae; 1-3, Lituola; 4,5, Ammoadustata; 6, Ammobaculites; 7, Ammomarginulina; 8,9, Ammobaculoides) (p. C238-C241).)
wall agglutinated, interior simple; aperture terminal, rounded. *Ammobaculites* differs from *Haplophragmium* in its early planispiral, rather than streptospiral coil, from *Ammonmarginulina* in its straight sutures and centrally placed aperture, and from *Ammoscalaria* in its thicker septa, which

Fig. 152. Lituolidae (Lituolinae; 1,2, *Ammoscalaria*; 3, *Ammotium*; 4-7, *Buccirenata*; 8-10, *Bulbophragmium*; 11, *Discamminoides*) (p. C241-C244).
Foraminiferida—Textulariina—Lituolacea

C241

represent apertural faces of previous chambers, rather than being pseudochitinous and of secondary origin.] *Foraminiferida—Textulariina—Lituolacea*

6. *A. agglutinans* (d’Orbigny), Mio., Eu. (Aus.); *A. navarroensis*, p. 33, (*2117*). *Ammobaculoides* Plummer, 1932, *1465*, p. 87 [*A. navarroensis*; OD] [=Spiroplectella Earl., 1934, *653*, p. 113 (type, *S. cylindroides*).] Test free, elongate, ovate to rounded in section; early chambers in planispiral coil, later biserially arranged and finally uniserial; wall agglutinated, insoluble in acid; aperture at base of final chamber of early portion, becoming terminal in adult. *L.Cret.-Rec., N.Am.-Eu.-Antarctic.*—**FIG. 151,** *A. navarroensis*, U.Cret., USA (Tex.); *A. aequale* Earl., Rec., Antarctic; side view, X166 (*2117*).

The type-species of *Spiroplectella* differs from that of *Ammobaculoides* only in being smaller and more regular in size, breadth of the coil being approximately equal to that of the biserial stage and the final uniserial portion. In *A. navarroensis* the biserial stage is widest. These differences are of specific rather than generic importance, however. Since both develop from coiled to biserial to uniserial; wall agglutinated tests insoluble in HCl, they are here considered synonymous.

Ammonomarginulina Wiesner, 1931, *2063*, p. 97 [*A. ensis*; OD (M)]. Test planispiral in early stage, later rectilinear, strongly compressed; sutures oblique; wall agglutinated, with very little cement; aperture terminal, eccentric, at dorsal angle of test. [MAYNC (*1240*) stated that *Ammobaculites compressa* Cushman & Waters (M. Penn., Mich.) “should be referred to *Ammonomarginulina*” and thus would extend the range of the genus to the Pennsylvanian. As *A. compressa* has neither the eccentric aperture at the dorsal angle nor the oblique sutures which characterize *Ammonomarginulina*, we regard it as a true *Ammobaculites*.] *Jur.-Rec., Antarctic-Afr.-N.Am.-Eu.*—**FIG. 151.** *A. ensis*, Rec., Antarctic; holotype, X66 (*2063*).

Ammoscalaria Hüeklund, 1947, *924*, p. 151 [*Haplophragmium tenuimargo* Brady in Tizard & Murray, 1882, *1936*, p. 715; OD]. Test free, elongate, early portion planispiral, later uncoiling and rectilinear, original development as tubular test with secondarily formed septa and resultant chamber development; sutures indistinct at surface, internal septa extremely thin, straight and pseudochitinous; exterior wall coarsely agglutinated, thick; aperture rounded to slightly elongate, may be produced on distinct neck, which is apparently temporary structure resorbed in formation of next succeeding chamber, foramina of secondarily formed septa not correlate with terminal aperture, but consisting of slight tubular projection from center of each pseudochitinous septum. [*Ammoscalaria* differs from *Ammobaculites* in its secondarily formed septa not pseudochitinous]. [Rec., Atl.-Pac.—**FIG. 152,** *A. tenuimargo* (Brady), Ad. (1), N.Sea (2); *A. navarroensis*, p. 323; *A. cylindroides* (Earl.), Rec., Antarctic, side view, X10 (*924*).

Buccicrenata Loeblich & Tappan, 1949, *1156*, p. 252 [*Ammobaculites subgoodlandensis* Vanderpool, 1933, *1975*, p. 407; OD]. Test free, flattened, early stage planispiral, later portion uncoiled and straight; wall agglutinated, aperture interiomarginal in the early stage, becoming terminal in uncoiled portion, elongate, with series of lateral toothlike projections. [*Buccicrenata* differs from *Ammobaculites* in its elongate, crenulate aperture instead of a simple one.] *L.Cret. (Alb.), USA (Tex.-Okla.).*—**FIG. 152.** *A. cassis* (PARKER), Rec., Alaska; side, edge views, X28 (*1162*).

The involved nomenclature of the type-species is discussed by LOEBLICH & TAPPAN (1169). The type-species was stated originally to be \emph{Haplophragmium aequale} REUS, 1860 (non \emph{Spiro/a} \textit{aequolis} ROEMER, 1841). As this is a type without a valid specific name, the Rules state that in such cases the old specific name is to be used with the new generic name as a new species, with authorship and date that of the author of the genus, in this instance, \emph{Bu/bophragmium aequale} MAYNE. The later-proposed name \emph{Liwola westfa/ica} BARTENSTEIN is therefore a junior synonym.

Discamminoides BRÖNNMANN, 1951, *225, p. 103 [*D. tobleri; OD]. Planispiral early stage, becoming uniserial in later development; septa thin, curved, nonalveolar; wall agglutinated, peripheral area of chamber cavity with spongy alveolar filling of fine-grained arenaceous material, alveolar openings perpendicular to outer wall but not perforat-
Foraminifera—Textulariina—Lituolacea

ing it, no true labyrinthic layer developed; aperture interiomarginal in early stage, terminal in later stage (whether single or multiple being unknown). [This genus is only provisionally recognized as distinct, for according to Mayne (*1240, p. 48) the alveolar structure is not present.]

Fig. 155. Lituolidae (Lituolinae; 1, *Phenacophragma*; 2, *Stomatostoecha*; 3, 4, *Haplophragmium*; 5-9, *Triplasia*) (p. C244-C247).
ent in all specimens. If this is not a constant feature of the genus, Discamminoides would appear to be a synonym of Ammobaculites or Lituola, depending on the presence of a single or multiple aperture, not yet described.] U.Oligo.-L.Mio., W.Indies(Trinidad).—Fig. 152,11; 153, 1,2. *D. toberi, Mio.; 152,11a,b, side, edge views of holotype, X39 (*2117); 153,1,2, megalospheric paratypes, nearly axial sec. (1), showing straight alveoles (shaded), and sec. parallel to axis (2) showing branching alveole, X35 (*225).

Flabellammina Cushman, 1928. *436, p. 1 [*F. alexanderi; OD]. Test elongate, compressed, early stage coiled, later uniserial, with broad, low chevron-shaped chambers; wall coarsely agglutinated, simple walls and septa; aperture terminal, rounded. [Flabellammina differs from Ammobaculites in having compressed, equitant uniserial chambers.] L.Cret.-U.Cret., N.Am.-Eu. —Fig. 154,1-3. *F. alexanderi, L.Cret.(Alb.), USA(Tex.); 1a,b, side, top views of microspheric, finely agglutinated specimen, X33; 2,3, side views of coarsely agglutinated microspheric and megaspherically agglutinated, X72 (*2117).—Fig. 154,4. *F. rugosa Alexander & Smith, L.Cret.(Alb.), USA(Tex.), long. sec. showing simple interior, X52 (*111).

Flabellamminopsis Malecki, 1954. *1209, p. 104, 112, 117 [*F. variabilis; OD]. Test enrolled to uniserial, similar in form to Triplasia, with flattened, triangular or quadrate tests, but with pseudolabyrinthine, quite irregular internal structure, although lacking true alveolar layer; aperture terminal, rounded. [This variable form may have flattened, triangular, or quadrate specimens or a succession of these stages in a single specimen.] M.Tur. Eu.(Pol.).—Fig. 154,5-8. *F. variabilis; 5a,b, side, top views of triangular specimen; 6a,b, side, top views of quadrate specimen; 7, triangular form, rounded in later portion, X33 (*2117); 8, sec. showing pseudolabyrinthic structure, enlarged (*1210).

Haplophragmium Reuss, 1860. *1548, p. 217 [*Spiroina aequilis Römer, 1841, 1583, p. 98; SD Cushman, 1920, *411b, p. 67] [=Bulbophragmium Maync, 1952, *1240, p. 47 (type, Ammobaculites luekeli Cushman & Hedberg, 1941, *507, p. 83)]. Early portion streptospirally coiled, as in Bulbophragmium, later rectilinear; interior simple; aperture rounded, single, terminal. [Haplophragmium differs from Ammobaculites in its early streptospiral coil.] M.Tur.-U.Cret., Eu.-N. Am.-S.Am.—Fig. 155,3. *H. aequale (Römer), L.Cret.(Hauteriv.), Ger.; 3a-c, opposite sides and top view of topotype, X20 (*2117).—Fig. 155,4. *H. luekeli (Cushman & Hedberg), U.Cret., S.Am.(Colom.); 4a-c, opposite sides and top of holotype, X124 (*2117).
Labyrinthina Weynschenk, 1951, *2051, p. 793 [*L. mirabilis; OD] [=Lituosepta Cati, 1959, *303, p. 2 (type, L. recoarense)]. Test elongate, subcylindrical, enrolled in early stage, later uncoiling, wall agglutinated of calcareous particles in calcareous cement, nonlabyrinthic, as in Lituola, but with secondary transverse septa projecting short distance inward from outer wall; aperture terminal, cribrate. U.Trias.-L.Jur.(Lias.), Eu.(Aus.)-Italy.—Fig. 156,1-3. *L. mirabilis, U.Trias., Aus.; 1, long. sec. showing parts of secondary transverse septa in central portion of test; 2, long. sec. showing supposed attachment; 3, transv. sec., X33 (*2051).—Fig. 156,4-6. L. recoarense (Cati), L.Jur.(Lias.), Italy; 4, long. equat. sec. of holotype showing early coil and later rectilinear development, with portions of transv. septa visible where intersected near center of test; 5, transv. sec. of paratype showing transv. septa, X40; 6, reconstr. showing internal and external characters, X55 (*303).

[Labyrinthina and its synonym Lituosepta were both originally placed in the Lituolidae because of the similarity to Lituola and the nature of the embryonal portion, although the secondary septa of Lituosepta were regarded as similar to the Meandropsinidae. Mayne (*1240, p. 51) suggested the placement of Labyrinthina with the Placopsilinidae because of some supposedly attached specimens. These were obtained only from thin sections in limestone and the presumed attached nature seems uncertain from the evidence available. The majority of specimens were unquestionably free-living.]

Navarella Ciry & Rat, 1951, *343, p. 85 [*N. joaquini; OD]. Test large, early stage stereospirally enrolled, later portion uncoiled, in wide spire; septa strongly arched; wall agglutinated, with calcareous cement; aperture in early coil interiomarginal arched slit, later with small circular pores in addition to interiomarginal opening, and in uncoiled stage only scattered circular pores occur on terminal surface. U.Cret.(Maastricht.), Eu.(Sp.-Switz.-Fr.).—Figs. 156,7-11. *N. joaquini, Sp.; 7, side view of topotype, X8; 8,9, axial

Fig. 157. Lituolidae (Lituolinae; Phenacophragma) (p. C245).

and equat. secs., X8; 10, somewhat oblique sec. showing early spire and arched septa, X10; 11, sec. near surface showing cribrate aperture, X15 (*1243).

Phenacophragma Applin, Loeblich & Tappan, 1950, *27, p. 78 [*P. assurgens; OD]. Test free, planispiral, somewhat evolve, with slight tendency to uncoil; chambers numerous; septa of 2 types, complete normal septa alternating with hemi-septa which project only slightly into chamber cavities; wall calcareous, imperforate, and microgranular, with some additional material incorporated in epidermal layer, interior simple, not labyrinthic, and with no transverse partitions; aperture slitlike, terminal. L.Cret.(Alb.), USA (Tex.).—Fig. 155,1; 157. *P. assurgens; 155,1a,b, side, edge views of holotype, X44 (*2117); 157, sec. of paratype showing true septa and hemi-septa, X95 (*27).

Stomatostoecha Applin, Loeblich & Tappan, 1950, *27, p. 76 [*S. plumeriae; OD]. Test free, planispiral, not completely involute; chambers numerous; wall composed of calcareous detrital material, interior simple, not labyrinthic, and with neither transverse nor parallel partitions; aperture single series of pores in linear depression on apertural face of final chamber. [Stomatostoecha differs from Choffatella in lacking any transverse or parallel partitions and from Phenacophragma in lacking hemi-septa and in having a multiple aperture.] L.Cret.(Alb.), USA(Tex.).—Fig. 155,2; 158. *S. plumeriae; 155,2a,b, side, edge views of holotype, X44 (*2117); 158, sec. of paratype showing simple interior, X64 (*27).

Triplasia Reuss, 1854, *1543, p. 65 [*T. murchisoni; OD (M)] [=Rhabdogonium Reuss, 1860, *1548, p. 198 (type, Triplasia murchisoni Reuss, 1854, SD Loeblich & Tappan, herein, obj.); Frankeina

Fig. 158. Lituolidae (Lituolinae; Stomatostoecha) (p. C245).
Fig. 159. Lituolidae (Placopsilininae; 1-4, Placopsilina; 5, Acrtlliammina; 6, Haddonia; 7, Manorella; 8,9, Subbdelloidina) (p. C247-C248).
portion may be planispiral, especially in microspheric forms, later portion uniserial or may be uniserial throughout, but some quadrate specimens occur in most species; sutures somewhat arched on faces of test, recurved at angles; wall agglutinated, composition and size of fragments extremely variable in same species; aperture terminal, round to elongate, may be produced on short neck. *Triplasia* differs from *Flabellamina* in being triangular or quadrate in section in the uniserial stage. Most species contain some quadrate specimens; hence, this feature is not regarded as generic in importance in this lineage (*1161).*). L. jur.-Rec., N.Am.-Eu.-Pac. — FIG. 155, 5. *T. murchisoni*, U.Cret.(Comiacl.-L.Santon.), Aus.; 5a, side, apert. views of topotype, ×48 (*2117).—FIG. 155.6. T. georgsdor­fensis (BARTENSTEIN & BRAND), L.Cret.(Valang.), Ger.; 6a, side, top views, ×22 (*1161).—FIG. 155.7-9. T. goodlandensis (CUSHMAN & ALEX­ANDER), L.Cret.(Alb.), USA(Tex.); 7, side view of triangular microspheric topotype; 8a, side, top views of quadrate topotype; 9, megaspheric topotype; all ×55 (*1161).

Subfamily PLACOPSILININAE Rhumbler, 1913

[Placopsilininae RhUMBLER, 1913, p. 444] (=Armapcopsinia RhUMBLER, 1913, p. 444 [nom. van.]).

Test attached, early chambers may be enrolled, later uncoiling; wall simple. *Miss.-Rec.*

Placopstilina d'ORBIgNY, 1850, *1397a*, p. 259 [*P. cenomana*; SD CUSHMAN, 1920, *411b*, p. 70] (=Ammocibicides EARLAND, 1934, *653*, p. 106 (type, *A. proteus*)). Test attached, early stage planispirally coiled, later uncoiling and rectilinear; wall agglutinated, nonlabyrinthic; aperture terminal, rounded, may have slight lip. *Jur.-Rec., cosmop.—FIG. 159, 1.2. *P. cenomana*, U.Cret. (Cenoman.), Czech.; 1, attached specimen, ×10; 2, sec. of early portion showing nonlabyrinthic walls, ×28 (*1445).—FIG. 159, 3.4. *P. proteus* (EARLAND), Rec., S.Am.(Drake Straits); 3, syn­type of EARLAND (*653*, pl. 4, fig. 5) here designated as lectotype; 3a, side and edge views showing flattened area where attached, ×48; 4, small paratype (*653*, pl. 4, fig. 1), ×105 (*2117).

Ammocibicides was stated by CUSHMAN (1948, *486*, p. 204) to be trochoid in the early stage, "probably attached in the early stages, later becoming free." An examination of the original types in the British Museum (Natural History) (here redrawn), shows this form to be wholly at­tached, planispiral, and in no way distinguishable from *Placopstilina*. The irregular margin of *A. proteus* was not regarded by EARLAND as of generic importance, as he also described *A. pontoni* from the Eocene of Alabama, which shows as regular an outline as *P. cenomana*. *Ammocibicides* is here suppressed as a synonym of *Placop­stilina*.

Acruliammina LOEBLICH & TAPPAN, 1946, *1154*, p. 252 [*Placopstilina longa* TAPPAN, 1940, *1871*, p. 100; OD]. Test attached, at least in early portion; early stage close coiled, later uncoiling, only few chambers of coiled portion may be attached or all of coiled portion and much of uniserial portion may be attached, later portion of test usually growing free from attachment and uniserial part becoming cylindrical; wall agglutinated; aperture terminal, single low slit at attachment in early stages, later divided by median septum and finally cribrate. *Acruliammina* differs from *Placopstilina* in having a cribrate rather than simple aperture. L. Cret.(Alb.)-U.Cret.(Campan.), USA (Tex.-Okla.).—FIG. 159, 5. *A. longa* (TAPPAN), L.Cret.(Alb.), Tex.; 5a, side, apert. views, ×22 (*2117).

Arenonina BARNARD, 1958, *87*, p. 118 [*A. creta­cea*; OD]. Test attached, early stage planispirally enrolled, later uncoiled and with broad, low chambers resulting in flabelliform test; wall finely agglutinated, with considerable calcareous cement; aperture terminal slit in early stage, multiple in adult flabelliform portion, with single row of large rounded openings extending across breadth of final chamber, each aperture with distinct lip. *Arenonina* differs from *Placopstilina* in its spreading chambers and flabelliform test and in having a multiple aperture consisting of a single row of openings. L. Cret.(Senon.), Eng.—FIG. 160. *A. cretacea*; ×30 (*87*).

Fig. 161. Litoulidae (Placopstilininae; 1. *Manorella*) (p. C248).
Haddonia Chapman, 1898, *313, p. 453, 455 [*H. torreicenisis; OD] [=Arhaddonium RHUMELER, 1913, *1572b, p. 448 (obj.) (nom. van.]). Test large, attached, early portion coiled, later uniserial or branching; chambers broad, low, irregular in size and shape; sutures depressed; wall coarsely agglutinated, with much calcareous cement, interior smoothly finished, although pitted and traversed by large canals; aperture terminal, arched and slitlike, with projecting teeth. Eoc. Rec., Pac.-W.Indies (Cuba).—Fig. 159.6. *H. torreicenisis*, Rec., N.Australia (Torres Straits); 6a, side view of lectotype (here designated and redrawn, BMNH Cat. No. 97.11.20.1, specimen figured by CHAPMAN, *313, pl. 28, fig. 2*), illustration here published showing more of test than original figures, which did not show complete specimen; 6b, top view of final chamber showing slitlike aperture and projecting teeth of penultimate chamber, with broken wall of final chamber showing straight transverse canals or pores, ×5.2 (*2117).

This form was originally described as having a labyrinthic interior, but the inner wall is very smoothly finished as can be seen where branches are broken. Possibly straight pores in the wall were mistaken for a labyrinthic interior. No sections or additional material were available to check this. Haddonia differs from Placopsilina in its branching character, coarsely perforate wall, and elongate, slitlike aperture, instead of rounded aperture. Coscinophragma differs in having a labyrinthic interior and cribrate aperture.

Manorella Grice, 1948, *823, p. 223 [*M. proteus; OD]. Test free, early stage may be trochospherically coiled, later uniserial, with closely appressed chambers, rarely branching; wall agglutinated on pseudochitinous base, with calcareous particles in calcareous cement, coarsely perforate, interior simple; aperture multiple, with few ovaite to slitlike openings on slight collar-like projections, parallelizing periphery on terminal face. U.Cret., USA (Tex.).—Fig. 159.7; 161.J. *M. proteus*; 159.7, holotype, with multiple apert. and coarse perforations, ×36 (*2117); 161.I.a,b, opposite sides of paratype showing early coil and later branching, ×30 (*823).

Oxinopsis GUTSCHICK, 1962, *844A, p. 1299 [*O. botryis; OD]. Test large, up to 1.5 mm. in length, early portion attached and lacking basal wall against attachment, later growing free of attachment, with complete wall; proloculus ovate, followed by loosely coiled series of few subglobular chambers, later chambers uncoiled and rectilinear, each with distinct and tubular neck; wall agglutinated, of quartz and calcareous grains in siliceous cement; aperture rounded and terminal on short thick neck. L.Miss.(Kinderhook), USA (Mont.).—Fig. 161A.l. *O. botryis;* attached side of holotype, showing open base of early loosely coiled attached chambers, and free-growing later chambers broken open to show tubular necks, ×33 (*844A).

*[Although originally placed in the "family Reophacidae, subfamily Achemonelinae," Oxinopsis is here transferred to the Placopsilininae, because of its early coil and attached nature. It resembles *Subbodellina FRENTZEN in the poorly developed coil, but differs in the distinctly globose chambers and tubular necks, and in the tendency to grow free of the attachment in the later stage.]*

Subbodellina FRENTZEN, 1914, *747, p. 331 [*S. haelsleri; OD] [=Eoplosilina PAYARD, 1947, *1432, p. 63 (type, *E. mariei*). Test attached, with bulbous proloculus followed by uniserial, rectilinear, arcuate, or somewhat irregular series of chambers, increasing gradually in size; wall agglutinated; aperture terminal, may be slightly produced. [Differs from *Placopsilina in lacking an early coiled stage. Eoplosilina was originally stated (*1432) to have an internal siphon within the spherical proloculus, but examination of the holotype (only known specimen) of the type species shows that this appearance is due to an irregular chamber cavity, not a spiral stage of numerous chambers, as found in Placopsilina.] L. Jur. (U.Lias. U.Jur., Eu. (Switz.-Ger.-Fr.).—Fig. 159.8. *S. haelsleri*, U.Jur., Switz.; 8a,b, ext. and part of formerly attached side showing simple walls, enlarged (*854).—**Fig. 159.9. *S. mariei* (PAYARD), L.Jur. (Toarc.), Fr.; holotype (re drawn), ×105 (*2117).*

Subfamily COSCINOPHRAGMATINAE

**Thalmann, 1951 [nom. correct. LOEBLICH & TAPPAN, herein (pro Coscinophragmatae THALMANN, 1951, p. 221) (nom. subst. pro Polyphragmatae RHUMELER, 1913, p. 446, nom. nud.) (=Arpophragmatae RHUMELER, 1913, p. 446 (nom. van.))]

Test attached, wall labyrinthic. U.Cret.-Rec.

**Coscinophragma Thalmann, 1951, *1899d, p. 221 [pro Polyphragma REUSS, 1871, *1556, p. 278 (non QUATREFAGES, 1866)] [*Lichenopora cribrosa REUSS, 1846, *1538, p. 64; OD] [=Arpophragmatae RHUMELER, 1913, *1572b, p. 447 (obj.) (nom. van.)]. Test attached by base, with cylindrical and bifurcating branches composed of numerous broad low chambers; wall agglutinated,
interior labyrinthic with coarsely agglutinated layer and inner thin perforate homogeneous layer lining alveolar openings; aperture terminal, cribrate, consisting of regularly spaced rounded openings. *C. cribrusa* (Reuss); side and top views of branched fragment, ×5, ×14; sec. showing interior structure, ×22; sec. of portion of wall, showing thick, compact arenaceous layer and thin perforate layer, ×400 (*1445).

Adhaerentia Plummer, 1938, p. 242 ["A. midwayensis" OD]. Test elongate, attached by hemispherical proloculus, commonly to coiled calcareous foraminifers, later growing free, early chambers biseriately arranged, later uniserial and cylindrical; sutures slightly depressed to indistinct; wall agglutinated, interior labyrinthic; aperture in biserial stage rounded and subterminal, in later stages becoming irregular in outline and finally terminal and multiple. [Adhaerentia was

Fig. 162. Lituolidae (Coscinophragminae; 1-3, Bdelloidina; 4-5, Adhaerentia; 6-7, Coscinophragma) (p. C248-C250).
placed in the Placopsilinidae by PLUMMER (1938, *1467), who regarded it as an advanced member of the family because of its reduced attached stage and labyrinthine interior.] Paleoc., USA(Ala.).—Fig. 162,4,5. *A. midwayensis; 4a,b, side, edge views of specimen attached to Lenticulina; 5, top view of another specimen showing double aperture; both X26 (*2117).

Bdelloidina CARTER, 1877, *293, p. 201 [*B. aggregata; OD] [≡Arbelloidinum RHUMBLER, 1913, *1572b, p. 448 (obj.) (nom. van.)]. Test attached, with numerous broad, low chambers in uniserial series or spreading and rarely branching; wall agglutinated, rough externally, smooth inside, with interior secondary septa vertically crossing chambers from base to top, numerous internal pores pitting interior and row of communicating pores through septal faces; aperture single or double row of pores against attachment on terminal face of last-formed chamber. Paleoc. (Landen.)—Rec., Pac.-USA(N.J.).—Fig. 162,1,2. *B. aggregata, Rec., Pac.(Bikini Atoll) (1), Ind. O. (2); 1a,b, side view of attached specimen and top view of branch showing multiple aperture, X5.5; 2a,b, side view of much branched specimen and top view of branch showing double row of pores, X5, X20 (*1166).—Fig. 162,3. B. vincentownensis HOFKER, Paleoc.(Landen.), N.J.; 3a,b, side, edge views showing aperture as a single row of pores; 3c, broken to show complex interior; all X14 (*2117).

Family TEXTULARIIDAE

Ehrenberg, 1838

[nom. correct. CHAPMAN, 1900, p. 9 (pro family Textularina EHRENBERG, 1838, p. 200).]—[All names referred to are of family rank; dagger(t) indicates partim]—[≡Eanolotixiuus d'ORBIGNY, 1836, p. 260 (nom. nud.); ≡Turbinoida SCHULTZE, 1854, p. 52 (nom. nud.); ≡Uvellioida REUSS, 1862, p. 318, 382 (nom. nud.); ≡Uvellioida GEMEL, 1870, p. 23 (nom. nud.); ≡Plecanioida SCHWAGER, 1877, p. 27; ≡Turbinidat MARSHOUT, 1878, p. 30 (nom. nud.); ≡Opisthodischistidaat EIMER & FICKERT, 1899, p. 672 (nom. nud.); ≡Dichistidaat EIMER & FICKERT, 1899, p. 678 (nom. nud.).]—[≡Textularidae d'ORBIGNY IN DE LA SAGA, 1839, p. 146; ≡Textularina ACASSEZ, 1844, p. 4; ≡Textularidae PASS, 1860, p. 23; ≡Textularida REUSS, 1862, p. 320; ≡Textularida SCHMARDT, 1871, p. 164; ≡Textularida JONES in GRIFFITH & HENREY, 1875, p. 320; ≡Textularidae JONES,
Test free or attached, may have early planispiral coil, generally biserial and may become uniserial; wall agglutinated; aperture simple, basal or terminal, single to multiple. Carb.-Rec.

Subfamily SPIROPECTAMMININAE
Cushman, 1927

Early stage planispiral, later biserial. Carb.-Rec.

Spiropectammina Cushman, 1927, *431, p. 23 [*Textularia agglutinans d’Orbigny var. biformis Parker & Jones, 1865, *418, p. 370; OD]. Test free, elongate, early portion in planispiral coil of few chambers, later chambers biserially arranged; wall agglutinated; aperture low arch at inner margin of final chamber. [Spiropectammina differs from Textularia in having a distinct and well-developed initial coil. The lectotype of Textularia agglutinans var. biformis Parker & Jones is here designated (BMNH-ZF 3639, ex 94.4.3.194, at 60-70 fathoms off Hunde Island, Davis Straits.)] Carb.-Rec., cosmop.—Fig. 163, 1.*. biformis (Parker & Jones), Rec., Alaska (Chukchi Sea); 1a,b, side, top views, X100 (*1162).

Ammospirata Cushman, 1933, *458, p. 32 [*Pelorina mexicana Cushman, 1926, *422, p. 22; OD]. Test free, palmate, compressed; globular proloculus followed by few narrow, elongate chambers in planispiral coil of single whorl, chambers with considerable overlap of preceding chambers at periphery, coiled stage followed by short biserial stage of very low, broad chambers, which extend back around coil at each margin of test, followed by well-developed uniserial stage of many broad, low-arched chambers (as many as 14 uniserial chambers present in toptype specimens of type-species); sutures thickened, slightly elevated; wall finely agglutinated, smoothly finished; aperture terminal, consisting of series of small pores in narrow depression extending along entire upper margin of chamber. [Ammospirata differs from Spiropectammina in its palmate shape, strongly arched chambers and extremely broad, low chambers, showing considerable overlap of earlier ones at their outer margin in the later uniserial stage, and in the multiple aperture.] Oligo., Mex.—Fig. 163.2. *A. mexicana (Cushman); 2a,b, side, top views of toptype showing pores in terminal groove, X42 (*2117).

Bolivinopsis Yakovlev, 1891, *2095, p. 349 [*B. capitata: OD] [=Spiropectoides Cushman, 1927, *428, p. 77 (type, Spiropecta rosula Ehrenberg, 1854, *680, p. xxxii)]. Test with large planispiral coil in early stage and later long, narrow biserial stage, similar in plan to Spiropectammina; wall calcareous, possibly of agglutinated fine-grained calcareous particles. U.Cret., Eu.-N.Am.-S.Am.—Fig. 163.3. *B. capitata, USSR; X120 (*1197).—Fig. 163.4. *B. rosula (Ehrenberg), USA (Miss.); X39 (*484).

[The nature of the wall of the type-species is somewhat doubtful. Macfadyen (1933, *107) noted that B. capitata had originally been included in the perforate calcareous group by Yakovlev and on this basis, as well as general form, assumed it to be identical with Spiropecta rosula Ehrenberg. Thus Spiropectoides was regarded as a junior synonym of Bolivinopsis. Friezell (1943, *750, p. 338) stated that the synonymy was not positive. As the original description was based on a single specimen mounted in balsam, details of wall characters were uncertain and Friezell stated that it is commonly difficult to distinguish between finely agglutinated tests and secreted calcareous ones. He added that a study of totypotypes would be necessary to settle the problem. Cushman (1946, *484, p. 102, 103) regarded B. rosula as “calcareous, finely perforate,” and B. clotho (Gzowski) (=Spiropectammina graybowski Friezell) as “entirely siliceous.” Glassman (1947, *796, p. 98) stated that Bolivinopsis should replace Spiropectammina, as the type-species was said to be arenaceous. Shelykova in Reuzer-Chernousova & Fursevko (1959, p. 219) recognized both Spiropectammina and Bolivinopsis, placing both in the Textulariinae. As we have been unable personally to examine toptype material of B. capitata, we follow this latter usage and recognize both genera. Shelykova stated that the wall of Bolivinopsis is calcareous but by placement in this family would seem to indicate that it may be of agglutinated calcareous particles.]

Morulaelpecta Höglund, 1947, *924, p. 165 [*M. bulbosa; OD]. Test streptosparily coiled in initial portion, completely enclosing bulbous proloculus, later portion biserial; proloculus pseudo-chitinous, remainder of wall agglutinated; aperture interiomarginal arch. [Morulaelpecta differs from Spiropectammina in its early streptosparily rather than planispiral coil.] Rec., Sweden.—Fig. 163.5; 164.1. *M. bulbosa; 163,5a,b, side, top views of paratype, X123 (*2117); 164.1, a,b, optical secs., X250 (*924).

Vulvulina d’Orbigny, 1826, *1391, p. 264 [*V. capreolus; OD]. Test Cushman, 1928, *439, p. 118 [*=Schizophora Reuss, 1861, *1551, p. 12 (type, S. neugeboorei); Venulina Gündel, 1870, *840, p. 648 (type, V. nummullina); Trigenerina Schubert, 1902, *1681, p. 26 (obj.).] Test free, flaring or elongate, lozenge-shaped or rhomboidal in section, lateral margins acutely angled; chambers increasing rapidly in size, early portion coiled at least in microscopic generation, later cham-
bers biserially arranged, broad and low, somewhat arched over early coil, recurved laterally, final chambers uniserial in best-developed specimens of most species, but some may show only biserial development; sutures distinct, commonly thickened and elevated in early portion, later

Fig. 165. Textulariidae (Textulariinae; 1-3, Textularia; 4-6, Olssonina; 7-9, Poritextularia; 10-12, Semivalvulina; 13-14, Bigenerina; 15,16, Textularioides) (p. C253-C255).
moderately depressed; wall agglutinated, but very finely grained and smoothly finished, of calcareous, arenaceous, or other mineral grains; aperture in early stage broad, low interiomarginal arch, in uniserial stage becoming elongate, narrow terminal slit. [Vulvulina differs from Ammospira in having a single terminal aperture rather than a row of pores in the uniserial stage and in the uniserial portion being of equal or lesser breadth than the preceding biserial stage, whereas in Ammospira the uniserial portion is broad, resulting in a distinctly palmate test.] U.Cret. (Campan.)-Rec., cosmop.—Fig. 163,6.7. V. pennatula (Batsch), Rec., Italy, topotypes; 6a,b, side, top views of adult test showing early coil, later biserial stage, and final uniserial development with terminal slitlike aperture; 7, top view showing basal aperture in biserial stage; all X40 (*2117).

Subfamily TEXTULARINAE Ehrenberg, 1838

[nom. correct. Chapman, 1900, p. 9 (pro subfamily Textularinae Carpenter, Parker & Jones, 1902, p. 1899)]—[All names referred to are of subfamily rank]—==Textilaridae Schulze, 1854, p. 52; ==Textilaridae Schvager, 1877, p. 21; ==Textilaria Marrott, 1878, p. 30; ==Textularia Bütschli in Brown, 1880, p. 203; ==Textulariinae Jones, 1895, p. 141]

Test biserial, at least in early stage, may become uniserial. Penn.-Rec.

Textularia Defrance in de Blainville, 1824, *141a, p. 177 [*T. sagittula; OD (M)] (=Textularia Ehrenberg, 1839, *667, opposite p. 120 (obj.) (=nom. van.); Plecanium Reuss, 1862, *1552, p. 383 (type, Textularia labiata Reuss, 1862); Textillaria Schvager, 1864, *1702, p. 200 (nom. van.); Plectrostomelloides Mazzon, 1943, *1203, p. 157 (type, P. andreas).] Test free, elongate, biserial, generally more or less compressed in plane of biseriality or rarely oval to circular in cross section; chambers numerous, generally closely appressed; wall agglutinated, simple; aperture single low arch at base of last chamber. Penn.-Rec., cosmop.—Fig. 165,1,2. T. sagittula, Pho. (Piacenza), Italy (Siena, 1a,b; Castel-Arquato, 2a,b); 1a,b, side, top views of topotype, X26 (*2117); 2a,b, side, top views, X64 (*2117).—Fig. 165,3. T. sp., long, axial sec. showing simple wall construction, enlarged (*401).

[Defrance (1824, *141a, p. 177) described Textularia with T. sagittula Defrance as type species. No localities were cited, for the author stated only that his fossils came from Italy. Defrance's illustrations (1824, *141b, pl. 13, figs. 5, 5a,b) indicate that the species is a very large form (3 mm. in length) and show that it definitely is biserial in the early stages. Later, Defrance (1828, *579f, p. 245) reported the occurrence of this species as "fossile pré de Sienne, de Castel-Arquato, et vivant sur les bords de la Mediterranee, d'Orbigny, loc. cit.)." Lacroix (1929, *1074, p. 2) stated that he had examined many thousand examples of T. sagittula from dredgings in the Bay of Biscay (Gulf of Gascogne), the English Channel, and the Mediterranean, and that a true biserial specimen did not exist. All complete specimens seen by him exhibited an early coiled stage, although in some less perfect specimens this portion was broken or abraded so as to give a pseudobiserial appearance. On the basis of dimorphism and of a statistical study Lacroix believed that a biserial form would

be impossible in this species as he observed both "A and B forms" with distinct coiling. Following Lacroix's work, some later investigators have considered Textularia and Spiropleclammina to be synonymous, although Lacroix considered both genera valid, differing only in relative importance of the coiled portion of the test. Bérou (1949, *71) noted that some workers even placed the type-species of Textularia in Spiropleclammina, which Textularia antedated by more than a century.

In order to settle definitely the status of this genus we attempted to re-examine Defrance's types, conducting a prolonged search for them while in France during 1953-54. Since no trace of his collection could be found, the types are presumed to be lost. As noted above, Defrance's original description gave no definite localities, whereas his later publication cited three localities in Italy—near Siena, at Castel-Arquato, and off the Italian coast living in the Mediterranean. The Mediterranean is excluded from consideration as a source of topotype material, as too vague and not qualifying as a producer of "fossil from Italy." Both Castel-Arquato and Siena have excellent exposures of the Piacenzan (Pliocene), and both contain numerous Textularians. Specimens closest in appearance to the type description and figures were found at Siena. Cushman (1945, *481) figured two specimens from Castel-Arquato, which he referred to "Spiropleclammina sagittina" but, like the majority of specimens at Castel-Arquato, they were only about 1 mm. in length, and thus only one-third the length of Defrance's figured type. Much more typical specimens occur at Siena and for this reason, as well as the fact that the Siena locality was the first cited by Defrance, we consider it to be the type locality. Specimens of the species from Siena were found to be truly biserial, as described for the genus, and they range from approximately 1.35 to 2.57 mm. in length. It is quite possible that for the species Lacroix described, no completely biserial form exists, but he was not studying Defrance's Textularia sagittula. Lacroix's specimens were all obtained from Recent dredgings in areas remote from the type locality of T. sagittula in the Pliocene (Piacenzan) of northern Italy. Furthermore, Lacroix's specimens (fig. 2,3) were approximately 1 mm. long, much compressed, and with a rounded base, whereas Defrance's figured type has a length of 3 mm. ("un ligne et demi"), the base is quite pointed, and the original illustration shows considerable inflation of the test. It seems obvious, therefore, that Lacroix was dealing with a completely different species and genus, his form being a true Spiropleclammina; hence, it has little or no bearing on understanding of Textularia.]
Olssonina BERMÚDEZ, 1949, *124, p. 99 [*O. cribrosa; OD] [=Cribrotextularia LOEBLICH & TAPPAN, 1952, *1158, p. 79 (type, Textularia coryensis COLE, 1941, *357, p. 21)]. Test free, elongate, flaring, ovate to quadrangular in section; chambers biserially arranged throughout; wall agglutinated, simple, not labyrinthic; aperture in early stages consisting of arch at base of last chamber and in addition symmetrical series of pores, usually in ring, on face of chamber, arched aperture partially closed in later chambers and represented by series of openings at base of final chamber additional to terminal cribrate apertures.

M.Eoc., W. Indies (Dominican Republic) - USA (Fla.). — Fig. 165,4. *O. cribrosa, Dominican Republic; 4a,b, side, top views, X 48 (*2117). — Fig. 165,5,6. O. coryensis (COLE), USA (Fla.); 5a,b, side and top views of hypotype showing terminal cribrate aperture; 6, top view of specimen with broken final chamber showing part of multiple aperture in addition to basal aperture, X 22 (*1158).

[The synonymy of Cribrotextularia and Olssonina was noted by LOEBLICH & TAPPAN (1953, *1163). Olssonina differs from both Climacamina and Cribrostromum in being wholly biserial and in lacking any uniserial development, in having a simple and distinctly agglutinated wall, rather than a double-layered fibrous calcareous one, and in lacking any development of pillars supporting the terminal chamber as in Cribrostromum.]

Poritextularia LOEBLICH & TAPPAN, 1952, *1160, p. 264 [*P. mexicana; OD]. Test free, compressed, biseri al throughout; wall agglutinated, interior simple; aperture consisting in early stages of elongate slit at base of last chamber, paralleling sides of test, and in adult comprising a linear series of openings across terminal portion of final chamber, formed by development of pillars across original slit. Rec., Pac. (off Mex.). — Fig. 165,7-9. *P. mexicana; 7a,b, side and top views of holotype showing multiple aperture; 8,9, top views of paratypes showing basal aperture and later development of terminal aperture, X 22 (*1158).

[Poritextularia resembles Textularia Distinct in being biserial agglutinated test but differs in having a multiple aperture. It resembles Tawitawia in the large flattened biserial test with rather extreme overlap of chambers and multiple aperture but differs in having a simple interior, lacking the internal pillars and labyrinthic structure of the latter genus, and in being completely biserial with no tendency to become uniserial. The aperture of Tawitawia is completely terminal and does not extend to the base of the final chamber as in Poritextularia.]

Semiulluvulina FINLAY, 1939, *717a, p. 505 [*Textularia capitata STACHE, 1865, *1825, p. 270; OD] [=Vulvulina (Semiulluvulina) FINLAY, 1939, *717a, p. 505 (obj.)]. Test free, flaring, rhomboidal in section, lateral margins acutely angled; chambers increasing rapidly in size, biserially arranged throughout, relatively low and broad; sutures distinct, depressed, oblique; wall finely agglutinated; aperture in early stages comprising interiomarginal arch, later with additional 1 or 2 areal openings above basal aperture, which in well-developed specimens fuse to form very high, narrow slit with scalloped margins reflecting its
development from separate openings, final elongate slit becoming nearly central in position and occupying nearly 0.3 of distance across terminal surface of test, though remaining open at base of chamber. [Semivulvulina differs from Textularia Defrance in having a much elongated aperture with scalloped margin, which develops from 2 or more distinct openings, rather than having a single, low interiomarginal arch.]

Semivulvulina differs from Textularia in having a much elongated aperture with scalloped margin, which develops from 2 or more distinct openings, rather than having a single, low interiomarginal arch. [Semivulvulina differs from Vulturina in the absence of an early coil, in lacking a final uniserial stage, and in its more complex aperture.]

M.Eoc.-L.Mio., N.Z.—FIG. 165,10-12. *S. capitata* (STACHE), L.Oligo. (10), Tert. (11,12); 10a,b, side, top views; 11,12, apert. views showing varying apert. forms; all X 48 (*2117).

Textularioides Cushman, 1911, *404b, p. 26 [*T. inflata*; OD]. Test attached at least in early stages; chambers in biserial textularian arrangement, somewhat flattened against attachment, later portion may grow free of attachment; wall agglutinated, with coarse grains embedded in fine ground mass, numerous tiny pores piercing wall; aperture low arch or slit at base of final chamber. [Textularioides differs from Textularia in being attached during at least part of its development.] Rec., N.Pac.—Fig. 165,15,16. *T. inflata*; 15a,b, side, top views of topotype; 16, attached side of topotype showing radial perforations of agglutinated wall; all X 33 (*1166).

Subfamily PSEUDOBOLIVININAE Wiesner, 1931

[Textularioides Cushman, 1911, p. 98]

Test biserial, aperture comprising elongate terminal slit or may be produced on neck. M.Jur.-Rec.

[The type-species of Pseudobolivina and Parvigenerina were both described from specimens obtained by the Terra Nova Expedition. They are nearly identical in size and appearance, except that those with the better uniserial develop-
ment ("Bitarina") were somewhat larger (0.40-0.45 mm.) than the wholly biserial forms (0.35 mm.). They are here regarded as conspecific, as well as congeneric. *Pseudobolina* differs from *Textularia* in the high slitlike aperture and tendency to become uniserial.

Haeuslerella Parr, 1935, *1423*, p. 82 [*H. pukeuriensis*; OD (M)]. Test free, elongate, chambers numerous, biserial in early portion, later chambers cuneate and alternating in loosely biserial arrangement; sutures distinct, depressed, early ones nearly horizontal, later ones oblique; wall agglutinated, surface smoothly finished; aperture nearly terminal, rounded, slightly eccentric, on upper surface of cuneate chamber. *Haeuslerella* differs from *Textularia* in possessing the loosely biserial, cuneate-chambered later portion, and terminal aperture. It differs from *Bigenerina* in having an eccentric aperture and in lacking a distinct uniserial development. *Planctostoma* differs in the absence of a loosely biserial stage, and in having a terminal aperture on the typically biserial chambers. *LMio.-L.Plio.,* N.Z.—Fig. 168.J. *H. pukeuriensis*, Mio.; 1a,b, side, top views of topotype, X42 (*2117).

Planctostoma Loeblich & Tappan, 1955, *1166*, p. 8 [*Textularia luculentula* Brady, 1884, *200*, p. 364; OD]. Test free, elongate, chambers biserially arranged, only very rarely with final uniserial development; wall agglutinated, simple in structure; aperture basal in young stage, later and...
Foraminiferida—Textulariina—Lituolacea

Typically consisting of rounded opening in terminal face, commonly somewhat eccentric and may become multiple with 2 or 3 rounded openings. Rec., N.Atl.-S.Atl.-Carib.—Fig. 168,3,4.

*P. luculenta (Brady), Carib.; 3a,b, side, edge views of hypotype; 4a,b, side and apert. views of hypotype showing multiple aperture; all X22 (*1166).

Fig. 170. Textulariidae (Tawitawiinae; 1-3, Tawitawia; 4-6, Phyllopsamia; 7-9, Septigerina) (p. C258-C259).

© 2009 University of Kansas Paleontological Institute
Protista—Sarcodina

Subfamily TAWITAWIINAE
Loeblich & Tappan, 1961

Biserial, with vertical pillars subdividing chambers; aperture multiple, terminal. Eoc.-Rec.

Tawitawia Loeblich, 1952, *1151, p. 190 [*Textularia immensa Cushman, 1913, *406, p. 633; OD]. Test large, flattened, biserial; chambers numerous, low, strongly overlapping in line of biseriality; wall coarsely agglutinated, thick, with pillars projecting downward into interior from roof of chambers, resulting in labyrinthine interior; aperture terminal, consisting of elongate series of irregular slits separated completely by pillars across opening or only partially by projections from one side, aperture not extending as far as inner margin of chamber. Rec., N.Pac.O.(Philip.).

—Fig. 170,1-3. *T. immensa* (Cushman); 1ab, side and top views of microspheric hypotype, X10; 2ab, side and top views of megalospheric hypotype, X10; 3, long. sec. showing vertical pillars projecting downward from chamber roofs, X22 (*1151).

Tawitawia differs from Textularia in its labyrinthine interior, internal pillars, and terminal multiple aperture. Septigerina has vertical internal pillars, but these are much fewer, the test has a coiled base, and the aperture is typically textularian. Tawitawia differs from Ostionina in having a single row of apertural slits, rather than scattered pores over the apertural surface, and in having a labyrinthine interior.

Phyllopsamia Malecki, 1954, *1210, p. 503, 507, 511 [*P. adanula*; OD]. Test compressed, palmate; early stage biserial, later uniserial; interior as in Tawitawia; wall agglutinated; aperture one or more slits in terminal groove. [Originally placed in the Lituolidae (Lituolinae), this genus is here referred to the Textulariidae because of its biserial early stage. Phyllopsamia differs from Tawitawia in having a final uniserial stage.] Mio., Eu.(Pol.).—Fig. 170,4-6. *P. adanula*; 4,5, ext. views, X52 (*2117); 6, sec. showing interior, approx. X28 (*1210).

Septigerina Keijzer, 1941, *1028, p. 1006 [*S. dalmatica*; OD]. Test free, elongate, flattened; early portion planispiral, later biserial, with horizontal partition extending through later chambers near their outer margin from one wall to that opposite, projection attached also to preceding septum in earlier biserial chambers, but extending only as horizontal pillar across central part of final chamber; wall agglutinated; aperture comprising arch at base of final chamber. M.Eoc., Eu.(Yugo., Dalmatia).—Fig. 170,7-9; 171.1. *S. dalmatica*; 170,7ab, side and top views of lectotype showing basal coil; 170,8, side view of paratype showing later development of pillars, X116; 170,9, long. sec., X56 (*2117); 171,1ab,
diagram of long. sec. showing internal pillar within a chamber; 171.1c, diagram of horiz. sec. showing pillar extending across chamber, enlarged (*1028).

Septigerina differs from Spiroplectammina in the presence of secondary pillars extending across the outer portions of the biserial chambers. Three of the original syntypes of the type-species (collection of the Rijks Universiteit, Utrecht, Netherlands) were redrawn, the specimens having been generously loaned to us by the Rijks Universiteit. That in Fig. 172.7 is here designated as lectotype.

Zotheculifida LOEBLICH & TAPPAN, 1957, *1172, p. 224 [*Textularia lirata CUSHMAN & JARVIS, 1929, °509, p. 6; OD. Test free, compressed, elongate or palmate, chambers numerous, biserially arranged, with internal incomplete partitions extending obliquely downward from septa, visible externally only when outer surface has either been dampened or somewhat abraded, and in rare specimens secondary partitions visible externally as slightly darker than intervening spaces; wall agglutinated, fine-grained, rather smoothly finished; aperture comprising high narrow arch at base of final chamber. Mio., W. Indies (Trinidad).—Fig. 172.1-3. *Z. lirata (CUSHMAN & JARVIS); 1a, 2, side views of hypotypes; 1b, top view; 3, long. sec.; all X34 (*1172).

Zotheculifida differs from Textularia in its more numerous and regularly arranged internal partitions and in possessing a single textularian aperture, rather than a terminal linear series of pores. The type-species was originally described from the "Sagrina beds," Trinidad Point, Oropouche Lagoon, Trinidad, West Indies, which were then thought to be Eocene in age, but are now regarded as Miocene.

Family TROCHAMMINIDAE

Schwager, 1877

Test free or attached, trochosorial; wall agglutinated; aperture interiomarginal or areal, single or multiple. Carb.-Rec.

Subfamily TROCHAMMININAE Schwager, 1877 [nom. transl. BRADY, 1884, p. 66 (ex family Trochamminidea SCHWAGER, 1877)] [=Ammosphaeroidinae CUSHMAN, 1927, nom. cons.]

Test free or attached, trochosorial; wall agglutinated, interior simple; aperture interiomarginal or areal. Carb.-Rec.

Trochammina PARKER & JONES, 1859, *1417b, p. 347 [*Nautilus inflatus MONTAGU, 1808, *1299, p. 81; OD (M)] [=Rhaphidohelix MöBIUS, 1880, *1293, p. 76 (type, R. elegans); Kaphidohelix GOES, 1882, *801, p. 140 (nom. van.); Trochammina DEECKE, 1884, *568, p. 21 (nom. null.); Retinsina GRZYBOWSKI, 1896, *835, p. 278 (non Retinsina NEVIANI, 1896); Ammoglobinigerina EIMER & FICKERT, 1899, *692, p. 704 (type, A. bulloides; Lituola nautiloidea LAMARCK var. globigeriformis PARKER & JONES, 1865, *1418, p. 407); ?Glomerina FRANKE, 1928, *740, p. 164 (type, Lituola globigerinoides PERNER, 1892, *1445, p. 52).] Test free, trochosorial; globular to ovate chambers increasing gradually in size; wall agglutinated; aperture low interiomarginal extra-umbilical-umbilical arch which may have narrow bordering lip. Carb.-Rec., cosmop.—Fig. 173.1. *T. inflata (MONTAGU), Rec., N.Atl.; 1a-c, spiral and umbilical sides and edge view, X86 (*2117).—Fig. 173.2. T. globigeriformis (PARKER & JONES), Rec., N.Atl.; 2a-c, opposite sides and edge view of lectotype (here designated and refigured) of Lituola nautiloidea LAMARCK var. globigeriformis PARKER & JONES (1865, *1418, pl. 17, fig. 96), X146 (*2117).

Ammosphaeroidina CUSHMAN, 1910, *404a, p. 128 [*Haplophragmium sphaeroidiformis BRADY, 1884, *200, p. 313; OD]. Test globose, strep-tospirally coiled with few embracing chambers,
only 3 of final whorl visible at exterior; wall agglutinated; aperture low interiomarginal arch. *A. sphaeridiniformis* (BRADY), Eoc.-Rec., Pac.-Medit.-Antarctic-W.Indies(Cuba).

---FIG. 174.1. *A. sphaeridiniformis* (BRADY), Rec., Pac.; la-d, opposite sides, edge view, and oblique view to show aperture, X33 (*2117).

---Fig. 173. Trochaminidae (Trochamininae; 1,2, Trochammina; 3, Trochamminula; 4,5, Arenoparrella) (p. C259, C262, C266).
Areonionella Marks, 1951, *1225, p. 377 [*A. roseta; OD]. Test free, slightly trochospiral; chambers low and broad, all partially visible on spiral side, but with prominent lobe overhanging umbilicus on opposite side; wall thin, somewhat flexible and easily distorted, agglutinated with calcareous cement on pseudochitinous base, interior simple; aperture low interiomarginal, equatorial slit. *Areonionella* resembles the calcareous genus *Nonionella* in character of coiling, the overhanging chamber on one side, and equatorial location of the aperture but differs in having an agglutinated cement.
Fig. 175. Trochamminidae (Trochammininae; 1, Arenonionella; 2,3, Budashevaella) (p. C261-C262).

Arenonionella

Budashevaella

wall. Because of the trochospiral coiling, it is here removed from the Haplophragmoidinae to the Trochamminidae. A junior synonym of Arenonionella is Mendesia Petri, 1962, *1447A, p. 56 (type, M. minuta) (non Mendesia DE JOANIS, 1902).] U.Cret. (Maastricht.), S.Am. (Brazil) - Mio. (Vindob.), N.Afr. (Algeria). — Fig. 175,1. *A. voutei; 1a-c, opposite sides and edge, X124 (*1225).

Arenoparrella Andersen, 1951, *15, p. 31 [*Trochammina inflata (Montagu) var. mexicana Kornfeld, 1931, *1048, p. 86; OD]. Test free, trochospiral, spiral side convex, umbilical side with small closed umbilicus; chambers increasing gradually in size; sutures radial; wall agglutinated; primary aperture elongate slit extending up face of final chamber approximately parallel plane of coiling, supplementary cribrate aperture consisting of numerous circular openings near apex of final chamber. [Arenoparrella differs from Jadammilla in having a vertical slitlike primary aperture and supplementary cribrate openings at the apex of the chamber, whereas in Jadammilla the primary aperture is a low interiomarginal equatorial aperture with cribrate openings just above in the face of the chamber.] Mio. - Rec., USA (La.) - W. Indies (Trinidad) - S. Am. (Venez.). — Fig. 173,4,5. *A. mexicana (Kornfeld), Rec., Trinidad (4), USA (La.) (5); 4a-c, opposite sides and edge view of hypotype showing loop-shaped, nearly vertical slitlike primary aperture, and secondary apertural openings at peripheral angle, X109 (*1631); 5a-c, opposite sides and edge of hypotype, X64 (*16).

Budashevaella Loeblich & Tappan herein [nom. nov, pro Circus Voloshinova & Budasheva, 1961, *2021, p. 199, non Circus de Lapepède, 1799] [*Circus multicameratus Voloshinova & Budasheva, 1961, *2021, p. 201, here designated as type-species]. Test free, enrolled, early chambers streptospiral, later planispiral and partially evolute; chambers numerous; sutures curved to sinuate, radial, depressed; wall agglutinated, simple, non-alveolar, with considerable amount of siliceous cement; aperture interiomarginal. [Diffs from Trochamminoides in its early streptospiral coil and from Recurvoides in its evolute coiling and interiomarginal aperture.] U.Eoc. - Mio., USSR (Sakhalin Is. - Kamchatka). — Fig. 175,2,3. *B. multicamerata (Voloshinova & Budasheva), L. Mio., Sakhalin Is.: 2a-c, opposite sides and edge view of paratype, X47; 3, specimen partially clarified in oil to show chamber arrangement, X72 (*2021).
Conotrochammina Finlay, 1940, *717d, p. 448 [*C. whangaia; OD]. Test with high trochospiral coil, deeply umbilicate, with nonconstricted sutures; aperture small rounded areal opening. [Conotrochammina differs from Trochammina in having an areal instead of interiomarginal aperture. Originally placed in the Ammodiscidae, it is here regarded as closely related to Trochammina, because of its distinctly chambered character and a restricted areal aperture.] U.Cret.(Campan.)-Paleoc., N.Z.—Fig. 176,2,3. *C. whangaia, Campan.; 2, holotype, edge view showing elevated spire; 3, spiral view of paratype, X30 (*717d).

Cystammina Neumayr, 1889, *1355, p. 167 [*Trochammina pauciloculata Brady, 1879, *196a, p. 58; SD Galloway, 1933, *762, p. 186 [=Ammochilostoma Eimer & Fickert, 1899, *692, p. 692 (type, Trochammina pauciloculata Brady, 1879, SD Cushman, 1910, *404a, p. 126) obj.]]. Test free, trochoid, chambers few, high, inflated; sutures distinct, depressed; wall finely agglutinated with considerable cement; aperture comprising slit in face of final chamber, paralleling...
and near basal margin, on ventral side. \textit{Cystammina differs from Trochammina} in having high and inflated chambers and in having a slitlike areal aperture in the ventral face, instead of a basal one.] Eoc.-Rec., Pac.-Atl.-Eu.-Carib.-Antarctic.—Fig. 177,1. \textit{C. pallcicula}(BRADY), Rec., Pac.; 1a-c, opposite sides and edge view showing areal slitlike aperture of lectotype (BMNH-ZF 2508) (here designated and redrawn), ×105 (*2117).

\textit{Entzia} DADAY, 1883, *548, p. 209 [*\textit{E. tetrastomella}; OD (M)] [\textit{Entzia} \textit{Lebour}, 1922]. Test in low trochospiral coil; wall pseudochitinous, with small amount of siliceous material; aperture areal, with 2 pair of openings somewhat produced and symmetrically placed in lower half of apertural face, lower pair larger and ovate, upper pair smaller and rounded. \textit{Entzia differs from Jadamina} in lacking an interiomarginal aperture in addition to the areal openings.] Rec., Rumania (salt pools).—Fig. 176,1. \textit{E. tetrastomella}; 1a-c, opposite sides and edge view, approx. ×120 (*548).
Foraminiferida—Textulariina—Lituolacea

Jadammina Bartenstein & Brand, 1938, *93, p. 381 [*J. polystoma; OD*] [≡Borovina Shmalgauzen, 1950, *1735, p. 869 (type, B. zernovi); *Trochamininica* Shchedrina, 1955, *1726, p. 7 (type, *T. cyclostoma*)]. Test free, trochospiral, lenticular to flattened, sutures radial to slightly curved; wall agglutinated, imperforate, with few grains on pseudochitinous base; primary aperture low interiomarginal, equatorial slit, with supplementary cribrate areal aperture consisting of rounded openings in lower portion of final chamber face, with projecting lips. *Rec., Eu.-N.Am.* ---Fig. 176,4,5. [*J. polystoma*, Ger.; 5a-c, opposite sides and edge of small specimen with single areal aperture; 4, edge view of larger specimen showing multiple areal aperture; all ×200 (*2117*).] ---Fig. 176,6. *J. cyclostoma* (Shchedrina), USSR (White Sea); 6a-c, opposite sides and oblique edge view to show mode of coiling and 2 apertural forms, ×66 (*1726*).

Jadammina differs from *Trochammina* in having an equatorial primary aperture, rather than one on the umbilical side, and in having supplementary cribrate areal openings. *Trochamininica* was described as having 2 apertures, the primary aperture an arched equatorial slit extending slightly to the ventral side and bordered by a lip, the secondary aperture a single rounded areal opening with a bordering collar. As many specimens of the type-species of *Jadammina* also show only a single areal opening in addition to the equatorial opening, *Trochamininica* is regarded as a synonym.

Rotaliammina Cushman, 1924, *418, p. 11 [*R. mayori; OD*]. Test attached, trochoid, all chambers visible on spiral side, only those of final whorl seen from attached umbilical side; wall very thin, flexible, agglutinated, with fine sand held in small amount of cement; aperture indistinct, probably against attachment. *Rotaliammina* differs from *Trochammina* in its attached character,
Probissuraperla in its open umbilical aperture (WILLIAMSON), Rec., Pac.—Fig. 174,2. *R. mayorii; 2a-c, opposite sides and edge view of holotype, ×118 (*1166).

Siphotrochammina Saunders, 1957. *1631, p. 9 [*S. lobata; OD]. Test free, trochospiral, spiral side convex, umbilical side depressed; chambers ovate, increasing gradually in size; sutures curved on spiral side, radial on umbilical side; wall agglutinated; aperture consisting of forward-directed, rounded opening at end of siphon-like lobe which projects from umbilical margin of final chamber, former aperture of penultimate chamber opening into siphon of final chamber. [Siphotrochammina differs from Trochammina in having a rounded aperture at the end of a siphon-like extension of the final chamber, rather than a simple interiomarginal slit.] Rec., W.Indies(Tri.)—Fig. 174,3. *S. lobata; 3a-c, opposite sides and edge of paratype showing apertural siphon, ×110 (*1631).

Tiphotrocha Saunders, 1957. *1631, p. 11 [*Trophammina comprimata CUSHMAN & BRÖNNIMANN, 1948, *498A, p. 41; OD]. Test free, trochospiral, spiral side flat to convex, umbilical side somewhat excavated, with small, open umbilicus; chambers enlarging rapidly as added, resulting in decreasing number in each whorl, later chambers crescentic, with prominent central lobe on umbilical side; sutures depressed, curved on spiral side, strongly and doubly sinuate on umbilical side; wall agglutinated, thin and fragile, with little cement; aperture interiomarginal in young specimens, extraumbilical-umbilical in position, in re-entrant just forward from umbilical lobe of final chamber, and in well-developed adult specimens secondary opening seemingly occurs in posterior re-entrant behind umbilical lobe, its margin free with opening beneath it, or lobe may cross umbilicus and fuse with opposite side, effecting complete closure of opening. [Tiphotrocha differs from Trochammina in its open umbilical apertures, and umbilical lobe of the final chamber, which may also have a secondary opening. It is similar in apertural features to the calcareous genus Neocorobina, differing in its agglutinated wall character.] Mio.-Rec., W.Indies(Tri.)—Fig. 174,4-6. *T. comprimata (CUSHMAN & BRÖNNIMANN), Rec., Trinidad; 4a-c, opposite sides and edge views of hypotype showing crescentic chambers and apertural openings into umbilicus from each chamber of final whorl; ventral view of hypotype showing large ventral lobe of final chamber partially covering umbilicus; 5, ventral view of hypotype showing large ventral lobe of final chamber, rather than a simple interiomarginal one.] Rec., Pac.—Fig. 174,2. *R. mayorii; 2a-c, opposite sides and edge view of holotype, ×118 (*1166).

Subfamily REMANEOIDEA

Tappan, n. subfam.

Test attached, trochospiral, chambers internally subdivided by infoldings of wall. Rec.

Remaneica Rhumbler, 1938, *1576, p. 194 [*R. helgolandica; OD] (=Trochammina (Remaneica) HELGUND, 1947, *924, p. 212 (obj.)). Test small, attached, trochospiral coil; chambers with secondary infoldings or plications of wall, which may show at surface as septal slits; wall brown, pseudochitinoid, imperforate and flexible, with varying amount of agglutinated matter, exterior surrounded by "buffer zone" of agglutinated matter; aperture not observed. Rec., Ger.(Helgoland)
Fig. 179. Ataxophragmidae (Verneuilininae; 1, Verneuilina; 2, Barbourinella; 3, Bermudezina; 4-7, Gaudryina) (p. C268-C269).
Fr.-Sweden.—Fig. 178,1, 2. *R. helgolandica*, Sweden; 1a-c, opposite sides and edge view, X 210; 2, optical sec. showing secondary chamber plications, X 230 (*924*).

[Remaneica differs from Rotatissulina in having secondary plications within the chambers. *Remaneica* is regarded as adapted to life on a movable substratum, its scale-like form, protective coating, and chamber plications tending to make it resistant to deformation. Specimens referred to *Remaneica* from the western Atlantic do not appear congeneric, as they lack the characteristic chamber plication.]

Family ATAXOPHRAGMIIDAE

Schwager, 1877

[All names are of family rank; dagger(°) indicates *parsim*.]

Test free, trochospiral, uncoiling or uniserial; wall agglutinated; aperture a basal slit in the early stage, later may become terminal, cribrate or toothed. Pen. Rec.

Subfamily VERNEULININAE Cushman, 1911

[==Verneulina CUSHMAN, 1911, p. 52]—[All names of subfamily rank; dagger(°) indicates *parsim*.]

[==Uvellidca* SCHULTZE, 1854, p. 52 (nom. nud.); ==Spiroplectinina* CUSHMAN, 1927, p. 62; ==Spiroplectinatinae CUSHMAN, 1928, p. 235]

Triserial in early stage, later biserial or uniserial in some forms; number of chambers to whorl tendency to decrease with growth; aperture simple. U. Trias.-Rec.

Verneulina d'ORBIGNY in DE LA SAGRA, 1839, *1611*, p. 104 [*V. tricarinata*; SD (SM) d'ORBIGNY, 1840, *1394*, p. 39] (==Verneulina & Verneulina COSTA, 1856, *392*, p. 263 (nom. null.)). Test free, elongate, triangular, with angles of test sharp, nearly carinate, chambers triseriately arranged throughout; wall agglutinated, with much calcareous cement; aperture a low arch at inner face of final chamber. Jur.-Rec., cosmop.—Fig. 179, 1. *V. tricarinata*, U.Cret.(Senon.), Eu.(Fr.); 1a,b, side and top views of lectotype, here designated and redrawn (MNHN), X 80 (*2117*).

Barbourinella Bermúdez, 1940, *122*, p. 410 [pro Barbourinella BERMÜDEZ, 1939, *121a*, p. 9 (non AMARAL, 1924)] (==Barbourina atlantica Bermúdez, 1939, *121a*, p. 9; OD). Test triserial and triangular throughout as in *Verneulina*, but with terminal rounded aperture which may be slightly produced. Mio.-Rec., Carib.—Fig. 179, 2. *B.
atlantica (Bermúdez), Rec., Carib.; 2a,b, side, top views of holotype, X56 (*2117).

Belorussiella AKIMETS, 1958, *9, p. 35 [*B. bolivianaformis; OD]. Test elongate, with short, early triserial and triangular stage followed by better-developed biserial stage with more inflated chambers and ovate section; sutures indistinct in triserial portion, depressed and oblique in biserial stage; wall agglutinated, of fine-grained calcareous particles in calcareous cement, surface roughened; aperture elongate loop-shaped slit extending up face of final chamber to its apex. [Differs from Gaudryina in its elongate vertical apertural slit.]

U.Cret. (Toron.-U.Santon.), USSR (Belorusskaya SSR).—Fig. 180,4. *B. bolivianaformis, U. Santon.; 4a,b, side, edge views, X104 (*10).

Bermudezella CUSHMAN, 1937, *70, p. 102 [*H. ctenisinsis PALMER & Bermúdez, 1936, *1412, p. 244; OD]. Test similar to Gaudryina but with terminal circular aperture on short neck. U.Eoc.-Mio., Carib.-Eu.(Bulg.).—Fig. 179,3. *B. ctenisinsis (PALMER & Bermúdez), Loligo, Cuba; 3a-c, side, edge, and top views of lectotype (here designated, USNM-498781), X94 (*2117).

Florensinia MARIE, 1938, *1214, p. 91 [*F. douvillei; OD]. Test triserial, with chambers strongly inflated into spinose projections; aperture a loop in face of final chamber, extending upward from basal suture. *Flourensina differs from Verneuilia in its strongly laterally produced chambers and high narrow aperture. L.Cret. (U. Vracon.), Eu. (Fr.).—Fig. 181,1. *F. douvillei; side, top views of paratype, X50 (*2117).

Gaudryina d'Orbigny de la Sagra, 1839, *1611, p. 112 [*G. rugosa d'Orbigny, 1840, *1394, p. 44; SD Cushman, 1911, *404b, p. 62] = *Gaudryina d'Orbigny, 1839, *1611, p. 219 (nom. null.); Gaudryina (Siphogaudryina) Cushman, 1935, *466, p. 3 (type, Gaudryina stephensoni CUSHMAN, 1928, *438, p. 108); Gaudryina (Pseudogaudryina) Cushman, 1935, *468, p. 12 (type, Textularia atlantica BAILEY, 1851, *65, p. 12); Valvoreussella Hoffker, 1957, *948, p. 87 (type, Verneuilia bronni REUSS, 1846, *1538, p. 38). Test free, elongate, early stage triserial and commonly triangular, later portion biserial; aperture interiomarginal. U.Trias.-Rec., coscop. —Fig. 179,5. *G. rugosa, U.Cret., Ger.; 5a,b, side, top views of hypotype, X39 (*2117).—Fig. 179,6. *G. atlantica (BAILEY), Mio., W.Indies(Jamaica); 6a,b, side, top views, X20 (*2117).—Fig. 179,4. *G. stephensoni CUSHMAN, U.Cret., USA(Tex.); 4a,b, side, top views of paratype, X86 (*2117).—Fig. 179,7. *G. bronni (REUSS), U.Cret. (Plänermegel), Eu.(Boh.); 7a,b, side, top views of holotype, X66 (*470).

The subgenus *Pseudogaudryina* was based on forms with few biserial chambers that had retained the triangular section of the test, but as this angularity commonly becomes less pronounced with increased length of biserial development, it is regarded as a developmental feature and not of taxonomic importance. The subgenus *Siphogaudryina* is based on Gaudryina stephensoni, which does not show the fistulose processes described for that subgenus, worn angles of poorly preserved specimens being the characteristic. Valvoreussella was stated to have a normally loop-shaped aperture, although some specimens have a terminal aperture in the biserial stage. Many species of Gaudryina show a tendency toward *Tritaxia*, by developing a random uniserial chamber and terminal aperture in gernonic specimens (TAPPAN, 1943, *1972, p. 78). The characters shown by the major part of the species population must determine the generic placement, however. All specimens of *Verneuilia bronni* illustrated by REUSS (*1538), CUSHMAN (*470) and others show typical characters of Gaudryina, as do all but one of those figured by Hoffman (*948). *Valvoreussella* is therefore regarded as a synonym of Gaudryina. Bowen (1955, *182) regarded *Heterostomella* and *Dorothyella* as synonyms of Gaudryina, as do all but one of those figured by Hoffman (*948). *Valvoreussella* and *Heterostomella* are here regarded as valid genera of the Verneuiliinae, *Karerriella*, and *Dorothyella* as valid generic of the Eggerellinae (with *Marssonella* a synonym of Dorothyella, and *Plectina* as a valid genus in the Valvulinidae.)

Gaudryinella FLUMMER, 1931, *1464, p. 341 [*G. delrioensis; OD]. Test elongate, early stage triserial and triangular in section, later irregularly and loosely biserial; inflated, cuneate chambers progressively more loosely appressed, becoming semuniserial; wall agglutinated; aperture interiomarginal in early stage, rounded and terminal in adult. L.Cret. (Alb.)-U.Cret. (Maastricht.), N.Am.-Eu. —Fig. 181,5.6. *G. delrioensis, U.Cret. (L. Cenoman.), USA(Tex.); topotypes, X100 (*2117).

[Gaudryinella was considered a possible synonym of *Spiroplectina* by Hoffman (1951, *955, p. 4) but is here recognized as a valid genus in the early stage, then loosely biserial to semuniserial with cuneate chambers. *Spiroplectina* has a distinct and regular biserial stage following a reduced triserial stage, succeeded by irregularly developed uniserial chambers. The *Euca. cubana* CUSHMAN & Bermúdez is here regarded as a *Tritaxia*.

Heterostomella REUSS, 1866, *1555, p. 448 [*Sagrina rugosa d'Orbigny, 1840, *1394, p. 47; OD (M)]. Test free, early stages triserial, roughly triangular in section, later biserial, becoming roughly quadrangular in section, ridges formed by fistulose angles; wall agglutinated, in type-species, coarsely arenaceous with calcareous cement; aperture in adult terminal on short neck. [*Heterostomella differs from Gaudryina in having fistulose angles and a terminal aperture.]. U.Cret.(Senon.), Eu.-N.Am.—Fig. 181,2. *H. rugosa (d'Orbigny), Senon., Fr.; 2a,b, side and top views of lectotype, here designated and redrawn (MNHN), X64 (*2117).

Pseudoreophax GEROCH, 1961, *785, p. 159 [*P
 cisovnicensis; OD]. Test elongate, straight or arcuate, circular to ovate in section, trochospiral in early stage of microspheric forms and later uniserial, megalospheric forms uniserial throughout; chamber internal cavity semicircular in plane perpendicular to axis of test and arched upward.
Foraminiferida—Textulariina—Litulacea

from base; sutures depressed; horizontal in uniserial stage; wall very finely agglutinated, surface smoothly finished; aperture terminal, rounded, may be slightly eccentric. L.Cret. (Valang.-L. Barrem.), Carpathians (Pol.).——Fig. 180, 1-3. *P. cisovnicensis, Valang.-Hauteriv. (1,2), Barrem.

Fig. 182. Ataxophragmiidae (Verneuillinae; 1-2, Spiroplectinata; 3-7, Tritaxia; 8, Verneuilinoides; 9-13, Uvigerinammina) (p. C272-C273).
Protista—Sarcodina

(3); 1a-c, side view and opposite sides of megalospheric holotype viewed in immersion oil to show chamber cavities; 2a,b, microspheric form viewed in immersion oil to show early trochospiral development and chamber arrangement in transition to uniserial stage; 3a,b, side, top views of megalospheric paratype, ×65 (°785).

Pseudospiroplectinata Gorbenko, 1957, °808, p. 879 [*P. plana; OD (OD)]. Test elongate, broad and flattened; chambers of early stage triserially arranged, later biserial, and finally uniserial; aperture terminal, rounded, on short neck. *P. plana; 461, Cushman, and calcareous wall, as abraded specimen showing internal tube in final stage, rather than cuneate chambers in an irregular, short uniserial stage. The genus and type species were incorrectly described as new in a second publication in 1960 (°808A, p. 71.). U. Cret.(U. Comenian.), USSR(Donets Basin).—Fig. 180,6. *P. plana; 6a-c, side, edge, and top views, approx. ×10 (°808).

Reophacella Kapitarenko-Chernousova, 1956, °1017, p. 32 [*R. compressa; OD (M)]. Test free, elongate, somewhat flaring, chamber arrangement indistinct in early portion, later with apparently paired chambers; wall arameous; aperture terminal, rounded on broad neck. [Similar to Uvigerinammina but lacks the early distinctly triserial development.] U. Eoc.(Kiev Stage), USSR(Ukraine).—Fig. 180,5. *R. compressa; side view of holotype, ×70 (°1017).

Rudigaudryina Cushman & McCulloch, 1939, °511, p. 94 [*R. inepta; OD]. Test triserial in early stage, later portion biserial, as in Gaudryina, but with final chambers irregularly spreading; aperture terminal, rounded, with short neck or lip. Rec., Pac.—Fig. 181,7,8. *R. inepta; 7a,b, side, edge views of megalospheric paratype, ×86 (°2117); 8, microspheric paratype, ×55 (°511).

Spiroplectinata Cushman, 1927, °431, p. 78 (non Schubert, 1902) [*Textularia annectens Parker & Jones, 1863, °1417e, p. 92; OD] [=Paragaudryina Suleymanov, 1958, °1853, p. 19 (type, P. inornata)]. Test free, elongate, triserial in early portion, later biserial, and finally uniserial; sutures slightly depressed in early development, more strongly constricted in uniserial portion; wall agglutinated; aperture terminal, rounded. L.Cret.-U. Cret., Brit. 1-Eu.-N.Am.-USSR.—Fig. 182,1. *S. annectens (Parker & Jones), L.Cret. (Alb.), Eng.; 1a,b, side, top views of topotype, ×74 (°2117).—Fig. 182,2. S. inornata (Suleymanov), U.Cret.(L.Turon.), USSR(Fergana); 2a,b, side, edge views of holotype, ×55 (°1857).

[Originally described (1927) as having an early planispiral stage and calcareous wall, Spiroplectina was re-described (Cushman, °461, p. 114), placed in the Verteulineidae, and said to have a triserial beginning and arenaceous wall. Earland (1934, °653, p. 114) stated that he considered the early development as planispiral, with edges of the spiral toward the face of the test. The original types of Parker & Jones were examined by us in 1953 and a lectotype from the Gault at Bigglenode, Bedfordshire, England, was chosen; it is here designated (BMNH-P41668). The types and all other specimens seen by us show a very short but distinctly triserial and triangular early stage of about 3 series of chambers. Some species that previously were placed in Gaudryina—G. pseudoverrucosa Cushman—or Gaudryinella—G. molis (Cushman)—should be placed in Spiroplectina.]

Triti laxia Reuss, 1860, °1548, p. 227 [*Textularia tricarinata Reuss, 1844, °1537, p. 215 (=Verneul­rina dubia Reuss, 1851, °1542, p. 40; OD (M)) (=Thraxipios Rzejak, 1895, °1605, p. 217 (type, Trithaxia pleurostoma Rzejak, 1895); Pse­duogaudryina Cushman, 1936, °468, p. 23 (type, Gaudryinella capitosa Cushman, 1933, °459, p. 52); Clavulinoides Cushman, 1936, °468, p. 20 (type, Clavulina trilatera Cushman, 1926, °423, p. 588); ?Siphonclavulina Silvestri, 1948, °1790, p. 1 (type, S. trigona)]. Test triserial and tri­angular in section in early stage, later portion uniserial and commonly triangular, more rarely compressed; aperture interiomarginal in triserial stage, terminal in adult, with thick-walled internal tube connecting apertures of last 1 or 2 chambers (°88). [The type-species of Clavulina­oides is not distinguishable generally from Tritix­axia. A less typical species, Clavulina compressa Cushman, shows a compressed and almost palmate uniserial stage, but rare specimens have a distinct third angle; hence, this species is also regarded as Tritiax.] L.Cret.-Rec., cosmop.—Fig. 182, 5,6. *T. tricarinata (Reuss), U.Cret., Eu.(Boh.); 5a,b, side, top views of topotype, ×58 (°2117); 6, abraded specimen showing internal tube in final chamber, ×24 (°88).—Fig. 182,3. T. capitosa (Cushman), U.Cret., USA(Miss.); 3a,b, side, top views of holotype, ×31 (°2117).—Fig. 182,4. T. trilatera (Cushman), Paleoc., N.Am.(Mex.); 4a,b, side, top views of hypotype, ×54 (°2117).—Fig. 182,7. T. trionga (Silvestri), Eoc., Eu.(Italy); 7a,b, long. sec. and top view, ×40 (°1790).

Uvigerinammina Matzov, 1943, °1203, p. 68 [*U. jankoi; OD (M)]. Test in trochoid spire of 3 chambers to whorl and thus triserial throughout, but chambers not in parallel rows, as in Verneul­rina, chambers increasing rapidly in size; wall agglutinated, thick, chamber cavities saccular with internal necklike connections between adjacent chambers; aperture terminal, may be flush or somewhat produced on external neck. [Uvigerinam­mina is apparently a strongly facies-controlled form, commonly occurring in flysch-type sediments.] L.Cret.(Alb.)-U.Cret., ?Paleoc., USSR(Carpathians)-N.Am.(Can.-Alaska).—Fig. 182, 9-11. *U. jankoi, Cret., Carp.; 9a,b, side and apert. views; 10, specimen in clove oil showing chamber arrangement in basal view; 11, specimen viewed from side in clove oil showing internal cavities and stolon-like necks between chamber cavities, ×36 (°784).—Fig. 182,12,13. U. mantitobensis (Wicken­den), L.Cret.(Alb.), Alaska; 12a,b, side, top views of hypotype, ×64; 13, side view of another hypotype, ×47 (°2117).
Verneulinoides Loeblich & Tappan, 1949, *1155*, p. 91 {[*Verneulina schiza Cushman & Alexander, 1930, *488*, p. 9; OD]. Test free, elongate, triserial throughout, with rounded angles; loosely appressed chambers increasing in size toward apertural end; sutures generally distinct and depressed; wall arenaceous, aperture an arch at base of final chamber. [Verneulinoides differs from Verneulina in being rounded in section with loosely appressed chambers rather than triangular in section, and elongate and narrow rather than pyramidal in shape.] Jur.-Cret., N.Am.-Eu.—Fig. 182,8. *V. schiza* (Cushman & Alexander), L.Cret.(Alb.), USA(Tex.); 8a,b, side, top views of holotype, X100 (*2117*).

Subfamily GLOBOTEXTULARINAE Cushman, 1927

[Globotextulariinae Cushman, 1927, p. 40; Eggerellinae Cushman, 1937, p. 30]

Test trochoid, 3 or more chambers to whorl, number of chambers to whorl tending to decrease with growth to 2 or 1; aperture single interiomarginal opening or criblet. Penn.-Rec.

Globotextularia Eimer & Fickert, 1899, *692*, p. 679 {[*Haplophragmium anceps Brady, 1884, *200*, p. 313; OD]. Test high trochosorial, chambers inflated and subglobular, commonly 4 in final whorl; wall coarsely agglutinated; aperture interiomarginal. Rec., N.Atl.-S.Atl.-S.Pac. [Deep water.]—Fig. 183,1,2. *G. anceps* (Brady), S. Pac. (1); S.Atl. (2); 1, quadriserial form, here designated lectotype; 2, aberrant form; both X10 (*200*).

Arenobulimina Cushman, 1927, *428*, p. 80 {[*Buliminia preoti Reuss, 1846, *1538*, p. 38; OD]. [=Hagenowella Cushman, 1933, *456*, p. 21 (type, Valvulina gibbosa d'Orbigny, 1840, *1394*, p. 38); Ataxophragmoides Broszen, 1948, *241*, p. 35 (type, A. frantkei)]. Test trochosorial, similar to Valvulamina in chamber arrangement; wall agglutinated, interior of chambers simple; aperture an interiomarginal arch or loop, without apertural tooth. L.Cret.(Alb.)-L.Paleoc., Eu.-N. Am.—Fig. 183,3. *A. preoti* (Reuss), U.Cret., Boh.; 3a,b, side, apert. views of hypotype, X100 (*2117*).—Fig. 183,4. *A. frantkei* (Broszen), L.Paleoc., Sweden; 4a-c, opposite sides and edge view, X48 (*2117*).

Arenobulimina is similar to Ataxophragmium, but does not have internal pillars. Hagenowella was described as having internal radial partitions, but was based on misidentified material of the type-species, as was noted by Marie (1941, *1215*, p. 41). As the type-species has a simple interior, Hagenowella was suppressed (*1182*, p. 242) as a junior synonym of Arenobulimina. The specimens erroneously referred to Hagenowella gibbosa (d'Orbigny) should be referred to Valvulina quadribullata von Hagenow, the type-species of Hagenovula Loeblich & Tappan, 1961.}

Cribrogoesella Cushman, 1935, *466*, p. 4 {[*Bigen­erina robusta Brady, 1881, *196c*, p. 53; OD]. Test free, elongate, early trochosorial stage with up to 5 chambers in whorl, reducing rapidly to 3, followed by biserial stage and becoming uniserial in adult; wall agglutinated, thick, fibrous; aperture of biserial stage at base of last-formed chamber, in adult becoming terminal and cribrate. Cribrogoesella differs from Goesella in having a
multiple aperture instead of a simple one with tooth.] Mioc.-Rec., Carib.-Pac.O.-Atl.O.—Fig. 184,1-3. *C. robusta (Brady), Rec., Atl.; 1a,b, 2, side, top views of paratypes; 3, sectioned specimen showing fibrous wall, paratype (*200, pl. 45, fig. 13) redrawn, X17 (*2117).

Digitina CREPIN & PARR, 1940, *396, p. 306 [*D. recurvata; OD]. Test trochospiral in early stage, later irregularly biserial, similar to Mooreinella, but with basal rather than subterminal aperture. [The Cenozoic Plectotrochammina differs in having a highly developed trochoid stage and reduced biserial development.] Perm., Australia (New S.Wales).—Fig. 185,7. *D. recurvata;
7a-c, opposite sides and apert. view of toptype, X52 (*2117).

Early stage trochospiral, with 4 or more chambers to whorl, later stage reduced to biserial; wall agglutinated, may be of calcareous particles on pseudochitinous lining; aperture an interiomarginal slit. *Marssonella* was placed in the synonymy of *Dorothia* by Trujillo (1960, *1954, p. 308) and with this we agree. The congeneric status of *Dorothia*, *Marssonella*, and *Gaudryina*, as suggested by Bowen (1955, *182, p. 363) is not upheld by our studies. L.Cret.(Alb.)-Rec., cosmop.—Fig. 184.6. *D. bulletta* (Casey), U.Cret., USA (Tex.); 5a-c, side, basal, and apert. views of toptype, X68 (*2117).—Fig. 184.5. *D. oxycona* (Reuss), U.Cret., Eu.(Ger.); 5a-c, side, basal, and apert. views, X62 (*2117).

Eggerella CUSHMAN, 1933, *458, p. 33 [*Verneuilina bradyi* Cushman, 1911, *404b, p. 54; OD]. Test in trochospiral coil, with 5 chambers to whorl in early stage of microspheric form, gradually reduced to 3 to whorl in adult; wall finely agglu-
Protista—Sarcodina

tinated on pseudochitinous base, may be of calcareous particles in calcareous cement; aperture a low interiomarginal slit. ?U.Cret., Eoc.-Rec., cosmop.—Fig. 186.1. *E. bradyi (CUSHMAN), Rec., Pac.O.; 1a,b, side, top views of holotype, ×65 (*2117).

Fig. 186. Ataxophragmiidae (Globotextulariinae; 1, Eggerella; 2-5, Karreriella; 6, Eggerellina; 7,8, Gravellina) (p. C275-C277).
Eggerella MARIE, 1941, *1215, p. 31 [*Bulimina brevis D'ORBIGNY, 1840, *1394, p. 41; OD]. Test free, conical or ovoid, triserial, with inflated and encasing chambers; wall agglutinated, of calcareous particles with considerable cement; interior simple; aperture narrow, hook-shaped, interiomarginal and extending short distance up face. U.Cret.(Senon.), Eu.(Fr.).—Fig. 186,6. E. brevis (D'ORBIGNY) conica MARIE; 6a,b, top and side views of hypotype, personal collection of P. Marie, no. 6028, Paris (*1215, pl. 7, fig. 70), redrawn, probably microspheric form of E. brevis (D'ORBIGNY), X64 (*2117).

[CUSHMAN (1948, *2117, p. 120) regarded D'ORBIGNY's species as a true Bulimina with perforate calcareous wall. The wall is agglutinated, but composed of calcareous particles; hence the genus are distinct, and Eggerella is placed with the agglutinated genera. It differs from Eggerella in having a high loop- or hook-shaped aperture, instead of a low interiomarginal slit. The aperture thus resembles that of Hagenowina, which differs in having secondary septa and a complex interior.]

Eggerina TOULMIN, 1941, *1944, p. 573 [*E. cylindrica; OD]. Test high trochospiral coil, 3 strongly enveloping chambers to whorl; wall agglutinated, may be of calcareous particles and with much calcareous cement; aperture a low interiomarginal umbilical arch with slight lip. [Eggerina differs from Eggerella in its elongated chambers along the axis of coiling.] U.Paleoc., USA (Ala.).—Fig. 184,4. *E. cylindrica; 4a-c, opposite sides and top view of holotype, redrawn, X74 (*2117).

Gravellina BRÖNNIMANN, 1953, *229, p. 87 [*G. narivaensis; OD] [=Verneuillina TAIVOR, 1956, *1861, p. 113 (type, V. azerbaidjanica)]. Test quadriserial throughout; wall finely agglutinated; aperture an interiomarginal arch. [Verneuillina TAIVOR is based on a somewhat more elongate species, but the test shape is not regarded as generic in importance.] L.Cret.(Apt.).-Mio., USSR-W.Indies(Trinidad).—Fig. 186,7. *G. narivaensis, Mio., Trinidad; 7a,b, opposite sides of holotype, redrawn, X80 (*2117).—Fig. 186,8. G. azerbaidjanica (TAIVOR), L.Cret., Apts., USSR (Azerbaijahan); 8a-c, opposite sides and top view of holotype, X85 (*1509).

Karreriella CUSHMAN, 1933, *254, p. 34 [*Gaudryina siphonata REUSS, 1851, *1541, p. 78; OD] [=Karreriella FINLAY, 1940, *717d, p. 450 (type, Gaudryina apicularis CUSHMAN, 1911, *404b, p. 69); Valvotextularia HOFKER, 1951, *928c, p. 30 (type, Textularia catenata CUSHMAN, 1911, *404b, p. 23)]. Test free, elongate, early chambers in trochoidal spire of one or more whorls, followed by well-developed biserial stage, which may be slightly twisted about its axis; wall finely agglutinated, smoothly finished; aperture rounded, in terminal face of final chamber, bordered by lip or produced on distinct slender neck. Paleoc.-Rec., cosmop.—Fig. 186,23. *K. siphonata (REUSS), M.Oligo., Eu.(Ger.); 2a,b, side and edge views of large microspheric topotype; 3, side view of megalospheric topotype; all X40 (*2117).—Fig. 186,4. K. apicularis (CUSHMAN), Rec., Pac.O.; 4a,b, side, top views, X42 (*200).—Fig. 186,5. K. catenata (CUSHMAN), Rec., Pac.O.; 5a-c, side, base, and top views, X112 (*2117).

No generic or subgeneric distinction is recognized for Karreriella, which is here regarded as a synonym of *Karreriella. FINLAY (1939, *717a, p. 510) placed the type-species of Verneuillina, Textularia catenata, in his genus Siphoconulina, stating that it had a typical siphonotextularian aperture in the face of the final chamber and produced on a neck. It differs from Siphoconulina in having the early trochoid stage of about 4 chambers in the first whorl, hence is here referred to Karreriella. Karreriella differs from Doriathia in having the terminal aperture.]

Mooreinella CUSHMAN & WATERS, 1928, *535, p. 50 [*M. biserialis; OD]. Test trochospiral in early stage, later irregularly biserial; wall coarsely agglutinated; aperture becoming rounded and terminal in biserial stage. [Mooreinella is irregularly biserial in the adult and has a relatively inconspicuous trochospiral development. Plectotrechammina differs from it in its highly developed trochospiral stage, and regular but reduced biserial stage, with slitlete areal aperture near the base of the apertural face rather than terminal in position.] Penn., USA (Tex.).—Fig. 185,6. *M. biserialis; 6a-c, opposite sides and top view of holotype, X45 (*2117).

Multifidella LOEBLICH & TAPPAN, 1961, *1181, p. 218 [*Clavulina communis D'ORBIGNY var. nodulosa CUSHMAN, 1922, *411c, p. 85; OD]. Test free, elongate, early portion trochospiral with 4 or 5 chambers to whorl, progressively reducing to triserial, biserial and uniserial, uniserial stage comprising large proportion of adult test; wall finely agglutinated, aperture terminal, crenulate, consisting of variously aligned, elongate slits with bordering lips. [Multifidella differs from Cribragoeorea in its slender test with elongate uniserial stage and in having a multiple aperture consisting of slits with bordering lips.] Mio.-Rec., Atl.O.-Carib.-W.Indies(Trinidad).—Fig. 185,4. *M. nodulosa (CUSHMAN), Rec., Atl.; 4a,b, side and apert. views of lectotype, X 20 (*2117).

Orientalia N. K. BYKOVA, 1947, *262, p. 229 [*O. exilis; OD]. Test elongate, early stage trochospiral, with 6 or 7 chambers to whorl, later reduced to quadriserial, with chambers in 4 vertical rows; wall finely agglutinated with large amount of cement; aperture an interiomarginal slit. [Orientalia differs from Doriathia in its later
Fig. 187. Ataxophragmiidae (Valvulininae: 1,2, Valvulina; 3-5, Clavulina; 6, Chrysalidina; 7-10, Cribrobulimina; 11,12, Cribroturretoides) (p. C279-C281).
quadrirserial stage, and from Gravellina in having an early trochosorial stage of more than 4 chambers in each whorl, rather than being quadrirserial throughout.] U.Cret. (Cenoman.), USSR (Guzar-Dari, Bukhara).—Fig. 185,5. *O. exilis; 5a,b, side and basal views of holotype, ×66 (*262).

Plectrotrochammina Parr, 1950, *1429, p. 280 [*P. subglobosa; OD?] [=Poronaisa Utjié & Watanabe, 1960, *1965, p. 133 (type, *Plectina poronaiensis Asano, 1952, *53, p. 33)]. Test free, early chambers in high trochoid spine similar to *Trochammina*, later portion becoming biserial; wall coarsely agglutinated; aperture an arched apertural slit, slightly above base of final chamber. *Poronaisa* was also described as trochosorial, as in *Trochammina*, with later biserial stage and was placed in the Eggerellinae. It is here regarded as a junior synonym of *Plectrotrochammina* which is transferred to the Globotextulariinae.) U.Eoc.-Rec., Antarctic-Japan.—Fig. 185,1. *P. subglobosa, Rec., Antarctic; 1a,b, opposite sides showing early trochoid coil followed by pair of biserial chambers; 1c, view of top of biserial pair of chambers showing aperture, ×25 (*1429).—Fig. 185,2,3. *P. poronaiensis (Asano), ?U.Eoc., Japan; 2a-c, opposite sides and edge showing early trochoid spine; 3, crushed specimen with well-developed biserial biserial stage; all ×33 (*1965).

Subfamily VALVULINAE Berthelion, 1880

Three chambers in early whorls, later increasing in number or becoming uniserial; aperture with valvular tooth, interiomarginal at least in early stage, but may become terminal and modified to multiple aperture. U.Trias.-Rec.

Valvulina d'Orbigny, 1826, *1391, p. 268, 270 [*V. triangularis; SD Parker, Jones & Brady, 1865, *1419, p. 35] [=Dnotaxis Kristan, 1957, *1057, p. 294 (type, *D. mettula)]. Test free, triserial in early stages, may be triserial in section, later may have more than 3 chambers to whorl; wall agglutinated; aperture at base of final chamber, with large valvular tooth. U.Trias. (Rhaet.)-Rec., cosmop.—Fig. 187,1. *V. triangularis, Rec., Eu.(Fr.); 1a,b, side, top views, ×33 (*471).—Fig. 187,2. *V. mettula (Kristan), U.Trias. (Rhaet.). Eu.(Aus.); 2a-d, side, top view, base, and oblique views of holotype, ×22 (*1057).

Chrysalidina d'Orbigny in de la Sagra, 1839, *1611, p. 109 [*C. gradata; OD (M)] [=Pupina d'Orbigny in de la Sagra, 1839, *1611, p. 29 (non Vignard, 1829)]. Test large, elongate, triserial throughout; wall agglutinated; aperture of numerous pores in terminal face, those of all chambers of last whorl remaining open. [Cushman (1937, *471, p. 54) stated "early stages unknown," and "all of the figures given of the type species are based upon d'Orbigny's originals." The figures here given are of topotype specimens and show the species to be triserial throughout.] U.Cret. (Cenoman.), Eu.(Fr.).—Fig. 187,6, 7, *C. gradata; 6a,b, side, basal views of topotype, ×12 (*2117).

Clavulina d'Orbigny, 1826, *1391, p. 268 [*C. parisiensis; SD Cushman, 1911, *404b, p. 72] [=Pseudeclavulina Cushman, 1936, *468, p. 16 (type, *Clavulina clavata Cushman, 1926, *423, p. 589)]. Test free, triangular in section, early portion with chambers triserially arranged, later uniserial; chambers numerous, low, broad; wall agglutinated, with much calcareous cement; aperture terminal, rounded, with valvular tooth. [Clavulina differs from Valvulina in possessing a final uniserial stage and terminal aperture.] Paleoc.-Rec., cosmop.—Fig. 187,4. *C. parisiensis, M.Eoc.(Lutet.), Eu.(Fr.); 4a,b, side, top views, ×35 (*2117).—Fig. 187,5. *C. angularis d'Orbigny, Rec., Medit.Sea(Corsica); 5a,b, side, top views of holotype (MNHN, labeled "Tableau Methodique Modele"), ×48 (*2117).—Fig. 187,3. *C. clavata Cushman, Paleoc., Mex.; side view of holotype, ×51 (*2117).

Cribrobulimina Cushman, 1927, *428, p. 80 [*C. mixta Cushman, 1927 (=Valvulina mixta Parker & Jones, 1865, *1418, p. 438, nom. nud., =Valvulina polytoma Parker & Jones, 1865, *1418, p. 437, nom. nud., =Valvulina sp. Carpenter, Parker & Jones, 1862, *281, p. 146, pl. 11, figs. 19-26); OD]. Test free, early stages triserial and triangular in section, later in loose spiral of 5 or more chambers in each whorl; wall agglutinated, with 2 layers, inner layer distinctly perforated, relatively thick, commonly of calcareous particles embedded in calcareous cement, covered by thin outer layer of quartz sand; aperture in young as in *Valvulina*, in later development plate-like tooth attaches to opposite wall and develops series of openings at its margin and others scattered over its surface. Rec., Australia.—Fig. 187,7,10. *C. mixta; 7,8, specimens showing valvular tooth with only early indication of pores at its margin; 9,10, specimens with tooth attached for most of its margin and strong development of pores both at edge and in central area of tooth, ×45 (*2117).

[Carpenter, Parker & Jones (1862, *281, p. 146-148) described *Valvulina*, stating (p. 146) that in it all the principal modifications could be referred to "one central type; the *Valvulina triangularis* of *d'Orbigny* being the form of which the test may be regarded as varieties." The description of the "varieties" followed, but they gave no name to any of these, other than the generic name of *Valvulina*. In 1865 Parker & Jones (*414b) used the names *Valvulina polytoma* (table, p. 435) and *Valvulina mixta* (table, p. 438), but without any description. Footnotes referred to the illustrations in Carpenter, Parker & Jones (1862, *398, pl. 11, fig. 21, 24 for *V. polytoma* and pl. 11, figs. 19, 20, **Foraminiferida—Textulariina—Litulacea** C279

© 2009 University of Kansas Paleontological Institute
Fig. 188. Ataxophragmoidae (Valvulininae: 1-3, Cylindroclavulina; 4,5, Discorinopsis; 6,7, Dusenburyina; 8, Goeiella; 9, Valvulamina; 10,11, Martinottiella) (p. C281-C283).
Foraminiferida—Textulariina—Lituolacea C281

25, 26 for V. mixta) but did not refer to any description. The descriptions for these species quoted in Ellis & Messina (1940, *P.00) are from Carpenter, Parker & Jones' discussion of V. mixta. Both names were nominal nudata in the 1885 publication. The first validated reference to a specific name for this form is apparently that of Cushman (1927, *418), where for the first time a description was given with the specific name. The type-species is therefore correctly cited as Cribrobulimina mixta Cushman, 1927. The page priority of V. mixta polyoma Parker & Jones, 1865, over V. mixta Parker & Jones, 1865, accepted by Parr (1932, *141), p. 6) and Cushman (1937, *471, p. 27) is invalid, as both names were nominal nudata in 1865, and V. polyoma was not mentioned by Cushman in 1927. A lectotype is here designated for Cribrobulimina mixta Cushman (≡Valvulina mixta Parker & Jones, 1865, nom. nud.) (BMNH-ZF 3591). Paratypes in the British Museum (Natural History) are labeled Valvulina mixta Parker & Jones (BMNH-ZF 3590). A lectotype was also selected and so labeled by us (and is here designated) for Valvulina polyoma Parker & Jones (BMNH-ZF 3593) and paratypes (ZF 3592). All are from Recent shore sands at Melbourne, Australia. The name Valvulina polyoma (nom. nudum, Parker & Jones) was validated by Parr (1932, *141). The two are conspecific. Cribrobulimina differs from Valvulina in the development of a multiple aperture on the large plate-like test.

Cribrotoretrodites Smith, 1949, *1799, p. 56 (*C. miocenica; OD) [=Neoclostulina Puri, 1957, *1488, p. 106 (type, Valvulina intermedius Applin & Jordan, 1945, *26, p. 134)]. Test free, elongate, triserial, with chambers rounded as in Verneulinoidea; wall agglutinated; aperture terminal, cribrate, with few relatively large, irregular openings apparently developed from plate-like venter. Eoc.-Mio., USA (La.-Fla.).—Fig. 187,11. *C. miocenica, Mio., USA (La.):11a,b, side, top views of holotype, ×173 (*2117).—Fig. 187, 12. C. intermedius (Applin & Jordan), M.Eoc., USA (Fla.); side view of holotype, ×30 (*26).

[Neoclostulina was stated by Puri to have a terminal rounded or elliptical aperture, "with or without a valvular tooth." The type-species, Valvulina intermedius, has a distinct tooth, "which is broadened on mature specimens to form small, rounded, plate-like structure with series of small openings along edge" (*26). As based on the type-species, Neoclostulina is thus a junior synonym of Cribrotoretrodites; if other species placed in Neoclostulina do not have a valvular tooth, they would not be referable to the present subfamily, and probably would be assigned to Verneulinoidea.]

Cylindroclavulina Bermúdez & Key, 1952, *129, p. 76 [*Clavulina bradyi Cushman, 1911, *404b, p. 73; OD]. Test free, large, robust, cylindrical, earliest portion triserial, then biserial and finally uniserial, with multiserial stage much reduced; wall agglutinated, very thick, leaving much diminished chamber cavity; aperture terminal, produced on distinct neck, with tooth projecting from one margin. (Cylindroclavulina differs from Clavulina d'Orbigny in being cylindrical throughout, rather than triangular in the early triserial stage. Also, Cylindroclavulina has a biserial stage between the triserial and uniserial stages.) Oligo.-Rec., Pac.O.-Eu. (Hung.-Italy).—Fig. 188,1-3. *C. bradyi (Cushman), Rec., Pac.;1a,b, side, top views of holotype, ×24 (*2117); 2, top view showing well-developed tooth, ×14; 3, sectioned specimen showing thick wall, ×10 (*200).

Discorinopsis Cole, 1941, *357, p. 36 [*D. gunteri; OD] [=Arenagula Bourdon & Lys, 1955, *177, p. 336 (type, A. globula); Arenaglobina Thalmann, 1958, *18971, p. 752 (obj.) (nom. null.).] Test low, spiral, early stage with about 5 chambers to each whorl, increasing to as many as 7 chambers in final whorl of microspheric form with early development as in Valenlammina; wall agglutinated, of calcareous particles in calcareous cement; aperture umbilical in young, with broad valvular tooth, which in adult becomes attached and perforated throughout with large openings, as in Cribrobulimina. M.Eoc.-Oligo., USA (Fla.)-Eu. (Fr.).—Fig. 188,4. *D. gunteri, M.Eoc., USA (Fla.); 4a-c, opposite sides and edge of holotype showing low multilocular spire and cribrobulimine aperture, ×10 (*357).—Fig. 188,5. D. globula (Bourdon & Lys), Oligo.(Stamp.), Fr.; 5a-c, opposite sides and edge, showing low spire and multiple aperture, ×24 (*177).

[Discorinopsis was originally described as calcareous and related to Discorbis. Thin sections of the type-species made by us showed it to be agglutinated (*162, p. 117), and it is here placed with the Valvulininae. The species described as Valulina horrida Cole, 1941, from the same sample as the type-specimens of D. gunteri, is probably a young megaspheric form of this species, being smaller, with only 3 chambers in each whorl, and with a simple valvular tooth. Discorinopsis has an apertural development as in Cribrobulimina but differs from that genus in having a low trochoidal coil, whereas Cribrobulimina has an early triserial and triangular, high-spired stage and a later stage with many chambers in a whorl. Arenagula is identical in all characteristics to Discorinopsis as here re-defined on the basis of the type-species.]
Makarskiana Van Soest, 1942, *1808, p. 27 [*M. trochoidea; OD]. Similar to Valvulammina in having 4 or 5 chambers in early whorls, later with 3 or 4, but differs in having high trochospiral coil; aperture with small narrow valvuline tooth. Eoc., Eu.(Yugo., Dalmatia).—Fig. 189, 1,2. *M. trochoidea; 1a,b, side, top views of holotype (redrawn); 2, paratype, all X32 (*2117).

Martinottiella Cushman, 1933, *458, p. 37 [*Clavulina communis d’Orbigny, 1826, *1391, p. 268; OD] [=Listerella Cushman, 1933, *458, p. 36 (type, Clavulina primaeva Cushman, 1913, *406, p. 635) (non Listerella Jahn, 1906); Schenckiella Thalmann, 1942, *1900, p. 458 (type, Clavulina primaeva Cushman, 1913, *406, p. 635) (nomen. subst. pro Listerella Cushman, 1933, non Jahn, 1906)]. Test free, elongate, cylindrical, early chambers trochospiral with 4 or 5 to whorl, progressively reduced to triserial, biserial, and uniserial, adult with relatively elongate uniserial development; wall finely agglutinated; aperture terminal, elongate slit, commonly arcuate, with bordering lip. Paleoc.-Rec., cosmop.—Fig. 188,10. *M. communis (d’Orbigny), Rec., Eu.(Italy); 10a,b, side, top views of hypotype, X28 (*2117).—Fig. 188,11. M. primaeva (Cushman), Rec., Pac.O.; 11a,b, side, top views of holotype, X28 (*2117).

[Martinottiella differs from Goesella in its more pronounced uniserial development and resultant elongate test, and in having a slitlike aperture with bordering lip, rather than a depressed rounded aperture with projecting tooth. Cushman (1937, *471, p. 138) placed Martinottiella in the synonymy of Listerella, stating that their type-species were congeneric. In 1942, Thalmann (*1900) noted that Listerella Cushman was a homonym of Listerella Jahn and proposed Schenckiella as a replacement name. Cushman (1947, *485, p. 48) recognized both Schenckiella and Martinottiella, using the latter name for “those species, formerly placed under Listerella, in which the biserial stage is much reduced or wanting.” As the proportionate length of the biserial stage is quite variable in many species, Martinottiella is here regarded as the valid name and Schenckiella is suppressed as a junior synonym.]

Minouxia Marie, 1955, *1220, p. 119 [*M. gumbelitrioides; OD] [=Bermudezitia Seiglie, 1961, *1715, p. 342 (type, B. borroii)]. Test triserial throughout; wall agglutinated; primary aperture interiomarginal, umbilical region covered by trematophore (separate plate with numerous perforations). [The original illustrations of this genus appear similar to Chrysalidina but the aperture is described as having a distinct trematophore plate; the genus therefore is recognized on that basis until type material can be examined.] U.Cret. (Dordon.), Eu.(Fr.)-W.Indies(Cuba).—Fig. 190,1. *M. gumbelitrioides, Fr.; 1a-c, opposite sides and apert. view, X85 (*1220).—Fig. 190,2. M. dordonica Marie, Fr.; side view, X54 (*1220).
Plectina MARSSON, 1878, *1228, p. 160 [*Gaudryina ruthenica REUSS, 1851, *1542, p. 41; SD CUSHMAN, 1928, *439, p. 127] [= Arenodosaria FINDLAY, 1939, *717b, p. 95 (type, Clavulina robusta STACHE, 1865, *1825, p. 169)]. Test elongate, up to 5 chambers to whorl in early stage, later reducing to loosely biserial; wall agglutinated, with considerable cement; aperture interiomarginal in early stage, later terminal, rounded, with small valvular tooth. [Arenodosaria was regarded as being uniserial in final development, but the type-species of Plectina and Arenodosaria both are loosely biserial to nearly uniserial with cuneate chambers, not truly rectilinear and uniserial. The two generic names are regarded as synonymous.]

U.Cret.(Senon.)-Rec., cosmop.—FIG. 189.3. *P. ruthenica (REUSS), U.Cret.(Senon.), Eu.(Ger.); 3a,b, side, top views of hypotype, X32 (*2117).—FIG. 189.4,5. P. robusta (STACHE), L.Oligo., N.Z.; 4a,b, 5a,b, side, top views, X32 (*2117).

Valvulamina CUSHMAN, 1933, *458, p. 37 [*Valvulina globulosa *D'ORBIGNY, CUSHMAN, 1933 err. pro Valvulina globularis *D'ORBIGNY, 1826, *1391, p. 270; OD]. Test low trochospiral coil, with more than 3 chambers to whorl, ventral side umbilicate; wall agglutinated, of calcareous cement with pseudochitinous lining in at least early portion; aperture umbilical, partially covered by large rounded tooth. [Valvulamina differs from Valvulina in having more than 3 chambers to a whorl in its low trochospiral development and in its low trochospiral coil.] Paleoc., ?Mio., N.Am.-Carib.-Eu.(Fr.).—FIG. 188.9. *V. globularis (D'ORBIGNY), Eoc., Fr.; 9a,b, opposite sides, X50 (*2117).

Subfamily ATAXOPHRAGMIINAE Schwager, 1877

[nom. transl. GALLOWAY, 1933, p. 211 (ex family Ataxophragminae SCHWAGER, 1877)]

Early stage with 3 or more chambers in each whorl but increasing in number with growth or uncoiling and spreading to form low conical test; interior with internal partitions and partitions. L.Cret.-Rec.

Ataxophragmium REUSS, 1860, *1546, p. 52 [*Bulimina variabilis *D'ORBIGNY, 1840, *1394, p. 40; SD CUSHMAN, 1928, *439, p. 129] [=Pernerina CUSHMAN, 1933, *456, p. 19 (type, Bulimina depressa PERNER, 1892, *1445, p. 55); Ataxogyroidina MARIE, 1941, *1215, p. 23, 255, 258 (obj.)]. Test free, trochospiral, tending to become streptospiral in coiling; chambers low and broad, with internal partitions; wall agglutinated; aperture interiomarginal slit or loop, umbilical in position. U.Cret.(Cenom.-Maastricht.), Eu.—FIG. 191.1,2. *A. variabile (D'ORBIGNY), S enon., Eng.; 1a,b, edge, apert. views of hypotype, X50; 2a-c, opposite sides and apert. view of hypotype (P. MARIE Coll. 6051), Senon., Fr.; X59 (*2117).—FIG. 191.3,4. A. depressum (PERNER), Cenoman., Czech. (3), Turon., Ger. (4); 3a-c, side, edge, apert. views of topotype, X45 (*2117); 4, apert. view of hypotype, abraded to show internal partitions, X45 (*2117).

[The nomenclature of this form has been confused in the past, and specimens with simple interior, as well as those with internal partitions, have been variously referred to the type-species, as have both enrolled and uniserial forms. At least 3 revisions have been made which resulted in the description of new generic names for one or another of these forms, but as the type-species was not firmly based, the results were not conclusive. D'ORBIGNY described Bulimina variabilis in 1840, stating that it was extremely variable in form, figuring 3 specimens. It was stated to be common at Sens, rare at Meudon and Saint Germain, and in England. Of specimens figured, that shown on his plate 4, fig. 9, 10 (*1394) was stated to be "a regular individual" (figures reproduced by CUSHMAN, 1937, *471, pl. 21, figs. 10a,b), that in fig. 11 regarded as a deformed individual, and that in fig. 12 stated to be an exaggerated form of the type of fig. 11. As the original of figs. 9, 10 was regarded as the normal form, it is here designated as lectotype. The uncoiled specimens, such as D'ORBIGNY's fig. 12, were stated by MARIE (1941, *1215, p. 54) to belong to a different species and genus (Orbignyna), although these dissimilar forms have been repeatedly referred to the same species. Of the specimens illustrated by CUSHMAN (1937, *471, pl. 21) as Ataxophragmium variabile, those of figs. 10 and 15 and possibly 14 are Orbignyna. Noting that 2 forms were originally included by D'ORBIGNY, and refuting the uncoiled specimens to Orbignyna, MARIE (1941) proposed Ataxogyroidina as a new generic name for the close-coiled specimens but designated Bulimina variabilis *D'ORBIGNY as type-species. Hence Ataxogyroidina is a junior synonym of Ataxophragmium. BARNARD in BARNARD & BANNER (1953, *68, p. 177, 206) recognized the generic name Ataxogyroidina for specimens without internal partitions and Avenobulimina for those with internal partitions, although this is exactly contrary to conditions shown in the type-species and descriptions of the 2 forms. MARIE's original definition of Ataxogyroidina (*1215, p. 53) stated (translation) that the chambers were "occupied in their interior by a series of buttresses, more or less developed, localized at the contact of the suture below." Furthermore, Ataxogyroidina BRITTON, 1945, was described for forms without internal partitions but
superficially similar to *Ataxophragmium*. Voloshinova & Balakhmatova in Raizer-Chernousova & Fursenko (1959, *1509, p. 226-227) recognize Arenobulimina and *Ataxophragmium* as having simple chambers, and Pernerina and Orbignyna with internal partitions, and proposed Beisselina (a homonym of Beisselina Canu, 1913) for the uncoiled forms with internal partitions. As here redefined on the basis of their type-species, *Ataxophragmium* (with Pernerina and *Ataxophragmoides* as synonyms) includes coiled species with internal chamber partitions and interiomarginal aperture; Arenobulimina (with Pernerina as a synonym) includes similar forms without internal partitions; Orbignyna, partially uncoiled, with partitions and a terminal aperture, and Voloshinovella Loeblich & Tappan (nom. nov. pro Beisselina Voloshinova & Balakhmatova, 1959, non Beisselina Canu, 1913) include forms with internal partitions, later completely uncoiled and rectilinear stage and terminal aperture.

Camagueyia Cole & Bermúdez, 1944, *370, p. 335 [*C. perplexa*; OD]. Early stage trochospiral, later with fewer chambers to whorl; wall thick, finely agglutinated, with considerable cement, septa not completely extending across test, as vertical pillars fill central area; aperture terminal, in center of truncate apertural face, with inward-projecting teeth, as in *Tritaxilina*. [Camagueyia is poorly known from original materials and needs further study. No information is available as to number of chambers in a whorl or changes in development. It was originally placed in the Valvulinidae but is here tentatively transferred to the Ataxophragmiinae because of the presence of vertical pillars.] M.Eoc., W.Indies (Cuba).—Fig. 192.1,2. *C. perplexa*: 1a-d, ext. of 4 cotypes, ×10; 2, axial sec. of “paratype,” ×41 (*370).

Coprolithina Marie, 1941, *1215, p. 37 [*C. subcylindrica*; OD]. Test free, subcylindrical, trochospirally coiled in single whorl in early stage, forming bulbous base, though with little external evidence of coil, later with cylindrical uniserial portion, with diameter nearly equal to that of coil; chambers subdivided internally by 8 to 14 vertical radial partitions, extending inward from wall approximately half the distance to center; sutures in early portion indistinct, later ones slightly depressed and horizontal; wall thick, coarsely agglutinated, with much calcareous cement; aperture in early stage comprising interiomarginal slit, multiple in adult, consisting of 5 or 6 rounded pores in central portion of terminal face. [Coprolithina differs from Orbignyna in having a multiple aperture instead of a single large, central...
aperture in a terminal depression.] U.Cret. (Senon.), Eu.(Fr.-Eng.).—Fig. 193,3-5. *C. subcylindrica, Fr. (3), Eng. (4,5); 3a,b, side, top views of holotype (P. MARIE Coll., Paris), X20; 4,5, horiz. and long. sectioned hypotypes, X22 (*2117).

Cubanina PALMER, 1936, *1409, p. 123 [*C. alavensis; OD]. Test elongate, early portion triserial, later uniserial, as in Clavulina, but with interior of chambers partially subdivided by narrow vertical partitions projecting somewhat inward from agglutinated wall; aperture terminal, rounded, somewhat produced. [Cubanina differs from Matanzia in the uniserial, rather than biserial, final stage.] L.Oligo., W.Indies(Cuba).—Fig. 192,3-6. *C. alavensis; 3a,b, side, top views of lectotype (here designated, USNM 498772); 4, side view of juvenile paratype (USNM 498773); 5,6, tang. and axial long. secs. of paratypes (USNM 498849, 498850) showing internal partitions, X30 (*2117).

Cuneolina d’ORBIGNY in de LA SAGRA, 1839, *1611, p. 150 [*C. pavonia d’Orbigny, 1846, *1395, p. 253; SD (SM)] (=Cuneolinella CUSHMAN & BERMÚDEZ, 1941, *492, p. 101 (type, C. lewisi)). Test subcylindrical to flabelliform, trochospiral in early stage, later with arcuate biserially arranged chambers, increasing rapidly in size in plane of biseriality; internal structure as in Dicyelina; wall agglutinated, with considerable cement and imperforate outer layer; aperture series of rounded interiomarginal openings. L.Cret.(Alb.)-Mio., Eu.-N. Am.-C. Am.-SW. Asia.-W. Indies(Dominican Rep.).—Fig. 193,1. *C. pavonia, U.Cret. (Cenoman.), Fr.; 1a,b, side, edge views of topotype, X48 (*2117).—Fig. 193,2. C. lewisi (CUSHMAN & BERMÚDEZ), Mio., Dominican Republic; 2a-c, side, basal, apert. views of paratype, X7 (*2117). [See also Fig. 210.]

Dictyopsella MUNIER-CHALMAS in SCHLUMBERGER, 1900, *1660, p. 462 [*D. kiliani; SD CUSHMAN, 1928, *439, p. 111]. Test trochospiral; chambers
subdivided by secondary radial partitions between radial septa and partial transverse subepidermal partitions giving superficially cancellate appearance; wall largely of calcareous material, probably agglutinated calcareous particles, with some extraneous material in outer layer; aperture umbilical, interiomarginal, U.Cret.(Genoman.-Santon.), Eu.(Sp.)-Asia(Arabia).—Fig. 194,1-3. *D. kiliani, Santon., Sp.; 1a-c, opposite sides and edge of toptype, 1a, X33, 1b,c, X33 (*2117); 2,3, long. and transv. secs., X33 (*1660).

Hagenowina LOEBLICH & TAPPAN, 1961, *1182, p. 242. [*Valvulina quadribullata von HAGENOW, 1842, *858, p. 570; OD]. Test trochospiral, 3 or more chambers to whorl as in Eggerella, but with interior subdivided by partial radial partitions similar to those of Ataxophragmoides and Orbignyna; aperture interiomarginal slit, with indistinct tooth. U.Cret.(U.Senon.), Ger.(Rügen).—Fig. 194,4,5. *H. quadribullata (von HAGENOW), toptotypes (USNM, CUSHMAN Coll. 21213) previously illustrated as Hagenowella gibbosa, redrawn; 4a,b,
side, apert. views; 5, sectioned specimen showing internal partitions, X49 (*2117).

[Hagenowina includes forms referred to Hagenowella that show internal radial partitions. The type-species of Hagenowella (Valulina gibbosa O'Harasne, 1840) has a simple interior cavity and thus is referred to Arenobulimina. Specimens referred to Hagenowella gibbosa from England and France must be checked internally to determine whether they should be placed in species of Hagenowina or Arenobulimina.]

Jarvisella Brönnimann, 1953, *229, p. 88 [*J. karamatensis; OD]. Test trochospirally coiled in early stage, becoming triserial in adult; chambers partially subdivided by vertical infolding of walls at lower edge; wall finely agglutinated, thin; aperture interiomarginal arch with bordering lip. [Jarvisella is similar in general appearance to Remesella but is triserial rather than biserial in the adult.] Oligo.-Mio., W. Indies (Trinidad).—Fig. 195, 1, 2. *J. karamatensis: 1a-d, opposite sides, base and top of holotype, X80 (*2117); 2, specimen with outer wall removed to show infolding of basal portion of chamber walls, X24 (*229).

Liebusella Cushman, 1933, *458, p. 36 [*Limula soldanii Jones & Parker, 1860, *998, p. 307; OD]. Test with early trochospiral portion of 4 or 5 chambers to whorl, rapidly reducing to uniserial in adult; interior of chambers subdivided by ra-
dial vertical partitions; wall coarsely agglutinated, commonly of calcareous particles; aperture terminal, slightly produced and may be irregular or multiple. \textit{Liebusella} differs from \textit{Tritaxilina} in its coarse-textured, homogeneous wall, rather than distinctly perforate wall.] Eoc.-Rec., Eu.-N.Am.
Foraminiferida—Textulariina—Lituolacea

Fig. 196. Ataxophragmiidae (Ataxophragmiinae; 1-4, Pseudochrysalidina; 5-6, Pseudolituonella) (p. C290).

W. Indies-Pac. O.-N. Z.-Australia. — Fig. 195, 3-5. *L. soldanii (Jones & Parker), Mio., Jamaica (3), Rec., Cuba (4), Rec., Carib. (5); 3a,b, side, top views of hypotype, X23; 4a,b, side, top views, X23; 5, sectioned specimen, X10 (*2117).

Matanzia Palmer, 1936, *1409, p. 125 [*M. bermudezi; OD]. Test trochospiral in early stages, later reducing to biserial; chambers partially subdivided internally by vertical partitions projecting inward from outer wall; wall agglutinated, of calcareous particles in considerable cement; aperture interiomarginal. L.Oligo.-Mio., Carib. (Cuba)-N.Z.—Fig. 195, 8-10. *M. bermudezi, L.Oligo., Cuba: 8a,b, side, top views of lectotype (here designated, USNM 498771, specimen figured by Palmer); 9,10, sectioned paratypes (USNM 498845, 498847), X29 (*2117).

Orbignyna von Hagenow, 1842, *858, p. 573 [*O. ovata; OD (M)] [=Orbignyina Bronn, 1853, *214a, p. 84 (nom. van.)]. Early stage planispiral,
later somewhat uncoiling, but compressed and not completely uncoiled; interior of chambers subdivided by vertical radial partitions extending inward from outer agglutinated wall, which may include calcareous particles and shell fragments; aperture interiomarginal in earliest coiled stage and rounded or irregular areal opening in adult.

U.Cret. (U.Senon.-Maastricht.), Eu. — Fig. 195, 6,7. *O. ovata*, Maastricht., Ger.; 6a,b, side, apert. views; 7, eroded specimen showing internal divisions; all X47 (*471).

Pseudochrysalidina COLE, 1941, 357, p. 35 [P. floridana; OD] [=Pseudogoesella KEIJZER, 1945, *1030, p. 190 (type, P. cubana); Dukhania HENSON, 1948, *901, p. 609 (type, D. conica)]. Test high trochospiral, with gradual reduction in number of chambers to whorl, later portion tending to become biserial; wall agglutinated, may be of calcareous particles; interior with vertical pillars subdividing central area of chambers; aperture interiomarginal in early stage, cribrate over terminal surface in adult. [Pseudogoesella was shown by BERMUDEZ (1949, *124, p. 100) to be a synonym of Pseudochrysalidina.] L.Cret.-Eoc., Carib. (Cuba)-USA (Fla.) - W. Indies (Dominican Rep.)-Arabia (Qatar Penin.). — Fig. 196,1,2. *P. floridana*, M.Eoc., Qatar Penin.; 1a-b, side, top views of paratype, X33 (*2117); 2, long. sec. showing internal vertical pillars, X29 (*357). — Fig. 196, 3. *P. cubana*, Eoc., Cuba; 3a-c, opposite sides and apert. view of holotype (Univ. Utrecht Coll.), X39 (*2117). — Fig. 196,4. *P. conica* (HENSON), M.Cret., Qatar Penin.; slightly oblique sec., X28 (*2115).

Pseudolitunella MARIE, 1955, *1220, p. 117 [P. reicheli; OD]. Test elongate, conical, early portion trochospiral, later uniserial, with broad low chambers; interior of chambers with sporadic hollow interseptal pillars extending from edge of circular openings at base of chambers toward apertures at opposite end of chamber; wall of agglutinated calcite, single-layered, imperforate; aperture cribrate in center of terminal face with nonperforate marginal area. [Pseudolitunella differs from Litunella in the sporadic and rudimentary nature of the interseptal pillars and from Minouxia in the later uniserial stage.] U.Cret. (U.Cenoman.), Eu.(Fr.)-SW.Asia (Israel). — Fig. 196,5,6. *P. reicheli*, Fr.; 5a,b, side, top views of topotype, X37 (*2117); 6, axial sec. of topotype showing portions of interseptal pillars, X29 (*1532).

Remesella VASÍCÉK, 1947, *1981, p. 246 [R. mariae; OD]. Early portion triserial, later biserial as in Gaudryina but with incomplete secondary vertical partitions, visible as grooves at test surface; wall agglutinated, with considerable cement, surface rough; aperture interiomarginal. [Originally known only from the type-species, Eocene, *Mutant...

Trityxilina Cushman, 1911, *404b, p. 71 [*Clavulina caperata Brady, 1881, *196c, p. 54; OD] [=Clavulinella Schubert, 1921, *1694, p. 181 (obj.)]. Test free, elongate, in high trochospiral coil, early stage with up to 5 chambers in whorl, successively reduced to 4, 3, and 2 to whorl, and finally rectilinear; chambers internally subdivided; wall agglutinated, thick, with pseudochitinous lining and distinct pores in wall; aperture interiomarginal in early stages, becoming terminal and rounded in adult, with slight lip, and series of projecting teeth which partially close opening. Eoc.-Rec., Pac.O.-Atl.O.-Eu.-N.Am.—FIG. 197,2,3. *T. caperata (Brady), Rec., Philip. Is.; la,b, side, top views of hypotype; 3, sec. of hypotype, X32 (*2117).

Voloshinovella Loeblich & Tappan, nom. nov., herein [pro Beisselina Voloshino & Balakhmatova in Rauzer-Chernousova & Fursenko, 1959, *1509, p. 227 (non Canu, 1913)] [*Lituola aequisgranensis Beissel, 1891, *106, p. 12; here designated as type-species]. Test similar to Orbignyna in early stage, but uncoiling and with rounded section in adult; wall agglutinated, with vertical radial partitions subdividing chambers; aperture terminal, irregular in outline. U.Cret.(Senon.), Eu.—FIG. 198,1-6. *V. aequisgranensis (Beissel); U.Senon., Ger. (1-4), USSR (5,6); la,b, side, top views; 2, long. sec.; 3-4, horiz. secs. showing internal pillars, X14 (*106); 5a,b, side, top views; 6, oblique view of sectioned specimen, X23 (*1509).

Fig. 198. Ataxophragmiidae (Ataxophragmiinae; 1-6, Voloshinovella) (p. C291).

Family PAVONITINIDAE
Loeblich & Tappan, 1961

Test trochospiral, at least in early stage, with 3 to many chambers to whorl, later may be reduced in number of chambers to biserial or uniserial, chambers may be subdivided by pillars or partitions; wall of agglutinated calcareous fragments or microgranular. U.Jur.-Rec.

Subfamily PFENDERININAE
Smout & Sudden, 1962
[nom. transl. Loeblich & Tappan, herein (ex Pfenderinidae Smout & Sudden, 1962, p. 582)]

Test trochospiral, in later stage may have reduction in number of chambers to whorl, interior subdivided by vertical or horizontal partitions, or both; wall calcareous and microgranular, or of agglutinated calcareous grains. U.Jur-U.Cret.(Senon.).

Pfenderina Henson, 1948, *901, p. 609 [*Eoruptoria neocomiensis Pfender, 1938, *1452, p. 236; OD]. Test trochospiral; chambers numerous, with axial region of thickened shell material which may show irregular, reticulate texture in sections; septa more or less perpendicular to spiral axis and oblique to axis of test; wall calcareous, microgranular, imperforate; aperture consisting of numerous pores in center of apertural face, secondary intercameral foramina about equidistant from ends of chamber spaces, along central columella and appear there as spiral groove. Pfenderina differs from Kurnubia in the absence of subepidermal
protista—sarcodina

Fig. 199. Payonitinidae (Pfenderininae: 1, 2, Pfenderina) (p. C291-C292).

partitions.] U.Jur.-U.Cret.(Cenoman.), Eu.-SW. Asia.—Fig. 199, 1, 2. *P. neocomiensis (Pfender.), L.Cret.(Neocom.), Fr. (1); M.Jur.(Bathon.), Arabia (2); 1a, subaxial sec.; 1b, sec. through early coil; 1c, transv. sec. showing central thickened area; 1d, reticulate appearance of central thickened area, X40 (*1452); 2a-c, ext. of isolated specimens, partially decorticated, secondary foramina visible in 2a-b, entire apert. face shown in 2c, perforate, but without basal primary aperture, X20 (*1807).

Accordiella Farinacci, 1962 (see p. C795). Hensonia Marie, 1955, *1220, p. 121 [*H. tricarinata; OD]. Test triangular and triserial, similar to Verneuilina but with internal plates resulting in reticular subepidermal area of chambers; wall agglutinated; aperture multiple, terminal on final chamber. U.Cret.(Senon.), Eu.(Fr.).—Fig. 200, 2. *H. tricarinata; side view, X50 (*1220).

Kilianina Pfender, 1933, *1449, p. 245 [*K. blancheti; OD] [=Litzuonelloides Henson, 1948, *902, p. 26 (type, L. compressus)]. Test conical in form, early chambers trochospirally arranged, later uniserial; outer portion of chambers without subepidermal partitions, central area with lamelliform interseptal buttresses, which may coalesce to form irregular partitions; wall of agglutinated calcareous particles, with some sandy material, imperforate; aperture consists of large perforations in oral face of central portion. [Kilianina commonly has been placed in the Orbitolinidae, but was deleted from that family by Douglass (*611, p. 260) and regarded by Smout & Sugden, 1962 (*1807), as belonging to the Tetrataxinidae. Chamber arrangement, wall structure and multiple aperture suggest its present placement in the Pfenderininae.] M.Jur.(Bathon.), M.Jur.(Maastricht.), Eu.-SW.Asia.—Fig. 201, 1-4. *K. blancheti, M.Jur.(Bathon.), Fr.; 1, sec. parallel to axis, X40; 2, same, X35; 3, basal sec., X35; 4, oblique sec. through early spiral portion, X35 (*1449).—Fig. 201.5. K. compressa Henson, U.Cret.(Maastricht.), Qatar Penin., Arabia; subaxial sec. of paratype (BMNH P35876), X39 (*2115).

Kurnubia Henson, 1948, *901, p. 608 [*K. palasti-
Foraminiferida—Textulariina—Lituolacea

Test elongate, with early stage trochospiral about central column, gradually becoming rectilinear, uniserial stage being more or less prominent in different species; wall probably agglutinated calcareous, outer layer imperforate, reticulate subepidermal layer formed by inter-

Fig. 200. Pavonitinidae (Pfenderininae; 1, Marieita; 2, Hensonia; 3-9, Kurnubia) (p. C292-C294).
secting short partitions projecting inward from outer wall; oral face convex, aperture interiomarginal in early stage, becoming terminal in later stage, probably multiple around central core but not distinct in specimens observed. [Valvulina jurassica Henson is here regarded as belonging to Kurnubia. It occurs with and was said to intergrade with K. palasitiniensis, although lacking the elongate uniserial development.] U.Jur., SW.Asia.—Fig. 200.3-5. *K. palasitiniensis, Palest.: 3,4,5, side and top views of paratypes, ×52 (*2117); 5, vert. sec., ×70 (*2115).—Fig. 200.6-9. *K. jurassica (Henson), U.Jur., Palest.: 6,7a, side views of paratypes, showing coiling and reticulate subepidermal layer of worn specimen; 7b, top view, ×60 (*2117); 8,9, tang. sec. showing subepidermal layer and deeper long. sec. showing internal pillars, ×36 (*2115).

Mariita Loeblich & Tappan, nom. nov., herein, [pro Reichelina Marie, 1955, *1220, p. 122 (non Erk, 1942)] [*Reichelina prismatica Marie, 1955, *1220, p. 123; here designated as type-species]. Test elongate, pyramidal, triangular in section, early stage probably triserial, adult with broad,
low, uniserial chambers with labyrinthic interior; sutures slightly depressed, moderately arched at center of flat sides of test; wall agglutinated, with reticulate subepidermal meshwork; aperture cribrate, with small circular openings scattered over flattened terminal face of test. U.Cret. (Senon.), Eu. (Fr.). — FIG. 200, 1. *M. prismatica* (MARIE); 1a, b, side, apert. views, ×53 (*2117).

Meyendorffiina Aurouze & Bizon, 1958, *56, p. 72 [*M. bathonica; OD]. Test planispiral in early stage, later uncoiling and uniserial, chambers subdivided by vertical radial partitions in peripheral area, and pillars in internal zone; wall of microgranular calcite; aperture multiple, openings lying between peripheral and internal zones where they are irregularly interspersed between pillars. Jur. (Bathon.), Eu. (Fr.). — FIG. 201, 6-8. *M. bathonica; 6, long. sec. of paratype, ×50; 7, exterior of holotype, ×30; 8, transv. sec. of paratype, ×40 (*56).

Pseudotextulariella Barnard in Barnard & Banner, 1953, *88, p. 177, 198 [*Textulariella cretosa* Cushman, 1932, *454, p. 97; OD]. Test subconical, early stage triserial, later biserial; interior of chambers with vertical and horizontal partitions forming partial chamberlets; wall agglutinated; aperture interiomarginal. U.Cret. (Cenoman.), Eu. — FIG. 202, 3-4. *P. cretosa* (CUSHMAN), Eng.; 3a, b, side, top views; 4, specimen with broken exterior to show peripheral chamberlets, all ×47 (*2117).

Subfamily PAVONITININAE
Loeblich & Tappan, 1961

[Pavonitininae Loeblich & Tappan, 1961, p. 283]

Early stage trochospiral, with 3 or more chambers to whorl, later may be biserial or
uniserial, secondary septa or vertical pillars projecting downward from chamber roof.

elongate, early stage triserial, later uniserial, later stage compressed or may be triangular throughout; interior of chambers with irregular secondary partitions projecting inward and downward from outer agglutinated wall; aperture terminal, cribate. Mio., Eu.—Fig. 203, 1, 2. *P.

Fig. 204. Pavonitinidae (Pavonitininae; 1–3, Guppyella; 4, Alveovalculina; 5–7, Alveovalculinella) (p. C298).
Protista—Sarcodina

Fig. 205. Pavonitinidae (Pavonitininae; Alveovalvulina) (p. C298).

Alveovalvulina BRÖNNIMANN, 1951, *225, p. 100 [*A. suteti; OD]. Early stage trochospiral, reducing in number of chambers in whorl to 3 or 4 in adult, chambers overlapping, outer portions subdivided by irregular horizontal and vertical plates projecting inward, resulting in alveolar or reticulate peripheral area; wall agglutinated; aperture interiomarginal. Mio., W. Indies (Trinidad).—Fig. 204,4; 205. *A. suteti; 204,4, exterior of holotype showing surface pits which reflect internal alveoli, X72 (2117); 205, axial sec., X4+ (225).

Alveovalvulinella BRÖNNIMANN, 1953, *229, p. 90 [*Liebusella pozonensis CUSHMAN & RENZ, 1941, *523, p. 9; OD]. Test elongate, early chambers trochospiral, later triserial, biserial, and finally uniserial; interior of chambers peripherally subdivided into alveolar cavities formed by vertical and horizontal partitions extending nearly to center of test; wall agglutinated; aperture interiomarginal slit in early stage, becoming terminal and ovate in uniserial stage. Mio., W. Indies (Trinidad).—Fig. 204,1-3. *G. mioeeniea (CUSHMAN); 1, holotype, showing exterior and terminal aperture; 2, transv. sec. of hypotype; 3, long. tang. sec. showing alveolar appearance, X35 (2117).

Lutinella SCHLUMBERGER in SCHLUMBERGER & DOUVILLÉ, 1905, *1667, p. 297, 303 [*L. robertii; OD]. Test conical, early chambers in asymmetrical spire somewhat to one side of apex of test, later chambers broad, saucer-shaped, nearly circular in plan, with marginal ridge, sutures curved in early portion, nearly straight in uniserial portion and slightly depressed; outer wall compact, imperforate, central portion of basal surface with spongy texture and containing large perforations, each of which is bordered by hemicylindrical, pillar-like interseptal buttresses, those of outer ring of perforations with buttress external to opening, marginal area outside rows of perforations without subdivision. [The depository for types of Lutinella robertii was not stated originally; the lectotype and paratypes are in the Sorbonne collections, Paris.] Eoc., Eu.(Fr.)-Asia (India).—Fig. 206,1-2. *L. robertii, M.Oc. (Lutet.), Fr.; 1a-c, side, spiral, and apert. views of toptype showing asymmetrical spire and large perforations of terminal face, X17 (2117); 2, axial sec., X15 (1780).—Fig. 206,3. L. douvillei DAVIES, L.Oc., Baluch.; 3a, horiz. sec. showing undivided outer marginal zone and interseptal buttresses in central area, X18; 3b, marginal portion, X48 (560).
Textulariella Cushman, 1927, *431, p. 24 [*Textularia barreti JONES & PARKER, 1876, *1001, p. 99 (=Textularia barreti JONES & PARKER, 1863, *1000, p. 80, nom. nud.); OD]. Test subconical, early stage trochospiral with 3 or more chambers in whorl, later biserial as in Dorothia but interior...
C300

Protista—Sarcodina

Fig. 207. Dicycлинidae (Cyclolininae; 1, Cyclolina; 2, Cyclopsinella) (p. C301-C302).

Labyrinthic; aperture low interiomarginal arch. [The original types in the British Museum (Natural History) were segregated by us. A lectotype (BMNH-ZF3635) and paratype (BMNH-ZF3636) are here designated from Recent deposits off Jamaica, West Indies, at 100-250 fathoms.] Paleoc.-Rec., Carib.-N.Am.-Afr.-Eu.-Pac.-Atl.—Fig. 202,1,2. *T. barrettii (Jones & Parker), Rec., USA (Fla.); 1a,b, side, top views; 2, specimen broken to show interior, X33 (*2117).

Fig. 208. Dicycлинidae (Cyclolininae; 1-3, Ammocyditoculina) (p. C302).
Family DICYCLINIDAE
Loeblich & Tappan, n. fam.
Test free, discoidal or depressed conical, chambers cyclical; wall of finely agglutinated calcareous particles, with imperforate epidermis; aperture multiple, peripheral. ?U.Trias., jur.-M.Eoc.

Subfamily CYCLOLININAE
Loeblich & Tappan, n. subfam.
Cyclical chambers not subdivided by radial partitions. L.Cret.-U.Cret.
Cyclolina D'Orbigny, 1846, *1395, p. 139 ['C. cretacea'; OD (M)]. Test free, discoidal, with undivided annular chambers; wall finely aggluti-
Ammocycloloculina Mayne, 1958, *1246, p. 53
[*Spirocyclina erratica Joukowsky & Favre, 1913, *1004, p. 491; OD]. Test discoidal, to 15 mm.
diam.; early chambers planispirally arranged in
spire of about 6 chambers, later strongly embrac­
ing, with flabelliform outline, and finally cyclical;
wall thick, coarsely agglutinated, with calcareous
cement, thin imperforate outer layer with micro­
granular texture, thick walls irregularly per­
forated by tubular openings or interstitial spaces
between foreign matter but without development
of radially arranged pillars; aperture indistinct,
probably consisting of peripheral pores. [Differs
from the Cyc1ammininae and Spirocyclininae in
lacking a subepidermal alveolar layer.]
L.Cret.
(InfraValangin.), Eu.(Fr.).—FIG. 208,1-3. *A.
erratica (Joukowsky & Favre); 1a-c, opposite
sides and edge of paratype, X5.5; 2,3, median
and axial secs., X11 (*1246).

Cyclopsinella Galloway, 1933, *762, p. 138
[*Cyclospina steinmanni Munier-Chalmas, 1887,
*1325, p. xxx; OD] [=Cyclospina Munier-Chal­
mas, 1887, *1325, p. xxx (obj.) (non Milne-Ed­
wards, 1840); Cycloclaysinella Thalmann, 1935,
*1897a, p. 734 (nom. null.).] Test discoidal, with
2 layers of annular chambers separated by median
partition, with intercameral pores between cham­
brellas of single layer but no communication between
2 layers; wall agglutinated. U.Cret.(Cenoman.),
Eu.—FIG. 207.2. *C. steinmanni (Munier-
Chalmas), diagram. transv. sec. showing 2 layers
of chambers, X40 (*1666).
[Cyclopsinella was originally described as similar to 2 super­
posed Cyclospina. The original material, now in the Sor­
bonne, Paris, was from the Upper Cretaceous (Cenomanian)
of Ille Madame, France, and included a longitudinal and a
transverse section. In addition, a longitudinal section is
included from Les Martigues, France. All sections were
poor and none have been figured.]

Subfamily DICYCLININAE
Loeblich & Tappan, n. subfam.

Chambers partially subdivided by radial
transverse partitions or both into numerous

Subfamily DICYCLININAE
Loeblich & Tappan, n. subfam.

Chambers partially subdivided by radial
transverse partitions or both into numerous

Fig. 210. Dicyclinae (Dicyclininae; 1, Dicyclina)
(p. C303-C304).
Dicyclina Munier-Chalmas, 1887, *1325, p. xxx [*D. schlumbergeri; OD]. Test free, flattened, discoidal, early planispiral chambers in 2 parallel layers forming raised central knob, remainder consisting of 2 layers of annular chambers which are subdivided by radial partitions into chamberlets; wall agglutinated, of calcareous fragments with imperforate epidermis, walls of the primary chambers recurved in section toward center of test, not meeting peripheral wall of preceding chamber or that of opposite layer, leaving median zone between incurved ends of opposing primary chambers; interior subdivided by numerous, thin radial partitions perpendicular to median layer and in alignment from one primary chamber to next, dividing primary chamber into rectangular chamberlets which may be subdivided by 3 or 4 partial partitions in each chamberlet, those of same cycle communicating by means of large pore through each radial partition; aperture comprising single median row of openings in slight depression at peripheral margin. [The types of *D. schlumbergeri*, from the Cenomanian of Ile Madame, France, are in the Sorbonne Collections, Paris. Four specimens on the original slide have about the same size as that refigured here, and 2 fragments would have been approximately twice as large.] U.Cret.(Cenoman.), Eu.—Fig. 209,1. *D. schlumbergeri*, Ile Madame; 1a,b, side, edge views of lectotype (here designated, Sorbonne.
Fig. 213. Dicyclinidae (Dicyclininae; 1-3, Orbitolinella) (p. C308).

Protista—Sarcodina

Coll., Paris), X33 (*2117).—Fig. 210,1. Internal structure of Dicyclina and Cuneolina (diagram.); 1a, transv. sec. along radius; 1b-g, secs. parallel to plane of development cut progressively from surface (1b) to median layer (1g); 1h-j, transv. secs. perpend. to radius (*901).

Broeckinella Henson, 1948, *902, p. 92 [*B. arabica; OD]. Test compressed, early stages planispiral, later flabelliform, tending to become cyclical; chambers arcuate, in single layer, undivided in median plane but with subepidermal transverse and parallel partial partitions, giving reticulate subepidermal layer, transverse partitions of succeeding chambers in alignment; successive chambers connected by apertures which appear on oral face as single median row of circular openings. [Broeckinella differs from Broeckina in having both parallel and transverse subepidermal plates. The genus and type-species are known from a single specimen.] U.Cret.(Maastricht.), Asia (Qatar Penn., Arabia).—Fig. 209,2. *B. arabica, exterior of holotype, X30 (*2115).

Coskinolinella Delmas & Deloffre, 1961, *581, p. 167 [*C. daguini; OD]. Test free, small, low conical, early chambers indistinct, possibly trochospiral, later chambers discoidal, apparently not subdivided; septa not extending entirely to axis but leave unpartitioned open central area; wall finely agglutinated, of calcareous fragments. [The genus is known only from sections and originally was regarded as belonging to the Orbitolinidae. Because of the simple interior, it is here transferred to the Dicyclinidae.] L.Cret.(Alb.), Eu. (Fr.).—Fig. 211,1-4. *C. daguini; 1, transv. sec., X42; 2, transv. sec., X40; 3, tang. sec. through apex, X60; 4, tang. sec., X42 (*581).

Dohaia Henson, 1948, *902, p. 101 [*D. planata; OD]. Test discoidal, early stage planispiral and evolute, later chambers cyclical; chambers undivided in median plane but outer portions of chambers have transverse subepidermal partitions, forming rectangular subepidermal incomplete chamberlets; wall calcareous, agglutinated; apertures numerous, in 2 rows, one at each side of
median plane. [Differs from *Qataria* in the chamberlets alternating in position from one annulus to the next, whereas they are in radial alignment in *Qataria.*] U.Cret. (U.Cenoman.-Turon.), SW. Asia.—Fig. 212, 1-2. *D. planata*, Qatar Penin., Arabia; 1, slightly oblique subequat. sec., X30; 2, axial sec. of paratype, X58 (*2115*).
Fig. 215. Dicyclinidae (Dicyclininae; 1, 2, Qataria) (p. C308).

Fig. 216. Dicyclinidae (Dicyclininae; 1, Zekritia) (p. C308).
multiple, consisting of perforations in septa between interseptal buttresses. [This genus is known only from 12 random sections of the type-species. It differs from *Cyclolina* in the development of interseptal pillars.]

U.Cret.(Cenoman.-Turon.), Asia(Iran).—Fig. 212,3, 4, *M. viennoti*, Kuh-i-Mangasht, Iran, syntypes (BMNH-P35881): 3, subaxial sec. parallel to septum in center of sec., showing interseptal pillars and transverse to septa at ends of section, X60; 4, slightly oblique equat.
sec. showing irregular interseptal buttresses, apertures, and undivided chambers at each side of median plane, ×60 (*2115).

Orbitolinella Henson, 1948, *902, p. 90 [*O. depressa; OD]. Test conical, chambers arranged as in Orbitolina and subdivided by numerous subepidermal partitions, perpendicular to septa and outer walls and those of succeeding chambers in alignment, partitions becoming irregular toward center of chamber, forming reticulate zone; intercameral communication by means of pores in radial and inner reticulate zones but not in marginal area; wall granular or agglutinated calcareous, with vitreous layer over oral face (possibly originally pseudochitinoid). *U.Cret.(U. Cenoman. or Turon.), Asia(Qatar Penin., Arabia).—Fig. 213,1-3. *O. depressa; 1, subaxial sec. of syntype, ×38; 2, oblique tang. sec. showing more numerous partitions in outer layer (at top of figure), ×60; 3, oblique trans. sec. of syntype intersecting 6 chambers at outer edge and showing reticulate appearance of central part, ×30 (*2115).**

Orbitopsis MUNDER-CHALMAS, 1902, *1328, p. 351 [*Orbitellites praecursor GÜMBEL, 1872, *841, p. 256 (=Orbitilites circumvolvulata GÜMBEL, 1872, *841, p. 259; OD) [=Coskinolinoptis HENSON, 1948, *902, p. 27 (type, C. primaeva)]. Test discoidal, to 18 mm. diam., may have thickened margin; early coiled stage reduced, chambers spreading in peneropline form, followed by reniform stage and later by annular chambers, at least in microspheric form; incomplete secondary septa forming chamberlets which are regularly developed and perpendicular to spiral lamella in outer layer, but irregular and in form of pillars in deeper zone of each chamber; no true alveolar structure; circular canals aligned beneath surface may be seen in axial sections as undivided portions of circular chamber occurring between outer reticulate zone and inner regularly pillared zone; aperture consisting of irregularly distributed openings on peripheral margin. *?U.Trias., L.Jur., Eu.-SW.Asia.—Fig. 214,1-3. *O. praecursor (GÜMBEL), L.Jur.(Lias.), Roveredo Tyrol Alps; 1, ext. (as *O. circumvolvulata), ×10 (*841); 2a, equat. sec., ×10 (*841); 2b, central portion of equat. sec., ×14 (*788); 3, axial sec., ×9 (*788).—Fig. 214,4. *O. primaeva (HENSON), U.Trias. or L.Jur., SW.Asia(Oran); probably megalospherically developed (BMNH P35788), ×60 (*2115).**

Qataria HENSON, 1948, *902, p. 98 [*Q. dukhiani; OD]. Test discoidal, early stage planispiral; later chambers cyclical; outer margins of chambers subdivided by numerous parallel and transverse subepidermal partitions; lateral chamberlets in radial rows from center to periphery: aperture multiple; small perforations in outer wall in rows corresponding to opposing pairs of lateral chamberlets. *U.Cret. (U. Cenoman. or Turon.), Asia(Qatar Penin., Arabia).—Fig. 215,1.2. *Q. dukhiani; 1, fragment of superficial sec., parallel to equatorial plane, ×67; 2, subaxial sec. of paratype showing lateral chamberlets, ×59 (*2115).**

Saudia HENSON, 1948, *902, p. 97 [*S. discoidea; OD]. Test discoidal, early stage with spiral development probably not subdivided, later flabelliform with arcuate uniserial stage, followed by cyclical chambers with margins partially divided by secondary transverse and parallel subepidermal partitions, projecting inward from outer wall, radial interseptal pillars also occurring in median plane in later, thicker parts of test, pillars being aligned from one cycle to next; intercameral communication by means of apertures between interseptal pillars. *Paleoc.-M.Eoc., SW.Asia.—Fig. 217,1-3. *S. discoidea, M.Eoc.(Lutet.), Ansab, between Iraq and Saudi Arabia; 1, young megalospheric flabelliform paratype, ×40; 2, subaxial sec. through early stage of paratype showing interseptal pillars in outer zone, ×40; 3, subaxial sec. of paratype showing numerous pillars, ×37 (*2115).—Fig. 217,4. S. labyrinthica GIMSON, Paleoc., N.Iraq; ext., ×5 (*2115).**

Zekritia HENSON, 1948, *902, p. 95 [*Z. langhami; OD]. Test compressed, flabelliform; chambers of early stages probably evolve planispiral, later uniserial and arcuate, chambers in 2 layers partially subdivided by interseptal partitions and pillars in median plane; wall calcareous, agglutinated; aperture cribrate in rows at either side of median partition, with intercameral connections between chambers of 2 layers. *Zekritia differs from Cyclospinella in having connections between the 2 layers of chambers. The type-species is known from a single sectioned specimen.] *U.Cret. (?Turon.), Asia(Qatar Penin., Arabia).—Fig. 216. *Z. langhami, slightly oblique sec. of holotype, ×39 (*2115).**

ORBITOLINIDAE

By R. C. Douglass,1 A. R. Loeblich, Jr.,2 and Helen Tappan3

[1United States Geological Survey, 2California Research Corporation, 3University of California at Los Angeles]

Family ORBITOLINIDAE

Martin, 1890

[Orbitolinidae Martin, 1890, p. 226] [*subfamily Orbitolininae Cushman in Eastman, 1913, p. 27; =family Orbitolinidae COPELAND, 1956, p. 186 (nom. van.)]

Relatively large conical shells varying from high cone with pointed apex to broad shield or disc. Test with single series of shallow cuplike chambers that increase in diameter more or less regularly, initial chambers of some tests developed in spiral form at angle to adult portion of test; chambers divided by vertical and, in some genera,
horizontal plates, with central area divided by either vertical partitions or pillars, or combination of both (Fig. 218, 219); communication between chambers by septal or apertural pores. Test wall of 2 parts, outer layer forming dorsal surface of test and continuing as ventral surface of each septum, inner layer continuous with partitions or pillars and plates; inner layer, at least, agglutinate and may contain abundant grains of detrital material. [The family lived in shallow, warm marine waters in a circumglobal northern equatorial belt.] *Cret.-Eoc.*

X 6.6; 3, slightly oblique axial sec., X 20; 4, portion of basal sec., X 50 (2114).—Fig. 220,5,6. O. texana (Roemer), L.Cret.(Alb.), USA(Tex.); X 20 (611).—Fig. 220,7. O. mosae (Hofker), U.Cret.(Maastricht.). Fr.: 7a,b, side and basal views, approx. X 33 (1535).

Coskinolinoides Keijzer, 1942, *1029, p. 1016 [*C. texanus (=Coskinolina adkinsi Barker, 1944, *83, p. 206); OD]. Test minute, about 0.5 mm. diam.; main partitions simple planes extending from marginal zone to central area; marginal zone divided by main partitions and 1 or 2 sets of vertical plates only. L.Cret., N.Am.-S.Am.—Fig. 221,1-3. *C. texanus, Alb., USA(Tex.); 1,2, basal and axial secs., X 60 (2114); 3a,b, side, basal views of exterior, X 50 (2117).

egyptiensis (CHAPMAN), Eoc.(Lutet.), SW.Asia (Egypt); axial sec., X10 (*1781).——Fig. 221, 5b. *D. indicus* Davies, L.Eoc., Baluch.; basal and axial secs., X20 (*611).

Iraqia Henson, 1948. *902, p. 69 [*I. simplex; OD] [=Dictyoconella Henson, 1948, *902, p. 24 (type. *D. complanata*)]. Test less than 2 mm. diam.; main partitions reticulate in central area; marginal zone divided by main partitions and may have one or more series of vertical and horizontal plates. L.Cret.(Apt.-Alb.)-U.Cret. (Cenoman.-Maastricht.), Eu.-SC.Asia.—Fig. 222, 1-3. *I. simplex*, L.Cret.(Apt.), Iraq; 1a,b, side and basal views, X40 (*2117); 2, axial sec.; 3, horiz. sec., X33 (*2115).——Fig. 222, 4-7. *I. complanata* (Henson), U.Cret.(Maastricht.), Arabia; 4, side view of holotype, X22 (*2117); 5, oblique sec. of paratype nearly paralleling plane.
of compression, X23; 6, paratype, sec. perpend. to axis, X20; 7, oblique sec. showing subepidermal layer, left, and central zone, right, X20 (*2115).

Simplorbitolina Ciry & Rat, 1953, *344, p. 85 [*S. manasi; OD]. Test small, generally less than 3 mm. diam.; includes forms intermediate between *Orbitolina* and *Dictyoconus*, with main partitions extending from marginal zone into central area in zigzag manner as in *Orbitolina* but with lower part of each partition discontinuous in form of pillars as in *Dictyoconus*; marginal zone divided by main partitions and one or more series of plates. L.Cret., Eu.(Spain)-Asia(Arabia).—Fig. 223,1; 224,1-3. *S. manasi*, Spain; 223,1a,b, side and basal views of exterior of topotype, X35 (*2117); 224,1a,b, basal and axial sec., X30
Foraminiferida—Fusulinina—Parathuramminacea

Suborder **FUSULININA**

Wedekind, 1937

Primarily of microgranular calcite, advanced forms with 2 or more differentiated layers in wall. Ord.-Trias.

Superfamily **PARATHURAMMINACEA**

E. V. Bykova, 1955

[**nom. correct.** Loeblich & Tappan, 1961, p. 283 (pro superfamily Parathuramminidea Fursenko in Rauzer-Chernogrova & Fursenko, 1959, p. 174)]

Single globular or tubular chamber or cluster of such chambers; wall simple, consisting of calcareous granules in calcareous cement; aperture simple. Ord.-Carb.

Family **PARATHURAMMINIDAE**

E. V. Bykova, 1955

[Parathuramminidae E. V. Bykova in E. V. Bykova & Polenova, 1955, p. 15] [=Archaeasphaeridae Malachova, 1956, p. 87]

Globular chamber or cluster of chambers; aperture absent or multiple, at ends of tubular projections. Dev.-L.Carb.