Hexapoda

Pseudobiella

Permobella eupaea MARTYNOV, 1938

Pleisiogramma CARPENTER, 1943a, p. 73 [P. mediae; OD]. SC terminating well before wing apex; separation of CUA and CUP at about level of midwing. Perm., USSR (Asian RSFSR).—Fig. 129, 1. *P. longipennis; wing, X2 (Martynov, 1938a).

Family UNCERTAIN

The following genera, apparently belonging to the order Caloneurodea, are too poorly known to permit assignment to families.

Caloneurella CARPENTER, 1934, p. 324 [*C. carbonaria; OD]. Apical wing fragment, probably related to Caloneura. U. Carb., USA (Pennsylvania).—Fig. 128, 2. *C. carbonaria; X1.8 (Carpenter, 1934).

Pruvostiella HANDLIRSCH, 1922, p. 82 [*Euthyneura lecomtei PRUVOST, 1919, p. 115; OD]. Small wing fragment. U. Carb., Europe (France).

Order MIOMOPTERA

Martynov, 1927

[Miomoptera MARTYNOV, 1927d, p. 101, emend. MARTYNOV, 1938b, p. 158]

Small to very small insects, with wings nearly homonomous. Fore wing with vein SC ending before or at midwing; R commonly with a distal twig; RS arising before midwing, with at least 3 terminal branches; M commonly coalesced with CUA basally to varying amounts, but diverging in basal third of wing; M deeply forked; CUA with 2 or 3 terminal branches; CUP unbranched; 2 anal veins typically present. Hind wing similar in form to fore wing, without an anal lobe or fan; M usually arising from CU very near wing base. Body structure little known; head of moderate size; mouthparts apparently mandibulate; antennae conspicuous, relatively thick, with 15 to 20 segments; tarsi with 4 segments (Palaeomantis); cerci short. Immature stages unknown. U. Carb.—Perm.

The status of this order is uncertain. As originally proposed by MARTYNOV (1927d) it included five Permian families, previously placed in the order Protorthoptera, but it was based mainly on one of them, the Palaeomanteidae (=Delopteridae). The following year TILLYARD (1928b), obviously unaware of MARTYNOV’s article, proposed the new order Protoperlaria for the same series of families except the Palaeomanteidae. Subsequent studies of extensive collections of...
Miomoptera
205

Palaeomanteidae and Lemmatophoridae (Carpenter, 1933a, 1935a; Martynov, 1938b; Martynova, 1958, 1961b, 1962a) supported the view that the Palaeomanteidae were sufficiently distinctive to justify ordinal separation and that the Lemmatophoridae and related families were in reality part of the order Protorthoptera.

The Miomoptera, as exemplified by the Palaeomanteidae, stand apart from the protorthopterous families, with which they have been associated, by two distinct features. One of these is the absence of the anal lobe or fan on the hind wing, probably a secondary condition, as in the Isoptera and Embioptera. The other is the very small number of crossveins and their virtual absence from the costal area of both wings.

Several families have been added to the Miomoptera since Martynov's original publication on the order. Two of these, Archaeomiopteridae (Guthörl, 1939) and Metropatoridae Handlirsch (1906a) almost certainly belong in the order (Martynova, 1958, 1961b; Carpenter, 1965). The evidence for the others, however, is very weak and in my opinion insufficient to justify their inclusion in the Miomoptera. The family Permembiidae Tillyard (1937b), originally described in the Psocoptera, has been transferred to the Miomoptera by Kukalová (1963a) and Riek (1973, 1976a); Permembia itself is known from a very few, poorly preserved specimens (Carpenter, 1976), with a venation that has little in common with that of the Palaeomanteidae. Some details of body structure are preserved in two specimens, but since almost nothing is known of the body of the Palaeomanteidae we have no basis for comparing those details. The family Permosialidae Martynov (1928b), originally in the Neuroptera, has been placed in the Miomoptera by Riek (1976a) and Rasnitsyn (1977c), as have the families Permonkidae Rasnitsyn (1977c) and Palaeomantiscidae Rasnitsyn (1977c). These families, however, are characterized by broadened anal areas or anal lobes on the hind wings and numerous crossveins on both wings including the costal areas. Since no revisions of the definition or diagnosis of the Miomoptera have been proposed for the accommodation of these families, the order is treated here essentially as it was defined by Martynov (1938b) and Martynova (1961b, 1962a). The families Permembiidae, Permosialidae, Permonkidae, and Palaeomantiscidae, along with a nymphal form, Peremonypha Sharov (1957b), are included under Neoptera, Order Uncertain.

The homologies of the wings of the Miomoptera have not been definitely determined. In the fore wing, veins R and CUA are clearly convex, but RS and M show no definite topography. Whether the branches of M represent MA and MP (Kukalová, 1963a) or only one of these veins is uncertain; they are designated here as M1+2 and M3+4. The amount of anastomosis of M with CUA in the fore wing varies from genus to genus; in some species (e.g., Permodelopterum obscurum Kukalová; see Fig. 131,4a), M appears to arise independently of CUA, which joins it later; in others (e.g., Palaeomantis minutum (Sellards); see Fig. 131,1b) the stem of M seems to be coalesced with that of CUA from the very base of the wing. In all species, however, M diverges from CUA before midwing. In some individual wings, M1+2 seems to arise from RS or RS3+4; this may be a specific or even a generic characteristic, and there is some evidence that it occurs as an individual variation (Carpenter, 1939).

The Miomoptera are among the smallest insects known from the Upper Carboniferous and Permian. However, their affinities are not clear. They are generally considered to have been related to the Psocoptera, although Rasnitsyn (1980b) believes them to have been endopterygote insects, close to the ancestral stock of the Hymenoptera. Martynov concluded (1938b) that they were an early, aberrant branch of protorthopterous or perlarian stock.

Family METROPATORIDAE
Handlirsch, 1906

[Hind wing nearly oval; vein SC short, weakly developed, and close to R; RS forked]
before midwing; RS1+2 with 4 terminal branches; RS3+4 forked once; M apparently arising from CUA at base of wing and forked almost to level of origin of RS; CUA with short terminal fork. Fore wing and body unknown. *U. Carb.*

Metropator **Handlirsch**, 1906a, p. 681 [*M. pusillus*; OD]. RS3+4 more deeply forked than RS1+2; M1+2 forked distally; M3+4 forked twice. **Tillyard**, 1926c; **Carpenter**, 1965. *U. Carb.*, USA (Pennsylvania).—*Fig. 130,2. *M. pusillus*; hind wing, X6.5 (Carpenter, 1965).

Family ARCHAEMIOPTERIDAE

Guthörl, 1939

[Archaeemiopteridae Guthörl, 1939, p. 320]

Fore and hind wings broadly oval; vein RS1+2 forked, at least distally. Body unknown. *U. Carb.—Perm.*

Archaemioptera **Guthörl**, 1939, p. 320 [*A. carbonaria*; OD]. RS3+4 unbranched; M forked to more than half its length; CUA with distal fork only. *U. Carb.*, Europe (Germany).—*Fig. 130,1. *A. carbonaria*; fore(?) wing, X10 (Carpenter, new, based on holotype).

Tychtodelopterum **Schmidt**, 1962, p. 838 [*E. priscum*; OD]. Similar to Tychtodelopterum; but: CUA with 3 terminal branches; M1+2 terminating at wing apex. **Guthörl**, 1963. *U. Carb.*, Europe (Germany).—*Fig. 130,4. *E. priscum*; hind wing, X12 (Guthörl, 1963).

Saaromioptera **Guthörl**, 1963, p. 22 [*S. jordani*; OD]. Similar to Tychtodelopterum, but RS3+4 unbranched. *U. Carb.*, Europe (Germany).—*Fig. 130,5. *S. jordani*; fore(?) wing, X11 (Guthörl, 1963).

Family PALAEOAMANTEIDAE

Handlirsch, 1906

[Archaeemiopteridae Handlirsch, 1906b, p. 348] [Palaeomanteidae Handlirsch, 1906b, p. 348] [Delopteridae Selards, 1909, p. 168]

Fore wing membranous or coriaceous; vein SC usually ending before midwing, less commonly near midwing; RS usually with 3 terminal branches; basal stem of M apparently independent of both R and CU in some genera, but anastomosed with one of these in other genera; M forked deeply, usually to midwing; rarely, M1+2 apparently anastomosed with stem of RS (or connected by crossvein), resembling additional branch of RS; CUA with 2 or 3 terminal branches; distinct marginal indentation at end of CUP in some genera. Hind wing similar to fore...
Order THYSANOPTERA

Haliday, 1836

[Thysanoptera Haliday, 1836, p. 439]

Small or minute insects, with slender body (Fig. 132); head usually quadrangular; compound eyes small but prominent, with relatively large, rounded facets; ocelli commonly present; antennae with 6 to 10 segments; labrum and labium forming a short cone, containing as stylets the left mandible (right one absent or vestigial) and extensions of the 2 maxillae; maxillary and labial palpi even having reticulation in anal area. Body structure apparently much as in Palaeomantis; short cerci present. Perm., Europe (Czechoslovakia).—Fig. 131.5a. *P. pernui; fore wing, ×8 (Kukalová, 1963a).—Fig. 131.5b. P.(?) corium KUKALOVÁ; fore wing, ×8 (Kukalová, 1963a).

Thysanoptera

207

wing except for differences characteristic of the order. Antennae with about 15 short segments; tarsi with 4 segments; abdomen short, with wings projecting far beyond abdomen at rest; cerci very short. U. Carb.—Perm.

Palaeomantis Handlirsch, 1904b, p. 4 [*P. schmidtii; OD] [= Delopterus SELLARDS, 1909, p. 168 (type, D. minutum); Pseudodelopterus MARTYNOV, 1928b, p. 66 (type, Delopterus latum SELLARDS, 1909); Pseudomantis MARTYNOV, 1928b, p. 73 (type, P. minutula); Leptoneurula MARTYNOV, 1928b, p. 77 (type, L. insignis); Delopocus TILLYARD, 1928f, p. 474 (type, D. elongatus); Miomatoneura ZALESSKY, 1956a, p. 275 (type, M. clara); Miomatoneurites ZALESSKY, 1956a, p. 278 (type, M. sylvenensis); Delopteriella ZALESSKY, 1956a, p. 284 (type, D. graciosa); Stefanomioptera GUTHORL, 1962a, p. 67 (type, S. hangardi)]. Fore wing slender, membranous; SC terminating at about midwing; RS diverging from R in basal third of wing and usually with branches RS1, RS2, and RS5 +4; M separating from CUA near level of origin of RS; M1 + 2 and M3 + 4 diverging near midwing; CUA forked; crossveins very few and weakly developed; posterior margin of wing either smoothly curved or with an indentation at end of CUP. Hind wing slightly shorter than fore wing; SC short, usually terminating about one-third wing length from base. Hind wing similar in form to fore wing but apparently lacking a separate and distinct CUP; CUA not preserved as a definite, convex vein as in fore wing, but forming with CUP a compound vein (CU) and preserved as a strong ridge within a furrow. Head with large compound eyes; first tarsal segment longer than others; cerci short. Carpenter, 1935a, 1967c; GUTHORL, 1962a; MARTYNOVA, 1962a; KUKALOVÁ, 1963a. U. Carb., Europe (Germany); Perm., USA (Kansas, Oklahoma). Europe (Czechoslovakia).—Perm. (Thysanopter. HALIDAY, 1836, p. 439).—Fig. 131.1a. P. hangardi (GUTHORL), U. Carb., Germany; fore wing, ×9 (Carpenter, 1967c).—Fig. 131.1b.c. *P. minutum (SELLARDS), Perm., Kansas; b, fore and c, hind wings, ×12 (Carpenter, 1933a).

Miomatoneura MARTYNOVA, 1927d, p. 106 [*M. frigida; OD]. Fore wing as in Palaeomantis, but M1 +2 arising from stem of RS or connected to it by crossvein; CUA with 2 or 3 terminal branches. Hind wing unknown. MARTYNOVA, 1961b, 1962a; KUKALOVÁ, 1963a. Perm., USSR (European RSFSR), Europe (Czechoslovakia).—Fig. 131.2a. *M. frigida; Perm., USSR; fore wing, ×8 (MARTYNOVA, 1962a).—Fig. 131.2b. M. candida KUKALOVÁ, Perm., USSR; fore wing, ×14 (Kukalová, 1963a).

Miomatoneurella MARTYNOVA, 1958, p. 71 [*M. reducta; OD]. Fore wing similar to that of Miomatoneura, but RS1 +2 unbranched. MARTYNOVA, 1961b. Perm., USSR (Asian RSFSR).—Fig. 131.3. *M. reducta; fore wing, ×15 (MARTYNOVA, 1962a).

Permodelopterum KUKALOVÁ, 1963a, p. 25 [*P. obscurum; OD]. Fore wing similar to that of Perunopterum but broader and base of M apparently coalesced with R basally. Hind wing and body unknown. Perm., Europe (Czechoslovakia).—Fig. 131.4a. *P. obscurum; fore wing, ×8 (Kukalová, 1963a).—Fig. 131.4b. P. lumbiforme KUKALOVÁ; fore wing, ×12 (Kukalová, 1963a).

Perunopterum KUKALOVÁ, 1963a, p. 16 [*P. pernui; OD]. Fore wing membranous or distinctly coriaceous, densely covered with minute hairs, and more slender than in Palaeomantis; indentation of hind margin at end of CUP pronounced; SC terminating near midwing; R with distal twig; RS arising before midwing, typically with branches RS1, RS2, and RS3 +4; stem of M free from R basally; M arising from CUA at about level of origin of RS, with 2 long branches; CUA forked. Hind wing similar to fore but with SC shorter and weaker and costal area narrower; M separating from CUA nearer wing base. Both wings tend to show more crossveins than in Palaeomantis, even having reticulation in anal area. Body structure apparently much as in Palaeomantis; short cerci present. Perm., Europe (Czechoslovakia).—Fig. 131.5a. *P. pernui; fore wing, ×12 (Kukalová, 1963a).—Fig. 131.5b. P.(?) corium KUKALOVÁ; fore wing, ×8 (Kukalová, 1963a).
mentation distinct; ovipositor present (Terebrantia) or absent (Tubulifera); cerci absent. Perm.-Holocene.

The Thysanoptera, or thrips, feed by lacerating the surface of plants with their stylets and drawing the plant juices through the mouth cone. Some species are predaceous on small arthropods. The nymphs hatch from eggs laid on or in plant tissue; they resemble the adults in general form and feeding habits. Nymphs of most species pass through two or three quiescent stages (prepupa and pupa) in which wing pads occur.

The thrips, like the Psocoptera, are a distinctive and homogeneous order of insects. Two suborders, Terebrantia and Tubulifera, are generally recognized; the most obvious differences between them are in the presence or absence of the ovipositor in the female, and in the shape of the terminal abdominal segment. However, other differences, of more phylogenetic significance, are found in the detailed structure of the mouthparts and wings. Such morphological evidence indicates that the Terebrantia are more primitive than the Tubulifera and that the family Aeolothripidae of the Terebrantia is the most primitive of the recent families.
Thysanoptera are well represented in the Tertiary deposits, mainly the Baltic amber; these Oligocene species have been studied in detail by two authorities on recent thrips, Bagnall and Priesner. Two pre-Tertiary thrips have been described, one (Liassothrips) from the Jurassic (Martynov, 1927b) and the other (Permothrips) from the Permian (Martynov, 1935a). That these are thrips seems almost certain, although their subordinal positions are obscure. The fossil record of the Thysanoptera shows little to date about the evolution of the order. The Permian species appear to have had somewhat larger wings than any existing species, but no veins are preserved and the structure of the mouthparts is unknown. The classification used here is that of Priesner (1949).

Suborder TEREBRANTIA
Haliday, 1836
[Terebrantia Haliday, 1836, p. 439]

Terminal abdominal segment conical (rarely tubular) in females, bluntly rounded in male; female with sawlike ovipositor; fore wings nearly always with at least 1 longitudinal vein (in addition to costal vein) extending to apex. Perm.—Holocene.

Family PERMOTHRIPIDAE
Martynov, 1935
[Permothripidae Martynov, 1935a, p. 334]

Head somewhat extended; pronotum transverse; legs short, tibiae more slender than femora; wings broad and long, extending beyond abdomen; ovipositor apparently present. [Subordinal position of the family uncertain; it probably represents an extinct suborder.] Perm.

Permothrips Martynov, 1935a, p. 334 [*P. longipes; OD]. Abdomen narrowed distally, not tubular. Perm., USSR (Asian RSFSR).—Fig. 133,5. [*P. longipes; general form of body and wings, X16 (Martynov, 1935a).

Family AEOLOTHRIPIDAE
Uzel, 1895
[Aeolothripidae Uzel, 1895, p. 42]

Wings broad and rounded at apex; ovipositor curved upward; antennae with 9 segments. Eoc.—Holocene.

Fig. 132. Thysanoptera; dorsal view of whole insect, Desmothrips propinquus, Holocene, X20
uncertain; possibly belonging to Heterothripidae.] Bagnall, 1923; Priesner, 1949; Stannard, 1956. Oligo., Europe (Baltic).——Fig. 133, 2. S. bagnalli Stannard; a, terminal abdominal segment, X 66; b, fore wing, X 55 (Stannard, 1956).

Family THRIPIDAE Stephens, 1829

[Thripidae Stephens, 1829b, p. 363]

Similar to Heterothripidae, but antennae with 6 to 9 segments and with slender sense cones; cones simple or forked; tarsal claws, if present, at apex of first or second tarsal segment. Oligo.—Holo.

Thrips Linnae, 1761, p. 266. Holo.

Amorphothrips Bagnall, 1924c, p. 252 [*A. klebsi; OD]. Similar to Procerothrips, but eye occupying whole side of head; pronotum transverse, without setae; hind legs very long and stout. Bagnall, 1923; Priesner, 1949. Oligo., Europe (Baltic).

Anaphothrips Uzel, 1895, p. 142. Priesner, 1930; Palmer, 1957. Oligo., Europe (Baltic); Mio., USA (California)—Holo.

Gerontothrips Priesner, 1949, p. 41, nom. subst. pro Archaeothrips Priesner, 1924, p. 138, non Field, 1910 [*Archaeothrips latipennis Priesner, 1924, p. 138; OD]. Wings very broad, entire surface reticulate. Priesner, 1930. Oligo., Europe (Baltic).——Fig. 133, 4. *G. latipennis (Priesner); fore wing, X 66 (Priesner, 1924).

Lipsanothrips Priesner, 1930, p. 119 [*L. skwarae; OD]. Antennae with 8 segments, sixth segment much shorter than fifth; wing with 1 or 2 longitudinal veins. Oligo., Europe (Baltic).

Praelendrothrips Priesner, 1924, p. 139 [*P. aures; OD]. Antennae with 9 segments, last 4 clearly separate from one another; posterior angles of
Thysanoptera—Tubulifera

pronotum with at least 1 conspicuous bristle. PRIESNER, 1930. Oligo., Europe (Baltic).

Procerothrips Bagnall, 1924c, p. 252 [*P. cylindricornis*; OD]. Antennae with 8 segments and style with 2 segments; third through sixth antennal segments with parallel sides and of same width. Bagnall, 1923. Oligo., Europe (Baltic).

Family HETEROTHRIPIDAE

Bagnall, 1912

Wings narrow, usually pointed distally; ovipositor curved downward; antennae with 9 or 10 segments; fore tarsi usually with clawlike appendage at base of second segment. Oligo.—Holo.

Heterothrips Hood, 1908, p. 361. Holo.

Electrothrips Bagnall, 1924c, p. 251 [*E. hystrix*; OD]. Cephalic, pronotal, and wing bristles abnormally long and stout; wings and legs long and slender. Oligo., Europe (Baltic).

Hemithrips Bagnall, 1923, p. 37 [*H. femoralis*; OD]. Similar to Heterothrips (recent), but third and fourth antennal segments cylindrical. Bagnall, 1924a; Priesner, 1949. Oligo., Europe (Baltic, Germany).

Opadothrips Priesner, 1924, p. 133 [*O. frischtiianus*; OD]. Similar to Oligothrips (recent), but antennal segments more elongate; terminal segment slender. Bagnall, 1924a, 1927; Priesner, 1949. Oligo., Europe (Baltic).

Family MEROOTHRIPIDAE

Hood, 1914

[Merothripidae Hood, 1914, p. 17]

Wings narrow, pointed distally, surface smooth (not pubescent); ovipositor curved downward; pronotum with dorsal longitudinal sutures; anterior and posterior femora greatly enlarged. Oligo.—Holo.

Family UNCERTAIN

The following genera, apparently belonging to the order Thysanoptera, suborder Terrebrantia, are too poorly known to permit assignment to families.

Calothrips Oustalet, 1873, p. 24 [*C. scudderii*; OD]. Little-known thysanopteron, probably belonging to the Terebrantia. Oligo., Europe (France).

Eocephalothrips Bagnall, 1924a, p. 161 [*Thrips capito Schlechtendal, 1887, p. 579; OD] [=Protothrips Priesner, 1924, p. 136 type, P. speratus]. Head quadrate; wings moderately broad, apex pointed. Priesner, 1949. Oligo., Europe (Baltic).—Fig. 133.1. E. speratus (Priesner); a, head and prothorax; X66; b, fore wing, X66 (Priesner, 1924).

Suborder TUBULIFERA

Haliday, 1836

[Tubulifera Haliday, 1836, p. 459]

Terminal abdominal segments of both sexes almost always tubular; female without ovipositor; fore wing without definite costal vein and with only a vestige of another longitudinal vein, long fringe present. Oligo.—Holo.

Family PHLAEOOTHRIPIDAE

Uzel, 1895

[Phlaeothripidae Uzel, 1895, p. 42]

Characteristics of suborder. Oligo.—Holo.

Phlaeothrips Haliday, 1836, p. 441. Schlechtendal, 1887; Bagnall, 1924a, 1929. Oligo., Europe (Baltic).—Holo.

Liotrichothrips Bagnall, 1929, p. 97 [*L. hystrix*; OD]. Head longer than pronotum, broader than long; cheeks with few prominent setae; antennae long, with third and fourth segments subequal. Similar to Ethirothrips (recent), but legs as in Liotrips (recent). Priesner, 1949. Oligo., Europe (Baltic).

Necrothrips Priesner, 1924, p. 147 [*N. nanus;
OD]. Similar to *Austrothrips* (recent), but eyes very large, protruding, and consisting of many facets. *USINGER*, 1942; *PRIESNER*, 1949. Oligo., Europe (Baltic).

Suborder UNCERTAIN

The genus described below, apparently belonging to the order Thysanoptera, is too poorly known to permit assignment to suborders.

Family LIASSOTHRIPIDAE

PRIESNER, 1949

[*Liassothripidae* **PRIESNER**, 1949, p. 34] [=*Mesothripidae* **MARTYNOV**, 1927b, p. 768]

Antennae thin, with at least 7 segments; head narrow; anterior femora very broad; wings unknown. *Jur*.

HEMIPTEROID EXOPTERYGOTES

Order HEMIPTERA **LINNE**, 1758

[*Hemiptera* **LINNE**, 1758, p. 434] [=*Hemipsocoptera* **ZALEWSKY**, 1937a, p. 51; Palaeohemiptera **HANDLIRSCH**, 1904b, p. 2]

Exopterygote Neoptera, mostly small to very small, with much morphological diversity. Head opisthognathous or prognathous; compound eyes usually present but diverse in size; two ocelli commonly present, rarely three or none; antennae typically with five segments or less, rarely with as many as ten; mouthparts haustellate, consisting of two pairs of maxillary stylets in a segmented, rostrate labium. Pronotum of moderate size, often diversely modified; meso- and meta-thorax well developed. Legs usually cursorial, but forelegs of some genera raptorial, vestigial, or absent; tarsi commonly with three segments, rarely with two or one. Wings usually present, but very different in the two suborders. Wing venation quite generalized in primitive forms but much reduced in most families; fore wings of suborder Homoptera usually of uniform texture, those of suborder Heteroptera partly membranous and partly coriaceous. Abdomen well developed; ovipositor usually present. Nymphs resembling adults in basic body structure. *Perm.–Hol.*

This is the largest of the exopterygote orders, and it has apparently been a major order at least since the Triassic. All available evidence suggests that the Hemiptera are most closely related to the Psocoptera, which were well represented in the Permian. The order Hemiptera has traditionally been divided into two suborders, Homoptera and Heteroptera, the members of both groups having the same distinctive, haustellate mouthparts. Both suborders are also represented in the Permian, but the Homoptera have by far the more extensive record in that period.

The wings provide the best means of distinguishing the members of the two suborders. The homologies of the main veins are clear throughout both suborders, even in those in which the venation is much reduced. However, there has been much convergence in the reduction process. In part because of this, the family and generic classifications of the Hemiptera, especially of the Homoptera, have been based mainly on body features, such as the detailed structure of the rostrum, number and size of ocelli, tarsal segmentation, and integumentary details. Since fossils do not usually show such structures, the family position of many of the extinct genera is uncertain.
Suborder HOMOPTERA
Leach, 1815
[Homoptera Leach, 1815, p. 124]

Fore wing of uniform texture or nearly so, not sharply differentiated into membranous and coriaceous areas; wings typically held sloping over the sides of the body at rest. Perm.–Holo.

Family DUNSTANIIDAE
Tillyard, 1916
[Dunstaniidae Tillyard in Tillyard & Dunstan, 1916, p. 31]

Fore wing sharply separated into tegmina basal part and membranous distal area; nodal break prominent; vein SC long, terminating on costal margin; R and RS curved; RS unbranched; clavus broad, triangular; 1A and 2A long, extending to hind margin. Hind wing little known, smaller than fore wing, with rounded anal area. Head, compound eyes, and pronotum relatively large. Relatively large insects. Affinities uncertain, but apparently closely related to the Palaeontinidae. Tillyard, 1918d; Becker-Migdisova, 1949b; Evans, 1956; Becker-Migdisova & Wootton, 1965; Riek, 1976b. Trias.
Hexapoda

Dunstania TILLYARD in TILLYARD & DUNSTAN, 1916, p. 31 [*D. pulchra; OD]. M3+4 not forked, RS apparently joined to M by a short, oblique cross-vein. [The genus has been reported from South Africa (RIEK, 1976b), but the generic position of the species described is very uncertain.] Trias., Australia (Queensland).—Fig. 135,1. *D. pulchra; fore wing as preserved, X1.5 (Evans, 1956).

Dunstaniodes BECKER-MIGDISOVA & WOOTTON, 1965, p. 64 [*D. elongatus; OD]. Fore wing elongate; costal margin of basal half of wing strongly convex. Trias., USSR (Kirghiz).—Fig. 135,3. *D. elongatus; a, fore and b, hind wings as preserved, X3.0 (Becker-Migdisova & Wootton, 1965).

Dunstaniopsis TILLYARD, 1918d, p. 584 [*D. triassica; OD]. Little-known genus, based on incomplete fore wing; apex apparently more pointed than in Dunstania. Evans, 1956; BECKER-MIGDISOVA & WOOTTON, 1965. Trias., Australia (Queensland).

Paradunstania TILLYARD, 1918d, p. 585 [*P. affinis; OD]. Little-known genus, based on fragment of fore wing; probably a synonym of Dunstania. Evans, 1956; BECKER-MIGDISOVA & WOOTTON, 1965. Trias., Australia (Queensland).—Fig. 135,2. *P. affinis; fore wing as preserved, X1.5 (Evans, 1956).

Siksteliana BECKER-MIGDISOVA & WOOTTON, 1965, p. 68 [*S. popovi; OD]. Little-known genus, based on fore wing. Similar to Dunstaniodes, but costal margin of basal half nearly straight. Trias., USSR (Kirghiz).—Fig. 135,4. *S. popovi; fore wing, X3 (Becker-Migdisova & Wootton, 1965).

Family PALAEONTINIDAE
Handlirsch, 1906

[Fossilinidae HANDLIRCH, 1906b, p. 618] [=Cicadomorphidae EVANS, 1956, p. 222]

Fore wing as in Dunstaniidae, with membranous, distal part of wing broader and longer than basal, tegminous part; vein SC usually weakly developed, commonly with branches or suggestions of branches; R and M separating before or close to midwing; R and RS nearly straight. Hind wing with a prominent indentation on costal margin; M1 commonly coalesced for short interval with RS; M with 4 branches. Head small, narrow, pronotum wide; body generally with numerous hairs. Perm.—Jur.

Palaeontina BUTLER, 1873, p. 126 [*P. oolitica; OD]. Little-known genus, based on fore wing. M with 4 branches, M1+2 and M3+4 forking at about same level. [The genus was excluded from Homoptera by Evans (1956) but included here by BECKER-MIGDISOVA (1962b) and POPOV (1980b).] Jur., England.—Fig. 136,1. *P. oolitica; fore wing, X0.8 (Handlirsch, 1906b).

Asiocossus BECKER-MIGDISOVA, 1962a, p. 89 [*A. subcostalis; OD]. Little-known genus, based on fragment of fore wing, SC free from R+M except for very base, branched; R+M and stem of R very short. Trias., USSR (Kirghiz).—Fig. 136,3. *A. subcostalis; fore wing base, X2.5 (Becker-Migdisova, 1962b).

Cicadomorpha MARTYNOV, 1926b, p. 1357 [*C. punctulata; OD]. SC coalesced with R+M at base; area between M and CUA very broad, without crossveins; CU slightly arched at base. Jur., USSR (Kazakh).—Fig. 136,7. *C. punctulata; fore wing, X1.0 (Becker-Migdisova, 1962b).

Fletcheriana EVANS, 1956, p. 224 [*F. triassica; OD]. Fore wing as in Pseudococcus, but costal area much broader; SC lying alongside R basally; RS arising from R remote from wing base. [The assignment of a species from the Triassic of South Africa (RIEK, 1976b) to this genus is very uncertain.] Trias., Australia (New South Wales).—Fig. 136,2. *F. triassica; a, fore wing; b, hind wing, X1.0 (Evans, 1956).
Fig. 136. Palaeontinidae (p. 214-216).

Ijacossus Becker-Migdisova, 1950, p. 1106 [*J. suchanova;* OD]. Little-known genus, based on fore wing. Similar to *Palaeontinodes*, but SC with several branches. [Family assignment uncertain.]

Jur., USSR (Asian RSFSR).—**Fig. 136,8.** *I. suchanova;* fore wing, X1 (Becker-Migdisova, 1962b).

Palaeocicadopsis T'AN, 1980, p. 161 [*P. chinensis;* OD]. Fore wing similar to that of *Cicadomorpha*, but M branching near wing base. *Perm.*, China (Inner Mongolia).

Palaeocossus Oppenheim, 1885, p. 333 [*P. jurassicus;* OD]. Fore wing without nodal indentation; wing broadly oval; distal margin of basal median
Fig. 137. Palaeontinidae (p. 216–217).

Hexapoda

cell (between M and CUA) smoothly curved; hind margin strongly convex. Jur., USSR (Asian RSFSR).—Fig. 136.6. *P. jurassicus; fore wing, X1.5 (Evans, 1956).

Palaeonitodes Martynov, 1937a, p. 166 [*P. shabarovi; OD]. Fore wing triangular; costal indentation weak; SC without branches; cross-vein m-cua long; basal median cell divided by crossveins (not shown in figure). Becker-Migdisova, 1949b; Evans, 1956. Jur., USSR (Asian RSFSR).—Fig. 136.5. *P. angarensis Becker-Migdisova & Wootton; fore wing, X1 (Becker-Migdisova & Wootton, 1965).

Phragmatococites Oppenheim, 1885, p. 333 [*P. damesi; OD]. Fore wing with costal margin straight or only slightly curved; nodal indentation weak. Evans, 1956; Becker-Migdisova & Wootton, 1965. Jur., USSR (Asian RSFSR).—Fig. 136.9. *P. damesi; fore wing, X2.5 (Becker-Migdisova, 1962b).

Pseudocossus Martynov, 1931d, p. 94 [*P. zemczunicovi; OD]. Fore wing triangular, with pronounced indentation of costal margin at nodal break; SC free from R+M at base, branched; RS arising from R near wing base; distinct bands of coloration. Hind wing rounded, much smaller than fore wing. Jur., USSR (Asian RSFSR, Kazakh).—Fig. 137.2. P. tugaiensis Becker-Migdisova & Wootton, Kazakh; a, fore and b, hind wings, X1.5 (Becker-Migdisova & Wootton, 1965).

Shurabocossus Becker-Migdisova, 1949b, p. 15 [*S. gigas; OD]. Hind wing similar to that of Plachutella, but M2 coalesced with M3+4 for a considerable interval before separating. Jur., USSR (Tadzhik).—Fig. 137.5. *S. gigas; hind wing, X1.5 (Becker-Migdisova, 1962b).

Suljuktaja Becker-Migdisova, 1949b, p. 17 [*S. turkestanensis; OD]. Hind wing as in Shurabocossus but with the coalesced parts of 1A and 2A at least as long as the free portions. Jur., USSR (Kirghiz).—Fig. 137.4. *S. turkestanensis; hind wing, X2 (Becker-Migdisova, 1962b).

Suljuktocossus Becker-Migdisova, 1949b, p. 8 [*S.
prosboleoides; OD}. Fore wing as in Phragma-
toectites but more nearly triangular and with apex nearly pointed. Jurr., USSR (Kirghiz).

---Fig. 137,1. *S. prosboleoides; fore wing, X1.5
(Becker-Migdisova, 1962b).

Turgaiella BECKER-MIGDISOVA & WOOTTON, 1965,
p. 70 [*T. pomerantsevae; OD}. Fore wing as in
Palaeontinodes, but wing oval and basal median
cell not divided by crossveins; crossvein m-cua
very short. Jurr., USSR (Kazakh).——Fig. 137,3.
*T. pomerantsevae; fore wing, X1.5 (Becker-
Migdisova & Wootton, 1965).

Family MESOGEREONIDAE
Tillyard, 1921b

[Mesogereonidae TILLYARD, 1921b, p. 272]

Fore wing slender, with well-developed
submarginal (ambient) vein and coriaceous
border; veins SC and R close together and to
costal margin; RS arising before fork of
M1+2; crossvein m4-cua near wing base and
almost longitudinal in position. Hind wing
little known, much smaller than fore wing.
Body structure unknown. EVANS, 1956;
Trias.

Mesogereon TILLYARD in TILLYARD & DUNSTAN,
1916, p. 33 [*M. neuropunctatum; OD}. RS
joined to M1 by a short crossvein; M3+4 forking
more basally than M1+2. Trias., Australia (New
South Wales).——Fig. 138,1a. M. superbum
TILLYARD; fore wing, X1.2 (Evans, 1956).
——Fig. 138,1b. M. shepherdii TILLYARD; hind wing,
X1.2 (Evans, 1956).

Triassogereon RIEK, 1976b, p. 808 [*T. distinctum;
OD}. Fore wing as in Mesogereon, but fork of
M3+4 close to fork of M1+2. Trias., South
Africa.——Fig. 138,2. *T. distinctum; fore wing,
X1.6 (Riek, 1976b).

Family PROSBOLIDAE
Handlirsch, 1906

[Prosbolidae HANLIRSCH, 1906b, p. 390] [*Sojaneuridae
BECKER-MIGDISOVA, 1946, p. 750]

Fore wing: distal part commonly mem-
branous; costal area broad; vein SC usually
forming an anterior branch submarginal to
costal margin and more rarely an indistinct,
short branch that parallels R+M and even
part of R; forks of M and CUA usually shallow.
Hind wing: costal margin usually deeply
excised near middle, convex basally and dis-
tally; anal region extended posteriorly. Body
structure unknown. EVANS, 1940, 1947, 1962b;
EVANS, 1956. Perm.—Trias.

Prosbole HANDLIRSCH, 1904b, p. 2 [*P. bursuta;
OD} [=Prosbolina HANDLIRSCH, 1937, p. 132
(type, Prosbolina biexcisa MARTYNOV, 1928b, p.
7)]. Fore wing: nodal break and nodal line pre-
sent; R, M, and CUA dividing at about same
level. Hind wing: M with at least 4 branches.
Perm., USSR (European and Asian RSFSR).
——Fig. 139,4a. *P. bursuta; fore wing, X1.6
(Evans, 1956).——Fig. 139,4b. P. reducta
MARTYNOV; fore wing, X3.5 (Becker-Migdisova,
1940).——Fig. 139,4c. P. breviata BECK-
ER-MIGDISOVA; hind wing, X2.6 (Becker-Migdisova,
1940).

Austroprosbole EVANS, 1943b, p. 181 [*A.
amalata; OD}. Fore wing with nodal break and nodal
line; RS curved posteriorly, touching M1+2 at
point of fork; CUA with a shallow, distal fork.
Perm., Australia (New South Wales).——Fig. 139,5.
*A. amalata; fore wing, X4 (Evans, 1943b).

Austroprosboloides RIEK, 1973, p. 527 [*A. van-
dijkii; OD}. Little-known genus; fore wing simi-
lar to Austroprosbole, but RS touching M1 beyond
fork and M3+4 connected to CUA distally. Riek,
1976a. Perm., South Africa.——Fig. 140,6. *A.
vandijkii; fore wing, X4 (Riek, 1973).

Beaufortiscus RIEK, 1976a, p. 779 [*B. dixi; OD}. Fore
wing very similar to that of Prosbole; anal
area with 3 veins. [Probably a synonym of *Prosbole.] Perm., South Africa.

Dictyoprosbole Martynov, 1935d, p. 443 [*D. membranosa; OD]. Fore wing membranous, covered with a network of crossveins; M and CUA dividing at level of origin of RS; RS, M, and CUA with branching as in *Orthoprosbole*. Evans, 1956. Perm., USSR (Asian RSFSR).—Fig. 139,6. *D. membranosa*; fore wing, X1.5 (Becker-Migdisova, 1960).

Evanscicada Becker-Migdisova, 1962b, p. 170, nom. subst. pro *Evansia* Becker-Migdisova, 1961c, p. 323, non Cambridge, 1900 [*Evansia speciosa* Becker-Migdisova, 1961c, p. 323; OD]. Fore wing narrow; basal part tegminous; RS arising at level of forking of M; numerous crossveins distally and indication of network near basal-central part of wing. Perm., USSR (Asian RSFSR).—Fig. 139,1. *E. speciosa*; fore wing, X2.5 (Becker-Migdisova, 1962b).

Falsia Becker-Migdisova, 1946, p. 750 [*F. chi-maera; OD]. Similar to *Sojanoneura*, but first
and second tarsal segments of same size.

Kaltanetta Becker-Migdisova, 1961c, p. 303 [*K. nigra; OD]. Fore wing slender, apex symmetrically curved; RS arising well before level of forking of M and of CUA; M with 3 branches. Hind wing slender distally; marginal indentation deep and wide; M with 3 branches. Perm., USSR (Asian RSFSR).—Fig. 139,2. *K. nigra; a, fore and b, hind wings, X6.5 (Becker-Migdisova, 1961c).

Kaltanopsis Becker-Migdisova, 1961c, p. 300 [*K. ornata; OD]. Fore wing similar to that of Kaltanetta, but costal margin strongly curved and R continuing in a straight line from its stem; longitudinal veins unusually thick. Perm., USSR (Asian RSFSR).—Fig. 139,3. *K. ornata; fore wing, X8 (Becker-Migdisova, 1961c).

Hexapoda

Permocicada Martynov, 1928b, p. 19 [*P. umbrota; OD] Becke r-Migdisova, 1940, p. 29 [*Permodiphterapis Becke r-Migdisova, 1940, p. 54 (type, *Permodiphterapisa angusta Martynov, 1935c, p. 15)]. Fore wing with weak venation; RS arising just before midwing; M and CUA forked at distal third of wing; R with several oblique branches to costal margin. Hind wing little known. Evans, 1956; Becke r-Migdisova, 1961c, 1962b. *P. integra Becke r-Migdisova; a, fore wing, X4; b, hind wing, X4; c, reconstruction, X3 (Becker-Migdisova, 1940).

Pervestigia Becker-Migdisova, 1961c, p. 318 [*P. verrucosa; OD]. Little-known fore wing; nodal break absent; M with 4 branches; CUA with small fork. [Family assignment doubtful.] Tilia lard, USSR (Kirghiz).—Fig. 140.7. *M. permiana; hind wing, X14 (Becker-Migdisova, 1962a).

Mitchelloneura Tillyard, 1921c, p. 414 [*M. permiana; OD]. Little-known hind wing; RS with irregular distal branches; M with M1, M2, and M3+4; CUA deeply forked. Evans, 1956. *M. permiana; hind wing, X3.2 (Tillyard, 1921c).

Orthoscytina Tillyard, 1926a, p. 9 [*O. mitchelli; OD]. Fore wing slender, oval; anal area long; RS arising just before midwing; M and CUA forked at distal third of wing; R with several oblique branches to costal margin. Hind wing little known. Evans, 1956; Riek, 1976a. *O. mitchelli, Australia; fore wing, X6 (Tillyard, 1926a).—Fig. 141.1a. *O. suchovi Becker-Migdisova, USSR; fore wing, X6 (Becker-Migdisova, 1961b).

Orthoprosbole Martynov, 1935d, p. 445 [*O. congesta; OD]. Fore wing strongly narrowed in distal half; RS and M with numerous branches; nodal break prominent. Hind wing little known; distal part elongate; M and CUA with numerous branches. Becker-Migdisova, 1961c. Perm., USSR (Asian RSFSR).—Fig. 140.4a. *O. triangularis (Martynov); fore wing, X2.5 (Becker-Migdisova, 1962b).—Fig. 140.4b. *O. congesta; hind wing, X3.5 (Becker-Migdisova, 1962b).

Orthoscytina Tillyard, 1926a, p. 9 [*O. mitchelli; OD]. Fore wing slender, oval; anal area long; RS arising just before midwing; M and CUA forked at distal third of wing; R with several oblique branches to costal margin. Hind wing little known. Evans, 1956; Riek, 1976a. *O. mitchelli, Australia; fore wing, X6 (Tillyard, 1926a).—Fig. 141.1a. *O. suchovi Becker-Migdisova, USSR; fore wing, X6 (Becker-Migdisova, 1961b).

Leptoprosbole Riek, 1976a, p. 812 [*L. lepida; OD]. Fore wing elongate; M with 8 terminal branches. [Family assignment doubtful.] Trias., South Africa.—Fig. 140.2. *L. lepida; fore wing, X1.5 (Riek, 1976b).

Mesocicada Becker-Migdisova, 1962a, p. 90 [*M. pictata; OD]. Hind wing: anterior margin with prominent bulge distally; R a straight continuation of stem R; M with 3 short branches. Perm., USSR (Asian RSFSR).—Fig. 139.7. *K. pictata; hind wing, X8.5 (Becker-Migdisova, 1962b).

Fig. 141. Prosbolidae (p. 220).

315 [*K. pictata; OD]. Hind wing: anterior margin with prominent bulge distally; R a straight continuation of stem R; M with 3 short branches. Perm., USSR (Asian RSFSR).—Fig. 139.7. *K. pictata; hind wing, X8.5 (Becker-Migdisova, 1962b).

Orthoscytina Tillyard, 1926a, p. 9 [*O. mitchelli; OD]. Fore wing slender, oval; anal area long; RS arising just before midwing; M and CUA forked at distal third of wing; R with several oblique branches to costal margin. Hind wing little known. Evans, 1956; Riek, 1976a. *O. mitchelli, Australia; fore wing, X6 (Tillyard, 1926a).—Fig. 141.1a. *O. suchovi Becker-Migdisova, USSR; fore wing, X6 (Becker-Migdisova, 1961b).

Permodiphthera Tillyard, 1926a, p. 24 [*P. robusta; OD]. Little-known genus. Fore wing with RS unbranched; branches of M apparently strongly curved. Perm., Australia (New South Wales).—Fig. 140.5. *P. robusta; fore wing, X6 (Evans, 1956).

Pervestigia Becker-Migdisova, 1961c, p. 318 [*P. verrucosa; OD]. Little-known fore wing; nodal break absent; M with 4 branches; CUA with small fork. [Family assignment doubtful.] Trias., USSR (Kirghiz).—Fig. 140.1. *M. verrucosa; fore wing, X14 (Becker-Migdisova, 1962a).
Hemiptera—Homoptera

221

FIG. 142. Cicadoprosbolidae, Tettigarctidae, and Cicadidae (p. 221–222).

Cicadoprosbole

---...

CUP

Eotettigarcta

basally and a posterior branch coalesced with R + M and R. Hind wing: front margin with shallow indentation and convex area. Body structure: stridulatory organ present in both sexes. [This family is known by only one living genus, Tettigarcta, occurring in Australia. There is a reliable Tertiary record of the family, but the several Mesozoic genera that have been placed here are very poorly known and are assigned in this account to the category, family uncertain.] EVANS, 1956; WHALLEY, 1983.

Family CICADOPROSBOLIDAE

Evans, 1956

[Cicadoprosbolidae Evans, 1956, p. 222]

Apparently related to Prosbolidae. Fore wing with vein M forking at midwing; RS arising before midwing; short, supplementary veins between branches of R; nodal line distinct, crossing RS remote from origin of RS and crossing M beyond its first fork. Trias.

Cicadoprosbole BECKER-MIGDISOVA, 1947, p. 445

[*C. sogatensis; OD]. Hind wing: anterior margin without distal hump; M with 3 branches; CUA with narrow fork distally. Perm., USSR (Asian RSFSR). —Fig. 140,8. *P. vederis; hind wing, X3 (Becker-Migdisova, 1961c).

Prosobolomorpha Riek, 1974c, p. 21 [*P. clara; OD]. Fore wing as in Austroprosbole, but RS not coalesced with M; M3+4 forking at its point of origin. [Probably a synonym of Austroprosbole.] Trias, South Africa.

Prosoboloneura BECKER-MIGDISOVA, 1961c, p. 305

[*P. colorata; OD]. Fore wing shaped as in Sojanoneura, but CUA more deeply forked and M with 3 branches. Perm., USSR (Asian RSFSR). —Fig. 140,3. P. kondonensis BECKER-MIGDISOVA; fore wing, X8 (Becker-Migdisova, 1961c).

Sojanoneura MARTYNOV, 1928b, p. 22 [*S. edemskii; SD BECKER-MIGDISOVA, 1940, p. 44]. Fore wing oval, bluntly rounded; RS arising nearer wing apex than in Dictyoprosbole; M with 3 or 4 branches. Hind wing little known, with only a slight bulging of the costal margin basally; M with 2 or 3 branches. MARTYNOV, 1935c; EVANS, 1956. Perm., USSR (European and Asian RSFSR). —Fig. 140,9. S. stigmata MARTYNOV; fore wing, X4 (Becker-Migdisova, 1962b).

Family TETTIGARCTIDAE

Distant, 1905

[Tettigarctidae Distant, 1905, p. 280]

Fore wing with transparent membranous area; costa broadly sclerotized; apical border narrow; venation much as in Cicadidae; vein SC with a short, hook-shaped anterior branch basally and a posterior branch coalesced with R + M and R. Hind wing: front margin with shallow indentation and convex area. Body structure: stridulatory organ present in both sexes. [This family is known by only one living genus, Tettigarcta, occurring in Australia. There is a reliable Tertiary record of the family, but the several Mesozoic genera that have been placed here are very poorly known and are assigned in this account to the category, family uncertain.] EVANS, 1956; WHALLEY, 1983. Eoc.–Holo.

Tettigarcta WHITE, 1845, p. 412. Holo.

Eotettigarcta ZEUNER, 1944a, p. 110 [*E. scotica; OD]. Hind wing similar to that of Tettigarcta (recent), but indentation of costal margin much longer; origin of posterior branch of RS more remote from base of wing. Fore wing unknown.
Family CICADIDAE Leach, 1815
[Cicadidae Leach, 1815, p. 124]

Fore wing with costal area reduced to a narrow strip or absent; apical parts of distal forks of veins aligned to form a submarginal vein along the outer and hind margins; anal area narrow and short. Hind wing much smaller than fore wing; anterior margin smooth; submarginal vein formed as in fore wing; anal-jugal area slightly broader than in fore wing. Stridulatory organs (tymbals) present on dorsum of first abdominal segment, at least in males. [A fragmented specimen from the Eocene of France was described as *beauchampi* by Picon (1940a); this species was placed in the existing genus *Chezmiticata* Stål (=Ribana Distant). However, the fossil does not show enough structural detail for family assignment. See also *Liassociacida* under Homoptera, family Uncertain.] Cooper 1941; Whalley, 1983. Paleoc.–Holo.

Cicada Linné, 1758, p. 434. Cooper, 1941; Whalley, 1983. Oligo., USA (Colorado); Mio., Europe (Yugoslavia, Germany)–Holo.

Davispia Cooper, 1941, p. 288 [*D. bearcreekensis*; OD]. Similar to *Tibicen*: cell cu2a broad but slightly more than twice as long as wide; apical margin of cell cu2a evenly and shallowly curving into cell cu2a. Whalley, 1983. Paleoc., USA (Montana).—Fig. 142.2. *D. bearcreekensis*; forewing, ×1.0 (Cooper, 1941).

Lithocicada Cockerell, 1906c, p. 457 [*L. perita*; OD]. Similar to *Cicada*, but cubital cell of fore wing with pointed or narrowly truncate apex. Cooper, 1941. Oligo., USA (Colorado).

Platyptera Uhler, 1888, p. 23. Cockerell, 1908a; Cooper, 1941. Oligo., USA (Colorado)–Holo.

Tibicen Latreille, 1825, p. 426. Scudder, 1892; Cooper, 1941. Oligo., USA (Colorado)–Holo.

Tympocicada Becker-Migdisova, 1954, p. 799 [*T. gorbunovi*; OD]. Fore wing similar to that of *Cosmatopalpita* (recent), but CUA with longer anterior branch; cell between R and RS slightly broader. Mio., USSR (Asian RSFSR).—Fig. 142.1. *T. gorbunovi*; forewing, ×1.4 (Becker-Migdisova, 1954).

Family SCYTINOPTERIDAE

Handlirsch, 1906b

[Scytinopteridae Handlirsch, 1906b, p. 391]

Fore wing tegminous; costal margin commonly thickened basally; veins usually thin; vein SC obsolescent; branches of M and CUA short; crossveins few; only a few closed cells between R, M, and CUA. Hind wing with costal margin with at most a shallow concavity at base of wing; RS unbranched; M and CUA distally branched. Body little known, apparently as in Cicadellidae. Perm.–Trias.

Scytinoptera Handlirsch, 1904b, p. 3 [*S. kokeni*; OD] [=*Anomoscyta* Martynov, 1928b, p. 34 (type, *A. reducata*); *Permomixius* Martynov, 1928b, p. 36 (type, *P. kazanensis*); *Scytinoptera Handlirsch, 1937, p. 115 (type, *Scytinoptera curta* Zalesky, 1929, p. 28)]. Fore wing with posterior branch of SC short, forming a sharp curve at level of R + M, or absent; M and CUA with distal forks, forming series of small, marginal cells, usually subequal; anal-jugal region strongly widened. Hind wing with costal margin with conspicuous but gradual convexity near base; no prominent marginal concavity or excision. Pronotum with lateral projections. [Riek (1976b) has described a late Triassic species (*distorta* in the genus *Scytinoptera*, but there is really no evidence to justify that placement.) Perm., USSR (European and Asian RSFSR).—Fig. 143.5a,b. *S. kaltanica* Becker-Migdisova; a, fore and b, hind wings, ×10 (Becker-Migdisova, 1962b).—Fig. 143.5c. *S. picturata* Becker-Migdisova; forewing, ×8 (Becker-Migdisova, 1961c).

Anaprosbole Becker-Migdisova, 1960, p. 28 [*A. ivensis*; OD]. Fore wing with costal margin relatively broad basally; RS arising well beyond midwing; branches of M1 + 2 much longer than branches of M3 + 4; CUA with 3 terminal branches. [Family assignment uncertain.] Perm., USSR (European RSFSR).—Fig. 143.6. *A. ivensis*; forewing, ×5.0 (Becker-Migdisova, 1960).

Anomalouscyma Davis, 1942, p. 112 [*A. metapteryx*; OD]. Hind wing with costal margin with distinct but gentle concavity; SC short but distinct; anal area extensive. [Family position uncertain.] Perm., Australia (New South Wales).—Fig. 143.7. *A. metapteryx*; hindwing, ×6.5 (Davis, 1942).

Ellipposcelis Tillyard, 1926a, p. 16 [*E. ovalis*; OD]. Fore wing oval, with apex evenly rounded; costal area (between C and R) broad; R dichotomously forked; M with 5 branches; CUA forked. Perm., Australia (New South Wales).—Fig. 143.1. *E. ovalis*; forewing, ×8.2 (Tillyard, 1926a).

Homoloscytina Tillyard, 1926a, p. 16 [*H. plana*; OD]. Fore wing as in *Anaprosbole*, but CUA with only 2 terminal branches and connected to M by a crossvein; apex of wing bluntly rounded. Evans, 1949b. Trias., Australia (New South Wales).—Fig. 143.4. *H. plana*; forewing, ×8 (Evans, 1943b).
Ingruo Becker-Migdisova, 1960, p. 19 [*I. lanceolata; OD*]. Fore wing very narrow; posterior branch of SC short, merging with R; CUA dividing at level of origin of RS; fork of CUA large. [Family assignment doubtful]. Perm., USSR (European RSFSR).—**Fig. 143, 2. *I. lanceolata; fore wing, X16 (Becker-Migdisova, 1960).**

Ivaia Becker-Migdisova, 1960, p. 25 [*I. indistincta; OD*]. Fore wing moderately broad; costal area (between C and R) broad; R straight; CUA in brief contact with M, then diverging; M apparently unbranched. Perm., USSR (European RSFSR).—**Fig. 143, 3a. *I. procopoides Becker-Migdisova; fore wing, X6.5 (Becker-Migdisova, 1960).**—**Fig. 143, 3b. *I. indistincta; fore wing, X8 (Becker-Migdisova, 1962b).**

Kaltanospes Becker-Migdisova, 1961c, p. 344 [*K. kuznetskiensis; OD*]. Fore wing as in *Ingruo*, but CUA dividing much further distally of origin of RS. Perm., USSR (Asian RSFSR).—**Fig. 144, 6. *K. kuznetskiensis; fore wing and body, X10 (Becker-Migdisova, 1961c).**

Mesonirvana Evans, 1956, p. 191 [*M. abrupta; OD*]. Fore wing: R with several branches; cross-vein m-cu joined to CUA1; RS unbranched. Trias., Australia (Queensland).—**Fig. 144, 7. *M. abrupta; fore wing, X5 (Evans, 1956).**

Mesothymbris Evans, 1956, p. 191 [*M. perkinsi; OD*].
OD]. Fore wing as in *Triassoscytinopsis*, but M1 + 2 forming almost straight continuation of M; M3 + 4 bent towards CUA; crossvein m-cu joined to CUA. *Trias.*, Australia (Queensland).

—Fig. 144,3. *M. perkinsi*; fore wing, ×6 (Evans, 1956).

Permododa BECKER-MIGDISOVA, 1961c, p. 347 [*P. membracoides; OD*]. Fore wing very slender; several closed cells between RS and M and between M and CUA. Perm., USSR (Asian RSFSR).

—Fig. 144,2. *P. membracoides*; fore wing, ×10 (Becker-Migdisova, 1961c).

Permojassus TILLYARD, 1926a, p. 7 [*P. australis; OD*] [=*Permojassula* HANDELIRSCH, 1937, p. 115, obj.] Fore wing similar to that of *Homaloscytina*, but anal area apparently much narrower. Evans, 1956. Perm., Australia (New South Wales).

—Fig. 144,8. *P. australis*; fore wing, ×8 (Evans, 1956).

Permolamproptera BECKER-MIGDISOVA, 1961c, p. 340 [*P. granidis; OD*]. Hind wing similar to that of *Scytinoptera* but with R2 curved distally; anal area extended. Perm., USSR (Asian RSFSR).

—Fig. 144,9. *P. granidis*; hind wing, ×5.7 (Becker-Migdisova, 1961c).

Sarbaloptera BECKER-MIGDISOVA, 1961c, p. 328 [*S. sarbalensis; OD*]. Fore wing with asymmetrical apex; costal area (between C and R) very broad. Perm., USSR (Asian RSFSR).—Fig. 144,11. *S. sarbalensis*; fore wing, ×6.5 (Becker-Migdisova, 1961c).

Stenoscytina TILLYARD, 1926a, p. 15 [*S. aus-
Hemiptera—Homoptera

Mesojassoides traliensis; OD. Little-known genus. Fore wing narrow; M with 4 branches; CUA curving abruptly posteriorly after diverging from M. [Family assignment uncertain.] Perm., Australia (New South Wales).—Fig. 144,4. *S. australiensis*; fore wing, ×6.5 (Tillyard, 1926a).

Surijokovia Becker-Migdisova, 1961c, p. 342 [*S. lata*; OD]. Little-known fore wing; posterior branch of SC long, mostly parallel to R, then diverging anteriorly to termination on costal margin; RS apparently unbranched. Perm., USSR (Asian RSFSR).—Fig. 144,10. *S. lata*; fore wing, ×16 (Becker-Migdisova, 1961c).

Triassoscelis Evans, 1956, p. 192 [*T. anomala*; OD]. Fore wing as in *Mesonirvana*, but RS forked. Trias., Australia (Queensland).—Fig. 144,5. *T. anomala*; fore wing, ×5 (Evans, 1956).

Triassoscytina Evans, 1956, p. 179 [*T. incompleta*; OD]. Fore wing as in *Homalocyctina*, but M forking just beyond level of origin of RS. [Family position uncertain.] Trias., Australia (Queensland).

Triassoscytonopsis Evans, 1956, p. 190 [*T. stenulata*; OD]. Fore wing with apex evenly rounded; R with at least 4 parallel branches distally; RS with from 2 to 4 branches; M with 4 branches. Trias., Australia (Queensland).—Fig. 144,1. *T. aberrans* Evans; fore wing, ×6 (Evans, 1956).

Tychtoscytina Becker-Migdisova, 1952, p. 179 [*T. kuznetskiensis*; OD]. Fore wing little known, with wide costal area; R1 straight. Perm., USSR (Asian RSFSR).

Family BITURRITIIDAE

Metcalf, 1951

Biturritidae Metcalf, 1951, p. 11

Fore wing sclerotized; no marginal border; vein M unbranched; radial cell divided by a crossvein. Hind wing nearly of uniform width, with very slight concavity of costal margin. *Trias.*—*Holo.*

Absoluta Becker-Migdisova, 1962a, p. 92 [*A. distincta*; OD]. Hind wing with base of CUA nearly or completely coalesced with stem of M. [Family assignment doubtful.] *Trias.*, USSR (Kirghiz).—Fig. 145,1. *A. distincta*; hind wing, ×12 (Becker-Migdisova, 1962b).

Family CICADELLIDAE

Latreille, 1802

Cicadellidae Latreille, 1802a, p. 2571 [=Jasscopidae Hamilton, 1971, p. 943]

Fore wing tegminous; several to many closed cells; CUA usually with wide distal fork. Hind wing narrowed distally; submarginal vein conspicuous, with relatively wide margin; ano-jugal area broad. *Trias.*—*Holo.*

Cicadella Duméril, 1806, p. 266. *Bervort, 1910; Cockerell, 1920c; Becker-Migdisova, 1951. Eoc., USA (Colorado); Oligo., Europe (Baltic); Mio., USSR (European RSFSR)—*Holo.*

Acocephalites Meunier, 1904e, p. 119 [*A. bredini*; OD]. Little-known genus, based on fore wing with strongly arched costal margin and a venation similar to that of *Mesojassoides*; M with distal fork. *Jur.*, Europe (Spain).—Fig. 145,5. *A. bredini*; fore wing, ×14 (Handlirsch, 1907).

Agallia Curtis, 1833, p. 193. *Scudder, 1890. Oligo., USA (Colorado)—*Holo.*

Aphrodes Curtis, 1833, p. 193. *Scudder, 1890. Oligo., USA (Colorado)—*Holo.*

Fig. 145. Biturritiidae and Cicadellidae (p. 225–227).
Hexapoda

226

Eurymelidium Tillyard, 1919c, p. 884 [*E. australae; OD]. SC apparently absent; M1+2 anastomosed with part of RS. Evans, 1956. Trias., Australia (Queensland).—Fig. 145,3. *E. australae; fore wing, X10 (Evans, 1956).

Euscelis Brulle, 1832, p. 109. Statz, 1950a; Pierce, 1963. Oligo., Europe (Germany); Mio., USA (California)—Holo.

Gypona Germar, 1821, p. 73. [Generic assignment of fossil doubtful.] Scudder, 1890. Oligo., USA (Colorado)—Holo.

Gyponites Statz, 1950a, p. 10 [*G. pronota; OD]. Little-known cicadellid; head short and broad; ocelli large; pronotum long, with parallel sides; scutellum shorter than pronotum. Oligo., Europe (Germany).

Idiocerus Lewis, 1834, p. 47. Statz, 1950a. Oligo., Europe (Germany)—Holo.

Jascus Fabricius, 1803, p. 85. Bervoets, 1910; Meunier, 1920c; Statz, 1950a. Eoc., Europe (France); Oligo., Europe (Baltric, Germany)—Holo.

Jassites Handlirsch, 1907, p. 642 [*Cicada punctatus Brodie, 1845, p. 33; OD]. Little-known genus, based on fore wing. CUA with very short branches. Evans, 1956. Jur., England.—Fig. 145,2. *J. punctatus; fore wing, X5.5 (Evans, 1956).

Jassopsis Scudder, 1890, p. 312 [*J. evidens; OD]. Little-known genus, similar to Thamnotettix. Scutellum not more than half the length of thorax. Oligo., USA (Colorado).

Jassus Fabricius, 1803, p. 85. Bervoets, 1910; Meunier, 1920c; Piton, 1940a; Statz, 1950a. Eoc., Europe (France); Oligo., Europe (Baltric, Germany)—Holo.

Lavrushinia Cockerell, 1925g, p. 10 [*L. elegans; OD]. Little-known genus, based on long and narrow fore wing; marginal vein very close to wing margin. Mio., USSR (Asian RSFSR).

Maleoajassus Zeuner, 1941a, p. 90 [*M. primitius; OD]. Fore wing as in Stonaslus (recent), but RS smoothly curved, not bent at junction with M1; M almost straight. Eoc., Scotland.

Mesojassoides Oman, 1937, p. 38 [*M. gigantea;
OD]. Fore wing as in Coelidia but with additional crossveins; M unbranched. Cret., USA (Colorado).—Fig. 145, 4. *M. gigantea; fore wing, X 4.5 (Evans, 1956).

Miochlorotettix Carpenter, herein [*M. gibroni Pierce, 1963, p. 73; OD]. Similar to Chlorotettix (recent), but prothorax strongly arched forward and scutellum extending back between wings as far as forwards. The original generic name, Miochlorotettix, was a nomen nudum (Pierce, 1963.) Mio., USA (California).

Miomesamia Pierce, 1963, p. 81 [*M. juliae; OD]. Similar to Uloph (recent). Face wide, eyes prominent; antennae at sides of front sutures, opposite outer corners of eyes. Mio., USA (California).

Oligogypona Statz, 1950a, p. 8 [*O. hauppti; OD]. Similar to Gypona, but head broad, somewhat narrower than pronotum; costal margin of fore wing strongly arched. Oligo., Europe (Germany).

Oligodiocerus Statz, 1950a, p. 15 [*O. prontumalis; OD]. Similar to Idiocerus but with richer venation and unmarked fore wing. Oligo., Europe (Germany).

Oligopenthimia Statz, 1950a, p. 9 [*O. ovalis; OD]. Similar to Penthimia (recent). Head short, as wide as pronotum; scutellum long, reaching to the middle of the abdomen. Oligo., Europe (Germany).

Protochlorotettix Pierce, 1963, p. 78 [*P. calico; OD]. Similar to Chlorotettix (recent), but with last sternum completely divided. Mio., USA (California).

Tettigella China & Fenning, 1945, p. 711. Scudder, 1890; Statz, 1950a. Eoc., USA (Wyoming); Oligo., USA (Colorado), Europe (Germany)—Holo.

Thamnotettix Zettlerstedt, 1838, p. 292. Cockrell, 1920c, 1924a, 1925a; Statz, 1950a. Eoc., USA (Colorado); Oligo., Europe (Germany); Mio., USA (Colorado)—Holo.

Family EURYMELIDAE

Amyot & Serville, 1843

(Eurymelidae Amyot & Serville, 1843, p. 554)

Fore wing hyaline or opaque and coriaceous; venation often reticulate; vein RS absent; M1 + 2 retained as separate vein, extending to apex; M3 + 4 usually unbranched; CUA forked. Trias.—Holo.

Eurymela Le Peletier & Serville, 1828, p. 603. Holo.

Mesojassus Tillyard in Tillyard & Dunstan, 1916, p. 34 [*M. ipsiciensis; OD]. Little-known genus, based on fore wing. Fork of CUA marginal, very shallow. Evans, 1956. Trias., Australia (Queensland).—Fig. 146, 1. *M. ipsiciensis; fore wing, X 8.4 (Evans, 1956).

Family MEMBRACIDAE

Rafinesque, 1815

(Membracidae Rafinesque, 1815, p. 121)

Fore wing usually membranous, except for basal region; claval distinct, claval suture along vein 1A; ends of veins usually forming a scalloped submarginal line, the terminal marginal membrane (limbus) extending beyond the veins; veins usually clear and marked by punctures; M either free basally or coalesced in part with stem of R or CUA; cells usually irregular; venation highly diverse. Hind wing well developed, but usually shorter than fore wing; limbus usually present; venation usually similar to that of fore wing. Pronotum extensively developed, often prolonged posteriorly and concealing the scutellum, the wings, and even the entire abdomen; antennae minute, bristle-like; tarsi with 3 segments. Trias.—Holo.

This is a very large and diversified family. Fossil forms, which are usually known only from wings, are often difficult to classify because of the variability in the venation, especially that of the fore wings. Much difference of opinion exists among specialists in Homoptera about the generic lines. The taxonomic groups used here are essentially those employed in the General Catalogue of the Homoptera (Metcalfe & Wade, 1966).

Membracis Fabricius, 1775, p. 675. Holo.

Ceresopsis Becker-Migdisova, 1958, p. 66 [*C. costalis; OD]. Fore wing broader than in Darniopsis, with conspicuous sclerotized area between costal margin and R + M basally; 3 apical cells. Trias., USSR (Kirghiz).—Fig. 146, 4. *C. costalis; fore wing, X 10 (Becker-Migdisova, 1958).

Darniopsis Becker-Migdisova, 1958, p. 65. [*D. tragopea; OD]. Fore wing elongate, with very wide limbus; costal margin only slightly convex; 4 apical cells; M and CUA with common stem; anal area large, triangular. Trias., USSR (Kirghiz).—Fig. 146, 3. *D. tragopea; fore wing, X 10 (Becker-Migdisova, 1958).

Maguvioopsis Becker-Migdisova, 1953c, p. 463 [*M. kotchnevi; OD]. Fore wing with costal-
distal margin broadly curved; anterior half of wing sclerotized; R and M not coalesced with CUA; M unbranched, straight. Jur., USSR (Asian RSFSR).—Fig. 146,5. *M. kotrievi; fore wing, X16 (Becker-Migdisova, 1953c).

Minuta Becker-Migdisova, 1958, p. 64 [*M. heteropterata; OD]. Little-known genus; fore wing short, sclerotized from midwing to front margin; R, M, and CUA merged with CUP basally; CUA long; no apical cells. Trias., USSR (Kirghiz).—Fig. 146,6. *M. heteropterata; fore wing, X20 (Becker-Migdisova, 1958).

Sphongophoriella Becker-Migdisova, 1958, p. 63 [*S. reticulata; OD]. Fore wing elongate, reticulate; M and CUA not coalesced to form a common stem; venation reduced; cells elongate-oval; anal area narrow, 3 apical cells. Trias., USSR (Kirghiz).—Fig. 146,2. *S. reticulata; fore wing, X34 (Becker-Migdisova, 1958).

Family AETALIONIDAE Spinola, 1850

[Aetalionidae Spinola, 1850, p. 53]

Similar to Cicadellidae; fore wing with vein RS absent; M1 + 2 (or M1 and M2) extending to apex of wing; M3 + 4 usually forked; CUA unbranched. Hind wing with RS absent. Oligo.—Holo.

Aetalion LATREILLE, 1810, p. 263. STATZ, 1950a. Oligo., Europe (Germany)—Holo.

Family EOSCARTERELLIDAE

Evans, 1956

[Eoscarterellidae Evans, 1956, p. 220]

Fore wing with vein RS arising from R about one-third wing length from base; R with at least 2 branches; CUA separate from M. Perm.—Trias.

Eoscarterella Evans, 1956, p. 220 [*E. media; OD] ([=Prosbolopites Becker-Migdisova, 1960, p. 90 (type, P. tillyardi)]. Fore wing regimens and rugose, broadest in distal half; RS and M parallel for most of their lengths; M with 4 branches. EVANS, 1961. Trias., Australia (Queensland).—Fig. 147,3. *E. media; fore wing, X5.5 (Evans, 1956).

Belmontocarta Evans, 1958, p. 112 [*B. perfecta; OD]. Fore wing with SC very short, curving distally towards R + M; M1 and M2 longer than M3 and M4; CUA curved and joined to base of M by short crossvein. Perm., Australia (New South Wales).—Fig. 147,1. *B. perfecta; fore wing, X4.5 (Evans, 1958).

Eoscartoides Evans, 1956, p. 220 [*E. bryani; OD]. Fore wing with complete marginal border; R and M arched basally; M1 + 2 forked. EvANS, 1961. Trias., Australia (Queensland).—Fig. 147,2. *E. bryani; fore wing, X4.5 (Evans, 1961).

Family PROCERCOPIDAE

Handlirsch, 1906

[Procercopidae Handlirsch, 1906b, p. 500]

Fore wing slender, at least three times as long as wide; vein RS arising in basal third of wing; M and CUA branching in distal third of wing, their branches short. Hind wing very little known. Evans, 1956. Trias.—Jur.

Procercopis Handlirsch, 1906b, p. 500 [*P. alu-tacea; SD Becker-Migdisova, 1962b, p. 180]. Fore wing elongate, about 4 times as long as broad; M with at least 3 branches; several crossveins in distal part of wing. Trias., USSR (Kirghiz); Jur. Europe (Germany).—Fig. 148,3. P. longipennis Becker-Migdisova, Trias.; fore wing, X4 (Becker-Migdisova, 1962b).

Procercopina Martynov, 1937a, p. 99 [*P. aisi-tica; OD]. Fore wing as in Procercopis but relatively broader; only one crossvein between adjacent veins. EvANS, 1956. Jur., USSR (Kirghiz).—Fig. 148,5. *P. asiatica; fore wing, X4.6 (Becker-Migdisova, 1962b).
Family **DYSMORPHOPTILIDAE**
Handlirsch, 1906

[Dysmorphoptilidae Handlirsch, 1906b, p. 492]

Tegmen of irregular form, abruptly narrowed distally, strongly sclerotized; vein SC apparently fused with R; several short branches from R to costal margin; RS arising before midwing. Evans, 1956. *Trias.–Jur.*

Dysmorphoptila Handlirsch, 1906b, p. 492
[*Belostoma liasina* Giebel, 1856, p. 371; OD]. Broad portion of tegmen extending only to about midwing; M with only one distal fork. Evans, 1956. *Jur.*, Europe (Germany).
Dysmorphoptiloides **Evans**, 1956, p. 218 [*D. elongata*; OD]. Tegmen as in *Dysmorphoptila*, but broad portion extending nearer to apex; M with 2 distal forks. **Riek**, 1974b. *Trias.*, Australia (Queensland), South Africa.—**Fig. 149,9. *D. elongata*; tegmen, X3.4 (Evans, 1956).

Tennentsia **Riek**, 1976b, p. 813 [*Dysmorphoptiloides protuberans* **Riek**, 1974c, p. 22; OD]. Fore wing similar to that of *Dysmorphoptiloides*, but SC with several distal branches and RS unbranched; M and CU apparently connected basally by a crossvein. *Trias.*, South Africa.—**Fig. 149,10. *T. protuberans*; fore wing, X2.3 (Riek, 1976b).
Family CERCOPIDAE
Westwood, 1838

[Cercopidae Westwood, 1838, p. 39]

Head narrower than pronotum, usually as wide as anterior margin of scutellum; ocelli on disc of crown, each at posterior end of sulcus; length and width of eyes almost equal; antennae originating in cavities below anterior margin of head; postclypeus commonly protuberant. Fore wings usually coriaceous. [The Aphrophoridae are included here, as a subfamily, because of the difficulty of recognizing the distinguishing features in the fossils.] Evans, 1956. Trias.—Holo.

Cercopis Fabricius, 1775, p. 688. [Numerous extinct species from Tertiary deposits and described before 1900 were placed in the genus, but their assignment to Cercopis has not been generally accepted (see Handlirsch, 1907, p. 1072–1074). However, a few, well-preserved specimens appear to justify at least tentative placement in the genus.] Scudder, 1890; Cockerell, 1920a, 1927b; Evans, 1956. Eoc., Canada (British Columbia), USA (Colorado, Wyoming), USSR (Asian RSFSR)—Holo.

Alortrifidus Evans, 1956, p. 216 [*A. interruptus; OD]. Fore wing as in Trifidella, but costal margin arching basally and RS arising further distally. Trias., Australia (Queensland).—Fig. 148,10. *A. interruptus; fore wing, X10 (Evans, 1956).

Aphrophora Germar, 1821, p. 48. Cockerell, 1922f, 1925g; Pongrác, 1928; Piton, 1936c; Théobald, 1937a; Becker-Migidissova, 1964. Eoc., Europe (Baltic, France), Canada (British Columbia), Oligo., England, Europe (France); Mio., USSR (Asian RSFSR)—Holo.

Cercopites Scudder, 1890, p. 316 [*C. calliscens Scudder, 1890, p. 316; SD Carpenter, herein]. Head relatively small; thorax hexagonal; fore wing more than twice as long as broad. Eoc., USA (Wyoming), Canada (British Columbia).

Clasoptera Germar, 1839, p. 187. Scudder, 1890. Oligo., USA (Colorado)—Holo.

Dawsonites Scudder, 1895b, p. 18 [*D. veter; OD]. Similar to Palecphora, but RS arising at midwing. Mio., Canada (British Columbia).

Eoecercopidium Zeuner, 1944a, p. 116, nom. subst. pro Eocercopis Zeuner, 1941a, p. 88, non Handlirsch, 1939 [*Eocercopis maculata Zeuner, 1941a, p. 88; OD]. Fore wing similar to that of Aphrophora, but R strongly bent anteriorly near base; preradial part of wing very wide, crossed by pectinate branches from R; radial-median area very broad; M separating from CUA very near to base. Eoc., Scotland.—Fig. 148,4. *E. maculata (Zeuner); fore wing, X6.4 (Zeuner, 1944a).

Megacercopis Cockerell, 1925g, p. 9 [*M. optima; OD]. Little-known fore wing with venation similar to that of Stenecephora, but apex much more pointed. Mio., USSR (Asian RSFSR).—Fig. 148,2. *M. optima; fore wing, X2.5 (Cockerell, 1925g).

Palaeoptyisma Scudder, 1895b, p. 21 [*P. venosa; OD]. Little-known fore wing, related to Aphrophora but very slender. Eoc., Canada (British Columbia).

Palaphrodes Scudder, 1890, p. 333 [*P. irregularis Scudder, 1890, p. 333; SD Carpenter, herein]. Fore wing as in Cercopis, but head very obtruse and rounded in front, narrower distally than thorax. Cockerell, 1908k. Oligo., USA (Colorado).

Palecphora Scudder, 1890, p. 324 [*P. communis Scudder, 1890, p. 324; SD Carpenter, herein]. Fore wing longer and more slender than that of Palaphrodes; costal margin less arched. Cockerell, 1908k. Oligo., USA (Colorado).

Petrolystra Scudder, 1878a, p. 530 [*P. gigantea Scudder, 1878a, p. 530; SD Carpenter, herein]. Large insects; head large, flat dorsally, twice as broad as long, the front broadly convex; scutellum very small, about half as long as thorax. Scudder, 1890. Oligo., USA (Colorado).

Pytsmaphora Scudder, 1895b, p. 21 [*P. fletcheri; OD]. Fore wing as in Palaeoptyisma but with costal margin straighter. Eoc., Canada (British Columbia).

Stenecephora Scudder, 1895b, p. 17 [*S. punctulata; OD]. Fore wing with very broad apex, slender clavus; RS arising near base. Eoc., Canada (British Columbia).

Stenolocris Scudder, 1895b, p. 19 [*S. venosa; OD]. Little-known fore wing, with very strong costal vein and RS arising at wing base. [Family assignment doubtful.] Mio., Canada (British Columbia).

Triasoscarta Tillyard, 1919c, p. 874 [*T. subcostalis; OD]. Little-known genus, based on incomplete tegmen. SC apparently absent; R long, nearly parallel with costal margin and connected to costal margin by about 8 subequal crossveins. [Originally placed in the Scytinopteridae but transferred to Cercopidae by Evans (1956).] Trias., Australia (Queensland).—Fig. 148,7. *T. subcostalis; fore wing, X6 (Evans, 1956).

Trifidella Evans, 1956, p. 215 [*T. perfecta; OD].
Fore wing tegminous, coarsely rugose; several long veins between wing margin and R; M and CUA fused basally; CUA forked. Trias., Australia (Queensland).—Fig. 148,6. *T. perfecta; fore wing, X10 (Evans, 1961).

Family IPSVICIIDAE Tillyard, 1919
[IPsviciidae Tillyard, 1919c, p. 878] [*Stenoviciidae Evans, 1956, p. 205]

Fore wing uniformly sclerotized; costal margin thick and flattened; vein R consisting usually of R and less commonly of RS; R joined to M by a prominent crossvein; M and CUA usually arising from a common basal stem; M typically branched; CUA and CUP apparently unbranched. Hind wing (known only in Ipsvicia) strongly curved anteriorly in distal area; CUA branched. Body unknown. Perm.—Trias.

The systematic position of this family is obscure. Tillyard (1919c) originally assigned it to the Homoptera, close to the extinct family Syntonopteridae, but later (1926d) transferred it to the Fulgoroidea of the Perm.-Trias. Evans, 1956, p. 215. Tegmen with rounded apex; R nearly straight, with several parallel branches to costal margin; CUA unbranched, merging with M basally. Trias., USSR (Kirghiz).—Fig. 149,5. *I. asiatica; tegmen, X6.5 (Becker-Migdisova, 1962b).

Ipsvicidella Becker-Migdisova, 1962a, p. 100 [*I. asiatica; OD]. Tegmen with rounded apex; R nearly straight, with several parallel branches to costal margin; CUA unbranched, merging with M basally. Trias., USSR (Kirghiz).—Fig. 149,5. *I. asiatica; tegmen, X6.5 (Becker-Migdisova, 1962b).

Palaeovicia Evans, 1943b, p. 189 [*P. incerta; OD]. Tegmen: RS short; M with 3 branches. Evans, 1956; Becker-Migdisova, 1962b. Perm., Australia (New South Wales).—Fig. 149,6. *P. incerta; tegmen, X8 (Evans, 1943b).

Permovicia Evans, 1943b, p. 189 [*P. obscura; OD]. Tegmen with RS broadly curved. Evans, 1956. Perm., Australia (New South Wales).—Fig. 149,3. *P. obscura; X10 (Evans, 1943b).

Stanleyana Evans, 1943b, p. 188 [*S. pulchra; OD]. Tegmen with RS apparently absent; M and CUA coalesced basally; M with 3 branches. Evans, 1956. Perm., Australia (New South Wales).—Fig. 149,8. *S. pulchra; tegmen, X6.5 (Evans, 1943b).

Stenovicia Evans, 1943b, p. 188 [*S. angustata; OD]. Tegmen as in Ipsvicia but much more slender; R long, arising at about midwing; M with 2 very short branches; CUA and M coalesced basally. [Type of family Stenovicicidae Evans, 1956.] Perm., Australia (New South Wales).—Fig. 149,1. *S. angustata; fore wing, X8 (Evans, 1943b).

Ipsvicia Tillyard, 1919c, p. 878 [*I. Jonesi; OD].
R with several anterior branches to costa near middle of tegmen. Tillyard, 1923b. Trias., Australia (Queensland).—Fig. 149,2. *I. Jonesi; a, tegmen; b, hind wing, X4 (Evans, 1956).

Tegmen long and narrow; RS unbranched and continuing in a straight line from stem of R; M unbranched; CUA forked distally. **Permobrachus**, **E.**, **bella**; but **R** with fewer pectinate branches and **heeri** **affinis**; colorata; &. USSR (European RSFSR). Perm., **Carpenter**, 1954, p. 813

Family ARCHIJJASSIDAE
Becker-Migdisova, 1962

[Archijassidae **Becker-Migdisova**, 1962a, p. 95]

Fore wing very wide, in some species with triangular costal area traversed by vein SC; SC usually divided into 2 long branches; RS present; numerous crossveins between branches of R and M; anal area wide, triangular. Jur.

Atitison **Handlirsch**, 1939, p. 144 [*A. jassoides*; OD]. Fore wing very broad; costal margin strongly curved but not angular basally; RS arising at midwing. Jur., Europe (Germany). — Fig. 148.11. *A. jassoides*; fore wing, X8 (Handlirsch, 1939).

Eojassus **Handlirsch**, 1939, p. 145 [*E. indistinctus*; OD]. Little-known genus, based on fore wing; costal margin smoothly curved. Jur., Europe (Germany). — Fig. 148.9. *E. indistinctus*; fore wing, X6.5 (Handlirsch, 1939).

Liojassus **Handlirsch**, 1939, p. 146 [*L. affinis*; OD]. Fore wing: SC with 2 long branches; RS arising at midwing; costal margin smoothly curved; M with 3 branches. [Family assignment doubtful.] Jur., Europe (Germany). — Fig. 148.1. *L. affinis*; fore wing, X6.5 (Handlirsch, 1939).

Family HYLICELLIDAE **Evans**, 1956

[Hylicellidae **Evans**, 1956, p. 195]

Fore wing as in Hylicidae (recent), with M coalesced basally with CUA, but CUA1 present and coalesced with part of M3+4 distally. **Trias.**

Hylicella **Evans**, 1956, p. 195 [*H. colorata*; OD] (=**Hylicelliter** **Becker-Migdisova**, 1962a, p. 95, *type, Hylicella redacta** **Evans**). CUA with abrupt basal bend; 2 crossveins between RS and M1+2; 1 crossvein between M1+2 and M3+4. **Trias.**, Australia (Queensland). — Fig. 150.6. *H. colorata*; fore wing, X5 (Evans, 1956).

Family MUNDIDAE
Becker-Migdisova, 1960

[Mundidae **Becker-Migdisova**, 1960, p. 31]

Fore wing weakly tegminous, without pits; veins thick; RS, M, and CUA with prominent projections; costal area and anal area broad. Perm.

Mundus **Becker-Migdisova**, 1960, p. 31 [*M. nodosus*; OD]. Fore wing relatively broad, with asymmetrical, blunt apex; R diverging abruptly at midwing toward costal margin, forking; R2 parallel to RS. Perm., USSR (European RSFSR). — Fig. 150.5. *M. nodosus*; fore wing, X8 (Becker-Migdisova, 1960).

Family PEREBORIIDAE
Zallesky, 1930

Pereboria **Zallesky**, 1930, p. 1021 [*P. bella*; OD]. Little-known genus, based on fore wing. R with close pectinate branching; crossveins numerous, irregular; wing large, about 40 mm long. Evans, 1956; Becker-Migdisova, 1962b. Perm., USSR (Asian RSFSR). — Fig. 150.9. *P. bella*; fore wing, X1.5 (Becker-Migdisova, 1962b).

Crosbella **Evans**, 1956, p. 192 [*C. elongata*; OD]. Fore wing as in *Pemobrachus*, but M more extensively branched. **Trias.**, Australia (Queensland). — Fig. 150.1. *C. elongata*; fore wing, X4.5 (Evans, 1956).

Kalranopibrocha **Becker-Migdisova**, 1961c, p. 357 [*K. boreoscytoides*; OD]. Little-known genus, based on hind wing fragment. Costal margin almost straight; R directed posteriorly in apical region, pectinately branched; M forking before RS. [Family assignment doubtful.] Perm., USSR (Asian RSFSR). — Fig. 150.10. *K. boreoscytoides*; hind wing, X4.5 (Becker-Migdisova, 1961c).

Neuropibrocha **Becker-Migdisova**, 1961c, p. 356 [*N. ramosubcostalis*; OD]. Fore wing as in **Pereboria**, but R with fewer pectinate branches and less dense reticulation of branches of RS, M, and CUA; area between stems R and M with few crossveins. Perm., USSR (Asian RSFSR). — Fig. 150.7. *N. ramosubcostalis*; fore wing, X2.0 (Becker-Migdisova, 1961c).

Pemobrachus **Evans**, 1943b, p. 183 [*Pemobrachus dubia** **Tillyard**, 1926a, p. 24; OD]. Fore wing shaped as in **Sicyoptera**, but R1 curv-
ing abruptly to anterior margin; branching of R2 pectinate; M branching well beyond midwing. Perm., Australia (New South Wales).—Fig. 150,4. *P. magnus* EVANS; fore wing, X3.5 (Evans, 1943b).

Permoglyphis TILLYARD, 1926a, p. 22 [*P. belmontensis*; OD]. Little-known genus, based on fore wing; similar to *Permopibrocha* but apparently with less branching of R, RS, and M; costal margin nearly straight. Trias., Australia (New South Wales).—Fig. 150,8. *P. belmontensis*; fore wing, X4.5 (Evans, 1956).

Permopibrocha MARTYNOV, 1935c, p. 18 [*P. ramosa*; OD]. Fore wing as in *Pereboria*, but R with fewer branches; M more deeply forked than CUA; fore wing small. Perm., USSR (European RSFSR).—Fig. 150,3. *P. ramosa*; fore wing, X3.5 (Martynov, 1935c).

Scytophara MARTYNOV, 1937b, p. 36 [*S. extensa*; OD]. Fore wing more slender than in *Permopibi-
Hemiptera—Homoptera

Family FULGORIDIIDAE
Handlirsch, 1939

Fore wing tegminous; costal margin only slightly arched; vein SC long, without branches; RS arising at about midwing; CUA a little shorter than fore wing; anal area very broad; RS simple or with short fork; 1A arched away from CUP. Evans, 1956; Becker-Migdisova, 1962b. Jur.

Fulgoridium Handlirsch, 1906b, p. 496 [*Phrygianidium balticum Geinitz, 1880, p. 527; OD] [=Fulgoridulum Handlirsch, 1939, p. 140 (type, F. egens)]. Fore wing slender; usually with maculations; SC close to margin; R with a series of short branches distally; CUA with several long branches. Bode, 1953; Evans, 1956. Jur., Europe (Germany).—Fig. 151,2a. F. punctatum Handlirsch; fore wing, X10 (Handlirsch, 1939).—Fig. 151,2b. F. reducrtum Handlirsch; hind wing, X10 (Handlirsch, 1939).

Metafulgoridium Carpenter, herein [*M. spilotum Handlirsch, 1939, p. 139; OD]. Fore wing as in Fulgoridium, but CUA2 unbranched. [The original generic name, Metafulgoridium, was a nomen nudum (Handlirsch, 1939).] Jur., Europe (Germany).—Fig. 151,1. *M. spilotum; fore wing, X6.5 (Handlirsch, 1939).

Family LOPHOPIDAE Stål, 1866

Head markedly narrower than pronotum; vertex usually narrow; pronotum short and broad, tricarinate. Fore wing coriaceous, with conspicuous venation and supernumerary longitudinal veins and crossveins; wing usually elongate; apical margin broadly rounded; claval veins united before apex. Fore and middle tibiae usually compressed. Jur.—Holo.

Eofulgoridium Martynov, 1937a, p. 164 [*E. kisylkiense; OD]. Fore wing with SC about midway between C and R; M dividing at midwing; M with 3 branches. Hind wing little known; costal margin concave; RS arising beyond midwing; M and CUA dividing beyond midwing. Evans, 1956; Becker-Migdisova, 1962b. Jur., USSR

Fig. 151. Fulgoridiidae and Lophopidae (p. 235).

Kirghiz).—Fig. 151,3a. *E. kisylkiense; fore wing, X4.2. — Fig. 151,3b. E. proximum Martynov; hind wing, X5 (Martynov, 1937a).

Scoparidea Cockerell, 1920c, p. 243 [*S. nebulosa; OD]. Fore wing with RS parallel to R; apical region with numerous, parallel veins; no regular gradate series of veins. [Family assignment doubtful.] Eoc., USA (Colorado).

Family CIXIIDAE Spinola, 1838

Head not elongate; antennae with 2 segments, bearing flagella; wings unusually well developed. In fore wing, veins SC, R, and M with common stem; claval suture distinct; claval veins united into a claval stem. Perm.—Holo.
Axius Latreille, 1804, p. 168. [The assignment of a Jurassic species from England to this genus is very doubtful (Fenah, 1961), as is that of the several species in Baltic amber (Germer & Berendt, 1856).] Scudder, 1890. Eoc., USA (Wyoming); Oligo., USA (Colorado)—Holo.

Asiocixius Becker-Migdisova, 1962a, p. 97 ["A. fulgoroides"; OD]. Fore wing membranous, except at base; costal margin smoothly rounded; R2 curved toward RS and giving rise to several veinlets; RS forked distally; M forking beyond midwing and with extensive pectinate branching; CUA with a long fork. Trias., USSR (Kirghiz).—Fig. 152,6. "A. fulgoroides"; fore wing, ×5 (Becker-Migdisova, 1962b).

Boreocixius Becker-Migdisova, 1955, p. 1100 ["B. sibiricus"; OD]. Fore wing with costal margin strongly thickened; RS arising very near wing base; R and RS with very short branches; fork of CUA long and curved. Trias., USSR (Asian RSFSR).—Fig. 152,12. "B. sibiricus"; fore wing, ×10 (Becker-Migdisova, 1962b).

Cixiella Becker-Migdisova, 1962a, p. 98 ["C. reducata"; OD]. Fore wing weakly tegminous, distal portion membranous; RS arising near midwing; M forking beyond level of origin of RS, with 3 terminal branches, and forming a large, closed cell; CUA curved basally. Trias., USSR (Kirghiz).—Fig. 152,8. "C. reducata"; fore wing, ×10 (Becker-Migdisova, 1962b).

Cycloscytina Martynov, 1926b, p. 1349 ["C. delutinervis"; OD]. Fore wing tegminous, elongate; costal margin only slightly curved; R with a series of branches as in Mesoxixiella but shorter; M joined to RS distally by a recurved branch. Hind wing little known; M with 2 long branches, arising before midwing. Evans, 1956. Trias., USSR (Kirghiz).—Fig. 152,3."C. delutinervis"; Jur., USSR (Kazakh, Tadjhik); fore wing, ×6 (Becker-Migdisova, 1962b).

Diaplegma Scudder, 1890, p. 288 ["D. abductum" Scudder, 1890, p. 290; SD Carpenter, herein]. Similar to Cixius, but RS arising near midwing, each of its forks dividing into 2 or 3 distal, curved branches. Oligo., USA (Colorado).

Eofulgorella Cockrell, 1909j, p. 172 ["E. bradburyi"; OD]. Fore wing resembling that in Oliarbus but elongate and with costal margin concave; crossveins forming a very regular series. [Family assignment doubtful.] Eoc., USA (Wyoming).

Eoliarbus Cockrell, 1925a, p. 10 ["E. quadrirrictus"; OD]. Similar to Oliarbus, but RS arising well before the pterostigmal area and giving rise to 4 very oblique branches anteriorly. Eoc., USA (Colorado).

Hyalesthes Signoret, 1865, p. 128 ["H. obsoletus"; OD], Statz, 1950a. Oligo., Europe (Germany)—Holo.

Mesocixiella Becker-Migdisova, 1949b, p. 38 ["M. asiatica"; OD]. Fore wing with costal margin only slightly curved; R with a series of parallel branches leading to margin; RS arising before midwing with 3 or 4 terminal branches; M forked beyond midwing. Evans, 1956. Trias., USSR (Kirghiz); Jur., USSR (Kazakh).—Fig. 152,7. "M. asiatica"; fore wing, ×6.5 (Becker-Migdisova, 1962b).

Mesocixius Tillyard, 1919c, p. 876 ["M. triasricus"; OD]. Fore wing with RSforking about halfway between origin of RS and wing apex; fork of M less distal. Evans, 1956. Trias., Australia (Queensland).—Fig. 152,10. "M. triasricus"; fore wing, ×5.4 (Tillyard, 1919c).

Mundopoides Cockrell, 1925g, p. 11 ["O. cisthenaria"; OD]. Similar to Mundopoda (recent), having nearly straight costal and outer margins, the apex being obliquely truncate; SC terminating at midwing. Mio., USSR (Asian RSFSR).

Oecixius Fenah, 1963, p. 43 ["O. amphiion"; OD]. Similar to Oecicus (recent) but with long, slender tibiae; pterostigma only moderately developed; terminal veins distinctly granulate. Mio., Mexico (Chiapas).—Fig. 152,5. "O. amphiion"; fore wing, ×13 (Fenah, 1963).

Oliarites Scudder, 1889, p. 293 ["Mnemosyne tertentula" Scudder, 1878b, p. 773; OD]. Little-known genus, with head less than half as broad as thorax; veins forming a weak reticulation distally. [Family assignment doubtful.] Eoc., USA (Wyoming).

Oligonila Carpenter, herein ["O. defectuosa" Theobald, 1937a, p. 258; OD]. Fore wing as in Anila (recent) but lacking the oblique vein in the costal area. [The original generic name, Oligonila, was a nomen nudum (Theobald, 1937a).] Oligo., Europe (France).

Permocixiella Becker-Migdisova, 1961c, p. 361 ["P. venosa"; OD]. Fore wing elongate, costal margin nearly straight; R2 straight; branches of CUA nearly straight. Perm., USSR (Asian RSFSR).—Fig. 152,4. "P. venosa"; fore wing, ×5.4 (Becker-Migdisova, 1961c).

Protoliarus Cockrell, 1920c, p. 243 ["P. hamatus"; OD]. Similar to Oliarbus but without a stigmatic spot on wings. Cockrell, 1924a; Cockrell & Leveque, 1931. Eoc., USA (Colorado).

Seytocixius Martynov, 1937b, p. 34 ["S. mendax"; OD]. Fore wing broader distally than basally; costal margin smoothly curved; R2 strongly arched away from margin; RS similarly arched but less strongly; M with 3 distal branches; CUA forking at the level of origin of RS. Perm., USSR (Asian RSFSR).—Fig. 152,1. "S. mendax"; fore wing, ×10 (Becker-Migdisova, 1962b).

Surejokocixius Becker-Migdisova, 1961c, p. 359

© 2009 University of Kansas Paleontological Institute
Hemiptera—Homoptera

Fig. 152. Cixiidae (p. 236–238).

[S. tomiensis; OD]. Fore wing broad, with broadly rounded apex; costal margin thickened; R2 strongly curved; RS unbranched; branches of CUA long and curved. Evans, 1956. Perm., USSR (Asian RSFSR).—Fig. 152.11. *S. tomiensis; fore wing, X15 (Becker-Migdisova, 1961c).

Triassocixius TILLYARD, 1919c, p. 878 [*T. australicus; OD]. Little-known genus, based on fragment of fore wing; R forked close to the origin of RS; oblique crossveins from R to costal margin. [Family position uncertain.] Trias., Australia (Queensland).—Fig. 152.2. *T. australicus; fore wing, X5.5 (Evans, 1956).

Vitreacixius BECKER-MIGDISOVA, 1962a, p. 99 [*V.
ellipticus; OD]. Fore wing weakly tegminous; similar to Cixiella, but RS arising slightly more basally; M with 4 branches, closed cell smaller than in Cixiella. Trias., USSR (Kirghiz).—Fig. 152,9. *V. ellipticus; fore wing, ×6 (Becker-Migdisova, 1962b).

Family ACHILIDAE Stål, 1866

[Achilidae Stål, 1866, p. 130]

Head usually small; frons and clypeus large. Hind tibiae elongate; second segment of hind tarsus large. Fore wing well developed, basal two-thirds thickened; veins SC and R united for a short interval basally; SC with 2 or more short branches leading to costal margin, forming stigmatic area; R branched only apically, connected to M by 2 or more crossveins; M with at least 3 branches; clavus short, claval veins united to form claval stem. Hind wing moderately large. Oligo.—Holo.

Achilus Kirby, 1819, p. 474. Holc.

Eliiptoptera Spinola, 1839, p. 304. Scudder, 1890. Oligo., USA (Colorado)—Holo.

Protepiptera Usinger, 1939, p. 66 [*P. kawekcki; OD]. Similar to Epitera (recent) but with vertex distinctly in front of eyes; posterior margin of vertex concavely arcuate. Oligo., Europe (Baltic).

Family RICANIIDAE

Amyot & Serville, 1843

[Ricanidae Amyot & Serville, 1843, p. 527]

Head usually as wide as the pronotum; vertex short and broad; clypeus much narrower than frons. Fore wing large, broadly triangular; costal margin usually nearly straight; costal area broad with numerous crossveins; basal area of clavus without pustules; venation diverse; veins R, M, and CU typically with numerous branches, with 1 or 2 subapical lines of gradate crossveins. Hind wing smaller than fore wing and with reduced venation. Basal segment of hind tarsus very small, without lateral spines. Trias.—Holo.

Ricania Germar, 1818, p. 221. Dalman, 1826; Giebel, 1862; Scudder, 1890. Eoc., Canada (British Columbia); Oligo., Europe (Baltic)—Holo.

Corradecites Fennah, 1968, p. 144 [*C. livinus; OD]. Similar to Corades (recent), but tegmen twice as long as broad; costal area broad, with dense venation. Paleoc., USA (North Dakota).

Dilaropsis Cockerell, 1920c, p. 244 [*D. ornatus; OD]. Fore wing broad, triangular; costal margin slightly convex; SC ending about two-thirds wing length from base; M diverging abruptly from R near origin of RS. Eoc., USA (Colorado).

Eobladina Haupt, 1956, p. 13 [*E. antiqua; OD]. Little-known genus, based on fore wing; costal area wide distally; SC joined to R at base by curved crossvein, forming a very short basal cell; RS arising well before midwing. Eoc., Europe (Germany).—Fig. 153,2. *E. antiqua; fore wing, ×6 (Haupt, 1956).

Eoricania Henriksen, 1922b, p. 24 [*E. danica; OD]. Fore wing as in Riciania (recent), but 1A and 2A joined proximally beyond wing base. Eoc., Europe (Denmark).—Fig. 153,4. *E. danica; fore wing, ×2.5 (Henriksen, 1922b).

Hammapteryx Scudder, 1890, p. 298 [*H. reticulata; OD]. Fore wing subtriangular, costal margin arched at base; numerous crossveins from SC to M by; R with at least 2 arcuate branches distally; RS arising well before midwing. Cockerell, 1920a, 1920b; Cockerell & Sandhouse, 1921; Henriksen, 1922b; Piton, 1940a. Eoc., USA (Colorado, Wyoming), Europe (Denmark, France), England.—Fig. 153,5. *H. reticulata; fore wing, X4 (Henriksen, 1922b).

Ludibrium Becker-Migdisova, 1962a, p. 100 [*L. ludus; OD]. Hind wing little known; RS apparently arising distally as a continuation of stem R; M forked to about midwing. Trrias., USSR (Kirghiz)—Fig. 153,5. *L. ludus; hind wing, ×6 (Becker-Migdisova, 1962a).

Neoricania Carpenter, 1990, p. 131, nom. subst. pro Eoricania Haupt, 1956, p. 12, non Henriksen, 1922b [*Eoricania reticulata Haupt; OD]. Fore wing with costal space much narrower than in Eoricania; SC much closer to C. Eoc., Europe (Germany).

Scolypopites Tillyard, 1923a, p. 17 [*S. bryani; OD]. Fore wing as in Scolypopa (recent), but SC shorter, reaching only to a little beyond midwing; only one series of gradate veins. Mio., Australia (Queensland).—Fig. 153,6. *S. bryani; fore wing, ×3.5 (Tillyard, 1923a).

Family NOGODINIDAE

Melichar, 1898

[Nogodinidae Melichar, 1898, p. 204]

Head about as wide as pronotum; frons longer than wide. Fore wing large, usually broadest towards apex, coriaceous or hyaline, with numerous veins and crossveins; costal area with several crossveins; basal cell usually large; clavus not punctulate; claval stem reaching apex of fore wing. Hind tibiae with
lateral spines; second segment of hind tarsus small, with a pair of spines distally. Eoc.—Holo.

Detyopsis Cockerell, 1920c, p. 242 [*D. scudder; OD]. Fore wing much as in Detya (recent); veinlets from SC to costal margin numerous; RS forking well before midwing. Eoc., USA (Colorado).

Tritophania Jacobi, 1937, p. 188 [*T. patruelis; OD]. Similar to Gaetulia (recent), but frons without a keel; prerostigma absent. Oligo., Europe (Baltic).—Fig. 153.1. *T. patruelis; whole insect, ×3.4 (Jacobi, 1937).

Family FULGORIDAE Latreille, 1807

[Fulgoridae Latreille, 1807, p. 163]

Head usually large and simple, but often with prominent, cephalic process; postclypeus large, triangular; compound eyes large. Fore wing well developed, with numerous supernumerary veins and crossveins; hind wing with the anal and jugal areas reticulate. Eoc.—Holo.

Fulgora Linné, 1767, p. 703. Holo.

Callospilopteron Cockerell, 1920c, p. 245 [*C. ocellatum; OD]. Fore wing broad, with obtuse apex; costal area much reduced; SC short; anterior veinlets from SC and R very oblique; ocelliform spots near outer margin. [Family assignment doubtful.] Eoc., USA (Wyoming).

Lystra Fabricius, 1803, p. 56. Scudder, 1890. [Generic assignment of fossil doubtful.] Eoc., USA (Wyoming)–Holo.

Nyktalos Metcalf, 1952, p. 230, nom. subst. pro Nycotophylax Scudder, 1890, p. 279, non Fitzinger, 1860 [*Nycotophylax ulbleri Scudder; OD]. Large species of uncertain affinities; head with a stout, recurved process; legs stout; femora and tibiae carinate. Oligo., USA (Colorado).

Family FLATIDAE Spinola, 1838

[Flatidae Spinola, 1838, p. 205]

Head narrower than thorax; lateral edges of face not angular. Fore wing with costal area having crossoveins; basal area of clavus granulate; clavus often open, claval veins separate or joined apically. Hind tibiae without a movable spur; first hind tarsomere short, second one small with a spine on each side. Eoc.—Holo.

Flata Fabricius, 1798, p. 511. Holo.

Aphaena Guérin & Ménéville, 1833, p. 452. Scudder, 1890; Cockerell, 1920c. Eoc., USA (Wyoming); Oligo., USA (Colorado)–Holo.
Hexapoda

Fig. 154. Issidae and Dictyopharidae (p. 240-241).

Ficarasites SCUDDER, 1890, p. 301 [*F. stigmaticum; OD]. Little-known genus; costal area narrow, with oblique veinlets; few crossveins. Eoc., USA (Wyoming).

Giselia HAUP, 1956, p. 14 [*G. multifurcata; OD]. Fore wing as in Uxantis (recent); SC curved away from margin as it approaches midwing; R and M fused basally, separating early, with RS arising about one-sixth wing length from base; CUA apparently with a deep fork. Eoc., Europe (Germany).

Lechaea STÅL, 1866, p. 236. HENRIKSEN, 1922b. Eoc., Europe (Denmark)-Holo.

Thaumastocadius COKEREKEL & SANDHOUSE, 1921, p. 456 [*T. simplex; OD]. Fore wing as in Gaga (recent); costal area broad, with numerous oblique veinlets; R branching apically; M and CUA coalesced to about midwing; CUP distinctly forked. [Family position doubtful.] COKEREKEL, 1924a. Eoc., USA (Wyoming).

Family ARAEOPIDAE Metcalf, 1938

[Arachopidae Metcalf, 1938, p. 281]

Head usually small; antennae short, usually not longer than head and thorax combined. Fore wing diverse, ranging from brachypterous, with reduced venation, to fully developed, with normal venation; vein SC typically with 2 branches; R coalesced with SC for about half its length, then coalesced with part of M; M usually with 3 branches; CU with 3 branches. Hind wing usually present, sometimes reduced; SC and R coalesced for more than half their lengths; M unbranched. Hind femora and tibiae elongate; spur well developed at apex of tibia, either spinelike or much enlarged and complex. Eoc.—Holo.

Araeopus SPINOLA, 1839, p. 336. COKEREKEL, 1924a; STATZ, 1950a. Eoc., USA (Colorado); Oligo., Europe (Germany)-Holo.

AmaguA COKEREKEL, 1924a, p. 3 [*A. fortis; OD]. Fore wing as in Stenocranus (recent); wing of uniform width, narrow; crossveins m-cu long. Mio., USSR (Asian RSFSR).

Family ISSIDAE Spinola, 1838

[Issidae Spinola, 1838, p. 158]

Head usually at least as wide as thorax; lateral margins of thorax not keeled; anterior margin of pronotum rounded and extended. Fore wing usually with reduced venation and often small; costal area small, without crossveins, or absent; base of costal margin not strongly curved; clavus not granulate. Hind tibiae with 2 to 4 spines; second hind tarsomere with a spine on each side. Jur.—Holo.

Elasmocelidium MARTYNOV, 1926b, p. 1355 [*E. rotundatum; OD]. Fore wing short, much broadened distally; SC nearly parallel to costal margin; costal margin thickened; RS arising well before midwing; RS and M forked distally; anal area extending only to about midwing. BODE, 1953; EVANS, 1956; BECKER-MIGDISOVA, 1962b. Jur., USSR (Kazakh); Europe (Germany).—Fig. 154.1. *E. rotundatum, Kazakh; fore wing, X6.3 (Becker-Migdisova, 1962b).

Issites HAUP, 1956, p. 16 [*I. glaber; OD]. Fore wing as in Issus (recent) but without the dense reticulation. Eoc., Europe (Germany).

Mesotubulustrium BECKER-MIGDISOVA, 1949b, p. 35 [*M. asiaticum; OD]. Similar to Elasmocelidium, but RS arising near midwing. Jur., USSR (Kazakh).

Tetragonidium BODE, 1953, p. 194 [*T. parallelogramma; OD]. Fore wing as in Elasmocelidium, but M with more branches. Jur., Europe (Germany).

Family DICTYOPHARIDAE Spinola, 1838

[Dictyopharidae Spinola, 1838, p. 202]

Head relatively large; structural details of vertex and frons diverse. Legs usually slender.
and elongate; hind tibiae commonly with 3 to 5 stout spines; second hind tarsal segment large, with a row of small spines at apex. Fore wing either normal or reduced; vein SC and R coalesced beyond basal area of wing; R branching irregularly distally; an irregular transverse line commonly formed by series of crossveins in apical third of wing. Hind wing usually large, with irregular venation. Emeljanov, 1983. *Cret.–Hol.*

Florissantia SCUDDER, 1890, p. 293 [*F. elegans; OD]. Little-known genus, apparently related to *Dictyophara*. [Originally placed in Cixiidae by SCUDDER (1890); transferred to Dictyopharidae by EMELJANOV (1983).] COCKERELL, 1909a. Oligo., USA (Colorado).

Netutela EMELJANOV, 1983, p. 84 [*N. annunciatior; OD]. Similar to *Cladodiptera* (recent), but clavus of fore wing without crossveins; M forkng distally of origin of RS. *Cret., USSR (Asian RSFSR).–Fig. 154,2. *N. annunciatior; fore wing, X6.5 (Emeljanov, 1983).*

Family ARCHESCYTINIDAE

Tillyard, 1926

[Archescytinidae TILLYARD, 1926g, p. 385] [=Permoscytinidae TILLYARD, 1926g, p. 390; Lithoscytinae CARPENTER, 1933a, p. 436; Maueriptera ZALESSKY, 1937e, p. 54; Permossypyllidae ZALESSKY, 1939, p. 36; Syneoscytinidae ZALESSKY, 1939, p. 54; Maripsocidae ZALESSKY, 1939, p. 44; Kaltanaphididae SZELEGIEWICZ, 1971, p. 631; Permoscytinidae ZALESSKY, 1939, p. 436; Uraloscytinidae ZALESSKY, 1939, p. 40; Maripsocidae ZALESSKY, 1939, p. 44; Kaltanaphididae SZELEGIEWICZ, 1971, p. 631; Permoscytinidae ZALESSKY, 1939, p. 436; Uraloscytinidae ZALESSKY, 1939, p. 40; Maripsocidae ZALESSKY, 1939, p. 44; Kaltanaphididae SZELEGIEWICZ, 1971, p. 631]

Fore and hind wings membranous, similar in size and almost alike in venation. Fore wing with vein SC very close and parallel to R + M, R, and R1; R forming a pterostigma; RS originating at about midwing; M usually with at least 3 branches; CUA arising from stem CU, then directed towards R + M, which it touches at the point of separation of M; CUA forked; anal area small. Hind wing similar to fore wing except that CUA arises as an independent vein from the wing base and is not directed towards R + M. Head hypognathous; beak long; antennae long, multisegmented; ovipositor prominent in some genera at least. SZELEGIEWICZ & POPOV, 1978. *Perm.*

Archescytina TILLYARD, 1926g, p. 385 [*A. permiana; OD] [=Maueriptera ZALESSKY, 1937e, p. 54 (type, *M. sylvensis*); Permossypyllidae ZALESSKY, 1939, p. 36 (type, *P. maeuriformis*).] Fore wing with costal margin nearly straight except near base; SC close and parallel to R; R+M arched anteriorly; R2 parallel to RS; M usually with 3 branches. Antennae long and slender, with about 25 segments; beak long; forelegs with thickened femora; female with long, retractile ovipositor. CARPENTER, 1931b, 1939; ZALESSKY, 1937e, 1939; BECKER-MIGDISOVA, 1961c, 1961d, 1962b. *Perm., USA (Kansas), USSR (European and Asian RSFSR).–Fig. 155,1a. Archescytina sp.; USSR; lateral view of body, X6 (Becker-Migdisova, 1961d).–Fig. 155,1b,c. *A. permiana*, Kansas; b, fore wing; c, hind wing, X6.5 (Carpenter, 1939).

Bekkerscytina EVANS, 1958, p. 111 [*B. primivitiosa; OD]. Similar to *Eoscytina*, but RS arising nearer to origin of M. *Perm., Australia (New South Wales).–Fig. 155,10. *B. primivitiosa; fore wing, X6.3 (Evans, 1958).*

Eoscytina EVANS, 1958, p. 109 [*E. migeidiovae; OD]. Similar to *Archescytina*, but fork of CUA very deep and broad and stem of CUA, as it leaves CUP, sigmoidally curved. *Perm., Australia (New South Wales).–Fig. 155,8. *E. migeidiovae; fore wing, X6 (Evans, 1958).*

Kaltanoscytina BECKER-MIGDISOVA, 1959a, p. 105 [*K. nigra; OD]. Wings as in *Archescytina*, but R longer and straighter in both pairs. BECKER-MIGDISOVA, 1961c; SZELEGIEWICZ & POPOV, 1978. *Perm., USSR (Asian RSFSR).–Fig. 155,8. *K. nigra; fore wing, X7 (Becker-Migdisova, 1961c).*

Maripsocus ZALESSKY, 1939, p. 44 [*M. ambiguus; OD]. Little-known fore wing; venation as in *Archescytina*, but M apparently with 2 branches. EVANS, 1956. *Perm., USSR (European RSFSR).*

Paleoscytina CARPENTER, 1931b, p. 118 [*P. brevistigma; OD]. Similar to *Archescytina*, but CUA of fore wing unbranched. BECKER-MIGDISOVA, 1961c. *Perm., USA (Kansas), USSR (Asian RSFSR).–Fig. 155,3. *P. brevistigma; fore wing, X18 (Carpenter, 1933a).*

Permosylla TILLYARD, 1926g, p. 390 [*P. americana; OD] [=Lithoscytina CARPENTER, 1933a, p. 436 (type, *L. cubitalis*).] Fore wing as in *Archescytina* but relatively broader; costal margin slightly concave at level of origin of M. BECKER-MIGDISOVA, 1960, 1961c, 1962b. *Perm., USA (Kansas), USSR (European and Asian RSFSR).–Fig. 155,7. *P. americana; fore wing, X16 (Carpenter, 1931b).*

Permoscytina Tillyard, 1926b, p. 387 [*P. kansasensis; OD]. Similar to Archescytina, but SC and R nearly straight basally; proximal branch of M arising at about level of origin of RS. Carpenter, 1939. Perm., USA (Kansas).——Fig. 155.2. *P. kansasensis; fore wing, X4.2 (Carpenter, 1939).

Sarbaloscytina Becker-Migdisova, 1959a, p. 104 [*S. angustipennis; OD]. Similar to Archescytina, but stem R+M short and nearly straight.
Hemiptera—Homoptera

Becker-Migdisova, 1961c. Perm., USSR (Asian RSFSR).—Fig. 155,5. *S. angustipennis; fore wing, ×4.5 (Becker-Migdisova, 1961c).

Sojanoscytina Martynov, 1933c, p. 883 [*S. gran­dis; OD] [=Ivescytina Martynov, 1933c, p. 888 (type, I. difficilis)]. Fore wing similar to that of Archescycy­tina, but with 4 or more branches. Perm., USSR (European RSFSR).—Fig. 155,6. *S. gran­dis; fore wing, ×3.4 (Becker-Migdisova, 1961c).

Uraloscytina Zalesk, 1939, p. 40 [*U. prosbo­lioides; OD]. Fore wing as in Archescycy­tina, but M more extensively branched and with proximal branch arising about the level of origin of RS. [Type of family Uraloscytinidae Zalesk, 1939.] Perm., USSR (Asian RSFSR).—Fig. 155,4. U. multinevrosa Becker-Migdisova; fore wing, ×4 (Becker-Migdisova, 1962b).

Family BOREOSCYTIDAE
Becker-Migdisova, 1949

Boreoscyta Becker-Migdisova, 1949a, p. 172 [*B. nefasta; OD]. Fore wing triangular; RS with pectinate branches directed to costal margin. Rohrendorf, 1957. Perm., USSR (European RSFSR).—Fig. 156,4. B. mirabilis Becker-Migdisova; fore wing, ×6.5 (Becker-Migdisova, 1949a).

Archescycy­tina Becker-Migdisova, 1949a, p. 175 [*Sojanoscytina latipennis Martynov, 1933c, p. 887; OD]. Fore wing not so markedly triangular as in Boreoscytia; RS without pectinate branches. Perm., USSR (European RSFSR).—Fig. 156,3. *A. latipennis (Martynov); fore wing, ×6.5 (Becker-Migdisova, 1949a).

Family PINCOMBEIDAE
Tillyard, 1922

Pincombea Tillyard, 1922a, p. 282 [*P. mirabilis; OD]. Hind wing: RS, M, and CUA unbranched; costal area triangular. Evans, 1956. Perm., Australia (New South Wales).—Fig. 156,1. *E. postica; hind wing, ×16 (Tillyard, 1922a).

Eupincombea Davis, 1942, p. 114 [*E. postica; OD]. Hind wing: RS, M, and CUA unbranched; costal area triangular. Evans, 1956. Perm., Australia (New South Wales).—Fig. 156,1. *E. postica; hind wing, ×20 (Davis, 1942).

Protopincombea Evans, 1943b, p. 193 [*P. obscura; OD]. Fore wing as in Pincombea, but 2 crossveins between RS and M and one between

Family PROTOPSYLLIIDIDAE

Carpenter, 1931

[Protopsyllididae Carpenter, 1931b, p. 119] [=Permaphidioptera Becker-Migdisova, 1960, p. 57]

Fore wing variable in shape; vein SC not a distinct vein; RS typically unbranched; stem of M fused with CUA; anal area small but distinct and coriaceous; CUP straight. Hind wing smaller than fore wing. Body structure little known; legs slender. *Perm.* - *Jur.*

Protopsyllidium Tillyard, 1926a, p. 26 ["P. australi; OD]. Fore wing with RS arising well before midwing; M with 2 branches. Evans, 1956. *Perm.*, Australia (New South Wales). — Fig. 157.9. *P. australi; fore wing, X16 (Tillyard, 1926a).

Asiopsyllidium Becker-Migdisova, 1959a, p. 113 ["A. unicum; OD]. Fore wing much wider distally than basally; RS arising well before midwing; M with 2 branches; CUA with a narrow fork. *Trias.*, USSR (Kirghiz). — Fig. 157.6. *A. unicum; fore wing, X10 (Becker-Migdisova, 1959a).

Belpylia Evans, 1943b, p. 192 ["B. reticulata; OD]. Fore wing broad distally; M with 3 straight branches; one crossvein between RS and M1+2 and another between RS and M1; CUA with small fork; anal area with Y-shaped vein. *Perm.*, Australia (New South Wales). — Fig. 157.10. *B. reticulata; fore wing, X12 (Evans, 1943b).

Cicadopsyllidium Becker-Migdisova, 1959a, p. 112 ["C. elongatum; OD]. Little-known genus. Fore wing narrow; pseudo-ostiometum apparently absent; RS arising well before midwing; M and CUA apparently fused basally. [Family assignment doubtful.] *Trias.*, USSR (Kirghiz).

Clavopsyllidium Davis, 1942, p. 117 ["C. minutum; OD]. Fore wing as in *Protopsyllidium*, but M with 3 branches; CUA1 arched. Evans, 1943b, 1956. *Perm.*, Australia (New South Wales). — Fig. 157.7. *C. minutum; fore wing, X18 (Davis, 1942).

Permopsyllidium Tillyard, 1926a, p. 27 ["P. mitchelli; OD]. RS arising near midwing; M with 3 branches. Carpenter, 1931b. *Perm.*, Australia (New South Wales). — Fig. 157.5. *P. mitchelli; fore wing, X14 (Tillyard, 1926a).

Permopsyllidops Davis, 1942, p. 116 ["P. stantleyi; OD]. Fore wing similar to *Protopsyllidium*, but CUP absent or poorly developed; M with 3 branches. Evans, 1956. *Perm.*, Australia (New South Wales). — Fig. 157.1. *P. stantleyi; fore wing, X15 (Davis, 1942).

Permopsylloides Evans, 1943b, p. 193 ["P. insolita; OD]. Fore wing of uniform width; costal area wide; RS arising before midwing, curved; M apparently with 2 branches; CUA sinuate; anal area with Y-shaped vein. Evans, 1956. *Perm.*, Australia (New South Wales). — Fig. 157.4. *P. insolita; fore wing, X12 (Evans, 1943b).

Permothea Tillyard, 1926a, p. 28 ["P. latipennis; OD]. Fore wing much as in *Protopsyllidium*, but M with 3 branches. Carpenter, 1931b; Evans, 1956. *Perm.*, Australia (New South Wales).

Permotheella Davis, 1942, p. 116 ["P. scytinopteroides; OD]. RS strongly curved; M with 3 branches; anal veins forming Y-shaped vein. Evans, 1943b, 1956. *Perm.*, Australia (New South Wales). — Fig. 157.3. *P. scytinopteroides; fore wing, X14 (Davis, 1942).

Psoscycitina Davis, 1942, p. 112 ["P. bifida; OD]. Similar to *Protopsyllidium*, but M with 3 branches; RS arising at midwing with distal fork. Evans, 1956. *Perm.*, Australia (New South Wales). — Fig. 158.2. *P. bifida; fore wing, X12 (Davis, 1942).

Psyllidellia Evans, 1943b, p. 192 ["P. magna; OD]. Fore wing with RS arising beyond midwing; M with 3 long branches; costal margin sinuate. *Perm.*, Australia (New South Wales). — Fig. 158.3. *P. magna; fore wing, X10 (Evans, 1943b).

Psyllidiana Evans, 1943b, p. 192 ["P. davisia; OD; [=Protopsyllops Evans, 1943b, p. 192 (type, *P. minuta*)]. Fore wing as in *Protopsyl-

© 2009 University of Kansas Paleontological Institute
Hemiptera—Homoptera

lidium, but RS arising near midwing and very straight; CUA deeply forked. Evans, 1956. Perm., Australia (New South Wales).—Fig. 158,1. *P. davisia; fore wing, X22 (Evans, 1943b).

Tomiosyllidium Becker-Migdisova, 1959a, p. 112 [*T. iljinskiense; OD]. Fore wing slender, triangular; RS arising just before midwing, curving away from R distally. Becker-Migdisova, 1961c. Perm., USSR (Asian RSFSR).—Fig. 158,4.

*T. iljinskiense; fore wing, X22 (Becker-Migdisova, 1960).

Triassopsylla Tillyard, 1918b, p. 753 [*T. plecioides; OD]. Little-known genus, based on wing fragment; RS curved; M with 3 branches. Evans, 1956. Trias., Australia (New South Wales).

Triassotheca Evans, 1956, p. 236 [*T. analis; OD]. Fore wing as in Protopsyllidiium, but RS arising near wing base; M+CUA very short; M with distal fork. Trias., Australia (Queensland).

Fig. 157. Protopsylliidiidae (p. 244).
Hexapoda

Family CANADAPHIDIDAE

Richards, 1966

Head dorsoventrally flattened, prolonged anteriorly; antennal bases ventral, in front of compound eyes; antennae with 5 to 6 segments; rostrum apparently very short; tarsi long; ovipositor well developed; siphuncles and cauda apparently not present. Fore wing with vein M with two forks. Hind wing relatively large. Cret.

Alloambria Richards, 1966, p. 756 [*A. caudata; OD]. Antennae with at least 5 segments. Fore wing with CUA1 and CUA2 arising independently from stem SC+R+M; CUA1 sinuate. Tarsi with 2 segments. Cret., Canada (Manitoba). — Fig. 159,3. *A. caudata; dorsal view, ×50 (Richards, 1966).

Family PALAEOAPHIDIDAE

Richards, 1966

Similar to Canadaphididae, but antennae with 7 segments; ovipositor well developed. Fore wing with vein RS arising from prox-
Fig. 159. Genaphididae and Canadaphididae (p. 246).

Genaphididae and Canadaphididae

Hemiptera—Homoptera

Family **SHAPOSHNIKOVIIDAE**

Kononova, 1976

[Shaposhnikoviidae Kononova, 1976, p. 122]

Palaeoaphis Richards, 1966, p. 750 [*P. archimeda; OD]. Little-known genus. Media of fore wing incomplete basally; legs with short hairs. [The assignment of *P. incognata* Kononova, 1976, p. 121 (Cretaceous of USSR) to the family Palaeoaphididae is very uncertain.] HEIE, 1985. *Cret.*, Canada (Manitoba).—Fig. 160, 1. *P. archimeda*; fore wing, X45 (Richards, 1966).

Family **OVIPARASIPHIDAE**

Shaposhnikov, 1979

[Oviparasiphidae Shaposhnikov, 1979b, p. 75]

Antennae with annular, secondary sense organs (rhinaria). Fore wing with vein RS arising from middle of pterostigma; M with 3 branches; CUA1 and CUA2 originating separately from a common stem (SC+R+M). Ovipositor large. *Cret.*

Family **TAJMYRAPHIDIDAE**

Konoanova, 1975

(Tajmyraphididae Konoanova, 1975, p. 795)

Antennae with 4 to 6 segments. Fore wing broadly rounded distally; pterostigma short, vein RS not connected to it; M with one fork; CUA1 about three times as long as CUA2. Heie, 1985. Cret.

Tajmyraphis Konoanova, 1975, p. 796 [*T. zherichini; OD*]. Antennae with 5 or 6 segments. Cret., USSR (Asian RSFSR).

Khatangaphis Konoanova, 1975, p. 803 [*K. siderica; OD*]. Similar to Tajmyraphis, but antennae with 4 or 5 segments; pterostigma of fore wing very short. Cret., USSR (Asian RSFSR).

Retinaphis Konoanova, 1975, p. 801 [*R. glandulosa; OD*]. Similar to Tajmyraphis, but antennae longer, with 6 segments. Cret., USSR (Asian RSFSR).

Family **MINDARIDAE**

Tullgren, 1909

(Mindaridae Tullgren, 1909, p. 58)

Cauda subtriangular. Fore wing with pterostigma narrow, pointed, extending to apex of wing; vein RS arising from the proximal part of pterostigma. Cret.—Holol.

Family **HORMAPHIDIDAE**

Mordvilko, 1908

(Hormaphididae Mordvilko, 1908, p. 364)

Antennae with 3 to 5 segments, much shorter than body; antennae of alate form with narrow, ringlike, secondary rhinaria. Fore wing with veins CUA1 and CUA2 arising from same point on SC + R + M. Oligo.—Holol.

Family **ELEKTRAPHIDIDAE**

Steffan, 1968

(Elektraphididae Steffan, 1968, p. 11)

Antennae with 5 segments. Fore wing with vein RS greatly reduced; M typically without branches; CUA1 and CUA2 arising from stem CUA or originating independently from stem SC + R + M. Konoanova, 1976. Cret.—Oligo.

Family **THELAXIDAE**

Baker, 1920

(Thelaxidae Baker, 1920, p. 21)

Antennae with 5 segments. Media of fore wing with 2 terminal branches. Hind wing with two oblique veins. Oligo.—Holol.

Family **ANOECIIDAE**

Tullgren, 1909

(Anoeciidae Tullgren, 1909, p. 186)

Antennae commonly with 6 segments, and in alate forms with oval or subcircular sec-
Family **Pemphigidae** Koch, 1857

(Pemphigidae Koch, 1857 p. viii)

Antennae short, usually with 6 segments and with one very short terminal process. Fore wing with vein M unbranched or with one fork. Hind wing with 1 or 2 oblique veins. Oligo.—Holo.

Pemphigus Hartig, 1839, p. 645. Holo. **Eriosoma** Leach, 1818, p. 60. Heie, 1968a, 1969a,
Family DREMPANOSIPHIDAE
Koch, 1857

[Crepidosiphidae Koch, 1857, p. vii]

Drepanosiphum Koch, 1855, p. 201. Holo.

Groaphis Heie, 1867, p. 47 [*Lachnus dryoides G€erm€ar & Berendt, 1856, p. 29; OD]. Little-known genus, based mainly on apterous specimens. Antennae with 3 or 6 segments, the second one at least as long as the fourth. [Originally placed in Phloeomyzidae by Heie (1967) and Becker-Migdisova (1973) but transferred to Pemphigidae by Hille Ris Lambers (1980) and Heie (1985).] Heie, 1969b, 1972, 1985; Becker-Migdisova, 1973. Oligo., Europe (Baltic). — Fig. 160,7. *G. dryoides;* apterous specimen, reconstruction, ×30 (Heie, 1967).

Electrocallis Heie, 1967, p. 147 [*E. bakeri; OD] [= Dimaraphis Becker-Migdisova, 1973, p. 87 (type, D. arnoldii)]. Antennae of alate form much longer than body and composed of 6 segments. Fore wing with pterostigma short; M with 3 terminal branches; CUA1 and CUA2 arising separately from stem SC+R+M. Fore femora thicker than the others. Oligo., Europe (Baltic).

Siphonophoridae Buckton, 1883, p. 176 [*S. antiqua; OD] = Archilachus Buckton, 1883, p. 177 (type, A. pennata); Aphanaphis Scudder, 1890, p. 253 (type, S. exsiqua); Cata­neura Scudder, 1890, p. 245 (type, C. abisbi); Amalancon Scudder, 1890, p. 270 (type, A. lutosus). Antennae slender, longer than body. Fore wing with RS very long, relatively straight, arising from proximal half of pterostigma; M with 3 terminal branches. COCKERELL, 1908u, 1909b; HEIE, 1971, 1985. Eoc., Europe (Den­mark); Oligo., USA (Colorado). — Fig. 160, 2. *S. antiqua; fore wing, x14 (Heie, 1967).

Sternaphis Heie, 1972, p. 257 [*S. electricola; OD]. Fore wing with RS short and straight; M with 2 terminal branches. Oligo., Europe (Baltic).

Zymus Heie, 1972, p. 254 [*Z. succinicola; OD]. Little-known genus, based on nymph. Antennae with 4 segments and with long, filamentous terminal segment; head and pronotum fused; strong bristles on head and posterior part of abdomen. Oligo., Europe (Baltic). — Fig. 160, 8. *Z. succinicola; dorsal view of nymph, x24 (Heie, 1972).

Family APHIDIDAE Latreille, 1802

[Aphididae Latreille, 1802a, p. 263]

Compound eyes large in all instars; antennae commonly with 6 segments (rarely with 5), at least half length of body. Fore wing: vein RS with 2 or 3 terminal branches; CU and CUP arising independently from stem R+M+CU. Hind wing commonly with 2 oblique veins, rarely only one. Wings slanted at rest. Cret.—Hol.

Aphidoecalis KONONOVA, 1977, p. 595 [*A. caudatus; OD]. Antennae with 5 segments. Fore wing with pterostigma short, extending only to about level of midwing; M with 3 terminal branches. Cret., USSR (Asian RSFSR).

Diatoomys Heie, 1970a, p. 163 [*D. eocaenicus; OD]. Little-known genus, based on alate specimens. Similar to several existing genera, but RS of fore wing unusually long. Eoc., Europe (Den­mark).

Family LACHNIDAE Koch, 1857

[Lachnidae Koch, 1857, p. vii]

Similar to Anoeciidae, but prothorax and abdominal segments lacking marginal tubercles. Pterostigma of fore wing commonly much longer than 4 times its width. Mio./ Plio.—Hol0.

Lachnus BURMEISTER, 1835, p. 92. Hol0.

Family ALEYRODIDAE Westwood, 1840

[Alleyrodidae Westwood, 1840, p. 442]

Wings slightly thickened, commonly covered with a powdery wax. Fore wing venation weakly formed, only veins R and M extending to distal part of wing. Antennae with 7 segments; terminal abdominal segment with a large, dorsal opening, associated with storage of honey dew. Oligo.—Hol0.

Family COLEOSCYTIDAE Martynov, 1935

[Coleoscytidae Martynov, 1935c, p. 24]

Fore wing oval, weakly coriaceous, membranous distally; subcostal area abruptly widened at base; costal margin at right angles to wing axis at this point; vein SC marginal;
R long, with a branch to costal margin near midwing; M and CUA distally branched; CUP straight, unbranched; 1A and 2A with a common stem. Hind wing membranous, widened distally, more slender than fore wing, with concave anterior margin; subcostal area very narrow; M forked, CUA with a very wide fork; anal area narrow. Head hypognathous; eyes not divided. Hind coxae large.

Perm.

Coleoscyta Carpenter, herein [*C. rotundata* Martynov, 1935c, p. 24; OD] [=Coleoscytodes Carpenter, herein (type, *C. venosa* Martynov, 1935c, p. 24; OD)]. Fore wing very broad, costal margin thickened; RS with distal fork. [The original generic names, *Coleoscyta* and *Coleoscytodes*, were nomina nuda (Martynov, 1935c).] Becker-Migdisova, 1962b. Perm., USSR (European RSFSR).—Fig. 161.4a. *C. rotundata*; fore wing, X8. —Fig. 161.4b. *C. venosa* (Martynov); hind wing, X8 (Becker-Migdisova, 1960).

Sojanopsylla Becker-Migdisova, 1960, p. 45 [*S. brevipennis*; OD]. Fore wing as in *Coleoscyta*, but subcostal area gradually widened basally and R and RS longer; M with 3 or 4 branches. Perm., USSR (European and Asian RSFSR).—Fig. 161.6. *S. brevipennis*; fore wing, X4.5 (Becker-Migdisova, 1960).
Family CICADOPSyllIDAE
Martynov, 1931
[nom. transl. MARTYNOV, 1935c, p. 16, ex Cicadopsyllinae MARTYNOV 1934c, p. 172]

Fore wing elongate oval, commonly membranous; subcosta apparently close to costal margin; RS long, ending near wing apex. Hind wing with M apparently arising from stem of R; CUA originating independently of R+M. Head hypognathous, with protruberances on vertex. Hind coxae conical, elongate. BECKER-MIGDISOVA, 1962b. Perm.

Cicadopsylla Martynov, 1931c, p. 173 [*C. permiana; OD]. Fore wing with M forking near level of midwing. Perm., USSR (European RSFSR). — Fig. 161,5. *C. permiana; fore wing, X4 (Becker-Migdisova, 1962b).

Cicadopsis Becker-Migdisova, 1959a, p. 110 [*C. rugosipenna; OD]. Similar to Cicadopsylla, but R without distal, anterior branch. Perm., USSR (Asian RSFSR). — Fig. 161,7. *C. rugosipenna; fore wing, X8 (Becker-Migdisova, 1962b).

Family PSYLLIDAE Latreille, 1807
[Psyllidae Latreille, 1807, p. 168]

Fore wing usually coriaceous; costal area broad; veins M and CUA united to form a basal stem; RS arising from R independently; M and CU usually arising as a common stem; RS unbranched; M and CUA forked. Hind wing smaller and more slender, with R and M unbranched. Antennae with 9 to 10 segments. Jur.—Hol.

Catopsylla Scudder, 1890, p. 277 [*C. prima; OD].
Family MARGARODIDAE
Cockerell, 1899

[Margarodidae Cockerell, 1899, p. 390]

Males commonly winged, with few unbranched veins. Females with convex body, strongly sclerotized, with clear segmentation; abdomen with an anal tube or a sclerotized ring, lacking setae. Cret.—Holo.

Margarodes Guilding, 1829, p. 118. Holo.

Acreagris Koch in Koch & Berendt, 1854, p. 123 [*A. crenata; OD]. Female adult: antennae with 9 segments; body entirely or nearly devoid of setae; tarsi two-segmented. Male adult: compound eyes; wings with a single vein paralleling the costal margin to wing apex; M delicate, bisecting the wing diagonally; hind wing reduced to slender halteres; antennae with at least 8 segments; tarsi one-segmented; abdomen with long threads of wax arising from clusters of dorsal ducts. Ferris, 1941. Oligo., Europe (Baltic).——Fig. 161, I. *A. crenata; fore wing of male, X6 (Ferris, 1941).

Electrococcus Beardsley, 1969, p. 271 [*E. canadenis; OD]. Male small; antennae with 10 segments, pedicel conspicuously enlarged; legs long and slender; compound eye reduced to a single row of ommatidia. Fore wing well developed, with R and M distinct. Cret., Canada (Manitoba).

Family PSEUDOCOCCIDAE
Cockerell, 1905

[Pseudococcidae Cockerell, 1905, p. 193]

Similar to the Coccidae. Females typically covered with a mealy or filamentous, waxy secretion, commonly protruding as short lateral and long anal filaments; legs well developed. Males apterous or winged, typically with two long caudal wax filaments. Oligo.—Holo.

Pseudococcus Westwood, 1840, p. 118. Holo.
Puto Signoret, 1875, p. 394. Cockerell, 1908g. Oligo., Europe (Baltic)—Holo.

Family UNCERTAIN

The following genera, apparently belonging to the suborder Homoptera, are too poorly known to permit assignment to families.

Annulaphis Shaposhnikov, 1979b, p. 73 [*A. ratisyni; OD]. Little-known genus, based on incomplete specimens; apparently related to Elimiaphis. [Originally placed in Palaeoaphididae, but transferred by Heie (1985) to family uncertain.] Cret., USSR (Asian RSFSR).

Austroscytina Evans, 1943b, p. 181 [*A. imperfecta; OD]. Little-known wing, possibly related to Archescytinidae. Perm., Australia (New South Wales).

Beloptesis Handlirsch, 1906b, p. 625 [*B. oppenheimii; OD]. Fore wing markedly triangular, nearly as broad as long; venation apparently as in Limacodites. Hind wing small, oval. Evans, 1956. Jur., Europe (Germany).

Bernaea Schlee, 1970, p. 18 [*B. neocomica; OD]. Female with head wider than pronotum; median ocellus present; antennae with 7 segments, the third segment much longer than distal segments. Veins absent on hind wing, represented by lines of pigment. [Placed by Schlee in “Aleyrodina sensu lato,” without family assignment.] Cret., Lebanon.

Chiliocyclus Tillyard, 1919c, p. 868 [*C. scolopoides; OD]. Fore wing with strongly thickened costal border; RS present, arising before midwing; closed cell between M1+2 and M3+4; CUA connected to base of M by crossovein. [Type of family Chiliocyclidae Evans, 1956, p. 209.] Evans, 1956, 1961. Trias., Australia (Queensland).——Fig. 162, J. *C. scolopoides; fore wing, X4.5 (Evans, 1956).

Cicadellites Heer, 1853a, p. 119 [*C. pallidus Heer, 1853a, p. 119; SD Carpenter, herein]. Little-
known homopteron, possibly belonging to the Cercopidae. Piton & Théobald, 1935. Oligo., Europe (France); Mio., Europe (Croatia).

Ellinaphis Shaposhnikov, 1979b, p. 71 [*E. incogni­ta; OD]. Little-known genus, originally placed

Fig. 162. Uncertain (p. 254-259).
in Palaeoaphididae but transferred by Heie (1985) to category of family uncertain. Cret., USSR (Asian RSFSR).

Gryllites Germar, 1842, p. 82 [*G. dubius; OD]. Little-known genus, originally placed in Orthoptera. Hagen, 1862; Assmann, 1877; Popov, 1971. Jur., Europe (Germany).

Hastites Cockerell, 1922f, p. 161 [*H. mairi; OD]. Little-known genus. Fore wing elongate; R apparently with a short distal branch; M dividing distally, with 3 terminal branches; CUA with 3 terminal branches. Oligo., England.

Heidea Schleel, 1970, p. 9 [*H. cretacica; OD]. Male with head about same width as pronotum; median ocellus present; third antennal segment about as long as distal segments. Vein present in hind wing. [Considered by Schleel to be related to the existing and Tertiary Aleurodidae but differing markedly in several traits.] Cret., Lebanon.

Hooleya Cockerell, 1922f, p. 160 [*H. indecisa; OD]. Little-known fore wing; costal margin broad; SC apparently separating from R before midwing, and giving rise to a series of short, oblique veinlets to costal margin. Oligo., England.

Hylaeneura Lamere & Severin, 1897, p. 37 [*H. linei; OD]. Little-known genus, based on distal fragment of fore wing. R with several long, pectinate branches to costal margin; M with 3 branches. Cret., Europe (Belgium). —— Fig. 162,9. *H. linei; fore wing, X2.5 (Handlirsch, 1907).

Kistyla Martynov, 1937a, p. 109 [*K. psylloides; OD]. Little-known genus, based on fore wing. Nodus and nodal line absent; stem of R slightly shorter than R + M; CUA not coalesced with M. Jur., USSR (Kirghiz).— Fig. 163,4. *K. psylloides; fore wing, X3 (Becker-Migdisova, 1962b).

Liassocicada Bode, 1953, p. 201 [*L. antecedens; OD]. Little-known genus, based mainly on body structure. Rostrum elongate, extending at least to middle of abdomen. [Liassocicada was rede­ fined by Whalley (1983) and provisionally placed in the Cicadidae. However, I doubt that our very slight knowledge of the body structures of these Jurassic and Triassic specimens justifies the extension of the range of the Cicadidae to another 150 million years before the Paleocene. Accord­ ingly, the genus Liassocicada is herein provi­sionally placed in the Homoptera, family uncertain.] Whalley, 1983. Trias., England; Jur., Europe (Germany).

Liacocicada Bode, 1953, p. 201 [*L. antecedens; OD]. Little-known genus, based mainly on body structure. Rostrum elongate, extending at least to middle of abdomen. [Liassocicada was rede­ fined by Whalley (1983) and provisionally placed in the Cicadidae. However, I doubt that our very slight knowledge of the body structures of these Jurassic and Triassic specimens justifies the extension of the range of the Cicadidae to another 150 million years before the Paleocene. Accord­ ingly, the genus Liassocicada is herein provi­sionally placed in the Homoptera, family uncertain.] Whalley, 1983. Trias., England; Jur., Europe (Germany).

Lithocephora Scudder, 1890, p. 329 [*L. unicolor Scudder, 1890, p. 329; SD Carpenter, herein]. Little-known insect, with slender fore wing. Oligo., USA (Colorado).
Lithopsis Scudder, 1878b, p. 773 [*L. fimbriata; OD]. Body stout; head not produced between the eyes. Tegmina extending well beyond abdomen. Scudder, 1890; Cockerell, 1921b; Pongrácz, 1935; Piton, 1940a. Eoc., USA (Wyoming), Europe (France, Germany).

Locrites Scudder, 1890, p. 323 [*L. copei Scudder, 1890, p. 323; SD Carpenter, herein]. Little-known homopteron; head large, protuberant; scutellum equiangular. Heer, 1853a. Oligo., USA (Colorado); Miq., Europe (Croatia).

Mesaleuropsis Martynov, 1937a, p. 108 [*M. venosa; OD]. Little-known wings. Fore wing rounded distally; pterostigma absent; M with 2 branches; CUA apparently unbranched. Hind wing about half as long as fore wing, with unbranched RS and M. Jur., USSR (Tadzhik).

Mesocicadella Evans, 1956, p. 193 [*M. venosa; OD]. Little-known genus, based on fragment of fore wing. Several parallel, oblique veins between R and wing margin; M with numerous branches. [Originally placed in the Scytinopteridae but moved to family uncertain by Evans in 1961.] Trias., Australia (Queensland).—Fig. 163.2. *M. venosa; fore wing, X3.5 (Evans, 1956).

Mesocicadellidae Evans, 1956, p. 203 [*M. marginata; OD]. Hind wing with SC very close to costal margin; RS present; M forking in distal part of wing, with a small, closed cell between forks. Evans, 1956. Trias., Australia (Queensland).—Fig. 162.4. *M. marginata; hind wing, X4.5 (Evans, 1956).

Mesocicadioides Tillyard, 1922b, p. 462 [*M. termioneura; OD]. Fore wing with SC very close to costal margin; RS present; M forking in distal part of wing, with a small, closed cell between forks. Evans, 1956. Trias., Australia (Queensland).—Fig. 167.3. *M. termioneura; fore wing, X3.5 (Tillyard, 1919c).

Mesococcus Becker-Migdisova, 1959a, p. 110 [*M. asiaticus; OD]. Based on wingless form (female?); body oval; legs greatly reduced; abdomen with 9 visible segments. Becker-Migdisova, 1962b. Trias., USSR (Kirghiz).—Fig. 162.7. *M. asiaticus; whole insect, X24 (Becker-Migdisova, 1959a).

Mesodiphthera Tillyard, 1919c, p. 873 [*M. grandis; OD]. Little-known genus, based on small fragment of fore wing. CUA anastomosed with M basally. [Placed in Tropiduchidae by Tillyard (1922b) and in Homoptera, family uncertain, by Evans (1956).] Trias., Australia (Queensland).—Fig. 167.3. *M. grandis; fore wing, X3.5 (Tillyard, 1919c).

Mesojassus EVANS, 1956, p. 203 [*M. marginata; OD]. Hind wing with costal margin with marked medial depression; M unbranched; CUA with 2 equal branches; marginal vein present. Trias., Australia (Queensland).—Fig. 162.4. *M. marginata; hind wing, X4.5 (Evans, 1956).

Mesoledra EVANS, 1956, p. 211, nom. subst. pro Mesojassus Handlirsch, 1939, p. 145, non Tillyard, 1916 [*Mesojassus pachyneurus Handlirsch, 1939, p. 145; OD]. Little-known genus; based on small fragment of fore wing. Miocene, Australia (Queensland).—Fig. 162.4. *M. marginata; hind wing, X4.5 (Evans, 1956).

Shuraboprosbole EVANS, 1956, p. 203 [*M. marginata; OD]. Hind wing with costal margin with marked medial depression; M unbranched; CUA with 2 equal branches; marginal vein present. Trias,
genus, based on incomplete wing; possibly related to Cicadellidae, Jur., Europe (Germany).

Mesoscyntia Tillyard, 1919c, p. 871 [*M. australis*; OD]. Fore wing with SC distinct, long; RS apparently arising in very distal part of wing; M dividing at midwing and forming a closed cell at fork. Possibly related to Scytinopteridae. Evans, 1956. Trias., Australia (Queensland). —Fig. 162,5.*M. australis*; fore wing, $\times 5.2$ (Evans, 1956).

Meuniera Piton, 1936c, p. 1 [*M. hauppi*; OD]. Little-known genus, based on fragment of fore wing. RS arising well before midwing; basal stem of M free from R. Cooper, 1941. Eoc., Europe (France).

Pachypycche Handlirsch, 1906b, p. 623 [*Palaeontina vidale Meunier, 1902e, p. 9; OD]. Little-known genus. Fore wing rectangular; anterior margin straight, without nodal break; venation as in Limacodites. Jur., Europe (Spain).

Parafulgoridium Handlirsch, 1939, p. 138 [*Fulgoridium simplex* Geinitz, 1880, p. 528; OD]. Little-known genus, based on poorly preserved fore wing. Jur., Europe (Germany).

Permocapitus Evans, 1943b, p. 195 [*P. globulus*; OD]. Little-known genus, based on head. Head oval, eyes globular; transverse ridge between eyes. Perm., Australia (New South Wales).

Permocephalus Evans, 1943a, p. 8 [*P. knighti*; OD]. Little-known insects, known only by fragments of head. Perm., Australia (New South Wales).

Permodunstania Becker-Migdisova, 1961c, p. 290 [*P. prosbolooides*; OD]. Distal fragment of fore wing; RS forked; M4 free from M3 distally. Perm., USSR (Asian RSFSR). —Fig. 162,8.*P. prosbolooides*; fore wing, $\times 2.7$ (Becker-Migdisova, 1961c).

Petropteron Cockerell, 1912b, p. 94 [*P. mirandum*; OD]. Little-known genus, based on wing fragment; possibly a fulgoroid. Cret., USA (Colorado).

Protopsyche Handlirsch, 1906b, p. 623 [*P. braueri*; OD]. Little-known genus, similar to Limacodities. Jur., Europe (Germany).

Shuraboprosbole Becker-Migdisova, 1949b, p. 23 [*S. plachutai*; OD]. Little-known genus, based on wing fragment. Basal stem of R only about half as long as R + M; RS arising well before midwing; CUA anastomosed with M for a short distance. Jur., USSR (Tadzhik). —Fig. 163,5.*S. plachutai*; fore wing as preserved, $\times 2.5$ (Becker-Migdisova, 1949b).

Tingiopsis Becker-Migdisova, 1953c, p. 461 [*T. reticulata*; OD]. Little-known genus, based on incomplete fore wing with fine reticulation. [Originally placed in Tingidae (Heteroptera) but transferred to Homoptera, probably Cercopidae, by Evans (1957).] Trias., USSR (Tadzhik).

Tipuloidaea Wieland, 1925, p. 23 [*T. rhaetica*; OD]. Little-known genus, based on fore wing. Costal margin arched; SC apparently absent; RS arising before midwing; closed median cell very small. [Originally placed in order Diptera.] Evans, 1956. Trias., Argentina. —Fig. 162,2.*T. rhaetica*; fore wing, $\times 2$ (Evans, 1956).

Triassocotis Evans, 1956, p. 194 [*T. australis*; OD]. Little-known genus, based on distal half of tegmen. Tegmen narrow; R with 4 branches;
Hemiptera—Heteroptera

259

RS unbranched; M with 4 branches and a cell included between M1+2 and M3+4. [Originally placed in Scytinopteridae but transferred to family uncertain by Evans (1961).] Trias., Australia (Queensland). —Fig. 162,3. *T. australis; fore wing, X4.5 (Evans, 1956).

Triassojassus Tillyard, 1919c, p. 887 [*T. proavittus; OD]. Little-known genus, based on incomplete tegmen. Costal margin unusually convex; RS unbranched; M with 5 branches. [Originally placed in the Jassidae, but Evans transferred first (1956) to the Chilocyclidae and later (1961) to family uncertain.] Trias., Australia (New South Wales).

Suborder HETEROPTERA

Latreille, 1810

[Heteroptera Latreille, 1810, p. 433]

Fore wing typically with the proximal part strongly concave and the distal part membranous, forming a hemelytron; wings usually held flat over abdomen at rest. Perm.—Holo.

Family PROGONOCIMICIDAE

Handlirsch, 1906

[Progonocimicidae Handlirsch, 1906b, p. 493] [=Eocimicidae Handlirsch, 1906b, p. 494; Actinocyrtidae Evans, 1956, p. 244; Cicadocoridae Becker-Migdisova, 1958, p. 60]

Small species, dorsoventrally flattened; pronotum distinctly broader than long; fore wing apparently of uniform texture; veins RS and M coalesced basally; SC apparently coalesced with stem of R basally, diverging toward costal margin near midwing; M with 2 to 4 branches; CUA with 2 to 3 branches. [Placed by Popov (1980a) in suborder Peloridiina, along with the Peloridiidae (recent).] Perm.—Jur.

Progonocimex Handlirsch, 1906b, p. 494 [*P. jussacus; OD] [=Eocimex Handlirsch, 1906b, p. 494 (type, E. liasinus)]. Fore wing with rounded apex; clavus broad, nearly triangular; M with 3 branches. Becker-Migdisova, 1962b; Popov & Wootton, 1977. Jur., Europe (Germany). —Fig. 164,8. Progonocimex; a. *P. jussacus; dorsal view; b. P. liasinus (Handlirsch), fore wing, both X9 (Popov & Wootton, 1977).

Actinocystina Tillyard, 1926a, p. 18 [*A. belmontensis; OD] [=Pseudipsicola Handlirsch, 1939, p. 17 (type, P. ala)]. Little-known genus. Tegmen similar to that of Progonocimex, but more slender, anterior margin less curved; SC curving directly toward anterior margin of wing. Evans, 1956; Popov & Wootton, 1977. Perm., Australia (New South Wales). —Fig. 164,5. *A. belmontensis; tegmen, X8 (Evans, 1956).

Archiceropis Handlirsch, 1939, p. 142 [*A. falcata; OD]. Anterior margin of fore wing strongly convex basally; precostal area broad; wing apex pointed and directed anteriorly. Evans, 1956; Becker-Migdisova, 1962b; Popov & Wootton, 1977. Jur., Europe (Germany). —Fig. 164,6. *A. falcata; fore wing, X13 (Popov & Wootton, 1977).

Cicadocoris Becker-Migdisova, 1958, p. 62 [*C. kuliki; OD]. Tegmen with smoothly curved anterior margin; M with 3 branches; M3+4 unbranched. Evans, 1961; Popov, 1982. Trias., Australia (Queensland). —Fig. 164,10. *C. kuliki; restoration, X10 (Becker-Migdisova, 1958).

Eocercopis Handlirsch, 1939, p. 142 [*E. ancylota; OD] [=Cercopisca Handlirsch, 1939, p. 143 (type, C. similis); Cercopinus Handlirsch, 1939, p. 143 (type, C. ovalis)]. Fore wing with very convex and thickened costal margin; apex pointed; clavus broad and nearly triangular. Evans, 1956; Becker-Migdisova, 1958; Popov & Wootton, 1977. Jur., Europe (Germany). —Fig. 164,7. *E. ancylota; fore wing, X13 (Popov & Wootton, 1977).

Heteroscytina Evans, 1956, p. 23 [*H. membranaceus; OD]. Tegmen oval; SC and R terminating on costal margin near level of midwing. Trias., Australia (Queensland). —Fig. 164,4. *H. membranaceus; fore wing, X19 (Evans, 1961).

Heterocercos Handlirsch, 1939, p. 245 [*H. tillyardi; OD]. Fore wing narrowed apically, much as in Actinoscytina, but costal area narrower and cross-veins forming a more nearly complete transverse series. Wootton, 1963. Trias., Australia (Queensland).

Hexascytina Wootton, 1963, p. 250 [*H. transecta; OD]. Little-known genus, apparently similar to Progonocimex, based on incomplete tegmen. SC diverging from stem R near midwing at almost a 90° angle; anterior margin of tegmen distinctly convex. Trias., Australia (Queensland).

Microscytinella Wootton, 1965, p. 251 [*M. radians; OD]. Little-known genus, based on small
Fig. 164. Progonocimicidae (p. 259–260).
Family ARCHEGOCIMICIDAE
Handlirsch, 1906

taking a rest from the fragments of tegmen. Trias., Australia (Queensland).

Olgamartynovia BECKER-MIGDISOVA, 1958, p. 63 [*O. turanica; OD]. Tegmen as in Cicadocoris, but fork of M1+2 longer. POPOV, 1982. Trias., USSR (Kirghiz). —Fig. 164, 1. O. complexa POPOV; tegmen, X14 (POPov, 1982).

Platyctinella EVANS, 1956, p. 245 [*P. paradoxa; OD]. Tegmen shaped as in Actinoscytina; SC absent; M1 continuing the nearly straight line of stem M; clavus unknown. WOOTTON, 1963. Trias., Australia (New South Wales). —Fig. 164, 3. *P. paradoxa; fore wing, X15 (WOOTTON, 1963).

Triscytina EVANS, 1956, p. 246 [*T. rotundata; OD]. Similar to Actinoscytina but tegmen much broader; costal margin nearly straight; apex evenly rounded. Trias., Australia (New South Wales). —Fig. 164, 2. *T. rotundata; tegmen, X16 (Evans, 1956).

Fig. 165. Archeogomicidae, Enicocoridae, and Cuneocoridae (p. 261-262).

Family ARCHEGOCIMICIDAE
Handlirsch, 1906

Eurynotis BODE, 1953, p. 134 [*E. incisus; OD].
Family **ENICOCEPHALIDAE**
Stål, 1858

Similar to the Reduviidae, but head constricted behind eyes; rostrum with 4 segments; fore wings entirely membranous, with longitudinal veins but few crossveins. **Mio.—Holo.**

Enicocephalus Westwood, 1838, p. 22. **Holo.**

Disphaerocephalus Cockerell, 1917g, p. 361 (*D. constrictus*; OD). Little-known genus of small, elongate species, with long, thin legs and antennae; body with long, fine pubescence; hind legs long and narrow; tarsi 1-2-2; wings unknown. [Genus based on nymph and adult male.] STYS, 1969. **Mio.** USA (Colorado), Canada (British Columbia), Europe (France)—**Holo.**

Paenicotechys STYS, 1969, p. 353 [*Enicocephalus fossitis* Cockerell, 1916a, p. 135; OD]. Similar to **Aenictopechys** (recent), but posterior margin of pronotum excised; eyes contiguous dorsally; middle tarsi with 2 segments. STYS, 1969. **Mio.** USA (Colorado), Canada (British Columbia), Europe (France)—**Holo.**

Family ENICOCORIDAE
Handlirsch, 1920

Small insects. Fore wings reaching end of abdomen and overlapped distally, pronotum wider than long; scutellum triangular. Fore wing not clearly differentiated into corium and membrane; veins M and CU branched. **Jur.**

Family GERRIDAE
Leach, 1815

Body slender; rostrum with 4 segments; fore wings without differentiation of corium, membrane, or clavus; posterior femora extending well beyond end of abdomen; claws ante-apical. **Andersen, 1982b. Eoc.—Holo.**

Gerris Fabricius, 1794, p. 187. Cockerell, 1909j; Handlirsch, 1910b; Théobald, 1937a. **Oligo.** USA (Colorado), Canada (British Columbia), Europe (France)—**Holo.**

Metrobates Uhler, 1871, p. 108. SCUDDER, 1890. **Oligo.** USA (Colorado)—**Holo.**

Telmatrechus Scudder, 1890, p. 351 [*Hygrotrechus stali* Scudder, 1879a, p. 183B; SD Carpenter, herein]. Eyes not prominent; first antennal segment only a little longer than second; thorax relatively short; legs very long, with the tibiae equal in length to femora of same leg. **Eoc.** USA (Wyoming); **Mio.** Canada (British Columbia).

Family HYDROMETRIDAE
Stephens, 1829

[Hydrometridae Stephens, 1829, p. 352]

Very slender species; head long and narrow but widened distally; antennae with 4 (rarely 5) segments; legs very long and slender, claws

© 2009 University of Kansas Paleontological Institute
Family VELIIDAE

Amyot & Serville, 1843

(Veliidae Amyot & Serville, 1843, p. 418)

Similar to the Gerridae, but rostrum with 3 segments; posterior femora shorter, extending very little beyond end of abdomen at most. Oligo.--Holo.

Palaeovelia Scudder, 1890, p. 349 [*P. spinosa; OD]. Similar to Microvelia (recent). Head small, recessed to level of eyes in emarginate prothorax; hind legs very short, reaching only tip of abdomen; femora and tibiae of equal lengths; hind tibiae with long spines distally. Oligo., USA (Colorado).

Stenovelia Scudder, 1890, p. 349 [*S. nigra; OD]. Similar to Palaeovelia, but hind tibiae without long spines distally. Oligo., USA (Colorado).

Family NOTONECTIDAE

Latreille, 1802

[Notonectidae Latreille, 1802a, p. 253]

Aquatic species, similar to the Naucri-dae, but forelegs raptorial, and hind tarsi without claws. Jur.--Holo.

Notonecta Linné, 1758, p. 439. Piton, 1942; Lauck, 1960; Popov, 1964; Martini, 1971. Oligo., USA (Colorado), Europe (Germany); Mio., Europe (France)--Holo.

Liadonecta Popov, 1971, p. 172 [*L. tomiensis; OD]. Little-known genus, based on nymph. Body elongate-oval, head transverse; hind tibiae and tarsi of uniform width. Jur., USSR (Asian RSFSR).--Fig. 166,3. *L. tomiensis; dorso-ventral view, ×14 (Popov, 1971).

Peloneecta Popov, 1971, p. 170 [*P. solnhofeni; OD]. Body elongate-oval, widest near base of abdomen; hind tibiae shorter than femora or tarsi; femora thickened, strongly developed. Jur., Europe (Germany).--Fig. 166,1. *P. solnhofeni; ventral view, ×2.2 (Popov, 1971).

Scevenia Statz, 1950b, p. 63 [*Notonecta beydeni Deichmüller, 1881, p. 328; OD]. Similar to Anisops; clypeus fused to frons. Body structure little known. Oligo., Europe (Germany, Czechoslovakia).

Family SCAPHOCORIDAE

Popov, 1968

[Scaphocoridae Popov, 1968, p. 106]

Body oval; head hypognathous; pronotum large, covering scutellum; tegmen with membrane; hind legs relatively short; tarsi with a single segment and dense hairs. Probably related to the Naucoridae. Jur.

Scaphocoris Popov, 1968, p. 106 [*S. notatus; OD]. Head strongly transverse from above; scutellum very small, triangular; clavus with distinct anal veins; membrane present; hind tarsi shorter than tibiae. Jur., USSR (Kazakh).

Family NAUCORIDAE Leach, 1815

Antennae four-segmented, shorter than head; fore wing membrane without veins; forelegs raptorial; tarsi with more than one segment; hind tarsi with claws. Jur.--Holo.
Naucoris Geoffroy, 1762, p. 473. Heer, 1853a; Piton & Théobald, 1937; Statz, 1950b. Oligo., Europe (Germany); Mio., Europe (France, Croatia)—Holotype.

Angaronecta Popov, 1971, p. 146 [*A. longirostris; OD]. Rostrum very long, reaching hind margin of prothorax; forelegs short; femora of all legs thickened; hind tarsi with single segment. Jur., USSR (Asian RSFSR).—Fig. 167.3. *A. longirostris; ventral view, ×3.7 (Popov, 1971).

Aphlebocoris Handlirsch, 1906b, p. 495 [*A. nana; OD]. Fore wing not differentiated into corium and membrane; clavus narrow, nearly quadrilateral. Popov & Wootton, 1977. Jur., Europe (Germany).—Fig. 167.6. A. punctata Handlirsch; fore wing, ×11 (Popov & Wootton, 1977).

Heleonaucoris Popov, 1971, p. 149 [*H. maculipennis; OD]. Clavus of moderate size; embolium narrow and developed only at base of tegmen; border between corium and membrane indistinct; corium spotted. Jur., USSR (Kirghiz).—Fig. 167.1. *H. maculipennis; tegmen, ×4.2 (Popov, 1971).

Liadonaucoris Popov, 1971, p. 144 [*L. robendorfii; OD]. Tegmen longer than abdomen; clavus longer than scutellum; vein R present on tegmen. Jur., USSR (Kirghiz).—Fig. 167.2. *L. robendorfii; ×5.5 (Popov, 1971).

Nectonaucoris Popov, 1968, p. 104 [*N. larves; OD]. Anterior margin of pronotum straight; tegmen without veins; embolium absent; clavus narrow; hind legs relatively short. Jur., USSR (Kazakh).

Sphaerodemopsis Handlirsch, 1906b, p. 543 [*Sphaerodema jurassicum Oppenheim, 1888, p. 235; OD]. Tegmen strongly sclerotized; clavus usually long and heavily sclerotized. Popov, 1971. Jur., Europe (Germany).—Fig. 167.5. *S. jurassicum; dorsal view, ×2.5 (Popov, 1971).
Family MESOTREPHIDAE
Popov, 1971

Small species, related to the Scaphocorididae. Pronotum transverse, convex, elliptical, completely covering head from above. Cret.

Mesotrephes Popov, 1971, p. 160 [*M. striata; OD]. Scutellum very small; tegmen with only one vein, extending along most of costal margin. Hind legs relatively short; tibiae and tarsi thin. Cret., USSR (Kazakh). — Fig. 167,4. *M. striata; dorsoventral view, X20 (Popov, 1971).

Family BELOSTOMATIDAE
Leach, 1815

Similar to the Nepidae, but antennae with 4 segments; posterior legs adapted for swimming, the tibiae flattened; aquatic. Jur.–Holocene.

Belostomates Schöberlin, 1888, p. 61 [*Belostomum speciosum Heer, 1865, p. 303; OD]. Little-known genus, with very broad front femora. Heer, 1865. Mio., Europe (Germany).—Fig. 168, 2. *B. speciosum; dorsal view, X0.6 (Heer, 1865).

Mesonepa Handlirsch, 1906b, p. 637 [*Nepa primordialis Germain, 1839, p. 206; SD Popov, 1971, p. 116]. Similar to Belostoma, but fore wing with much larger membranous area; fore tarsi with one segment. Popov, 1971. Jur., Europe (Germany).—Fig. 168, 4. *M. primordialis; dorsal view, X2 (Popov, 1971).

Scarabaeides Germain, 1839, p. 218 [*S. deperditus; OD] [=Mesobelostomum Haase, 1890a, p. 21, obj.]. Similar to Lethocerus (recent), but fore wing with M and R widely separated and remote from costal margin; membranous area of wing without venation. Oppenheim, 1888; Popov, 1971. Jur., Europe (Germany).—Fig. 168, 3. *S. deperditus; ventral view, X1.2 (Popov, 1971).

Stygeonepa Popov, 1971, p. 119 [*S. foersteri; OD].
Related to Belostoma, but pronotum more transverse; fore wing with vestiges of R, M, and CU; hind tibiae and one-segmented tarsi forming broad lobes. *Jur.*, Europe (Germany).—Fig. 168.1. *S. foersteri*; dorsal view, ×2 (Popov, 1971).

Family NEPIDAE Latreille, 1802

[Nepidae Latreille, 1802a, p. 252]

Antennae with 3 segments, shorter than head; membrane of fore wings reticulate; hind legs adapted for walking; tibiae not flattened; aquatic. *Oligo.*—*Holo.*

Nepa Linné, 1758, p. 440. Heer, 1853a; Hungerford, 1932. *Oligo.*; USA (Colorado); *Mio., Europe (Germany)—*Holo.*

Family SHURABELLIDAE

Popov, 1971

[Shurabellidae Popov, 1971, p. 121]

Small species, related to the Corixidae. Pronotum transverse, sculptured; tegmen broad; hind legs relatively slender. *Jur.*

Shurabella Becker-Migdisova, 1949b, p. 28 [*S. lepyroniopsis*; OD] [=Coleoperopsis Becker-Migdisova, 1949b, p. 31 (type, C. dolichoptera)]. Pronotum about three times as wide as long; tegmen strongly sclerotized; vestiges of SC, R, and M present on tegmen. *Jur., USSR (Kirghiz).—Fig. 169.4. *S. lepyroniopsis*; dorsal-ventral view, ×10 (Popov, 1971).

Family CORIXIDAE Leach, 1815

[Corixidae Leach, 1815, p. 124]

Head not inserted into prothorax; antennae shorter than head; fore tarsi consisting of only one spatulate segment. *Jur.—Holo.*

Corix a Geoffroy, 1762, p. 477. Heer, 1853a; Scudder, 1890; Schlechtendal, 1894. *Oligo.*; USA (Colorado); *Europe (Germany)—Holo.*

Baissocoris a Popov, 1966, p. 99 [*B. jaczewskii*; OD]. Similar to Corixa, but veins R, M, and CU more strongly developed; head narrow; eyes small; eighth abdominal tergite well developed. *Jur./Cret., USSR (Asian RSFSR).*

Diacorix a Popov, 1971, p. 137 [*D. miocaenica*; OD]. Similar to Sigara (recent) but with deep furrow along entire length of pronotum; vein CU weakly formed. *Mio., USSR (Kirghiz).*

Diapherinus Popov, 1966, p. 97 [*D. ornatipennis*; OD]. Little-known genus, based on tegmen. SC, R, M, and CU visible on corium; anal veins clear on clavus; embolium weakly developed. *Jur./Cret., USSR (Asian RSFSR).— Fig. 169.2. *D. ornatipennis*; tegmen, ×5 (Popov, 1966).

Gazimuria Popov, 1971, p. 130 [*G. scutellata*; OD]. Elongate species. Antennae with 4 segments; pronotum not more than three times wider than its length; tegmen with veins R, M, and CU; hind legs densely covered with hairs. *Jur., USSR (Asian RSFSR).— Fig. 169.5. *G. scutellata*; dorso-ventral view, ×6 (Popov, 1971).

Ijanecta Popov, 1971, p. 132 [*I. angarica*; OD]. Pronotum well developed; scutellum small; fore margin of wing with wide embolium; all veins apparently absent. *Jur., USSR (Asian RSFSR).— Fig. 169.1. *I. angarica*; dorsal view, ×1 (Popov, 1971).

Karataviella Becker-Migdisova, 1949b, p. 25 [*K. brachyptera*; OD]. Pronotum twice as wide as long; only vein 1A on clavus. *Jur., USSR (Kazakh).—Fig. 169.3. *K. brachyptera*; dorso-ventral view, ×7 (Popov, 1971).

Mesosigara Popov, 1971, p. 129 [*M. kryshtofovichi*; OD]. Similar to Baissocorix a, but fore wing with R coalesced with SC for its entire length; M fused at base with CU. *Cret., USSR (Asian RSFSR).—Fig. 169.7. *M. kryshtofovichi*; lateral view, ×12 (Popov, 1971).

Sigaretra Popov, 1971, p. 136 [*Corix florissantia* Cockerell, 1906e, p. 209; OD]. Pronotum large but covering only part of the scutellum; tegmen with well-developed embolium rim; anal vein present on clavus. *Oligo.*; USA (Colorado).—Fig. 169.6. *S. florissantia* (Cockerell); dorsal view, ×9 (Popov, 1971).

Family ARADIDAE Brulé, 1835

[Aradidae Brulé, 1835, p. 326]

Body strongly flattened; head porrect; antennae and rostrum with 4 segments; clavus narrowed apically; wing membrane with few or no veins; abdomen broader than wings; tarsi with 2 segments. *Oligo.—Holo.*

Calisius Stål, 1858, p. 67. Usinger, 1941. *Oligo.*; Europe (Baltic)—Holo.

Mezira Amyot & Serville, 1843, p. 305. Usinger, 1941. *Oligo.*; Europe (Baltic); *Mio., Europe (Croatia)—Holo.*
Family SALDIDAE
Amyot & Serville, 1843

Head shorter than thorax and scutellum; antennae four-segmented, longer than head; third antennal segment thickened at base; rostrum three-segmented; fore wings without reticulate cells, but with 4 or 5 long, closed cells; corium with an embolium; forelegs not raptorial. Jur.—Holo.

Salda Fabricius, 1803, p. 113. Germar & Berendt, 1856. Oligo., Europe (Baltic)—Holo. Oligosalidina Carpenter, herein [*O. rottenstei Statz & Wagner, 1950, p. 101; OD]. Fore wing similar to Chiloxanthus (recent) but with cells of membrane nearly the same length. [The original generic name, Oligosalidina, was a nomen nudum (Statz & Wagner, 1950).] Oligo., Europe (Germany).

Family COREIDAE Leach, 1815

Coreidae Leach, 1815, p. 121

Head much narrower and shorter than prothorax; antennae longer than head, with...
4 segments; fore wing not reticulate, its membrane with many longitudinal veins, often unifying; body stout, legs thick. *Jur.*—*Holo.*

Coreus Fabricius, 1794, p. 120. Théobald, 1937a. *Oligo.*, Europe (France)—*Holo.*

Achrestocoris Scudder, 1890, p. 413 [*A. cinerarius; OD]. Tegmen with large rhomboidal cell at apex of corium. *Oligo.*, USA (Colorado).

Anasa Amyot & Serville, 1845, p. 209. Scudder, 1890. *Oligo.*, USA (Colorado)—*Holo.*

Berytopsis Heer, 1853a, p. 54 [*B. femoralis; OD]. Little-known coreid, apparently related to *Berytus* (recent). *Mio.*, Europe (Germany).

Corizus Fallén, 1814, p. 8. Scudder, 1890; Cockerell, 1926a. *Oligo.*, USA (Colorado); *Tert.* (epoch unknown), Argentina—*Holo.*

Harmostites Heer, 1853a, p. 49 [*H. oeningensis; OD]. Little-known genus, based on poorly preserved specimen. *Mio.*, Europe (Germany).

Heeria Scudder, 1890, p. 430 [*H. gulosa; SD Handlirsch, 1907, p. 1049]. Similar to *Arencoris* (recent) but with second and third antennal segments unequal. *Oligo.*, USA (Colorado).

Hypselonotus Hahn, 1833, p. 186. Heer, 1853a. *Mio.*, Europe (Germany)—*Holo.*

Karatavocoris Becker-Migdisova, 1962b, p. 222 [*K. asiatica; OD]. Head much narrower than pronotum; first antennal segment short, not extending beyond apex of head; femora without spines. *Jur.*, USSR (Kazakh).—Fig. 170.5. *K. asiatica*; ventral view, X6 (Becker-Migdisova, 1962b).

Leptoscelis Laporte, 1832, p. 31. Heyden, 1858. *Oligo.*, Europe (Bavaria)—*Holo.*

© 2009 University of Kansas Paleontological Institute
Hexapoda

Palaeocoris Heer, 1853a, p. 46 [*P. spectabilis; OD]. Little-known genus, apparently related to Acanthosoma (recent). Min., Europe (Croatia).

Phthinocoris Scudder, 1890, p. 414 [*P. colligatus; SD Handlirsch, 1907, p. 1049]. Similar to Achrostocoris, but thorax much longer. Oligo., USA (Colorado).

Piezocoris Scudder, 1890, p. 416 [*P. peritus Scudder, 1890, p. 416; SD Carpenter, herein]. Similar to Phthinocoris, but head larger, one-half to two-thirds width of thorax. Oligo., USA (Colorado).

Syromastes Latreille, 1829, p. 196. Heer, 1853a; Statz & Wagner, 1950. Oligo., Europe (Germany); Mio., Europe (Germany)–Holo.

Family ALYDIDAE Stål, 1872

[Allydidae Stål, 1872, p. 53]

Similar to Coreidae, but head nearly as broad and as long as the prothorax, broader than anterior margin of pronotum; body and legs elongate. Štys & Řiha, 1977. Jur.–Holo.

Heeralydus Štys & Řiha, 1975b, p. 190 [*H. bucculatus; OD]. Similar to Alydus (recent), but head relatively short and having long bucculae reaching proximally between insertion of antennae and anterior margins of eyes. Štys & Řiha, 1977. Oligo., Europe (Germany).

Monstrocoreus Popov, 1968, p. 109 [*M. quadriramiculatus; OD]. Antennae thin and long, nearly as long as body; rostrum also very long; tegmen long, with only one distinct vein; legs long and thin, femora about as long as tibiae and much broader; tarsi with 3 segments. Štys & Řiha, 1977. Jur., USSR (Kazakh).–Fig. 170, 4. *M. quadriramiculatus; lateral view, X3 (Popov, 1968).

Sulcalythus Štys & Řiha, 1975b, p. 186 [*S. kalabisi; OD]. Similar to Alydus (recent), but membrane of tegmen with more veins and apical part of corium longer. Oligo., Europe (Czechoslovakia).

Family MESOPENTACORIDAE

Popov, 1968

[Mesopentacoridae Popov, 1968, p. 112]

Pronotum transverse, anterior corners projecting; anterior margins of tegmen thickened, forming a ridge along entire length of corium; venation vestigial. Tegmina and pronotum coarsely punctate. [Apparently related to the Urostylidae (recent)]. Jur.

Mesopentacoris Popov, 1968, p. 112 [*M. costalis; OD]. Head narrower than pronotum; second antennal segment longest; corium with one vein; tibiae very slender. Jur., USSR (Kazakh).

Family LYGAEIDAE

Schilling, 1829

[Lygaeidae Schilling, 1829, p. 85]

Head shorter than thorax and scutellum; antennae straight, not elbowed; four to five veins in membrane of fore wing, not forming ante-apical cells. Slater, 1964. Jur.–Holo.

Lygaeus Fabricius, 1794, p. 133. Heer, 1853a; Scudder, 1890; Piton & Theobald, 1935; Theobald, 1937b; Slater, 1964. Oligo., USA (Colorado), Europe (France, Germany); Mio., Europe (France, Germany, Croatia)–Holo.

Aphanus Laporte, 1832, p. 35. Theobald, 1937a; Slater, 1964. Oligo., Europe (Germany, France)–Holo.

Catopamera Scudder, 1890, p. 387 [*C. augyeyi; SD Slater, 1964, p. 1519]. Related to Myodochina (recent); head subtriangular, slightly broader than long; antennae slender, no longer than the head and thorax together. Slater, 1964. Oligo., USA (Colorado).

Cephalocoris Heer, 1853a, p. 61 [*C. pilatus; OD]. Similar to Cymus (recent). Slater, 1964. Mio., Europe (Germany).

Chilacis Fabricius, 1794, p. 133. Heer, 1853a; Scudder, 1890; Piton & Theobald, 1935; Theobald, 1937b; Slater, 1964. Oligo., USA (Colorado), Europe (France, Germany); Mio., Europe (France, Germany, Croatia)–Holo.

Cophocoris Scudder, 1890, p. 391 [*C. tenebricous; OD]. Little-known genus; probably close to Catopamera, but head rounded; antennae only half as long as body. Slater, 1964. Oligo., USA (Colorado).

Coptochromus Scudder, 1890, p. 405 [*C. manium; OD]. Little-known genus; head fully as long as broad and as broad as apex of thorax. Slater, 1964. Oligo., USA (Colorado).

Cryphochromus Scudder, 1890, p. 409 [*C. letatus; OD]. Related to Coptochromus; head large.
Hemiptera—Heteroptera

Cereacoris Scudder, 1890, p. 394 [*C. primigenus; OD]. Little-known genus; probably related to Catopamera but with much shorter middle femora. Slater, 1964. Oligo., USA (Colorado).

Eucorites Scudder, 1890, p. 392 [*E. serescens; OD]. Little-known genus; probably related to Catopamera but with more rounded head; antennae longer than head and thorax. Slater, 1964. Oligo., USA (Colorado).

Extreles Scudder, 1890, p. 408 [*E. exsanguis; OD]. Similar to Cryptochromus, but head only a little broader than long. Slater, 1964. Oligo., USA (Colorado).

Geocoris Fallén, 1814, p. 10. Scudder, 1890. Oligo., USA (Colorado)—Holo.

Heterogaster Schilling, 1829, p. 37. Heer, 1853a; Slater, 1864. Oligo., Europe (France); Mio., Europe (Germany, Croatia)—Holo.

Ligyroctes Scudder, 1890, p. 51. Scudder, 1890. Oligo., USA (Colorado)—Holo.

Linnaea Scudder, 1890, p. 396 [*L. carcerata; SD Slater, 1864, p. 1523]. Little-known lygaeid; head small; antennae as long as combined head and thorax; thorax very broad. Oligo., USA (Colorado).

Lithochromus Scudder, 1890, p. 402 [*L. gardneri; SD Slater, 1964, p. 1524]. Little-known lygaeid; head as broad as long; antennae about half as long as body. Oligo., USA (Colorado).

Lithocoris Scudder, 1890, p. 390 [*L. evulus; OD]. Little-known genus, apparently related to Myodicobia (recent); head large, subretund. Slater, 1964. Oligo., USA (Colorado).

Mesolygaeus Ping, 1928, p. 43 [*M. laiyagenis; OD]. Similar to Lygaeus, but veins of fore wing membrane more prominent. Slater, 1964. Cret., China (Shantung).

Miogonates Sailer & Carvalho in A. R. Palmer, 1957, p. 256 [*M. subimpunctatus; OD]. Similar to Lithaexus and other recent lethaeini but with a smoother integument than is characteristic of the related genera. Mio., USA (California).

Necrochromus Scudder, 1890, p. 406 [*N. cockerelli; SD Slater, 1964, p. 1525]. Body regularly oval; head as broad as apex of thorax. Oligo., USA (Colorado).

Pseudocoris Scudder, 1890, p. 388 [*P. wilsoni; SD Slater, 1964, p. 1521]. Similar to Catopamera, but antennae much longer than combined head and thorax. Oligo., USA (Colorado).

Praenotochus Théobald, 1937a, p. 289 [*P. parallellus; OD]. Similar to Aphenus, but body more cylindrical and first antennal segment much longer. Oligo., Europe (France).

Procoris Scudder, 1890, p. 392 [*P. bechleri; SD Slater, 1964, p. 1521]. Little-known genus; probably similar to Eucorites, but posterior margin of thorax more truncate. Oligo., USA (Colorado).

Procorphus Scudder, 1890, p. 382 [*P. communis; SD Slater, 1964, p. 1512]. Similar to Cryptochromus (recent) but with shorter antennae. Oligo., USA (Colorado).

Procyphyes Sailer & Carvalho in A. R. Palmer, 1957, p. 255 [*P. lithax; OD]. Similar to Cymophyes (recent), but eyes well removed from anterior margin of pronotum. Mio., USA (California).

Procymus Usinger, 1940, p. 79 [*P. cockerelli; OD]. Similar to Cymus (recent), but body short, broad, and covered with cymine punctures. Slater, 1964. Oligo., USA (Colorado).

Prolygaeus Scudder, 1890, p. 405 [*P. inundatus; OD]. Body very regularly oval. Antennae as long as head and thorax, the first segment not extending beyond frons, the last two segments longer than first two. Oligo., USA (Colorado).

Rhypharochromus Hahn, 1826, p. 17. [Most extinct species included here have uncertain generic positions; they were originally put in Pachymerus Lepeletier & Serville, 1825, which is now placed on the Official Index of Rejected and Invalid Names in Zoology (Op. 676, 1963, ICZN).] Slater, 1964. Eoc., USA (Wyoming); Oligo., Europe (Germany, Baltic, France), USA (Colorado); Mio., USA (Colorado), Europe (Germany, Croatia)—Holo.

Scolopostethus Fieber, 1860, p. 188. Statz & Wagner, 1950. Oligo., Europe (Germany)—Holo.

Tiromerus Scudder, 1890, p. 401 [*T. torpefactus; OD]. Little-known genus, similar to Rhypharochromus; second segment of antennae much longer than third or fourth. Oligo., USA (Colorado).

Trapezonotus Fieber, 1860, p. 50. Scudder, 1890; Statz & Wagner, 1950. Oligo., Europe (Germany), USA (Colorado)—Holo.
Family BERTITIDAE Fieber, 1851

[Bertytidae Fizer, 1851, p. 9]

Body very slender; head conical, porrect; antennae and rostrum four-segmented; pronotum much longer than wide; scutellum armed; legs very slender; tarsi three-segmented. Oligo.–Holo.

Family PYRRHOCORIDAE Fieber, 1860

[Pyrrhocoridae Fizer, 1860, p. 43]

Body elongate-oval; antennae and beak four-segmented; ocelli absent; membrane with 2 large basal cells, giving rise to several (about 8) branching veins; tarsi three-segmented. Oligo.–Holo.

Crocistethus Fieber, 1860, p. 84. Statz & Wagner, 1950. Oligo., Europe (Germany)–Holo.
Dysdercus Amyot & Serville, 1843, p. 272. Scudder, 1890. Oligo., USA (Colorado)–Holo.

Family CYDNIDAE Billberg, 1820

[Cydnidae Billberg, 1820, p. 7]

Similar to the Pentatomidae, but forelegs fossorial; tibiae strongly spinose, veins of fore wing membrane radiating from base. Eoc.–Holo.

Cydnus Fabricius, 1803, p. 184. Heer, 1853a; Förster, 1891; Théobald, 1937a; Statz, 1950a. Oligo., Europe (Germany, France)–Holo.
Crocuthestus Fieber, 1860, p. 84. Statz & Wagner, 1950. Oligo., Europe (Germany)–Holo.
Cyrtomenus Amyot & Serville, 1843, p. 90. Scudder, 1890. Eoc., USA (Wyoming)–Holo.
Necrocydnus Scudder, 1890, p. 443 [*N. amyzonus Scudder, 1890, p. 443; SD Carpenter, herein]. Head only slightly sunk into prothorax; anterior-lateral angles of thorax rounded. Eoc., USA (Wyoming); Oligo., USA (Colorado).
Procynus Scudder, 1890, p. 438 [*P. quietus Scudder, 1890, p. 438; SD Carpenter, herein]. Very similar to Stenopelta, but body less than twice as long as broad. Eoc., USA (Wyoming); Oligo., USA (Colorado).
Stenopelta Scudder, 1890, p. 437 [*Aethus punctulatus Scudder, 1878b, p. 769; OD]. Scutellum triangular, as broad as long; head sunk deeply into prothorax, the depth of the thoracic emargination being about half its width; body more than twice as long as broad. Eoc., USA (Wyoming).
Teleoocinus Henriksen, 1922b, p. 32 [*T. transitorius; OD]. Similar to Cydnus (recent) but with a long, slender scutellum, reaching about to abdominal apex. Eoc., Europe (Denmark).
Thlomolumen Scudder, 1890, p. 448 [*T. petreus; OD]. Similar to Necrocydnus, but head even more prominent; anterior emargination of prothorax slight or absent. Oligo., USA (Colorado).

Family SCUTELLERIDAE Leach, 1815

[Scutellidae Leach, 1815, p. 121]

Body oval, usually strongly convex; head triangular; 2 ocelli; rostrum four-segmented; scutellum very large, U-shaped; tarsi three-segmented. Eoc.–Holo.

Scutella Lamarck, 1801, p. 293. Holo.
Coptosoma Laporte, 1832, p. 73. Pitton, 1940a. Eoc., Europe (France)–Holo.
Poecclocoris Dallas, 1848, p. 100. Statz & Wagner, 1950. Oligo., Europe (Germany)–Holo.
Tectocos Hahn, 1834, p. 33. Henriksen, 1922b. Eoc., Europe (Denmark)–Holo.

Family PACHYMERIDIDAE Handlirsch, 1906

Fore wing differentiated into corium and membrane; venation of membrane indistinct; clavus broad and nearly half as long as wing; vein SC separating from R + M near division of R and M. Popov & Wootton, 1977. Jur.

— Fig. 170.2. *P. dubium*; fore wing, X9 (Popov & Wootton, 1977).

Cathalus Handlirsch, 1939, p. 121 [*C. alutaceus; OD]. Little-known genus, based on wing fragment; apparently similar to Sisyrocoris, but R and M very close together in fore wing; corium less punctate. Popov & Wootton, 1977. Jur., Europe (Germany).

Hypocimex Handlirsch, 1939, p. 119 [*H. membranaceus; OD]. Little-known genus, based on

© 2009 University of Kansas Paleontological Institute

Family PENTATOMIDAE Leach, 1815

[Pentatomidae Leach, 1815, p. 121]

Body oval; head triangular, porrect, much narrower than thorax; antennae five-segmented; rostrum four-segmented; ocelli present; scutellum extending beyond middle of abdomen, narrowed posteriorly to form triangle; membrane with numerous veins; tarsi two- or three-segmented. Eoc.—Holo.

Pentatoma Olivier, 1789, p. 25. Heer, 1853a; Heyden & Heyden, 1865; Förster, 1891; Handlirsch, 1906b. Ec., Europe (Greenland); Oligo., Europe (Germany, Baltic); Mio., Europe (Croatia, Germany)—Holo.

Acanthosoma Curtis, 1824, p. 28. Heer, 1853a; Förster, 1891; Piton & Theobald, 1935. Oligo., Europe (Germany); Mio., Europe (Croatia, France)—Holo.

Arma Hahn, 1832, p. 91. Förster, 1891. Oligo., Europe (Germany)—Holo.

Brachypelta Amoyt & Serville, 1843, p. 89. Novák, 1877. Oligo., Europe (Germany, Czechoslovakia)—Holo.

Cacoschistus Scudder, 1890, p. 459 [*C. maceratus; OD]. Similar to Mataeoschistus (recent) but with broader head and less prominent frontal area. Oligo., USA (Colorado).

Deryeuma Piton, 1940a, p. 159 [*D. primordialis; OD]. Pronotum narrowed in front, notched in region of head; antennae five-segmented, the first segment very short, the second very long; tarsi three-segmented. Ec., Europe (France).

Dinidorites Cockerell, 1921e, p. 34 [*D. marginiformis; OD]. Body narrow; pronotum and scutellum with numerous, dark punctures. Ec., USA (Colorado).

Doryderes Amoyt & Serville, 1843, p. 121. Piton, 1940a. Ec., Europe (France)—Holo.

Eurydema Laporte, 1832, p. 61. Heer, 1853a; Piton & Theobald, 1935; Theobald, 1937a. Mio., Europe (Germany); Mio./Plio., Europe (France)—Holo.

Eysacorius Hahn, 1834, p. 66. Heer, 1853a; Naora, 1933b; Theobald, 1937a. Oligo., Europe (France); Mio., Europe (Germany); Tert. (epoch unknown), Japan—Holo.

Latacorius Cockerell, 1931b, p. 312 [*L. spectatus; OD]. Head less than one-third width of pronotum; pronotum coarsely punctate, more than twice as long as wide; scutellum with straight sides. Mio., USA (Washington).

Manevalia Piton, 1940a, p. 159 [*M. pachyformis; OD]. Little-known genus, apparently related to Pachylis (recent). Oligo., Europe (France).

Mesohalys Bieler, 1952, p. 134 [*M. muizenbergiana; OD]. Pronotum and mesonotum very coarsely punctate; abdominal tergites finely punctate; front margin of pronotum notched. Mio., Europe (Germany).

Neurocoris Heer, 1853a, p. 23 [*N. rotundatus Heer, 1853a; OD]. Similar to Teleoschistus. Head longer than twice as long as wide; tegmina very short and broad. Scudder, 1885b. Mio., Europe (Croatia).

Nezara Amoyt & Serville, 1843, p. 143. Theobald, 1937a. Oligo., Europe (France); Mio./Plio., Europe (France).

Polioschistus Scudder, 1890, p. 130 [*P. amnesis; OD]. Allied to Teleoschistus. Body oval; head longer than wide between eyes; scutellum extending halfway to apex of abdomen and rounded posteriorly. Oligo., USA (Colorado).

Polioschistus Scudder, 1890, p. 460 [*P. ligatus Scudder, 1890, p. 460; SD Carpenter, herein]. General form as in Euschistus (recent); head in front of eyes subquadrate; thorax very short, about 4 times as broad as long. Oligo., USA (Colorado).

Potoschistus Scudder, 1890, p. 458 [*P. ohmabilis; OD]. Little-known genus, with body regularly ovate. Oligo., USA (Colorado).

Pycaenium Amoyt & Serville, 1843, p. 171. Piton, 1940a. Ec., Europe (France)—Holo.
Family **ANTHOCORIDAE**

Amoyt & Serville, 1843

[Anthocoridae Amoyt & Serville, 1843, p. xxxvii]

Similar to the Saldidae, but fore wing membrane without long, closed cells; corium with an embolium. Oligo.—Holo.

Family **NABIDAE** Costa, 1852

[Nabidae Costa, 1852, p. 66]

Similar to the Reduviidae but more slender; rostrum with 4 segments; membrane of fore wings with distinctly branched veins or with a few longitudinal veins emitting radiating veins. Jur.—Holo.

Nabis Latreille, 1802, p. 248. Heer, 1853a, 1865; Théobald, 1937a; Jordan, 1952. Oligo., Europe (Baltic, France); Mio., Europe (Croatia)—Holo.

Family **REDUVIIDAE** Latreille, 1807

(Reduviidae Latreille, 1807, p. 126)

Head shorter than thorax and scutellum, not constricted behind eyes; antennae four-segmented; rostrum three-segmented; fore wings not reticulate; forelegs raptorial. Oligo.—Holo.

Eothes Scudder, 1890, p. 355 [*E. elegans*; OD]. Related to Opicoetus (recent), but body more slender and terminal antennal segments stout. Oligo., USA (Colorado).

Miocoris Cockrell, 1927e, p. 591 [*M. fagi*; OD]. Anterior femora stout; first antennal segment not as long as head. Oligo., USA (Colorado).

Poliosphageus Kirkaldy, 1910, p. 130 [*P. psilurus*; OD]. Similar to Repipta (recent) but with shorter antennal segment scarcely longer than head; second segment much longer than first. Oligo., USA (Colorado).

Propitilocus Wasmann, 1933, p. 1 [*P. dolosus*; OD]. Similar to Tipilocus (recent) but with second antennal segment and the 2 terminal segments longer and thicker. Oligo., Europe (Baltic).

Tagalodes Scudder, 1890, p. 356 [*T. inermis*; OD]. Similar to Taglis (recent) but with shorter thorax and without spines on fore femora. Oligo., USA (Colorado).

Family **TINGIDAE** Laporte, 1833

(Tingidae Laporte, 1833, p. 47)

Head shorter than thorax; antennae shorter than head, with 4 segments; fore wings lace-like, entirely reticulate. Oligo.—Holo.

Hemiptera—Heteroptera 275

Dicytla Stål, 1874, p. 57. Scudder, 1890; Drake & Ruhoff, 1960. Oligo., USA (Colorado), Europe (Czechoslovakia)—Mio., Europe (Germany)—Holo.

Eotningis Scudder, 1890, p. 359 [*E. antennata; OD]. Similar to Tingis; pronotum smooth; costal area of fore wing enlarged apically. Drake & Ruhoff, 1960. Oligo., USA (Colorado).

Family MIRIDAE Hahn, 1831

[Miridae Hahn, 1831, p. 234]

Head porrect; eyes large; ocelli absent; antennae and beak with 4 segments, beak not held in a groove; scutellum distinct; membrane of tegmen usually with 2 basal cells, veins otherwise absent from membrane; tarsi two-segmented. Jur.—Holo.

Miris Fabricius, 1794, p. 183. Holcopterus, 1879. Oligo., USA (Colorado)—Holo.

Apoprema Scudder, 1890, p. 369 [*A. praestriectum; OD]. Little-known genus, probably close to Phyto­coris; scutellum large, equiangular, with straight sides. Oligo., USA (Colorado).

Closterocoris Uhlerr, 1890, p. 76. [Generic assignment of species doubtful.] Scudder, 1980. Oligo., USA (Colorado)—Holo.

Hadronema Uhlerr, 1872, p. 412. Scudder, 1890. Oligo., USA (Colorado)—Holo.

Miri­do­ides Becker-Migdisova, 1962b, p. 217 [*M. mesozicicus; OD]. Antennae shorter than body; tegmen reaching to end of abdomen with front margin convex and only 2 veins in corium. Jur., USSR (Kazakh).—Fig. 170.1. *M. mesozicicus; X10 (Becker-Migdisova, 1962b).

Phyto­cos Carolinianus Fellen, 1814, p. 10. Germar & Berendt, 1856; Theobald, 1937a. Oligo., Europe (Baltic, France)—Holo.

Poecilocapsus Reuter, 1875, p. 73. Scudder, 1890. Oligo., USA (Colorado)—Holo.

Scutellifer Popov, 1968, p. 108 [*S. karatanicus; OD]. Antennae longer than body, its first segment longer than pronotum; scutellum very large; membrane of tegmen without spots; fore femora long, slightly flattened; hind legs very long. Jur., USSR (Kazakh).

Family UNCERTAIN

The following genera, apparently belonging to the suborder Heteroptera, are too poorly known to permit assignment to families.

Cacalysus Scudder, 1890, p. 419 [*C. exsterpus; SD Stys & Riha, 1977, p. 180]. Little-known genus; probably a coreid. Oligo., USA (Colorado).

Copedopus Handlirsch, 1906b, p. 635 [*C. jura­sicicus; OD]. Little-known genus. Large species; antennae with 5 segments; hind legs with thick­ened femora. Jur., Europe (Germany).

Coreites Heer, 1853a, p. 56 [*C. crassius Heer, 1853a, p. 56; SD Carpenter, herein]. Little-known heteropteron; head and tho­rax punctate. Jur., Europe (France)—Mio., Europe (Croatia).

Cynnosina Heer, 1853a, p. 13 [*C. haidingeri Heer, 1853a, p. 13; SD Carpenter, herein]. Little-known heteropteron, possibly belonging to Core­idae. Piton & Theobald, 1935. Oligo., Europe (France)—Mio., Europe (Croatia, Germany).

Dera­ci­coris Bode, 1953, p. 128 [*D. insculptus; OD]. Little-known heteropteron; head and tho­rax punctate. Jur., Europe (Germany).

Dichas­pis Bode, 1953, p. 137 [*D. laesa; OD]. Little-known heteropteron, with small head; wings and venation virtually unknown. Jur., Europe (Germany).

Electrocoris Ussinger, 1942, p. 43 [*E. brunneus; OD]. Cimicoid genus, with ocelli present; 4 free, longitudinal veins in membrane of tegmen; abdominal trichobothria absent. Oligo., Europe (Baltic).

© 2009 University of Kansas Paleontological Institute
Engzerophorus Bode, 1953, p. 144 [*E. nitidus; OD]. Little-known heteropteron, with small head. Jur., Europe (Germany).

Eogerridium Bode, 1953, p. 131 [*E. gracile; OD]. Little-known genus, based on fragment of body; legs long and slender. Jur., Europe (Germany).

Hadrocoris Handlirsch, 1939, p. 117 [*H. ocularis; OD]. Little-known heteropteron, with a large scutellum and punctate head and thorax. [Type of family Hadrocoridae Handlirsch, 1939, p. 116.] Jur., Europe (Germany).

Heteronella Evans, 1961, p. 22 [*H. marksei; OD]. Little-known genus. Tegmen with suggestion of costal fracture; venation distinct in basal half of tegmen only. Trias., Australia (Queensland).—Fig. 171, 2. *H. marksei; fore wing, X14 (Evans, 1961).

Megalocoris Bode, 1953, p. 127 [*M. laticlavus; OD]. Little-known heteropteron; body large, oval in form; venation unknown. Jur., Europe (Germany).

Palaeonepidoideus Meunier, 1900, p. 13 [*P. carinata; OD]. Little-known heteropteron, possibly belonging to the Nepidae. Jur., Europe (Germany).

Pricecoris Pinto & Ornellas, 1974b, p. 296 [*P. beckeras; OD]. Little-known genus, based on poorly preserved specimen; venation not preserved. [Type of family Pricecoridae Pinto & Ornellas.] Cret., Brazil (Maranhão).

Probascanion Handlirsch, 1939, p. 118 [*P. megacephalum; OD]. Little-known heteropteron, with relatively large head; venation unknown. [Type of family Probascanionidae Handlirsch, 1939.] Jur., Europe (Germany).

Pronabis Bode, 1953, p. 129 [*P. utroquulaeus; OD]. Little-known genus; fore wing without distinct membranous area. Jur., Europe (Germany).

Protocoris Heer, 1852, p. 15 [*P. planus; OD]. Little-known genus; fore wing with distinct membranous area. [Type of family Protocoridae Handlirsch, 1906b, p. 495.] Jur., Europe (Germany).

Rhepocoris Scudder, 1890, p. 426 [*R. praetectorius; OD]. Little-known genus; body large, oval in form; venation unknown. Jur., Europe (Germany).

Stiphroschema Bode, 1953, p. 143 [*S. longealatum; OD]. Little-known heteropteron, with small head and broad thorax; fore wing apparently very thin. Jur., Europe (Germany).

Strobilocoris Bode, 1953, p. 138 [*S. mediocoratus; OD]. Little-known heteropteron; thorax quadrate, with coarse sculpturing; venation unknown. Jur., Europe (Germany).

Trachycoris Bode, 1953, p. 142 [*T. abbreviatus; OD]. Little-known heteropteron; similar to Strobilocoris but with broader wings; venation unknown. Jur., Europe (Germany).

Triassocoris Tillyard, 1922b, p. 466 [*T. myersi; OD]. Tegmen with corium present in central part of wing; membrane submarginal, separated from corium by impressed line; M and Cu arising independently from stem R; radiating veins extending from M to distal margin; clavus sharply defined, short. [Type of family Triassocoridae
Suborder UNCERTAIN

The following genera, apparently belonging to the Hemiptera, are too poorly known to permit assignment to suborders.

Family PARAKNIGHTIIDAE
Evans, 1950

Paraknightiidae Evans, 1950 (Paraknightiidae Evans, 1950, p. 250)

Paranotal lobes well developed. Tegmen with costal fracture in basal third of wing. Female with well-developed ovipositor. Perm.

Paraknightia Evans, 1943b, p. 185 [*P. magnifica; OD]. Tegmen with costal margin thickened; R + M dividing about one-fifth wing length from base. [Originally placed in Homoptera but transferred to Heteroptera by Evans (1950); moved to a different suborder, Peloridiina, by Popov (1980b) along with the existing family Peloridiidae.] Evans, 1950; Becker-Migdisova & Popov, 1962. Perm., Australia (New South Wales).—Fig. 172. *P. magnifica; a, dorsal view, X3 (Becker-Migdisova & Popov, 1962); b, tegmen, X4.6 (Evans, 1950).

Family UNCERTAIN

Docimus Scudder, 1890, p. 314 [*D. psylloides; OD]. Little-known genus, based on fragment. Handlirsch, 1907. Oligo., USA (Colorado).

Prosiagara Scudder, 1890, p. 343 [*P. flabellum; OD]. Little-known genus, based on poorly preserved specimen. Handlirsch, 1907. Oligo., USA (Colorado).