TREATISE ON
INVERTEBRATE PALEONTOLOGY

Part O
TRILOBITA
Revised

Volume 1: Introduction

H. B. Whittington, B. D. E. Chatterton, S. E. Speyer, R. A. Fortey,
R. M. Owens, W. T. Chang, W. T. Dean, P. A. Jell, J. R. Laurie,
A. R. Palmer, L. N. Repina, A. W. A. Rushton, J. H. Shergold,
E. N. K. Clarkson, N. V. Wilmot, and S. R. A. Kelly

Prepared under Sponsorship of
The Geological Society of America, Inc.

The Paleontological Society
The Palaeontographical Society
SEPM (Society for Sedimentary Geology)
The Palaeontological Association

Raymond C. Moore
Founder

Roger L. Kaesler
Editor

ELIZABETH BROSIOUS, JANE KERNS,
JILL HARDESTY, JACK KEIM, AND KAREN RENTERIA
Assistant Editors and Editorial Staff

THE GEOLOGICAL SOCIETY OF AMERICA, INC.
and
THE UNIVERSITY OF KANSAS
BOULDER, COLORADO, AND LAWRENCE, KANSAS
1997

© 2009 University of Kansas Paleontological Institute
The *Treatise on Invertebrate Paleontology* has been made possible by (1) funding principally from the National Science Foundation of the United States in its early stages, from the Geological Society of America through the bequest of Richard Alexander Fullerton Penrose, Jr., and from The Kansas University Endowment Association through the bequest of Raymond C. and Lillian B. Moore; (2) contribution of the knowledge and labor of specialists throughout the world, working in cooperation under sponsorship of the Geological Society of America, the Paleontological Society, the SEPM (Society for Sedimentary Geology), the Palaeontographical Society, and the Palaeontological Association; (3) acceptance by The University of Kansas of publication without any financial gain to the University; and (4) generous contributions by our individual and corporate sponsors.
PART O, Revised
TRILOBITA
Introduction, Order Agnostina, Order Redlichiida
VOLUME 1

CONTENTS
INFORMATION ON TREATISE VOLUMES .. viii
EDITORIAL PREFACE ... ix
STRATIGRAPHIC DIVISIONS .. xxi
AUTHOR’S PREFACE ... xxii
REPOSITORIES AND THEIR ABBREVIATIONS xxiii
MORPHOLOGY OF THE EXOSKELETON (H. B. Whittington) 1
Size, Form, and Orientation .. 1
Divisions of the Exoskeleton ... 3
Cephalon ... 4
Thorax .. 42
Pygidium .. 59
Enrollment and Coaptative Structures (E. N. K. Clarkson and H. B. Whittington) ... 67
Microstructure and Sculpture of the Exoskeletal Cuticle (H. B. Whittington and N. V. Wilmot) ... 74
Supposed color markings (H. B. Whittington) 84
THE TRILOBITE BODY (H. B. Whittington) 87
Introduction .. 87
Limbs .. 87
Axial Region and Alimentary Canal ... 98
Pleural Region, Caeca, and Panderian Openings 99
Musculature, Flexure of Body, and Limb Movements 101
Superficial Sensory Structures .. 111
The Eye: Morphology, Function, and Evolution (E. N. K. Clarkson) 114
Cephalic Segmentation .. 132
MODE OF LIFE, HABITS, AND OCCURRENCE (H. B. Whittington) 137
Species in which Limbs are Known .. 137
Forms in which Only the Exoskeleton is Known 141
Trackways, Trails, and Behavior .. 148

© 2009 University of Kansas Paleontological Institute
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exuviation and the Function of Sutures</td>
<td>152</td>
</tr>
<tr>
<td>Clusters and Monospecific Occurrences</td>
<td>159</td>
</tr>
<tr>
<td>Abnormalities of the Exoskeleton</td>
<td>159</td>
</tr>
<tr>
<td>Dimorphism</td>
<td>161</td>
</tr>
<tr>
<td>Distribution in Rock Type, Time, and Space</td>
<td>162</td>
</tr>
<tr>
<td>Taphonomy</td>
<td>166</td>
</tr>
<tr>
<td>USE OF NUMERICAL AND CLADISTIC METHODS (H. B. Whittington)</td>
<td>171</td>
</tr>
<tr>
<td>ONTOGENY (Brian D. E. Chatterton and Stephen E. Speyer)</td>
<td>173</td>
</tr>
<tr>
<td>History of Research</td>
<td>174</td>
</tr>
<tr>
<td>Preservation and Occurrence</td>
<td>178</td>
</tr>
<tr>
<td>Morphology and Terminology</td>
<td>183</td>
</tr>
<tr>
<td>Life Histories</td>
<td>184</td>
</tr>
<tr>
<td>Life-History Strategies</td>
<td>196</td>
</tr>
<tr>
<td>Heterochrony</td>
<td>199</td>
</tr>
<tr>
<td>Growth Formulas and Population Dynamics</td>
<td>208</td>
</tr>
<tr>
<td>Biogeography in Relation to Ontogeny</td>
<td>209</td>
</tr>
<tr>
<td>Ontogeny and Systematics</td>
<td>211</td>
</tr>
<tr>
<td>EVOLUTIONARY HISTORY (Richard A. Fortey and Robert M. Owens)</td>
<td>249</td>
</tr>
<tr>
<td>Changes in Morphology Through Time: General Features</td>
<td>249</td>
</tr>
<tr>
<td>Changes from Primitive Morphology</td>
<td>250</td>
</tr>
<tr>
<td>Evolution of Repeated Morphotypes in Trilobite History</td>
<td>265</td>
</tr>
<tr>
<td>Morphotypes and their Stratigraphic Distribution</td>
<td>266</td>
</tr>
<tr>
<td>Species-Level Evolution: Case Histories</td>
<td>268</td>
</tr>
<tr>
<td>Evolution in Relation to Paleogeography</td>
<td>271</td>
</tr>
<tr>
<td>Times of Major Change in Trilobite History</td>
<td>282</td>
</tr>
<tr>
<td>CLASSIFICATION (Richard A. Fortey)</td>
<td>289</td>
</tr>
<tr>
<td>High-Level Taxa that are Redundant</td>
<td>291</td>
</tr>
<tr>
<td>Systematic Position of Olenellina</td>
<td>292</td>
</tr>
<tr>
<td>Status of Naraoiids</td>
<td>293</td>
</tr>
<tr>
<td>Taxonomic Position of Agnostina</td>
<td>294</td>
</tr>
<tr>
<td>The Problem of the Ptychopariina</td>
<td>295</td>
</tr>
<tr>
<td>Outline of Classification</td>
<td>297</td>
</tr>
<tr>
<td>EXPLANATORY NOTES FOR THE CAMBRIAN CORRELATION CHART (J. H. Shergold)</td>
<td>303</td>
</tr>
<tr>
<td>Background</td>
<td>303</td>
</tr>
<tr>
<td>Contentious Levels of Correlation</td>
<td>306</td>
</tr>
<tr>
<td>MORPHOLOGICAL TERMS APPLIED TO TRILOBITA (H. B. Whittington and S. R. A. Kelly)</td>
<td>313</td>
</tr>
<tr>
<td>Class TRILOBITA Walch, 1771</td>
<td>331</td>
</tr>
<tr>
<td>Order Agnostida Salter, 1864</td>
<td>331</td>
</tr>
<tr>
<td>Suborder Agnostina Salter, 1864</td>
<td>331</td>
</tr>
<tr>
<td>Introduction to the Suborder Agnostina (John H. Shergold and John R. Laurie)</td>
<td>331</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
<table>
<thead>
<tr>
<th>Superfamily</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agnostoidea</td>
<td>339</td>
</tr>
<tr>
<td>Agnostidae</td>
<td>339</td>
</tr>
<tr>
<td>Ptychagnostidae</td>
<td>350</td>
</tr>
<tr>
<td>Spinagnostidae</td>
<td>355</td>
</tr>
<tr>
<td>Peronopsidae</td>
<td>360</td>
</tr>
<tr>
<td>Diagnostidae</td>
<td>362</td>
</tr>
<tr>
<td>Clavagnostidae</td>
<td>371</td>
</tr>
<tr>
<td>Metagnostidae</td>
<td>373</td>
</tr>
<tr>
<td>Uncertain</td>
<td>377</td>
</tr>
<tr>
<td>Phalacromiidae</td>
<td>381</td>
</tr>
<tr>
<td>Sphaeragnostidae</td>
<td>381</td>
</tr>
<tr>
<td>Condylopygoidea</td>
<td>383</td>
</tr>
<tr>
<td>Condylopygidae</td>
<td>383</td>
</tr>
<tr>
<td>Eodiscoidea</td>
<td>383</td>
</tr>
<tr>
<td>Eodiscidae</td>
<td>387</td>
</tr>
<tr>
<td>Olenidoidea</td>
<td>384</td>
</tr>
<tr>
<td>Hebediscidae</td>
<td>384</td>
</tr>
<tr>
<td>Calodiscidae</td>
<td>390</td>
</tr>
<tr>
<td>Weymouthiidae</td>
<td>392</td>
</tr>
<tr>
<td>Yukoniidae</td>
<td>398</td>
</tr>
<tr>
<td>Olenellidae</td>
<td>400</td>
</tr>
<tr>
<td>Fallotaspididae</td>
<td>418</td>
</tr>
<tr>
<td>Archaeaspididae</td>
<td>422</td>
</tr>
<tr>
<td>Judomiidae</td>
<td>423</td>
</tr>
<tr>
<td>Neltneriidae</td>
<td>425</td>
</tr>
<tr>
<td>Nevadiidae</td>
<td>426</td>
</tr>
<tr>
<td>Uncertain</td>
<td>428</td>
</tr>
<tr>
<td>Olenellina</td>
<td>429</td>
</tr>
<tr>
<td>Emuellidae</td>
<td>429</td>
</tr>
<tr>
<td>Redlichioidea</td>
<td>430</td>
</tr>
<tr>
<td>Redlichiida</td>
<td>430</td>
</tr>
<tr>
<td>Dolerolenidae</td>
<td>444</td>
</tr>
<tr>
<td>Yimitidae</td>
<td>446</td>
</tr>
<tr>
<td>Mayiellidae</td>
<td>449</td>
</tr>
<tr>
<td>Gigantopygidae</td>
<td>451</td>
</tr>
<tr>
<td>Saukiandidae</td>
<td>452</td>
</tr>
<tr>
<td>Metadoxididae</td>
<td>459</td>
</tr>
<tr>
<td>Abadiellidae</td>
<td>461</td>
</tr>
<tr>
<td>Family Kueichowiidae</td>
<td>462</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Family Menneraspidae</td>
<td>464</td>
</tr>
<tr>
<td>Family Redlichinidae</td>
<td>466</td>
</tr>
<tr>
<td>Family Chengkouaspidae</td>
<td>467</td>
</tr>
<tr>
<td>Family Uncertain</td>
<td>468</td>
</tr>
<tr>
<td>Superfamily Paradoxidoidea (W. T. Dean and A. W. A. Rushton)</td>
<td>470</td>
</tr>
<tr>
<td>Family Paradoxidae</td>
<td>471</td>
</tr>
<tr>
<td>Family Centroleuridae</td>
<td>478</td>
</tr>
</tbody>
</table>

REFERENCES .. 483

INDEX .. 523
INFORMATION ON TREATISE VOLUMES

Parts of the *Treatise* are distinguished by assigned letters with a view to indicating their systematic sequence while allowing publication of units in whatever order each is made ready for the press. Copies can be obtained from the Publication Sales Department, The Geological Society of America, 3300 Penrose Place, P.O. Box 9140, Boulder, Colorado 80301.

VOLUMES ALREADY PUBLISHED

Part C. *PROTISTA* 2 (Sarcodina, Chiefly “Thecamoebians” and Foraminiferida), xxxi + 900 p., 5,311 fig., 1964.
Part D. *PROTISTA* 3 (Chiefly Radiolaria, Tintinnina), xii + 195 p., 1,050 fig., 1954.
Part G. *BRYOZA*, xii + 253 p., 2,000 fig., 1953.
Part T. *ECHINODERMATA* 2 (Crinoidea), Volumes 1–3, xxxviii + 1,027 p., 4,833 fig., 1978.

© 2009 University of Kansas Paleontological Institute
EDITORIAL PREFACE

From the outset the aim of the *Treatise on Invertebrate Paleontology* has been to present a comprehensive and authoritative yet compact statement of knowledge concerning groups of invertebrate fossils. Typically, preparation of early *Treatise* volumes was undertaken by a small group with a synoptic view of the taxa being monographed. Two or perhaps three specialists worked together, sometimes co-opting others for coverage of highly specialized taxa. Recently, however, both new *Treatise* volumes and revisions of existing ones have been undertaken increasingly by teams of specialists led by a coordinating author. This volume, *Part O, Arthropoda 1, Revised*, the first of a series of volumes on the trilobites, has been prepared by such a team of specialists whose work was coordinated by Professor H. B. Whittington. Editorial matters specific to this volume are discussed near the end of this editorial pref- ace.

ZOOLOGICAL NAMES

Questions about the proper use of zoological names arise continually, especially questions regarding both the acceptability of names and alterations of names that are allowed or even required. Regulations prepared by the International Commission on Zoological Nomenclature (ICZN) and published in 1985 in the *International Code of Zoological Nomenclature*, hereinafter referred to as the *Code*, provide procedures for answering such questions. The prime objective of the *Code* is to promote stability and universality in the use of the scientific names of animals, ensuring also that each generic name is distinct and unique, while avoiding
unwarranted restrictions on freedom of thought and action of systematists. Priority of names is a basic principle of the Code, but under specified conditions and by following prescribed procedures, priority may be set aside by the Commission. These procedures apply especially where slavish adherence to the principle of priority would hamper or even disrupt zoological nomenclature and the information it conveys.

The Commission, ever aware of the changing needs of systematists, is undertaking a revision of the Code that will further enhance nomenclatorial stability. Nevertheless, the nomenclatorial tasks that confront zoological taxonomists are formidable and have often justified the complaint that the study of zoology and paleontology is too often merely the study of names rather than the study of animals. It is incumbent upon all systematists, therefore, at the outset of their work to pay careful attention to the Code to enhance stability by minimizing the number of subsequent changes of names, too many of which are necessitated by insufficient attention to detail. To that end, several pages here are devoted to aspects of zoological nomenclature that are judged to have chief importance in relation to procedures adopted in the Treatise, especially in this volume. Terminology is explained, and examples are given of the style employed in the nomenclatorial parts of the systematic descriptions.

GROUPS OF TAXONOMIC CATEGORIES

Each taxon belongs to a category in the Linnaean, hierarchical classification. The Code recognizes three groups of categories, a species-group, a genus-group, and a family-group. Taxa of lower rank than subspecies are excluded from the rules of zoological nomenclature, and those of higher rank than superfamily are not regulated by the Code. It is both natural and convenient to discuss nomenclatorial matters in general terms first and then to consider each of these three, recognized groups separately. Especially important is the provision that within each group the categories are coordinate, that is, equal in rank, whereas categories of different groups are not coordinate.

FORMS OF NAMES

All zoological names can be considered on the basis of their spelling. The first form of a name to be published is defined as the original spelling (Code, Article 32), and any form of the same name that is published later and is different from the original spelling is designated a subsequent spelling (Code, Article 33). Not every original or subsequent spelling is correct.

ORIGINAL SPELLINGS

If the first form of a name to be published is consistent and unambiguous, the original is defined as correct unless it contravenes some stipulation of the Code (Articles 11, 27 to 31, and 34) or unless the original publication contains clear evidence of an inadvertent error in the sense of the Code, or, among names belonging to the family-group, unless correction of the termination or the stem of the type genus is required. An original spelling that fails to meet these requirements in defined as incorrect.

If a name is spelled in more than one way in the original publication, the form adopted by the first reviser is accepted as the correct original spelling, provided that it complies with mandatory stipulations of the Code (Articles 11 and 24 to 34).

Incorrect original spellings are any that fail to satisfy requirements of the Code, represent an inadvertent error, or are one of multiple original spellings not adopted by a first reviser. These have no separate status in zoological nomenclature and, therefore, cannot enter into homonymy or be used as replacement names; and they call for correction. For example, a name originally published with a
diacritical mark, apostrophe, dieresis, or hyphen requires correction by deleting such features and uniting parts of the name originally separated by them, except that deletion of an umlaut from a vowel in a name derived from a German word or personal name unfortunately requires the insertion of e after the vowel. Where original spelling is judged to be incorrect solely because of inadequacies of the Greek or Latin scholarship of the author, nomenclatorial changes conflict with the primary propose of zoological nomenclature as an information retrieval system. One looks forward with hope to a revised Code wherein rules are emplaced that enhance stability rather than classical scholarship, thereby facilitating access to information.

SUBSEQUENT SPELLINGS

If a subsequent spelling differs from an original spelling in any way, even by the omission, addition, or alteration of a single letter, the subsequent spelling must be defined as a different name. Exceptions include such changes as an altered termination of adjectival specific names to agree in gender with associated generic names; changes of family-group names to denote assigned taxonomic rank; and corrections that eliminate originally used diacritical marks, hyphens, and the like. Such changes are not regarded as spelling changes conceived to produce a different name. In some instances, however, species-group names having variable spellings are regarded as homonyms as specified in the Code (Article 58).

Altered subsequent spellings other than the exceptions noted may be either intentional or unintentional. If “demonstrably intentional” (Code, Article 33, p. 73), the change is designated as an emendation. Emendations may be either justifiable or unjustifiable. Justifiable emendations are corrections of incorrect original spellings, and these take the authorship and date of the original spellings. Unjustifiable emendations are names having their own status in nomenclature, with author and date of their publication. They are junior, objective synonyms of the name in its original form.

Subsequent spellings, if unintentional, are defined as incorrect subsequent spellings. They have no status in nomenclature, do not enter into homonymy, and cannot be used as replacement names.

AVAILABLE AND UNAVAILABLE NAMES

Editorial prefaces of some previous volumes of the Treatise have discussed in appreciable detail the availability of the many kinds of zoological names that have been proposed under a variety of circumstances. Much of that information, while important, does not pertain to the present volume, in which authors have used fewer terms for such names. The reader is referred to the Code (Articles 10 to 20) for further details on availability of names. Here, suffice it to say that an available zoological name is any that conforms to all mandatory provisions of the Code. All zoological names that fail to comply with mandatory provisions of the Code are unavailable and have no status in zoological nomenclature. Both available and unavailable names are classifiable into groups that have been recognized in previous volumes of the Treatise, although not explicitly differentiated in the Code. Among names that are available, these groups include innovated names, perfect names, imperfect names, vain names, transferred names, improved or corrected names, substitute names, and conserved names. Kinds of unavailable names include naked names (see nomina nuda below), denied names, impermissible names, null names, and forgotten names.

Nomina nuda include all names that fail to satisfy provisions stipulated in Article 11 of the Code, which states general requirements of availability. In addition, they include names published before 1931 that were unaccompanied by a description, definition, or indication (Code, Article 12) and names
published after 1930 that (1) lacked an accompanying statement of characters that differentiate the taxon, (2) were without a definite bibliographic reference to such a statement, (3) were not proposed expressly as a replacement (\textit{nomen novum}) of a preexisting available name (\textit{Code}, Article 13a), or (4) for genus-group names, were unaccompanied by definite fixation of a type species by original designation or indication (\textit{Code}, Article 13b). \textit{Nomina nuda} have no status in nomenclature, and they are not correctable to establish original authorship and date.

VALID AND INVALID NAMES

Important considerations distinguish valid from available names on the one hand and invalid from unavailable names on the other. Whereas determination of availability is based entirely on objective considerations guided by articles of the \textit{Code}, conclusions as to validity of zoological names may be partly subjective. A valid name is the correct one for a given taxon, which may have two or more available names but only a single correct, hence valid, name, which is also generally the oldest name that it has been given. Obviously, no valid name can also be an unavailable name, but invalid names may be either available or unavailable. It follows that any name for a given taxon other than the valid name, whether available or unavailable, is an invalid name.

One encounters a sort of nomenclatorial no-man's land in considering the status of such zoological names as \textit{nomina dubia} (doubtful names), which may include both available and unavailable names. The unavailable ones can well be ignored, but names considered to be available contribute to uncertainty and instability in the systematic literature. These can ordinarily be removed only by appeal to the ICZN for special action. Because few systematists care to seek such remedy, such invalid but available names persist in the literature.

NAME CHANGES IN RELATION TO GROUPS OF TAXONOMIC CATEGORIES

SPECIES-GROUP NAMES

Detailed consideration of valid emendation of specific and subspecific names is unnecessary here, both because the topic is well understood and relatively inconsequential and because the \textit{Treatise} deals with genus-group names and higher categories. When the form of adjectival specific names is changed to agree with the gender of a generic name in transferring a species from one genus to another, one need never label the changed name as \textit{nomen correctum}. Similarly, transliteration of a letter accompanied by a diacritical mark in the manner now called for by the \textit{Code}, as in changing originally \textit{brøggeri} to \textit{broeggeri}, or eliminating a hyphen, as in changing originally published \textit{cornu-oryx} to \textit{cornuoryx}, does not require the designation \textit{nomen correctum}. Of course, in this age of computers and electronic databases, such changes of name, which are perfectly valid for the purposes of scholarship, run counter to the requirements of nomenclatorial stability upon which the preparation of massive, electronic databases is predicated.

GENUS-GROUP NAMES

Conditions warranting change of the originally published, valid form of generic and subgeneric names are sufficiently rare that lengthy discussion is unnecessary. Only elimination of diacritical marks and hyphens in some names in this category and replacement of homonyms seem to furnish basis for valid emendation. Many names that formerly were regarded as homonyms are no longer so regarded, because two names that differ only by a single letter or in original publication by the presence of a diacritical mark in one are now construed to be entirely distinct.
As has been pointed out above, difficulty typically arises when one tries to decide whether a change of spelling of a name by a subsequent author was intentional or unintentional, and the decision has often to be made arbitrarily.

FAMILY-GROUP NAMES

Family-group Names: Authorship and Date

All family-group taxa having names based on the same type genus are attributed to the author who first published the name of any of these groups, whether tribe, subfamily, or family (superfamily being almost inevitably a later-conceived taxon). Accordingly, if a family is divided into subfamilies or a subfamily into tribes, the name of no such subfamily or tribe can antedate the family name. Moreover, every family containing differentiated subfamilies must have a nominate subfamily (sensu stricto), which is based on the same type genus as the family. Finally, the author and date set down for the nominate subfamily or tribe can antedate the family name. Corrections in the form of family-group names do not affect authorship and date of the taxon concerned, but in the Treatise recording the authorship and date of the correction is desirable because it provides a pathway to follow the thinking of the systematists involved.

Family-Group Names: Use of nomen translatum

The Code specifies the endings only for subfamily (-inae) and family (-idae) names, but all family-group taxa are defined as coordinate (Code, Article 36, p. 77): “A name established for a taxon at any rank in the family group is deemed to be simultaneously established with the same author and date for taxa based upon the same name-bearing type (type genus) at other ranks in the family group, with appropriate mandatory change of suffix [Art. 34a].” Such changes of rank and concomitant changes of endings as elevation of a tribe to subfamily rank or of a subfamily to family rank, if introduced subsequent to designation of a subfamily or family based on the same nominotypical genus, are nomina translata. In the Treatise it is desirable to distinguish the valid alteration in the changed ending of each transferred family-group name by the term nomen translatum, abbreviated to nom. transl. Similarly for clarity, authors should record the author, date, and page of the alteration.

Family HEXAGENITIDAE Lameere, 1917

[nom. transl. DEMUELIN, 1954, p. 566, ex Hexagenitinae LAMEERE, 1917, p. 74]

This is especially important for superfamilies, for the information of interest is the author who initially introduced a taxon rather than the author of the superfamily as defined by the Code. The latter is merely the individual who first defined some lower-ranked, family-group taxon that contains the nominotypical genus of the superfamily. On the other hand, the publication that introduces the superfamily by nomen translatum is likely to furnish the information on taxonomic considerations that support definition of the taxon.

Superfamily AGNOSTOIDEA M’Coy, 1849

Family-Group Names: Use of nomen correctum

Valid name changes classed as nomina correcta do not depend on transfer from one category of the family group to another but most commonly involve correction of the stem of the nominotypical genus. In addi-
tion, they include somewhat arbitrarily chosen modifications of endings for names of tribes or superfamilies. Examples of the use of nomen correctum are the following.

Family STREPTELASMATIDAE
Nicholson, 1889

Family PALAEOSCORPIDAE
Lehmann, 1944

[nom. correct. PETRUNKEVITCH, 1955, p. 73, pro Palaeoscorpionidae Lehmann, 1944, p. 177]

FAMILY-GROUP NAMES: REPLACEMENTS

Family-group names are formed by adding combinations of letters, which are prescribed for family and subfamily, to the stem of the name belonging to the nominotypical genus first chosen as type of the assemblage. The type genus need not be the first genus in the family to have been named and defined, but among all those included it must be the first published as name giver to a family-group taxon. Once fixed, the family-group name remains tied to the nominotypical genus even if the generic name is changed by reason of status as a junior homonym or junior synonym, either objective or subjective. Seemingly, the Code requires replacement of a family-group name only if the nominotypical genus is found to have been a junior homonym when it was proposed (Code, Article 39, p. 79), in which case “...it must be replaced either by the next oldest available name from among its synonyms, including those of its subordinate taxa, or, if there is no such name, by a new replacement name based on the valid name of the former type genus.” Authorship and date attributed to the replacement family-group name are determined by first publication of the changed family-group name. Recommendation 40A of the Code (p. 81), however, specifies that for subsequent application of the rule of priority, the family-group name “...should be cited with its own author and date, followed by the date of the replaced name in parentheses.” Many family-group names that have been in use for a long time are nomina nuda, since they fail to satisfy criteria of availability (Code, Article 11f). These demand replacement by valid names.

The aim of family-group nomenclature is to yield the greatest possible stability and uniformity, just as in other zoological names. Both taxonomic experience and the Code (Article 40) indicate the wisdom of sustaining family-group names based on junior subjective synonyms if they have priority of publication, for opinions of the same worker may change from time to time. The retention of first-published, family-group names that are found to be based on junior objective synonyms, however, is less clearly desirable, especially if a replacement name derived from the senior objective synonym has been recognized very long and widely. Moreover, to displace a widely used, family-group name based on the senior objective synonym by disinterring a forgotten and virtually unused family-group name based on a junior objective synonym because the latter happens to have priority of publication is unsettling.

A family-group name may need to be replaced if the nominotypical genus is transferred to another family-group. If so, the first-published of the generic names remaining in the family-group taxon is to be recognized in forming a replacement name.

Suprafamilial Taxa: Taxa above Family-Group

International rules of zoological nomenclature as given in the Code affect only lower-rank categories: subspecies to superfamily. Suprafamilial categories (suborder to phylum) are either not mentioned or explicitly placed outside of the application of zoological rules. The Copenhagen Decisions on Zoological Nomenclature (1953, Articles 59 to 69) proposed adopting rules for naming suborders and higher taxa up to and including...
phyllum, with provision for designating a type genus for each, in such manner as not to interfere with the taxonomic freedom of workers. Procedures were outlined for applying the rule of priority and rule of homonymy to suprafamilial taxa and for dealing with the names of such taxa and their authorship, with assigned dates, if they should be transferred on taxonomic grounds from one rank to another. The adoption of terminations of names, different for each category but uniform within each, was recommended.

The Colloquium on Zoological Nomenclature, which met in London during the week just before the 15th International Congress of Zoology convened in 1958, thoroughly discussed the proposals for regulating suprafamilial nomenclature, as well as many others advocated for inclusion in the new Code or recommended for exclusion from it. A decision that was supported by a wide majority of the participants in the colloquium was against the establishment of rules for naming taxa above family-group rank, mainly because it was judged that such regulation would unwisely tie the hands of taxonomists. For example, a class or order defined at a given date, using chosen morphologic characters (e.g., gills of bivalves), should not be allowed to freeze nomenclature, taking precedence over another class or order that is proposed later and distinguished by different characters (e.g., hinge teeth of bivalves). Even the fixing of type genera for suprafamilial taxa would have little, if any, value, hindering taxonomic work rather than aiding it. No basis for establishing such types and for naming these taxa has yet been provided.

The considerations just stated do not prevent the editors of the Treatise from making rules for dealing with suprafamilial groups of animals described and illustrated in this publication. Some uniformity is needed, especially for the guidance of Treatise authors. This policy should accord with recognized general practice among zoologists; but where general practice is indeterminate or nonexistent, our own procedure in suprafamilial nomenclature needs to be specified as clearly as possible. This pertains especially to decisions about names themselves, about citation of authors and dates, and about treatment of suprafamilial taxa that, on taxonomic grounds, are changed from their originally assigned rank. Accordingly, a few rules expressing Treatise policy are given here, some with examples of their application.

1. The name of any suprafamilial taxon must be a Latin or Latinized, uninominal noun of plural form, or treated as such, with a capital initial letter and without diacritical mark, apostrophe, diaeresis, or hyphen. If a component consists of a numeral, numerical adjective, or adverb, this must be written in full.

2. Names of suprafamilial taxa may be constructed in almost any manner. A name may indicate morphological attributes (e.g., Lamellibranchiata, Cyclostomata, Toxoglossa) or be based on the stem of an included genus (e.g., Bellerophontina, Nautilida, Fungiina) or on arbitrary combinations of letters (e.g., Yuania); none of these, however, can end in -idae or -inae, which terminations are reserved for family-group taxa. No suprafamilial name identical in form to that of a genus or to another published suprafamilial name should be employed (e.g., order Decapoda LATREILLE, 1803, crustaceans, and order Decapoda LEACH, 1818, cephalopods; suborder Chonetoidea MUIRWOOD, 1955, and genus Chonetoidea JONES, 1928). Worthy of notice is the classificatory and nomenclatorial distinction between suprafamilial and family-group taxa that, respectively, are named from the same type genus, since one is not considered to be transferable to the other (e.g., suborder Bellerophonentina ULRICH & SCOFIELD, 1897 is not coordinate with superfamly Bellerophonacea McCoy, 1851 or family Bellerophonidae McCoy, 1851).

3. The rules of priority and homonymy lack any force of international agreement as applied to suprafamilial names, yet in the interest of nomenclatorial stability and to avoid confusion these rules are widely
applied by zoologists to taxa above the family-group level wherever they do not infringe on taxonomic freedom and long-established usage.

4. Authors who accept priority as a determinant in nomenclature of a suprafamilial taxon may change its assigned rank at will, with or without modifying the terminal letters of the name, but such changes cannot rationally be judged to alter the authorship and date of the taxon as published originally. A name revised from its previously published rank is a transferred name (*nomen translatum*), as illustrated in the following.

Order CORYNEXOCHIDA
Kobayashi, 1935

A name revised from its previously published form merely by adoption of a different termination without changing taxonomic rank is a *nomen correctum*.

Order DISPARIDA Moore & Laudon, 1943

A suprafamilial name revised from its previously published rank with accompanying change of termination, which signals the change of rank, is recorded as a *nomen translatum et correctum*.

Order HYBOCRINIDA
Jaekel, 1918

5. The authorship and date of nominate subordinate and supraordinate taxa among suprafamilial taxa are considered in the *Treatise* to be identical since each actually or potentially has the same type. Examples are given below.

Subclass ENDOCERATOIDEA
Teichert, 1933

(*nom. transl. Teichert in Teichert & others, 1964, p. 128, ex order Endoceroides Teichert, 1933, p. 214*)

TAXONOMIC EMENDATION

Emendation has two distinct meanings as regards zoological nomenclature. These are alteration of a name itself in various ways for various reasons, as has been reviewed, and alteration of the taxonomic scope or concept for which a name is used. The *Code* (Article 33a and Glossary, p. 254) concerns itself only with the first type of emendation, applying the term to intentional, either justified or unjustified changes of the original spelling of a name. The second type of emendation primarily concerns classification and inherently is not associated with change of name. Little attention generally has been paid to this distinction in spite of its significance.

Most zoologists, including paleontologists, who have emended zoological names refer to what they consider a material change in application of the name such as may be expressed by an importantly altered diagnosis of the assemblage covered by the name. The abbreviation *emend.* then must accompany the name with statement of the author and date of the emendation. On the other hand, many systematists think that publication of *emend.* with a zoological name is valueless because alteration of a taxonomic concept is introduced whenever a subspecies, species, genus, or other taxon is incorporated into or removed from a higher zoological taxon. Inevitably associated with such classificatory expansions and restrictions is some degree of emendation affecting diagnosis. Granting this, still it is true that now and then somewhat more extensive revisions are put forward, generally with a published statement of the reasons for changing the application of a name. To erect a signpost at such points of most significant change is worthwhile, both as an aid to subsequent workers in taking account of the altered no-
menclatorial usage and to indicate where in the literature cogent discussion may be found. Authors of contributions to the Treatise are encouraged to include records of all especially noteworthy emendations of this nature, using the abbreviation *emend.* with the name to which it refers and citing the author, date, and page of the emendation. Examples from Treatise volumes follow.

Order ORTHIDA
Schuchert & Cooper, 1932

Subfamily ROVEACRININAE
Peck, 1943

STYLE IN GENERIC DESCRIPTIONS

CITATION OF TYPE SPECIES

In the Treatise the name of the type species of each genus and subgenus is given immediately following the generic name with its accompanying author, date, and page reference or after entries needed for definition of the name if it is involved in homonymy. The originally published combination of generic and trivial names of this species is cited, accompanied by an asterisk (*), with notation of the author, date, and page of original publication, except if the species was first published in the same paper and by the same author as that containing definition of the genus of which it is the type. In this instance, the initial letter of the generic name followed by the trivial name is given without repeating the name of the author and date. Examples of these two sorts of citations follow.

Orionastraea Smith, 1917, p. 294 [*Sarcinula phillipsi* McCoy, 1849, p. 125; OD].

Schoenophyllum Simpson, 1900, p. 214 [*S. aggregatum*; OD].

If the cited type species is a junior synonym of some other species, the name of this latter also is given, as follows.

Actinocystus D’Orbigny, 1849, p. 12 [*Cyathophyllum crenulatum* Phillips, 1836, p. 202; M; =*Lonsdaleia floriformis* (Martin), 1809, pl. 43; validated by ICZN Opinion 419].

In some instances the type species is a junior homonym. If so, it is cited as shown in the following example.

Prionocyclus Meeke, 1871b, p. 298 [*Ammonites serratocarinatus* Meeke, 1871a, p. 429, non Stoliczka, 1964, p. 57; =*Prionocyclus wyomingensis* Meeke, 1876, p. 452].

In the Treatise the name of the type species is always given in the exact form it had in the original publication except that diacritical marks have been removed. Where other mandatory changes are required, these are introduced later in the text, typically in a figure caption.

Fixation of Type Species Originally

It is desirable to record the manner of establishing the type species, whether by original designation (OD) or by subsequent designation (SD). The type species of a genus or subgenus, according to provisions of the Code, may be fixed in various ways in the original publication; or it may be fixed subsequently in ways specified by the Code (Article 68) and described in the next section. Type species fixed in the original publication include (1) original designation (in the Treatise indicated by OD) when the type species is explicitly stated or (before 1931) indicated by n. gen., n. sp. (or its equivalent) applied to a single species included in a new genus, (2) defined by use of typus or typicus for one of the species included in a new genus (adequately indicated in the Treatise by the specific name), (3) established by monotypy if a new genus or subgenus has only one originally included species (in the Treatise indicated as M), and (4) fixed by tautonymy if the genus-group name is identical to an included species name not indicated as the type.

Fixation of Type Species Subsequently

The type species of many genera are not determinable from the publication in which the generic name was introduced. Therefore, such genera can acquire a type species only
by some manner of subsequent designation. Most commonly this is established by publishing a statement naming as type species one of the species originally included in the genus. In the Treatise such fixation of the type species by subsequent designation in this manner is indicated by the letters SD accompanied by the name of the subsequent author (who may be the same person as the original author) and the publication date and page number of the subsequent designation. Some genera, as first described and named, included no mentioned species (for such genera established after 1930, see below); these necessarily lack a type species until a date subsequent to that of the original publication when one or more species is assigned to such a genus. If only a single species is thus assigned, it automatically becomes the type species. Of course, the first publication containing assignment of species to the genus that originally lacked any included species is the one concerned in fixation of the type species, and if this publication names two or more species as belonging to the genus but did not designate a type species, then a later SD designation is necessary. Examples of the use of SD as employed in the Treatise follow.

Hexagonaria Gurich, 1896, p. 171 [*Cystophyllum hexagonum Goldfuss, 1826, p. 61; SD Lang, Smith, & Thomas, 1940, p. 69].

Mesephemera Handlirsch, 1906, p. 600 [*Tineites lithophilus Germar, 1842, p. 88; SD Carpenter, herein].

Another mode of fixing the type species of a genus is action of the International Commission of Zoological Nomenclature using its plenary powers. Definition in this way may set aside application of the Code so as to arrive at a decision considered to be in the best interest of continuity and stability of zoological nomenclature. When made, it is binding and commonly is cited in the Treatise by the letters ICZN, accompanied by the date of announced decision and reference to the appropriate numbered opinion.

Subsequent designation of a type species is admissible only for genera established prior to 1931. A new genus-group name established after 1930 and not accompanied by fixation of a type species through original designation or original indication is invalid (Code, Article 13b). Effort of a subsequent author to validate such a name by subsequent designation of a type species constitutes an original publication making the name available under authorship and date of the subsequent author.

HOMONYMS

Most generic names are distinct from all others and are indicated without ambiguity by citing their originally published spelling accompanied by name of the author and date of first publication. If the same generic name has been applied to two or more distinct taxonomic units, however, it is necessary to differentiate such homonyms. This calls for distinction between junior homonyms and senior homonyms. Because a junior homonym is invalid, it must be replaced by some other name. For example, Callophora Hall, 1852, introduced for Paleozoic trepostomate bryozoans, is invalid because Gray in 1848 published the same name for Cretaceous-to-Holocene cheilostomate bryozoans. Bassler in 1911 introduced the new name Hallaphora to replace Hall’s homonym. The Treatise style of entry is given below.

Hallophora Bassler, 1911, p. 325, nom. nov. pro Callophora Hall, 1852, p. 144, non Gray, 1848.

In like manner, a replacement generic name that is needed may be introduced in the Treatise (even though first publication of generic names otherwise in this work is generally avoided). An exact bibliographic reference must be given for the replaced name as in the following example.

Mysterium De Laubenfels, herein, nom. nov. pro Mystrium Schrammen, 1936, p. 183, non Roger, 1862 [*Mystrium porosum Schrammen, 1936, p. 183; OD].

Otherwise, no mention of the existence of a junior homonym generally is made.
Synonymous Homonyms

An author sometimes publishes a generic name in two or more papers of different date, each of which indicates that the name is new. This is a bothersome source of errors for later workers who are unaware that a supposed first publication that they have in hand is not actually the original one. Although the names were separately published, they are identical and therefore definable as homonyms; at the same time they are absolute synonyms. For the guidance of all concerned, it seems desirable to record such names as synonymous homonyms. In the Treatise the junior of one of these is indicated by the abbreviation jr. syn. hom.

Not infrequently, identical family-group names are published as new names by different authors, the author of the name that was introduced last being ignorant of previous publication(s) by one or more other workers. In spite of differences in taxonomic concepts as indicated by diagnoses and grouping of genera and possibly in assigned rank, these family-group taxa, being based on the same type genus, are nomenclatorial homonyms. They are also synonyms. Wherever encountered, such synonymous homonyms are distinguished in the Treatise as in dealing with generic names.

A rare but special case of homonymy exists when identical family names are formed from generic names having the same stem but differing in their endings. An example is the family name Scutellidae Richter & Richter, 1925, based on Scutellum Pusch, 1833, a trilobite. This name is a junior homonym of Scutellidae Gray, 1825, based on the echinoid genus Scutella Lamarck, 1816. The name of the trilobite family was later changed to Scutelligidae (ICZN, Opinion 1004, 1974).

SYNONYMS

In the Treatise, citation of synonyms is given immediately after the record of the type species. If two or more synonyms of differing date are recognized, these are arranged in chronological order. Objective synonyms are indicated by accompanying designation obj., others being understood to constitute subjective synonyms, of which the types are also indicated. Examples showing Treatise style in listing synonyms follow.

Kodonophyllum Wedekind, 1927, p. 34 ["Strepeplasma Milne-Edwardsi Dybowskii, 1873, p. 409; OD; "Madrepora truncata Linne, 1758, p. 795, see Smith & Tremberth, 1929, p. 368] [=Patrophontes Lang & Smith, 1927, p. 456 (type, Madrepora truncata Linne, 1758, p. 795, OD); Codonophyllum Lang, Smith, & Thomas, 1940, p. 39, obj.].

Some junior synonyms of either the objective or the subjective sort may be preferred over senior synonyms whenever uniformity and continuity of nomenclature are served by retaining a widely used but technically rejectable name for a genus. This requires action of the ICZN, which may use its plenary powers to set aside the unwanted name, validate the wanted one, and place the concerned names on appropriate official lists.

OTHER EDITORIAL MATTERS

BIOGEOGRAPHY

Purists, Treatise editors among them, would like nothing better than a stable world with a stable geography that makes possible a stable biogeographical classification. Global events of the past few years have shown how rapidly geography can change, and in all likelihood we have not seen the last of such change as new, so-called republics continue to spring up all over the globe. One expects confusion among readers in the future as they try to decipher such geographical terms as U.S.S.R., Yugoslavia, or Ceylon. Such confusion is unavoidable, as books must be completed and published at some real time. Libraries would be limited indeed if publication were always to be delayed until the political world had settled down.

Insofar as possible, trilobite genera from the former Soviet Union are referred to the
republics in which they are found, but in some instances other kinds of information may be given instead. In addition, such terms as central Europe and western Europe are likely to mean different things to different people. Some imprecision is introduced by the use of all such terms, of course, but it is probably no greater than the imprecision that stems from the fact that the work of paleontology is not yet finished, and the geographical ranges of many genera are imperfectly known.

NAMES OF AUTHORS: TRANSLATION AND TRANSLITERATION

Chinese scientists have become increasingly active in systematic paleontology in the past two decades. Chinese names cause anguish among English-language bibliographers for two reasons. First, no scheme exists for one-to-one transliteration of Chinese characters into roman letters. Thus, a Chinese author may change the roman-letter spelling of his name from one publication to another. For example, the name Chang, the most common family name in the world reportedly held by some one billion people, might also be spelled Zhang.

The principal purpose of a bibliography is to provide the reader with entry into the literature. Quite arbitrarily, therefore, in the interest of information retrieval, the Treatise editorial staff has decided to retain the roman spelling that a Chinese author has used in each of his publications rather than attempting to adopt a common spelling of an author’s name to be used in all citations of his work. It is entirely possible, therefore, that the publications of a Chinese author may be listed in more than one place under more than one name in the bibliography.

Second, most but by no means all Chinese list their family name first followed by given names. People with Chinese names who study in the West, however, often reverse the order, putting the family name last as is the Western custom. Thus, for example, Dr. Yi-Maw Chang, recently of the staff of the Paleontological Institute, was Chang Yi-Maw when he lived in Taiwan. When he came to America, he became Yi-Maw Chang, and his subsequent bibliographic citations are listed as Chang, Yi-Maw. The Treatise staff has adopted the convention of listing family names first, inserting a comma, and following this with given names or initials. We do this even for Chinese authors who have not reversed their names in the Western fashion.

Several systems exist for transliterating the Cyrillic alphabet into the roman alphabet. We have adopted the American Library Association/Library of Congress romanization table for Russian and other languages using the Cyrillic alphabet.

MATTERS SPECIFIC TO THIS VOLUME

This volume departs from previous volumes of the Treatise in several important respects. Stratigraphical ranges of genera are typically given as zones rather than exclusively as universal stage names. In order to represent these zones clearly, we have used or in place of the solidus (/) and to in place of the en-dash (–). Replacing the dash with to eliminates ambiguity in zones with hyphenated names. This use of refined stratigraphy has obviated the traditional Treatise range charts of genera and higher taxa. In its place is presented a detailed chart of Cambrian stratigraphy that correlates stage names and zones in numerous geological regions. Finally, unlike previous volumes of the Treatise, the classification of the trilobites is presented here in preliminary form. Publication of a final classification must await the completion of the research that is underway for preparation of future volumes on the trilobites.

ACKNOWLEDGMENTS

The Paleontological Institute’s Assistant Editor for Text, Elizabeth Brosius, and the Assistant Editor for Illustrations, Jane Kerns, have faced admirably the formidable task of moving the volume through the various
stages of editing and into production. In this they have been ably assisted by members of the other editorial team, Jill Hardesty and Karen Renteria; by Jack Keim with photography; and by Jean Burgess with word processing. Jill Krebs, the remaining member of the Paleontological Institute staff, is involved with preparation of PaleoBank, the paleontological database for future *Treatise* volumes, and has not been closely involved with the trilobite *Treatise*.

This editorial preface and other, recent ones are extensive revisions of the prefaces prepared for previous *Treatise* volumes by former editors, including the late Raymond C. Moore, the late Curt Teichert, and Richard A. Robison. I am indebted to them for preparing earlier prefaces and for the leadership they have provided in bringing the *Treatise* project to its present status. Finally, I am pleased to extend on behalf of the members of the staff of the Paleontological Institute, both past and present, our most sincere thanks to Professor H. B. Whittington for the unwavering scholarship, dedication to the task, and scrupulous attention to detail that have marked his involvement with the project from the outset and, indeed, his entire career as a specialist on the Trilobita.

REFERENCES

Roger L. Kaesler
Lawrence, Kansas
July 15, 1997

STRATIGRAPHIC DIVISIONS

The major divisions of the geological time scale are reasonably well established throughout the world, but minor divisions (e.g., substages, stages, and subseries) are more likely to be provincial in application. The stratigraphical units listed here represent an authoritative version of the stratigraphic column for all taxonomic work relating to revision of Part O. They are adapted from the International Union of Geological Sciences 1989 Global Stratigraphic Chart, compiled by J. W. Cowie and M. G. Bassett.

Paleozoic Era

Permian System
- Upper Permian Series
- Lower Permian Series

Carboniferous System
- Upper Carboniferous Subsystem
 - Stephanian Series
 - Westphalian Series
 - Namurian Series (part)
- Lower Carboniferous Subsystem
 - Namurian Series (part)
 - Visean Series
 - Tournaisian Series

Devonian System
- Upper Devonian Series
- Middle Devonian Series
- Lower Devonian Series

Silurian System
- Pridoli Series
- Ludlow Series
- Wenlock Series
- Llandovery Series

Ordovician System
- Upper Ordovician Subsystem
 - Cincinnati Series
 - Champlainian Series (part)
- Lower Ordovician Subsystem
 - Champlainian Series (part)
 - Canadian Series

Cambrian System
- Lower Cambrian Series
- Middle Cambrian Series
- Upper Cambrian Series
AUTHOR'S PREFACE

The introduction is intended to correct and amplify the general description given by Harrington in the first edition of Treatise, Part O (in Moore, 1959, p. 38–117), in the light of research published by the end of 1993. Historical matters such as early studies and the development of ideas on classification are omitted. Particularly the discovery and description of new silicified material have greatly added to knowledge of exoskeletal morphology, as the section on this subject shows. In the following section new and earlier information on the limbs is summarized, before considering possible musculature, mode of walking, and sensory devices. The publication of Memoir 67 on paleoecology by the Geological Society of America in 1957 and the publication in 1955 of Professor A. Seilacher’s studies on trace fossils attributed to trilobites stimulated work in these fields. In conjunction with the increasing knowledge of sedimentary rocks and diagenetic processes, much research has been published on matters unrepresented in the 1959 edition. Other new studies have resulted in plausible reconstructions of Paleozoic world geography and enabled fresh thinking on faunal realms. The sections on mode of life, habits, occurrence, and use of numerical and cladistic methods are no more than an introduction to these subjects by reference to examples in which additional works are listed.

I am indebted to Dr. Euan N. K. Clarkson, Edinburgh University, for kindly contributing the account of the trilobite eye and for his collaboration in describing coaptative structures. Professor Brian D. E. Chatterton, University of Alberta, and Dr. Stephen E. Speyer have provided an entirely new account of ontogeny; Dr. Richard A. Fortey, Natural History Museum, London, has provided the classification to be used in this revision and in collaboration with Dr. R. M. Owens, National Museum of Wales, an account of evolution. Dr. Nadine V. Wilmot collaborated in describing the microstructure of the exoskeleton and provided the originals of Figures 70 and 71.

Throughout the text, when considering a specific exoskeletal structure, reference is made to structures found in related taxa or the affinities of a particular genus are indicated. As Fortey points out in his discussion of classification, many family-group names are long established, widely understood, and accepted. Such familiar names are used here to indicate relationship, either formally or informally. For example, Cheirurus and related genera may be referred to as Cheiruroidea (the superfamily), Cheiruridae (the family), or Cheirurinae (the subfamily). Informally, a superfamily group may be referred to as cheiruroids or a family group as cheirurids. Such informal terms as cheirurine or cheiruride lack precise meaning and will not be used. At a higher taxonomic level there is little or no agreement on natural groups, and a new, as yet incomplete, grouping into orders and suborders is outlined below by Fortey. In the text, names of these ordinal and subordinal taxa are used formally to indicate that it is the group defined in this new arrangement that is being referred to—i.e., as Olenellina (the suborder) or Proetida (the order). This procedure means that a suborder composed of a single superfamily, for example Eodiscina or Calymenina, may be referred to also as eodiscoids or calymenoids, but this is not the case with suborders that include more than one superfamily. For example, the suborder Agnostina is not embraced by the informal termagnostoid, which refers only to the superfamily Agnostoidea.

In the preparation of this introduction I have benefited from discussions and correspondence with Drs. W. T. Dean, R. A. Fortey, C. P. Hughes, P. D. Lane, R. M. Owens, A. W. A. Rushton, J. H. Shergold, D. J. Siveter, and A. T. Thomas, but responsibility for its content remains with me. I express my gratitude to the Leverhulme Trust for their support of my research and the
Abbreviations and locations for museums and institutions holding type material, which are used throughout the systematic sections of this volume, are listed below.

AGSO: Australian Geological Survey Organisation (formerly Bureau of Mineral Resources, BMR), Canberra, Australia
AMF: Australian Museum, Sydney, Australia
AMNH: American Museum of Natural History, New York, USA
ANU: Australian National University, Canberra, Australia
AUGD: South Australian Museum, Adelaide, Australia
BAC: Universidad de Buenos Aires, Departamento de Biología, Buenos Aires, Argentina
BGS: British Geological Survey (formerly the Geological Survey and Museum, GSM), London, U.K.
BGU: Geological Museum, Buryat Geological Board, Ulan-Ude, Russia
BMNH: British Museum (Natural History), London, U.K. (now Natural History Museum, London, NHM)
BU: Department of Geology, Birmingham University, Birmingham, U.K.
CAGG: Chinese Academy of Geological Sciences, Beijing, China
CIG: Chengdu Institute of Geology and Mineral Resources, Chengdu, Sichuan, China
CNIGR: Central Scientific Research Geological Exploration Museum (Chernyshev Museum), St. Petersburg, Russia
CSGM: Central Siberian Geological Museum, United Institute of Geology, Geophysics and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
CU: Cornell University, Ithaca, New York

CUGB: China University of Geosciences, Beijing, China
GGU: Grønlands Geologiske Undersøgelse (Geological Survey of Greenland), Copenhagen, Denmark
GIN: Geological Institute, Academy of Sciences, Moscow, Russia
GIT: Geological Institute of Tallinn, Estonia
GMAN: Geological Museum, Geological Institute, Kazakhstan Academy of Sciences, Alma Ata, Kazakhstan
GMU: Geological Museum, Ukrainian Academy of Sciences, Kiev, Russia
GPCN: Paleontological Division, Museum of West Siberian Geological Production Company, Novosibirsk, Russia
GSC: Geological Survey of Canada, Ottawa, Ontario, Canada
GSE: Institute of Geological Sciences, Edinburgh, Scotland
GSI: Geological Survey of India, Calcutta, India
HGB: Hunan Provincial Bureau of Geology, Changsha, Hunan, China
HMB: Museum for Natural Science, Humboldt-University, Berlin, Germany
ICS: Institute for Cambrian Studies, Boulder, Colorado, USA
IGGN: see CSGM
IGiG: Institute of Geology and Geophysics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
IGR: Institut de Geology, University of Rennes, France
IGUW: Institute of Geology, University of Warsaw, Warsaw, Poland
IMP: Institut de Paléontologie, Museum National d’Histoire Naturelle, Paris, France
IRSNB: Institut Royal des Sciences Naturelle de Belgique, Brussels, Belgium
KazIMS: Kazakhstan Scientific Research Institute of Mineral Resources, Alma Ata, Kazakhstan
<table>
<thead>
<tr>
<th>Museum Name</th>
<th>Location Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUMIP</td>
<td>University of Kansas, Division of Invertebrate Paleontology, Lawrence, Kansas, USA</td>
</tr>
<tr>
<td>KGC</td>
<td>Kunming Geological School, Kunming, China</td>
</tr>
<tr>
<td>LACMIP</td>
<td>Los Angeles County Museum, Los Angeles, California, USA</td>
</tr>
<tr>
<td>LGSB</td>
<td>Laboratory of Geology, Sorbonne, Paris, France</td>
</tr>
<tr>
<td>LO</td>
<td>Geological Institute Museum, Department of Historical Geology, University of Lund, Lund, Sweden</td>
</tr>
<tr>
<td>LU</td>
<td>Department of Geology and Mineralogy, Laval University, Montreal, Quebec, Canada</td>
</tr>
<tr>
<td>MCZ</td>
<td>Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA</td>
</tr>
<tr>
<td>MGUH</td>
<td>Geological Museum, Copenhagen University, Copenhagen, Denmark</td>
</tr>
<tr>
<td>MHN</td>
<td>Museo de Historia Natural de Argentina, Mendoza, Argentina</td>
</tr>
<tr>
<td>MLI</td>
<td>Museum für Mitteldeutsche Erdgeschichte, Martin-Luther Universität, Halle, Germany</td>
</tr>
<tr>
<td>MMG</td>
<td>Museum of the Ministry of Geology, Tashkent, Uzbekistan</td>
</tr>
<tr>
<td>MKK</td>
<td>Geological Museum, Copenhagen University, Copenhagen, Denmark</td>
</tr>
<tr>
<td>MNHN</td>
<td>Institut de Paléontologie, Museum National d'Histoire Naturelle, Paris, France</td>
</tr>
<tr>
<td>MWSGPC</td>
<td>Paleontological Division, Museum of West Siberian Geological Production Company, Novokuznetsk, Russia</td>
</tr>
<tr>
<td>NIGM</td>
<td>Nanjing Institute of Geology and Mineral Resources, Nanjing, China</td>
</tr>
<tr>
<td>NIGP</td>
<td>Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing, China</td>
</tr>
<tr>
<td>NMING</td>
<td>National Museum of Ireland, Dublin, Ireland</td>
</tr>
<tr>
<td>NMP</td>
<td>Narodni Museum of Natural History, Prague, Czech Republic</td>
</tr>
<tr>
<td>NMV</td>
<td>National Museum of Victoria, Melbourne, Australia</td>
</tr>
<tr>
<td>NMW</td>
<td>National Museum of Wales, Cardiff, U.K.</td>
</tr>
<tr>
<td>NYSM</td>
<td>New York State Museum, Albany, New York, U.S.A.</td>
</tr>
<tr>
<td>OMR</td>
<td>Regional Museum of B. Horváth, Rakoczy, Czech Republic</td>
</tr>
<tr>
<td>OUM</td>
<td>Oxford University Museum, Oxford, U.K.</td>
</tr>
<tr>
<td>PIN</td>
<td>Paleontological Institute, Russian Academy of Sciences, Moscow, Russia</td>
</tr>
<tr>
<td>PIW</td>
<td>Paleontological Institute, Würzburg University, Würzburg, Germany</td>
</tr>
<tr>
<td>PM</td>
<td>Palaeontological Museum, Uppsala University, Uppsala, Sweden</td>
</tr>
<tr>
<td>POM</td>
<td>Palaeontological Museum, University of Oslo, Oslo, Norway</td>
</tr>
<tr>
<td>PU</td>
<td>Department of Geology, Princeton University, Princeton, New Jersey</td>
</tr>
<tr>
<td>RM</td>
<td>Swedish Museum of Natural History, Stockholm, Sweden</td>
</tr>
<tr>
<td>SAMA</td>
<td>South Australian Museum, Adelaide, Australia</td>
</tr>
<tr>
<td>SG</td>
<td>Museo di Paleontologia, Servizio Geologico d'Italia, Rome, Italy</td>
</tr>
<tr>
<td>SGM</td>
<td>Geological Survey of Morocco (Service Geologique du Maroc), Rabat, Morocco</td>
</tr>
<tr>
<td>SGU</td>
<td>Swedish Geological Survey, Uppsala, Sweden</td>
</tr>
<tr>
<td>SM</td>
<td>Sedgwick Museum, Department of Earth Sciences, University of Cambridge, Cambridge, U.K.</td>
</tr>
<tr>
<td>SMF</td>
<td>Senckenberg Museum, Frankfurt am Main, Germany</td>
</tr>
<tr>
<td>SMNH</td>
<td>Shanghai Museum of Natural History, Shanghai, China</td>
</tr>
<tr>
<td>SNIGGIMS</td>
<td>see CSGM</td>
</tr>
<tr>
<td>TsGM</td>
<td>Central Scientific and Geological Museum, St. Petersburg, Russia</td>
</tr>
<tr>
<td>UBA</td>
<td>Department of Geology, University of Buenos Aires, Buenos Aires, Argentina</td>
</tr>
<tr>
<td>UBC</td>
<td>Department of Geology, University of British Columbia, Vancouver, British Columbia, Canada</td>
</tr>
<tr>
<td>UCR</td>
<td>Department of Earth Sciences, University of California, Riverside, California, U.S.A.</td>
</tr>
<tr>
<td>UM</td>
<td>Department of Geology, University of Montpellier, Montpellier, France</td>
</tr>
<tr>
<td>UMC</td>
<td>Department of Geology, University of Missouri-Columbia, Columbia, Missouri, USA</td>
</tr>
<tr>
<td>UMU</td>
<td>Geological-Paleontological Museum, Münster University, Münster, Germany</td>
</tr>
<tr>
<td>UMTU</td>
<td>University Museum, University of Tokyo, Tokyo, Japan</td>
</tr>
<tr>
<td>UP</td>
<td>Museum of Paleontology, University of Pisa, Pisa, Italy</td>
</tr>
<tr>
<td>UQF</td>
<td>Department of Geology, University of Queensland, Brisbane, Australia</td>
</tr>
<tr>
<td>USNM</td>
<td>U.S. National Museum, Washington, D.C., USA</td>
</tr>
<tr>
<td>UTGD</td>
<td>Department of Geology, University of Tasmania, Hobart, Tasmania</td>
</tr>
<tr>
<td>VNIGNI</td>
<td>All Union Scientific Institute of Oil Prospecting, Moscow, Russia</td>
</tr>
<tr>
<td>XIGM</td>
<td>Museum of the Xinjiang Institute of Geology and Mineral Resources, Geological Bureau of Xinjiang Uyghur Autonomous Region, Urumqi, China</td>
</tr>
<tr>
<td>YIGS</td>
<td>Yunnan Institute of Geological Sciences, Kunming, Yunnan, China</td>
</tr>
<tr>
<td>YPM</td>
<td>Yale University, Peabody Museum of Natural History, New Haven, Connecticut, USA</td>
</tr>
<tr>
<td>YPM(PU)</td>
<td>Yale University (Princeton University specimens), Peabody Museum of Natural History, New Haven, Connecticut, USA</td>
</tr>
<tr>
<td>ZSGU</td>
<td>West Siberian Research Institute for Geology, Geography and Mineral Resources, Novokuznetsk, Russia</td>
</tr>
</tbody>
</table>
MORPHOLOGY OF THE EXOSKELETON

H. B. WHITTINGTON

This section deals exclusively with the mineralized portion of the cuticle, the exoskeleton, other portions of the trilobite body being considered in the following section. In both these sections reference is to the exoskeleton and body of a trilobite in which the specific number of thoracic segments is present, a holaspis. To avoid ambiguity, all paired structures are described in the singular.

SIZE, FORM, AND ORIENTATION

The exoskeletons of trilobites are found in a wide variety of marine sediments, the original mineral matter apparently little changed or recrystallized, replaced, or removed to leave a mold. The exoskeletons may be preserved complete, or lacking ventral sclerites and librigena, partially or wholly disarticulated, or in a fragmentary state. When preserved in limestone, in a concretion, or in coarser clastic sediments, the exoskeleton may retain its original convexity; in finer clastic sediments the exoskeletons are flattened and distorted as a result of compaction of the sediment. Distortion may also result from subsequent stress of the enclosing rock, such as that producing cleavage. Exoskeletons preserved by silicification, which may be freed from the limestone matrix by dissolving it away with acid, have given much knowledge of morphology and growth. Improved methods of casting, in latex or plastic compounds, have greatly facilitated study of exoskeletal molds.

The exoskeleton is ovoid or subelliptical in outline and convex, the convexity of individual portions and of the entire exoskeleton differing greatly between taxa. It extends inward, for a distance that varies between taxa, beneath the ventral side of the animal. Spines, hollow projections from the exoskeleton, may be developed in any portion of the exoskeleton. These spines are typically closed structures, apart from the minute canals and openings described below in the section on exoskeletal microstructure and sculpture (p. 74). Another exception is the intergenal spine during the instar stages of development of Olenellus (PALMER, 1957, pl. 19, fig. 2, 3, 12), which is not closed on the ventral side. Presumably it became closed during the last instar stage when it was reduced to a small remnant.

While many holaspid exoskeletons are between 3 and 10 cm in length along the midline (excluding anterior or posterior spines in this line), one example, Acanthopleurella stipulae, is 1.07 to 1.50 mm in length and is believed to be the smallest known (FORTEY & RUSHTON, 1980). RAYMOND (1931) listed and discussed large known trilobites, including Middle Cambrian paradoxids; Ordovician asaphids, lichids, and homalonotids; and Devonian lichids, homalonotids, and dalmanitids. Lengths range from 30 to 70 cm, the maximum being that of the Ordovician Uralichas, which RABANO (1989) gave as 66 cm. BERGSTROM and LEVI-SETTI (1978) described a specimen of Paradoxides davidis with a sagittal length of 37 cm, and DAILY and others (1979, p. 16) recorded an individual of Redlichia with a length of 35 cm. Dr. R. J. F. JENKINS, University of Adelaide, informs me (personal communication, 1989) that this latter figure may be incorrect, the largest specimens he has traced being about 25 cm in length. In the early Middle Cambrian of Morocco occur an Olenellina, specimens of which attain a maximum length of 23 cm, and a paradoxidoid of a maximum length of 39 cm (GEYER, 1993). N. C. HUGHES (1993, p. 9) considered that the largest individuals of the Upper Cambrian Dikeloecephalus were 40 to 45 cm in length. A complete exoskeleton of an isotelid of Ordovician (Ashgill) age, with a sagittal length of 43 cm, has been recorded from the Hudson Bay area of Canada (M. E. JOHNSON, SKINNER, &
MacLeod, 1988, fig. 13), and Reimann (1943) considered that the Devonian lichid Terataspis grandis attained a length of at least 50 cm. It is common experience when collecting to find fragments of larger portions of the exoskeleton than any found entire (e.g., Raymond, 1931), and records of large Devonian dalmanitids and homalonotids appear to be based on such fragments.

In order to describe without ambiguity what is meant by length and width of an exoskeleton or any portion of it, the direction in which a measurement is being made is best referred to either a longitudinal or a transverse direction in the entire exoskeleton (Fig. 1). Sagittal (abbreviated to sag.) is the direction along the axial midline, exsagittal (abbreviated as exs.) is that direction parallel to but outside the sagittal line, and transverse (abbreviated as tr.) is the direction at right angles to sagittal. Thus an axial ring may be described as wide (tr.), i.e., wide in a transverse direction, but short (sag. and exs.), i.e., short in the midline or outside it but parallel to it. As W. Zhang and Jell (1987, p. 35) have advocated, it would be advantageous if long and short were used uniformly with reference to longitudinal (sag. and exs.) dimensions and broad and narrow with reference to transverse (tr.) dimensions. To describe the direction away from the sagittal line, abaxial is used, whereas adaxial is toward the sagittal line. In illustrations of trilobite exoskeletons, partial or complete, con-
Morphology of the Exoskeleton

ventions may be needed to explain the direction in which the specimen is being viewed. These conventions are not necessary if the specimen is flattened in the bedding plane, when a view at right angles to this plane will suffice. In specimens retaining some or all of the original convexity, views described with respect to the animal as dorsal and right lateral (Fig. 1) may be given, supplemented by anterior, posterior, ventral, or oblique views. The line AL may be considered to lie in the horizontal plane with respect to the animal, but then the dorsal view does not show fully the external surface of the cephalon. Hence WHITTINGTON and EVITT (1954) used views termed exterior and interior, taken at right angles to the vertical plane in which the line BL lies. BRUTON (1968a) preferred the term palpebral for the exterior view which is approximately vertical to the surface of the palpebral lobe. The problems inherent in the use of the term horizontal with reference to the exoskeleton were made evident by FORTEY (1975b, p. 15). How to orient the exoskeleton or its parts for the purpose of taking measurements has been debated (TEMPLE, 1975); for example, the measurement of BL rather than AL is recommended for length of cephalon (cf. BRUTON & OWEN, 1988). What is important is that each study should state precisely what has been measured and how the specimen was oriented, the latter being less obviously necessary when dealing with flattened material.

When the exoskeleton is preserved in calcareous rock, it may have been partially stripped off as the rock was split to reveal the specimen. Such specimens, where exfoliated, show a mold of the inner surface of the exoskeleton similar to the internal molds that are extracted from clastic rocks. The features shown by the external surface of the exoskeleton are different from the visceral features, those of the inner or parietal surface of the exoskeleton. It is important that the external and internal (parietal) features of an exoskeleton be described from the exoskeleton or from casts made from molds or of exfoliated specimens. Confusion arises when the parietal surface is described as it appears on the mold (of an exfoliated specimen) or an internal mold is described as if it showed the external surface of the exoskeleton.

DIVISIONS OF THE EXOSKELETON

The trilobite exoskeleton is divided by shallow infolds, evident externally as furrows, appearing on the inner surface as low ridges (Fig. 2). The longitudinal axial furrow isolates the convex median axis from the lateral portion. The axis is crossed by transverse furrows (lateral glabellar, occipital, articulating, and inter-ring furrows) at similar intervals (gradually decreasing posteriorly) from one another; these furrows are considered to correspond to the boundaries of the somites of the body. On the lateral region of the exoskeleton, each furrow (posterior border and pleural furrow) commences opposite a transverse axial furrow, and extends outward and slightly backward. The exoskeleton is also divided by transverse articulations (Fig. 2), which separate an anterior group of fused somites, the cephalon; each of the series of segments forming the thorax; and a posterior group of fused somites, the pygidium. The lateral portion of the cephalon is the gena, which may extend in front of the axis to the sagittal line. The pleural region is the lateral portion of either thorax or pygidium and in the latter may extend behind the axis to the sagittal line. The posterior border furrow of the gena and the pleural furrows of the thorax run outward and slightly backward in relation to the articulations. It has been assumed that the articulations lie at the boundaries of the somites, i.e., that each thoracic segment is the exoskeleton of a somite. Others have argued that the posterior border furrow of the cephalon and the pleural furrows of the thoracic segments and pygidium mark the boundaries of the somites and that the articulations are secondary divisions (see discussion of cephalic segmentation, p. 132). The furrows, infolds of the exoskeleton, are primary features of trilobites, some or all of...
them appearing early in development (see section on ontogeny, p. 173).

The exoskeleton is continued on the ventral side beneath the outer portions of the gena and pleural region as the **doublure**. Beneath the anterior of the axis there is a ventral sclerite, the **hypostome**, which may be attached to the doublure anteriorly.

CEPHALON

The outline of the cephalon in dorsal aspect varies from subcircular to semielliptical and subtriangular and may be transversely subelliptical. The convexity varies widely between taxa. The size of the cephalon in relation to the thorax and pygidium varies.
Morphology of the Exoskeleton

considerably, and a trilobite may be described as micropygous (pygidium small in relation to cephalon), isopygous (pygidium and cephalon of similar size), or macropygous when the pygidium is larger than the cephalon (see section on the pygidium for further discussion of these terms, p. 59). The cephalon may be evenly convex and unfurrowed; but in most taxa the raised axial region, the glabella, is outlined by the axial and preglabellar furrows, and the occipital ring is set off from the rest of the glabella by the occipital furrow. The gena bears the eye lobe (if present), and with rare exceptions the facial suture traverses the eye lobe, an anterior and a posterior branch crossing the gena and extending on to the doublure. The facial suture divides the gena into an inner, adaxial portion, the fixigena, and an outer, abaxial portion, the librigena. That portion of the cephalon that lies adaxial to the facial sutures is the cranidium.

GLABELLA

A small circular or oval depression, the fossula, when developed, may be used to separate the preglabellar furrow from the axial furrow, the two furrows that are continuous and outline the glabella (Fig. 3). The fossula lies immediately in front of the junction of the eye ridge with the axial furrow. The size relative to the cephalon, shape, and convexity of the glabella vary greatly; and in some trilobites the glabella may not be outlined by furrows, but wholly or only posteriorly by a convexity differing from that of the rest of the cephalon. In the majority of trilobites the most posterior subdivision of the glabella, the occipital ring, is defined by the occipital furrow, and an occipital doublure is present, longest sagittally (Fig. 4–5). Abaxially the occipital ring may be inflated, and a lateral occipital lobe may be set off by its independent convexity (Fig. 3).

A shallow furrow, which curves in an arc across the occipital ring, has been termed the band furrow in olenids (Nikolaisen & Henningsmoen, 1985, fig. 2) and some asaphids (Henningsmoen, 1960, p. 218), but it may be that in these flattened specimens this supposed furrow is an impression made by the anterior margin of the doublure of the ring. A narrow posterior band of the occipital ring, lower than the main body of the ring and set off from it by a change in slope is characteristic of the odontopleurid Ceratocephala (Whittington & Evitt, 1954, p. 55).

Further subdivision of the glabella (Fig. 3–5) in front of the occipital ring may be indicated by furrows or pits, usually in lateral pairs, the lateral glabellar furrows. The best defined of these furrows is generally that next to the occipital furrow, with furrows in front of this becoming successively shorter (tr.) and less well defined. In the olenid Hypermecaspis (Fortey, 1974b, p. 45), however, the furrow next to the occipital is shorter (tr.) than those in front, a relatively unusual situation. A similar short furrow was termed an intervening furrow in Asilluchus Opik (1963, p. 67) but may well be the basal lateral glabellar furrow. In the oryctocephalid Sandoveria (Shergold, 1969, p. 13, fig. 3) a glabellar furrow regarded as the intervening furrow curves back to meet the occipital furrow, isolating an intervening glabellar lobe considered to intervene between the occipital ring and the basal lateral glabellar lobe. The occipital apodeme lies in the occipital furrow behind this intervening lobe, so that the latter might alternatively be regarded as the basal lateral lobe. In this case there would be five pairs of lateral glabellar lobes in Sandoveria. Up to four pairs of lateral glabellar furrows are present in many trilobites, and a fifth pair is said to be present in the immature glabella of Daguinaspis (Hupe, 1951; 1953a, p. 261). These furrows are numbered from the posterior forward as S (sulcus) O, the occipital furrow, and S1, S2, S3, etc. (Fig. 4.2–5). Between these lateral furrows are the lateral glabellar lobes, numbered correspondingly L (lobe) 1, L2, L3, etc.; the lateral occipital lobe is designated LO. These lateral lobes may be inflated and so have a convexity independent from that of the adjacent portions of the glabella. The
Fig. 3. Terminology of the cephalon illustrated by a ptychopariid trilobite; the labelled portions are differentiated by shading. Greek letters denote salient points on facial suture: β is farthest abaxial point of anterior branch, which reaches the cephalic margin at α; γ to ϵ is palpebral suture, and δ is the farthest abaxial point of this suture; posterior branch reaches cephalic margin at ω (new).

lateral glabellar furrows vary in depth, length (tr.), and direction; may extend to the axial furrow; and may be subcircular or oval depressions, adjacent to or some distance from the axial furrow. A pair may extend adaxially to form a continuous transglabellar furrow.
In the Agnostina a different notation and terminology, initiated by Robison (1964, 1982), has been applied to the glabella (Fig. 6.1). The basal lobes and narrow (sag. and exs.) occipital band are excluded from the glabella, which is divided by the transglabellar furrow into the anteroglabella and posteroglabella. The posterior portion of the posteroglabella projects back between the basal lobes as the glabellar culmination and may be inflated and prominent, rounded, or angulate. Lateral furrows of the glabella are numbered F1 to F3 from the posterior forward, F3 being the transglabellar furrow. Axial rings defined at the anterior margin by these furrows are numbered M1 to M3 from the posterior forward. This terminology was not applied to the Eodiscina by Jell (1975a), who regarded the basal lobe as occipital and used the notation S and L for glabellar furrows and lobes as applied to all trilobites except the Agnostina (Fig. 5). In trilobites (except Agnostina) the portion of the glabella in front of the most anterior pair of lateral furrows is the frontal lobe (Fig. 3), for which Henningsmoen (1957a, p. 12, fig. 1) used the abbreviation LA. The portion of the glabella lying between the frontal lobe, occipital furrow, and adaxial ends of the lateral glabellar furrows is the central area of the glabella. The frontal lobe and central area may be referred to as the fronto-median glabellar lobe. Other subdivisions of the glabella are developed in particular taxa, including the occiput in trinucleids (C. P. Hughes, Ingham, & Addison, 1975, p. 558, fig. 1), the intercalating ring in phacopids (Richter & Richter, 1926, fig. 14) (both of these lying immediately anterior to the occipital furrow), and the median preoccipital lobe in the proetid Ditomopyge (Weller, 1935). In lichids a longitudinal furrow may be directed exsagittally and join the inner ends of the lateral glabellar furrows, enclosing two or three lateral lobes or a single composite lateral lobe between the longitudinal and axial furrows (Fig. 7.2–6). There have been differing interpretations of the origins of these lobes, whether they are part of the glabella, and whether the most posterior was an occipital lobe. Studies of ontogeny have shed light on some of the problems, in particular the recognition of the bulla swelling in early growth stages and its development into the bullar lobe. The posterolateral cranial lobe, a swelling adjacent to the base of the glabella, appears to belong to the fixigena and not the glabella. The history of views on glabellar lobation in lichids was reviewed by Thomas and Holloway (1988), and the terminology they accepted is given in Figure 7. The most posterior lateral lobe is considered to be part of L1, which is consequently subdivided into L1a (the more posterior) and L1b. In two subfamilies (Selenopeltinae and Ceratocephalinae) of the Odontopleuridae, subdivisions of L1 and L2 have been recognized by Ramsköld (1991b, fig. 6). L1 is subdivided into L1a (interior), L1b (interior), and L1c (anterior) sublobes; and L2 is subdivided into L2a (interior) and L2b (exterior) sublobes.

On the inner surface of the exoskeleton, occipital and lateral glabellar furrows are reflected as ridges. In particular species, SO, S1, and S2 may be deepened a short distance adaxial to the axial furrow, and this deepening is reflected on the inner surface as a knob or blade-like extension of the ridge that projected into the body as an apodeme (Fig. 5). Such apodemes are characteristic of Cheirurinae and Deiphoninae but not of Acanthopyrhini and Sphaerexochinae (Chatterton & Perry, 1984), for example; are well developed in encrinurids (Chatterton & Ludvigsen, 1976, pl. 14–15; Evitt & Tripp, 1977) and pterygometopids (Ludvigsen & Chatterton, 1982, pl. 6–7); and are less strongly developed in odontopleurids (Chatterton & Perry, 1983). In Phacopoidea (Campbell, 1976; Stormer, 1980) areas of muscle attachment other than apodemes have been described as pits in the external surface or darker areas distributed widely on the exoskeleton. In asaphids (Fortey, 1975b, p. 17; 1980c, fig. 1, 3), illaenids (Jaanusson, 1954, p. 549–551), styginids (Lane & Thomas, 1983, fig. 1–2), and raphiophorids (Whittington, 1965, pl. 10–12; Fortey, 1975b, pl. 22, 24–25),...
smooth areas that may be slightly depressed and appear as raised areas on the internal mold are considered to be areas of muscle attachment corresponding to the glabellar furrows (see Fig. 20). As some of these examples show (Fig. 8), these areas may appear dark, particularly when the specimen is immersed in liquid. A particular such area, the lunette, in the illaenid *Bumastoides* (Fig. 9.1–2) is crescentic in outline and raised on the inner surface of the exoskeleton. Smooth or dark areas, representing areas of muscle attachment or glabellar furrows, have been recognized in other trilobites such as olenids (Henningsmoen, 1957a, p. 92), *Telephina* (Whittington, 1965, pl. 37), and *Remopleurides* (Whittington, 1959a, pl. 5).

In Agnostina the external surface of the glabella and occipital (basal) lobes may display smooth patches, some faintly depressed (Fig. 10) (see also Hunt, 1967, pl. 22, fig. 44–47). Similar patches may be outlined by an impressed rim on the internal mold (Fortey, 1980b, p. 30; Shergold, 1975, pl. 3, fig. 3, pl. 11, fig. 5), indicating that the exoskeleton was thickened. In other specimens similar areas may appear dark (Robison, 1984, p. 42). These areas are considered to have been for muscle attachment, and study of these impressions in internal molds by Öpik (1963, 1967) and Shergold (1975) has given rise to a complex terminology for them and the associated ridges, grooves, and pits (Fig. 11.1). A paired ridge, the axial glabellar carina, may run sagittally between the axial glabellar node and the terminal glabellar node, and a notula is a minute pit (in the internal mold) associated with a muscle area. A possibly analogous structure, a sagittal ridge (carina) on the internal mold of the glabella, has been recognized in such illaenids as *Panderia* (Bruton, 1968a, pl. 1, fig. 1–3) and *Stenoparecia* (Owen & Bruton, 1980, pl. 3, fig. 10). In asaphids rows of impressions on either side of the sagittal line of the internal mold of the glabella, in some examples separated by a low sagittal ridge, were described by Henningsmoen (1960, p. 213); a low sagittal ridge is present in the glabella of *Stegnopsis* (Whittington, 1965, p. 347, pl. 22, fig. 3).

The glabella may bear median or paired spines or nodes on the frontal or fronto-median lobes, and in many taxa there is a median or paired occipital spine or node. A spectacular example is the encrinurid *Perirehaedulus* (Fig. 12), which also shows a sagittally directed anteromedian depression or longitudinal median glabellar furrow extending back from the anterior margin of the frontal glabellar lobe. Such a furrow or an associated pit or more elongate (tr.) median depression in the preglabellar furrow is characteristic of encrinurids (Fortey, 1980b, pl. 22; Evitt & Tripp, 1977). Similar depressions are present in some pliomerids (Whittington, 1961b), and cheirurids (muscle scars in Fig. 4.1) show a median
FIG. 5. Diagrammatic representation of anterior (1), dorsal (2), and oblique (3) views of Ceraurus whittingtoni Evitt, 1953 (see Fig. 4) to show terminology of the cephalic features (new).
furrow flanked by a pair of depressions. A necklace arrangement of pits on the frontal lobe in phacopids (Stormer, 1980, p. 263) has long been known and includes deep pits in the preglabellar furrow. These pits and grooves, which form projections on the inner surface, have been regarded as points of muscle attachment. In Dalmanites a pair of smooth areas on the frontal glabellar lobe, pierced by minute pores, were regarded as muscle-attachment areas by Ramskold (1985, p. 35).
Morphology of the Exoskeleton

Morphology of the Exoskeleton

11

Fig. 7. Cranial morphology of Lichida. Composite lobe formed by fusion of bullar lobe with L1b or L1a. 1, Lichakephalus; 2, Platylichas (Platylichas); 3, Disrampeltus; 4, Echinolichas; 5, Amphilichas; 6, Acanthopyge (Jasperia) (Thomas & Holloway, 1988, fig. 2).

GENA

The gena has a convex border in many trilobites, the area enclosed within this border being the genal field (Fig. 3). The term acrolobe (Fig. 13) was applied to the area within the border in Agnostina by Öpik (1967), but whether it was intended to include the axial region is not specified. The border extends to the midline in front of the glabella, and there may be a preglabellar field between the preglabellar furrow and the border (Fig. 14). The preglabellar field may be long (sag. and exs.) or short, flattened and gently sloping, or convex and steeply sloping. In such Cambrian trilobites as Ctenocephalus and Nepea (see Fig. 23), the preglabellar field is occupied by a prominent, subcircular preglabellar boss; in others there may be a median preglabellar ridge. This ridge may be narrow (tr.), of constant width, or may be broader, widening forward to merge with the anterior border to form the structure distinguished as the plectrum by

Fig. 8. Illexus lacertus WHITTINGTON, Upper Ordovician, Baffin Island, Canada. Dorsal view of enrolled exoskeleton, immersed in liquid, showing darker muscle areas of glabella, ×3 (Whittington, 1954b, pl. 61, fig. 1).

© 2009 University of Kansas Paleontological Institute
For the development of Ptychoparioidea, Fortey (1990a, p. 547, fig. 9) has described the plectrum stage. In other trilobites, a median preglabellar furrow may occur. In some proetids, a transverse preglabellar ridge occurs immediately inside the border furrow (see Fig. 19). The gena bears the eye lobe (when present), and in many trilobites an eye ridge runs inward from the anterior end of the eye lobe to the axial furrow opposite the anterolateral portion of the glabella. Where present, the fossula lies immediately in front of the intersection of the eye ridge and the axial furrow. The gena is divided by the inner edge or furrow of the border, by the eye ridge, and by the facial suture; terminology for these separate areas is given in Figure 14.

The eye lobe is convex, and may be strongly so, or raised on a stalk. In trilobites having a facial suture (Fig. 5), the eye lobe is divided by the suture, in an abaxially curving arc (points γ, δ, and ε in Fig. 3), into the adaxial palpebral lobe and an abaxial visual surface. Below the visual surface there may be a ridge and furrow, the eye socle and eye socle furrow (Fig. 15), separating it from the genal field. Abaxial to the eye lobe in proetids, however, there may be a smooth subocular area or a depressed subocular groove bounded on the outside by a subocular ridge. The palpebral lobe, subsemicircular in dorsal outline, is separated from the fixigena by a change in slope or a palpebral furrow. It may be subdivided (by this change in slope or furrow) into a convex...
Morphology of the Exoskeleton

palpebral rim bordering the facial suture and a lower adaxial portion. The palpebral ledge is a flattened edge or furrow abaxial to the rim. The palpebral lobe and eye ridge may form a continuous structure, the palpebro-ocular ridge. Olenellina lack the facial suture; consequently the gena is not subdivided by it, nor is the palpebral lobe outlined abaxially (Fig. 16). Hence a different terminology has been employed. Hupé (1953a) used ocular lobe (lobe oculaire) for the combined eye ridge (crête oculaire) and eye lobe (lobe palpebral), without mention of the visual surface. Öpik (1961a) termed the eye ridge and eye lobe the palpebral lobe, divided longitudinally into inner and outer portions by a furrow, the ocular striga. Bergström (1973a) used anterior and posterior (rather than outer and inner) palpebro-ocular ridge. Here ocular lobe is preferred for the combined eye ridge and eye lobe, including the visual surface. This lobe divides the genal field into interocular and extraocular areas and is itself divided by the ocular furrow into inner and outer bands (Fig. 16). The ocular furrow is the ocular striga of Öpik or epipalpebral furrow of Cowie and McNamara (1978). In many specimens of Olenellina, the ocular lobe is broken so that only the outline is preserved (e.g., Fritz, 1972; 1991). In rare specimens (e.g., Whittington, 1989, fig. 8–9) the visual surface is sharply outlined, as it is partially even when the lobe is broken (e.g., Fritz, 1972, pl. 1, fig. 7–8, pl. 15, fig. 16; 1991, pl. 11, fig. 8–9). Öpik (1967, p. 54) argued that there was a circumocular suture surrounding the visual surface in this and other Cambrian trilobites. In Olenellina and protolenids the inner and outer ridges of the ocular lobe may divide adjacent to the glabella, the posterior ridge reaching the axial furrow immediately in front of the outer end of glabellar S3, the anterior either merging with the anterolateral edge of the frontal glabellar lobe or the pair uniting around the anterior margin of the preglabellar furrow to form a parafrontal band (Hupé, 1953a, p. 105). This band is developed in ellipsoccephaloids, particularly in protoeleninids (Geyer, 1990b).
and in the redlichoid *Lemdadella* (SDZUY, 1978). It has been observed in the Middle Cambrian *Asthenopsis*, and in some specimens of *A. opalensis* the eye ridge is divided along most of its length into three parallel ridges (JELL, 1978b). In a small cephalon of *Daguinaspis*, HUPÉ (1951) described a third branch from the eye ridge adjacent to the glabella and illustrated similar structures in *Fallotaspis* (HUPÉ, 1953a, pl. 1, fig. 1–3); this structure was used by HUPÉ (1951) in his discussion of cephalic segmentation. The most recent consideration of the morphology of the palpebro-ocular ridge and the
Morphology of the Exoskeleton

The parafrontal band was by Pillola (1991, p. 79–84, fig. 47), who concluded that the trisegmented eye ridge is best known in Lower Cambrian trilobites. In younger forms the structure of the eye ridge is simplified.

A pattern of radiating, distally anastomosing ridges, the genal caeca, is developed with varying intensity on the frontal area and adjacent librigenal field or over the entire genal field in many Cambrian and Ordovician trilobites (Opik, 1961a) and in Silurian and Devonian proetids (Snajdr, 1980, pl. 63, fig. 3–4). The ridges are numerous and narrow in comparison with the size of the cephalon. They may become stronger as they approach and cross the border furrow or may not be evident on the border. The pattern of the genal caeca is well displayed by Harpides, extending from the axial and preglabellar furrows across the genal field and border to the narrow marginal rim (Fig. 17.1). This cephalic border (described below as the fringe) is wide (sag. and tr.), gently concave dorsally, and bilaminar, the two lamellae lying close together. The external surface of the lamella on the underside bears a pattern of radiating ridges corresponding to those on the upper lamella (Fig. 17.2). This suggests that the ridges enclose a system of canals that lay between the lamellae [cf. Fortey’s (1974b, p. 53) description of the olenid Tropidopyge]. Fritz (1972, p. 23) has shown that in certain Olenellina the median ridge of the preglabellar field is part of the genal caeca (Fig. 18). In Redlichia a ridge on the preocular area of the fixigena, directed out close to the anterior branch of the facial suture or situated more adaxially to it, was termed the facial line (Whitehouse, 1939, p. 189; Opik, 1961a, fig. 8; W. Chang, 1966, fig. 1, as the preocular facial line). This ridge is similar in width to those of the genal caeca and has been considered to be part of this system of canals by some authors (Opik, 1970b, p. 25, pl. 4, fig. 1). In harpids and harpetids, pits lie between the ridges of the genal caeca, and in some olenids (Fortey, 1974b, fig. 4), for example, pits occur in the border furrow between the ridges. The genal caeca may radiate from the eye ridge, the eye lobe, or the axial furrow behind the eye ridge (Fig. 17.1). Thus the eye ridge runs across the radiating caeca, as does the genal ridge, curving outward and backward toward the genal angle. The genal ridge may branch abaxially and may not reach the genal angle. It is present in Olenellina (Fig. 16), in redlichioids (the para-ocular facial line of W. Chang, 1966, fig. 1), and, for example, in Churkinia (Palmer, 1968, pl. 1, fig. 6). In trilobites lacking an eye lobe or eye tubercle (e.g., Conocoryphe, Lonchodomas, Anisontella), a single genal ridge may extend outward from the axial furrow and curve back to the genal angle. The intergenal ridge

Fig. 12. Perirehaedulus caprus (Thomas in Thomas & Narbonne), Silurian, Arctic Canada. 1,2, Anterior and dorsal views of the holotype, an incomplete cranidium, X3 (Thomas & Narbonne, 1979, pl. 4, fig. c, e).
in Olenellina is a ridge that arises from the posterior end of the inflated palpebral (interocular) area and curves outward and backward to the posterior border and base of the intergenal spine (Fig. 16). The ridge is prominent in early developmental stages of Olenellus (Palmer, 1957) and Elliptocephala (Whittington, 1957a) and is retained in the holaspis. In Elliptocephala a less prominent ridge, the posterior ocular line or ridge, runs back from the posterior end of the eye lobe to the border, outside the intergenal ridge (Fig. 16). Both ridges are present in holaspides of Fallotaspis (Hupe, 1953a, pl. 1, fig. 1) and Eofallotaspis (Sdzuy, 1978, pl. 1, fig. 1, 4).

In Agnostida (Öpik, 1961a; Robison, 1978, p. 4; Jell, 1975a) a radiating, branching pattern of ridges, rugae, separated by furrows or scrobiculae that rarely anastomose, extends from the axial furrow to the border furrow. These ridges are relatively
much coarser than those of other trilobites and have few main connections to the axial furrow; according to Robison these ridges are always anteromedially divided, unlike those in other trilobites. In the Ordovician *Galagnostus* (Whittington, 1965, p. 307) and *Arthrorhachis* (Fortey, 1980b, p. 31) a much finer pattern of radiating ridges has been detected crossing the border furrow.

The **tropidium** (Fig. 19) is a ridge, concentric with the cephalic margin, which traverses the preglabellar and genal fields inside the margin of the doublure (Owens, 1973; Morzadec, 1983, pl. 1, fig. 4–6); it may form more than one continuous ridge. Owens termed similar discontinuous ridges **tropidial ridges**. Ormiston (1971) described silicified material that showed that the

Fig. 14. Terminology of areas and fields of the cephalon illustrated by a ptychopariid trilobite, labelled portions differentiated by shading (new).
tropidium was not reflected as a groove in the parietal surface. According to Snajdr (1980, p. 18) the tropidium is present as a groove on the parietal surface in forms with a thin exoskeleton; when the exoskeleton is thick it is not so represented.

On the genal field adjacent to the base of the glabella there may be a low, elongated (exs.) swelling, the baccula (Fortey, 1975b) (see Fig. 73). This swelling may be connected to the anterolateral corner of the occipital ring, separated from L1 by a furrow, separated from the glabella by the axial furrow, or separated in addition from the genal field by the baccular furrow. The different forms of the baccula in unrelated trilobites have led some authors to consider it part of the glabella, others to regard it as part of the genal field. In Harpides (Fig. 17) and harpids such as Dolichoharpes (Chatterton & Ludvigsen, 1976, pl. 7, fig. 8–9, 16), a semi-circular depressed area lacking reticulate ridges lies at the inner posterior corner of the genal field, opposite L1, and is termed the ala. An area in a similar position in styginids (Fig. 20), also smooth, has been called the lateral muscle impression (Fortey, 1980b, p. 59; Lane & Thomas, 1983, fig. 1–2); it has been compared with the lunette in Bumas-toides (Fig. 9.1–2) and other illaenids. The paraglabellar area in homalonotids (Cooper, 1982) is in the same position. Some, if not
FIG. 17. Harpides atlanticus BILLINGS, Middle Ordovician, Table Head, Newfoundland. 1. Dorsal view of incomplete genicranium, to show radiating pattern of genal caeca, \(\times 5 \); 2, exterior view of fragment of lower lamella of fringe, showing genal caeca as raised ridges, with intervening pits and strong concentric ridges, \(\times 9 \). Abbreviations: a, ala; g, genal ridge; r, rim (Whittington, 1965, pl. 5, fig. 3; pl. 6, fig. 2).
all of these areas, project from the parietal surface and appear as depressions in the internal mold. They are considered to be areas of muscle attachment, but the paraglabellar area in \textit{Trimerus} (Whittington, 1993b) bears impressions of the genal caeca and hence cannot have been an attachment area.

The genal angle may be rounded, but in many trilobites it bears the prominent genal spine, called \textit{libri} or \textit{fix} according to whether the suture is opisthoparian (Fig. 3) or proparian (Fig. 5), i.e., whether the spine is borne by the librigena or the fixigena. These terms indicate merely the position of the genal spine of the holaspid trilobite with reference to the suture and do not imply homology. The genal spine may be short or long so that it extends back beyond the rest of the body. In trilobites lacking a genal spine, the posterior branch of the suture may cross the border at the genal angle, a condition called gonatoparian.

The form of the anterior and lateral cephalic border (Fig. 3) varies. In many trilobites the border is dorsally convex, defined by border furrows (Fig. 4), and, in combination with the ventrally convex doublure, forms a tubular structure around the outer edge. This structure is continued into the base of the genal spine, where present, and

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig18.jpg}
\caption{The median preglabellar ridge in two Olenellina, Lower Cambrian, Canada, which suggests that the ridge is composite and part of the genal caeca. 1, \textit{Nevadella baculenta} Fritz, 1972, \textit{X}10; 2, \textit{Olenella} sp., \textit{X}8 (Fritz, 1972, pl. 5, fig. 3; pl. 13, fig. 14).}
\end{figure}
Morphology of the Exoskeleton

into the distal extremity of the posterior border. The inner edge of the doublure of the lateral cephalic border (Fig. 4) lies a short distance ventrally of the border furrow. This tubular type of anterior and lateral cephalic border characterizes many Cambrian trilobites (see Fig. 27–28, 30, 37) and is present in many post-Cambrian forms such as proetids and Phillipsiinae (see, for example, Fig. 31.4). In the latter example, however, the doublure is flattened, giving a sharply flexed cephalic margin, as it is in Agnostina (see Fig. 27.1). This modification is associated with the close fit of cephalic and pygidial doublures when fully enrolled (see section on enrollment, p. 67). In Isotelus (Fig. 2) lateral and anterior borders are ill-defined by the change in slope between glabella and genal field and the faintly convex border. The doublure is flat abaxially beneath the lateral border, curving up adaxially to lie close beneath the dorsal surface of the librigena (Chatterton & Ludvigsen, 1976, pl. 2). This type of border is characteristic of asaphids (Jaanusson, 1953a, 1953b; Henningsmoen, 1960) and styginids (Šnadir, 1960); it is also developed in the bathyurid Punka (Fortey, 1979), but Bathyurus (see Fig. 31.2) has a tubular border. In trilobites in which the frontal glabellar lobe is expanded, for example in some cheirurids (see Fig. 34.1) or in phacopids (see Fig. 36.2), the anterior border faces anteriorly and may be greatly restricted, the lateral borders retaining their tubular form and facing upward and outward. In such encrinurids as Encrinuroides (see Fig. 34.3) the anterior border faces anteriorly, and the preglabellar field (between the preglabellar furrow and anterior border furrow) is long (sag. and exs.) and convex. The anterior branches of the suture, together with the narrow (tr.) rostral suture, divide the preglabellar field transversely. This division has resulted in the use of special terms (Evitt & Tripp, 1977)—anterior border of cranidium and precranidial lobe—the latter for the lobe of the librigena between the connective and facial sutures and anterior border furrow. Lateral and anterior borders may be lost altogether by effacement in some illaenids (see Fig. 1, 33), but the tubular form is retained laterally by the doublure.

A different type of cephalic border is that of the trinucleid Cryptolithus (see Fig. 29.1, 129). The border slopes steeply downward anteriorly and laterally and has a vertical edge, the doublure underlying it closely. Pits in the outer surfaces of border and doublure join the two surfaces by opposed, funnel-shaped structures. The cephalic suture runs around the steep margin of the border and

Fig. 19. Warburgella stokesii (Murchison), Silurian, Wenlock Limestone, U.K. 1, Cranidium, showing transverse preglabellar ridge (r) and tropidium (t) on preglabellar field, X13; 2, librigena, showing tropidium continued on genal field, X6 (Owens, 1973, pl. 13, fig. 12–13).
curves inward to the posterior border at the genal angle; it also divides the funnel-shaped structures. This type of border, the fringe, thus consists of two pitted lamellae, the upper and lower lamellae, separated by the suture, with the lower lamella extended into the genal spine. Details of the structure of the fringe in trinucleids were given by C. P. Hughes, Ingham, and Addison (1975). Similar in structure is the fringe of harpetids (Whittington, 1949; Chatterton & Ludvigsen, 1976), harpidids (Fig. 17), and dionidids (Whittington, 1952a). A single row of pits in the anterior border furrow is developed in a number of different trilobites, and in Redlichia (see Fig. 30.2) and certain olenids (Fortey, 1974b) these are opposed by pits in the doublure.

The posterior cephalic border has the form of a raised ridge, defined on the inner side by a change in slope or the border furrow. This border extends transversely in the horizontal plane from the axial furrow to the fulcrum (Fig. 5), abaxial to which it is flexed down. The doublure extends adaxially from the genal angle, narrowing (exs.) and disappearing at the fulcrum. In trilobites, such as Olenellus (see Fig. 45), in which the posterior border curves outward and downward from the axial furrow, there is no fulcrum dividing the border into inner and outer portions, but the doublure extends inward to a corresponding position in an exsagittal line with the inner edge of the thoracic doublure. The posterior cephalic border thus duplicates the form of the thoracic segments in being either fulcrate or nonfulcrate (see discussion of thorax below); such duplication is necessary for articulation of cephalon and anterior thoracic segment. In trilobites in which the thoracic pleural furrow is effaced, as in illaenids (Whittington, 1963, pl. 16), the posterior border furrow is also effaced, and the posterior cephalic border consequently is not defined (see Fig. 33). Nevertheless, the posterior edge of the cephalon is fulcrate (i.e., bent down at the fulcrum) and so articulates with the fulcrate thorax.
In many trilobites the only relatively large cephalic border spine is the *genal spine*. This spine is backwardly directed and may terminate at some point beside the thorax or extend behind the body. In most trilobites this spine tapers progressively to a sharp point. Exceptions include the Cambrian *Peachella* (PALMER & REPINA, 1993, fig. 4.2) and such Carboniferous proetids as *Spinibole* and *Cystispina* (BRAUCKMANN, 1978; OWENS & TILSLEY, 1995). In *Spinibole* the genal spine is long, tubular, and bluntly pointed; in *Cystispina* the club-shaped spine is divided into two cysts. Many additional cephalic border spines (less prominent than the genal spine) are present in such Cambrian trilobites as *Bowmania* (Fig. 21), and in some post-Cambrian odontopleurids (Fig. 22) there are many additional border spines. These spines may project almost horizontally as in *Bowmania* or be downwardly and outwardly directed as in *Acidaspis*. The anterior border and doublure of the cephalon may be drawn out into a frontal spine, as in asaphids such as *Megistaspis* (*Megistaspidella*) (JAANUSSEN, 1956b; WANDAS, 1984). An extraordinary example of such a spine, three times the length (sag.) of the rest of the cephalon, is that of the dalmanitid *Psychopyge* (MORZADEC, 1988). In other dalmanitids the spine may be shorter, but bifid or trifid (CAMPBELL, 1977), and has been referred to as a frontal process. Short spines (the median and anterior fixigenal spines) project from the lateral border in holaspid cheirurids such as *Sphaerocoryphe* and are remnants of relatively longer spines in earlier growth stages. In the Devonian *Paracalmonia* a similar short spine is present on the border of the librigena. Striking is the long, upward curving intergenal spine in the Cambrian *Nepea* (Fig. 23). Similarly situated but smaller intergenal spines are present in the developmental stages of *Olenellina*, *Paradoxides* (WHITTINGTON, 1957b), and dolichometopids (ÖPIK, 1982); and remnants may be
Trilobita

In most trilobites the adaxial portion of the posterior cephalic border is directed transversely, the abaxial portion curved back (to different degrees) into the base of the genal spine. In some Olenellina and redlichioids, however, the genal spine is advanced, in that the base of the spine is situated on a transverse line in advance of the occipital ring at the mid-length of the cephalon or even farther forward. In these forms the posterior cephalic border is flexed forward, in Olenellina at or adaxial to the intergenal spine (Fig. 16), in redlichioids at about where it is crossed by the posterior section of the facial suture. This marked flexure in the posterior border was termed the intergenal angle by W. CHANG (1966, fig. 1). A terminology for the angle between the lateral and posterior borders and the genal spine was proposed by HENNINGSMOEN (1957a, fig. 1). An unusual cephalic spine is the posterolateral spine of the fixigena in Ancyropyge (ORMISTON, 1967), as prominent as the librigenal and occipital spines.

In the posterolateral corner of the genal field of the metagnostids Geragnostus, Galbagnostus (Fig. 10.2), and Arthrorhachis (WHITTINGTON, 1965, p. 297; HUNT, 1967, pl. 22, fig. 35, 47), there is a smooth, oval area that differs from the muscle areas of the glabella in being slightly raised; what this area represents is uncertain. A structure in the same position in a different metagnostid has been interpreted as an eye lobe (AHLBERG, 1988). STORMER (1980, p. 263–266) described pits and darker areas in the genal field (including the palpebral lobe and furrow) of Chasmops and interpreted them as areas of muscle attachment. Similar pits are present in the genal field in cheirurids, pliomerids, and encrinurids; whether these were areas of muscle insertion is an open question.

CEPHALIC SUTURES AND THE VENTRAL CEPHALIC EXOSKELETON

The facial suture, divided into an anterior and posterior branch (or section) by the eye lobe when present, may divide the dorsal cephalic exoskeleton into the cranidium and librigena (Fig. 3), and this suture may be met by other sutures in the ventral exoskeleton (Fig. 5). The dorsal and ventral sutures comprise the cephalic sutures. On molting the exoskeleton parted along these sutures, so that not only may the sutures be visible in entire exoskeletons, but the parts into which it separated (librigena, cranidium, rostral plate, hypostome) may be preserved. The course of the sutures is different in different
Morphology of the Exoskeleton

trilobites, and a particular pattern has long been recognized as characteristic of some family groups (as has the form of the hypostome), hence the importance that has been placed on cephalic sutures in classification (Stubbfield, 1936). The extraction and study of silicified specimens has provided much new information, and the preservation in full relief has enabled a better appreciation of the course of the sutures. The following account of cephalic sutures, the nature of the hypostome, and its relationship to the rest of the cephalic exoskeleton is based on recent reviews (Whittington, 1988a, 1988b). Fortey and Chatterton (1988, fig. 5, p. 178; see Fortey, 1990a, for further discussion) introduced the term natant condition to describe that in which the hypostome was detached from the cephalic doublure, and conterminant condition for that in which the hypostome was attached by a suture to the doublure, the latter extending inward to a position beneath the preglabellar furrow.

PATTERNS OF CEPHALIC AND FACIAL SUITURES

In cepha having an opisthoparian facial suture (Fig. 1–3) the two branches may subtend abaxially an oblique angle, the anterior branches curving inward to become confluent along the margin. This arrangement characterizes many species and has been called ptychopariid (see Fig. 27.4), a term carrying the implication that the connective suture is present on the doublure, defining the abaxial margin of the rostral plate. In the conterminant condition this suture connects the facial suture to the hypostomal suture (Fig. 4.1–5). When in the conterminant condition only a median suture transects the doublure, no rostral plate is developed, and the cephalic suture is termed asaphid (see Fig. 35). In the remopleurid Kainella the anterior branch is strongly outwardly directed from the eye lobe, then curves inward to cross the anterior border and meet the median suture. This pattern, in which the anterior branches subtend a wide angle in front of the eye lobes, is described as kainelliform. In Centopleura (Opik, 1961b, fig. 37) the anterior branch of the suture curves to run outward and backward, before curving forward to the cephalic margin and is termed retrodivergent. In the cedariidiform type of suture the posterior branch is directed outward from the eye lobe, then curves back over the posterior border to a point just inside the base of the genal spine, as in Cedaria. The proparian suture (Fig. 5), typical of the post-Cambrian Cheirurina and Phacopina, is also present in such unrelated Cambrian forms as Norwoodella. Special variants of this suture are the burlingiiform type (as in Burlingia and Schmalenseelia), in which both anterior and posterior branches run outward and forward from the eye lobe to the margin, and the dalmanitidiform (as in Dalmanites), where the anterior branches are confluent along the dorsal surface of the anterior border. In trilobites having either opisthoparian or proparian facial sutures, the anterior branches may be confluent; but the doublure is not crossed by a median or connective suture; this is described as the nileiform (see Fig. 36.1) facial suture.

The above kinds of facial sutures all cross the eye lobe, but facial sutures may be present when the eye lobe is absent. For
example, a pychopariid facial suture is present in the Devonian proetid *Erbeniceratrype* (see Fig. 119), and a proparian suture occurs in the Devonian phacopid *Trimerocephalus* (see Fig. 118.4). On the other hand, a prominent eye lobe may be present, although the facial suture is lacking, as in *Brachymetopus* (Fig. 24).

A marginal or submarginal suture characterizes trinucleids (see Fig. 29.1), harpetids, and dionidids; and a variant is seen in *Entomaspis* (Rasetti, 1952a), where two branches run outward and backward from the eye lobe to the base of the genal spine where they join the marginal suture (*entomaspidiform* type). In trilobites with a marginal suture the cephalic exoskeleton is divided into a dorsal portion, for which Henningsmoen (1959, p. 155) coined the term *genicranium*, and a ventral portion, which he called the *doublural plate*; the latter is referred to in harpetids and trinucleids as the *lower lamella* of the fringe.

In some trilobites either branch of the facial suture may be situated on or beside a narrow ridge, the *sutural ridge*. In Olenellina Stormer (1942, fig. 14; pl. 2, fig. 1, 3–5) showed not only the intergenal and posterior ocular ridges but also described a fainter ridge curving from the anterior end of the eye lobe, outward and backward over the genal field (see Fig. 122). Some species of *Fallotaspis* Hupe (1953a, fig. 20, 23; pl. 1, fig. 3, 5) also have an anterior ocular line or ridge extending backward to cross the posterior border just outside the base of the genal spine. There has been much discussion of the significance of the anterior and posterior ocular lines (Stormer, 1942, p. 137–139 and references; Hupe, 1953a, p. 118–119, fig. 68; Harrington in Moore, 1959, p. 62–63; Bergstrom, 1973b, p. 285). Harrington, following Hupe, concluded that they represented the fused facial suture and applied the name *metaparian* to such a suture. Stromer was not convinced of this interpretation, and there is no evidence for it from what we know of ontogeny in Olenellina. The notion of secondary fusion of facial sutures in Olenellina is considered improbable (Whittington, 1989).

The above terms that purport to describe the course of all or part of the cephalic suture or supposed suture have only limited use because the exact course differs even between species attributed to one genus.

DOUBLURE AND ROSTRAL PLATE

At the inner edge of the doublure the exoskeleton becomes thin except along the hypostomal suture (e.g., Whittington & Evitt, 1954, pl. 12, fig. 30). As a result of compaction, the trace of the inner edge of the doublure of the lateral and anterior borders may be impressed on to the dorsal exoskeleton to give a *paradoublural line*. In uncompressed trilobites this line may be marked by a slight change in slope of the dorsal exoskeleton. The doublure may extend inward beneath the genal field for a short distance adaxially, closely beneath the dorsal exoskeleton, but never extends below the eye lobe.

The cephalic doublure may be impressed by a *vincular furrow*, subparallel to the margin (see Fig. 36.2), or by one or more notches (see Fig. 27.1) or folds below the lateral or posterolateral border. These vincular structures are coaptative (see section on enrollment and coaptation, p. 67). In certain asaphids, silicified specimens (Ross,
Morphology of the Exoskeleton

1951b, pl. 12, fig. 3–8; CHATTERTON & LUDVIGSEN, 1976, pl. 2, fig. 10, 12–14) show not only a vincular fold near the lateral margin but a small opening in the doublure posterolaterally that has one margin raised, the pandarian opening (see Fig. 35.3). In other trilobites this opening is presumed to have lain within a small embayment in the inner margin of the doublure (see Fig. 29.3, 31.4, 35.1).

In Olenellina (see Fig. 30.1) there were no facial sutures, but the cephalic doublure is divided by a perrostral suture that runs along the arc of the doublure from beneath one genal angle to the other, a short distance abaxially from the inner margin. This suture isolates a narrow (sag. and tr.), crescentic rostral plate. A similarly shaped rostral plate is isolated in the brachymetopid Australosutura (Fig. 25) by the rostral suture that curves over the doublure between the inner, posterior edges. In Brachymetopus (Fig. 24) the rostral plate is crescentic (OWENS, 1986) as in Australosutura (Fig. 25), but facial sutures are absent. A crescentic ventral plate has been described in the cephalon of the metagnostid Arthrorhachis (see Fig. 27.1). Such ventral, rostral plates are the widest known (measured along the arc of the doublure) and are present in extremely different trilobites.

A narrower rostral plate is present in trilobites in which the connective suture crosses the anterior portion of the doublure; the shape of the plate is determined by the course of the suture, the distance separating the pair of sutures, and the form of the doublure. JAANUSSON (1956a, p. 37) proposed that the ptychopariid type of cephalic suture in which a rostral plate is present should be subdivided as euptychopariid and stenoptychopariid, referring respectively to forms in which the rostral plate was broad (see Fig. 27.4) or narrow (tr.) (see Fig. 31.1). The connective suture may be straight, inward as well as backwardly directed, giving a subrectangular or rhomboidal outline to the rostral plate, or the suture may be sinuous or run in a curve concave abaxially, resulting in an hourglass-shaped outline (see Fig. 28.1b, 31.2b). In certain encrinurids (see Fig. 34.3) the connective suture is close to the midline, and the rostral plate is an extremely narrow (tr.) strip. The doublure may be flat or gently convex anteriorly but may be sharply flexed, as in calymenids (see Fig. 34.2) or illaenids (see Fig. 33). In the former group the outer, anterior portion of the rostral plate (shown in the ventral view, Fig. 34.2b) is referred to as the border sector; the inner portion (which is bent sharply upwards and so hidden in the ventral view but shown in section in Fig. 34.2d) is the doublure sector. The anterior margin of the rostral plate, the rostral suture, lies in most trilobites on the margin of the border or on the ventral side; however, in xystridurids (see Fig. 30.3) and homalonotids it is dorsal to the margin.

NATURE OF CEPHALIC SUTURES

The course of the cephalic sutures and the nomenclature of sections of them and of the portions into which they divide the cephalon have been given above. The hypostomal suture is described below, a suture that separates hypostome from cephalic doublure. In entire specimens of the cephalon preserved in limestone, the suture lines may be visible as impressed lines; in such specimens in shale or silt compaction may have caused slight displacement along the suture lines so that they are readily visible. Portions of the cephalic exoskeleton, separated at the sutures, comprise the vast majority of fossils.
Such material that has been silicified has shown that the relatively thick exoskeleton is truncated at a flat edge along suture lines, and the precise fit along these lines is revealed by rare silicified specimens in which the portions are in juxtaposition (Fig. 4). This sutural edge of the exoskeleton contrasts with the thin edge at the inner margin of the doublure, to which the unmineralized ventral integument was attached. Silicified material of Proetus (Whittington & Campbell, 1967, pl. 2, fig. 3), for example, shows the difference in appearance between these edges.

In specimens of the odontopleurid Ceratocephala from Bohemia (Bruton, 1968b, p. 49) facial sutures cannot be seen, and they are described as fused and indistinct in a species described by Chatterton and Perry (1983, p. 48); in other species (e.g., Bruton, 1966, p. 25) there is clear evidence of these sutures. Other examples could be cited, and Stelkaspis is characterized (Chatterton & Perry, 1983, p. 32) as having fused facial sutures in the holaspid stages and lacking sutural ridges. Whether facial sutures can be traced in a specimen may depend on the mode of preservation (cf. Bruton, 1968b, p. 49), and it may also depend on whether a specimen is the exoskeleton of a molt or of a whole animal that died between molts. In the latter the suture may not have been functional, whereas in the former it would have been. In Upper Cambrian (Rasetti, 1952c, p. 892) and Ordovician trilobites (Ludvigsen, 1979b, p. 4) the median suture may be present in some species of a genus but absent in others. In such examples the absence of this suture does not appear to have taxonomic significance.

HYPOSTOME

The hypostome is a ventral cephalic exoskeletal plate, situated beneath the anterior portion of the glabella and consisting of a convex, oval or subcircular middle body surrounded by borders (Fig. 4, 26). The width corresponds to that of the frontal glabellar lobe, and in Cambrian trilobites the plate appears to have extended back to a point beneath L2 or L1. In younger trilobites the length (sag.) is greater, in some instances reaching to a point beneath the occipital ring. The middle body of the hypostome is subdivided into a larger anterior lobe and smaller posterior lobe by a middle furrow directed inward and backward from the lateral border furrow; the posterior lobe may have a convexity that is independent from that of the anterior lobe. The middle furrow dies out adaxially, and at the inner end there may be a flat or convex area, the macula, situated in the furrow or on either side of the slope down to the furrow, characteristically on the posterior side of this slope. The macula may be flat, lie in a deep depression, or be gently or strongly convex; it may be oval or lenticular in outline. Examples of the macula have been described in which the external surface is smooth (Lindström, 1901; Whittington, 1988a, p. 600; 1988b, p. 336) or in which it is tuberculate (Ormiston, 1967, pl. 2, fig. 6); examples in which the exoskeleton is thinner than in adjacent areas or shows an internal cellular structure have also been described. An anteromedian protuberance of the middle body, the rhynchos (see Fig. 34.2–3), is a coaptative device present, for example, in remopleurids, calymenids, and encrinurids.

An anterior border of the hypostome may not be developed. If developed it may be flat, narrow, and downward- and forward-sloping or narrow and convex and complete or incomplete medially. The lateral and posterior borders, separated from the middle body by furrows, are of many different forms and are extended dorsally and inwardly as a doublure. In post-Cambrian species a rounded projection, the shoulder, is present at the anterior end of the lateral border; in older species such a projection lies farther back on the lateral border. The anterolateral edge of the hypostome is extended upward and outward as an anterior wing; on the inner surface of the wing a wing process may project.
Fig. 26. Incomplete cephalon and hypostome of *Cerurinella typa* Whittington & Evitt. 1, Anteroventral view of cranidium with attached right free cheek, to show doublure of occipital ring (d), apodemes of SO and S1, and pit (p) in fossular apodeme, X6 (Whittington & Evitt, 1954, pl. 10). 2,3, Hypostome in ventral and oblique interior views, X9 (Whittington & Evitt, 1954, pl. 11). 4,5, Diagrammatic representation of hypostome to indicate terminology of ventral and oblique views, respectively (new).

A corresponding pit being present on the outer surface. In specimens in which the hypostome has been found in place, the tip of the wing or the wing process lies immediately beneath the fossular apodeme (Fig. 26.1) projecting from the dorsal exoskeleton. Where the internal surface of the hypostome is known, a posterior wing projects dorsally from the inner edge of the doublure of the lateral border, beneath the shoulder. Between the shoulder and anterior wing is the embayment of the lateral notch, which is broad in many Cambrian trilobites and in Proetida and is a narrow channel in such groups as Phacopida. The posterior border may bear one or more spines and may have a median notch developed or be deeply forked as in some Asaphida. The
remopleurid Hypocricranotus (WHITTINGTON, 1952b; LUDVIKSEN & CHATTERTON, 1991) is unique in that the prongs of the fork extend back beneath the thorax to the pygidium. The varied structures of the doublure of the posterior border, revealed by silicified specimens, include a median projection, a median groove, and sharp granulation (WHITTINGTON, 1988b, p. 335).

Hypostomal Attachment Conditions

The hypostomes of holaspid trilobites and their relationship to the rest of the cephalic exoskeleton were described by WHITTINGTON (1988a, 1988b). It was shown that in species of particular genera or families the hypostome was inserted into the ventral cephalic integument and in others that it was attached at a suture to the cephalic doublure. In the same year FORTEY and CHATTERTON (1988, p. 178) proposed terms to describe the different attachment conditions and portrayed both holaspid and protaspid hypostomes. FORTEY (1990a) discussed different hypostomal conditions in more detail, as well as their possible evolution and importance to classification. In the light of this work, the cephalic types proposed by HARRINGTON (IN MOORE, 1959, p. 67), which have been little used and are known to be partly in error, are not given here. Hypostomal conditions are described in the terms of FORTEY and CHATTERTON.

In the **natant** condition the hypostome is inserted into the ventral integument of the cephalon below the anterior portion of the glabella, not attached to the inner edge of the doublure but lying a short distance behind it. In the remarkable specimens of Agnostus pisiformis (MÜLLER & WALOSSEK, 1987), a natant hypostome is preserved in place (see Fig. 78, 80, 82); in species of other genera in which only the exoskeleton is preserved (e.g., WHITTINGTON, 1988a, pl. 55, fig. 8-9; FORTEY, 1990a, pl. 1) it is slightly displaced. Many Cambrian (Fig. 27.2-4, 28) and fewer post-Cambrian trilobites (Fig. 27.1, 29) have the hypostome in this position. They are restored with the anterior wing lying beneath the anterior end of the axial furrow, in front of the intersection of this furrow with the eye ridge (if this ridge is developed), or beneath the corresponding position, the fossula, in Cryptolithus and Ampyx. In the latter two genera and in Proetus (Fig. 29.3), a preglabellar field is absent, this field being well developed in the Cambrian examples. In some trilobites with a natant hypostome the doublure is not crossed by sutures (Fig. 28.2, 29.1-2), while in others it is traversed by connective sutures that isolate a rostral plate of differing sizes and shapes (Fig. 27.2-3, 28.1, 29.3). In Proetus the anterior edge of the hypostome lay close to the inner edge of the doublure. Well-preserved silicified specimens (WHITTINGTON & CAMPBELL, 1967, pl. 30).
Fig. 28. Cephalas with natant hypostome. 1, Aphelaspis sp., Upper Cambrian (Whittington, 1988a, fig. 17). 2, Parabolinella sp., Upper Cambrian (Whittington, 1988a, fig. 19). 3, Conocoryphe sulzeri (Schlotheim), Middle Cambrian (Whittington, 1988a, fig. 12). 4, Agraulos ceticephalus (Barrande), Middle Cambrian (Whittington, 1988a, fig. 14). All views are partial dorsal, b, partial ventral, c, right lateral, and d, sagittal section of cephalic exoskeleton combined with a right lateral view of the hypostome. The position of the rostral suture is shown by a gap in the section; the heavy dashed line indicates crest of ridge formed by axial furrow on inner (parietal) surface of exoskeleton. See Figure 27 (p. 30) for list of abbreviations.
Morphology of the Exoskeleton

2, fig. 1) show that the anterior edge of the hypostome was rounded and slotted, not a thick, flat sutural edge. This suggested that the hypostome was natant.

Forteys (1990a, fig. 11) drew attention to the similarity in morphology between examples of the natant hypostome. This generalization embraced what we know of hypostomes in Eodiscina (Fig. 27.2), but that of Agnostus pisiformis (Müller & Walošek, 1987, p. 11, fig. 5) and other Agnostina (Robison, 1972b) is different. The hypostome in Agnostina is highly convex and lacks borders, the more heavily sclerotized portions surround and divide the middle body, and the anterior and posterior wings are elongate and dorsally directed. The middle body is divided into a pair of oval

FIG. 29. Cephala of post-Cambrian trilobites with a natant hypostome. 1, Cryptolithus sp., Ordovician (Whittington, 1988b, fig. 15). 2, Ampyx sp., Ordovician (Whittington, 1988b, fig. 16). 3, Proetus (Proetus) sp., Silurian (Whittington, 1988b, fig. 11). All a views are partial dorsal, b, partial ventral, c, right lateral (including thorax and pygidium in part 1), and d, sagittal section of enrolled exoskeleton (of cephalon only in part 3) combined with a right lateral view of the hypostome. The position of the rostral suture is shown by a gap in the section; the heavy dashed line indicates crest of ridge formed by axial furrow on inner (parietal) surface of exoskeleton. See Figure 27 (p. 30) for list of abbreviations.

© 2009 University of Kansas Paleontological Institute
areas, the hypostomal lobes (see Fig. 80), which were less heavily sclerotized; openings in silicified specimens described by Robison may represent similar areas. An outline of this type of hypostome is suggested for Arthrorhachis (Fig. 27.1), an example of a unique find among Agnostina of a species having a wide rostral plate and rostral suture. Müller and Walossek (1987, p. 44–46, fig. 26) discussed the similarities and differences between the hypostome of Agnostina and that of other trilobites and commented that the hypostome was a homologous structure in all trilobites.

In a wide range of trilobite groups the hypostome is attached to the inner margin of the cephalic doublure by the hypostomal suture. This is the conterminant condition. In Holmia (Fig. 30.1) the hypostome is wide (tr.) anteriorly, corresponding in width to the frontal portion of the glabella, and the anterior wing is large and triangular, its tip lying beneath the axial furrow immediately in front of the eye lobe. The hypostomal suture is narrow (tr.), the anterior wing curving up dorsal to the rostral plate. The form and relationship of the hypostome to the dorsal exoskeleton is similar in Xystridura (Fig. 30.3) to that in Holmia. In Xystridura, however, there is a facial and a rostral suture, the latter on the dorsal surface of the border, and the connective suture curves back to reach the inner margin of the doublure beneath the genal angle. In Redlichia (Fig. 30.2) the hypostome is narrower (tr.) anteriorly, corresponding to the form of the frontal lobe of the glabella, but a relatively large anterior wing is present. A furrow in the external surface of the rostral plate in Redlichia runs beneath the anterior border furrow, and pits in each of the furrows project inward and interlock (according to Öpik, 1958; cf. Fortey, 1990a, fig. 6).

Many post-Cambrian trilobite groups are characterized by having the hypostome attached to a doublure in which rostral and connective sutures define a rostral plate. Among Cambrian trilobites, Welleraspis (Fig. 31.1) is a probable example, but specimens of Cambrian trilobites showing such an arrangement, with the hypostome preserved in place, have not been figured. Among post-Cambrian trilobites, a number of such specimens are known, as well as undistorted silicified material that allows reconstruction in three dimensions. Examples are Dysplanus (Fig. 31.3), Bathyrurus (Fig. 31.2), Paladin (Fig. 31.4), Acanthopyge (Fig. 32.1), and Acidaspis (Fig. 32.2), in all of which the anterior wing extends up so that the tip lies closely beneath the ridge formed on the parietal surface by the axial furrow; in Dysplanus and Paladin a wing process is developed. The large size of the anterior wing in Bathyrurus means that, if the hypostome were attached, it must have been inclined steeply downward and backward. The angle of inclination of the hypostome was less in Paladin, while in Acanthopyge it was moderate but the hypostome was large in relation to the rest of the cephalon. In Illaeus (Fig. 33) and Bumastus the rostral plate was curved posteriorly through 180° to form an inwardly facing rostral flange, the hypostomal suture extending along the inner edge of the flange and the adjacent edges of the doublure. The backward and upward inclination of the hypostome has been recorded in Illaeus (Jaanusson, 1954), and in species of this genus and of Bumastus the anterior wing is large; in Bumastus the tip may have been situated close beneath the fossular apodeme.

While in most of the above-mentioned genera the tip of the wing process lies close to, against, or in a pit in the fossular apodeme, this device is particularly well developed in such genera as Ceraurus (Fig. 5), Ceraurindia (Fig. 26), Deiphon (Fig. 34.1), Encrinuroidea (Fig. 34.3), and Calymene (Fig. 34.2). In addition to process and apodeme being in contact, the distal portion of the wing was wrapped around the apodeme to aid in keeping the process in position. The size of the wing and its process and the convexity of the cephalon lead to a downwardly sloping attitude of the hypostome, strongly so in Deiphon and other cheirurids. The presence of the rhynchos in some encrinurids and calymenids appears to be related to co-
aptation—that is, to the fit of the pygidium below the cephalon when the hypostome is inclined downward.

The combination of an attached hypostome and a median suture crossing the doublure is known in species of the Upper Cambrian genera *Proceratopyge* and *Eurekia* (Fig. 35.1–2). In these species the hypostomal suture is narrow (tr.), and an anterior wing extends upward to the ridge formed on the ventral side of the axial furrow. The position of this ridge in *Eurekia* determines the angle of inclination of the hypostome. In Ordovician asaphids such as *Stegnopsis* (Fig. 35.1–2).
Fig. 31. For explanation, see facing page.
Morphology of the Exoskeleton

FIG. 31. Cephala with a conterminant hypostome and rostral plate. 1, Welleraspis sp., Upper Cambrian (Wittington, 1988a, fig. 18). 2, Bathyurus sp., Middle Ordovician (Whittington, 1988b, fig. 10). 3, Dysplanus sp., Ordovician (Whittington, 1988b, fig. 8). 4, Paladin sp., Carboniferous to Permian (Whittington, 1988b, fig. 12). All views are partial dorsal, b, partial ventral, c, right lateral, and d, sagittal section of cephalic exoskeleton combined with a right lateral view of the hypostome. The position of the rostral and hypostomal suture is shown by a gap in the section; the heavy dashed line indicates crest of ridge formed by axial furrow on inner (parietal) surface of exoskeleton.

FIG. 32. Cephala with a conterminant hypostome and rostral plate. 1, Acanthopyge sp., Silurian to Devonian (Whittington, 1988b, fig. 25). 2, Acidaspis sp., Ordovician to Devonian (Whittington, 1988b, fig. 26). All views are partial dorsal, b, partial ventral, c, right lateral, and d, sagittal section of cephalic exoskeleton combined with a right lateral view of the hypostome. The position of the rostral and hypostomal suture is shown by a gap in the section; the heavy dashed line indicates crest of ridge formed by axial furrow on inner (parietal) surface of exoskeleton.

35.3) the arrangement is similar, but the hypostomal suture is wider (tr.) and runs in a curve along the upturned doublure, so that the close fit is not in a single plane. In Remopleurides (Fig. 35.4) the suture also has this curved course, and a long wing process extends to the pit in the fossular apodeme and to the tip of the process formed by the pit in the anterior doublure. Peculiar to remopleuridids is the oval area that occupies much of the middle body, over which the exoskeleton is thinner and is either smooth externally or bears raised lines.

Fortey and Chatterton (1988) included in the Asaphida the Anomacaroidea, a superfamily that includes Auritama. In one species of this genus, Ö P i k (1967, fig. 75) described the marginal rostral suture, from each end of which a connective suture is directed inward, the two meeting to isolate a small triangular plate on the anterior edge of the doublure, the rostellum. From the posterior tip of this plate a median suture traverses the cephalic doublure. The rostellum is also known in a species of Pterocephalia (Chatterton & others, 1994, fig. 6.6).

In Symphysurus (Fortey, 1986) and Nileus (Fig. 36.1) the hypostome is attached and braced by a long, upwardly directed anterior wing, but the cephalic doublure is not crossed by a median or connective sutures. This latter condition is thought to be...
secondary in nileids, Platypetoides (Fortey & Owens in Owens & others, 1982) having a median suture. In Phacops (Fig. 36.2) the hypostome is attached and braced by a large anterior wing bearing a small wing process, and the cephalic doublure is entire. In early Phacopina (Henry, 1980a) the condition of the doublure is similar, so the lack of median or connective sutures may be a cardinal character of this group. Jaanusson (1975), however, described the Early Ordovician genus Gyrometopus, which is phacopid in appearance but has the cephalic doublure divided by a rostral plate. He pointed out that this species fulfills the requirements of an immediate ancestor of Phacopina but that the presence of a rostral plate might be considered to exclude it from that group.

A special case of the conterminant condition of the hypostome is fusion with the rostral plate, so far known only in Cambrian trilobites. In Paradoxides (Fig. 37.1) this condition is considered to be a diagnostic character of the genus, and it also obtains in Oryctocephalus (Shergold, 1969, pl. 1, fig. 4, pl. 2, fig. 4) and many genera of corynexochoiids. In Fieldaspis (Fig. 37.2), a corynexochoid, a long, steeply inclined anterior wing extends dorsally so that the tip lies beneath the axial furrow immediately in front of the eye ridge. In Paradoxides there is a similar arrangement, the wide (tr.), inflated, middle body lying beneath the expanded anterior portion of the glabella. Thus the rostral-hypostomal plate in these genera is rigidly braced against the rest of the cephalic exoskeleton.

The ventral cephalic sutures in the Lower Cambrian Bathynotus (Fig. 37.3) are unique, in that they diverge at about 100° from the
midpoint of the anterior edge of the dou-
blure to isolate a hypostome that is pentago-
nal in outline. Whether these two sutures are
sections of the hypostomal suture or whether
they should be regarded as connective su-
tures is uncertain. If the latter, the supposed
hypostome is composed of the true hypo-
stome fused with a triangular rostral plate.

Fig. 34. Cephaia with a conterminant hypostome and rostral plate. 1, Deiphon sp., Silurian (W hitten
goan, 1988b, fig. 19). 2, Calymene sp., Silurian to Devonian (W hitten
goan, 1988b, fig. 23). 3, Encrinuroides sp., Ordovician to
Silurian (W hitten
goan, 1988b, fig. 20). All a views are partial dorsal, b, partial ventral, c, right lateral, and d, sag-
ittal section of cephalic exoskeleton combined with a right lateral view of the hypostome. The position of the ros-
tral and hypostomal suture is shown by a gap in the section; the heavy dashed line indicates crest of ridge formed by
axial furrow on inner (parietal) surface of exoskeleton. See Figure 27 (p. 30) for list of abbreviations.

© 2009 University of Kansas Paleontological Institute
No other species is known with such a ventral structure or with a triangular rostral plate in which the apex of the triangle is directed forward.

Fortey and Chatterton (1988, p. 178, fig. 5) proposed the term *impendent* for a condition seen, for example, in *Nileus* (Fig. 36.1), *Remopleurides* (Fig. 35.4), *Dysplanus*...
Morphology of the Exoskeleton 41

(Fig. 31.3), and Phacops (Fig. 36.2). Here the direct relationship between the hypostomal position and the glabella is supposedly lost. As may be seen, the connection between the fossular apodeme and anterior wing process is retained in these forms, as it is in other species with the conterminant hypostome. What is different is that the glabella and presumed preglabellar area or field are merged into a continuous slope, which becomes vertical, overhangs the anterior margin, or, in the case of Phacops, overhangs an extremely short (sag.) anterior border. The doublure is relatively broad (sag. and exs.) so that the anterior margin of the hypostome appears to lie farther posteriorly and is not approximately beneath the preglabellar furrow in Phacops, for example. The impendent condition appears to reflect an expansion of the anterior glabellar lobe (possibly related to an expansion of the anterior portion of the alimentary canal) at the expense of the anterior border, with the basic relationship of hypostomal wing and fossula being retained.

The foregoing account has shown that the position of the tip of the anterior wing of the hypostome, close beneath the fossula or equivalent position in the axial furrow, was homologous in all trilobites (cf. Forney, 1990a, p. 531). This arrangement appears to have been maintained, whatever the hypostomial attachment condition may have been.

MOVEMENT OF THE HYPOSTOME

The possibility of such movement has long been discussed (e.g., Schevill, 1936; Eldredge, 1971; Whittington, 1988a, 1988b). In trilobites having a conterminant hypostome (and especially in those having a fused rostral-hypostomal plate), the hypostome was held rigidly in relation to the remainder of the cephalic exoskeleton. The anterior wing resting against the fossula or inner surface of the axial furrow braced the hypostome and determined its attitude, as the lateral views and sagittal sections of Figures 30 through 37 illustrate. The...
hypostome hence formed part of a capsule in the axial region of the exoskeleton, which enclosed the U-shaped anterior portion of the alimentary canal. In trilobites that had a natant hypostome (Fig. 27–29), the relationship was less rigid. Any movement of the natant hypostome would have depended upon musculature, the flexibility of the ventral integument into which it was inserted, and the nature of the link between anterior wing and fossular apodeme.

THORAX

The thoracic region of the trilobite body consists of a number of similar somites that articulate with one another and with the fused somites of the cephalic and pygidial...
Morphology of the Exoskeleton

regions. The thorax (Fig. 2) is the exoskeleton of this region, including the doublure, and the exoskeleton of each somite is referred to as a segment. Each segment consists of the axial ring, the exoskeleton of the axis, and the pleura, that of the pleural region. The number of segments in the thorax may be 2 (Agnostina) or 3 (Eodiscina), whereas in most other trilobites the number is between approximately 6 and 15. This generalization led JAEKEL (1909) to propose the terms Miomera for trilobites with 2 or 3 thoracic segments and Polymera for trilobites with 6 or more such segments. Thus Miomera could be used as an inclusive term for Agnostida and Polymera for all other trilobites. However, it is known that these other trilobites include species that had 2, 3, or 4 thoracic segments (e.g., ROBISON & CAMPBELL, 1974; W. ZHANG, 1980; FORTEY & RUSHTON, 1980); and Miomera is a junior synonym of Agnostida (MOORE, 1959, p. 172). Hence these terms cannot be used for formal taxonomic categories, but only informally as adjectives (miomerid and polymerid) to describe trilobites with few or many segments (cf. ROBISON & CAMPBELL, 1974, p. 281). In some groups of trilobites other than Agnostina and eodiscoids, a specific number of thoracic segments may be present in most if not all species, such as 6 in trinucleids, 8 in asaphids, or 13 in calymenids. In other groups the number may vary to a greater extent between species of closely related genera or species of one genus as, for example, in the 17 to 32 segments in the thorax of species attributed to Alokistocare (ROBISON, 1971).

The maximum number of segments known in any species appears to be 61, in an emuellid (POCOCK, 1970). The specimen on which the oft-quoted figure of 40 is based is the original of WALCOTT (1916a, pl. 26, fig. 4b,c) of Menomonia calymenoides. In this specimen the convex thorax of many segments narrows backward gradually, and more than 40 axial rings may be counted. Preservation is poor; it is uncertain whether the thorax is complete anteriorly, and the boundary between thorax and pygidium cannot be ascertained. This difficulty of determining, in a series of similar segments diminishing progressively backward in width (tr.) and length, where thorax ends and pygidium begins applies also to specimens of hapalopleurids (HARRINGTON & LEANZA, 1957, p. 203–205). In Selencome, a similar problem has been solved by examining new material (KENNEDY, 1989). BURLING (1916) claimed that the specimen of Olenellus robsonensis exhibited 44 thoracic segments, but a re-examination (WHITTINGTON, 1989) suggests that the number does not exceed 40. The pygidium is not preserved, so that the original total number of segments in the thorax is unknown. Specimens of the emuellids described by POCOCK (1970) show much of the pleural region posteriorly and the minute pygidium, so that the basis for a maximum number of 61 thoracic segments appears to be sound.

The axial ring of the thorax is separated from the pleura by the axial furrow (Fig. 2). The depth of this furrow and the transverse convexity of the axial ring vary; the transverse profile of the axial ring may be evenly curved and subtend an arc of up to 180° or may be flattened mediad. The ring may be flat or convex in longitudinal (sag. and exs.) profile, the slope being steepest posteriorly; it slopes anteriorly into the transverse articulating furrow (Fig. 38–39) and has an anterior extension, the articulating half ring, the anterior edge of which curves in an arc so that the half ring is longest sagittally. This half ring projects forward beneath the similarly shaped doublure of the next ring in front (Fig. 38.2, 39) or of the occipital ring of the cephalon (Fig. 26). It acted as a guide during flexure of the thorax and covered the gap that opened between adjacent axial rings during flexure. It was absent only from the first thoracic segment of almost all species of Agnostina. In silicified examples of remopleurids (CHATERTON & CAMPBELL, 1993, p. 121), a small, transverse plate along the anteromedian margin of the articulating half ring is isolated by a suture. The lateral
extrimity of the articulating furrow may deepen into an apodemal pit, which varies in depth and projects into the body as an apodeme. Such apodemes form a graded morphological series with those of the cephalon (Fig. 26.1) and pygidium (Fig. 38.2, 39.2) (Ludvigsen & Chatterton, 1982, pl. 6; Chatterton & Perry, 1983, pl. 1, 13). In some species the axial ring is divided (Fig. 40.2) by an intra-annular furrow into the smaller preannulus and a larger postannulus. The axial ring may bear a tubercle or axial spine, which may be median and borne by some or all the segments of the thorax in a size series or by only one segment. The long axial spine on the 15th segment of Olenelus (see Fig. 45) is well known, but equally conspicuous are the spines on the 13th segment of the Ordovician Balnibarbi (Fortey, 1974b, fig. 4), on the 10th segment of the Silurian Encrinurus (Ramskold, 1986, pl. 39, fig. 1), and on the 6th segment of the Devonian Otarion (Morzade, 1983, pl. 3, fig. 3). Axial spines or tubercles may be paired close to the midline, and additional pairs may occur. In some trilobites the lateral extremity of the axial ring may be inflated and rounded distally, in some sufficiently so as to form a lateral axial lobe that may be separated from the rest of the ring by a shal-
low furrow. A serial homology between axial rings is shown in many trilobites by their duplication of the form of the axial spine or tubercle and lateral lobes of the occipital ring. On the other hand, Ramsköld (1985, p. 36) has noted that in some species of Dalmanites the lateral axial lobe is more prominent on particular segments.

The pleura of the segment extends outward from the axial furrow, and in most
trilobites (as seen in anterior or posterior views, Fig. 40.1,4) is divided at the fulcrum into an inner portion that is horizontal and an outer portion that slopes downward outside the fulcrum. The same division obtains in Cerasurus (Fig. 38–39) at the fulcran process and socket between the inner, horizontal portion and the downwardly directed pleural spine. In contrast, in Olenoides the inner portion of the pleura is not horizontal (Fig. 41.5); but, after ascending from the axial furrow, it curves to slope gently downward and outward and there is no fulcrum. In Olenellus the pleura was similarly curved
and lacked the fulcrum (see Fig. 45.4). In Remopleurides (Chatterton & Ludvigsen, 1976, pl. 1) the fulcrum is adjacent to the axial furrow so that most of the pleura represents the outer portion; in Cybantyx the horizontal inner portion of the pleura is absent and the pleura continues the slope of the axial ring (see Fig. 47).

A pleural furrow (Fig. 39) commences at the axial furrow, opposite the outer end of the articulating furrow, and is directed outward and slightly backward across the pleura, dividing it into anterior and posterior bands. The depth and slope of the sides of this furrow vary, and the pleura may be almost flat or inflated to differing degrees. Thus the pleural furrow may be flanked by slightly inflated areas (or by ridges as in odontopleurids) or may be broad and shallow and occupy much of the dorsal area of the pleura. The pleural furrow may be absent or may be replaced by a row of pits, as in certain cheirurids (Lane, 1971, p. 44; C. P. Hughes, 1969, pl. 8, fig. 4–5). In trilobites in which the outer portions of the pleurae overlap during enrollment (Fig. 2, 40), the anterolateral surface of this outer part is bevelled to form an articulating facet. The surface of this facet is gently concave (a section of a cone), to enable it to glide closely beneath the doublure in front of it. The pleural furrow may continue for a short distance on the outer portion and die out, or it may continue behind the facet (postfacetal condition), as in asaphids such as Isotelus and in the proetid Proetus (Fig. 40.2). In phacopids and calymenids (Hammann, 1983, pl. 2; Chatterton & Campbell, 1993, fig. 1d, 1h, 2f), for example, the pleural furrow crosses the posterior margin of the facet and continues on the facet—the epifacetal condition. The doublure extends.
inward beneath the outer portion of the pleura to a varying distance; for example, in Proetus it extends a short distance inside the posterior and distal margins (Fig. 40), but in Ceraurus, in which the outer portion is a pleural spine, it extends to the fulcrum (Fig. 39). In trilobites in which the pleurae are faceted and slide closely one over another in enrollment, the doublure may carry a device to limit the amount of overlap. This device may be in the form of a notch in the narrow doublure, the panderian notch, the anterior side of which is raised to form a stop, the panderian protuberance, as in Proetus (Fig. 40.3) and in the Early Cambrian Crasifibrara (PALMER, 1958, fig. 5) or the Ordovician Dimeropyge. In trilobites with a wider (tr.) doublure, the stop may take the form of a sharp, raised fold directed outward and backward, as in Symphysurus or Nileus. In Asaphids there may be a similar fold or a notch with a raised margin, the panderian protuberance, so called because of the small elliptical or circular opening, the panderian opening, immediately anterior to it. These structures have been studied by SIEGFRIED (1936) and HUPÉ (1955b) and illustrated in work on silicified (CHATERTON & LUDVIKSEN, 1976) and other specimens (BALASHOVA, 1976; HAMMANN, 1983, p. 38, pl. 22; CHATTERTON & CAMPBELL, 1993).

The distal tip of the outer portion of the pleura may be rounded as in Isotelus (Fig. 2) or bluntly pointed as in Proetus (Fig. 41); the doublure of the outer portion of the pleura is either a narrow band around the tip and along the posterior edge or is more extensive. In forms in which the entire outer portion of the pleura forms a spine as in Ceraurus (Fig. 39), Olenellus, or Remopleurides, the doublure extends beneath the hollow spine to the fulcrum (or its equivalent). In encrinurids and odontopleurids (Fig. 42-43), each band of the pleura is extended into a spine, the major spine being on the longer (exs.) posterior band. The minor spine on the anterior band may be forwardly or upwardly directed or, in Diceranus, vertically downward. It is apparently rare for the major spine to arise from the anterior pleural band as it does in Dorypyge (WESTERGÅRD, 1948, pl. 2, fig. 4; W. ZHANG & JELL, 1987, pl. 12, fig. 5).

The pleural or major pleural spines may form a graded size series, progressively more strongly backwardly directed posteriorly. Odontopleurids illustrate this well; for example, in Miraspis mira mira (BRUTON, 1968b, pl. 7, fig. 3), Ceratocephala vesiculosa (BRUTON, 1968b, pl. 8, fig. 5–6), and Diceranus monstruosus (Fig. 42) the series of major pleural spines is graded in direction and length. In such trilobites as Diceranus hamatus elegans (Fig. 43), the series of major spines is not evenly graded in length, there being long major spines on segments 4, 6, and 7 but a much reduced major spine on the fifth segment. Different lengths of major spines are also shown by species of Leonaspis; for example, in L. tuberculatus (WHITTINGTON, 1956b, pl. 57, fig. 8) the series is graded but is longest anteriorly, in L. jaanussoni (CHATERTON & PERRY, 1983, fig. 19) it is graded but longest posteriorly, and in L. brittanica (MORZADEC, 1983, pl. 32, fig. 1) the major spines on pleurae 5, 6, and 7 are much longer than others. A single, conspicuously longer spine is termed macropleural.

In odontopleurids and Cybeloides (INGHAM, 1968) it is the spine, the outer portion of the pleura, that is long and stout. The inner portion of the pleura is not enlarged relative to the adjacent segments. This contrasts with the condition in Olenellus (see Fig. 45.1), in which the inner portion of the pleura becomes longer (exs.) abaxially. Emuella (POCOCK, 1970) and the olenellid Biceratops (Fig. 44) provide additional examples of such macropleurae, showing how the shape of the inner portions of adjacent segments are modified to accommodate the macropleura and also illustrating the great length and thickness of the outer spine compared to those of other segments. Examples of macropleurae in which the inner portion of the pleura is enlarged are rare in post-Early Cambrian trilobites, but one is the anterior thoracic segment in the raphiophorid
Morphology of the Exoskeleton

Cnemidopyge (C. P. Hughes, 1969). It may be noted that the enlargement of the inner portion of the pleura in the macropleura takes place from the axial furrow outward, the axial ring being one of a graded series and not enlarged (e.g., Olenellus or Biceratops). In trilobites that lack a macropleura, thoracic segments may form a graded series, diminishing posteriorly, in length (sag.) of the axial ring and length (exs.) of the inner portion of the pleura. This is not invariably so, as was shown by Ramsköld (1991b, fig. 8) in odontopleurids. His measurements of the original of Figure 43, for example, show an increase in the lengths of segments 1 to 6 (segment 5 is slightly shorter than 4 and 6) and a decrease in the lengths of 6 to 9. Such a size gradation is characteristic of one subfamily, the Selenopeltinae.

Olenellus (Fig. 45) illustrates another type of change that may take place in the series of pleurae. The long, spinose pleura of the 14th segment is directed exsagittally backward, so that the pleurae of the 15th and succeeding segments must necessarily be narrow (tr.) and the pleural spine short, to fit between the 14th pleural spines. A similar abrupt change in size of the pleurae takes place in the same position in the thorax in other species of Olenellus, in which the pleural spines of the 14th segment are less strongly backwardly directed. In other Olenellina a change in the form of the pleurae may occur much less abruptly or not at all (Whittington, 1989). This change in the form of the thorax in Olenellina was discussed by Walcott (1910, p. 244–245), Hupé (1953a, p. 117–118, footnote; p. 122–123), and Pocock (1970, p. 551–552), Hupé having introduced the terms prothorax and post-thorax (=opisthothorax) for the two portions. Hupé considered that the first segment of the

Fig. 42. Dicranurus monstrosus (Barrande), Devonian, Bohemia. 1, Anterior view of cephalon; 2, dorsal view of exoskeleton; 3, right lateral view of exoskeleton, ×1 (Whittington, 1956d, fig. 18).
Trilobite

An abrupt change in the form of the entire pleura rather than the characteristic graded series of changes.

Articulation of the segments with one another and with the cephalon and pygidium is characteristic of trilobites, enabling flexure of the thorax in the vertical plane and partial or complete enrollment. Segments differ in form and convexity and in the way in which the form is modified along the thorax of a particular species to facilitate articulation, enrollment, and the close fit of coaptational devices. A thoracic segment of Proetus (Fig. 40) from the midportion of the thorax illustrates the mode of articulation, termed fulcrate (Öpfik, 1970b, p. 4), that is most widespread in trilobites. The hinge line between segments runs through the ring and axial processes and sockets in the axial furrow and along the horizontal edge of the inner portion of the pleura to the fulcrum. The rounded, anterior edge of this inner portion forms a flange, which fits into a groove below the posterior edge of the inner portion of the pleura next in front. The articulating half ring fits below the doublure of the axial ring of this next segment; corresponding structures are present on the posterior margin of the cephalon and the anterior margin of the pygidium. On enrollment, the outer portion of each pleura slides below the one in front; the facet enables this, and the raised anterior edge (panderian protuberance) of the (panderian) notch in the doublure limits the amount of overlap. The articulation devices in hystricurids (Whittington & Evitt, 1954, fig. 10) and otarionids (Whittington & Campbell, 1967) are like those of proetids, and similar structures are present in the Lower Cambrian Crasifimbra (Palmer, 1958) and probably in most Middle (e.g., Robison, 1964, pl. 87, fig. 16, pl. 89, fig. 8-9) and Upper Cambrian trilobites (e.g., Stitt, 1976, 1983; Ludvigsen, 1982, fig. 49). Many post-Cambrian trilobites, such as calymenids (Campbell, 1967; Hammann, 1983), phacopids (Miller, 1976), and dalmanitids (Campbell, 1977; Holloway, 1981; Morzadec, 1983), have essentially

Fig. 43. Dorsal view of exoskeleton of Dicranurus hamatus elegantus Campbell, Devonian, Oklahoma (adapted from Campbell, 1977, 1982).
Morphology of the Exoskeleton

similar segments, but a **fulcral process** and **socket** (Fig. 39) may be developed at the abaxial end of the flange as an additional aid in articulation.

A different type of articulation was first recognized by ÖPIK (1970b, p. 3–4) in Redlichia and is referred to as **nonfulcrate**. It is known also in other Cambrian trilobites such as Olenoides (Fig. 41), Olenellus (Fig. 45) and other Olenellina, and Paradoxides (Whittington, 1990). In these trilobites the pleura curves downward and outward and lacks the inner horizontal portion and fulcrum. The details of the structure need further investigation, but in species of Paradoxides (Fig. 46) there is an axial articulating process and socket, and a concave flange on the anterior margin of the pleura fits beneath a narrow strip of doublure along the posterior margin of the sclerite in front. A projection at the distal corner of the flange acted as a guide in articulation (the pleural guide of ÖPIK, 1970b, or the marginal connective device of BERGSTRÖM, 1973a, p. 13).

These devices are similar to those in Olenellus (Fig. 45), Olenoides (Fig. 41), and Redlichia (ÖPIK, 1970b) and appear to have allowed flexure of the body without the precision of the straight, horizontal hinge-line of the fulcrate form. In his study of xystridurids, ÖPIK (1975a, p. 23) pointed out that, while species of Xystridura had the nonfulcrate type of exoskeleton, that of Galahetes was fulcrate. Similarly in corynexochoids, Olenoides is nonfulcrate but Ogygopsis is fulcrate, and some redlichioiids (for example, species of dolerolenids, JELL in BERGSTON & others, 1990, p. 272, 292) were fulcrate.

In the trinucleids, raphiophorids, and harpetids (Whittington, 1959a; Campbell, 1975; CHATTERTON & LUDVIGSEN, 1976), most of the width (tr.) of the pleura is the horizontal inner portion, the outer portion being narrow (tr.) and sloping. Articulation along the wide (tr.), straight hinge line is by a flange and grooved recess that extends from the axial process or socket to the fulcrum. The outer portion of the pleura has a narrow doublure and panderian notch in Cryptolithus and Dolichoharpe, a process projecting forward from the anterolateral tip fitted into a recess in the doublure of the segment in front, serving to limit enrollment (CHATTERTON & CAMPBELL, 1993, fig. 8h).

Characteristic of asaphids (Siegfried, 1936; JAANUSSON, 1953a, 1953b; Balashova, 1976; CHATTERTON & LUDVIGSEN, 1976; CHATTERTON & CAMPBELL, 1993, fig. 8d) is the relatively wide (tr.), steeply sloping outer portion of the pleura that is broadly faceted and has the doublure extending far inward, cut off along an exsagittal line anteriorly, posteriorly extending up to the fulcrum. This outer portion of the pleura is thus shaped like a pocket and has a panderian opening or notch and protuberance; these flattened outer portions overlap on enrollment. The horizontal inner portion of the pleura (present in most genera) articulates by an anterior flange and posterior recess, and there are axial and ring processes and sockets.
In the related nileids (Whittington, 1965; Fortey, 1986) the inner portion of the pleura is narrow (tr.) with large processes and sockets at the fulcrum, and the outer portion is formed like that of asaphids, a fold (directed transversely) in the doublure acting to limit enrollment. The facet in asaphids (see Fig. 74) and the nileid Symphysurus is relatively broad (exs.) and bears terrace ridges; it has been described as petaloid by Fortey (1986) and Fortey and Chatterton (1988, p. 178, fig. 13). In remopleuridids the structure of the pleura (Whittington, 1959a; Chatterton & Ludvigsen, 1976; Chatterton and Ludvigsen, 1976; Chatterton, 1984).
Morphology of the Exoskeleton

The thoracic segments of cheirurids (e.g., Ceraurus, Fig. 39) are known in detail from silicified specimens (Whittington & Evitt, 1954; Chatterton & Ludvigsen, 1976; Holloway, 1980; Chatterton & Perry, 1984). The inner portion of the pleura is horizontal with an anterior flange and posterior recess; the outer portion is a spine, the doublure curved in beneath the fulcral process and socket to form a ventral flange in Deiphon (Holloway, 1980, fig. 7). The pleural spines (usually a single spine, in some species two) may be shaped and directed so that they pass one behind the other in enrollment; in Sphaerexochus the blunt, thick spines may have projections and corresponding recesses to give a close fit when enrolled.

In Cyclopygidae the bent-down, facetted, outer portions of the pleurae become successively wider (tr.) posteriorly, giving a thorax that is widest (tr.) across the last segment. This form of the thorax is related to the manner in which the tips of the pleurae fit into the vincular notches beneath the cephalon when enrolled (Marek, 1961, pl. 4, fig. 3-4; Han, 1978).

Fig. 45 (continued). For explanation, see facing page.
The preannulus (Fig. 40.2) has been observed in the axial ring of some species.

Thoracic segments of odontopleurids (Whittington & Evitt, 1954; Bruton, 1966; Chatterton & Ludvigsen, 1976; Chatterton & Perry, 1983) resemble in some respects those of cheirurids, particularly in the flat inner portion of the pleura, the spines (two) forming the outer portion, and the narrow doublure beneath their bases with the fulcral process and socket. A flange on the anterior edge of the inner portion of the pleura articulates with a groove on the posterior edge of the segment in front; the fulcral process and socket act as guides and limit enrollment. In such odontopleurids as Ceratocephala the pleural furrow is shallow and indistinct. In others, however, the pleural furrow separates an anterior and posterior ridge, the latter passing in to the base of the principal pleural spine; the ridge may be inflated into a fulcral swelling at the base of the spine. So far only known in Ceratocephala (Whittington, 1956d, p. 240; Thomas, 1981, p. 96; Chatterton & Perry, 1983, p. 48) is a peculiar posterior thoracic segment, in which anterior and posterior pleural spines are alike, and a curved suture traverses (exs.) the inner portion of the pleura. In silicified specimens this outer portion of the pleura occurs in isolation, the axial portion remains undetected. Unusual also is the fenestra in the exoskeleton of Laethropusia (Ramsköld, 1991a); these openings occur in the segmental boundaries of the pleural region, from the posterior cephalic margin to within the pygidium. The exoskeleton is curved downwards (ventrally) around the margin of the ovate fenestra, and each edge projects beside an intervening trough, a form like that of the edge of the articulating flange. Less well preserved but seemingly similar structures are the unmineralized slitlike areas between the inner portions of the pleurae in the thorax of species of asteropyginids (Morzadec, 1983; Speenk, 1983).

The encrinurid pleura (Whittington & Campbell, 1967; Evitt & Tripp, 1977; Ramsköld, 1986) has a horizontal inner portion and steeply down-curved outer portion and is characterized by the prominent posterior pleural ridge that continues into the spine tip. Whittington and Campbell
Morphology of the Exoskeleton

(1967, p. 470–471) and CAMPBELL (1967, p. 22) drew attention to the exceptional thickness of the exoskeleton along the posterior pleural ridge and the median, internal row of canals that apparently did not traverse the outermost layers of the exoskeleton. The much lower anterior pleural ridge dies out distally. The posterior pleural ridge with its fulcral swelling is so shaped on the outer portion that it acts to limit enrollment. An anterior flange and axial processes and sockets aid in articulation; the doublure extends only to the base of the spine at the tip of the outer portion of the pleura.

Articulation in the thorax of Phacops was described in detail by MILLER (1976), and CAMPBELL (1977) illustrated the doublure of other phacopids with its raised stop and the form of the pleural tips that fitted into vincular sockets in the cephalon (see also LESPERANCE, 1991; BRUTON & HAAS, 1997). CAMPBELL (1977) and SPEYER (1988) have noted that the pleural furrow is postfacetal in dalmanitids, not epifacetal as in phacopids, and that details of the articulation and the fit of the pygidium and cephalon are different in the two groups.

In the Silurian Cybantyx (Fig. 47), the axis is broad (tr.), the pleura narrow and curving down in a continuation of the slope of the distal portion of the axial ring; the fulcrum is absent. The axial ring, longest sagittally,
curves downward and forward and is not interrupted by the downfold of an articulating furrow; the doublure has a similar downward curvature. Exfoliated specimens show that on the inner surface of the anterior portion of the ring there is a transverse ridge, steep on the posterior side, extending between the shallow axial furrows. An axial articulating process projects ventrally at the posterior edge of the ring and fits into a socket at the anterior edge of the following ring. The outer surface of the pleura is largely occupied by the facet, which has a gently concave surface. The doublure has a U-shaped inner margin, the edges of which extend into the axial furrow. In many Ordovician species of illaenids (Whittington, 1997), the axial region of the thorax is relatively narrow (sag.), the axial ring and articulating process similar to that of Cybantyx and having the transverse ventral ridge. The pleura is relatively broader (sag.), fulcrate, the inner portion lacks a pleural furrow, the outer portion similar in form to that of Cybantyx. In contrast to the Illaenidae, the thorax of Styginidae and Scutelluidae (Snajdr, 1960; Chatterton & Campbell, 1980; Archinal, 1994) has the axial ring (in many species shortest sagittally) descending to an articulating half ring that extends forward almost horizontally and underlies the almost horizontal doublure of the ring in front. The fulcrate pleura has an articulating flange on the inner portion, a fulcral articulating process and socket, and the outer portion is a spine that has the doublure extending in to the fulcrum.

The fulcrate form of articulation is seen in Agnostina and eodiscoids (Whittington, 1963, 1965; Hunt, 1967; Müller & Walošek, 1987; Jell, 1975a), the inner portion of the pleura horizontal, the outer portion narrow (tr.), bent down, and shaped so that the close fit enables complete enrollment (Fig. 48.3). This close fit is edge to edge; the outer portion lacks a facet, and there is no overlap between adjacent sclerites. A unique feature of Agnostina is the absence of the articulating half ring on the first thoracic segment throughout ontogeny (Robison, 1964, p. 515). It is present on the second segment and the pygidium. Hence, when the exoskeleton is enrolled, an elliptical opening appears in a median portion of the axial region, the cephalothoracic aperture, between the narrow (tr.), convex occipital band of the cephalon and a slight recess in the anterior margin of the first thoracic segment (Fig. 48; Robison, 1964, fig. 3). This aperture appears to be common to Agnostina, the only exception being the presence of an articulating half ring on the first segment of a species of Leagnostus (PeK & Smola, 1989). In eodiscoids the articulating half ring is present on all segments and the pygidium.

In discussing the articulation of the pygidium of Agnostina, Öpik (1963, p. 31; 1967, p. 53) commented on the form of the articulating half ring and articulating furrow in different subfamilies. In the common or basic type the half ring has the shape of a segment of a circle, and the furrow is narrow (sag. and exs.). In glyptagnostoids the half ring is a narrow ridge curved forward, the furrow a wide (sag.), elliptical depression. In the clavagnostid Aspidagnostus the articulating half ring arched backwards, a form he termed agnostoid and regarded as distinct from that in glyptagnostoids. These distinctions have been used as diagnostic by Shergold, Laurie, and Sun (1990). In his later discussion of articulation in Agnostina, Öpik (1979, p. 25–28, 32–34) concentrated on the structures at the fulcrum, which he termed prongs. External prongs are short projections or spines directed backward from the posterior cephalic border and the abaxial posterior margin of each segment and are visible in dorsal view. Similar prongs may also project forward from the facet of the pygidium and the abaxial anterior margin of each segment but are concealed beneath the external prongs in dorsal view. Öpik considered that these fulcral prongs were the points about which the sclerites of the exoskeleton hinged. Earlier, Öpik (1967, p. 55) referred to the concavity of the facet of the pygidium.
in certain Agnostina in which a fulcral prong was present. Possibly this concavity fitted against the ventral side of the external prong of the second thoracic segment.

The thoracic segment of the Silurian illaenid Cybantyx (Fig. 47) lacks the inner, horizontal portion of the pleura and the fulcrum; the pleura continues the slope of the axial ring. This nonfulcrate form of segment differs from that of the Cambrian species described above in that the axial region is wide (tr.) and the pleural region narrow. These segments articulate with each other, and with the cephalon and pygidium, about the deep axial process. A like form of segment occurs also in the unrelated Silurian...
and Devonian homalonotids, in which the pleura continues the lateral slope of the broad axial ring and has no horizontal inner portion. These Silurian and Devonian homalonotids also have, as in older species, the straight, outward and backwardly directed lateral margin of the axial ring (and occipital ring), which gives a zigzag course to the axial furrow (Henry, 1980b, p. 357; 1996), and the deep, narrow articulating furrow that is continuous across the axial furrow with the pleural furrow and dies out on the broad facet (Wolfart, 1968, pl. 1–2; Thomas, 1977, pl. 24, fig. 12; Morzadec, 1983, pl. 4, fig. 1; Wendendorf, 1990, pl. 15, fig. 3). The articulating half ring formed a continuous structure with the anterior band of the pleura and is relatively long (sag. and exs.).

Thomas and Lane (1984) suggested that this gave an unusual amount of dorsoventral flexibility to the thorax. The great depth of the pleural furrow and the ridge it formed on the visceral surface were shown in a Devonian example by Haas (1981, fig. 4), and both Brassel and Bergström (1978) and Thomas and Lane (1984) regarded this ridge as a device to limit enrollment. The ridge is present in the Silurian homalonotid Trimerus (Whittington, 1993b) but cannot have acted to limit enrollment.

In trilobites the segments were articulated with one another and with the cephalon and pygidium so that flexure of the exoskeleton and (with rare exceptions) enrollment were possible. The straight hinge line afforded by the horizontal inner portion of the pleura (Fig. 40), the abaxial fulcrum, and the facet on the outer portion of the pleura were the most widespread articulatory devices but were not universal (Fig. 41). Back-arching of the thorax, so that it was concavely flexed dorsally, was possible to a limited extent by many trilobites, depending on the form of the axial ring. Such back-arching was facilitated if the ring had the anterior face forwardly concave in profile (as seen in dorsal view) and in longitudinal section sloped forward on the anterior side and backward on the posterior side (cf. Hammann, 1985). This allowed the axial rings, which were situated above the axis of articulation, to be rotated close to each other. At the same time the outer parts of the pleurae, lying below the axis, were fanned out to cover the sides of the body. Chatterton and Perry (1983, p. 17) suggested that the function of the preannulus (Fig. 40) was to allow concavo-dorsal flexure in odontopleurids, cheirurids, and proetids, by allowing the axial ring of the segment in front to rotate back over it. The unusual structure of the axial ring in illaenids (Fig. 47) means that dorsoventral movement between them—and between thorax, cephalon, and pygidium—is not limited, so that the maximum amount of back-arching is possible (Whittington, in press). Rarely, the flexure of the thorax appears to have been limited (e.g., in the remopleuridid Hypodiocranotus Whittington, 1952b) by the exceptionally long fork of the hypostome. I argued (Whittington, 1981, p. 598–599) that in the Upper Cambrian Schmalenseea the exoskeleton may not have hinged between the thoracic segments but may have been a rigid shield. Further studies (Whittington, 1994) have led me to rescind this argument and to consider that the burlingiid exoskeleton was articulated and had some flexibility.

The external surface of the axial ring and inner portion of the pleura of the thorax is similar in form and sculpture to the occipital ring and furrow and the posterior border and furrow of the cephalon. This is well shown, for example, by Agnostina (Hunt, 1967; Öpik, 1979), asaphids and nileids (Henningmoen, 1960; Whittington, 1965; Schrank, 1972b), and calymenids (Campbell, 1967) and by the arrangement of spines in odontopleurids (Chatterton & Perry, 1983). These similarities apply to the lateral lobes, smooth areas, apodemes, and course of terrace ridges. On the outer portions of the pleura and on the doublure, particular arrangements of terrace ridges are recorded, as for example in asaphids and
Morphology of the Exoskeleton

Symphysurus (Siegfried, 1936; Hupe, 1955b; Fortey, 1986). Granulation on the articulating facet of a calymenid was described by Chatterton and Campbell (1993, fig. 3f-h); the facet of a homalonotid (Whittington, 1993b, fig. 4g) is also granulose. Öpik (1961a) described the faint, transversely directed ridge on each band of the thoracic pleura in Redlichia, Papyriaspis, and Centropleura and the branches from it. Such ridges have been observed in Paradoxides (Bergström & Levi-Setti, 1978, p. 9) but not in the thorax of other trilobites.

PYGIDIUM

This posterior region of the body consists of a number of fused somites, and the pygidium is the exoskeleton of this region (Fig. 2). Almost all pygidia have a convex axial region that is separated from the lateral pleural region by the axial furrow; the axial furrows merge at the terminus of the axis, and the pleural region extends behind the axis. The somites of the pygidium and thorax were similar, judging by the similarity in morphology between thoracic segments and the fused segments forming the pygidium. Like the thoracic segments, the anterior pygidial segment may have a horizontal inner portion of the pleural region, a sloping outer portion outside the fulcral line (Fig. 2), and a facet. Distally the exoskeleton extends beneath the outer portion of the pleural region as a doublure. This doublure is (in most cases) continuous behind the axis, it varies in width (tr. and sag.) and convexity and may form a tubular or flattened structure with the lateral and posterior border. The latter may be convex and defined on the inner side by a border furrow or lacking in independent convexity, not defined by a border furrow nor crossed by pleural or interpleural furrows. When the exoskeleton is sharply flexed at the margin, the border may be flattened or concave. Fenestrae, oval or slitlike areas in the interpleural furrows that are not mineralized are known in asteropyginids (Morazec, 1983; Smeenk, 1983), and well-preserved ones have been described in an odontopleurid (Ramskold, 1991a).

In Agnostina the axis may be subdivided by the anterior two axial rings, whereas the remainder of the axis is not divided by interring furrows (Fig. 6.2). This has led to the distinction of the two rings as the anteroaxis and the remainder as the posteroaxis. A notation of M for the axial ring and F for the inter-ring furrow, numbered from the anterior ring posteriorly, is used by some authors. Agnostina having the axial lobe unmodified (Fig. 6.2) are termed axiolobate (Öpik, 1967, p. 53). In Pseudagnostinae, for example, the posteroaxis is expanded, defined laterally by the accessory furrow (Fig. 11.2) and posteriorly by the border furrow. It thus includes both axial and pleural areas, and this composite lobe is the deuterolobe (Öpik, 1963, p. 31). In Eodiscina the axis may be divided by many inter-ring furrows, and the terminology used in Agnostina is not applicable.

The pygidium in Olenellina (Whittington, 1989; Friz, 1995) is formed of two to five or six fused segments with a convex axis. The pleural region in Olenellus is narrow (tr.) (Fig. 45), in association with the backwardly directed pleurae of the 14th thoracic segment. In Wanneria (Fig. 49) the posterior thoracic pleurae are more outwardly directed, so that the pleural region was relatively wider (tr.). The posterolateral margin of the pleural region was bilobed or prolonged as one or more pairs of spines, as in Judomia (Fig. 50). The doublure in both of these genera extended in toward the tip of the axis. The view that the pygidium in Olenellina was not like that of other trilobites but was “a true telson or caudal piece” (Harrington in Moore, 1959, p. 73) is considered to be without foundation. The small pygidium of Redlichia (Öpik, 1958; W. Zhang, Lu, & others, 1980, fig. 56) has three axial rings, and the pleura of the first segment extends into a short spine. Öpik described two types of pygidia as belonging to one species, which was therefore
dimorphic. In one type the doublure is absent along the posterior margin. The occurrence of these two types of pygidia is said by W. ZHANG and JELL (1987, p. 48) to characterize species of Redlichia, whereas in species of dolerolenids (JELL in BENGTSON & others, 1990, p. 287, 292) the doublure is lacking posteriorly in all examples. SDZUY (1959, p. 402–404) described a pygidium of Saukian- da as also lacking the doublure medially but did not see this as having great taxonomic significance. Paradoxides (BERGSTROM & LEVI-SETTI, 1978; DEAN in MARTIN & DEAN, 1988) also has a small pygidium, which shows the axis and one or two rings and may be partially or completely fused to the last thoracic segment, as is the case with some species of Redlichia. The last thoracic segment has been termed the semi-ankylosed segment (W. ZHANG, LU, & others, 1980, fig. 55) because in some individual specimens it may be fused to the pygidium, in others not.

Among stratigraphically younger trilobites, many rings may occur in the pygidial axis. The Ordovician Dionide (WHITTINGTON, 1952a) has 20. Up to 45 have been noted in a Silurian encrinurid (TEMPLE &
TRIPP, 1979, p. 233) and 27 or 28 in Permian proctids (OWENS, 1983, p. 28–29). In the Ordovician Hypodiceranotus (LUDVIGSEN & CHATTERTON, 1991), however, the axis is not defined, the pleural region is unfurrowed, there is a small pair of posterior marginal spines, and the doublure extends far forward so that the axis must have been extremely short (sag.). It is thought that this pygidium was derived from that of ancestral remopleurids, in which the axis was defined and bore inter-ring furrows and in which pleural furrows were present. Presumably in the pygidium each axial ring (or pair of apodemes or muscle scars) indicates one somite. In Olenoides (WHITTINGTON, 1975, p. 128) a maximum of six pairs of appendages are known in the pygidial region, the axis having five rings and the terminal axial piece. In Triarthrus (WHITTINGTON & ALMOND, 1987) there are up to 12 pairs of limbs in the pygidial region, but the axis has only four rings and the terminal piece. Thus, the number of axial rings in the pygidium may be taken only as an indication of the minimum number of somites in the pygidial region.

In Olenellina, some Redlichiina, and paradoxidoids the pygidium is much smaller than the cephalon, and the exoskeleton may be described as micropygous. In most other Cambrian trilobites and in stratigraphically younger groups, the pygidium is relatively larger but not as wide (tr.) or long as the cephalon. The Agnostida are characterized by a pygidium similar in size to the cephalon, a condition described as isopygous. In many species of asaphids (Fig. 2) and scutelluids the exoskeleton approaches the isopygous condition. The term macropygous describes trilobites in which the pygidium is larger than the cephalon. Exactly what is meant by smaller or larger than the cephalon has not been defined, nor did KOBAYASHI (1942a, p. 145) define size in introducing the terms heteropygous and parapygous as stages intermediate between micropygous and isopygous. It is suggested here (see glossary, p. 314) that micropygous be taken to refer to a pygidium considerably shorter (sag. and exs.) and narrower (tr.) than the cephalon, while isopygous implies similarity in both maximum width (tr.) and length (sag. and exs.) of cephalon and pygidium. These terms are thus generalized, and to attempt to define intermediates between them appears unprofitable. Macropygous is taken to imply a pygidium greater in maximum width (tr.) than the cephalon. This means that in Macropyge (LU & QIAN, 1983), while the pygidium is longer (sag.) than the cephalon, it is considerably narrower (tr.), so that this form is not considered to be an example of a macropygous trilobite.

The axis of the pygidium, defined by its convexity independent of the pleural regions and by the axial furrow, may be short (sag.) or long relative to the length of the pygidium, the relative width being likewise variable, and may extend back as far as the border furrow or so that the tip lies above the inner edge of the doublure. In Bumastus (Fig. 1) and some homalonotids, in which the convexity of the axis is continuous with that

© 2009 University of Kansas Paleontological Institute
of the pleural region and the axial furrow is effaced, the position of the axis is indicated only by the articulating furrow and articulating half ring. Characteristically the axis is divided by inter-ring furrows into a series of rings, the anterior ring usually defined and closely resembling those of the thorax. Thus, the special features of the thoracic axial rings—preannulus, apodemal pit, apodeme, lateral lobe, length (sag. and exs.) and form of the articulating half ring, etc.—are duplicated in the first ring of the pygidium. Succeeding rings become less convex and shorter (sag. and exs.) posteriorly, and the inter-ring furrows (and apodemal pits) become successively shallower and the apodeme lower. An undivided posterior portion of the axis is referred to as the terminal axial piece (see Fig. 53). In the axis of Agnostina, muscle scars may be preserved (as in the cephalic axis) as smooth areas on the external surface or as impressions, ridges, or grooves in the internal mold (Shergold, 1975, pl. 4, 10) (Fig. 10.3, 11.2). In raphiophorids similar paired areas may be raised on the parietal surface of the axis or be discernible as dark patches (Fig. 51).

The pleural region (Fig. 52) may be divided by the border furrow into an inner pleural field and border. The border may be convex, flattened, concave upward, or sloping vertically; and the definition and depth of the border furrow differs. The border may merely be the outer, unfurrowed portion of the pleural region, lacking independent convexity or the definition of a border furrow. Dependent on the relative length (sag.) of the axis to that of the pygidium is the length (sag. and exs.) of the pleural region posteriorly. Anteriorly the pleural region conforms to the form of the thoracic segments; if the inner portion of the thoracic pleura is horizontal, so is the pleural region, and the anterior margin is straight and transverse. Outside the fulcrum the margin is directed outward and backward, and the anterolateral corner is faceted.

Behind the anterior portion the pleural region in most trilobites is reduced in width (tr.) and convexity, the outline narrowing backward. Characteristic of the pleural region (Fig. 53) is the subdivision by furrows that are successively more strongly backwardly directed. The most anterior and most prominent of these pleural furrows is that which extends outward and backward from the articulating furrow; successive pleural furrows originate at the axial furrow opposite the inter-ring furrow. The anterior portion of the pleural region of the pygidium is thus equivalent to the anterior band of a thoracic segment. It not only carries the facet, but there may also be a narrow (exs.) flange along the margin, similar to that on the segment.

The second series of furrows in the pleural region are interpleural furrows, successively arising opposite inter-ring furrows of the axis, each directed outward and less strongly backward than the pleural furrow immediately in front of it. The relation between the articulating or inter-ring furrow and the pleural and interpleural furrow of the same segment is usually clear on the first segment of the pygidium, but it may be obscured or lost posteriorly, especially when the number of axial rings greatly exceeds that of pleura. For example, in Olenoides (see Fig. 83) the relationship of ring and pleura is unequivocal. At the other extreme, however, is the encrinurid Cybeloides (Fig. 54), having some 30 axial rings but only 4 pleurae (the count of 30 axial rings being based on the assumption that the incomplete furrows on the axis behind the first axial ring are interring furrows). Pleural and interpleural furrows may become less deep posteriorly and may die out on the pleural field before reaching the border furrow, or they may extend on to the border. As in the thoracic pleurae, the two pleural bands may be convex and ridgelike, the posterior band being more prominent. Owens (1973, p. 5) observed that in proctids the anterior and posterior pleural bands differ in convexity (as seen in exsagittal profile), depending on the relative depths of pleural and interpleural furrows; three distinctive profiles were recognized. In other trilobites one convex band may occupy
the whole length (exs.) between pleural furrows as a **pleural rib** (Fig. 52), the interpleural furrow being absent. Such ribs are characteristic of scutelluids, in which the axis is short (sag.) and the ribs more and more strongly backwardly directed, the last pair of which may merge wholly or partly to form a median posterior rib on the terminal area (Fig. 55). RAMSKÖLD (1985, p. 36) has noted convex oval areas on the posterior pleural band or bands of species of *Dalmanites*; the inner surface bears numerous minute perforations. The pleural region may also lack pleural furrows except for a shallow
anterior furrow adjacent to the fulcrum; an extreme example is *Bumastus* (Fig. 1), in which pleural region and axis merge into a continuous convexity and there is no border. Most unusual is the inflated pleural field in the Upper Cambrian *Pemphigaspis* (Palmer, 1951), which bulges up above the axis and outward and backward over the narrow, vertical, lateral and posterior border. In the pygidium of Agnostina the pleural region has a well-defined border, the area within the border furrow being referred to as the *acrolobe*, an area that includes the axial region in ephased species (Fig. 13). In species in which the anteroaxis is defined, an *accessory furrow* may be directed outward and backward from the second inter-ring furrow (Fig. 11). This accessory furrow may extend to the border furrow and the pair thus enclose the *deuterolobe*, an area that may include part of the pleural field as well as the posteroaxis. The axis of the eodiscoid pygidium may have many similar rings and extend back close to the border furrow; the pleural field may have many pleural furrows or lack such furrows. Eodiscoid species with a faint or effaced axis are known. Various trilobites have a *postaxial ridge* behind the axis in the midline of the pygidium (Fig. 52, 54), and in Agnostina a *postaxial furrow* may be present (Fig. 6).

Tubercles and spines may be developed on the pygidium as they are on the thorax. On the axial rings a single median or pair of prominent tubercles, spines, or nodes like those of the thorax, may be present on the

Fig. 52. Diagram to explain terminology of the pleural region of the pygidium. *Shaded portion* is the terminal area, which lies behind the posterior pair of pleural furrows; *dashed line on right side indicates position of inner margin of doublure* (new).

Fig. 53. *Dorypyge* sp., generalized diagram to explain terminology; terminal area shaded (adapted from Kushan, 1973).
Morphology of the Exoskeleton

first few rings, diminishing posteriorly and disappearing. A single prominent spine may be present on the axis, as in some eodiscoids (Rasetti, 1966a, pl. 2), or as a **terminal axial spine** (Fig. 56). In *Encrinurus* (Fig. 57) a median tubercle occurs on particular axial rings, a smooth sagittal band surrounding and extending between these tubercles; no such structures are present on the thorax. Some species of *Encrinurus* bear a posterior spine or *mucro* that projects from the border behind the axis; similar spines are developed in asaphids and dalmanitids. The lateral margin of the pygidium may be entire or bear spines. These spines are formed in the same way as those of the thoracic pleurae, that is, as projections from both bands of the pleura, as in the dalmanitid *Greenops* (Fig. 58) or lichids; from the posterior band of the pleura as in the major spine of odonto-pleurids (Fig. 42–43) and many other trilobites; from the pleural rib as in scutelluids (Fig. 55); and less commonly from the anterior band of the pleura (Fig. 53). These spines are therefore termed **pleural spines**; they have also been referred to as border spines when a border is developed on the pygidium or as marginal spines when a border is not present. In the latter instance, if the margin is sharply flexed, they may be flattened in cross section and blade shaped in
Trilobite outline rather than elongated-conical in form. Pleural spines of the pygidium may be graded in size, or one or more spines may be larger than those adjacent. In odontopleurids the base of the large spine may be continued by a pleural ridge across the pleural field to the axis. In the cheirurid Holia (Whittington & Evitt, 1954) a similar ridge forms the majority of the pleural region. In the styginid Ancyropyge (Ormiston, 1967) the pleural region is largely formed of long, curved pleural spines. Some pygidia bear a single pair of large pleural spines, as in Procentropyge (Fig. 59) or the redlichioid Yinotes (W. Zhang, Lu, & others, 1980). Such spines appear to belong either to one particular segment of the pygidium (not in all examples the anterior) or, when the base is broad, to more than one segment. A postaxial ridge, extending back sagittally from the tip of the axis towards the margin, may be developed with or independently of any posterior spine (Fig. 52, 54). In addition to axial and pleural spines, large spines may arise from the pleural field, as in the odontopleurid Apianurus (Whittington, 1956b); these spines are upwardly directed and curve backward, rather than being outwardly directed as were pleural spines. A pattern of anastomosing ridges, similar to the genal caeca, has been described on the pleural field of Cambrian trilobites (Öpik, 1961a) and in one example of a styginid (Fig. 60). In this example the ridges commence at the axial furrow, and the pattern is related to segmentation, there being a major branch commencing opposite each inter-ring furrow.

The doublure of the pygidium in most trilobites is narrow (tr.), convex ventrally, and curled beneath the border. Cross sections (e.g., Osmólska, 1975, pl. 2) show that the exoskeleton thins toward the inner margin. The doublure does not extend beneath the axis but may extend beneath the pleural field, as in some asaphids (Fig. 61) and scutelluids (Snajdr, 1960). In illaenids the doublure may extend in toward the tip of the axis to surround it in a scalloped (Fig. 9.4, 62) or pointed projection, or the inner margin may follow the curve of the pygidial margin (Jaanusson, 1954). In the asaphids Ogygiocaris (Henningsmoen, 1960) and Gog (Fortey, 1975b), the inner edge of the doublure has a distinctive, scalloped outline related to the pleural furrows. Silicified material has shown the structure of the

FIG. 56. Acidiphorus spinifer Raymond, Ordovician, Canada. 1,2, Right lateral and dorsal views of pygidium (adapted from Whittington, 1965, pl. 44, fig. 4, 6, 12, 14).

FIG. 57. Encrinurus (Encrinurus) intersitus Ramsköld, Silurian, Sweden. 1,2, Right lateral and dorsal views (adapted from Ramsköld, 1986, pl. 39, fig. 8a,b).
ENROLLMENT AND COAPTATIVE STRUCTURES

E. N. K. CLARKSON and H. B. WHITTINGTON

Articulation of the thoracic segments with one another and with the cephalon and pygidium enabled enrollment in trilobites. Such enrollment is complete when a posterior portion of the thorax or the pygidium was brought into contact with the ventrally or inwardly facing inner surfaces of the cephalic doublure.

Complete enrollment is exhibited by trilobites throughout their history, from the Lower Cambrian Agnostida to Permian proetoids. Such complete enrollment is characteristic of trilobites that had a fulcrate exoskeleton, the straight, horizontal hinge-line having given a precision of movement in articulation. In such familiar examples as Agnostida (Fig. 48.3), Calymene (Chatterton & Campbell, 1993, fig. 2a–c, e–g), and the phacopid Acernaspis (Chatterton & Perry, 1984, fig. 1a,b), the exoskeleton fitted together to give a closed capsule. In some forms with a fulcrate thorax and spinose pleurae, however, the exoskeleton was not closed laterally at full enrollment,

Fig. 58. Dorsal view of pygidium of Greenops struvei MORZADEC, Devonian, France (adapted from Morzadec, 1983, fig. 7).

Fig. 59. Proceratopyge sp., Cambrian. Dorsal view of pygidium (adapted from Westergärd, 1947, and Jago, 1987).
the spines projecting around a lateral gap, as in *Remopleurides* (NIKOLAISEN, 1983, pl. 5; CHATTERTON & CAMPBELL, 1993, fig. 4), *Selenopeltis* (HAMMANN & RABANO, 1987), and some cheirurids (CHATTERTON & CAMPBELL, 1993, fig. 3a–c). The nonfulcrate exoskeleton is known only in Cambrian trilobites, and the amount of movement possible between sclerites suggests that complete enrollment may have been possible for some, if not all, species (WHITTINGTON, 1989, 1990).

No close fit would have occurred in a completely enrolled paradoxidid, with its many thoracic segments, long pleural spines, and small pygidium, an example of which has long been known (POMPECKJ, 1896, pl. 16, fig. 1). BERGSTROM (1973a, p. 14, fig. 8b, pl. 1, fig. 6) used the term *cylindrical* for this type of enrollment with a lateral gap, exemplifying it by the Olenellina *Fallotaspis*. This term would apply to both fulcrate and nonfulcrate forms. Other terms purporting to characterize different types of enrollment (HARRINGTON in MOORE, 1959; BERGSTROM, 1973a; CHATTERTON & CAMPBELL, 1993) have been coined, but as BERGSTROM remarked almost any number could be added.

The basic types he recognized are broadly drawn, and hence their use is limited. BERGSTROM (1973a) employed the manner of enrollment as a character in high-level classification. FORTEY and OWENS (1979), however, made a strong case that the exact manner of enrollment may vary between species of one genus and was not a character to be considered fundamental in classification.

Coaptative structures are complementary morphological features that ensured close interlocking of opposing surfaces (i.e., *coap-tation*) when enrollment was complete. Alignment of the cephalon and pygidium in such enrollment was facilitated by the straight hinge-line of fulcrate trilobites, together with the axial and fulcral processes and sockets (Fig. 38). The facet on the outer portion of the pleura fits closely beneath the edge of the next pleura in front, and a raised stop (the panderian protuberance) limits the amount of overlap (Fig. 40). Such devices are well known in post-Cambrian trilobites (CHATTERTON & CAMPBELL, 1993) but were present in the Lower Cambrian *Crassifimbra* (PALMER, 1958), in Lower and Middle Cam-
Morphology of the Exoskeleton

brian ellipsocephalids (Geyer, 1990b, p. 55–58), in the Middle Cambrian Bolaspidella (Robison, 1964, pl. 89, fig. 8–10), and in Upper Cambrian species described by Stitt (1983). In some of these Cambrian examples the width (tr.) and form of the segments and the outline of the pygidium enabled their extremities to fit closely against the inner edge of the rolled cephalic doublure; in others the posterior few thoracic segments and pygidium fitted beneath the cephalon (spiral enrollment). In the Upper Cambrian dame-sellinid Stephanocare, Opik (1967) described vincular notches on the outer and ventral sides of the anterior and lateral cephalic borders. These notches received the tips of the pygidal and thoracic pleural spines on enrollment. In Agnostina the close fit of the enrolled exoskeleton is characteristic, the flat doublures of cephalon and pygidium being brought into contact and the tips of the thoracic pleurae being specially shaped to tuck in beneath the doublure of the posterior cephalic border (Fig. 48.3). Hunt (1967, pl. 22, fig. 47) illustrated a vincular notch in the posterolateral cephalic border, developed in the holaspis, into which a projection of the pygidal doublure fitted. Robison (in Peel, 1988, p. 40) regarded the inflated postero-axis of Oidalagnostus trispinifer as a cooperative structure to accommodate the hypostome on enrollment. In eodiscoids (Jell, 1975a) the close fit of the completely enrolled exoskeleton is well known. Rushton

Fig. 61. Pseudasaphus aciculatus (Angelin), Ordovician, Sweden. 1,2, Right lateral and dorsal views of pygidium, with dashed line showing position of inner edge of doublure (adapted from Jaanusson, 1953a, pl. 4, fig. 2, 4, 7).}

Fig. 62. Pygidium of Illacenus tumidifrons (Billings), Ordovician, Newfoundland. 1–3, Pygidium, right lateral, dorsal, and posterior views, respectively, with dashed line showing position of inner edge of doublure (adapted from Whittington, 1965, pl. 15, fig. 12–13; pl. 16, fig. 14, 16).
Trilobite (1966) showed that in Serrodiscus ventral spines on the pygidial doublure fitted beneath nodes on the cephalic border in a coaptative device and that in Chelidiscus the pygidial doublure fitted inside the rolled cephalic doublure in complete enrollment, the tip of the pleura of the first thoracic segment fitting beneath the posterior fixigonal cephalic spine.

In such post-Cambrian trilobites as trinucleids, coaptative structures are relatively simple, the slight projection of the pygidium behind the axis fitting into a shallow embayment in the inner edge of the lower lamella of the fringe (e.g., Whittington, 1959a, pl. 20, fig. 1, pl. 20, fig. 11). C. P. Hughes, Ingham, and Addison (1975, fig. 5) showed that there are also vincular notches on the flange of the lower lamella into which the tips of the thoracic pleurae fitted. Similar notches in the lateral or posterolateral portions of the cephalic doublure are known in such diverse trilobites as Symphysurina (Ross, 1951b; Hintze, 1953) and Phacops (Campbell, 1967). Analogous are the ridge and groove in the cephalic doublure of some asaphids—Kirkella (Ross, 1951b) and Isotelus (Chatterton & Ludvigsen, 1976)—although in the latter genus this structure engages with one in the doublure of the pygidium.

Coaptative devices in Ordovician and Silurian trilobites, including both lateral and median vincular structures, have been described in detail (Clarkson & Henry, 1973; Henry & Clarkson, 1975; Henry, 1980a, 1985). Enrollment and coaptative structures in Devonian Phacops and Greenops have been compared and contrasted by Speyer (1988). In the Ordovician dalmanitid Crozonaspis (Fig. 63), Clarkson and Henry (1973) described the lateral vincular groove in the cephalic doublure and the median anterior projection of the cephalic border, which upon complete enrollment fitted into a notch beneath the base of the posterior pygidial spine. They emphasized how constant are the vincular structures in a single species and showed how the median projection and notch increased in size with time as the species evolved. In contrast to Crozonaspis, in the calymenoid Colpocoryphe (Clarkson & Henry, 1973; Hammann, 1985) a projection on the axis of the pygidium and a vincular furrow on the pleural region fit on enrollment into a deep anterior notch in the cephalon (Fig. 64). In Flexicalymene (Ross, 1967; Hammann, 1985) the tip of the pygidial axis does not fit so closely into the anterior arch of the cephalon. By virtue of the sharp dorsal flexure of the inner portion of the cephalic doublure (including the doublure sector of the rostral plate), the posterior margin of the pygidium fitted against this cephalic doublure, the pygidial doublure coming to rest against the flat anterior border of the hypostome. A ridge along the posterior margin of the facet of each thoracic segment and a panderian projection and notch (Hammann, 1985, fig. 4e) also limited enrollment. Similar features are exhibited by the Silurian Calymene (Chatterton & Campbell, 1993, fig. 2a–c, e–g).

In the Silurian Encrinurus variolaris (Clarkson & Henry, 1973; Tripp, Temple, & Gass, 1977) the pygidial and cephalic contours are identical so that the two fitted neatly when the animal was enrolled (Fig. 65.1–2). The contact surface between the two is twisted and changes in form from front to rear. Thus the pygidial doublure slopes ventrally towards its inner margin. In an enrolled specimen with the lateral part of the cephalon removed (Fig. 65.3–4), this pygidial doublure (since it is upside down) shows an outward and downward inclination, while in the thoracic doublures (which fit beneath the lateral cephalic border) the surface becomes increasingly concave and inwardly inclined. From the outer edge of the thoracic doublure arise small, flat pleural spines that fit in a groove on the cephalic doublure. The internal surfaces of these spines contacted a narrow vertical flange on the inner side of the cephalic doublural groove. The contact surface was thus twisted through some 90° from pygidial tip to genal angle, and coaptation was reinforced by the
small pleural spines interlocking with the cephalic groove. In *E. tuberculatus* (Clarkson & Henry, 1973; Tripp, 1962) the arrangement was similar, but the pygidium was long and mucronate, and the tip and spine projected well beyond the cephalon. Clarkson and Henry claimed that a gap was left where the median posterior pygidial doublure was not in contact with the cephalon. They did not, however, draw attention to the prominent rhynchos on the hypostome, which must have fitted against the inner, posterior edge of the pygidial doublure. This doublure also had a median ventral projection, and it appears at least possible that these complementary projections closed the exoskeletal capsule anteriorly. The rhynchos was also prominent in *Calymene* (Campbell, 1977), and upon complete enrollment the pygidial border and doublure must have fitted closely between the doublure sector of the rostral plate and the rhynchos (Fig. 34.2). The latter appears to have been a coaptative device in these groups. In the Devonian Homalonotinae *Digonus* and *Burmeisterella*, a forwardly and downwardly directed projection on the rostral plate was coaptative, fitting against the upturned inner edge of the posterior pygidial doublure on complete enrollment (Wenndorf, 1990, fig. 13).

The Devonian *Phacops* had a single, continuous vincular furrow on the cephalic doublure, extending almost all around but becoming crenulated to form vincular notches posterolaterally; similar structures are present in many phacopids (Fig. 66) (see also Chlupáč, 1977; Campbell, 1977; Speyer, 1988). On enrollment, these structures interlocked with the pygidial margin as a tongue-and-groove coupling, the vincular notches receiving the imbricated pleural tips. The different forms of vincular furrows in
Trilobite

A similar type of anterior opening in the enrolled capsule of species of the proetid Gerastos was described by Najdar (1980, p. 27). Thus complete closure of the exoskeletal capsule on enrollment was characteristic of many different groups of trilobites, but within such groups some species may have had an anterior gap. A lateral gap, between the tips of the overlapping pleurae, appears to have been present in a species of Remopleurides (Nikolaiesen, 1983, pl. 5), as well as coaptative devices—a projection of the cephalic doublure fitting between the posterior pair of pygidial spines. Whether there was a similar lateral gap in trilobites with outwardly directed pleural spines when enrolled is less certain. For example, in the odontopleurid Ceratocephala (Bruton, 1968b, pl. 8, fig. 1–3) there were vertical as well as outwardly directed pleural spines. The vertical spines may well have overlapped on enrollment to give lateral closure. On the other hand, in Selenopeltis (Hamman & Rabano, 1987) the flanks of the animal were open when enrolled, protected by the long, outwardly projecting spines. Fortey (1986) showed that when the nileid Symphysurus is closely enrolled with the aid of coaptative devices, the arrangement of terrace ridges on the overlapping pleurae is such that minute passages to the exterior are open. Thus the exoskeletal capsule is not completely closed to the exterior. The prevalence of such devices in apparently closed capsules remains to be explored (e.g., Fortey & Chatterton, 1988, fig. 13).

The fossil record suggests that new types of coaptative structures arose abruptly. Once established, however, there may have been further and more gradual evolutionary development on a smaller scale, a kind of fine-tuning process leading to an apparent improvement of the coaptative mechanism as a whole. One such example (Fig. 68) showing an evident evolutionary trend is in the Lower Silurian phacopid Acernaspis from northern Europe. A. elliptifrons (Fig. 68.1), the earliest species, has nine, narrow vincular notches deeply indenting the flat surface of the...
Morphology of the Exoskeleton

Fig. 65. *Encrinurus variolaris* (BRONGNIART), Wenlock, Silurian, England. 1,2. Anterior and left lateral views of an enrolled specimen, ×4; 3,4, anterolateral view of an enrolled specimen, the left librigena missing, exposing the doublure of pygidium and thorax; 3, entire, ×3.5; 4, detail of thoracic doublure, ×10 (Clarkson & Henry, 1973, fig. 13a,b, 14a,b).

© 2009 University of Kansas Paleontological Institute
cephalic doublure, the anteriormost notch running into a deep vincular furrow. Behind this the doublure forms a flat shelf. In Scotland, the later, successive species *A. (Eskaspis) woodburnensis* and *A. (E.) sufferta* show a progressive effacement of the vincular furrow (Fig. 68.2–3), but at the same time the vincular notches broaden and deepen posteriorly and become more obliquely set. Moreover, the two doublure ridges on either side of the vincular notches become oblique to each other as seen in lateral view. The coaptative anatomy of these three stratigraphically successive Scottish species shows a clear morphological trend, and a parallel development seems to have taken place in contemporaneous Estonian species also (CLARKSON, ELDREDGE, & HENRY, 1977).

A second case is illustrated by the Ordovician genus *Placoparia*. The outer and ventral border of the librigena bears depressions into which the distal ends of the posterior thoracic pleurae and the tip of the first pygidial spine fits during enrollment. The coaptative surfaces follow a sinuous course (HENRY, 1985). In the three successive species, *P. (Coplacoparia) cambriensis*, *P. (C.) tourne-mini*, and *P. (C.) borni*, which form a stratigraphical series in the Llanvirn and Llandeilo of the Massif Armorican, France, additional depressions appear on the anterior cephalic border (Fig. 69). These receive the tips of the posterior pygidial spines during enrollment and become increasingly pronounced through time. Contemporaneous species of *Placoparia* in Bohemia, however, show no such modification of the anterior cephalic border, and the two species groups presumably evolved in isolation (HENRY & CLARKSON, 1975; HENRY, 1985).

MICROSTRUCTURE AND SCULPTURE OF THE EXOSKELETAL CUTICLE

H. B. WHITTINGTON and N. V. WILMOT

Studies of the cuticle since 1960 have used the scanning electron microscope, etching, and other techniques to supplement optical examinations of thin sections. Because well-preserved material in limestone is available, attention has concentrated on the Devonian *Phacops*, Ordovician species including...
Morphology of the Exoskeleton

Asaphus, and recently (Dalingwater & others, 1993b) Silurian calymenids. The cuticular structure of the Middle Cambrian Ellipsocephalus has also been studied (Dalingwater & others, 1991); otherwise few Cambrian specimens have been commented on. Uncertainties in understanding the effects of diagenesis and contradictory interpretations of what is seen in thin section show the importance of investigating primary and diagenetic microstructures (McAllister & Brand, 1989; Wilmot, 1990b). The cuticles of Lower Ordovician trilobites (Fortey & Wilmot, 1991) show a range of thicknesses from 8 to 350 µm, 70 to 100 µm being an average range, with considerable variation in thickness shown by single species. In Devonian phacopids Osmólska (1975) has recorded a range of thicknesses from 120 to 500 µm, some proetids having a thinner cuticle, 10 to 60 µm thick; Miller (1976) recorded cuticle as thick as 1 mm. Fortey and Wilmot (1991) measured cuticle thickness in a sample of species across an onshore to offshore gradient, noting that greater thicknesses characterized inshore sites. Thickness does not appear to be related to size, some large species having a thin cuticle. It has been stated that the cuticle contained significant amounts of phosphate, and the outer layer in Ellipsocephalus appears to be composed of calcium phosphate (Dalingwater & others, 1991). The data of Wilmot and Fallick (1989) suggest that the exoskeleton originally had a low-magnesium calcite mineralogy. Other recent work (Dalingwater, 1973; Teigler & Towe, 1975; Osmólska, 1975) has shown that the calcite crystals have a preferred orientation of the c axis more or less at right angles to the surface. Decalcification of the cuticle (Teigler & Towe, 1975, p. 139, pl. 5; Dalingwater & Miller, 1977, p. 29) leaves a delicate residue, the remains of the organic framework of the cuticle. Distinct layers (Fig. 70.1) have been recognized in the cuticle (Stormer, 1930), and Dalingwater (1973) considered that there is a thin, outer, prismatic layer (Fig. 70.2) one-tenth to one-thirtieth of the total thickness that overlies a principal layer. Wilmot (1990a) has shown that in some Agnostina the cuticle is only 5 to 15 µm thick and constructed like the prismatic layer.

Whether lamination is present, as seen in cross sections of modern arthropod cuticle, has been argued. A study by Mutvey (1981) of the cuticle of a calymenid (probably
Thelecalymene, see Whittington, 1971) showed an outer layer that is one-fifth in thickness of the total and horizontally laminated (compare Fig. 70.3). Dalingwater and Miller (1977) investigated the cuticle of Asaphus raniceps after breaking and etching it with EDTA (disodium salt); they distinguished three zones in the principal layer—an outer and an inner, finely laminated zone separating a much thicker, widely-laminated central zone. Using the same methods, Miller (1976) and Miller and Clarkson (1980) distinguished the same zones in the principal layer of the cuticle of Phacops rana. The cuticle of Ellipsocephalus (Dalingwater & others, 1991) appears to have a very thin outermost epicuticle, an outer laminated layer, and a principal layer. In Tapinocaly- mene (Dalingwater & others, 1993b) the outermost layer was less than 1 μm thick; the outer layer was finely laminated, 10 to 35 μm thick; the finely foliated principal layer was 200 to 400 μm thick; and there was a very thin (about 1 μm) innermost layer. These same authors (Dalingwater & others, 1993a) concluded that the mineralization mechanism of trilobites was similar to that of living decapod crustaceans, in contrast to Teigler and Towe (1975), who compared trilobite cuticle with that of ostracodes (cf. Towe, 1978).

The cuticle may be pierced by canals perpendicular to the surface (Fig. 70.4–5); larger diameter canals have long been recognized in thin section or in exceptionally preserved material. In silicified specimens (Evitt & Whittington, 1953, pl. 9, fig. 12–19), where the inner and outer surfaces
of the exoskeleton are each represented by a thin layer, these canals may be preserved as hollow pillars connecting the two layers. Such structures and pyrite fillings of canals seen in thin section (Hammann, 1983, pl. 25) show that these canals passed through the entire thickness of the exoskeleton. These canals are considered to have been integumental glands or setal ducts (Campbell, 1977, p. 41–42; Haas, 1981), and their concentration around the margins of the exoskeleton is characteristic. Very numerous, narrow canals (about 1 µm in diameter) occur in all regions of the cuticle studied (Fig. 70.6) and were considered by Dalingerwater and Miller (1977) to be similar to the pore canals in living arthropod cuticle. These authors considered that the term pore canal should be restricted to such narrow canals and not applied to canals of wider diameter, as Teegler and Towe (1975) advocated. Osmólska (1975, p. 203) drew attention to small, shallow pits (12 to 15 µm in diameter) distributed more or less evenly over the surface of the phacopid exoskeleton. Miller (1976, p. 349) observed similar pits in Phacops, judging them to be artifacts produced by tangential sectioning of pits that led into ducts. Stormer (1980, p. 256–259) termed these pits “Osmólska cavities” and thought that they were infilled cavities lying immediately below the outer prismatic layer of the cuticle. New studies (Wilmot, 1990b) show that these cavities lie within the prismatic layer and appear to be connected to fine, vertical canals through the exoskeleton (Fig. 71.1–2). Similar cavities in the outer layer of Ellipsoccephalus (Dalingerwater & others, 1991) are connected to canals, 3 µm in diameter, in the principal layer that extend to the inner surface of the cuticle.

The outer surface of the exoskeleton is smooth in the troughs of furrows, in pits, and in the areas of the axial region regarded as areas of muscle attachment. Elsewhere the surface may be sculptured in pustules of varied size and distribution, pitted, or covered by raised symmetrical or asymmetrical ridges arranged in various ways. Such surface sculpture is frequently referred to as ornament, but as Gill (1949) argued in proposing to call it prosopon, ornament is a general word that gives an erroneous impression of mere decoration, whereas surface sculpture has biological significance. The sculpture (or prosopon) embraces small features, not large genal, pleural, or axial spines that are hollow extensions of the entire cuticle. Miller (1976) showed that tubercles, prominences on the external surface, were of different types when seen in cross sections of the cuticle: a dome (Fig. 71.3) when the cuticle bulged upward and thinned at the apex of the bulge, a structure that projected from the surface and had

© 2009 University of Kansas Paleontological Institute
FIG. 70. Thin sections of trilobite cuticle. 1, *Asaphus* sp., Asaphus Limestone, Norway, Ordovician, NMW 88.22G.16. Stained thin section revealing primary horizontal laminations within the principal layer. Large borings (30 µm diameter) are present on the visceral surface (the lower in the photograph) of the exoskeleton. The irregular external surface indicates dissolution of the cuticle, ×40 (Wilmot, 1990b, fig. 1c). 2, *Phacops rana crassituberculata* STUMM, Silica Shale, Silica, Ohio, Middle Devonian, NMW 88.22G.41. SEM of prismatic layer with calcite crys-
(Continued on facing page.)
an apical pore (Fig. 71.4), or a more complex projection that he termed a *pseudotubercle* (Fig. 71.5). Stormer’s (1980) investigation of phacopoid tubercles and their internal structures showed a range of types from smooth tubercles with no central opening, to domed and spiniform tubercles that had a central canal, to large composite tubercles or *pseudotubercles*. His illustrations include not only cross sections but the external surface and mold of the internal surface of the exoskeleton as well as diagrams of his interpretations of the effects of incomplete preservation and abrasion on the appearance of these features. Granulation is not invariably confined to the outer surface of the exoskeleton but has been recorded on the inner surface in illaenids (Whittington, 1965, pl. 46, fig. 19, pl. 51, fig. 11; Owen & Bruton, 1980, pl. 4, fig. 2, 6).

Studies of silicified specimens, including growth stages, have shown that thornlike pustules, spines rather than tubercles, may be prominent in meraspid growth stages but reduced later (Whittington, 1941, 1956b; Chatterton, 1980; Whittington & Evitt, 1954). Such spines may be in pairs along the axial region, reflecting segmentation, and in odontopleurids pairs of spines on the pleural regions form rows with axial pairs and may be recognizable in holaspids stages. In encrinurids paired spines or tubercles in rows on the glabella and on the fixigena are similarly recognizable during ontogeny (Evitt & Tripp, 1977). Openings at the tips of such spines or tubercles have been described, particularly in those along the border or the distal portion of an occipital, genal, or pleural spine (Whittington & Evitt, 1954). The opening may be single or multiple (Fig. 72.1), or in encrinurids (Evitt & Tripp, 1977, p. 118) may lie between the granules at the tips of axial and pleural spines.

A median occipital spine or tubercle occurs on many trilobites, and in certain odontopleurids (Fig. 72.2) and styginids (Whittington, 1965, p. 297) such a tubercle has been shown to bear at the summit four tiny pits arranged in a square. A median glabellar tubercle in front of the occipital ring is present in asaphids, nileids, and illaenids (Fortey & Clarkson, 1976). In asaphids the structure appears to be a dome, whereas in nileids and illaenids only a depression in the inner surface of the exoskeleton is visible (as a low mound in the mold of that surface) and is an area over which the exoskeleton is thinned. In the median occipital node of Proetus, the cuticle thins at the apex so that only the prismatic layer remains, whereas in Harpidella there is a central canal (Wilmot, 1991). In the cyclopygids Pricyclopyge and Symphysops (Marek, 1961; Fortey & Owens, 1987, p. 180) a pair of structures appears that on molds are either domes or pits with a raised rim and are considered to have been formed within the cuticle.

Raised ridges are another type of sculpture, the asymmetrical **terrace ridges** (Fig. 73–74) being characteristic of the outer portions of the pleural region, the border and doublure, and the hypostome. The steep slope of the ridge faces abaxially, and the ridges are strongest, long and continuous, occasionally anastomosing, on the border and doublure, running subparallel to the margin. On the dorsal side, inside the
FIG. 71. Thin sections of trilobite cuticle. 1, *Phacops rana crassituberculata Stum*mm, Silica Shale, Silica, Ohio, Middle Devonian, NMW 88.22G.6. Longitudinal section through thoracic segments, showing Osmólska cavities within the prismatic layer, ×100 (Wilmot, 1990b, fig. 5c). 2, *Phacops rana crassituberculata Stum*mm, Silica Shale, Silica, Ohio, Middle Devonian, NMW 88.22G.8. Transverse section through the cephalon, showing Osmólska cavities within the prismatic layer connected to fine canals within the principal layer, ×50 (Wilmot, 1990b, fig. 5b). 3, *Hemiarges bucklandii* (Milne Edwards), Much Wenlock Limestone Formation, Wren’s Nest, Dudley, Silurian (Wenlock), D33.3, NMW 88.22G. Longitudinal section through domes in the cranidium, ×40 (courtesy of N. V. Wilmot). 4, *Cyphoproetus depressus* (Barrande), Dolyhir and Nash Scar Limestone Formation, near Dolyhir Bridge S0 2403 5825, Silurian (Wenlock), NW10.1, NMW 88.22G. Stained thin section through a cranidium containing tubercles with central canals, ×50 (courtesy of N. V. Wilmot). 5, *Phacops granulatus* (Münster), Poland, Devonian, PM.O A38817.1. Thin section through pseudotubercles, which contain internal tubules and show Osmólska cavities in the outer, prismatic layer, ×30 (Størmer, 1980, pl. 30, fig. 1a).
Morphology of the Exoskeleton

border, the ridges may curve to run obliquely and curve across the axial region. Such ridges are characteristic of the doublure of trilobites from a wide range of taxa and ages. Examples may be found among Cambrian trilobites (Whittington, 1988a, 1989), and younger groups including asaphids, nileids, remopleuridids (Whittington, 1965; Chatterton & Ludvigsen, 1976); illaenids (Whittington, 1965; Owen & Bruton, 1980); styginids (Snajdr, 1960); and proetids (Snajdr, 1980). As Miller (1975) pointed out, such terrace ridges are not universally present, being seemingly unknown in Agnostida, calymenids (Campbell, 1967), cheirurids (Chatterton & Perry, 1984), and encrinurids (Evitt & Tripp, 1977). Although present on the doublure of phacopids (Campbell, 1967), these terrace ridges do not appear to characterize the dalmanitid doublure (Holloway, 1981; Ramskold, 1985). Using cross sections and SEM micro-

Fig. 72. 1. Diacanthaspis secretus Whittington, Ordovician, Virginia. Basal portion of left librigenal spine bearing small spines that have single or multiple openings at the tip, X60 (Whittington, 1956d, pl. 7, fig. 13). 2. Diacanthaspis ulrichi Whittington, Ordovician, Virginia. Dorsal view of cranidium, showing spinose sculpture, opening at tip of spines, and four depressions at tip of median occipital spine, X45 (Whittington, 1956d, pl. 8, fig. 30).
Trilobite graphs, MILLER (1975) described terrace ridges in several genera, showing the varied profile of the ridges and their association with scattered pits in the outer surface of the cuticle. He claimed that the outer, prismatic layer of the cuticle is absent from the steep, scarp slope of the ridge and that canals, curving through the cuticle, open in a small pit on the scarp. The former claim may not be correct, and neither OSMÓLSKA (1975, p. 204) nor STÓRMER (1980, p. 256) considered that canals are present in association with terrace ridges.

Another type of ridge, symmetrical in profile, is the lira, known on the dorsal surface of the cuticle of both axial and pleural regions in bathyurids, proetids, and remopleurids (NIKOLAISEN, 1983), for example. These lirae may form a fingerprint-like pattern on the glabella and axial rings (the so-called Bertillon pattern), but as NIKOLAISEN pointed out their arrangement varies. Similar ridges in the axial region of Peraspis (Fig. 75) appear to be continuous with the peripheral terrace ridges, so that the two types of ridges may be transitional. BRUTON (1976) provided many illustrations of these ridges in Phillipsinella and of their intimate association with granules and pits. It appears that rows of granules are transitional with the ridges, and MILLER (1975) pointed out that in some styginid and homalonotid genera terrace ridges may form an anastomosing, netlike pattern. A prominent, reticulate pattern of raised, symmetrical ridges has long been recognized in some Olenellina (WHITTINGTON, 1989). In describing a species of Wanneria, PALMER (1964) noted that perforations on the inner surface of the exoskeleton outlined the polygons and that the exoskeleton broke along the margins of these polygons, showing that the perforations extended partway through the exoskeleton; no comparable arrangement of perforations has been described in any other trilobite. A prominent, reticulate pattern of raised ridges is known in such other trilobites as Cryptolithus (Fig. 76), Galbagnostus (Fig. 10), and Telephina (WHITTINGTON, 1965). MILLER (1976, fig. 2o) has claimed that there are rows of canals opening into pits along the ridge crests in Tretaspis. Much smaller in size (polygons 15 µm or less across) is the polygonal pattern of furrows seen on the external surface of extant arthropod cuticles (MILLER, 1976, p. 346), which appear to be a surface expression of the epidermal cells that secreted the cuticle. A reticulate pattern of raised ridges on the external surface of some Agnostina (MÜLLER & WALOSSEK, 1987, pl. 7–8; WILMOT, 1990a, 1990b) is of similar dimensions and may also result from polygonal cells. The cell polygons in proetids (WILMOT, 1991) are small, 5 µm in diameter. An extraordinary sculpture is the raised, wall-like ridges of the solenopleurid Badelusia (SOZYK, 1968), which in one species are extended into spines.
A raised sculpture of pustules or ridges may occur in combination with pits (scattered depressions in the external surface of the cuticle), as in *Niobe* (Fig. 73), *Poronileus* (Fortey, 1975b), *Namiliaenaeas* (Chatterton & Ludvigsen, 1976), and *Asteropyge* (Morzadec, 1983, pl. 18). These pits are tiny and may be depressions rather than the openings of canals through the cuticle. Larger, deeper pits, as in the librigena of *Encrinuroidea* (Chatterton & Ludvigsen, 1976, pl. 15, fig. 11–12; Evitt & Tripp, 1977, pl. 10, fig. 1) appear to correspond to low projections on the inner surface of the cuticle. Such pits may be the opposite of domes, being depressions in which the cuticle thins at the base.

The nature and complexity of the sculpture of the exoskeleton and the variations and transitions from one type to another are shown by the references quoted. Silicified material and photographs of details of well-preserved specimens from limestone (Bruton, 1976; Snajdr, 1980, pl. 61–64; Nikolaisen, 1983; Wilmot, 1991) afford the best examples. While a particular type of sculpture may be widespread within a family or larger taxon, it may be neither exclusive to that taxon or universal within it. Thus while spines and tubercles are characteristic of odontopleurid sculpture, they may be absent in some species. The reticulate pattern of raised lines characteristic of some Olenellina is known in unrelated taxa, whereas both granulation and a Bertillon pattern of raised lines are known on the external surface of other Olenellina.

The microstructure and sculpture of the exoskeleton, together with the form (or architecture), enabled it to accommodate the...
Trilobite forces acting on it. These forces may have been external, the result of environmental perturbation or predators, or internal, being the site of attachment of muscles. A pioneer study of biomechanics of trilobite exoskeletons (Wilmot, 1990c) suggested that the cuticle behaved as a ceramic, in a linearly elastic manner. The exoskeleton was analogous to a monocoque shell, thin yet strong, which behaved as a stressed skin. Sculpture has been shown to be related to canals through the exoskeleton, to presumed sensory devices, and perhaps to the need to maintain aeration within the enrolled trilobite. It may have contributed to the strength of the exoskeleton, and a novel suggestion by Chatterton (1980, p. 6) is that granules and tubercles would have reduced the efficacy of sucker disks in obtaining a grip and so protected trilobites from predators relying on such disks.

SUPPOSED COLOR MARKINGS

H. B. Whittington

Color markings of the exoskeleton have been described as faint, light and dark gray bands crossing the pygidium of a Cambrian trilobite (Raymond, 1922), as dark patches outside the eye lobe, on the genal spine, and in the axial and pleural furrows of an Upper Ordovician Isotelus (Wells, 1942), and as symmetrical, dark patches on the axial rings of a Carboniferous proetid (Williams, 1930). Similarly arranged dark patches on the pygidial axis of Carboniferous species were described by Whittington (1954a), Hessler (1965, fig. 1), and Fabian and Fagerstrom (1972, pl. 1, fig. 12, 15) as muscle scars. They appear darker when photographed, but whether this is because of traces of original color or because the exoskeleton is of a different thickness over this area is uncertain. Teichert (1944, p. 458) described tiny spots scattered over the axial and pleural regions of a pygidium of a Permian proetid, and similar spots were portrayed by Hessler (1965, fig. 1). Whether such spots are the remains of a color pattern, as Teichert claimed, is open to question. A remarkable example of a Silurian phacopid showing darker areas of the exoskeleton was described by Campbell (1976, fig. 1, pl. A). The prominent, larger, symmetrical areas in the axial furrows and region are most probably areas of muscle attachment, as may be some of the smaller spots in the pleural region. Campbell described the specimen as abraded and having associated pyrite and remarked that the tiny spots are not associated with exoskeletal sculpture, but he did not discuss the possibility that some of the small spots in the pleural region may be traces of a color pattern. Supposed color
markings in the exoskeleton of the Devonian Phacops and Greenops were described by Esker (1968) and examined in greater detail by Babcock (1982). The latter author considered that the original coloration in these two species, P. rana and G. boothi, consisted of irregular dark spots scattered randomly over the exoskeleton, larger spots having been concentrated adjacent to the axial furrow, outside the eye lobe, and on the adaxial portion of the pleural region. Examination of thin sections suggests that these spots are related to the Osmólska cavities and are visible externally when the exoskeleton is light in color and the cavities contain fine-grained pyrite. The lines of spots described by Esker on the pleura of G. boothi are considered to be broken tubercles that were molded internally by pyrite. Diagenesis of pyrite that had formed below the exoskeleton is thought to be responsible for dark coloration in the furrows and on peripheral portions of the exoskeleton.

It appears that paired, darker-appearing areas in glabellar, articulating and inter-ring furrows of trilobites may have been areas of muscle attachment, but why such areas appear darker is not understood. Small, dark spots or bands on the exoskeleton may be traces of an original color pattern, but a reassessment of supposed examples is needed, particularly with reference to preservation and the role of diagenesis.
INTRODUCTION

In exceptional circumstances (see the section on taphonomy below) diagenetic processes have resulted in preservation of the ventral cuticle, particularly that covering the limbs. Spectacular examples of such preservation are the enrolled specimens of *Agnostus pisiformis* less than 1.0 mm in length, described by Müller and Walossek (1987) and coming from localities in the Upper Cambrian of Sweden. Permineralization by phosphatic matter has not only preserved all the limbs (Fig. 77–79) but also the ventral cuticle into which they were inserted, sternites, traces of the alimentary canal, and other organs. The recognition of sternites, transversely rectangular plates between the insertions of the limb bases separated one from another by a transverse groove, is unique. Presumably these were sclerotized plates, not mineralized, no evidence of mineralized sternites being known in any trilobite. The ventral cuticle beneath the pleural regions is rarely preserved and when so preserved is wrinkled, suggesting that it was lightly sclerotized, thin, and flexible. Such flexibility would be necessary in *Agnostus* and any other trilobite that enrolled completely, to allow the limbs, including the antennae, to be packed inside. The ventral cuticle must have been attached to the inner edge of the doublure. The exoskeleton thins towards this edge, but the outline of it is not ragged; rather it is sharp and distinctive in trilobites with no implication of transition. Presumably, the cuticle of the limbs of trilobites was more heavily sclerotized than that beneath the pleural regions and hence is preserved in specimens from different stratigraphical horizons in other countries (see below), by replacement with mineral matter, or by lining or infilling by pyrite. Pyritized specimens have been studied by X rays, and it is claimed that not only traces of the digestive organs and alimentary canal but also of muscles and endoskeletal bars are preserved. The anatomy of the trilobite has been conjectured from these traces and interpretations made of such exoskeletal features as muscle scars, openings, and canals.

LIMBS

Although earlier work on trilobite limbs was summarized by Harrington (in Moore, 1959, p. 76–82), detailed studies published subsequently have greatly changed our knowledge, and this account refers to the recent work. These newer studies have relied in part on X-ray photography and to a greater extent on mechanical preparation and extraction using acid. Key factors in new interpretations have been the better understanding of taphonomy, the recognition of the probable original convexity of the exoskeleton, and improved techniques.

The appendages of meraspid developmental stages of *Agnostus pisiformis* (Fig. 77–79) from the Upper Cambrian of Sweden (Müller & Walossek, 1987) are the best preserved of any known, despite the minuteness of the specimens. They have not been flattened by compaction or displaced in relation to the exoskeleton, hence the positions of the insertions of the limb series (Fig. 80) may be observed in relation to the morphology of the exoskeleton (Fig. 81). Thus a most detailed reconstruction could be prepared (Fig. 82). The cephalon bears four pairs of appendages, the first being the multijointed antenna having a short, basal shaft and annular podomeres bearing setae and bristles. The antenna is attached at the side of the large, bulging hypostome immediately behind the anterior hypostomal wing. The second appendage is attached on the posterolateral side of the hypostome and has a large coxa with a spinose gnathobase. From the coxa arises a long outer branch, the short
Fig. 77. *Agnostus pisiformis* (Wahlenberg), Upper Cambrian, Sweden. Portion of enrolled specimen with cephalic border and most of trunk broken off. 1, 2. Photograph and explanatory drawing of interior, with anterior end of cephalon at bottom right; hypostome (*hy*) and base of first antenna (*atl*) at lower right; insertions of cephalic limbs (*cl 2–4*) and thoracic limbs (*tl 1,2*) indicated. Stermites of the cephalic region (*st cl 3,4*) and trunk (*st tl 1,2*) are preserved in midregion and portions of the ventral cuticle (*il*) abaxially. Limb musculature may have caused the pair of depressions (see arrows) in the posterior cephalic sternite. Abbreviations: *cav*, internal cavity; *g?*, probable gut (Müller & Walossek, 1987, pl. 15, fig. 1).
Fig. 78. *Agnostus pisiformis* (Wahlenberg), Upper Cambrian, Sweden. 1, 2, Photograph and explanatory drawing of enrolled specimen with most of transitory pygidium removed to reveal the anteriorly directed cephalic appendages (atl, first antenna; cl 2–4, succeeding appendages; ex, outer branch; en, inner branch). Spines (sps) and club-shaped appendages (cb) of 4th cephalic appendage are preserved. The position of the mouth (m) is indicated. Abbreviations: hy, hypostome; csp, genal spine; r ah, articulating half ring; fo, cephalothoracic aperture covered by membrane (Müller & Walossek, 1987, pl. 16, fig. 3).
podomeres of the distal portion bearing a brush of long setae; the inner branch is reduced to a small hump on the distal rim of the coxa. The third and fourth limbs have successively larger coxae with gnathobases, each pair separated by a sternite. On the third limb an inner branch bearing spines is present (shown only on the right limb in Fig. 82), and on the fourth limb the inner branch (shown only on the left limb in Fig. 82) is longer, having spines on the inner side and clublike projections on the outer side. The outer branch of the third limb is longer than the inner, but on the fourth limb the outer branch is much shorter than the inner branch. Five pairs of trunk limbs, similar to those of the fourth (posterior) cephalic limb, follow; these become progressively reduced in size posteriorly (Fig. 79, 82). In the late meraspid stage, the first of these pairs is on the single thoracic segment, and the fifth limb is rudimentary, not divided into podomeres. In the holaspis stage, the second of these five pairs belongs to the second thoracic segment, and there are three pairs on the pygidium, the last pair a short limb that has developed to become like the fourth limb of the meraspid stage of Figure 82. Sternites separate the thoracic limbs and the first pygidial pair, behind which the axial region narrows rapidly.

A reconstruction of *Olenoides serratus* from the Burgess Shale (Whittington, 1975, 1980a) shows the multijointed antenna inserted into the ventral cuticle immediately behind the anterior wing of the hypostome and probably linked by muscles to the fossula (Fig. 83). Up to 16 pairs of biramous appendages succeed the antennae, probably three on the cephalon, one on each of seven thoracic segments, and the remainder on the pygidium. Beneath the terminal axial piece of the pygidium one pair of multijointed cerci is attached—a feature unknown in any other trilobite. The biramous limb is borne by a large coxa inserted into the ventral cuticle beneath the axial region, the spinose mesial edges of each pair of coxae close together (Fig. 84). The inner (or leg) branch of the limb is attached to the abaxial edge of the coxa and consists of six podomeres and a group of terminal spines. Clusters of stout spines are present on the ventral side of podomeres 1 to 4. The outer
Trilobite Body

branch of the limb arises from the inner, posterolateral edge of the coxa and consists of an elongate proximal and an oval distal lobe. The proximal lobe bears long, flattened filaments, closely spaced and forming a sheet that was directed backward and slightly upward and was long enough to overlap partly the filaments of the succeeding two limbs. The way in which the series of limbs is preserved provides evidence that the outer branch was attached to the coxa in a manner that prevented it from being rotated or swung to and fro about the junction with the coxa (Fig. 85). The filaments of the outer branches are preserved in an overlapping series between the exoskeleton and the overlapping series of leg branches, never in an alternating series with the leg branches. The excellent preservation of these specimens of O. serratus shows details of the spinosity of coxa and leg branch, bristles on the dorsal side of the leg branch, fine hairs at the tips of the lamellae of the outer branch, and bristles on the posterior cercus. The regularity of

Fig. 80. Agnostus pisiformis (WAHLBERG), Upper Cambrian, Sweden. Internal view of disconnected cephalon, first thoracic segment, and transitory pygidium of a meraspis. The insertions of the antenna (atl), cephalic limbs (cl 2–4), the limb of the first thoracic segment (tl 1), and four limbs of the transitory pygidium (tl 2–5) are shown, as well as the shaft (sh) and lobes (hl) of the hypostome, the frontal organ (fro), and the sternites of cephalic limbs (st cl 3–4) and trunk (st T); probable muscle scars (ms?) indicated. The body cavity (cav) contained the gut (g), which ended at the anus (an). Based on a specimen having a cephalon of length (sag.) 0.64 mm (Müller & Walossek, 1987, fig. 18).

© 2009 University of Kansas Paleontological Institute
arrangement of the limb series along the body shows that the limbs were held in position by the ventral cuticle during the processes of preservation. This regularity also suggests that the coxa-body junction was such as to have inhibited rotation about a vertical axis but to have allowed some degree of swing about a transverse axis. The junction itself is not preserved, and any trace of the ventral cuticle extremely rare, a possible example being the dark area surrounding the limbs in one specimen (WHITTINGTON, 1975, pl. 11, fig. 1).

The famous specimens from the Upper Ordovician of New York, displaying pyritized appendages, have attracted much attention. Most abundant is Triarthrus eatoni, reinvestigated using X-ray stereographs by CISNE (1981). These images were interpreted as showing three (not four as previously believed) pairs of biramous appendages on the cephalon, a coxa that revealed the coxa-body junction, with the two limb branches arising from the outer edge, and a so-called limb-bearing postpygidal abdomen projecting behind the pygidium. The triangular, spinose endites of the leg branch, known from earlier studies, were omitted from CISNE’s reconstruction. A more recent investigation, based on mechanical preparation and photographs taken in reflected light (WHITTINGTON & ALMOND, 1987) has supported CISNE’s view on the number of pairs of biramous limbs on the cephalon and has shown the prominent endites on posterior leg branches. It was considered that CISNE’s portrayal of the coxa and of the postpygidal abdomen were based on misinterpretations of X-ray stereographs. The new reconstructions of Triarthrus eatoni (Fig. 86–87) may be compared and contrasted with that of Olenoides serratus as follows.

The cephalon of Triarthrus eatoni also has one pair of uniramous antennae and three pairs of biramous limbs and the thorax has one pair of limbs on each segment. The relatively smaller pygidium has 10 or more pairs of limbs that are crowded together, diminishing rapidly in size posteriorly. Posterior cerci are absent. The coxa is also relatively large and spinose on the adaxial edge; but the proximal three or four podomeres of the inner branch are extended ventrally as spinose endites, most prominent posteriorly, diminishing progressively anteriorly and disappearing on the cephalon (Fig. 86.3–5). The outer branch of the limb in T. eatoni (Fig. 87) consists of an annulated shaft (not a proximal lobe) and small distal lobe and is as long (tr.) as the leg branch; the shaft bears flattened, closely spaced filaments that extend back above those of the succeeding branch. As seen in lateral view, the outer branch in T. eatoni is exposed to a far greater extent than that of O. serratus (compare Fig. 86.2 with Fig. 83.2), and the long shaft is curved down distally (compare Fig. 87 with Fig. 84). Preservation of T. eatoni indicates that, as in O. serratus, the outer branch was rigidly attached to the coxa and the filaments formed an overlapping series dorsal to the inner branches. The coxa-body junction and ventral cuticle are not preserved in either species.
Fig. 82. *Agnatus pisiformis* (Wahlenberg), Upper Cambrian, Sweden. Ventral view of reconstruction of meraspid with one thoracic segment, disconnected between cephalon and segment. Based on a specimen having a cephalon of length (sag.) 0.74 mm (Müller & Walossek, 1987, fig. 4).
Fig. 83. For explanation, see facing page.
Of the trilobites with pyritized appendages from the Hunsrück Shale of West Germany, *Phacops* (STÜRMER & BERGSTROM, 1973) is most abundant and best known (Fig. 88). There is one pair of multijointed antennae and three pairs of biramous limbs on the cephalon, one pair of such limbs on each thoracic segment, and at least eight pairs on the pygidium. These posterior limbs diminish in size rapidly and are crowded together posteriorly. A spinose gnathobase has been observed at the adaxial end of the large coxa of the posterior cephalic limb. The inner branch of the limb has six podomeres and a short, distal, seventh podomere surrounded by a ring of fine bristles (SEILACHER, 1962). Triangular spinose endites have been observed on distal podomeres of inner branches on posterior thoracic segments. The outer branch appears to have consisted of a relatively short (tr.) basal lobe attached to the coxa, from which long filaments are outwardly directed. The appendages of *Asteropyge* (STÜRMER & BERGSTROM, 1973) are less well known, but one specimen has a single pair of antennae and three pairs of biramous limbs on the cephalon. The single pair of antennae and the series of coxae and inner branches of the limbs of *Rhenops* were described by BERGSTROM and BRASSEL (1984). It is considered that there were four pairs of biramous limbs on the cephalon. Nine or more pairs were crowded together on the pygidium and show a rapid reduction in size posteriorly; endites were developed on the more proximal podomeres.

Fig. 83. Reconstruction of *Olenoides serratus* (ROMINGER), Middle Cambrian, Canada. Restoration of two pairs of right appendages, as seen from below and behind; horizontal plane indicated by outline. Inner branch shows coxa and podomeres 1 through 6, podomere 6 with terminal spines. Only the outer branch of the nearer limb is visible in this view, divided into proximal and distal lobes, the long, flat filaments overlapping (Whittington, 1980a, fig. 8).

Fig. 84. *Olenoides serratus* (ROMINGER), Middle Cambrian, Canada. Restoration of two pairs of right appendages, as seen from below and behind; horizontal plane indicated by outline. Inner branch shows coxa and podomeres 1 through 6, podomere 6 with terminal spines. Only the outer branch of the nearer limb is visible in this view, divided into proximal and distal lobes, the long, flat filaments overlapping (Whittington, 1980a, fig. 8).

© 2009 University of Kansas Paleontological Institute
Enrolled specimens of *Ceraurus* that contained pyritized appendages were investigated (Stormer, 1939, 1951) using serial sections; models were made from these sections. Stormer concluded that the cephalon has one pair of antennae and four pairs of biramous appendages, with similar pairs of biramous limbs on each thoracic segment. From the large coxa arises an inner branch of six podomeres and a terminal group of spines (Fig. 89). The outer branch arises from the inner, posterior side of the coxa and consists of four podomeres and a terminal lobe bearing long, closely-spaced blade-shaped filaments. In his 1939 account Stormer emphasized the presence of a short, precoxal podomere (Fig. 90) but was less certain about the existence of such a joint in 1951. No evidence for the presence of this joint has been put forward subsequently, but the most proximal portion of the coxa has not been clearly exposed in any specimen.

The single specimen of *Kootenia* from the Middle Cambrian Burgess Shale has been redescribed (Whittington 1975), and most recently two species of redlichioids showing the antenna and biramous limbs from the Lower Cambrian of South China (Shu & others, 1995). Other species showing appendages from the Ordovician Frankfort Shale need reinvestigation. For example, three different interpretations (Bergstrom, 1972, fig. 2; 1973a, fig. 15; Campbell, 1975, fig. 13) of the appearance of the limbs of *Cryptolithus* have been made subsequently to Raymond’s (1920, fig. 20) reconstruction, none based on a critical reexamination of the original material. Beecher’s (1895b) and
RAYMOND’S work make it clear that endites are developed on the inner branches, most conspicuously on the pygidium.

The limbs of two additional species from the Burgess Shale are trilobite-like, though the exoskeleton is not mineralized. Best known of these is *Naraoia compacta*, which has an oval exoskeleton divided by a simple articulation into two shields (Fig. 91). Beneath the anterior shield are the multijointed antenna and three pairs of biramous limbs; below the posterior shield are up to 16 similar pairs of limbs that diminish in size posteriorly. Each biramous limb is borne on a large, triangular coxa that is spinose on the inner, adaxial side (Fig. 92). The inner branch consists of five podomeres and a short terminal spine. The proximal podomere of the inner branch is enlarged into a triangular, spinose endite. The outer branch arises from the dorsal coxal margin and consists of a slim, tapering shaft with a terminal lobe; the dorsal margin of the shaft bears many long, thin, upward and backwardly directed filaments. The outer branches form an overlapping series that lies beneath the pleural regions of the body. The limbs of the Lower Cambrian species of *Naraoia* from Yunnan, China (W. ZHANG & HOU, 1985) have not been described in detail, but these specimens show the hypostome and a filled alimentary canal.

Only two specimens of the unusually large *Tegopelte gigas* are known from the Burgess Shale (Fig. 93). The appendages include a multijointed antenna and a long series of biramous limbs, diminishing in size posteriorly, the inner branch of which is a jointed walking leg, the outer branch being a shaft bearing long, slim filaments. In this restoration the dorsal exoskeleton is shown divided into cephalon, three thoracic segments, and pygidium. There appears to have been three pairs of biramous limbs on the cephalon, three beneath each thoracic segment, probably four beneath the third segment, and up to 20 pairs on the pygidium. RAMSKÖLD and others (1996) contended that the features interpreted as subdivisions between tergites in *Tegopelte* are preservational artifacts and that the dorsal exoskeleton was undivided. This view is based on an interpretation of the features observed in the dorsal shields of other arthropods (not *Tegopelte*) preserved in the Lower Cambrian Chengjiang fauna of China.

The evidence reviewed above suggests that a single pair of uniramous antennae and many pairs of biramous limbs are characteristic of trilobites. The antenna is attached behind the anterior wing of the hypostome, the first biramous limb beside the posterior portion of the hypostome. The preservation of *Agnostus pisiformis* is such as to show unequivocally that there are three pairs of biramous limbs on the cephalon, but whether three pairs are characteristic of all trilobites is an unsolved question. During the processes of preservation (WHITTINGTON, 1975, p. 102–105; WHITTINGTON & ALMOND, 1987, p. 5–7) the entire series of limbs was held in their original relationship to one another by the ventral cuticle, but this cuticle and the attached appendages may have been moved in relation to the dorsal exoskeleton. Hence, it is difficult to be sure, in any one specimen, how appendages and exoskeleton were related. The weight of evidence available at the time of writing, however, points to three pairs of biramous appendages on the cephalon as having been characteristic of many, if not all, trilobites. The manner of preservation of the outer branch also suggests the relative stiffness of the long, slim filaments attached to it. These filaments are most frequently preserved in overlapping, backwardly directed sheets, always lying immediately below the pleural regions, between exoskeleton and inner branches. There is no evidence that the sheets of filaments were ever directed downward between the inner branches. Alignment of inner and outer branches is characteristic, arguing for a relatively rigid attachment of outer branch to coxa. The original form of the filament of the outer branch—flat sided, bladelike, and suboval or subcircular in section—is less certain. Compressed specimens suggest that
they were slatlike (Whittington, 1980a, p. 189; Whittington & Almond, 1987, p. 38), and cross sections suggested the same form to Stormer (1939, p. 184, fig. 11, 14), while Cisne (1982) argued from cross sections that the form was elongate-cylindrical.

AXIAL REGION AND ALIMENTARY CANAL

Only in Agnostus pisiformis is some trace of the unmineralized ventral cuticle of the axial region preserved (Fig. 77). In these remark-
Trilobite Body
differ in color and petrographic character from the sandy matrix. A single specimen of *Dalmanitina* also shows a mold of the canal in the thorax and pygidium. A similar trace has been described in *Naraoia compacta* (Whittington, 1977). Pyrite-filled or lined structures in *Phacops* are interpreted as showing the esophagus leading forward from the mouth above the posterior edge of the hypostome to the stomach beneath the anterior portion of the glabella, with ramified structures interpreted as the liver (Fig. 94). The intestine leads back from the stomach to the posterior tip of the pygidial axis (Fig. 88). The alimentary structures of trilobites were reviewed, and a description of these structures in a species of the Upper Cambrian *Pterocephalia* were given by Chatterton, Johansen, and Sutherland (1994).

Stürmer and Bergström (1973, p. 113) considered that there was no evidence of a metastome, a postoral plate; and investigations of *Olenoides serratus* (Whittington, 1975) and *Triarthrus eatoni* (Whittington & Almond, 1987) have likewise shown no evidence for the existence of such a plate.

PLEURAL REGION, CAECA, AND PANDERIAN OPENINGS

In *Agnostus* (Müller & Walossek, 1987, p. 11) the unmineralized ventral cuticle is preserved, extending from the inner edge of the doublure to the axial region. Müller and Walossek emphasized that this cuticle lies close below the exoskeleton, so that the body was thin in the pleural region, a necessity if the limbs were to be accommodated during enrollment. Arguments used in reconstructing *Triarthrus* (Whittington & Almond, 1987, p. 30, 39) suggest that the bodies of most trilobites may have been shallow in the pleural region (Fig. 86). As the cross sections show (Fig. 86.3–5), this shape would have allowed a hanging stance of the inner, walking leg branches. In this stance (Manton, 1977, p. 200) the leg was at first directed upward from its origin and then curved downward so that it kept the ventral surface

© 2009 University of Kansas Paleontological Institute
of the body as close to the substrate as possible, promoting stability in cross currents. The shallow body and the flexible ventral cuticle were also necessary to allow the limbs, including the antennae, to be packed inside when the animal was completely enrolled. In trilobites in which the pygidial doublure extended inward almost to the axis (Fig. 61), the body in the pleural region was necessarily shallow. In trilobites in which the border of the cephalon or pygidium was convex, with a convex, rolled doublure below it, there was evidently a deeper, cylindrical, peripheral section of the body. This section did not extend along the tips of the thoracic pleurae.

Ridges on the external surface of the gena (including the coarse, ramifying, radiating rugae in certain Agnostina) and the genal caeca (Fig. 17) have been described above. Rugae are present on the pygidium of Agnostina, and ridges of similar dimension to the genal caeca are present on thoracic segments and pygidium (Fig. 60) of other trilobites. ÖPIK (1961a) considered all these impressions to be of alimentary diverticulae, by analogy with the pattern of such diverticulae in Burgessia (C. P. HUGHES, 1975) and Naraoia (Fig. 91). CAMPBELL (1975) suggested that the fringe of the trinucleid Cryptolithus contained ramifying digestive caeca and also outlined possible arterial and venous systems that were within the fringe and below the gena. JELL (1978a; see also CHATTERTON, JOHANSEN, & SUTHERLAND, 1994) pointed out the difference in width between the coarse rugae of Agnostina and the much finer, branching and anastomosing ridges of the genal caeca in, for example, Harpides. He advocated distinguishing between traces of alimentary diverticulae, the coarse ridges and grooves in Agnostina (of uncertain function), and the pattern of finer ridges to which he limited the term genal caeca. He went on to suggest, using analogies with living crustaceans, that the genal caeca were respiratory in function (auxiliary to the outer limb branch), housing a venous system that lay close beneath the exoskeleton. Such a system would have remained exposed to the surrounding water when the animal was fully enrolled.

An opening in the cephalic and pleural doublure of certain asaphids (SIEGFRIED, 1936; HUPÉ, 1955b) is called the panderian opening and is the supposed opening of a segmental panderian organ. This opening may have, immediately behind it, a protuberance that acted to limit enrollment. In other asaphids there is a notch in the inner margin of the doublure, the posterior edge of the notch raised so that it limited enrollment. The notch has been regarded as surrounding a panderian opening, and the term
panderian notch has hence been applied to similar notches in the doublure of a wide variety of trilobites. Whether the notch in Proetus, for example (Fig. 40), surrounded a panderian opening is unknown, and hence whether the so-called panderian organ was present only in some asaphids, or generally in trilobites, may be questioned. HUPÉ (1945, 1955b) suggested that there was no opening, but merely thinner cuticle, associated with a sensory device that detected pleural overlap.

Fenestrae, oval or slitlike unmineralized areas of the exoskeleton of the inner pleural region, situated along the intersegmental boundaries, have been described in asteroopyginids and odontopleurids (see earlier sections on thorax and pygidium, p. 43, 59). Best preserved are those in the odontopleurid Laethoprusia salax (RAMSKOLD, 1991a), in which the edges of the opening curve down ventrally, the edge in the pleural continuous with that of the articulating flange and similar in form. RAMSKOLD speculated that the openings may have been covered by arthrodial membrane; the function of the opening is obscure.

MUSCULATURE, FLEXURE OF BODY, AND LIMB MOVEMENTS

The form of muscle scars and of invaginations of the exoskeleton (furrows, pits, and apodemes) in and adjacent to the axial region of the exoskeleton (Fig. 8, 10, 20, 26, 51) has been revealed more clearly by silicified specimens (Fig. 26.1, 38–39). These attachment areas, symmetrically arranged in the axial region, rarely median, were for muscles extrinsic to the limbs and other organs of the body and for muscles and ligaments that extended the body and maintained its form. CISNE (1974, 1975, 1981) detected the remains of such muscles in pyritized specimens of Triarthrus, but in almost all species in which muscle areas have been observed, traces of soft parts, including appendages, are unknown. Hence, speculations on trilobite musculature have had to
Fig. 89. Wax model (Stormer, 1951, fig. 2, pl. 2) of part of the cephalon of *Ceraurus pleuroxanthemus* Green, Middle Ordovician, New York, USA. 1, Dorsal view; 2, anterior view; 3, ventral view; 4, posteroverentral view. 1–5, inner branches of first 5 limbs (photographs courtesy of Per Aas, Paleontological Museum, Oslo, Norway).
Trilobite Body

rely on comparisons with extant animals and have been greatly stimulated by the work of HESSLER (1964, 1982) and MANTON (1977). In his X-ray stereographs CISNE (1981) also observed transverse endoskeletal bars, these bars situated on the ventral side of the body adjacent to the intersegmental boundaries. To these bars were attached the ventral longitudinal muscles, dorsoventral muscles (anteriorly descending, vertical, posteriorly descending), horizontal muscles, and ligaments supporting the ventral cuticle (Fig. 95). Such musculature is like that described in living crustaceans by HESSLER and was also proposed by CAMPBELL (1975, 1976, 1977). The recent discovery (WHITTINGTON, 1993a) of a specimen of Placoparia, apparently having the endoskeletal bars preserved as external molds, lends support to such reconstructions. Extrinsic limb muscles may also have been attached to these bars, as well as to the infold of the glabellar, occipital, and articulating furrows.

Enrolled specimens of Placoparia are well known (e.g., HENRY & CLARKSON, 1975), and a reconstruction shows the arc through which the body was curved and how the relaxed limbs would have been packed tightly within the enclosing capsule (Fig. 96). As HESSLER (1964, 1982) pointed out, the dorsoventral muscles and ligaments were essential to maintain the shape of the body against the pull of the contracted ventral longitudinal muscles. On enrollment the portion of the axial body below the hinge line was reduced in volume, and the larger portion above this line increased in volume. The net effect of this volume change may have reduced hydrostatic pressure within the body, facilitating enrollment and relaxation of the limbs. The fully enrolled position appears to have been essentially temporary, held by the continued contraction of the ventral longitudinal muscles. Extension of the body was effected by contraction of the dorsal longitudinal muscles, aided by contraction of the anteriorly descending dorsoventral muscles, which lay above the hinge line. The volume changes in the body, referred to above, would have been reversed, increasing the hydrostatic pressure as the dorsoventral muscles contracted to maintain the body.
shape; the increased hydrostatic pressure would have aided the extension. In walking, both dorsal longitudinal and dorsoventral muscles would have been active in keeping the body extended and maintaining its shape and internal pressure. It was considered by Stormer (1939, fig. 7d) and Hupé (1953b, fig. 29) that extension of the body was aided...
by the contraction of auxiliary or external dorsal muscles. These were shown attached to the anterior edge of each articulating half ring and the articulating (or occipital) furrow of the segment in front. CAMPBELL (1975, p. 77; 1976, p. 173–174) argued that such muscles were necessary in Cryptolithus and phacopids and were effective because of being situated well above the hinge line. It does not seem necessary in the case of Placoparia to invoke the presence of external dorsal muscles, and the thinness of the exoskeleton of the articulating half ring makes it an unlikely site for muscle attachment.

Muscle areas in the cephalon of lower Paleozoic (mainly Ordovician) species have been investigated by Rudolph (1992), and a new observation is that such areas of the cuticle were traversed by narrow, vertical canals. Axial cephalic musculature is reconstructed in the raphiophorid Ampyx and the pterygometopid Toxochasmops, and paired
Fig. 93. For explanation, see facing page.
Fig. 93. Restoration of *Tegopelte* gigas SIMONETTA & DELLE CAVE, Middle Cambrian, Canada. 1, Dorsal view with exoskeleton of right half removed to show appendages beneath, the outline of supposed hypostome indicated by dashed line. Appendages are in still position of a particular gait, with outer branches removed from limbs VII to XIV and insertion into coxa shown in solid black. Solid circles on right are opposite tips of limbs that are on sea floor. For simplicity, filaments of outer branches are shown relatively much broader (tr.) than they were; the form of the shaft of the outer branch is generalized and does not show a lobate inner portion. Antenna is incomplete, its insertion into ventral cuticle shown in solid black.

2, Right lateral view with portion of exoskeleton removed to show outline of outer branches of limbs VII and VIII; other outer branches not shown.

3, Posterior view of cross section through tergite 1, showing appendage VI. Ventral integument and alimentary canal shown by dashed lines; proximal portions of limbs conjectural (Whittington, 1985, fig. 17).

and median scars on the anterior glabellar lobe are regarded as having been for attachment of muscles supporting the anterior portion of the alimentary tract. Such scars in Phacopina were described by Eldredge (1971), Campbell (1976), and Stormer (1980), and Eldredge interpreted them in the same manner as Rudolph. Campbell (1976, fig. 2), however, regarded the more anterior of these scars as providing necessary anchorage for the ventral longitudinal muscles. In *Placoparia* the most anterior transverse bar preserved is that of L2 (Fig. 95.1,4), and any more anterior extension of the ventral longitudinal muscles would have unduly restricted space for the anterior portion of the alimentary canal. The same consideration in regard to Phacopina implies that the ventral longitudinal muscles did not extend as far forward as Campbell suggested. Likewise, in *Triarthrus* these ventral muscles and the bars may not have been present as far anteriorly as Csine (1975, 1981) suggested. Muscles that controlled movement of the hypostome were shown, for example, by Eldredge (1971, fig. 7). However, the conterminant hypostome was apparently not movable. Muscle scars on or adjacent to the hypostome were probably for muscles attached to the most anterior portion of the alimentary tract or to the dorsal unmineralized cuticle of the hypostome. Cephalic
Fig. 95. *Placoparia* (P.) *cambriensis* Hicks, Ordovician (Llanvirn), U.K. Reconstruction of extended body with the position of the musculature (but not the bulk) shown in heavier lines.—1,3. Transverse sections at second glabellar lobe (L2) and sixth thoracic segment, respectively. Left biramous limb shown with inner branch vertical, outer branch (ob) in section. Dashed lines indicate outline of alimentary canal (a), position of mouth (m) in front of anterior limb, and unmineralized ventral cuticle (vc), which also overlies the hypostome (h). The transverse tendinous bar (b) is linked to the ventral cuticle by ligaments (l). A dorsoventral vertical muscle (dvv) and a horizontal muscle (hm) extend from the glabellar and axial furrows in part 1, and from the articulating furrow or apodeme (ap) in part 3, to the end of the bar. The dorsal longitudinal muscle (dlm) is shown in section in part 3; the hinge line between segments is shown by the line x. ps is the pleural spine.—2. Dorsal view of sixth thoracic segment, showing ridge (ri) in articulating half ring (ahr), the axial ring (axr), the axial articulating socket (axs) and process (axp), the articulating furrow (af), the pleura (pl) with the anterior articulating flange (fl) and posterior ridge (ri), beneath which the flange of the following segment fits. The pleura is bent down at the fulcrum (fu) to form the pleural spine.—4. Profile of exoskeleton in left lateral view, with thoracic segments 6 and 12 (the posteriormost) numbered. Profile broken at segment 6 to show a lateral view of this segment (compare with part 2) and the doublure (d) of the axial ring of segment 5. The alimentary canal (a) is shown in the cephalon and posteriorly from segment 7. The inner branches (continued on p. 109.)
FIG. 96. *Placoparia (P). cambriensis* HICKS, Ordovician (Llanvirn), U.K. Reconstruction of body in fully enrolled attitude, to indicate the positions of muscles and the manner in which the appendages were accommodated. Position of hinge line indicated by x. 1. Cross section through glabellar lobe L2 and thoracic segment 7 (compare with Fig. 95.1,3). 2. Profile of exoskeleton with antenna (*an*) in retracted position; limbs and musculature as in Figure 95.4. Abbreviations: *a*, outline of alimentary canal; *b*, tendinous bar; *dlm*, dorsal longitudinal muscle; *dva*, anteriorly descending dorsoventral muscle; *dvp*, posteriorly descending dorsoventral muscle; *dvv*, vertical dorsoventral muscle; *h*, hypostome; *hm*, horizontal muscle; *O*, occipital ring; *ob*, outer branch; *r*, ridge in articulating half ring; *vc*, ventral cuticle; *vlm*, ventral longitudinal muscle; thoracic segments 6 and 12 are numbered (Whittington, 1993a, fig. 9).

Fig. 95. Explanation continued from facing page.

of limbs I, V, VIII, XI, XIV (with outer branch *ob*), and XVIII are shown in the appropriate positions of the gait shown in Figure 99.2, in which pairs of limbs I to XVIII were participating. The dorsal longitudinal (*dlm*) and ventral longitudinal (*vlm*) muscles and tendinous bars (*b*) are broken between segments 5 and 7 to allow extrinsic limb muscles (*ex*) of limb VIII to be suggested. The positions of anteriorly descending (*dva*), vertical (*dvv*), and posteriorly descending (*dvp*) dorsoventral muscles are indicated, the vertical muscles only in thoracic segments 2 through 4. Position of hinge line shown by x. Only the antennae are known in *Placoparia*, the limbs shown being modelled on those of *Ceraurus* (STORMER, 1939), a cheturid, and the nearest relative to the pliomerid *Placoparia* in which limbs are known (Whittington, 1993a, fig. 8).
segmentation, the hypostome, and musculature in Phacopinae have been discussed by Bruton and Haas (1997).

Campbell (1976) observed muscle attachment areas on the palpebral lobe and elsewhere on the genal area in Eophacops, and scars in this area were described by Stormer (1980, p. 263–266). Rudolph (1992) has shown such scars to be present in other Phacopina, as well as in Ellipsocephalus, Nileus, and raphiophorids. Campbell suggested that the palpebral scars were for muscles that supported the endoskeletal bar and possibly extrinsic limb muscles (Fig. 97). Both Campbell and Stormer suggested that muscles supporting the ventral cuticle may have been attached to the scars on the genal region. Rudolph (1992, p. 61) has suggested that rows of scars on the fixed cheek may be for attachment of musculature supporting intestinal diverticulae. Such diverticulae, he remarks, are distinct from the radiating, anastomosing canals of the genal caeca, which extend to the cephalic border and across the preglabellar field. Chatterton and Campbell (1993) described not only muscle scars on the frontal glabellar lobe and hypostome of cheirurids and phacopids but also a darker-colored band on the distal area of the inner, horizontal portion of thoracic and pygidial pleurae. They suggested that this band was the attachment site for a longitudinal strip of muscles that may have assisted in maintaining the enrolled position and in resistance to twisting of the exoskeleton.
Extrinsic limb musculature is suggested for one pair of thoracic limbs (Fig. 95.4), and such muscles in the cephalon would have been attached to glabellar furrows and endoskeletal bars. This follows the reconstruction of CISNE (1974, 1975, 1981), who suggested an additional lateral muscle attached to the pleural furrow. RUDOLPH (1992, fig. 23, 25) has suggested the possible nature of extrinsic limb musculature in the cephalon of Ampyx and Toxochaetia, the muscles being attached to the dorsal exoskeleton. Extrinsic coxal musculature was necessary to provide a promotor-remotor swing of the coxa about an approximately transverse, horizontal axis, a swing essential to walking (Fig. 98).

The basic limb movements thought to have been employed in walking are diagrammed in Figure 98 (WHITTINGTON, 1980a, p. 193–195). The leg is lifted off the substrate by levator muscles and extended by hydrostatic pressure and a promotor swing about axis A, as is shown in the figure with limb III about halfway through the swing. Limb V, extended at the beginning of the remotor swing, has its tip pressed firmly into the substrate by the action of depressor muscles on podomeres 2 and 3 (as also shown in limb IX), and the action of flexor muscles on podomeres 4 to 7 bends the limb and transmits a forward-propulsive force to the body. Limb VII is acting in the same way and has reached the midpoint of the remotor swing, the more strongly flexed leg accommodating to the reduced length between coxa and limb tip. Leg IX is extended at the conclusion of the remotor swing, the depressor muscles giving the propulsive force and keeping the tip firmly on the sediment, the flexor muscles relaxed to allow podomeres 4 to 7 to become aligned and extend the limb. The four limbs shown in Figure 98 are part (intervening limbs omitted for clarity) of a metachronal wave of eight pairs of limbs. This gait is considered to be a reasonable one, and successive stages are shown in Figure 99. These stages show how each metachronal wave of movement passed forward along the body.

SUPERFICIAL SENSORY STRUCTURES

Apart from the eye, structures that have been regarded as probably sensory in
Fig. 99. For explanation, see facing page.
function include some on the limbs and whatever organs were associated with openings through the exoskeleton. Studies of sensory structures of living marine animals, particular those of crustaceans (Laverack & Barrientos, 1985; Barrientos & Laverack, 1986), have been used to interpret what is seen in trilobites.

Spines and setae on the limbs of trilobites have been regarded as assisting in swimming, in food gathering, in comminution, and in creating respiratory currents (see discussion of mode of life below). In Olenoides, however, rows of fine spines on the upper surface of joints 3 and 4 of the walking leg (Fig. 84) may have functioned to monitor the position of the limb relative to the outer branch or to the exoskeleton, and fine hairs at the tips of the filaments of the outer branch and around the margin of the distal lobe may also have been sensory.

Canals of larger diameter that pass through the exoskeleton (see above section on microstructure and sculpture) are considered to have been the sites of integumental glands or setal ducts. Such canals may emerge at the apex of a tubercle or the tip of a spine, or be surrounded by a rim and situated between tubercles or spines. Openings of this type are numerous around the outer surface of the cephalic and pygidial border and around the tips of pleurae and of major spines. This distribution (Fig. 100) suggests a tactile function for the setae (see also the study of the homalonotid Trimerus by Haas, 1981).

A variety of other presumed sensory organs has been described. One of these is the ventral paired frontal organ anterior to the hypostome in Agnostus (Fig. 80). Each node of the pair has a slit at the apex, and the organ may have been a chemoreceptor. In this remarkably preserved material the axial gap in the exoskeleton between the cephalon and first thoracic segment, the cephalothoracic aperture, is covered by a membrane in which are a pair of openings (Fig. 81), but it is not known if these ducts to the interior had a sensory function (Müller & Walossek, 1987, p. 9). In Nileus, the exoskeleton is thinned over the glabellar tubercle, and Fortey and Clarkson (1976) considered it to have been the site of a light-sensitive organ; in illaenids a similar structure is the median posterior depression in the parietal surface of the glabella. Numerous pits in the visceral surface of the exoskeleton of oneagnostid have been interpreted as the sites of photoreceptors (Wilmut, 1990a). In the styginid Raymondaspis a low occipital tubercle is impressed by four tiny pits arranged at the corners of a square (Whittington, 1965, pl. 58, fig. 10). Similar structures in odontopleurids (Fig. 72.2), asaphids, and trinucleids have been referred to by Fortey and Clarkson (1976) and compared to crustacean sense organs by Whittington (1956d, p. 177). In the latter publication examples are discussed (p. 176–177) of spines elsewhere on the cephalon (Fig. 72) that have a truncated tip pierced by several openings, which are less regularly arranged.

Fig. 99. Diagrams of a probable mode of walking of Olenoides serratus (Rominger), Middle Cambrian, Canada. Parts 1 through 5 show a succession of still-stands in the gait; left limbs I through XV shown, with I through XIII being used in walking and the animal moving in the direction of the large arrow. Each selected still-stand shows left legs only (in solid black when in contact with sea-bottom, in outline when off the bottom and swinging forward). Below tip of each limb on sea bottom is either a solid circle, showing that limb tip has just been put down, or an arrow of length proportional to amount of backstroke completed. 1, Legs I through V in first metachronal wave, VI through XIII in second wave. 2, Legs I through III in first wave, IV through XI in second wave, and XII and XIII in third wave. 3, Leg I in first wave, legs II through IX in second wave (legs II and III are off the bottom and concealed by the gena), and legs X through XIII continuing the third wave. 4, Legs I through VII (legs I and II concealed beneath gena) in second wave, VIII through XIII in third wave. 5, Legs I through V in second wave, VI through XIII in third wave. The panel below each still shows in oblique lateral view the left half of the symmetrical track made in this gait. Solid circles are footfalls of first wave, open circles are footfalls of second wave, and crosses are footfalls of third wave (Whittington, 1980a, fig. 11).
and hence different from the openings in the occipital tubercle or spine. Apparently unique to *Pricyclopyge* and its close allies is a pair of structures on the axial ring of the third thoracic segment. Fortey and Owens (1987) described these as hollow, inflated structures, circular in plan, and situated within the thickness of the exoskeleton; they argued that the structures may have been luminous organs like those known in some modern crustaceans.

THE EYE: MORPHOLOGY, FUNCTION, AND EVOLUTION

E. N. K. Clarkson

Most trilobites bear one pair of compound eyes on the librigena. The eye ranges from small, consisting of only a few lenses, as in Harpetidae, to extremely large, as in Cyclopygidae. In a few species of *Cyclopyge*, *Ellipsotaphrus*, and *Symphysops* the eyes are confluent anteriorly (Fig. 101.2). Other than such rare instances, the eyes are separate, and most trilobite eyes are crescentic or kidney-shaped in dorsal view; in transverse section they have a convex profile. Usually the eye is sessile, though it may be set upon a narrow platform, the eye socle. This socle may be provided with sensory pits or fossettes. In rare instances, as in Odontopleuridae and some Asaphidae, the eye is extended into a rigid stalk. Above the lens-bearing visual surface lies the palpebral lobe, which may be flat or inflated; this is separated from the visual surface by the facial suture. That part of the facial suture lying between the visual surface and the palpebral lobe is known as the palpebral suture.

Since the time of the earlier workers Clarke (1889) and Lindström (1901), it has been generally recognized that two types
Trilobite Body

THE HOLOCHROAL EYE

Holochroal (Clarke) or compound (Lindström) eyes have a visual surface of many closely packed, small lenses that are in direct contact with one another (Fig. 101.1–2, 102). The whole ensemble of lenses is covered by a single, thin, pellucid sheet, the cornea, which is calcitic and grades laterally into the outer layer of the cuticle. If the cornea is thin and the individual lens surfaces slightly convex, the lenses can be clearly seen and typically have hexagonal outlines.

The Lower Cambrian Olenellina seem to have had holochroal eyes, though the visual surfaces are at present only commonly found in juveniles. Indeed the record of eyes in adult Cambrian trilobites is poor, at least until the Late Cambrian. This seems to be a direct result of there having been an additional suture, the ocular suture, below the visual surface, so that on death or exuviation, the lens-bearing unit was separated from the rest of the librigena. Even if preserved, such
A small object is unlikely to be retrieved. The ocular suture, first noted by Öpik (1967), seems not to have been functional in meraspid Olenellina and juveniles of other Cambrian trilobites, and in the latter the visual surface adheres to the librigena. It is probable that the normal pattern in Ordovician and later trilobites, where the visual surface was part of the librigena, was derived by paedomorphosis from such an ancestral state. Fully developed eyes of abathochroal type have been described in Lower Cambrian eodiscids from China (X. Zhang & Clarkson, 1990). Otherwise, because of the ocular suture and the comparative rarity of well-preserved juveniles, little is known about the eyes of trilobites for the first 50 or so million years of their history.

The earliest eyes that are well known (other than those of the Eodiscina) are those of the Olenidae (Clarkson, 1973b; Clarkson & Taylor, 1995). In the first representatives (Olenus and Leptoplatus), the ocular suture was functional, and the visual surface is unknown (Fig. 103). Later olenids, however, may retain the eye as part of the librigena, as in Sphaerophthalmus and Ctenopyge (Fig. 104), where the visual surface is globular and the lenses thin and biconvex, and in Peltura and Parabolina, where the eye is flatter and sessile and lenses are arranged differently.

Much more is known about the eyes of post-Cambrian trilobites, for in these, with a few exceptions (notably most Calymenidae), the ocular suture was not developed, and hence the visual surface was retained. In most Ordovician groups the diversity in the form and size of the eye is singular; although most of these trilobites have eyes of moderate size with a few hundred lenses, in some the eyes became gigantic as in some Cyclo-
pygidae (Fig. 105) and even fused anteriorly (Fig. 101.2). The striplike eye of Remopleurus has over 15,000 tiny lenses. Many Ordovician forms are blind. Holochroal eyes are normally quite large and distinct in post-Ordovician trilobites; they are usually reniform with well-developed lenses, and this kind of rather conservative organization persisted in trilobites through the Carboniferous and to the end of the Permian.

Geometry of the Visual Surface and Lens-Packing Systems

During the ontogeny of trilobites, the eye first appears in the protaspid stages at the anterolateral margin and in successive molts migrated inwards and backwards, taking the facial suture with it. The first lenses are emplaced in a generative zone lying directly below the palpebral suture, initially forming a single horizontal row. This generative zone (and the palpebral suture) has the form of a horizontal, anteriorly expanding logarithmic spiral. Subsequent lenses are always emplaced below existing ones at the bottom of the visual surface, so that as the eye grows, the generative zone moves away from the palpebral suture, all the while contributing lenses in regular sequence to the base. Characteristic patterns of lens packing emerge, which are normally constant for the species and sometimes even within a family or superfAMILY. On the whole these are based upon a system of hexagonal close packing, and departures from a simple pattern have little to do with the optics of the eye; they are simply solutions to the problem of accommodating (initially) disc-shaped objects on a curving surface. Two categories can be distinguished. In the first the lenses are all of the same size, and inevitable irregularities in packing develop in certain regions of the visual surface. In the second type the lenses are graduated in size and are regularly arranged. The primary control seems to be the spacing of the lens centers and whether it remains constant or changes arithmetically or logarithmically as the eye grows. Several such patterns have been analyzed by Clarkson (1975).

Visual Fields

The angular range subtended by the outermost lenses is known as the minimum
visual field. Its angular dimension depends upon the size of the eye and its surface curvature. Since in holochroal eyes the peripheral lens-axes are usually normal to the visual surface, the field of view can be worked out simply by measuring their angular bearing, at specific points along the edge of the eye. The technique was described by Clarkson (1966a). Two basic types of angular visual field are encountered in trilobites with reniform eyes and are exemplified by the eyes of two species of the Devonian styginid Paralejurus (Fig. 106). *P. brongniarti* has a striplike field of view, extending from front to rear, with a latitudinal range of no more than 30° above the horizontal. In *P. campanifer*, on the other hand, the visual field extends from below the horizontal to 90° above, so that the animal could see directly upward, and the fields of the two eyes overlap at front and rear. The differences in these forms may relate directly to mode of life; they may, on the other hand, be more a
function of the highly vaulted form of *P. brongniarti* as opposed to the flattened *P. campanifer*. Peculiar visual fields, such as the wide, laterally directed outlook of many cyclopygids, have implications for their swimming mode of life.

Lens Composition, Structure, and Optics

The lenses of the holochroal eye (and of all other trilobite eyes) were constructed of primary calcite (Towe, 1973), which was probably set in an organic base. Each lens (or, in some instances, small groups or domains of lenses) behaved as a single crystal with its c axis normal to the visual surface. In this way birefringence was minimized. Where lenses have been unaffected by diagenesis, they show a radial pattern (Lindström, 1901; Clarkson, 1979a) that is visible in thin sections of lenses ground parallel with their principal planes and confirmed by acid etching of whole specimens of lenses. Each lens consists of thin, originally contiguous, calcitic lamellae that are radially arranged around the c axis (Fig. 107). The lamellae themselves are formed of slender calcite fibers (trabeculae), which in convex lenses turn outwards in a fanlike manner so
that their distal terminations are nearly normal to the cambered outer surface of the lens. This apparently complex system may result from its manner of growth; possibly lenses could increase in size only by addition of trabeculae at the edges.

The lenses of thin-shelled trilobites are normally thin and biconvex, as is seen in the olenids (Fig. 104.3). Thicker lenses are more common in such post-Cambrian trilobites as styginids and proetids. They may be biconvex or planoconvex, the latter type being especially common in thick-shelled trilobites with very long columnar or prismatic lenses such as are found in Asaphus. In some species of this genus, the lenses form elongated calcitic pillars, like basaltic columns, as first was recognized by Lindström (1901). These lenses have semicircular lower terminations (Clarkson, 1973a, 1979a), and ray tracing analysis shows that they would bring light to a focus at about the same relative distance below the lens as would the thin biconvex lenses of the olenids or any of the intermediate types. The thickness of the lens is thus mainly a function of the thickness of the exoskeleton rather than being of other significance; what is important optically is the relative convexity of the surfaces.

Nothing is known of the internal structure of holochroal eyes. It is highly probable that an ommatidium-like unit lay below each lens, and both facet diameter and interommatidial angle lie within the same range as modern nocturnal compound eyes (Fordyce & Cronin, 1993). The function of the holochroal eye is thus considered to be similar to that of modern arthropods, adapted to moderate to dim light intensities.

THE SCHIZOCHROAL EYE

Schizochroal eyes appeared quite suddenly in the Early Ordovician and were confined to the suborder Phacopina (Lower Ordovician to Upper Devonian). Whereas the eyes of some other taxa have particular features in common with the schizochroal eyes of Phacopina, these latter have unique, distinctive characters which are unknown elsewhere in the animal kingdom. Schizochroal eyes are normally large, and the visual surface approximates to a lunate segment of a cone (Fig. 108). The lenses are thick, biconvex, and much larger and normally fewer than those of holochroal eyes. They are separated from each other by material known as interlensar sclera, which is identical in structure with the exoskeletal cuticle. The lenses are normally arranged in a regular system of hexagonal close packing.

When schizochroal eyes are cut in transverse section, their difference from holochroal eyes becomes most apparent (Fig. 109). Each biconvex lens is set at the outer end of a cylindrical cavity, the sublensar alveola. The outer lens surface is covered by a thin, pellucid corneal covering; this continues at the lens margin to cut through the sclera as a cylindrical ring, the intrascleral membrane, free of contact with the lens. In rare instances (Clarkson, 1967a, 1969a) this membrane has been observed projecting below the visual surface as a tapering cylinder, closed off below. The sublensar alveoli, in plan, are set radially, but in vertical section, at least in Ananaspis, they are all parallel and horizontally disposed.

Visual Surface Geometry, Growth, and Lens Packing

In most schizochroal eyes the lenses are arranged in the economical system of hexagonal close packing, and this is usually regular. In an eye such as that of Acaste, the
dorsoventral files and ascending and descending diagonal rows can easily be distinguished (Fig. 108). The lenses vary in size within any eye, however, and this variation is a function of the growth geometry of the visual surface.

© 2009 University of Kansas Paleontological Institute
As with holochroal eyes, the earliest formed lenses are emplaced in a generative zone that lies directly below the palpebral suture. This zone forms an anteriorly expanding logarithmic spiral that keeps the same form throughout successive molts, though it increases in size. The earliest lenses may form a single upper horizontal row, as in *Ananaspis*; but more often, especially if the eye has many lenses (*Odontochile*), there may be one or more accessory, upper, horizontal rows above the first, full, horizontal row. These were emplaced during the very first stages of growth, when the eye was very small but rapidly growing forward. New horizontal rows are always emplaced below existing ones, the lenses of each new row being offset from the ones above, so that the characteristic packing system emerges. As the eye grew the generative zone moved away from the palpebral suture, contributing lenses in regular sequence until the eye was fully grown. There is no direct relationship between the basic shape of the visual surface and the packing of the intersecting rows of lenses. The generation of the visual surface and lens emplacement were governed by different developmental programs, but since the visual surface expanded as it grew downwards, extra space became available for new lenses, a matter that had implications for the packing of lenses.

In nearly all schizochroal eyes the size of the lenses varies across the visual surface, and it is clear that the size to which the lenses grew depended upon the relative spacing of the lens-centers when newly introduced in the generative zone. If the lens-centers were closely spaced, lenses never grew large; if, on the other hand, the centers were wide apart,
the lenses grew much larger. When the lens-centers were programmed to develop in sequence without any change in spacing, the lenses were all of the same size and lay in parallel dorsoventral files. In one of the earliest phacopid genera, the Ordovician *Ormathops* (Zeliszkellinae) (Fig. 110.1), this is exactly what happened (CLARKSON, 1971). Since it is geometrically impossible to pack uniformly sized lenses upon a curving, downwardly expanding surface in regular sequence, the ideal arrangement of hexagonal close packing breaks down. Sometimes areas of loose and irregular lens-packing are visible on an otherwise regular surface. In other specimens of the same species, blocks of parallel, regular dorsoventral files lie against the truncated edges of other such blocks, the line of junction being termed a *caesura*. New lenses arose when a critical spacing arose (presumably at each molt stage) between the generative zone and the lenses above it. The downward expansion of the visual surface created extra space and this was filled by one or more lenses, which were generated through the automatic operation of the program. Each new intercalated lens then acted as a focal point for the generation of further lenses, either in parallel blocks truncated by caesurae or by irregular areas, depending on the precise conformation of the eye.

In all other Phacopina the problem of achieving regularity was solved simply by the introduction of a constant arithmetical increase in spacing as the eye grew (Fig. 110.3). The result was that the lenses increased in size downwards (and usually also to the front and rear). Irregularities in such eyes are thus seldom found.

Structure and Optics of the Lenses

The internal structure of phacopid lenses is usually diagenetically altered, but in rare instances there has been no major change; and some or all of the original internal organization can be elucidated. LINDSTROM (1901) illustrated sections through the eye of *Phacops macrophthalmus,* each lens of which seems to consist of a doublet structure with two adjacent components (Fig. 111). Although LINDSTROM believed that these doublets were diagenetic artifacts, their presence as original structures has been amply confirmed by recent work. Schizochroal lenses, like those of holochroal eyes, were constructed of lamellae arranged radially around the c axis. In sections normal to the principal plane it is apparent that the lower part of each lens was occupied by an intralensar bowl; this interlocked with a mushroom-shaped upper unit. As in holochroal eyes, the c axis was normal to the visual surface. There are at least three patterns of lens construction within Phacopina, and these seem to have operated on slightly different optical principles. Some early Phacopina such as *Dalmanitina* have rather parabolic lenses, and the intralensar bowl in each was flattened with a central indentation (Fig. 112.2). The contemporaneous *Crozonaspis*, on the other hand, had more biconvex lenses.
in which the bowl was thicker and had a wavy upper surface (Fig. 112.4). It has been shown (Clarkson & Levi-Setti, 1975) that the upper units of these correspond respectively to ideal, thick, but aplanatic lenses designed by Descartes and Huygens in the 17th century (Fig. 112.1,3). Experimental models have been made with intralensar bowls of differing refractive indices; these show that a slight difference in refractive index between the upper unit and the bowl, operating together with the correcting surface, focuses light very sharply a short distance below the lens.

The lenses of the Devonian Phacops (Fig. 113–114, 115,3–4) are ultrastructurally very complex (Clarkson, 1979a; Miller & Clarkson, 1980). The bowl consists of dense calcite and thins to be absent proximally. The upper unit is built of calcite sheets, radially arranged around the c axis of the lens. Each of these sheets in turn consists of a palisade of calcite fibers parallel with the c axis proximally but fanning outwards near the outer surface of the lens. This may have minimized the effects of birefringence. As Campbell (1976, 1977) noted, a central core of dense calcite may also have had a correcting function. After ecdysis the lens is reformed. In the earliest postecdysial stages, the cuticle was still flexible and the lens had the form of a small cone suspended from the center of the cornea. Subsequently, the lens spread to the periphery, thickening and becoming saucer shaped, and ultimately acquiring the characteristic wavy proximal surface of a Huygensian lens. The bowl and core differentiated last of all. Horváth (in Horváth & Clarkson, 1993) calculated the successive forms of an idealized lens of Phacops, optimized for correction of spherical aberration at all stages of postecdysial development. The actual growth series conforms very closely to the theoretical computation; vision was bio-optimized from the earliest post-ecdysial stages. The differentiated intralensar bowl probably functioned not only as a correcting element but also reduced reflectivity and thus optimized the transmission of light to the photoreceptors below.

Origins, Functions, and Use

The earliest schizochroal eyes were probably derived paedomorphically from a holochroal ancestor (Clarkson & Zhang, 1991, p. 283). In the few examples in which early growth stages of holochroal eyes are known, the lenses are relatively very large and separated from each other by interstitial material. The retention of this juvenile condition by paedomorphosis into the adult phase would be the first and most important stage in the origins of the schizochroal condition. Although the earliest known eyes of Phacopina are typically schizochroal, Ormathops (Fig. 110.1–2) has an eye with a different lens-packing system from that of later Phacopina, contingent upon its lenses all being of the same size. It may well have retained the identical lens size from a holochroal ancestor, but this early system was abandoned and regularity was achieved at the expense of identical lens size. This
must be important in some way to the functioning of the eye as a whole.

It is not yet known how the schizochroal eye operated, but certain lines of evidence are suggestive. The visual field normally formed a relatively narrow horizontal strip, with the upper limit of vision rarely rising above 40° latitude (Figure 115.1,3). The lens axes were not distributed uniformly within the visual field. They were usually clustered towards the base of the visual field (Phacops), and in some genera (Acaste) the plan curvature of the visual surface is so much greater than the profile curvature that the lens axes of the dorsoventral files tended to form visual strips traversing the narrow visual field from top to bottom (Fig. 115.2,4). Such eyes as these seem initially to be well adapted for movement perception, since a passing object would register as a flicker across the visual field. This could have been achieved, however, with much simpler lenses than the elegant lens doublets actually possessed by Phacopina, and clearly schizochroal eyes had higher levels of function than perception of movement alone. The interpretation thereof, however, depends upon the nature of the sublensar structures, and evidence is still very limited.

Stümer interpreted the subparallel dark lines seen inside the eye facets in X-ray photographs of pyritized Phacops (Fig. 88) as ommatidia (Stümer, 1970; Stümer & Bergström, 1973, p. 112–113). Doubts as to the validity of this interpretation have been expressed by Clarkson (1973a, 1979a, p. 16) and Campbell (1976, p. 175), and Professor J. Bergström (personal communication, March 1995) does not accept it. He pointed out that these supposed optical fibers form part of a series with the filaments of the outer limb branches (Fig. 88) and may continue outside the eye. Further, they are in a single, subparallel row, not in a radially arranged bunch in relation to the eye facets. Accordingly, Figure 94 has been modified from the original version (Stümer & Bergström, 1973, fig. 5a, p. 115) to omit the ommatidia, and the label ommatidia has been removed from Figure 88.

The view is now generally held that, rather than an ommatidium, there lay below each schizochroal lens a relatively short ocellar capsule floored by a flat layer of narrow cells forming a retina. This was first proposed on the basis of poorly known, short, cylindrical tubes below the lenses (termed cone in Fig. 109.3) and on possible modern analogues (Clarkson, 1967a, 1979a; Campbell, 1976) (Fig. 116). More recent physicomathematical analysis of the lens optics (Haack, 1987; Fordyce & Cronin, 1989, 1993) lends considerable support to the retinal-capsule
model. From this work it emerges that eyes of Phacopina are best regarded as an assemblage of simple retinal eyes rather than as an ommatidial eye. In theory, starting from an array of simple visual units, visual acuity could be improved in two ways. One is by generating many identical ommatidia and packing them closely together to make a standard compound or holochroal eye. The other would be by increasing the number of light detectors beneath individual lenses—in other words, to have a retinal layer below each one. This seems to have taken place in the Phacopina, and the resolving power of each lens in a schizochroal eye of advanced type, in which the lenses are very large and relatively few, has been estimated as ten times that of modern compound eyes, comparable to that of a frog. A further consequence of retinular organization, which also takes account of the extreme convexity of each lens, is that adjacent lenses within the
one eye could have been used for stereoscopic vision (Stockton & Cowen, 1976). A pair of adjacent lenses covering a particular region of the visual field could both have picked up the same moving object on opposite sides of their respective retinas. As it moved towards or away from the trilobite, its distance could have been inferred by comparison of images in adjacent retinas at any one time, whereas its movement could be detected by comparison at successive times. The schizochroal eye might thus have functioned primarily to give a warning of the presence and movement of nearby objects and in particular a three-dimensional appreciation of actual distance. Such a system could have operated if the neural relay system had been as advanced as the lenses. Several groups of living arthropods have eyes with comparatively few and separated lenses (and those of male strepsipterid insects appear remarkably similar in many ways to the schizochroal eyes of trilobites). Other arthropods, including the larval sawfly Perga and the water bug Notonecta, have separated lenses with an internal, aplanatic doublet apparatus. Even so, none of the modern counterparts are so similar to the schizochroal eyes of trilobites that they give unequivocal evidence about how these eyes actually worked (Horváth, Clarkson, & Pix, 1997).

FIG. 114. *Phacops rana milleri* STEWART; reconstruction of part of lens array with lenses dissected to show internal structure (Miller & Clarkson, 1980, fig. 3).
Clearly the eyes of Phacopina were organs of high biological quality. Although blindness is not uncommon in trilobites (in species closely related to those having either schizochroal or holochroal eyes), it may be environmentally related and does not imply that the eyes were of poor enough quality to have been easily dispensed with. There is a general correlation between the possession of large, well-developed eyes and the ability to enroll, and major changes both in eye structure and enrollment ability seem to have taken place in many early Ordovician groups at about the same time. It seems reasonable that the trilobite eyes functioned primarily as distant, early-warning sensors for the detection of approaching predators, and the combination of advanced visual and protective systems may have been a major factor in prolonging the existence of trilobites until the end of the Permian.

THE ABATHOCHROAL EYE

A third type of eye, designated abatchochal, has been described by Jell (1975b) in the Cambrian Eodiscina. First described in such Middle Cambrian genera as Pagetia and Opisodiscus, this kind of eye has recently been recorded (X. Zhang & Clarkson, 1990) in the Lower Cambrian Neocobboldia from China, making eyes of this kind among the oldest known.

The abatchochal eye superficially resembles a small schizochroal eye, having a relatively small number (50 to 70) of biconvex lenses separated from each other on the visual surface, with a semiregular arrangement of hexagonal, closely packed rows and files. It does not, however, have any indication of a deep interlensar sclera between the lenses, and evidence for an interceral membrane is limited. It is possible instead that each lens had a separate corneal membrane, which may have been fixed to the interlensar areas round the lens margin. If these differences can be confirmed, the abatchochal eye may safely be considered a distinct type. Although the eye of Neocobboldia is of this kind, that of the closely related Shizbudiscus is of a more normal holochroal type.

Bearing in mind the ontogeny of holochroal eyes, which initially had separated...
lenses, it is probable that the abathochroal eye was derived by paedomorphosis from an ancestor of holochroal type, as is considered likely for the origin of the much more elaborate schizochroal eye. Internal molds of *Neocobboldia* from China frequently show a small dimple in the center of each lens (Fig. 117). This indicates that the lenses were of the corrected, aplanatic kind described by Descartes, able to bring light to a sharp focus though they were of moderate thickness. Despite the elegance of these early eyes, many Eodiscina lost their visual organs altogether, and this loss may have been environmentally related.

EYE REDUCTION AND BLINDNESS

Compound eyes are primary structures in trilobites, appearing in the earliest genera and persisting in most trilobites until the final extinction of the group in the Late Permian. Secondary blindness, however, is not uncommon, especially in such long-lived major taxa as the Agnostida and Trinucleoidea, in which it is characteristic of the group. It also occurs in some representatives of taxa in which the eyes are normally developed.

There are many modern, deep-sea animals in which the eyes are either hypertrophied or reduced and lost, and blindness is also the norm in endobenthic forms. In many of the blind trilobites, the loss of the eye is likewise probably related to living in dark or infaunal habitats, and it is probably no coincidence that in some blind groups sense organs of a different kind were highly developed and seem to have been the dominant environmental monitor. The trinucleoids present a particularly interesting case. The earliest (Tremadocian) and probably ancestral genus is *Orometopus*, in which the eye and facial suture are present but the pitted fringe, so characteristic of later trinucleids, is undeveloped. In the later trinucleids, however, the fringe becomes large and prominent, with the fringe pits regularly arranged, while the suture becomes marginal, and the eye is lost. If, as has been often suggested, the fringe acted as a compound ear—a vibro- or possible chemosensory organ—it is quite possible that this became the primary sensory organ when vision was lost. A parallel situation may have existed in the Harpina, in which the pitted fringe is large but the eye is reduced to a few lenses only. The evidence for this suggestion is no more than circumstantial and is clearly not applicable to the Agnostina or other groups where there is little or no evidence of other kinds of sense organs.

A few instances are known in which secondary eyes have developed in otherwise blind groups. Thus the lateral eye spot described by Stormer (1930) on the gena of the trinucleid *Tretaspis* was probably an organ of secondary origin. A further example was given by Courtessole (1973) in the Middle Cambrian Conocoryphidae of the Montagne Noire in southern France. All conocoryphids in this region are blind except for the one species *Conocoryphe oculata*,

© 2009 University of Kansas Paleontological Institute
which is otherwise very similar to related species in the same area. This species has a curving lobe of normal eyelike form on the gena, though the suture remains marginal. It is poorly preserved, but there is little doubt that it is an eye. Presumably, in this case, genes for eye development were masked and not lost, and a secondary eye of a kind could develop with the removal of the masking genes.

The clearest examples of progressive reduction of eyes are to be found in Middle and Upper Devonian Proetida and Phacopina in western Europe. Richter and Richter (1926) recorded examples of both these groups from the Devonian of Germany, showing lateral migration of the facial suture accompanying eye degeneration and finally blindness. A clear morphological series in Phacopina is well known (Fig. 118), and Erben (1961) showed various paths to eye loss in Proetida. These works were based upon morphology alone, however, since at the time of writing the stratigraphy was poorly known. It has been shown, however, that in Tropidocoryphinae from southern France, eye reduction is truly progressive and can be followed through time (Feist & Clarkson, 1989). In the Middle and Upper Devonian carbonate succession in the Montagne Noire, an unbroken series of conodonts allows a precise stratigraphical zonation. Tropidocoryphinae occur throughout the sequence. Whereas these had been a stable group for some 40 million years prior to the middle Givetian, they underwent a rapid evolution in their last few million years, exhibiting some striking transformations of the cephalon and the regression and virtual disappearance of the eye within a relatively short interval of time (Fig. 119). They also diminished markedly in size and lost...
Fig. 119. Evolution of the last Tropidocoryphinae in the Devonian of France, showing two separate lineages with eye reduction. Dominant environments indicated; vertical bars show stratigraphical range; stippled lines suggest relationships (Feist & Clarkson, 1989, fig. 2).
their original relief so that the glabella became virtually flush with the surface of the cephalon, probably adaptations to an endobenthic life. Two separate lineages show eye reduction and blindness. In the first, the Tropidocoryphe (Longicoryphe)-Erbenicoryphe lineage, the cephalon retained the same pattern as the ancestral rootstock, but the eye was progressively reduced to a slightly convex surface, indistinctly defined and lacking lenses. The second lineage, T. (Longicoryphe)-Pterocoryphe-Pteroparia, shows a remarkable, backward migration of the anterior branch of the suture, which progressively swung posteriorly in successive species over about 3 million years. Here again the eye degenerated progressively so that the last forms were blind. Sutural migration and eye reduction are not genetically linked, however, and the unusual form of the cephalon and suture probably resulted from an adaptation to the euxinic environment in which Pterocoryphe originated. The reduction of the eye and the association with the adoption of an endobenthic habit is thus parallel in the two lineages but superimposed upon a different original cephalic configuration.

Eye reduction and blindness in these Upper Devonian Tropidocoryphinae can be related to local environmental controls. Diminution and loss of the eye, however, seem to have been widespread generally in proetids and phacopids during the Late Devonian. Among the rich proetid faunas of the late Upper Devonian of southern China (YUAN, 1988), many endemic genera and species have the eye reduced or absent (e.g., Bapingaspsis, Skemmatocare); and it has proved possible to trace their phylogeny. FEIST’s (1995) study of eye reduction in Upper Devonian phacopids showed it to be the result of progressive paedomorphosis, so that the early larval configuration of the visual organs is retained in the adult of the descendant. FEIST suggested that Upper Devonian eye reduction on a global scale is probably linked to periods of eustatic deepening, and the trilobites became adapted to life on, or burrowing within, a muddy sea floor beyond the limit of light penetration.

CEPHALIC SEGMENTATION
H. B. WHITTINGTON

The number of segments that were originally fused to form the trilobite cephalon has been a subject for discussion because of its possible significance in high level classification of Arthropoda. It is assumed that each segment of the thorax and pygidium is the exoskeleton of a single somite. The occipital ring of the glabella, the posterior border, border furrow, and adjacent area of the gena are similar to the axial ring, posterior pleural band, and pleural furrow of a thoracic segment and hence are assumed to represent much of the posterior cephalic segment. Lateral glabellar furrows, separated by a distance (exs.) similar to the length (exs.) of the occipital ring, suggest the presence of more anterior cephalic segments. Such glabellar segmentation is most evident in early developmental stages, and clues to the number of cephalic segments have been sought from such stages, and the holaspides, of stratigraphically early trilobites. Prominent among the latter have been Olenellina, the views of WALCOTT (1910), STØRMER (1942), RAW (1953), PALMER (1957), and BERGSTROM (1973a, 1973d) having been derived largely from American and European species. HUPÉ (1951, 1953a) introduced new ideas into the discussion from his studies of Early Cambrian Olenellina, such as Daguinaspis, from Morocco. The early developmental stages of Olenellus (PALMER, 1957) have an occipital ring and three distinct axial segments between it and the frontal glabellar lobe, and these divisions are also shown by Daguinaspis and species of other genera. Differences of opinion arise over the number of segments represented by the frontal lobe. This lobe, into which the ocular lobe runs (Fig. 16), is undivided in the early developmental stages of Olenellus, and PALMER concluded that it represented a single segment. The ocular lobe is divided into two ridges in Holmia, the posterior passing into the most posterior portion of the frontal lobe, the anterior into a more anterior portion of that lobe (Fig. 120). BERGSTROM (1973a) there-
fore concluded that the frontal lobe included two segments and an assumed segmental complex, which he referred to as the acron. **Hupé** concluded that the frontal lobe in cephal of *Daguinaspis ambroggii* (about 5 mm in length) was subdivided by two pairs of lateral glabellar furrows and hence may have included three segments (Fig. 121), the antennal and preantennal segments, and segment x. **Størmer**'s (1942) studies of development and segmentation led him to recognize, from ridges and furrows in the adaxial genal region and the ocular lobe, that the pleural region of the preoccipital segment curved back into the intergenal spine (Fig. 122). This deduction was amply confirmed by the earliest developmental stages described by **Palmer** (1957). It is also clear that the ocular lobe (or the inner band of it) is the pleural region of the fourth segment in front of the occipital, and by **Størmer** and **Bergström** this was regarded as the antennal segment. The fossula lies in the axial furrow immediately in front of where it meets the ocular lobe, and the antenna is presumed to have been attached to the slope of the fossula. A corollary of **Størmer**'s recognition of this segmentation was that the pleural...
portion of the occipital segment included the anterior band and pleural spine of the first thoracic segment. Hence the joint between cephalon and first segment (and between the remainder of the thoracic joints) was secondary, cutting across original segmentation (Fig. 122). This view was embraced and extended by Palmer (1957) but rejected by Bergström (1973a, 1973d).

It is generally accepted that the trilobite cephalon included at least five segments, the eye ridge having been part of the fourth segment in front of the occipital segment. The fossula appears to have been the apodeme of this fifth segment, to which the anterior wing of the hypostome was linked and the antenna attached. As summarized above in the section on trilobite limbs, known cephalic appendages included three (or perhaps four) pairs of biramous limbs. Presumably the three pairs were linked to the occipital (O) apodeme and those of the next two anterior segments (1, 2), segment 3 not bearing such limbs. In Olenellina only the antenna is known (Dunbar, 1925), and appendages of protaspides are unknown. In their recent reconstruction of the protaspsis of Encrinuridae, Speyer and Chatterton (1989, fig. 15a) showed the antenna apparently attached to the apodeme of segment 3, but it was more likely to have been attached farther forward, immediately behind the anterior wing of the hypostome. How many more segments may have been fused to form the cephalon is a matter of debate. Størmer (1942) suggested that a sixth, preantennal segment may be represented by the most anterior portion of the frontal glabellar lobe, the anterior and lateral cephalic borders, and the visual surface of the eye lobe and extraocular genal area (Fig. 122). Hupe (1951) added a seventh segment x in the axial region (Fig. 121) and considered that the preglabellar area, the visual surface of the eye lobe and extraocular area, and the rostral plate and hypostome were formed from the fusion of several more anterior segments. Bergström (1973a) considered, however, that the axis terminated at the preglabellar furrow and that the area in front of it was pleural (Fig. 120). He also suggested that because a presegmental acron is present in all extant

Trilobita

FIG. 122. Holmia kjerulfi (Linnarsson), Lower Cambrian, Norway. Diagram showing the supposed relationship between primary and secondary segmentation in the cephalon and two thoracic segments; primary segments shaded alternately on left side (Størmer, 1942, fig. 14).
arthropods, the acron was probably present in trilobites and included the eye. He suggested that a sixth, preantennal, segment was present that extended into the outer band of the ocular lobe. Pillola’s (1991, p. 77–84) consideration of Hupé’s views in relation to Lower Cambrian trilobites led him to conclude that the glabella had six distinct segments at the maximum (the anterior being the preantennal segment of Hupé) (Fig. 121). In addition is an anterior portion, which may be part of the glabella or may form the parafrontal band. He considered that the segmental nature of segment x (of Hupé) is uncertain (since it includes a less prominent portion of the eye ridge), and he referred to the view of Jell (1978a) that the parafrontal band may be part of the network of genal caeca.
MODE OF LIFE, HABITS, AND OCCURRENCE

H. B. WHITTINGTON

Speculation on this subject began in the middle of the last century and has broadened as appendages were discovered, the significance of facies relationships was appreciated, and the study of trace fossils intensified. The abundance and variety of trilobite remains in relatively shallow-water sediments, in contrast to the limited kinds in deeper waters farther off shore suggest that most trilobite species were part of the shelf benthos. Exoskeletal morphology and comparisons with living animals were used to interpret mode of life in earlier work by Dollo (1910), Raymond (1920), and Rudolf Richter (see summary by Schevill, 1936); and this approach continues to be valuable as, for example, in Thomas and Lane’s (1984) use of morphology in discussing the ecology of Silurian trilobites, Hammann’s (1985) work on calymenoids, and Eldredge’s (1970, 1971) comparisons with living animals in discussing mode of life. Comparisons with extant crustaceans are inevitable but must be used with caution because trilobites were not crustaceans. Brooks’s (1957) summary of the literature shows that from an early date authors were considering how and in what types of rock trilobites occur and the modes of life implied.

SPECIES IN WHICH LIMBS ARE KNOWN

Widely differing views have been expressed on the mode of life of Agnostina, as deduced from exoskeletal morphology and mode of occurrence. Authors have considered these trilobites to have been not only benthic but also planktonic (Robison, 1972a; Jago, 1973), parasitic (Bergström, 1973a), or living attached to algal strands (Přibyl & Vaněk, 1976, p. 13; Pek, 1977; Havlůček, Vaněk, & Fatka, 1993). The discovery of the ventral cuticle of Agnostus pisiformis (Fig. 82) has enabled the mode of life of this species to be discussed in greater detail. Müller and Walossek (1987) pointed out that when the animal was completely enrolled, all the appendages would have to have been packed inside (Fig. 123.1), despite the relatively large hypostome. When the trilobite was partially enrolled (Fig. 123.2), the antennae could have projected through the gape; the antennae were relatively short and were considered not to have been sensory in function, but rather to have entangled food particles and swept them back under the hypostome (as illustrated by arrows 1, 2, 3 in Fig. 124). The inward pointing spines of the inner branches of the trunk limbs may then have trapped these particles and moved them into the midline to be carried toward the mouth by the coxae (Fig. 124, arrow 4). A sucking mouth may have aided ingestion. Branches of the limbs specialized for respiration are thought to have been absent. Müller and Walossek suggested that the ventral integument and the club-shaped projections on the outer side of the inner branch of the trunk limb (Fig. 82) were well adapted for respiration. Perhaps the plumose setae on the outer branches of these limbs were used to create respiratory currents that bathed these structures. The second and third cephalic limbs of A. pisiformis had respectively either no inner branch or a much reduced one but had a long, flexible, outer branch that was spinoce distally. When the exoskeleton was partly enrolled, these limbs could have been curved and swept back in a propelling stroke, curved more strongly and folded in a recovery stroke, enabling the animal to swim. This gaping, partly enrolled attitude (Fig. 123.2) appears to have been the most likely one for feeding and swimming. Müller and Walossek considered that when the body was outstretched (Fig. 123.3) the relative lengths of the limbs made it unlikely that the animal could have walked on the sea bottom. Furthermore, the alimentary canal appears to have been severely constricted in this
position and the membrane covering the cephalothoracic aperture folded. Thus, to these authors the outstretched position seemed to have been an unlikely one for either feeding or locomotion (cf. Robison, 1964, p. 515). Müller and Walossek concluded, because of its occurrence in dark, bituminous shale and the associated fauna, that *A. pisiformis* was probably a benthic animal, feeding on the abundant detritus in
a flocculent zone, its limbs being not adapted for filter feeding.

The limbs of the Middle Cambrian *Olenoides* (Whittington, 1980a) are known in considerable detail (Fig. 83–85), making it possible to suggest the types of joints between the podomeres of the leg branch and the nature of the limb movements in walking (Fig. 98–99). Flexure of the leg branches, which were armed with bunches of ventral spines, may have enabled the animal to seize prey or decayed material and to have pushed it into the median groove, lined by the spinoce coxae. Metachronal movements of the coxae (Whittington, 1980a, fig. 9) presumably enabled food to be squeezed and shredded as it was passed forward to the mouth, which was positioned at the back of the hypostome. The search for food on the sea bottom may have been conducted not only by walking but also by the animal launching itself off the substrate and drifting in a favorable current (Fig. 125). It is questionable, however, whether *Olenoides*, once launched off the bottom by a backward swing of a few successive pairs of limbs, had any means of swimming. The filament-bearing, outer branch of the appendage appears to have been rigidly attached to the coxa so that if the coxa swung about a transverse axis, the outer branch would have been moved up and down with it. Whether the branch itself could have beenflexed is not known. Thus feeble currents may have been created as the outer branch moved toward and away from the ventral integument. Such currents would, at best, have provided only poor swimming powers.

The activities possible for *Triaarthrus eatoni* (Whittington & Almond, 1987) appear to have been similar. In this species the inner branches are notable for the development of spinoce endites on the proximal podomeres. These endites were triangular in outline and deep on the short podomeres of the posterior branches, becoming less deep on successively more anterior branches (Fig. 86.3–5). The endites may have aided in trapping food and holding it as it was conveyed into the midline. Such endites on the posterior leg branches are characteristic of trilobites otherwise very different in morphology from...
Trilobita

Triarthrus, for example Cryptolithus (Raymond, 1920, fig. 20), Rhenops (Bergström & Brassel, 1984, p. 70, fig. 1–3), and Phacops (Stürmer & Bergström, 1973, p. 118–119).

Triarthrus eatoni could enroll completely (Ross, 1979), the pygidium fitting closely inside the cephalic border, as could Placoparia (Fig. 96) and many other trilobites, the close fit achieved in different ways. In enrollment of such species, as with Agnostus, all the limbs would have to have been accommodated within the capsule formed by the exoskeleton, packed beside the hypostome, with the antennae folded back. Space was thus at a premium, and the body beneath the inner

Fig. 125. Left lateral stills showing how a trilobite such as Olenoides serratus (Rominger) may have launched itself off the sea bottom (horizontal line) to drift or swim a short distance before descending to the bottom (compare with Figure 99). Limbs that are in contact with sea bottom are solid black; others are shown in outline. Below each drawing is a panel showing an oblique view of part of the sea floor with the imprints made by the left legs only: arrow shows direction of movement. 1, Leg pairs IV to X swung back quickly to launch animal; 2, animal drifts or swims above sea bottom with pairs of legs swung back to offer less resistance; 3, leg pairs IV to X in promotor swing; pair X completes swing and touches bottom, to be followed in succession by pairs IX to IV, giving a second set of impressions; antenna incomplete, but cercus complete (Whittington, 1980a, fig. 13).
pleural region must have been of severely limited depth so that most of the body was concentrated within the axial region. Such considerations and the probable need for a hanging stance or upward curvature of the limbs to give stability were weighed in drawing the cross sections of *T. eatoni* (Fig. 86,3–5) and *Placoparia* (Fig. 95–96). A cross section such as that by Schmalfuß (1981, fig. 7), with a deep body in the pleural region, seems highly improbable for trilobites that enrolled completely.

Müller and Walossek (1987, p. 47–49) compared the biramous appendages of *Agnostus pisiformis* with those of other trilobites, commenting that the general construction was the same—the large coxa and gnathobase, the main branch being the inner one composed of six podomeres plus a terminal spinose one. The special form of the antenna of *A. pisiformis* and the differentiation of the anterior two biramous appendages from the remainder of the series is considered to be related to their function in food gathering and swimming. The specialization was related to the mode of life, one of swimming and drifting above the bottom but not walking on it. Other trilobites in which limbs are known have long, slim, tactile antennae followed by a series of biramous appendages of similar form, which show only gradational change in length of branches, spines, or endites. A series of inner branches of similar length and distance apart (exsag.) are essential to a gait that supported the animal along the length of the body. Thus, the similarity in form of the biramous series of limbs reflects the mode of life, walking on or digging and plowing into the sea bottom.

FORMS IN WHICH ONLY THE EXOSKELETON IS KNOWN

However well the exoskeleton is known, inferences on mode of life and habits are restricted by uncertainty about the nature of the limbs. In the spinose odontopleurids Whittington (1956d) suggested that the form of the cephalon and relative length of border spines (Fig. 22, 42) resulted in the animal’s resting on the substrate on the margins of the cephalon with the thorax and pygidium stretched out a short distance above the bottom. Clarkson (1966a, 1966b) showed that the visual field of the eye in phacopids is striplike, restricted vertically, but covering a wide field laterally. Orientation of this field horizontally gave an attitude of the body, when resting on the sea floor, similar to that in odontopleurids. Clarkson (1966c, 1966b) suggested that the thorax and pygidium could be stretched out above the sea bottom or inclined slightly downward to rest on the border spines (in odontopleurids) or on the margins of pleurae and pygidium (in Phacopina). Clarkson (1966a, 1966c) drew attention to the anterior arch of the cephalic border, curving up to the sagittal line, in phacopid cephalon when oriented in this fashion. Such an arch is characteristic of many trilobites, e.g., the Lower Cambrian *Crassifimbra* (Palmer, 1958), proetoids, Phacopina, cheiruroids, calymenids, and the olenid *Triarthrus eatoni* (Whittington & Almond, 1987, fig. 40). Clarkson emphasized the importance of this arch as an entry for respiratory or food-bearing currents when the animal was on the sea bottom. The appendages of *T. eatoni* were well suited to such a direction of entry. The anterior arch, however, is also coaptative, a necessary form to accommodate the posterior portion of the thorax and pygidium in complete enrollment; it may not have been related to respiration or food gathering.

The evidence from exoskeletal morphology may be tested against the geological evidence of the enclosing rock and associated fossils. A recent study of this type was by N. C. Hughes (1993) on large collections of *Dikelocephalus*; it exemplifies the problems in reaching firm conclusions on the mode of life of this probably epibenthic trilobite. The difficulties in interpreting morphology have given rise to disparate views on the habits of Illaenidae (Siegfried, 1939; Whittington, 1964; Bergström, 1973a; Whittington, 1997). In some species of illaenids, the
Trilobita

The convex cephalon is deeper than the thorax and pygidium, but not in all (Fig. 126). Illaenidae lack transverse furrows—that is, they lack glabellar, articulating, inter-ring, and pleural furrows, and the axial furrow is not deeply impressed. The thorax may be fulcrate or nonfulcrate, with a wide (tr.) axis giving an even smoother, rounded form to the exoskeleton, as in *Bumastus* (Fig. 1). BERGSTRÖM (1973a) suggested that illaenids lived with the cephalic margin resting on the sea bottom, the lower margin of the eye lobe hence parallel to the bottom surface, the thorax and pygidium curved down at a steep angle in a burrow; this posture was attained by burrowing backward. Such burrows, however, have not been observed, and the specimen illustrated by BERGSTRÖM (1973a, pl. 5, fig. 5–6) is not buried in this attitude (WHITTINGTON, in press). The morphology of the illaenid thorax (Fig. 47 and discussion) gives it exceptional flexibility, and it may be that these trilobites were vagrant benthos, specially adapted to crawling over the uneven surfaces of the reef habitat in which they occur abundantly. STITT (1976) argued that the Upper Cambrian *Stenopilus* (Plethopeltidae) may have lived with the thorax and pygidium in a vertical burrow (Fig. 127) and have used the anteriorly facing terrace ridges that traversed the pygidium to assist in burrowing. STITT also thought that the morphology of the thorax was such that the animal could have walked on the bottom (Fig. 127.1). For such walking to have been possible, the inner branches of the limbs would have to have been of similar length, not successively shorter as portrayed. Species of *Stenopilus* occur in association with reef mounds and may have inhabited mud patches between the mounds; no trace of burrows has been found with them. WESTROP (1983) coined the term illaenimorph for illaenids and other such trilobites as *Stenopilus*, which had a smooth convex exoskeleton, and linked this form with life in a burrow. FORTEY (1986) argued for a like habit for the Ordovician *Symphysurus*, as did BREZINSKI (1986b) for the Carboniferous proetid *Proetides*. FORTEY and OWENS (1990a; see section on evolution, p. 249) discussed the occurrence of illaenimorphs during the Paleozoic. The term illaenimorph is being used in a broad, general manner, and it is doubtful that it should imply that all such species dwelled in burrows. So-called illaenimorphs are frequently referred to as effaced, a term that presumably

FIG. 126. *Meitanillaenus niagarensis* (WHITFIELD), Middle Silurian, Wisconsin. 1, Dorsal view, 2, transverse section through anterior portion of pygidium, and 3, right lateral view, X2 (Whittington, 1964, fig. 1c–e).
implies a species that lacks the furrows that were present in its ancestors. Unless such an ancestral relationship has been demonstrated, a particular species is best described as smooth rather than effaced.

Arguments for the long-standing view that some large-eyed Ordovician trilobites were pelagic have been marshalled by Forney (1974a, 1985). He considered that an elongate body with a narrow (tr.) pleural region, convex axis, and deep apodemes was to be correlated with strong musculature and good swimming powers and that the large eye gave an all-around view. A vaulted cephalon is not thought to have been consistent with a benthic life, and the eye is unusual in having increased relatively in size during ontogeny. Analogy is with extant pelagic crustaceans that have large eyes. Geological distribution, particularly of Opiceuter (Forney, 1974a) and Carolinites (Fig. 128.2–3)—in presumed warm waters and in all facies—is consistent with an epipelagic habit. The occurrence of cyclopygids such as Pricyclopyge (Fig. 128.1) is confined to what are considered to have been deeper-water, off-shelf facies and is taken to suggest that they were mesopelagic, swimming at the lower limit of the photic zone. The peculiar paired organ on the third thoracic segment of some species may have been light sensitive, a special adaptation for this habit. Forney also distinguished two groups of pelagic trilobites: those like Carolinites (Fig. 128.2–3), having a broad, globular cephalon, long genal spines, and the poorly streamlined body of a sluggish swimmer, and others like the streamlined Novakella (Fig. 128.4), which may have been a faster swimmer and possibly predatory.

The large eye and wide geographical distribution have also been used as arguments for a pelagic habit of the Upper Cambrian Irvingella (Fig. 128.5), which has a wide (tr.) pleural region and is spinose. Largely on the grounds of their worldwide distribution, I considered that burlingiids such as Schmalenseeia were planktonic in habit (Whittington, 1981). These grounds alone are not adequate for such an assumption; burlingiids characteristically occur in outer shelf or slope facies, and their morphology affords no compelling evidence for assuming a planktonic mode of life (Whittington, 1994).

Spinosity and wide distribution have long been used as arguments favoring a planktonic habit in odontopleurids. However, the convex cephalon, the border of which may bear spines including a long genal spine, appears to be well adapted, as explained above, to resting on the sea floor. Clarkson (1969b) argued that two attitudes in life were possible for some odontopleurids, one
Trilobita

with the thorax and pygidium stretched out horizontally above the bottom and a second with the cephalon tilted slightly back, the thorax and pygidium inclined downward and backward. The relative length and direction of the cephalic border and genal spines and of the pleural spines allowed these two attitudes, but in some odontopleurids the second was not possible. Arguments on habit based only on exoskeletal morphology are notoriously open to question, but a case can be made for regarding some holaspid odontopleurids as having been benthic, drifting and swimming over the sea bottom, rather than planktotic. The wide distribution may be accounted for by the early growth stages having been planktonic. On the other hand, a detailed investigation of the morphology and occurrence of the Ordovician *Selenopeltis* (Hamann & Rabano, 1987; cf. Fortey & Owens, 1987, p. 106), a characteristic odontopleurid from cooler waters, has suggested active swimming and little contact with the sea bottom, that is, an epi- or mesopelagic habit.

Exoskeletal spines may have been in part protective, projecting around and upward when the animal was resting on the sea floor.
and making it more difficult to attack when enrolled; they may have also inhibited sinking or aided in balance when drifting or swimming. Such spines are known in a wide range of trilobites, including Nepea (Fig. 23), odontopleurids such as Apianurus (Whittington, 1956d, fig. 19), the lichid Cerataures (Thomas & Holloway, 1988, fig. 313–317), and the styginid Ancyropyge (Ormiston, 1967, pl. 2). A graduated array of genal spines (Fig. 22) and thoracic pleural and pygidial border spines may have propped the animal in position on the sea bottom, especially perhaps on a muddy bottom. The long, curving genal spines of some olenids (Clarkson, 1973b, p. 761) and of some raphiophorids (e.g., of Ampyx. Whittington, 1959a, fig. 6) have been interpreted as an adaptation for this purpose (Fortey & Owens, 1978, p. 238), though their length and delicacy and the presence of a frontal glabellar spine in Ampyx and other raphiophorids suggests perhaps an additional flotational and balancing function. The long, curved macropleural spine in Biceratops (Fig. 44), for example, may have served a similar function. Ingham (1968) referred to the stabilizing function of the thoracic macropleural spine of Cybeloides when the animal was digging into the sediment for concealment.

The frontal process was developed in very different groups—for example, in Seleneceme (Whittard, 1960), in asaphids, and in dalmanitids (where it may be bifid or trifid or an extraordinarily long spine)—and was spatulate in the calymenid Spathacalyxmen (Tilman, 1960) and species of the lichid Platylithus (Thomas & Holloway, 1988, fig. 179). The pygidial mucro was developed in the asaphid Megistaspis (Wandás, 1984), which also has the frontal process (Bohlin, 1960), and in some encrinurids (Fig. 57). In activity that required strong flexure of the body, the frontal process or posterior axial spine or mucro may have helped to keep the body in position on the substrate or may have aided in burrowing for concealment. Righting of the body after overturning may also have been aided by these spines, as well as by a median axial thoracic spine (cf. Fortey, 1974b, p. 27–28). Such an activity would have required the ability to flex the body dorsally.

The mode of life of Cryptolithus (Fig. 129) and other trilobites with a bilaminar pitted fringe has long been a subject of discussion (Richter, 1921; Stormer, 1930; Pribyl & Vaněk, 1986). Campbell (1975) reexamined Cryptolithus using silicified specimens of the exoskeleton to reconstruct the musculature and combined this with what is known of the appendages and a study of trace fossils. A sound case was made for attributing these traces to the activity of Cryptolithus, although the role of the outer branches of the appendages in burrowing has been questioned (Whittington, 1980a, p. 189–190). Campbell concluded that Cryptolithus was a benthic mud-feeder, able to dig down into the substrate, and with limited powers of walking and swimming. He argued that Cryptolithus had the ability to rapidly outroll the thorax and pygidium and that such an ability might have been used in swimming and in righting the animal if it were rolled over. The animal would have rested partially buried in the substrate on the outer portion of the fringe and genal spines, the innermost rows of pits exposed above the sediment. Campbell argued that the fringe probably had a sensory function and that it contained a branching system of digestive glands. This study is exceptional in marshalling the range of evidence available in coherent support of arguments.

The general form of trinucleids such as Cryptolithus (Fig. 129)—the strongly vaulted cephalon, the bilaminar fringe, and long genal spine—is repeated in dionidids and is characteristic of Harpes and its allies, in which the fringe is prolonged postero-laterally. In harpidids (Fig. 17) and entomaspids the form is similar, but the bilaminar fringe is less steeply inclined. Ludvigsen (1982) regarded Bowmania (Fig. 21) as an entomaspid; the horizontal fringe of spines projecting from the cephalic border...
and genal spine of Bowmania may have supported the cephalon on the sea bottom in the same manner as did the fringe of trinucleids and other groups mentioned above. These groups of trilobites were probably not all closely related; still much more distantly related were bathyurids (Whittington, 1953; Ludvigsen, 1978a, 1978b; Fortey, 1979), in which the highly vaulted cephalon and concave cephalic borders, prolonged posteriorly, repeated the general form of trinucleids and harpertiids. Bathyurids had large eye lobes and were typical of shallow-platform waters in North America. Fortey (1979, p. 82) argued that bathyurids such as Petigurus, which had a relatively thick exoskeleton, sought partial burial in the sediment as a protection against nautiloid predators. Punka (Fortey, 1979, p. 98) had a fan-shaped pygidium, and Fortey argued that this bathyurid did not live in a burrow in the manner suggested for some illaenids but that the broad, concave border assisted the animal in gliding over the soft sediment. The convex axial region of bathyurids and other trilobites has been interpreted as providing a large area for muscle insertion, and hence as suggesting relatively powerful appendages. The vaulted cephalon and broad border seen in these very different Ordovician trilobites reappears, for example, in the Devonian Mystrocephala (Whittington, 1960a) and in Cordania (Campbell,
Mode of Life, Habits, and Occurrence

Although in the latter the cephalic border is convex. The fringe, spines, or border around the vaulted cephalon of these different trilobites propped the cephalon on the sea bottom so that the thorax and pygidium were either stretched out well above it or inclined down toward it. Articulation of the exoskeleton allowed flexure of the body in the sagittal plane, not only partial or complete enrollment but also concave-dorsal flexure (see discussion of thorax, p. 43). Many specimens of entire exoskeletons are preserved without disarticulation and show such back-arching or a sinuous combination of back-arching and partial enrollment. The Rusophycus type of excavation (see below) is also associated with back-arching. In odontopleurids the preannulus was most developed in anterior segments, suggesting that the strongest dorsal concavity was in this region. GEYER (1990b, p. 58–62) pointed out that the backward curvature (in dorsal view) of the anterior margin of the first four axial rings of the ellipsocephalid Kingapsis made possible a dorsally concave flexure in the anterior portion of the body. The absence of such curvature in more posterior rings required dorsally convex curvature, giving an S-form in longitudinal profile. This suggested that it lived in a shallow excavation. Other ellipsocephaloids do not show this form of the anterior axial rings, and as a consequence the horizontally extended body suggests a life on the surface of the sediment.

Flexure of the body was essential to activity on the substrate, and the presence of coaptative structures in the exoskeleton of trilobites suggests that complete enrollment was a characteristic habit. It has long been urged that such enrollment was a protective reaction to attack by a predator and that a spiny exoskeleton when enrolled made an awkward target or an unwieldy mouthful. An elegant example in support of this idea is the restoration of the enrolled Burmeisterella by WENNDRÖF (1990, fig. 47). CLARKSON and HENRY (1973) also emphasized the function of coaptative devices in strengthening the exoskeleton against lateral shear by a predator. In studies of enrolled specimens of Phacops and Greenops from the Middle Devonian of New York State, BABCOCK and SPEYER (1987) and SPEYER (1988) discussed morphology, musculature, and enrollment behavior. They emphasized the role of rapid burial in the preservation of enrolled specimens and stressed that such enrollment was a response to such adverse conditions as a toxic environment or rapid influx of sediment. The possible musculature involved in enrollment and extension of the body has been discussed above (p. 101). A long-standing view (RAYMOND, 1920, p. 99) is that some trilobites used a rapid partial enrollment (i.e., a downward flick of the pygidium) to dart backward in an escape reaction. CAMPBELL (1975), however, argued for the opposite action, rapid outrolling, as a swimming or righting action in Cryptolithus. Probably the ability of trilobites to flex the body into a dorsally concave curve was necessary to right the animal if accidentally overturned; a long, median, thoracic or pygidial spine may have aided in such an activity. Rapid, complete enrollment, alternating with partial outrolling (i.e., clapping the isopygous pygidium and cephalon together) has been suggested as a possible swimming mechanism. For Agnostus pisiformis this mode of locomotion is considered unlikely (MÜLLER & WALOSSEK, 1987), and it appears improbable for larger trilobites such as asaphids.

BABCOCK and SPEYER (1987) emphasized that the complete encasement of the soft parts in tightly enrolled Phacops and Greenops protected the animal in conditions of sudden environmental change such as deoxygenation. As noted above in the discussion of enrollment in some dalmanitids, complete enrollment left a gap in the exoskeleton, and in Symphysurus (and possibly some other trilobites) minute passages remained. It is argued that such gaps aided in respiration while the animal was enrolled. By no means all trilobites had the soft parts sealed from the outside when enrolled,
because those in which the outer portion of the pleura was spinose did not fit closely (cylindrical enrollment of BERGSTROM, 1973a, p. 14). Complete enrollment may have been largely protective in function, but the protection was against different kinds of external factors.

The range of sculpture on the external surface of the exoskeleton and the transitions between types has been described in the section on microstructure and sculpture (p. 74–84). Prominent sculpture that thickened the exoskeleton may have strengthened it: for example, strong terrace ridges, closely spaced symmetrical ridges in an anastomosing or reticulate arrangement, or large tubercles that were not accompanied by any thinning of the cuticle. Sensory devices associated with sculpture have been described above. MILLER (1975) argued that asymmetrical terrace ridges comprised a current monitoring system, while STITT (1976) and SCHMALFUSS (1981) argued for the role of such ridges in burrowing and in gripping sediment. FORTY (1985, 1986) criticized aspects of these interpretations. Terrace ridges are present on the doublure of trilobites that may not have been benthic; on the other hand, such groups as cheirurids, encrinurids, calymenids, and dalmanitids lacked terrace ridges on the doublure, although probably many species were benthic. Terrace ridges and other forms of external sculpture may have had a different function in relation to behavior in different portions of the exoskeleton of species.

TRACkWAYS, TRAILS, AND BEHAVIOR

Traces of activity are a source of information on behavior, if they may be attributed to trilobites with some confidence. The trackway produced by a trilobite walking in the manner described above (Fig. 99), however, would have had no distinctive features and been difficult to assign to its originator. More distinctive trackways were ascribed by SEILACHER (1955, fig. 1; cf. OSGOOD, 1970, p. 351–352, fig. 17b, 20a, etc.; SEILACHER, 1959, p. 390–391, fig. 2b) to trilobites walking in fashions that I have regarded as unlikely (WHITTINGTON, 1980a, p. 194–195, fig. 12). These doubts concerned the proposed relative lengths of the limbs, the suggestion that all the limbs moved in a single metachronal wave, and the idea that part of the body was dragged along. Traces that include groups of parallel scratches have been also attributed to trilobites (OSGOOD, 1975, p. 98–100), including the sideways raking reported by SEILACHER (1955, p. 349–355, fig. 3, pl. 17, fig. 2). The manner in which such tracks were made and the supposition that they recorded a feeding activity are also open to question (WHITTINGTON, 1980a, p. 202).

The trace fossil Rusophycus is a bilobed hollow commensurate with a trilobite, which may show transverse or obliquely, forwardly directed grooves across the hollows. In the remarkable examples figured by OSGOOD (1970, pl. 57, fig. 6, pl. 58, fig. 4–5), the complete exoskeleton of Flexicalymene meeki closely overlies the bilobed trace and hence appears to have been its maker. Other examples of Rusophycus (e.g., OSGOOD, 1970, pl. 57, fig. 1, pl. 58, fig. 7–8; HOFMANN, 1979, pl. 9) show impressions of the cephalic and pygidial doublures, genal spine, and hypostome, as well as paired impressions beside the midline. The latter are considered to have been made by the proximal portions of the appendages, the coxae. These excavations may have been made by flexure and extension of alternate limbs (Fig. 130), enabling the animal to dig vertically downward. Examples of Rusophycus from the Lower Cambrian of Sweden (JENSEN, 1990), which intersect worm burrows, are considered to be traces of hunting burrows as trilobites dug down to capture worms. It has also been suggested that burrowing may have afforded protection from predators, for example, to trilobites that had the eye on the highest part of the gena or raised on a stalk, so that it was above the concealing sediment. INGHAM (1968) and HAMMANN (1985) pointed out that the abilities to flex the body...
Mode of Life, Habits, and Occurrence

into a curve concave upward or to tilt the cephalon down may have aided in covering the dorsal surface with sand and that spines may have helped in digging and in giving stability. It may be reasonable to suggest that forward walking (Fig. 131) by a trilobite in wet sand, with the cephalon slightly lowered, may have been a form of plowing employed in search of food. Such an activity would have left a nondescript trace, since the footprints at the margins of the furrow are not likely to have been preserved. The resistance to such furrowing would have been greater the deeper the cephalon. It has been urged (Sdzuy, 1957; Hammann, 1985) that the wedge-shaped form, high eye lobe, shovel-like anterior border of the cephalon, semicircular cross section, and smooth exterior of homalonotids are adaptations for burrowing. It seems reasonable to suggest that this form was an adaptation to making a deeper furrow. Study of trace fossils associated with Homalonotinae in the Lower Devonian led Wenndorf (1990, p. 15–21, fig. 7–12) to suggest the presence of grazing and hunting trails.

An undescribed trace fossil that shows a series of paired imprints repeated at intervals led Manton (1977, p. 48) to suggest that a trilobite could launch itself off the bottom.
and drift or swim before sinking again (Fig. 125). An asymmetrical Upper Cambrian trackway (Briggs & Rushton, 1980) in which scratches on one side are deep and transverse and on the other side are short or absent has been interpreted as probably having been made by a trilobite hopping in the manner suggested (Fig. 125) but under the influence of a current. This detailed description offers an alternative interpretation for dimorphic tracks of the type described by Seilacher (1955) and Osgood (1970). Thus, walking on the bottom, digging and plowing shallowly in it, launching off the bottom and drifting or swimming, and oblique progress against a current are reasonable activities to suggest for benthic trilobites and appear to have been recorded by trace fossils.

The trace fossil Cruziana extends straight or curved for up to a meter or more, may be 5 to 6 cm wide, and is characterized by a V-shaped pattern of grooves directed forward and outward. Varied forms of the trace have been illustrated by Seilacher (1970), Crimes (1970), Birkenmajer and Bruton (1971), and Bergstrom (1976). Outside the deeper, V-shaped grooves may be a narrower zone with finer scratches, and outside these may lie a continuous, longitudinal groove. A large slab showing straight and curved trails crossing one another and associated with a bilobed Rusophybus excavation was figured by Seilacher (1985, fig. 4), and the same association was earlier shown by Crimes (1970, pl. 12a,b). Cruziana has been ascribed to the activities of trilobites because it is commensurate with them, is abundant in Cambrian and Ordovician shallow-water sediments, and the longitudinal groove suggests a trail left by the genal spine. A curved trace, such as might have been left by the anterior border of the cephalon, is apparently not known in Cruziana but is recorded from apparently similar Triassic trails, which were ascribed to xiphosurids (Seilacher, 1985, fig. 2i). The large (maximum width 23 cm), Cruziana-like trail from the Triassic of South Africa may have a similar origin (Shone, 1979); these post-Paleozoic examples lack the characteristic V-form of the grooves. The view that the early Paleozoic Cruziana trails were made as an open furrow in mud and subsequently cast by silt and sand (Crimes, 1975; Baldwin, 1977) was opposed by Seilacher (1955, 1970, 1985) and Birkenmajer and Bruton (1971). These latter authors considered that it was a furrow plowed in loose, wet sand and silt overlying a mud layer. The investigation by Goldring (1985) suggested that the latter view is a more likely mode of origin and emphasized the complex nature of the casting of the track.

The production of a Cruziana track required considerable expenditure of energy (cf. Bergstrom, 1976, p. 1618) in what was presumably a search for food. A problem I find baffling (Whittington, 1980a, p. 200–
the nature of the limb movements required to produce the V-shaped grooves, sets of which overlap each other in succession (Birkenmajer & Bruton, 1971, fig. 10). Pairs of limbs would have to have been directed forward and outward and flexed in toward the midline to produce the grooves. Such a method of dragging itself forward, through a layer of sand, would have been clumsy and inefficient because of the heavy demand on energy. It would have been far more efficient for the animal to have plowed a shallow furrow in the manner shown in Figure 131, but this activity would not have produced Cruziana. These considerations lead me to doubt whether the Cruziana trail was made by a trilobite. Diagrams such as that of Birkenmajer and Bruton (1971, fig. 10) imply that a trilobite could plow or even tunnel into a mud layer. The trilobite limb, however, was inserted at the base into an apparently uncalcified ventral integument, the coxa not having been joined to a calcified sternite that was linked to the dorsal exoskeleton. Thus any push on the substrate by the limbs could not have been directly transferred to the dorsal exoskeleton, only indirectly by the extrinsic limb muscles. The implication is that the animal’s power to push through sediments was severely limited. Thus I remain skeptical of the ability of the trilobite to plow deeply and consider it most unlikely that it could have made a tunnel. Goldring (1985) did not observe tunnels in his study.

The very limited sample we have of trilobite appendages makes speculations on modes of life and habits hazardous. This is especially so in considering the function of the outer branch. In Agnostus pisiformis (Müller & Walossek, 1987) the long, outer branches of the first two cephalic limbs are considered to have been used in swimming and those of more posterior limbs in creating respiratory currents. In Olenoides (Whittington, 1975) and Triarthrus (Whittington & Almond, 1987) the shaft of the outer branch was apparently rigidly attached to the coxa, the long sheets of filaments directed backward and those of the successive limbs forming an overlapping series beneath the ventral integument of the pleural region. No specimen of either Olenoides or Triarthrus shows the filaments directed in an alternating series between the inner branches in what would have been a downward direction of the filaments. Nevertheless, it has been claimed (Crimes, 1970; Bergström, 1973a; Campbell, 1975; Seilacher, 1985) that fine scratch marks in some trace fossils, including those in the outer portion of Cruziana tracks, were made by the tips of the filaments of the outer branch. I have argued (Whittington, 1980a, p. 189) that this activity was unlikely, particularly by Olenoides, which has fine hairs at the tips of the filaments, but also for other trilobites. It appears probable that the outer branches, their sheets of filaments forming an overlapping series beneath the ventral integument, moved up and down as the limbs swung about a transverse axis and were respiratory in function (Whittington & Almond, 1987, p. 40). Respiration by A. pisiformis (Müller & Walossek, 1987, p. 37) may have been via the club-shaped projections from podomeres of the inner branches and possibly also via the ventral integument. Respiration through the ventral integument has been suggested for other trilobites, but there is as yet no evidence for or against this idea. Jell (1978a) has argued that the anastomosing genal caeca and the similar structures of the thorax and pygidium aided in respiration, rather than having been branches from the alimentary canal (Opik, 1961a).

It has been stated frequently that some trilobites, or even most, were filter feeders (Schmalfuss, 1981; Seilacher, 1985). It is thought that the trilobite was partially buried in sediment, and a filter chamber was maintained beneath the animal, extending from the frontal cephalic arch to the tip of the pygidium. Geyer (1990b, p. 60, fig. 36) suggested that in Kingaspis the downward flexure of the body posteriorly, which gave the small pygidium a downward and forward inclination, closed the filter chamber...
Trilobite

posteriorly. In a cross section of a reconstructed trilobite, Schmalfuß (1981, fig. 7) portrayed the outer branch of the limb with the filaments vertical and held entirely above a small inner branch; the filaments are considered to have trapped particles drawn through the chamber. This reconstruction is misleading, for in no known example could the outer branch be held in this position (if we accept the evidence of taphonomy) and the downwardly directed attitude of the relatively small inner branch appears unlikely. Furthermore, the manner in which particles trapped by the sheet of filaments could be gathered and carried to the mouth is not explained. The array of spinose endites on the inner branches of the more posterior limbs of Triarthrus (Fig. 132) appears to constitute a food trap situated toward the rear of the animal. It is thought that this species and others displaying similar structures were predators and scavengers, as well as deposit feeders, food being carried forward in the midline to the mouth. The hypostome in some Cambrian and in most post-Cambrian trilobites was rigidly braced against the rest of the cephalon. It must have helped to guide food into the mouth and may have acted also as a plate against which the anterior coxae could scrape food (e.g., in odontopleurids). Until we have a greater knowledge of trilobite appendages, our understanding of the mode of life of these animals will remain inadequate.

EXUVIATION AND THE FUNCTION OF SUTURES

Like other arthropods, trilobites molt. In extant arthropods, molting (Henningsmoen, 1975; Skinner, 1985) includes the processes of preparation for withdrawal from the old integument, the withdrawal and casting of the remains (exuviation or ecdysis), and the subsequent stages of growth. Presumably in trilobites the sequence of events was similar. Their relative duration is unknown, but as in living animals the stage with the fully developed exoskeleton and high activity may be assumed to have occupied a large portion of the time. Thus there presumably was a relatively short, immediately postecdysial stage.
when the integument was soft and rapid growth was possible. Secretion of the principal layer of the new exoskeleton followed. Support for such a sequence of events is found in two kinds of evidence.

(i) Miller and Clarkson (1980) and Speyer and Brett (1985) have described rare specimens of Phacops in which the exoskeleton was thin, fragile, and light colored. These specimens have the typical outer, prismatic layer of normal thickness, but the principal layer is thin, as thin as 25 µm compared to 500 µm in other specimens. The thin exoskeleton is interpreted as being postecdysial, the likelihood being that the principal layer was thickened inwardly to the final intermolt stage.

A specimen of Olenoides serratus from the Middle Cambrian Burgess Shale with appendages appears to be an example of an early postecdysial trilobite (Fig. 133). In contrast to other specimens from the same deposit (Fig. 85), this one shows little relief, and the surface is wrinkled (Whittington, 1975, 1980a). There is no mineralized exoskeletal layer; the pleural furrows and portions of the axial furrow are absent; and no eye lobe, eye ridge, or sutures can be seen. Thus the exoskeleton is preserved in a different manner from those of the intermolt specimens from the Burgess Shale, but the appendages are preserved in a similar manner.

(ii) Occurrence of a trilobite exoskeleton arranged in a particular pattern that involves inversion of certain portions can hardly have been chance, and the arrangement is interpreted as resulting from a manner of exuviation.

The earliest recorded example (Sowerby in Sedgwick & Murchison, 1840, p. 693, pl. 57, fig. 30; Salter, 1864a; Richter, 1937, 1942) is the arrangement in the holaspid phacopid Trimeroccephalus, the inverted cephalic exoskeleton (excluding the hypostome) lying with the posterior edge facing forward with respect to the outstretched thoracopygon. The dissociated hypostome may be situated anterior to and beneath the first thoracic segment. This arrangement is the so-called Salterian mode of molting. In genera of phacopids with large eyes, the facial suture (the anterior branches joined along the outer edge of the anterior border) was apparently fused; in well-preserved specimens of holaspides (Campbell, 1967, pl. 15; Haas, 1969, pl. 82) their course is only faintly visible. This fusion and the arrangements of portions of the exoskeleton suggest that exuviation may have been initiated by the opening of the hypostomal suture and facilitated by a split between cephalon and thoracopygon, enabling the newly molted animal to emerge anteriorly.
Speyer (1985) has suggested (Fig. 134.8–12) that this split resulted from sharp flexure of the body anteriorly in an upright position. In studies of ontogenetic series of species of *Trimerocephalus* (Maximova, 1955; Os-mólska, 1963) that lacked eyes, adult molt assemblages are in the Salterian mode. In meraspides, however, molt assemblages have the dorsal exoskeleton articulated or only slightly displaced, the detached cephalic doublure lying beneath the cephalon or the anterior portion of the thorax. In these meraspides the facial suture, which crossed the lateral border and continued forward in the border furrow, was functional, so that it and the hypostomal suture opened to facilitate ecdysis. The change in mode of molting in holaspides resulted from fusion of the facial suture, and as Os-mólska pointed out, this change seems to have occurred in a number of phacopid genera. Growth stages of different Phacopina (Chattertion, 1971, 1980; H. Alberti, 1972) show that the suture was functional in meraspides. Speyer’s (1985) studies on molt assemblages of holaspides *Phacops rana* show that the Salterian mode was rare, arrangements in which the thoracopygon was inverted and the cephalon in various attitudes being more common. He also suggested the behavior from which such arrangements resulted (Fig. 134.1–7). Molt arrangements of other Phacopina, in which the facial suture was apparently fused, are those of *Greenops* (Speyer, 1985) and *Toxochasmops* (McNamara & Rudkin, 1984). Wennendorf (1990, p. 28–30, fig. 15) found that the remains of Homalonotinae in Lower Devonian sandstones were current-sorted, separated exoskeletal parts, the conjoined cranidium, free cheeks, and rostral plate being rarely present. In shales, however, the remains included the cranidium, free cheeks, and rostral plate joined together and the articulated thoracopygon minus the anterior two or three segments. The inverted cephalon (lacking the hypostome) lay adjacent to or under the thoracopygon, rotated 180° in relation to it. This suggested that the Salterian mode of molting occurred in Homalonotinae in addition to a mode in which the facial suture opened.

It has long been stated that in the odontopleurid *Ceratocephala* (Barrande, 1852, p. 125; Whittington & Evitt, 1954, p. 53; Bruton, 1968b, p. 49; Chattertion & Perry, 1983, p. 32, 39, 48) the facial suture was fused in larger individuals. Chattertion and Perry’s studies show that such fusion took place in the holaspide period in species of several genera. In the larger specimens of these species, the cranidium and librigena are preserved fused together, but the rostral plate and hypostome are detached. Thus rostral, connective, and hypostomal sutures were functional; and, as Henningsmoen suggested (1975, p. 197), opening of these sutures may have initiated exuviation and enabled the freeing of the cephalon from the old exoskeleton. The silicified growth stages of odontopleurids (Whittington, 1956b; Chattertion & Perry, 1983) strongly suggest that the facial suture was functional. Hence, in odontopleurids, as in certain Phacopina, exuviation in meraspides was in a mode different from that in large individuals.

A presumed molt configuration of a specimen of *Paradoxides*, originally described by McNamara and Rudkin (1984), has been shown (Whittington, 1990) to consist of the axial shield with the librigenae and rostral-hypostomal plate inverted beneath it. I have suggested (Fig. 135) maneuvers in exuviation that would have resulted in this arrangement. I follow Henningsmoen (1975) in considering that the primary purpose of the cephalic sutures was to provide an anterior opening for exuviation. This opening freed the vital soft parts of the cephalon—the eye surface by the circumocular suture or the connective sutures, allowing the librigenae to be pushed outward by the emerging cephalon, the attached hypostome freed, and the backward facing mouth released. Egress forward was also essential to allow the newly molted animal to withdraw the genital and pleural spines and the appendages from the discarded cuticle. The dragging forward of
the exuviae in this withdrawal is thought to have overturned the rostral-hypostomal plate and librigenae. I consider that a split between cranidium and first thoracic segment...
(advocated by McNamara and Rudkin) was not necessary and hence reject the sharp downward flexure of the body anteriorly that they suggested (McNamara & Rudkin, 1984, fig. 11). Their proposals were made with reference to a species of Ogygopsis, but in this example, as well as those of Oryctocephalus they studied, I consider that maneuvers like those shown in Figure 135 may explain the specimens. A specimen of Olenellus (Whittington, 1989, fig. 8) has the perrostral plate inverted beneath the thorax, the posterior tips of the plate lying directly beneath their original position. I regard it as a molt configuration resulting from similar maneuvers. I agree with Hennings-
MOEN (1975) that emergence forward at exuviation was normal for most trilobites in which the sutures were functional and that it was important to have no hindrance to such egress. As was pointed out in describing the course of sutures, some species with a frontal cephalic process (e.g., Spathacalymene or certain asaphids or dalmanitids) have sutures that would have aided in freeing these processes. While inversion of parts of the exoskeleton may have taken place in the course of exuviation, it may have occurred rarely rather than commonly.

HENNINGSMOEN (1975) discussed aspects of molting, and descriptions and discussions of many supposed molt configurations have followed (FORTEY, 1975b; LUDVIGSEN, 1979a, 1979b; MCNAMARA & RUDKIN, 1984; SPEYER, 1985; MCNAMARA, 1986c; WHITTINGTON, 1990). The exuviae (Fig. 135.5) were presumably abandoned on the surface of the substrate and consisted of the mineralized exoskeleton held together by articulatory membranes and ventral cuticle, including that which had sheathed the limbs. Decay of the unmineralized cuticle would lead to progressive dismemberment of the exuviae. The weakest link was that between cranidium and first thoracic segment, so that the large cranial sclerite was likely to have

Fig. 135. For explanation, see facing page.
remopleurid Hypodicanotus (Whittington, 1952b) was unable to enroll because of the long, forked hypostome, so that opening of the cephalic sutures must have begun the process of exuviation. The role of sutures in this process has not been denied, but it has been argued that the sutures may have been lines of movement in the exoskeleton, especially the hypostomal suture. In trilobites with a conterminant hypostome, such movement about the hypostomal suture does not appear to have been possible (Whittington, 1988a, 1988b). There is thus no evidence that cephalic sutures served any purpose other than exuviation. The claim that any suture was fused needs careful consideration, for it may have been that in trilobites with a fully developed exoskeleton (between molts), the sutures were closed. A fossil from that stage would show a fused suture, but a molted exoskeleton would not.

It is widely assumed (e.g., Henningmoen, 1975) that most fossils of trilobites, which are disarticulated portions of the exoskeleton, are dissociated portions of exuviae. The less common, entire exoskeletons, extended or enrolled, are the remains of dead animals or in some cases derived from exuviae. Both types of fossils may have thick exoskeletons, up to 0.5 mm, which may include the calcified lenses of the eye (Miller & Clarkson, 1980). It may have been, therefore, that trilobites did not resorb the inorganic salts before ecdyssis, as many living crustaceans do. Miller and Clarkson pointed out the considerable effort in renewal of calcite that this would imply. Measurements by Palmer (1957) on Olenellus, and by Hunt (1967) on Trinodus, have shown the large number of instars during development, more than the number of thoracic segments. Hunt noted that growth of Trinodus terminated after a fixed number of instars, but it is doubtful if this was true for non-Agnostida. It is usual when collecting such trilobites to find fragments of far larger individuals than any represented by entire cranidia or pygidia, for example. Continued growth would have provided many exuviae.

In exuviation the cephalic sutures played an essential and primary role, for even in holaspides of those species in which facial sutures were fused the connective, rostral, or hypostomal sutures were functional. Opening of a joint between cephalon and thorax was probably a secondary procedure. For most species the ability to enroll the body was necessary to the process and probably also the ability to flex the body in a concave-upward arch. Chatterton and Perry (1983, p. 17) commented that the function of the preannulus in odontopleurids and other trilobites was to facilitate such arching. The
Mode of Life, Habits, and Occurrence

Considerable numbers of well-preserved, entire, or only partially disarticulated trilobite exoskeletons occurring close together have been remarked on by authors. One such example, a large slab from the Ordovician Bromide Formation of Oklahoma, contained some 111 complete exoskeletons of the asaphid *Vogdesia bromidensis* (Laudon, 1939; Loeblich, 1940; Shaw, 1974). The individuals are similar in size, about half are inverted, and other slabs (Branson, 1965) show that the hypostome is present in many. The remains may be of carcasses, not of molted exoskeletons. Another occurrence of many complete, similar-sized exoskeletons of *Dalmanitina socialis* in Upper Ordovician sandstones in the former Czechoslovakia (Pribyl & Vaněk, 1976, pl. 8, fig. 1) is attributed to mortality following rapid burial during a storm. Different is the thin dolomitic layer from the Ordovician Maquoketa Group in Missouri (Brezinski, 1986a), in which 97 individual exoskeletons of the raphiophorid *Ampyxina bellatula* were found. These specimens exhibited a size range, and the absence of the librigena suggested that they were molts. Brezinski demonstrated size clusters in his sample and related them to instars. He interpreted this monospecific occurrence as that of an opportunistic species. These conclusions, however, have been criticized by Sheldon (1988).

Studies by Speyer and Brett (1985) and Speyer (1985) draw attention to another example in Middle Devonian rocks from New York. These are considered to be in situ assemblages of the phacopina *Phacops rana* and *Greenops boothi* and of the proetid *Dechenella rowi*. Each cluster is of three or more exoskeletons of a single species that are close together, of similar size, and considered to be of two types. Body clusters appear to be of corpses, while molt clusters are of thoraco-pyga in close proximity to corresponding cephalia. The two types of clusters are of individuals of similar size and occur in close lateral proximity along a common stratigraphical horizon. It is considered that such clusters represent a related phenomenon. An analogy with living marine arthropods is drawn, suggesting that the clusters resulted from a behavioral pattern of a species gathering at a particular age (as indicated by the size), prior to synchronized ecdysis and reproduction.

The occurrence of complete enrolled holaspid *Agnostina* in siliceous nodules from the Ordovician of Czechoslovakia (Peš, 1977) packed closely together in a line has been interpreted as resulting from the adults having lived attached to algal strands. No trace of such strands remains, but the linear orientation is striking.

ABNORMALITIES OF THE EXOSKELETON

Abnormalities in a single exoskeleton may include such features as a lack of symmetry between paired structures (one of the eyes or one of the major spines larger than the other), or in the pleural region of thorax or pygidium an irregularity of the segments or furrows of one side, or a marginal embayment or projection on one side. Figure 136 is a selection of examples from Owen’s review (1985); additional occurrences were described by Rudkin (1985), Snadir (1985), Hessin (1988), and Babcock (1993). The latter author described healed injuries and malformation and discussed the evidence for behavioral asymmetry. Abnormalities in the anterior axial region are extremely rare, but many have been recorded in the pleural region and axis of the pygidium (e.g., Rudkin, 1985). This may be a reflection of the greater vulnerability of the peripheral parts of the animal to injury by accident or predation and the fact that abnormalities are most readily recognizable in thorax and pygidium. The possibilities of injury from predation by other arthropods (Whittington & Briggs, 1985), cephalopods (Snadir, 1981b; Rudkin, 1985), sea anemones (Alpert &
Trilobita

MOORE, 1975), starfish, and fish have been discussed; but as OWEN (1985) noted, many abnormalities may have resulted from damage sustained during or immediately after exuviation, either in the process of shedding the old exoskeleton or by accidental damage or predation when the exoskeleton was thin. It is difficult to distinguish between the effects of any such injury and those that may have been caused by genetic or developmental malfunction. The unique, damaged hypostome in Figure 136.4, which shows fracture and disarrangement of fragments externally and callus internally, appears to be a clear instance of injury and repair in the same intermolt period. OWEN (1985) suggested stages over a series of molts of repairs to the trinucleid fringe. On the other hand, OWEN attributed abnormality in a cephalon of Phacops (Fig. 136.2) to genetic or developmental malfunction rather than to injury. Abnormalities resulting from infestation by parasites might be manifested by swellings on or borings in the exoskeleton. Exoskeletal

Fig. 136. Abnormalities in the exoskeleton. 1. Dechenella maclareni ORMISTON, irregular furrows of axis and pleural field of pygidium; 2. Phacops rana (GREEN), abnormal left gena and eye lobe; 3. Emuella polymena POCKECK, part of thorax showing additional half segments; 4. Cenotriasella sp., broken and partially cicatrized median body of hypostome; 5. Paradoxides gracilis (BOECK), damaged right fixigena; 6. Romanpis superciliosa (ROSS), anterior two thoracic segments fused and partially incorporated into cephalon; 7. Sabriskutellum speciosum (HAWLE & CORDA), irregular pleural spine and rib development on one side of the pygidium. Reproduced by permission of the Royal Society of Edinburgh and A. W. Owen (adapted from Owen, 1985, fig. 1b,e,g,j, 3b, 4a,h).

© 2009 University of Kansas Paleontological Institute
swellings have been described (Snadir, 1978) and were formed during life, but it is
difficult or impossible to decide whether, in
a shed exoskeleton or in a carcass, borings
were made when the animal was alive. As
Owen (1985) pointed out, while it may be
difficult to establish the causes of abnormali-
ties, their study may shed light on paleoecol-
ogy.

DIMORPHISM

The presence of two forms, one relatively
long and the other relatively broad, was no-
ticed by Barrande (1852, p. 102–104) in
many species in his collections. He suggested
that these differences were not an expression
of individual variation but of sexual dimor-
phism. Salter (1865, p. 127; 1866a, p. 132)
followed this lead, regarding supposedly long
(male) and broader (female) specimens as
evidence of sexual dimorphism in certain
asaphids, for example. Measurements by C.
P. Hughes (1979, p. 126, 142), however,
showed no evidence for this distinction. As
Kielan (1960, p. 41–42) and Hennings-
moen (1960, p. 207–210) have pointed out,
these supposed differences are the result of
deformation, such deformation being com-
mon in finer-grained, terrigenous, clastic
sediments. When the deformation is asym-
metrical it is more readily observed, but
when symmetrical, either lengthening or
broadening the specimen, it is less obvious;
and there are many examples of its having
been used as a specific distinction. Trilobites
in limestones are preserved in full relief,
without distortion, and supposed long and
wide forms have been noted, for example of
the illaenid Stenopareia glaber (Owen &
Bruton, 1980, p. 16). In this instance, how-
ever, measurements of a larger sample
(Bruton & Owen, 1988, p. 243) have
shown no dimorphism. Differences between
specimens in a single character, rather than
in shape, have been used to discriminate
dimorphs. One example is the presence or
absence of the posterior doublure of the py-
gidium in Redlichia (see earlier section on the
pygidial region, p. 59). While Örik (1958)
regarded this as an example of sexual dimor-
phism, Sozuy (1959) attached little signifi-
cance to it. More information is needed on
the exact morphological differences between
specimens of Redlichia and on their occur-
rence. In specimens of Ordovician Sel
enobarpes and Bathyeurrellus, the prolongation poste-
riorly of the genal region has been shown to
differ in length and shape (Whittington,
1963, p. 23), the sample in the former case
being large enough to suggest that the differ-
ence may not be merely an expression of in-
dividual variation. In Platycalymene duplicata
C. P. Hughes (1969) noted that although
wide and narrow forms could not be distin-
guished, the cephala could be divided into
those with and without an occipital tubercle.
The occurrence of specimens in the same
stratum that may be separated into two dis-
tinct groups on a number of characters pre-
sents the problem of whether to regard them
as dimorphs of a single species or two sepa-
rate species (e.g., Hintze, 1953, p. 150;
Whittington, 1965, p. 298). Hu (1964a,
1984, 1985b, 1986) developed his views on
sexual dimorphism in trilobites as a result of
studying large collections and by a general
analogy with such dimorphism in extant
arthropods. However, the data presented on
characters demonstrating the occurrence of
dimorphs, in the form of drawings, photo-
graphs, and ratios of dimensions (Hu, 1968,
fig. 2; 1969, fig. 2) are inadequate. A more
detailed study of the eye of a Carboniferous
species of Paladin by Clarkson (1969a) was
thought to show dimorphism, but this is
no longer considered to be the case
(Clarkson & Zhang, 1991). The claims of
dimorphism or even of polymorphism in
species of phacopids (Eldredge, 1973;
Campbell, 1977) were rejected by Rømskold
and Werdelin (1991), mainly on the
grounds that the collections used were from
more than one locality or not from a single
horizon. If dimorphism in the exoskeleton of
a species of trilobite does occur, it has not yet
been satisfactorily demonstrated. If it is
shown, the decision on whether to regard it as evidence of sexual dimorphism or to rank it as a subspecific or specific difference will be arbitrary.

DISTRIBUTION IN ROCK TYPE, TIME, AND SPACE

It is clearly recognized that particular taxa occur commonly in one kind of rock; for example, olenid trilobites occur in dark shales (HENNINGSMOEN, 1957a) and trilobites with relatively smooth exoskeletons in pure, white limestones (LANE, 1972). A study of the abundance of trilobites in a section of Lower Ordovician rocks in Spitsbergen led FORTEY (1975a) to distinguish communities, each with a characteristic suite of genera. Each assemblage of species occurs in a different rock type, considered to be related to environments in shallow to deeper water (Fig. 137). The olenids occur in black, graptolitic limestones and shales, and articulated exoskeletons and growth series are preserved. These and other evidences suggest an autochthonous assemblage, and FORTEY (1989, p. 339) favored the view that olenids were adapted to the dysaerobic environment in deeper water. Dark, flaggy limestones and shales enclose nileids, raphiophorids, and other genera of the nileid community; olenids are absent; and the associated fauna more varied. The evidence suggests an environment of quiet, well-oxygenated waters. The illaenid-cheirurid assemblage occurs in thin bands of lighter limestone, the broken and disarticulated exoskeletons being part of the evidence for this being an allochthonous assemblage swept in from shallower waters. In addition to these faunas, species of Carolinites occur throughout the section in equal abundance in the different communities. The worldwide distribution of Carolinites and the unlikelihood of its having been a benthic trilobite of wide tolerance suggest that its habit was pelagic. The existence of a fourth, pelagic community is thus argued, which included other trilobites and graptolites. In other parts of the world, for example the contemporaneous rocks of southern Wales (FORTEY & OWENS, 1978, p. 237–240), the shallower-water shelf faunas were different, the deeper-water ones being more...
similar to those of Spitsbergen. The contrasts are explained in terms of paleogeographical position and presumed water temperatures.

Another study (Cook & Taylor, 1975; Taylor, 1976, 1977) of autochthonous slope and allochthonous shelf trilobites of late Cambrian age from Nevada showed that some of the former were also known in China, Korea, and Alaska. From analogy with distribution of living isopod crustaceans (Taylor & Forester, 1979), it was argued that the slope faunas in lower latitudes were inhabitants of cooler water below the thermocline and hence of wide geographical distribution (Fig. 138). Similarly, it was argued by Babcock (1994b) that Middle Cambrian trilobites of Baltic type inhabited the cooler waters of the outer shelf facies of northern Greenland, typical Laurentian faunas occurring in contemporaneous shallow-water shelf facies. These slope faunas may also have inhabited the cold, shallow waters of high latitudes.

Associations or assemblages of trilobites in Cambrian (Jago, 1973; Repina, 1979; Ludvigsen & Westrop, 1983a; Theokritoff, 1985), Ordovician (Bergström, 1973c; Apollonov, 1975; Přibyl & Vaněk, 1976; Ludvigsen, 1978b; Henry, 1989; Havlíček & Vaněk, 1990; Henry & Destombes, 1991), Silurian (Thomas, 1980; Mikulčí & Watkins, 1981; Chlupáč, 1987), Devonian (Chlupáč, 1983; Wenndorf, 1990), and Carboniferous (Prentice, 1967; Brezinski, 1986b, 1988a, 1988b) rocks of different faunas have been discriminated as a result of detailed stratigraphical studies and the making of large, new collections. Authors emphasized the importance of the latter, to overcome the bias present in older collections that may be poorly localized. The terms association, assemblage, or biofacies are preferred to community because trilobites were only a portion of the original organic community. Parallels between associations of different age are commented on, particularly well-known being the similarities in composition and general morphology of trilobites found in carbonate buildups of Paleozoic age (Mikulčí, 1981). Chlupáč (1983, p. 64) referred to assemblages in deeper, outer, low energy to stagnant environments in which phacopids and proetids with small or no eyes were prominent. This assemblage is widespread in geosynclinal belts of the Devonian. A similar facies in Carboniferous shales and cherts (Prentice, 1967; cf. Hahn & Hahn, 1981; Hahn, 1990; Owens & Tilsley, 1995) contains small, thin-shelled proetids in which the eye was small or absent. In shallow-water, calcareous facies, species with large eyes, thick exoskeleton, and coarse tuberculation are characteristic but not universal, as Brezinski (1988a) showed. A benthic association in Lower Ordovician rocks that is possibly analogous to the deeper-water Devonian and Carboniferous facies, is the assemblage (Fortey & Owens, 1987, p. 106) of blind or nearly blind trilobites named by these authors an atheloptic (shrunken-eyed).
assemblage (Fig. 139). Also occurring in it are large-eyed cyclopygids, considered to have been mesopelagic in habit. In describing a nautiloid assemblage from Upper Ordovician shales in Ohio, Frey (1989) remarked that species of the trilobites *Flexicalymene* and *Isotelus* are the most abundant. Attention is drawn to this and other examples of a possible predator-prey relationship between nautiloid cephalopods and trilobites.

The recognition of lateral facies changes, the problems they pose in correlation, and the need for separate zonal schemes in adjacent facies are illustrated by examples from western North America (Robison & Rowell, 1976) and other continents (Palmer, 1977). Palmer (1965a) also proposed the name *biomere* for a regional stratigraphic unit, the boundaries of which were defined by an abrupt, nonevolutionary change in the dominant members of a single phylum, in this case trilobites of the Upper Cambrian pterocephaliid biomere in the Great Basin (Palmer, 1965b). In his original definition, Palmer remarked that the change at the base of a biomere was not necessarily related to any break in sedimentation and might be diachronous. Further study (Palmer, 1984) has not revealed evidence of lithological...
change or diachroneity at the abrupt faunal change, and the advent of cooler or anoxic waters on to the shelf is regarded as a possible cause of change. That some faunal changes occurred is admitted, but it has been argued (Briggs, Fortey, & Clarkson, 1988, p. 187) that the change may have been exaggerated by the taxonomic treatment employed. The three Upper Cambrian biomes have been proposed as stratigraphic stages by Ludvigsen and Westrop (1985). These authors (1983a) have used cluster analysis to differentiate trilobite faeces faunas at generic and family level in Upper Cambrian and Lower Ordovician rocks. As a result of this analysis they concluded that a catastrophic event was not required to explain the faunal change between Cambrian and Ordovician trilobites (cf. Fortey 1983; Westrop & Ludvigsen, 1987). A subsequent examination of this faunal change by Fortey (1989) and of that at the Ordovician-Silurian boundary suggested that the data indicating such a change may have been influenced by how the trilobites had been classified. The importance of mode of life and possible oceanic events was assessed in relation to the faunal change. Ludvigsen and others (1986) have discussed stratigraphical problems, including zones and facies, in a wider context.

Consideration of the geographical distribution of families and genera led to the idea of faunal provinces or realms, areas to which particular taxa were limited (Walcott, 1890b, 1910; Grabau, 1931; Kobayashi, 1944b). Richter and Richter (1941b) portrayed a Redlichia sea extending from the Middle East to Australia, and Wilson (1957) linked the worldwide occurrence of Upper Cambrian and Lower Ordovician olenids to a dark shale and limestone facies situated in and near the borders of troughs that were the sites of Paleozoic mountain belts. These ideas of a link between facies, tectonics, and faunas were applied to the distribution of North American Cambrian trilobites by Lochman-Balk and Wilson (1958), who explained the differences between faunas of similar ages as related to three different realms—a cratonic, shallow-shelf realm; an intermediate realm at the margin of the craton; and an extracratonic realm coinciding with the mobile belt. The biogeography of Cambrian and Ordovician trilobites in relation to Tethys was discussed by Szuy and Dean (in Adams & Ager, 1967) and in relation to the Atlantic ocean by Wilson (1966). The distributions of trilobites on a present-day world map were given for the Cambrian by Cowie (1971) and Palmer (1972) and for Ordovician trilobites by Whittington (1966; in Hallam, 1973). Meanwhile, studies on paleomagnetism and the fit of continents around the Atlantic (Bullard, Everett, & Smith, 1965) were beginning to be widely appreciated, and speculations on possible early Paleozoic paleogeography, pole positions, and climate could be compared with past distributions of animals. From such studies came the reconstructions for the Cambrian by Jell (1974) and Burrett and Richardson (1980) and for the Ordovician by Whittington and Hughes (1972, 1973, 1974). Faunal realms are seen to have been associated with the seas around continental masses, the barriers between realms being the deeper waters between these masses, and the temperature that was determined by latitude and water depth. The influence of ocean currents on these distributions was considered by Ross (1975), and the distribution of the cold-water, shallow-shelf Neseuretus fauna of the Lower Ordovician was described by Fortey and Morris (1982). Wilde (1991) considered the oceanographic conditions during the Ordovician in more detail. Studies of Lower Paleozoic trilobite faunal realms are by W. Zhang (1989) on the Cambrian, Zhiiyi Zhou and Dean (1989) on the Ordovician, Schrank (1977) on the Silurian, and Cocks and Fortey (in McKerrow & Scotese, 1990) on the Ordovician and Silurian. Phanerozoic world maps, compiled using data from paleomagnetism and tectonics, were provided for a symposium on biogeography by Smith, Briden, and Drewry (1973). Newer versions of such
Trilobita maps are by Scotese and others (1979), Smith, Hurley, and Briden (1981), and Scotese and McKerrow (1990). The data on biogeography were derived independently and so provide a test of these maps. However, an unusual fauna found in an area of structural complexity on the margin of a continental block, such as that of Samson and others (1990), may provide problems. Is it unusual because it belonged to a (supposedly) distant faunal realm, or does its distinctive character result from facies change at a continental margin?

TAPHONOMY

Over the past 50 years, an increased understanding of sedimentary processes has enabled a more detailed picture to be drawn of the burial events that led to preservation. The abundance and variety of trilobites, the molting process as size increased, and the thickness of the cuticle shed caused large quantities of skeletal debris to be produced. The preservation of entire exoskeletons, of appendages, of particular arrangements of exoskeletal parts, or of exoskeletons in a characteristic orientation gives clues to the type of sedimentary process that operated as well as to behavior. Relationships between the various processes are complex (SPEYER, 1987; 1991); the processes and their interactions were discussed by Briggs and Crowther (1990, p. 213–297).

DISARTICULATED REMAINS

In a study of the taphonomy of trilobites in Middle Devonian rocks in New York, Speyer and Brett (1986) used indices of fragmentation, orientation, and occurrence of articulated, enrolled, or molted exoskeletons. From these they derived divisions termed *taphofacies* that are related to type of sediment, rate of sediment supply, and water depth. This study has many parallels with the earlier studies by Fortey (1975a) and Taylor (1976), which also recognized the distinctions between rocks containing assemblages of disarticulated parts of exoskeletons (some broken) and those containing complete exoskeletons and related these distinctions to depth and type of sediment.

Disarticulation and fragmentation of trilobite exoskeletons probably took place rapidly after death or exuviation if the exoskeletons were exposed at the sediment-water interface and subjected to decay, scavenging, and currents. Currents may have resulted in sorting by size, shape, and resistance to fragmentation. Assemblages recovered at different localities from a single zone in Upper Cambrian strata in western Canada (Westrop, 1986a) show a gradation in abundance of species of two genera. Individuals of *Ellipsocephaloides* are small (having a maximum cranial length of 12 mm) and include early ontogenetic stages, while those of *Ptychaspis* are twice this size, and early ontogenetic stages are rare or absent. The *Ellipsocephaloides* assemblage occurs in relatively fine-grained beds, the *Ptychaspis* in relatively coarse-grained strata. These beds are considered to have been generated by storms and the intergrading assemblages to be the effect of size sorting. Thus, as Westrop pointed out, the end-members of the series might be thought to represent different facies or to be depth-related but are the outcome of taphonomic processes. Another example of sorting is from Lower Cambrian rocks in northwestern Vermont (Speyer, 1987). Randomly oriented cepha of *Olenellus* (with or without the hypostome and perrostral plate) occur in a quartz arenite. It is thought that the relatively fragile thoracic segments and pygidium were broken down, and the cepha survived because of greater resistance to mechanical breakdown. In siltstone beds a few meters higher in the section are accumulations of either cepha or pygidia of *Billingsaspis*. These segregations appear to be examples of size sorting and breakage and are related to grain size of the sediments. The effects of fragmentation and sorting on exoskeleton parts in Middle Devonian rocks in New York (Speyer, 1987, fig. 3) were revealed by counts of specimens in strata of different facies. Fragmentation was greatest
in current-sorted deposits in which cephalas of Greenops are rare because of their susceptibility to damage. In contrast, cephalas and pygidia of Phacops are roughly equally represented in different types of strata. The pygidium and cephalon of Phacops were of similar convexity, and convex-up and convex-down specimens occur in similar numbers. In Greenops these two sclerites responded differently to hydrodynamic conditions. In contrast is the study of mainly disarticulated exoskeletal remains of Dikelocephalus from the Upper Cambrian of the northern Mississippi Valley (N. C. Hughes, 1993). In these predominantly fine-grained rocks, transportation has been minimal, but compaction has cracked and deformed sclerites, producing shapes that are artifacts and hence not characters of taxonomic significance.

Experiments by Hesselbo (1987) using models of the Dikelocephalus cephalon and pygidium showed that these sclerites differed in behavior, both when falling through still water and when entrained in flowing water. Similar experiments by Lask (1993) showed that the most stable attitude for the cephalon or pygidium of Flexicalymene was concave-side down; enrolled exoskeletons were moved more readily than isolated sclerites. Evidently the hydrodynamic properties of sclerites need to be taken into account and may be useful as paleocurrent indicators. Speyer (1987, p. 211) considered that in the Devonian strata of New York, the occurrence of sclerites oriented randomly, obliquely, or perpendicularly to the bedding, indicated deep bioturbation. Such orientations have been recorded in coarse-grained glauconitic limestones (Bohlin, 1949), and it was argued that burial was rapid, a settling out from a suspension of sedimentary particles and organisms or parts of skeletons.

Disarticulated parts of trilobite exoskeletons may be broken. Courtessole, Henry, and Vizcaino (1991, p. 13) remarked that the exoskeletons of Neseuretus and Pradoella are never found entire in sandy, platform sediments, and the fragile free cheeks and thoracic segments rarely occur. Cranidia and pygidia found in nodules were in most instances broken before burial. It was also suggested that abrasion may have removed the external sculpture from convex portions of some exoskeletons and even the inner portion of glabellar furrows. On the other hand, illustrations of silicified specimens or of those in limestones show that surface sculpture may be preserved in remarkable detail in dissociated exoskeletal parts. Wilmot’s study of fragments of proetids (1991) exemplified such perfection of preservation, and she remarked that the use of sculptural detail in characterization of species is limited because of destruction of detail during diagenesis (not as a result of abrasion).

ARTICULATED REMAINS

The occurrence of outstretched, complete exoskeletons (Fortey, 1975a; Taylor, 1976) or of molt configurations (see section on exuviation and the function of sutures, p. 152) is taken to indicate burial of an autochthonous assemblage of species, and the type of rock in these examples suggests accumulation in deeper, quiet, offshore waters. Burial of entire exoskeletons does not occur only in deeper water. Those of Dalmanitina socialis in the Ordovician of Czechoslovakia (Přibyl & Vaněk, 1976, p. 20, pl. 8) are in quartzites considered to be a nearshore deposit. The occurrence of the librigenae united by a narrow strip of doublure (Fortey, 1974b, pl. 3, fig. 1) or of the hypostome beneath the glabella (Taylor, 1976, pl. 2, fig. 7; Fortey, 1990a, pl. 1) is indicative of the lack of disturbance of the remains and suggestive of rapid burial. In an analysis of articulated remains Speyer (1987, fig. 6) drew attention to the importance of behavior in ecdysis and to burial in anaerobic or dysaerobic conditions. Thus molting behavior may account for preservation in an inverted and partly disarticulated condition (Fig. 134). Aggregations, some of them monospecific, of many complete or almost complete exoskeletons (see section on clusters and monospecific occurrences, p. 159),
were discussed by Speyer (1987), who favored the view that decay of a carcass and accumulation of gas beneath the exoskeleton caused overturning prior to burial. Complete, enrolled trilobites have been collected from pure and muddy limestone and from a wide range of terrigenous, clastic rocks; hence, the conditions under which they were preserved may have differed considerably. In the Hamilton beds of New York, enrolled trilobites are abundant in some deeper-water sediments, and the lateral persistence of horizons yielding them suggests burial during such widespread events as storms (Babcock & Speyer, 1987; Speyer, 1987). As Babcock and Speyer remarked, essential conditions for preservation were rapid burial combined with reducing conditions at or just below the sediment-water interface. The manner in which specimens of *Olenoides serratus* are preserved in the Burgess Shale (Whittington, 1975; 1980b) indicates that similar factors operated—catastrophic burial and reducing conditions after entombment.

Conditions of burial and preservation of the trilobites in the Upper Ordovician Frankfort Formation with pyritized appendages (Cisne, 1973a; Briggs & Edgecombe, 1993) were similar. Cisne commented on the orientation of the specimens, noting that some were entombed in an attitude oblique to the bedding. Examples of such specimens of *Triarthrus eatoni* have been illustrated by Whittington and Almond (1987). The famous pyritized fossils from the Devonian Hunsrück Shale of Germany are oriented in different directions and were preserved under similar conditions (Stormer & Bergstrom, 1973). Authors have referred to the compaction that has taken place in these fine-grained sediments in the course of lithification. Its effects on obliquely oriented specimens (Whittington, 1980b, fig. 3) were considerable, shifting the entire suite of appendages relative to the exoskeleton and greatly changing the alignment of and distance between appendages of the two sides. Such compaction also affected the exoskeleton, and in finer-grained, terrigenous clastic rocks the flattening and cracking, resulting in reduction of the original convexity, is familiar. Tectonic deformation may also have affected the exoskeleton, distorting the shape and also leading to the so-called long and broad forms (see section on dimorphism, p. 161).

The effects of diagenesis on the exoskeleton are most obvious in the dissolution that resulted in preservation as casts and molds and in replacements. Silicification of exoskeletons in limestones has enabled exceptional specimens to be extracted for morphological and ontogenetic studies; the silica may be in the form of quartz (Whittington & Evitt, 1954) or beekite in some of the trilobites from the Permian of Texas. In some specimens from the Frankfort Formation (Whittington & Almond, 1987), the exoskeleton is replaced by pyrite; in the Burgess Shale (Whittington, 1980a) replacement of the exoskeleton was by clay minerals of the illite group. The external sculpture of the exoskeleton has been preserved with remarkable fidelity in the course of these replacements. Decay and diagenesis of enrolled trilobites from Devonian strata was discussed by Speyer (1987). Studies of the microstructure of the cuticle (see section on microstructure and sculpture, p. 74) reveal in detail the effects of diagenesis. Preservation of appendages was by different diagenetic processes (Allison & Briggs in Donovan, 1991). In the Burgess Shale the appendages are flattened and preserved as an exceedingly thin, dark film that is reflective. This film was thought to be of calcium aluminosilicate (Whittington, 1980b), but the work of Butterfield (1990) suggested that it may be composed of carbon, which may have acted as a template for diagenetic silicate minerals. The reinvestigation of the appendages of *Triarthrus eatoni* has suggested (Whittington & Almond, 1987) that pyrite was deposited as an infilling or lining of the cavity within the cuticle covering the limbs. How pyrite formed in such fine-grained sediments, rich in organic matter, was reviewed by Allison and Briggs (in Donovan, 1991);
the conditions that obtained in the beds containing pyritized *Triarthrus* have been investigated by Briggs, Bottrell, and Raiswell (1991). The phosphatization of appendages, as either a replacement or coating of the cuticle, of *Agnostus pisiformis* from Upper Cambrian strata of Sweden, has been discussed by Müller (1985), Müller and Walossek (1987), and Allison and Briggs (in Donovan, 1991). The importance of gaining some understanding of diagenesis in order to interpret what is preserved has been emphasized by authors. It makes a difference in the appearance of an appendage, if the cuticle has been infilled by mineral matter, or whether it has been replaced or coated.
USE OF NUMERICAL AND CLADISTIC METHODS

H. B. WHITTINGTON

Linear dimensions and counts of numbers of segments, of axial rings, tubercles, and ribs of the pygidium, for example, have long been used to show the range in size of species, variation between individuals, and aspects of growth and evolution (e.g., BARRANDE, 1852; HUPÉ, 1950, 1953c; WHITTINGTON, 1957b; PALMER, 1957, 1958; BEST, 1961; HUNT, 1967; RAMSKOLD, 1986; SHELDON, 1988; FOOTE, 1989, 1991). There have also been attempts to introduce greater precision into the description of species by measurements, for example, JAANUSSON (1953a, 1953b), SHAW (1956, 1957, 1959), C. P. HUGHES (1969, 1971, 1979) and OWEN (1981). The difficulties in discriminating between species are made evident by the detailed study of material of Dikeloccephalus from the Upper Cambrian of the Mississippi Valley (LABANDEIRA & HUGHES, 1994). Orientation of specimens (see section on size, form, and orientation, p. 1) when they are not flattened in one plane presents problems, and standardization of procedures in orientation and measurement has been discussed (TEMPLE, 1975). Numerical methods have not been widely adopted in descriptions of species, even for well-preserved specimens in limestones or those freed from the matrix with acid. An exception is the trinucleids, because the number and arrangement of pits in the fringe may be investigated in detail. Since the pioneering work of BANCROFT (1929), numerical methods have been employed generally on trinucleids (C. P. HUGHES, 1970; C. P. HUGHES, INGHAM, & ADDISON, 1975; OWEN, 1987a, 1987b). Distinct species and subspecies have been distinguished by analysis of the arrangement and number of the pits in specimens from small samples. Larger samples, however, have shown that two or three of such forms may be present in a single, polymorphic population. This enabled OWEN (1980) to characterize some species or subspecies of the Upper Ordovician Tretaspis by the relative abundance of two or more forms or morphs. In their study of Cryptolithus, SHAW and LESPERANCE (1994) have found similar polymorphism in large samples from Middle and Upper Ordovician rocks in eastern North America. Morphs, originally considered to be distinct species, occur in different proportions in successive populations and appear to constitute a single polymorphic species. Species of what is thought to be a distinct genus occur in western areas and have been shown to have hybridized in the south, in Oklahoma (SHAW, 1991), with populations of Cryptolithus. Thus, numerical work on larger samples has radically altered earlier views on taxonomy and raised problems regarding supposed evolutionary mechanisms.

Special methods were applied to Encrinurinae (TEMPLE & TRIPP, 1979; TEMPLE & WU, 1990) and to Trinucleidae (TEMPLE, 1980), the aim having been to define each species as objectively as possible by the use of a local sample, which is of necessity assumed to be monospecific. A list of morphological attributes (e.g., presence and length of micro, presence of particular tubercles, numbers of tubercles in encrinurinids, or characters of glabella and fringe in trinucleids) was coded for each species, based on either published descriptions or topotype collections. Each species was thus analyzed and characterized numerically, and relationships between the species were examined. Suggestions of evolutionary relationships and taxonomic groupings emerged. Important in these studies are the attempts to select attributes and to define precisely characters that may be coded. In using cladistic methods, characters must be clearly defined, be homologous for all taxa coded, and show discontinuous states, i.e., be present or absent, long or short relative to some standard, or, in the case of a furrow, be deeply impressed, weak, or absent (cf. RAMSKOLD, 1991a). A taxon, of whatever rank, is considered to be monophyletic if it includes the
stem species (the latest common ancestor of the group) and all those species derived from it (e.g., Jeffries, 1986, p. 2–16). In some cladistic treatments a character is determined to be either primitive for a particular taxon or derived from it and hence advanced. Such determinations have been made by comparison with closely related taxa (out-groups), by use of the premise that similarities in early ontogeny reflect a common ancestry, and from stratigraphical evidence (Fortey & Jeffries, 1982). The classification arrived at is based exclusively on those characters considered to be advanced. Examples of the application of these methods include a study of encrinurid protaspides and their relevance to family and subfamily groupings (Edgecombe, Speyer, & Chatterton, 1988), diagnosis of new encrinurid genera (Edgecombe & Chatterton, 1990a, 1990b), classification of Asaphina (Fortey & Chatterton, 1988) and trilobites at a higher level (Fortey, 1990a), and evolution in odontopleurids (Ramsköld, 1991a, 1991b) and phacopids (Ramsköld & Werdelin, 1991). As many as 30 or 40 characters have been used, some of which involve measurements of length or width. Cladograms have been constructed using computer programs to examine the character data. There is considerable current debate on methodology in cladistic analyses, as a recent examination of relationships between species of Odontopleura shows (Adrain & Chatterton, 1990); a review of cladistics in paleontology was written by Young (1995).

Relationships between assemblages of genera of trilobites occurring at particular localities and in relation to the enclosing rock type have been analyzed using different methods (Rowell & McBride, 1972; Rowell, McBride, & Palmer, 1973; Shaw & Fortey, 1977; Ludvigsen, 1978b; Ludvigsen & Westrop, 1983a). The merits and demerits of the various methods are discussed, cluster analysis appearing to be useful in discriminating biofacies in time and space (Lespérance, 1990). Studies of biogeography and faunal provinces (Whittington & Hughes, 1972; Burrett, 1973; Jell, 1974; Burrett & Richardson, 1980) have used other procedures, particularly those designed to assess differences between faunal assemblages.
Trilobites molted their exoskeletons at regular intervals in ontogeny. Growth and change in external form occurred when the trilobites were soft-shelled, following molting and before secretion of the next hard exoskeleton. We know little of trilobite behavior during this period. It is likely that the animals were relatively inactive because of the changes taking place in their bodies and the importance of the exoskeleton in providing leverage for proper action of many of their muscles (Lockwood, 1968; Reynolds, 1980).

The postembryonic part of the trilobite life cycle has been divided into three main intervals, the protaspid, meraspid, and holaspid periods (Fig. 140–141). These have been subdivided into a number of stages that are usually synonymous with molts or instars (Fig. 140). The existence of an uncalcified preprotaspid stage after hatching is purely speculative; calcification probably took place very soon after emergence from the egg. Because each calcareous exoskeleton was carried essentially unchanged for a short period during the life cycle of each trilobite animal, an excellent record is available of most of the external form. Different individuals of the same species apparently molted the same or a similar number of times during a complete life cycle, usually at similar sizes. As a rule, instars are more distinct early in the life cycle than later (Fig. 142), since individual variability in growth rates usually causes later instars of the same species to overlap in size. Some species, perhaps associated with more stable environments or a stronger genetic relationship between size and onset of molting, allow the recognition of distinct instars on the basis of size late in ontogeny (Fig. 143). Instars are more easily recognized in collections taken from a single bed (or block of rock) and in samples that show little or no distortion.

Little opportunity occurred for wear, solution, or attachment of epiphytic organisms during life, since the exoskeleton was carried by the animal only for the period between two ecdyses (a period of a few weeks to a year in modern horseshoe crabs, depending mainly upon the age of the animal; see Sekiguchi, Seshimo, & Sugita, 1988). Following molting or death, the exoskeleton was subjected to normal taphonomic processes. Some arrangements of sclerites have been regarded as the result of molting rather than death (see earlier section on exuviation and the function of sutures, p. 152).

We do not know how many molts occurred during the life cycles of most trilobites. Clearly there was considerable variation between taxa. Very large trilobites and those with many thoracic segments presumably molted a greater number of times than those that were small or had few thoracic segments. Hunt (1967) demonstrated that the Agnostina Trinodus elspethi, which had only two thoracic segments, had at least nine instars (three meraspid, six holaspid) during its life cycle and thus must have molted at least eight times (Fig. 143). Probably this is close to a minimum number for the class. The number of thoracic segments released into the thorax following each molt during the meraspid period was usually one, sometimes two (Chatterton, 1971), and rarely greater than two. This suggests that some Early and Middle Cambrian Redlichiida may have molted more than 30 times.

Small growth stages are often very different from the adults of the same species, being usually simpler in form and more conservative. Hence, considerable disparity exists between different trilobite larvae. Metamorphosis during the life cycle or radical, growth-related allometry often eliminated features present in larval stages. Larvae of closely related taxa are more similar than those of distantly related taxa (Chatterton & others, 1990) so that the larval stages
contain morphological information vital for understanding trilobite taxonomy, systematics, and phylogeny.

HISTORY OF RESEARCH

Barrande (1852) described the ontogeny of Agnostus, Blainia, Paradoxides, Sao, and Trinucleus. In doing so, he put into synonymy a number of taxa (10 genera and 18 species) that had been erected by Hawle and Corda (1847), recognizing these specimens as different growth stages of a single species, Sao hirsuta. Barrande also suggested a method for numbering growth stages during the meraspid period that is still in use today (meraspid degrees, distinguished by the number of free segments that have been released into the thorax).

Beecher (1893a) was the first to describe the silicified larvae of trilobites, although silicified adult trilobites had been obtained from limestones earlier by Ratte (1886). Two years later, Beecher (1895a) provided a general discussion of trilobite ontogeny and proposed the term protasps (plural protaspidides) for early growth stages where the head and tail parts of the trilobite are still fused. He subdivided the protaspid period, which often included several instars, into ana-, meta-, and paraprotaspidides. These subperiods were not defined and are of limited practical value, having been used inconsistently, and lack biological meaning (see discussion of morphology and terminology, p. 183).

Jaeckel (1909) was the first to suggest heterochrony as the cause of origin of a major group of trilobites by proposing that the
Agnostida, which he called miomerids, arose from polymerid trilobites through paedomorphic evolution (see section on heterochrony, p. 199). RAW (1925) added the terms meraspis and holaspis to Beecher’s term protaspis, dividing the life cycle of most trilobites into three periods. Later summaries of trilobite ontogeny include works by RAW (1927), STØRMER (1942), HÜPE (1954), WHITTINGTON (1957a, 1959b), Hu (1971), CHATTERTON (1980), McNAMARA (1986b), CHATTERTON and SPEYER (1989, 1990), and SPEYER and CHATTERTON (1989, 1990).

STUBBLEFIELD (1926) described the addition of new segments in the trilobite thorax, originating near the back of the pygidium and migrating forward during the ontogeny of Shumardia (Conophrys) salopiensis. New material was described by FORTEY and OWENS (1991) but did not include protaspides. STUBBLEFIELD showed furrows crossing the axis of the protaspis, but these are not evident with SEM examination of his original material in the Natural History Museum, London.

STØRMER (1942) discussed the pattern of somitic organization of trilobites and provided additional data on growth series of Liostracus and Olenus in particular. He also discussed ontogenetic information available

Fig. 141. Growth stages of the life history of a typical trilobite, *Encrinuroides rarus* (WALCOTT) (adapted from Speyer & Chatterton, 1989).
Trilobita

for higher taxa and considered the use of larval attributes in classification and understanding homologies.

Fig. 142. Growth and recognition of instars of Dimeropyge (see Fig. 160) from the Middle Ordovician Esbataottine Formation in northwestern Canada. Due to individual variation in growth rates in meraspides and holaspides, recognition of instars is easier in protaspides (solid circles) than in later growth stages (open circles). This figure shows data for protaspides and cranidia; those for protaspides and transitory pygidia and pygidia are similar (new).
seldom provide as much morphological information, especially for the ventral surfaces of the larvae.

In recent years, phosphatized fossil collections from Australia (Ell, 1970), Spitsbergen (Fortey & Morris, 1978; Fortey & Chatterton, 1988), and China (X. Zhang, 1987, 1989) have yielded well-preserved skeletons and internal molds of Cambrian and Early Ordovician trilobites.

Since 1950, studies of incremental growth and ontogenetic statistics of various taxa have provided data that are discussed below in the section on trilobite growth and population dynamics (see Shaw, 1956, 1957; Bright, 1959; Hunt, 1967; Palmer, 1957; Cisne, 1973b; Romano, 1976; Kopaska-Merkel, 1981; Busch & Swartz, 1985; Brezinski, 1986a; Sheldon, 1988; Chatterton & others, 1990; Chatterton & Speyer, 1990).

Since Gould’s (1977) work on ontogeny and phylogeny, paleontologists have re-examined relationships between ontogeny, phylogeny, and ecology in the context of heterochrony. Because trilobites grew by increments, they are particularly apt subjects for such studies (McNamara, 1978, 1981a, 1981b, 1983, 1986a; Ludvigsen, 1979a; Fortey & Rushton, 1980; Whittington, 1981; Edgecombe & Chatterton, 1987; Ramskold, 1988; and Chatterton & Speyer, 1990).

Early growth stages have been used to solve taxonomic problems ever since Barrande’s (1852) synonymy of Hawle and
Trilobita

CORDA’S (1847) taxa. In the last 40 years, larval attributes have become an important source of information critical to our understanding of trilobite taxa at the ordinal level. WHITTINGTON (1954c) suggested that the Phacopida have a distinctive protaspid stage, and this criterion was used in the diagnosis of that order by HENNINGSMOEN (in Harrington, Moore, & stubblefield, 1959). FORTey and owens (1975), likewise, used the similarity among early growth stages (meraspid cranidia) in erecting the Proctida. FORTey and Chatterton (1988) regarded the distinctive asaphoid protasps as an important synapomorphy (uniting character) of the Asaphina. FORTey (1990a, 1990b) has discussed the general relationships of ontogeny to trilobite classification. In accordance with von Baer’s rule (see Gould, 1977, p. 56), related taxa display a greater morphological similarity among larval stages than among adults. These larval stages are more similar to each other than to those of distantly related taxa. A number of workers have investigated the relationships and similarities of larvae of trilobite taxa that share a recent, common ancestor (Whittington, 1956a, 1959a, 1959b; EVITT & TriPP, 1977; Chatterton, 1980; edgecombe, Speyer, & Chatterton, 1988; and Chatterton & others, 1990).

Few studies have addressed questions of larval autecology, functional morphology, and mode of life, most having concentrated on adults (e.g., Clarkson, 1969a; Whittington, 1975; StITT, 1976; Hammann, 1985; FORTey, 1985). Whittington (1956d), however, suggested that some protasplies were pelagic but offered little evidence to support his conclusion. CISNE (1973b) argued for pelagic mode of life solely on the basis of size. More recently, Chatterton (1980), Fortey and Chatterton (1988), and Speyer and Chatterton (1989, 1990) have discussed trilobite larval ecology and functional morphology in more detail; and Chatterton and Speyer (1989) have examined the relationship between extinction, survivorship, and different trilobite life-history patterns during the Ordovician (see discussion of life-history strategies below).

PRESERVATION AND OCCURRENCE

Early growth stages are preserved in several ways. Most commonly they are preserved in their original calcite (Fig. 144.1; Whitworth, 1970), have been silicified (Fig. 144.3–4), or occur as molds or casts in a matrix resistant to solution or weathering (Fig. 144.2; Barrande, 1852; Hu, 1971; Lu & Wu, 1982). Calcium phosphate may replace the calcareous exoskeleton (Fig. 144.6; Jell, 1970; FORTEY & Morris, 1978), fill in the shell to provide an internal mold (Fig. 144.5; FORTEY & Chatterton, 1988), or even, in rare instances, replace the appendages of small growth stages (Mueller & wallosek, 1987). Sclerites may be replaced by pyrite or other such minerals, but usually the crystals of the replacing mineral are too coarse to permit the preservation of morphological details. No pyritized appendages of juvenile stages have been described from the Lower Devonian Hunsrück Shales of Germany or the Ordovician Frankfort Shales of New York, for example (Whittington & Almond, 1987; Stürmer & Bergstrom, 1973).

The type of preservation constrains the amount and type of information available. Larvae preserved in their original calcareous material can seldom be prepared to permit analysis of their concave ventral surfaces. They may, however, display the surface sculpture in exquisite detail (FORTEY & Chatterton, 1988), or even, in rare instances, replace the appendages of small growth stages (Müller & Wallosek, 1987). Sclerites may be replaced by pyrite or other such minerals, but usually the crystals of the replacing mineral are too coarse to permit the preservation of morphological details. No pyritized appendages of juvenile stages have been described from the Lower Devonian Hunsrück Shales of Germany or the Ordovician Frankfort Shales of New York, for example (Whittington & Almond, 1987; Stürmer & Bergstrom, 1973).

The type of preservation constrains the amount and type of information available. Larvae preserved in their original calcareous material can seldom be prepared to permit analysis of their concave ventral surfaces. They may, however, display the surface sculpture in exquisite detail (FORTEY & Chatterton, 1988; ClarkSon & Zhang, 1991). In contrast, it is often possible to eliminate all excess matrix from diagenetically replaced larval remains during preparation (G. A. Cooper & Whittington, 1965) to permit examination of all preserved details. Unfortunately, the original shell material of early growth stages is often lost preferentially during diagenesis. Indeed it is common in many sedimentary rocks to find
Fig. 144. Preservation of small growth stages. 1, Preserved in original calcite, proetid protaspis from the Viola Formation, Ordovician, Oklahoma, NYSM 16296, ×115 (new, specimen courtesy of P. J. Lespérance). 2, Preserved as a mold in shale, meraspid degree 1 of Canophrys pusilla (STUBBLEFIELD) from the Shineton Shale, Lower Ordovician, England, BMNH In 26812, ×94 (new, original of Stubblefield, 1926). 3, Silicified specimen, asaphoid protaspis of Isotelus sp. from the Crown Point Formation, Middle Ordovician, New York, NYSM 16297, ×62.4 (new). 4, Silicified sculpture from asaphoid protaspis of Isotelus sp. from the Crown Point Formation, Middle Ordovician, New York, NYSM 16029, ×2150 (new). 5, Calcium phosphate steinkern of Shumardia acuticaudata FORTEY from the lower part of the Profilbekken Member, Valhallonna Formation, Lower Ordovician, Spitsbergen, BMNH It 21250, ×190 (new). 6, Phosphatized protaspis of Cybelurus brutoni FORTEY from the lower part of the Profilbekken Member, Valhallonna Formation, Lower Ordovician, Spitsbergen, BMNH It 21251, ×93 (new).
numerous specimens of large trilobites and no larval stages at all (Shealdon, 1988). Many of these situations are clearly not the result of current sorting or other mechanical, biostratigraphic processes, because articulated exoskeletons are common in the same strata.

Replacement by silica may be coarse, preserving little detail (H. Alberti, 1972), or fine enough to preserve exquisite details of the sculpture (Fig. 144.4, 145.5; Speyer & Chatterton, 1989, fig. 11). Calcium phosphate may also preserve very fine detail (Fig. 144.5; Fortey & Morris, 1978).

As a general rule, the best three-dimensional preservation occurs where the exoskeleton has been replaced by quartz or calcium phosphate in fairly pure limestone or early diagenetic calcareous concretions. Specimens preserved in shales are usually flattened as a result of postdepositional compaction, and details of marginal spines and the ventral surfaces of such specimens are rarely shown in published illustrations. Techniques for making high-quality casts of small fossils preserved in fine, indurated, siliciclastic rocks (Zapanski & Johnston, 1984) may, however, provide an important source of information in the future.

Larval sclerites are usually disarticulated. The chances of discovering articulated stages, particularly those belonging to the meraspid period, are greater when specimens have been cracked from limestone or shale. However, some silicified specimens have been discovered with one or both free cheeks attached in life position (Fig. 145.3, 146.1–3; Speyer & Chatterton, 1989, fig. 3c), and even more rarely the rostral plate or hypostome may also be preserved in their original positions (Fig. 146.3; see Fig. 150.7–9; Speyer & Chatterton, 1989, fig. 9e). These latter specimens probably represent examples of infant mortality. Much more common are specimens with the hypostome, rostral plate, or free cheeks attached to the ventral side of the protocranial-protopygidial fused sclerite (Fig. 145.4, 145.6, 146.4–6). The free cheeks are likely to be located posteromedial of their life positions, and the hypostome occurs behind its life position (Fig. 145.4, 146.4–6; Speyer & Chatterton, 1989, fig. 4e, 8a, 8b). The samples in which all of the sclerites are present could represent either carcasses (where the sclerites were dislodged after death, perhaps by shrinking of the ventral integument) or molts, where the trilobites molted while lying on their backs, and the smaller sclerites fell into the empty shell as the animal left its molted exoskeleton. Specimens where only some of the sclerites are present could be examples of either of the above but are more likely to have resulted from the latter. We note that protaspid specimens with the hypostome, free cheek, or rostral plate still attached, either in place or out of place, are rare but are much more common in some rock units (e.g., the Middle Ordovician Crown Point Formation of the Chazy Group of New York) than in others (e.g., the Middle Ordovician Ebsataotine Formation of northwestern Canada).

Association of different larval sclerites must be done on the basis of their size, morphology (including sculpture), and spatial distributions (including co-occurrence). Co-occurrence of similar sclerites or larvae at a number of different localities and horizons is often important to determine correct associations, particularly where the trilobites passed through radical metamorphoses in their ontogenies. This problem is made worse by the small number of distinctive, morphological features and broader, ecological (stratal) distributions of the globular, immature, planktonic forms that usually precede metamorphosis. A number of incorrect assignments of larvae to trilobite taxa have been published. It is important that researchers give complete faunal lists of trilobite taxa occurring with larvae that they describe, but we know of instances where the diversity of trilobite larvae exceeds that of the adults in the same samples. Articulated specimens or partly fused specimens are, of course, particularly valuable in associating different parts of a particular stage. They do not, however, provide a correct association of all of the growth stages of a taxon.
FIG. 145. Larval morphology. 1,2, Anterodorsal and oblique anterolateral views of protaspis of the encrinurid *Physemataspis insularis* (Shaw) from the Crown Point Formation, Middle Ordovician, New York (locality PB 81), NYSM 16298, ×81 (new). 3, Ventral view of meraspid degree 0 of encrinurid *Balizoma* sp. from the Wenlock Delorme Formation of northwestern Canada (locality AV 2 248.8); sclerites are in life position, except rostral plate, which is missing, UA 7831, ×51.25 (new). 4, Ventral view of lichid *Hemiarges aff. H. turneri* Chatterton & Ludvigsen from the Crown Point Formation, Middle Ordovician, New York (locality PB81); free cheeks and hypostome are attached to ventral surface but not in life position, NYSM 16014, ×88 (new). 5, Dorsolateral view of protaspis of asaphid *Isotelus* sp. from the Crown Point Formation, Middle Ordovician, New York (locality PB 81); sculpture of polygonal ridges is weaker in region of axis than on genae, NYSM 16299, ×97.5 (new). 6, Ventral view of broken, small adult-like protaspis of lichid *Hemiarges aff. H. turneri* Chatterton & Ludvigsen from the Crown Point Formation, Middle Ordovician, New York (locality PB81); rostral plate and hypostome are attached to ventral surface, NYSM 16300, ×83 (new).
FIG. 146. Association of larval sclerites. 1, Ventral view of protaspid of the encrinurid Balizoma sp. from the Delorme Formation, Mackenzie Mountains, Silurian, northwestern Canada, with attached free cheeks and rostral plate, UA 7824, ×67.25 (new). 2, Ventral view of small meraspid cranidium of the bathyuroid Dimenopyge sp. from the Esbatoztine Formation, Middle Ordovician, northwestern Canada, with free cheeks and rostral plate (fused to one another), UA 8420, ×94 (new). 3, Ventral view of second protaspid stage of the trinucleid Cryptolithus tesselatus GREEN from the Martinsburg Formation, Middle Ordovician, Virginia, with free cheeks and hypostome almost in place, NYSM 16301, ×75 (new). 4, Subventral view of smallest protaspid instar of the dalmanitoid Calyptaulax annulata (RAYMOND) from the Crown Point Formation, Middle Ordovician, New York; note free cheeks, rostral plate, and hypostome attached to ventral surface, NYSM 16302, ×123 (new). 5, Ventral view of first protaspid stage (probably of "Otarion" spinicaudatum SHAW) from the Crown Point Formation, Middle Ordovician, New York; note free cheeks and hypostome attached to ventral surface, NYSM 16303, ×190 (new). 6, Ventral view of protaspid of cheiruroid Cybeloides sp. from the Whittaker Formation, Mackenzie Mountains, Upper Ordovician, northwestern Canada, UA 7764, ×81 (new).
MORPHOLOGY AND TERMINOLOGY

There is some controversy about whether the protaspid period of some trilobites was preceded by a calcified stage called the phaselus (see section on phaselus stage below). The phaselus lacks sutures, has an entire doublure, and is not known to have had a hypostome.

There is general agreement that the prefix proto should be used to denote a part of the larval stage that is homologous with a discrete sclerite in the adult. Thus the terms protocranidium (in protaspides) and protothoracic segments (in protaspides and meraspides) refer to parts of the trilobite that will ultimately become the separate cranidium and the thoracic segments, respectively. The term protopygidium refers to that part of the protaspis from which the thorax and pygidium subsequently develop. During the meraspid period, the corresponding tergite is called the transitory pygidium.

We do not advocate the usage of the terms anaprotaspis, metaprotaspis, and paraprotaspis for all trilobites. These terms were proposed by Beecher (1895a) as subdivisions of the protaspis period (in developmental order). We feel that paraprotaspis should be discarded because it is undefined and little used. We also have serious reservations about anaprotaspis and metaprotaspis, which Beecher used to describe the stages before and after a recognizable pygidial portion can be distinguished from the protocranidium, usually by the presence of a small furrow behind the head. Hu’s (1971, p. 49–50) definitions of these terms were based on size and morphology. They differed from those of earlier workers (Hu, 1971, fig. 23), however, and are limited to only some trilobite protaspides. Many specialists judge that two separate events must occur for trilobites to develop from anaprotaspis to metaprotaspis: (1) development of enough somites, either in volume or in number behind the head for a future pygidial portion to be apparent and (2) the formation of a furrow to mark the posterior margin of the head. In some taxa the first event occurs some time before the second; in others both events occur almost simultaneously. Edgecombe, Speyer, and Chatterton (1988) summarized many of the objections to this classification. In short, these terms bear little biological reality and confuse rather than clarify.

Although the timing of the first appearance of a distinct furrow between the protocranidium and the protopygidium may be a useful marker of ontogenetic stages of closely related trilobites, it is merely one of a number of different developmental events that may be used to monitor heterochronic changes among taxa. Large, supposedly pelagic protaspides (which usually lack such a furrow, e.g., Remopleuridioidea) are remarkably different from much smaller, supposedly benthic protaspides (which may possess such a furrow, e.g., Proetida). The possession of a differentiating furrow, then, is less of a developmental marker denoting relative maturity than a probable ecological correlate. (See discussion of ecological differences between adult-like and nonadult-like trilobite larvae below.) Some pelagic protaspides clearly possess portions that are homologous with what will later become the transitory pygidium. These parts of the protaspis are, however, quite different in form from the transitory pygidium and not delineated from the protocranidium by a distinct furrow. Should they be called anaprotaspides or metaprotaspides? While we accept that the time of origin of a distinct furrow between the protopygidium and the protocranidium can be a useful marker of a stage in the maturity of an individual (for instance in heterochronic studies), the terms anaprotaspis and metaprotaspis cannot be applied in a homologous fashion for all trilobites. They should be restricted taxonomically and used purely descriptively (perhaps as a synonym for adult-like protaspis). There is little need for retaining the term paraprotaspis.

Some of our criticisms of the terms anaprotaspis, metaprotaspis, and paraprotaspis could also be applied to the three periods...
Trilobita larvae). These systems can be applied to some but certainly not all trilobite early growth stages, even within the groups for which they have been invented.

Prominent spines in early growth stages are frequently lost and sometimes reemerge as a consequence of heterochronic displacement. The basic spine pattern is very conservative; and while particular spines are often lost, prominent new spines are seldom added to the basic pattern. Thus, the patterns of these spines are useful for some levels of phylogenetic analysis.

Prominent pairs of spines evident in larval stages may disappear through ontogeny or may grow at a rate consistent with the overall increases in body size. They may also be displaced or incorporated by other structures of the trilobite (i.e., cranidial lobes). Since these pairs of spines are believed to be homologous with segments of the body, they may provide important evidence for determining the homologies of structures that displace or incorporate them.

LIFE HISTORIES

GROWTH

Growth may occur through auxetic growth (growth of individual cells), multipliative growth (increase in cell number but not size), and accretionary growth (some special groups of cells retaining their ability to divide mitotically after most others have ceased to do so). The balance between these different types of growth probably changed during ontogeny, perhaps entering the largely accretionary pattern at sexual maturity. Changes in balance may be apparent through changes in allometric growth curves or in the proportional increments between adjacent instars.

REPRODUCTION

We consider that trilobites probably reproduced sexually, as do most arthropods. Certainly the extensive discussion of whether sexual dimorphism occurs in trilobites (see p.
Ontogeny

Ontogeny (p. 161) would imply that this view is shared by others (e.g., Hu, 1971). Clusters and monospecific occurrences (see p. 159) have been described or illustrated for a wide range of trilobite taxa (Cambrian *Asaphicus wheeleri* in frontispiece of Gunther & Gunther, 1981; Ordovician *Cyamops stensioei* on cover of Clarkson, 1979b; Ordovician *Cryptolithus tessellatus* on pl. 139 and *Amplexina bellatula* on pl. 140 of Levi-Setti, 1975; Silurian *Dalmanites limulurus* in Ludvigsen, 1979a, fig. 43a; and Devonian *Greenops boothi* in T. T. Johnson, 1985, p. 147). Speyer (1985) and Speyer and Brett (1985) compiled biostratinomic details of modern taxa with clustered assemblages associated with molting or reproductive behaviors (limulid xiphosurans, varied crustaceans, and nereid polychaetes).

EMBRYOLOGY

Barrande (1852, pl. 27, fig. 1–3) described some small structures as trilobite eggs (disputed by Raymond, 1931) and later illustrated a cephalon and six thoracic segments of *Parabarrandia crassa* with egglike structures under the cephalon (Barrande, 1872; see also Horný & Bastl, 1970). The arguments that these and similar structures under articulated *Ceratus pleurexanthemus* (described from thin sections by Walcott, 1881, pl. 4, fig. 8) and under *Flexicalymene meeki* (described by Billings, 1870, p. 485) are trilobite eggs was refuted by Raymond (1931). Raymond reviewed all published examples of trilobite eggs and commented (p. 172) that the larger structures described are definitely not trilobite eggs (we concur), “and the smaller ones, even if correctly identified, have furnished no information of any value.”

It is not known whether fertilized eggs were brooded. Egg masses are often seen attached to the undersides of extant marine crustaceans. Few of the morphological features suggested by various authors to be sexually dimorphic in trilobites (see p. 161 on dimorphism) can be correlated to brooding strategies. (An exception could be degree of vaulting or width of pygidium.) If these are really examples of sexual dimorphism, the functions may be any one of a number, and further comment would be sheer speculation. Some of the morphological features considered to be dimorphic are now known to be apparent quite early in the ontogeny of the trilobites, a considerable time before the probable time of onset of sexual maturity. The case would be stronger if these features developed rapidly immediately prior to the time of sexual maturity. If sexual dimorphism occurred and the dimorphs show extreme morphological differences, however, the differences would need to appear quite early in the ontogeny if one or both morphs were not to undergo a radical metamorphosis immediately prior to sexual maturity. In some ostracodes, however, brood pouches appear in heteromorphic individuals quite suddenly during the latter part of ontogeny.

X. Zhang (1987, fig. 8) illustrated some spheroidal, phosphatized supposed egg cases and trilobites from the Lower Cambrian of China, which he assigned, with question, to a bradoriid or trilobite. These specimens are larger than the protaspides of the eodiscid *Neocobboldia* occurring with them, but at a diameter of 0.35 mm to 0.5 mm they may have been small enough to house the embryos of polymerid trilobites (he assigned protaspides with a length of 0.36 mm to the polymerid *Ichangia ichangensis* Lee, from the same rock unit). Thus, although we assume that trilobites did produce eggs, no undoubtedly examples are known from the fossil record.

The size and morphology of the first calcified (protaspid) stage are highly variable between but not within different trilobite taxa. This suggests that some trilobites with large protaspides may have passed through more growth as embryos within the egg than others (Fig. 147). There is also the possibility that trilobites passed through one or more growth stages between emerging from the egg and secreting the first calcareous exoskeleton, although there is no evidence for the existence of such free, uncalcified stages.
The metabolism required for calcification is not likely to be a secondary derivative within the Trilobita, such as might be argued for some heavily calcified Crustacea (e.g., brachyuran crabs, lobsters). Crustacea add carbonate into a pre-existing organic matrix that is entirely lacking in trilobite cuticle. Therefore, all free-living trilobites may have possessed a calcified exoskeleton. Speyer and Edgcombe (1989) argued that calcification and hatching coincided.

PHASELUS STAGE IN TRILOBITES

Small ovoid, phosphatized exoskeletons were described by Fortey and Morris (1978) from the Lower Ordovician of Spitsbergen. These minute exoskeletons, 0.1–0.3 mm in diameter, are complete dorsally, open ventrally, and have a narrow, entire doublure. They show no sign of a facial suture, rostral plate, or hypostome. They come from two members of the Lower Or-
Ontogeny

In the Ordovician Valhallfonna Formation of Spitsbergen and were assigned to *Cybelurus*. These specimens would now be assigned to both *Cybelurus* and *Lyrapyge* (see Forney, 1980b). Forney and Morris (1978) proposed that these specimens were a calcified protaspisid stage, termed a phaselus, that they regarded as equivalent to the crustacean nauplius. They discussed the arguments for and against the phaselus being homologous with the crustacean nauplius and noted that the nauplius may be present in different crustaceans, since it is often passed in the egg stage. These arguments centered around the size of the phaselus, its form, its possible appendage number, and its position within the ontogeny of a trilobite (if it is a trilobite). They also noted on the best phaseluses the presence of a surface sculpture of cell polygons typical of early arthropod growth stages. However, they noted that with such early growth stages, similarity in size and form could be more a function of simplicity than of homology. Hu (1971, p. 50) believed that early trilobite protaspides have fewer segments visible in the head than later stages, but our own observations indicate that in many taxa protaspides do not have fewer segments.

Some workers (Schram, 1982; Roy & Fahraeus, 1989) have considered Forney and Morris’s (1978) claims to be unjustified. We have discovered (work in progress) silicified phaseluses in six formations ranging from the Middle Ordovician to the Lower Devonian. None of the hundreds of specimens recovered contains any evidence of facial sutures or hypostomes. All of the occurrences of silicified phaseluses are in beds containing numerous silicified trilobites and ostracodes as well as many other silicified fossils. In a few instances, they occur with definite protaspides that are as small as the largest phaseluses (see Fig. 150.1–2) and with bivalved ostracodes that are smaller than the phaseluses. In some instances, however, the smallest definite protaspides present are almost five times the size of the phaseluses. It is not certain that phaseluses are trilobites and not naupliuses of crustaceans or an extinct group of arthropods that has yet to be recognized. One problem confounding their correct assignment is that their minute size precludes common preservation and discovery. They are found only in exceptionally well-preserved faunas, and they may occur in one bed but not in the beds above and below, which may contain silicified protaspides and later growth stages of trilobites.

Hu illustrated three specimens, which he assigned to *Norwoodia halli* Rescher from Upper Cambrian strata in Missouri, that are similar in form to Ordovician phaseluses (1963, pl. 19, fig. 18–24). These are slightly larger than most of the phaseluses that we have found to date (0.38 mm long and 0.32 mm wide, versus 0.1 to 0.2 mm in size for the phaseluses we have examined).

PROTASPID PERIOD

Morphological terms for different protaspides are provided in Figure 148, and number and letter designations for the prominent cranidial spines of odontopleurid and lichid trilobites are given in Figure 149. These terms may be applied with varying confidence in homology to similar spines present on the cranidia of protaspides and early meraspides of the Illaenina, Phacopida, and some Ptychopariida.

The overall body plan of trilobite protaspides has been characterized as either adult-like or nonadult-like by Speyer and Chatterton (1989). This distinction is based upon the dichotomy that exists among all studied stages that is neither taxon specific nor exclusive. The nonadult-like protaspides are usually more globular and three dimensional in form. The adult-like forms are more disk-shaped, with a lower profile and more planar ventral surface in lateral view, a prominent doublure, and a posteriorly tapered hypostome (Fig. 148, 150, 151). The differences would be even more apparent in Figure 150 if the free cheeks and hypostomes were present in lateral views (Fig. 150.3,9). In many nonadult-like forms, the hypo-
Trilobita

stomal spines extend obliquely downward well below the doublure.

Evitt and Tripp (1977), in describing the ontogenies of encrinurid and staurocephalid trilobites, coined several terms, including torulus for a rounded fixigenal swelling alongside the glabella of small stages. They also applied the system of notation for glabellar tubercles introduced by Tripp (1957) to larval stages (followed by Edgcombe, Speyer, & Chatterton, 1988).

Ontogenetic events (as time or maturity markers) during the protaspid period may be useful for examining heterochronic relationships between rate of growth, morphological change, and timing of appearance or disappearance of specific morphologies. These include the appearance of a furrow between the protocranidium and the protopygidium, the appearance of distinct axial furrows rather than a pair of pits that were probably associated with attachment of the hypostome, the appearance of connective sutures, the appearance of a hypostomal suture, the fusion of connective sutures, a movement of the genal spine from the fixigena to the librigena (in only some taxa), the timing of a major metamorphosis (e.g., change from nonadult-like to adult-like), and a change from a concave to a convex posterior margin.

Some groups of trilobites have larval instars that are particularly diagnostic. For instance, the first benthic instar of a lichid trilobite always appears to have three pairs of marginal spines on the protopygidium, and the second instar has five pairs of marginal spines (see Fig. 183.1,5). These features of lichid larvae not only make them recognizable, but may also be useful time markers for identifying heterochronetic changes occurring early in the life cycle.

Some features of protaspides are fairly general among trilobites, and others show a considerable degree of variation. For example, Figure 152 shows protasp and early meraspid hypostomes. Most of these show

Fig. 148. Morphological terms applied to adult-like (probably benthic) and nonadult-like (or asaphoid) protaspides, based on drawings of the encrinurid Physemataspis and the asaphid Isotelus. Abbreviations: afs, anterior fixigenal spine; cdb, incurved doublure; e, eye; el, eye lens; fc, free cheek; fs, facial suture; h, hypostome; hs, hypostomal spine; ms, marginal spine; os, occipital spine (lobe); pc, protoccephalon (protocranidium + free cheeks); pfs, posterior fixigenal spines; pp, protopygidium; pps, protopygidial spines; r, rostral plate; sms, submarginal spine; tdb, inturned doublure; tln, terrace ridges; vo, ventral opening (adapted from Speyer & Chatterton, 1989).
marginal spines. Even though the number and shape of marginal spines vary within some groups, they may be useful to characterize some taxa. As a general rule, early protaspides are more likely to have marginal spines on the hypostome than later growth stages, and those spines are more likely to be sharply conical. The presence of these marginal spines is probably a synapomorphy of trilobites (Fortey & Whittington, 1989). Such distinctive shapes of marginal spines as the blunted, distal ends of the marginal spines of lichid and styginid, adult-like protaspides or the reduction in size or loss of marginal spines in the odontopleurids and proetids may be derived, apomorphic features. Speyer and Chatterton (1989) pointed out that the marginal spines of hypostomes of nonadult-like, pelagic protaspides are generally much longer and sharper than those of adult-like benthic growth stages in the same species (contrast Fig. 152.11 with 152.7), and the hypostomes of nonadult-like protaspides cover a much greater proportion of the ventral surface than those of adult-like protaspides (Fig. 145.3, 146.3, 148).

The width of the rostral plate relative to the front of the hypostome also varies among different groups of trilobites. In some taxa the rostral plate is narrower than the hypostome (Phacopida, Fig. 152.1,3), in others it is the same width (Lichidae, Fig. 145.6; Odontopleuridae, Fig. 152.2), and in others it is much wider (Olenellina, see Palmer, 1957).

MERASPID PERIOD

This period incorporates the growth stages in which the cephalon is separate from the thorax or the pygidial portion (transitory pygidium) but lacks a full (adult) complement of thoracic segments.

Number of Meraspid Instars

Typically, a single thoracic segment is released into the thorax between adjacent instars, and meraspid degree numbers increase by increments of 1 during the life cycle of a trilobite. Thus the number of meraspid instars equals the number of adult thoracic segments (Fig. 153). In certain species, however, the number of meraspid instars differs from the number of adult thoracic segments. Chatterton (1971), for example, demonstrated that for Dentaloscutellum campbelli two thoracic segments are released into the thorax between instars, so the meraspid degrees mainly increased in increments of 2 (0, 1, 3, 7, and 9). Thus, there are only five meraspid instars, although there are ten thoracic segments in the adult, holaspid trilobite. Some Early and Middle Cambrian trilobites with numerous thoracic segments must either have passed through a very large
number of instars or released several segments into the thorax between instars (PALMER, 1957). If the number of instars of *Neocobboldia chinlinica* that X. ZHANG (1989) recognized is correct (they are not very distinct on his diagrams), and if his boundary between meraspid and holaspid stages is correct (as it appears to be on
Fig. 151. Lateral views of protaspides. 1–5, Nonadult-like, probably planktonic protaspides of Asaphida; 1, Isotelus? sp., an asaphid, from the Crown Point Formation, Middle Ordovician, New York, NYSM 16310, X49; 2, Cryptolithus tessellatus (Green), a trinucleid, from the Martinsburg Formation, Middle Ordovician, Virginia, NYSM 16311, X83; 3, Remopleurides sp., a remopleurid, from the Edinburg Formation, Middle Ordovician, Virginia, NYSM 16312, X60; 4, Lanzhodomas chaziensis Shaw, a raphiophorid, from the Crown Point Formation, Middle Ordovician, New York (locality PB81), NYSM 16313, X92; 5, Isotelus sp., an asaphid protaspis from the Crown Point Formation, Middle Ordovician, New York, NYSM 16314, X60 (new). 6–11, More adult-like, probably benthic protaspides; 6,7, aulacopleurid Scharysa sp. from Wenlock part of the Delorme Formation, northwestern Canada; 6, UA 8421, X38; 7, UA 7902, X56; 8, encrinurid Cybeloides prima (Raymond) from the Crown Point Formation, Middle Ordovician, New York (locality PB81), NYSM 16315, X76; 9, lichid Hemiarges aff. H. turneri Chatterton & Ludvigsen from the Crown Point Formation, Middle Ordovician, New York, NYSM 16316, X38; 10, homalonotid Brongniartella sp. from the Martinsburg Formation, Middle Ordovician, Virginia, AMNH 43959, X41; 11, pterygometopid Calyptraulax annulata (Raymond) from the Crown Point Formation, Middle Ordovician, New York, NYSM 16317, X108 (new).
Trilobita

Fig. 152. Hypostomes and rostral plates. 1. Ventral view of hypostome and rostral plate from same protaspis of pterygotopoid Calyptaulax annulata (Raymond) from the Crown Point Formation, Middle Ordovician, New York, NYSM 16318, ×119 (new). 2. Dorsal view of hypostome and rostral plate (meraspid?) of odontopleurid Ceratocephala triacantheis Whittington & Evitt from the Esbataotrine Formation of the Mackenzie Mountains, Middle Ordovician, northwestern Canada, UA 8422, ×60 (new). 3. Ventral view of hypostome and rostral plate from underside of same protaspis of encrinurid Physemataspis insularis (Shaw) from the Crown Point Formation, Middle Ordovician, New York, NYSM 16319, ×129 (new). 4. Ventral view of small hypostome of pterygotopoid Calyptaulax annulata (Raymond) from the Crown Point Formation, Middle Ordovician, New York, NYSM 16320, ×132 (new). 5. Ventral view of small hypostome of odontopleurid Acidaspis lepernici Chatterton & Perry from the Wenlock Delorme Formation, northwestern Canada, UA 4550, ×46.25 (new). 6. Ventral view of hypostome of encrinurid Physemataspis insularis (Shaw) from the Crown Point Formation, Middle Ordovician, New York, NYSM (Continued on p. 193.)
Ontogeny

There are six instars during the meraspoid period. Since eodiscid trilobites release only three segments into the thorax, the number of instars is twice the number of meraspoid degrees; i.e., no thoracic segments were released between some instars. A similar pattern was found by Hunt (1967) for the metagnostid *Trinodus elspeithi*, in which he identified three meraspoid instars in a species that has only two adult thoracic segments, and by Müller and Walossek (1987, p. 20) for the agnostid *Agnostus pisiformis*. This similarity could be regarded as a synapomorphy for eodiscoids and Agnostina (see Fortey, 1990a, 1990b, for more discussion); or, alternatively, it could have resulted from convergence among taxa with a reduced number of thoracic segments.

Palmer (1958, p. 165) divided the meraspoid period into three subperiods, based on characters of the head. In the first, the early meraspoid stage, "the glabella is continuous..."
Trilobita

with the eye ridge and reaches to the anterior margin of the cranidium.” In the middle meraspid stage “the glabella is separated from the border by a frontal area composed only of the brim.” In the late meraspid and holaspis stage, “the frontal area is divided by a shallow marginal furrow onto [sic] a brim and border.” He believed that these stages are “recognizable in the development of most non-olenellid trilobites with a brim and border.” This may be true for a number of Cambrian ptychoparioid trilobites, but it is not applicable to most non-Olenellina. Although it may be useful in studies of heterochrony among some Cambrian trilobites, we do not advocate the use of this scheme.

Kopaska-Merkel (1987) divided the meraspid period into two subperiods, depending on whether the number of dorsally expressed protothoracic segments is increasing (accumulation phase) or decreasing (shedding phase) between adjacent instars. Early in the meraspid period, in the accumulation phase, new segments usually form near the back of the transitory pygidium at a rate faster than they are released into the thorax at the front. Towards the middle of the meraspid period, new segments may differentiate at the back of the transitory pygidium at about the same rate as they are released into the thorax. In the later shedding phase of the meraspid period, usually all of the segments have formed, including a protopygidium; and as segments are released into the thorax, the number of segments in the transitory pygidium is reduced. These stages can be recognized for most if not all trilobite growth series. Kopaska-Merkel recognized an accumulation phase of five to seven instars for the pliomerid Hintzeia and a shedding phase of four instars. He also noted that unpublished data of Ludvigsen on the cheirurid Gabricerurus reveal an almost identical pattern. While speculating on the value of these data in determining relationships, he noted the apparently aberrant pattern of other cheirurids, Ceratinella typa and Ceratinella chondra, in which the first meraspid transitory pygidium found apparently contains all of the protothoracic segments as well as those that will become the pygidium. In other words, the entire accumulation phase occurs during the protaspis period or at least before meraspid degree 1 and perhaps involves a number of instars (see reconstruction by Whittington, 1957b, fig. 27; see also Ceratinella protaspis in Fig. 178.1–2, which appears to be an intermediate state). Whether the shedding phase occurs in these two species over a number of instars as small steps or as a cascade in a very few instars is not yet known. Considering the very large size of these transitory pygidia, the latter is possible. This is not so for some other species of Ceratinella such as Cer. nahanniensis (see Chatterton & Ludvigsen, 1976; Chatterton, 1980), where the pattern is more typical.

A substantial amount of trilobite growth, from less than 25 to as much as 30 to 40 percent, probably took place during the meraspid period (Whittington, 1957a; Chatterton, 1971; Hunt, 1967; X. Zhang, 1989). There is surprisingly little reliable, numerical information in the literature on the proportion of the life cycle taken up by the meraspid period. This suggests that most workers have not considered this information to be important or that it is difficult to ascertain, certainly in contrast to proportional growth increments between instars. We also know of no data that may be used to mark the end of a trilobite’s life due to old age other than the size of the largest specimens discovered in any collection.

During the meraspid period the trilobite was undergoing major reorganization, the production of new segments posteriorly and their release into the thorax. Thus, the length of the meraspid period, measured by the number of instars or the amount of growth, may have been an important constraint on the life-history strategy of a trilobite. A progenetic, paedomorphic pattern could have reduced the length of the meraspid period in a trilobite switching from a K-
Ontogeny

HOLASPID PERIOD

In the holaspid period all of the thoracic segments have been released. Most trilobites undergo considerable growth, probably most of their growth, during the holaspid period, although the exact amount has been documented for very few trilobites (Hunt, 1967; Whittington, 1957a; Chatterton, 1971; Chatterton & Ludvigsen, 1976). Considerable allometric growth may take place during the holaspid period; however, no major metamorphoses are known. Some of these allometric changes may be useful in diagnosing heterochronic evolution (see below). The number of instars that occurred during the holaspid period is usually very difficult to determine because of variations in the rate or amount of growth or even the timing of instars between individuals. These variations, which may be minor between any two instars, are compounded through the lives of the trilobites. Thus instars may be easy to distinguish in protaspid stages, more difficult to separate upon the basis of size during the meraspid period (but often possible on the basis of morphology), and impossible to discriminate in the holaspid period. Some authors have attempted to determine the number and sizes of holaspid instars for various taxa by using such growth rules as Dyar's rule or Przibram's rule. Where the instars cannot be distinguished clearly on the grounds of size or morphology, however, the use of these rules must be teleological.

Some trilobites appear to have exercised a closer genetic control over the sizes of their instars, and these can be distinguished even in holaspid stages. One such example is the metagnostid *Trinodus elsperi* (see Hunt, 1967). This species is small, however, with only nine recorded instars in the meraspid and holaspid periods. If the number of instars is correlated with age, a greater number of instars should increase the chance that individual variation will blur the boundaries between adjacent instars in later growth stages. Thus, the factors of (1) genetic variation and control (through release of hormones), (2) the age of the trilobite (or number of instars as a measure of age), and (3) the complexity of ecology or overall morphology may determine whether holaspid instars may be discriminated. It is also easier to discriminate instars in a collection made from a single bedding plane or from a single block of limestone than from a collection obtained from a number of beds. There are exceptions even to this rule, however; and Chatterton and others (1990) found that it was possible to discriminate instars in at least very early growth stages in collections of *Flexicalymene* made from more than one locality. Another factor, well documented among modern insects, is that the type or availability of food may affect the rate of growth and the number of molts (Bernays, 1986; Bernays & Hamai, 1987). This is also documented for many long-lived crustaceans, including crabs and lobsters (Travis, 1954; Hartnoll, 1969; Lippius & Herrnkind, 1982; Ginatzy & Romer, 1984), and for chelicerates (Jegla, 1982; Laverock, 1927; Shuster, 1982).

Indications of sexual maturity are difficult to find in trilobites. Some of the morphological features that have been suggested as sexually dimorphic appear relatively early in their life cycles, presumably before the animals reached sexual maturity. Speyer and Brett (1985) have suggested that aggregations of adult individuals of similar size were for the purpose of reproduction and that, therefore, the study of the sizes of a number of individuals composing such aggregations may provide information on the size of trilobites at the onset of sexual maturity. A change in growth allometry during ontogeny may mark the time of onset of sexual maturity. A change in growth allometry during ontogeny may mark the time of onset of sexual maturity. A change in growth allometry during ontogeny may mark the time of onset of sexual maturity. A change in growth allometry during ontogeny may mark the time of onset of sexual maturity.
above, instars are usually very difficult to discriminate late in ontogeny.

LIFE-HISTORY STRATEGIES

Chatterton and Speyer (1989) have noted the more common life-history strategies, considering the larvae as either benthic or planktonic and most as heterotrophic, lecithotrophic, or planktotrophic. Some life cycles included a radical metamorphosis early in the ontogeny, usually accompanied by a change from a planktonic to a benthic mode of life, as is the case for many modern arthropods (Fig. 154). The size of the smallest known exoskeleton in the growth series of different trilobites varies greatly (from less than 0.2 mm to greater than 1.0 mm). Some trilobites passed through stages and size classes as embryos or free-swimming, uncalcified individuals that other taxa passed through calcified (Fig. 140, 147). The four life-history strategies listed below are predicated on the thesis that some larvae were planktonic and others were not. Figure 155 shows hypothetical appendages and life positions for a nonadult-like, planktonic larva and an adult-like, benthic larva. Recognition of the mode of life of larvae is based on their overall morphology (the nonadult-like being unconstrained in three dimensions, without ventral apertures and muscle attachment sites that would be expected for efficient operation of appendages that might be used for locomotion on or digging in a sedimentary substrate), their separation from more adult-like later stages by a radical metamorphosis, and their distributions (Fig. 156).
Ontogeny

LIFE-HISTORY STRATEGY I

In this strategy all protaspid growth stages were planktonic (or premetamorphic) in form, with the metamorphosis into benthic, heterotrophic forms at or after the end of the protaspid period. This pattern is one of the characteristic features of the Asaphida (FORTEY and CHATTERTON, 1988). CHATTERTON and SPEYER (1989) pointed out that almost all taxa with this life-history pattern became extinct during the Ordovician (including a number of taxa in the mass extinction near the end of the Ordovician). They also demonstrated that taxa with this life-history strategy were constrained geographically to lower paleolatitudes and suffered a minor extinction at about the time of onset of the Ordovician-Silurian glaciation. Examples of trilobites with this type of life-history strategy are *Isotelus* and *Remopleurides*. In *Isotelus* (Fig. 157), the metamorphosis from nonadult-like, planktonic stages to adult-like, benthic stages apparently took place at the transition between the protaspid and meraspid periods. In *Remopleurides*, this change occurs within the meraspid period in some, if not all, species (Fig. 158).

LIFE-HISTORY STRATEGY II

In this strategy the first calcified stage is planktonic or at least separated from later stages by a radical metamorphosis, and later stages are benthic. This pattern may have been acquired independently in several different Ordovician and younger clades. It is shared by such taxa as the Illaenina, the Lichidae, the Phacopida, and some ptychopariids. If this pattern were plesiomorphic or a synapomorphy of these groups, one might expect the smallest premetamorphosis larvae of these groups to be very similar. Since they are not and some of the taxa listed here prob-

Fig. 155. Hypothetical appendages and life positions of an adult-like protaspid of encrinurid *Physemataspis* and a nonadult-like protaspid of asaphid *Isotelus*. Abbreviations: ca, cephalic appendage (an, antenna; b, biramous); e, eye; el, eye lenses; pa, pygidial appendages (b, biramous); tl, terrace ridges; W/S, water-sediment interface (adapted from Speyer & Chatterton, 1989).
Trilobita

Life-history strategy I
(protaspid: planktonic)

Life-history strategy II
(protaspid: planktonic-benthic)

Life-history strategy IIIa
(protaspid: benthic)

Life-history strategy IIIb
(protaspid: benthic)

Fig. 156. Varied developmental patterns and life-history strategies indicated by trilobite ontogenies. \(P \) indicates a protaspid instar; \(M \) indicates meraspid instars (the meraspid period); and \(H \) indicates an indefinite number of holaspid instars (the holaspid period). The subscripts in the protaspid stages refer to the first, second, third, or nth sclerotized protaspid instar. The location of letters representing growth stages corresponds to presumed ecology, that is, whether they lived in the water column or on the sea floor (adapted from Speyer & Chatterton, 1990).

Very likely have sister groups that are excluded from this group, this life-history strategy probably evolved several times in different groups of trilobites. CHATTERTON and SPEYER (1989) showed that trilobites with this pattern were comparatively successful in surviving the end of the Ordovician mass extinction. Rare forms with this life-history pattern may have more than one premetamorphosis larva, as in Flexicalymene (see Fig. 178; CHATTERTON & others, 1990). It is possible that the phaselus belongs to some taxa with this strategy; FORTEY and MORRIS (1978) assigned the phaselus to Cybelarus, a form with this life-history strategy. Faileana, an illaenid, provides an example of this life-history strategy (Fig. 159).

LIFE-HISTORY STRATEGY III

Here all calcified growth stages are benthic. Trilobites with this life-history strategy had a comparatively high rate of survivorship during the Ordovician extinctions and gave rise to many post-Ordovician trilobites (CHATTERTON & SPEYER, 1989). Dimeropyge, a bathyuroid with at least three adult-like protaspid instars, is an example of a trilobite with this life-history strategy (Fig. 160); Scharyia (see Fig. 180) is another (SNAJDR, 1981a). Earlier workers would have
called the smallest protaspid assigned to this growth series an anaprotaspid. Some might have argued that it was planktonic. We consider that the relatively two-dimensional form of this stage, when considered with the moderate-sized hypostome, which lacks strong marginal spines, and the moderate morphological change between this stage and the following growth stage (a large amount but less than in most planktonic to benthic metamorphoses), suggests that it was benthic rather than planktonic. Marginal spines, where they occur on the hypostomes of benthic larvae, are short and usually laterally or posteriorly directed rather than ventrodistantly directed (the usual state in planktonic protaspides).

LIFE-HISTORY STRATEGY IV

Larvae are benthic or rarely planktonic; adults are pelagic. This life-history strategy is not as relevant to early ontogeny as the preceding strategies but strongly affects the survivorship of the group. No taxa showing this life-history pattern survived the late Ordovician mass extinction. For examples of this life-history strategy, see FORTEY (1985).

Some of the stages categorized above as benthic, particularly some of the larvae, for hydrodynamic reasons could have been part planktonic or nektonic and part benthic. We have assumed that those stages that could have operated efficiently on the sea floor did so, and those that could not, did not.

The four life-history strategies discussed above are broad and encompass distantly related taxa. They do, however, affect survivorship and dispersal of trilobite taxa (CHATTERTON & SPEYER, 1989) and are relevant in evolutionary, paleoecologic, and paleobiogeographic studies.

HETEROCHRONY

JAEL (1909) did not document in detail his suggestion that the Agnostida arose from
Trilobita

polymerid trilobites through paedomorphosis. We presume that he was influenced by the small size of Agnostida, their small number of thoracic segments, their isopygous condition, and even, possibly, their blindness. Many of the distinctive features of Agnostida are not similar to characters known in small polymerid trilobites and cannot be interpreted as the result of paedomorphic evolution from any taxon with a well-known ontogeny. No proposed ancestor of the Agnostida has been widely accepted, and therefore any suggestions in regard to a heterochronic origin for this group must be regarded as speculative. Stubblefield (1936), Hupe (1954), Jell (1975a), and Muller and Walossek (1987) have commented on this possible mode of origin, the latter workers even suggesting that the slightly unusual form of the appendages of Agnostus may be explained by their derivation from larval morphologies, which are frequently quite different from adult morphologies and extensively modified during ontogeny in the related Crustacea. We do not know of any examples of preserved, larval appendages of polymerid trilobites (those of Fig. 155 are purely speculative). Comparison with the ontogenies of polymerid trilobites suggests, from the radical nature of the changes and some of the morphological details, that heterochronic changes necessary to give rise to Agnostida would have to have occurred comparatively early in the ontogeny of the ancestral forms. These changes must have affected at least meraspid and probably protaspid stages of the ancestral forms. The small size and juvenile appearance of the Agnostida would imply that most of the changes were progenetic. The

Fig. 158. The life cycle of the remopleurid Remopleurides eximius Whittington. Drawings are of a late protaspid (P), a representative of meraspid degree 0 (M0), and a mature holaspid. This species appears to represent a variant of life-history strategy I (see Fig. 156), in which the metamorphosis from nonadult-like pelagic to adult-like benthic stages was retarded so that it took place during the meraspid period. All stages shown in both dorsal and lateral views (adapted from Whittington, 1959a).
Agnostida also have a number of autapomorphies that cannot be explained readily as the results of heterochronic evolution. After the separation of the Agnostida from other trilobites, considerable evolution took place within this group.

Gould (1977) pointed out the prevalence of heterochronic evolution and suggested that there may be a relationship between heterochronic patterns of evolution and paleoecology, in particular the r and K life-history strategies of MacArthur and Wilson (1967).

It may be argued that the numerous evolutionary pathways available through using different heterochronic patterns (the six patterns shown by McNamara, 1986b, fig. 1, plus an indefinite number of mosaic patterns based on heterochrony taking place at the organ rather than the organism level) allow organisms to radiate rapidly when the opportunity presents itself. Such an opportunity may follow a mass extinction as niches become vacant.

Some workers (Stubblefield, 1936, 1959; Stormer, 1942; Hupe, 1954; Clarkson, 1971, 1975) suggested that heterochrony, in particular paedomorphosis, was the source of important evolutionary novelties that determined higher taxa within the Trilobita. Whittington (1957a) discussed the evidence for neoteny as an evolutionary process, particularly in regard to the origins of orders of trilobites, and was not convinced by the cases that had been made by earlier workers. He favored selection at the organ.
level in response to environmental pressures over any heterochronic process. Whittington (1981, p. 593), while accepting some documented examples of paedomorphosis, was unconvinced that this form of evolution had been demonstrated for the "derivation in this way of a species ancestral to a new family or group" and did not believe that post-Cambrian proparian trilobites evolved from a single paedomorphic species. He also commented on the cryptogenetic origin of most trilobite higher taxa.

McNamara (1986a, p. 126) pointed out that most workers have concentrated on examples at the species level or on the origin of new genera (Robison & Campbell, 1974; Fortey, 1974b, 1975b; Jell, 1975a; McNamara, 1978, 1981a, 1981b, 1983; Ludvigsen, 1979b; Fortey & Rushton, 1980; Whittington, 1981; Chatterton & Perry, 1983; Ramsköld, 1988; Edgecombe & Chatterton, 1987).

McNamara (1978, 1981a, 1981b, 1983, 1986a) has described heterochronic patterns of Cambrian trilobites. He found that both peramorphosis and paedomorphosis are important in trilobite evolution. He discussed the role of paedomorphosis in developing major evolutionary novelties within the Trilobita and considered that perhaps the best example is the possible paedomorphic origin of the Corynexochida from the Ptychopariida, with meraspid stages of genera such as Crasifimbra (see Robison, 1967) being very similar to adult corynexochids like Bathyuriscus. Most of the examples quoted by McNamara are based entirely on adult allometry, which is biased in regard to the amount of morphological change that takes place and the range of ecological factors.
Ontogeny experienced by the animals. The most radical examples of heterochrony can be expected to involve morphological variation of larval as well as adult growth stages.

Clarkson (1971, 1975) has argued that the origin of the schizochroal eye of the Phacopina and the usual forward position of the eye on the cephalon may have resulted from a paedomorphic, heterochronic pattern of evolution. He based this thesis on the facts that probable ancestral taxa have fewer lenses in their juvenile eyes and the eyes of phacopid larvae are located relatively farther forward than those of the adults. Thus cases have been made for the independent evolutionary origin of three trilobite orders using paedomorphic patterns: Agnostida, Corynexochida, and Phacopida.

McNamara (1986a, p. 149) has also argued that a different pattern of heterochronic evolution may have played a part in the origin of some important post-Cambrian groups of trilobites. He noted the comparatively advanced morphological stage of the early growth stages of members of the Lichidae, Phacopida, and Illaenina. He suggested that this was an example of predisplacement, "one of the processes which result in peramorphism" (Alberch & others, 1979). McNamara also argued that most published examples of heterochronic evolution of post-Cambrian trilobites have been of peramorphosis, although undoubtedly paedomorphosis has occurred (e.g., Ludvigsen, 1979b; Edgecombe & Chatterton, 1987). In this context, McNamara quoted Gould (1977, p. 269): "evolution by acceleration must be an important path to the development of morphological complexity in specific features." McNamara (1983) illustrated a number of small trilobites that he thought may have had a progenetic origin (Fig. 161). Fortey argued that the origin of the Proetida could have been as a result of "adult morphology displaced back to protaspis stage" or, in other words, a form of predisplacement (1990a, fig. 16, p. 558–560).

McNamara (1988, table 1) provided a list of published examples of heterochrony of trilobites. All of these are at generic or specific levels except for three: the origin of phacopids (Clarkson, 1979a), the origin of the order Corynexochida (Robison, 1967), and the origin of the subfamily Calymeninae (Siveter, 1980). Of the 36 examples that he listed, 21 are of paedomorphosis (12 Cambrian; 7 Ordovician; 2 Silurian), 13 are of peramorphosis (3 Cambrian; 8 Ordovician; 1 Silurian; and 1 Silurian-Devonian), and 2 are of mixed paedomorphosis and peramorphosis (both Silurian). Presumably, these examples provided the bulk of the data on which he based his generalization that paedomorphosis was more important among Cambrian trilobites and peramorphosis more important among post-Cambrian trilobites (McNamara, 1986a). These 36 examples represent a very small proportion of the Trilobita, and McNamara noted that some forms of heterochrony (e.g., progenesis) are more recognizable than others.

Recent work on ontogeny and heterochrony (Clarkson, 1971, 1975) has shown that some patterns of heterochrony may affect primarily organs rather than whole organisms. An organism may evolve in a variety of heterochronous patterns and the same time, some of which may be paedomorphic and some peramorphic. This form of evolution, showing mixed heterochronic patterns (mosaic heterochrony of Kopaska-Merkel, 1987), apparently occurred in the origin of the Encrinurus punctatus plexus from an Encrinuroides ancestor (Edgecombe & Chatterton, 1987). Edgecombe and Chatterton also identified a mixture of paedomorphic and peramorphic patterns in a rapidly evolving lineage of Kettneraspis in Silurian strata of northwestern Canada. This lineage occurs in a sequence of strata (mainly limestones) laid down during a regression, from comparatively deep and stable, presumably K-selective environments to shallower, more unstable, r-selective environments. They argued that the combination of the
peramorphic acceleration and paedomorphic progenesis patterns is a consistent evolutionary response to this change in the ecology. McKinney (1986) had earlier come to similar conclusions for Cenozoic echinoids. Some neontologists, however, consider the theory of r- and K-selection to be an overgeneralization: that all organisms show a mixture of such traits and that polarization of r- versus K-selection or even versus stress tolerance (Vermeij, 1978) is unnatural.

In order to examine heterochronic patterns in trilobites, it is necessary to select some benchmarks that may be used to determine relative rates of development and onset or timing of development of particular features. This may be accomplished by assuming that a feature increases in size at a regular rate in relation to time (such as the length of the glabella) and timing other events in relation to numerical increments in size of this feature. Alternatively, it may be done by contrasting the timing of the appearance of some morphological event in relation to that of some other morphological event considered to be a useful time marker. The number

© 2009 University of Kansas Paleontological Institute
of such time markers in the ontogeny of trilobites is large and includes several features: the timing of the first distinct appearance of axial furrows on the cranidium (or procranidium), the appearance of a furrow marginal on the procranidium (separating the procranidium from the prototransitory pygidium), an anterior border, a prelabellar field, a distinct visual surface, a functioning hypostomal suture, a bulla, functioning connective sutures, the first segment on the protopygidium (or a particular number of segments), and the suture that causes separation of the cephalon from the transitory pygidium (prosapid-meraspid boundary).

Other important heterochronic markers may include losses (such as loss of long marginal spines on the hypostome), movements of features (transfer of genal spine from the fixed cheek to the free cheek or the release of the last segment into the thorax at the transition from meraspid to holaspid), and even expansion of features (e.g., the bullae expanding to incorporate parts of more than one cranial somite). Not all of these markers occur in all taxa. Which markers are the most suitable for the taxa being studied and which may be most convincingly argued must be chosen for each heterochronic study.

Ludvigsen (1979a) argued (Fig. 162) that *Pseudogygites* arose from *Isotelus* through paeedomorphic (neotenic) evolution, since mature individuals of *Pseudogygites* are very similar to meraspid individuals of *Isotelus*. He pointed out that *Pseudogygites* is abundant in a very distinct, low-diversity facies (low-temperature, low-oxygen, dark shales). However, he considered that low temperature could not be the cause of this heterochronic pattern because *Pseudogygites* apparently originated on a warm, carbonate shelf and later became abundant in deeper, colder-water, terrigenous-mud environments. (It occurs first in low numbers in the upper parts of the Cobourg Formation.) Ludvigsen argued that neotenic, heterochronic evolution, perhaps as a K-strategy, preadapted *Pseudogygites* for the colder, deeper, more stable environments of the Whitby Formation, which was deposited later. He suggested that this situation may have occurred more than once, producing several species of *Pseudogygites* iteratively from *Isotelus*. If so, cladists would argue that *Pseudogygites* is polyphyletic and should be subsumed within *Isotelus*.

One of the better examples of heterochronic evolution among Cambrian trilobites is that of various species of *Xystridura* and the descendant genus *Galabates* (Fig. 163; McNamara, 1981a). Morphological details found in small cranidia of such stem-form *Xystriduridae* as *Xystridura templetonensis* and hypothesized to occur in *Xystridura carteri* occur in adult growth stages of the later species *Xystridura altera*, *Xystridura dunstani*, *Xystridura sandoverensis*, and *Galabates fulcrosus*; these include retention of a prelabellar field, a wide fixed cheek and cranidium, and a smaller frontal glabellar lobe. McNamara also considered whether ecological factors could explain the differences between the apparently progenetic pattern that produced *G. fulcrosus* and the neotenic pattern that produced *X. altera*, two species that occur in some cases on the same bedding planes. He argued that the former, progenetic species may have been r-selective and pelagic and that the latter species may have been K-selective and benthic. However, we believe that the adult morphology of both species is typical of benthic trilobites and consider it more likely that these two forms originated in different environments, which could have favored r-over K-selective taxa, and later occurred together as a result of migrations in response to environmental changes.

Most published examples of heterochronic evolution among trilobites are based on general inferences of ancestral-descendant relationships rather than detailed arguments in support of individual phyletic lineages and demonstrations of anagenetic evolution. Also, in a number of cases, the ontogenies are not known for either the hypothesized ancestral or the descendant species but have been inferred from the known ontogeny of a
Fig. 162. Model of heterochronic (paedomorphosis, neoteny) derivation of Pseudogygites from Isotelus during the Ordovician, based on 46 specimens of Isotelus gigas from the Trenton Group of New York and 79 specimens of Pseudogygites latimarginatus from the Whirby Formation of Ontario. Dashed lines indicate tentative shape correlations. Drawing of I. gigas meraspid degree 1 based on specimen illustrated by Ludvigsen and silicified material of Isotelus parvus Chatterton & Ludvigsen from the Esbastaotnine Formation, northwestern Canada (Chatterton & Speyer, 1990, fig. 7).
related species. (For an exception, see Fortey & Rushton, 1980.) Ideally, ontogenies of both ancestral and descendant species should be known, and a considerable amount of data should be available supporting direct descent of one species from the other in the form of morphologically overlapping intermediate collections of fossils from appropriate stratigraphic levels and geographic locations. We can think of no published examples that fulfill all of these criteria. A number of sequences of silicified trilobites...

FIG. 163. Heterochronic patterns in Cambrian Redlichiina Xystridura and Galabates. 1, X. templetonensis (Chapman); 2, X. altera Öpik; 3, G. fulcrosus Öpik. 4–6, Horizontal row of drawings and open arrows show changes during ontogeny in cranidia of X. templetonensis; vertical arrows show characters present in the adult G. fulcrosus that occur in the ontogeny of X. templetonensis; 4, changes in the outlines of cranidia (note curvature of anterior margin); 5, changes in width from axial furrow to back of eye as a percentage of cranidial length; 6, changes in the length of the preglabellar field. [In one of McNamara’s original diagrams used for this figure (1981a, fig. 8), X. carteri Öpik is included as the stem-form species. However, since all his examples of ontogeny within Xystridura were based upon X. templetonensis and he noted (1981a, p. 216) that X. templetonensis is a stem-form species of Xystridura, we have chosen to use the latter species in this adaptation from McNamara (1981a).]
have great potential as examples (Virginia, New York, the Mackenzie Mountains).

GROWTH FORMULAS AND POPULATION DYNAMICS

Several rules have been formulated for the amount of growth expected between adjacent instars of various types of arthropods. Hartnoll (1982) discussed some of these and their application to crustaceans. One of these was Dyar's rule (Dyar, 1890): \(x/y = \) a constant, where \(x \) is a linear measurement for an instar and \(y \) is the same linear measurement for the previous instar; another was Brooks' rule, originally defined by Fowler (1909) as \(x - x/y = \) a constant but later redefined as the percentage by which the postmolt exceeds the premolt length (Maughline, 1976). Hartnoll also discussed Przibram's rule (Przibram, 1929), where weight doubles between instars so that increase through Dyar's rule should be the cube root of 2, or 1.26.

Growth increments between molts in trilobites and their fit to these rules of growth have been discussed by Palmer (1957), Hunt (1967), Cisne (1973b), Romano (1976), Kopaska-Merkel (1981), Buschi and Swartz (1985), Brezinski (1986a), Sheldon (1988), Chatterton and Speyer (1990), and Chatterton and others (1990). In most examples, ontogenies have growth increments between instars that are in general agreement with these laws. However, the increments can be significantly above or below the expected values. In some, departure from these rules is associated with molts that involve radical metamorphoses. It is, however, difficult to quantify size differences between planktonic and benthic growth stages because the morphologies of the forms are so different, and volume may be more important than mere length and width. Rarely are the instars known with certainty for more than a small portion of the life cycle of the trilobite, although, as Hunt (1967) pointed out, distinct instars are usually identifiable with confidence for early growth stages.

Recent work on arthropods has demonstrated that correspondence with growth rules is far from general. Some workers have shown that the amount or type of food may affect the rate of growth, the number of instars, and thus the amount of growth between instars (e.g., Bernays, 1986; Bernays & Hamai, 1987; Lipcius & Herrnkind, 1982). The same was probably true for trilobites, and the growth increment between instars may provide evidence of genetic variation or indirect evidence of variation in environmental factors such as the availability of various types of food.

We agree with Sheldon (1988) that, while instars may often be recognized with confidence in bivariate plots (Hunt, 1967), they are usually more difficult or even impossible to identify on size-frequency histograms. An analysis of bivariate plots with distinct instars shows that the instars are usually more readily discriminated by size along one of the two axes.

Size-frequency diagrams of trilobites have sometimes been used to provide information of relevance to studies of population dynamics. These seldom involve bedding-plane assemblages and so usually represent a span of time rather than a moment frozen in time. Sheldon (1988), examining the size-frequency histograms of more than 5,000 trilobites from Ordovician shales in Wales, found that the histograms usually have normal to slightly negatively skewed distributions with very few small individuals preserved. He discussed the implications of their absence in light of the fact that the expected pattern is positive skewness. He argued that negative skewness may have resulted from high longevity and low recruitment to the fossil record of postlarval stages, with more adult than juvenile molts left behind by long-lived trilobites. A number of other factors, however, could cause negative skewness, including the poorer calcification of small sclerites (leading to preferential early taphonomic destruction), the tendency for shales to split at levels containing large but not small specimens (which does not occur with silicified
faunas, where the skewness appears to us to be typically positive), the possibility that small stages lived elsewhere and arrived in the area only as adults (perhaps most likely for species with planktonic larvae), and the washing away of small growth stages (which is unlikely in Sheldon’s example). Speyer and Brett (1986) demonstrated that size variation across numerous facies was due to biological or ecological factors and possibly represented migratory patterns such as those demonstrated by annelids and many long-lived Crustacea. Thus population dynamics of trilobites are difficult to reconstruct from size-frequency histograms taken from bulk samples, and usually such diagrams provide data that are more likely to be of value to studies of paleoecology and taphonomy than taxonomy.

BIOGEOGRAPHY IN RELATION TO ONTOGENY

As a general rule, animals with long, pelagic growth stages will be more widely dispersed than those with purely benthic growth stages. Thorson (1936) commented that few organisms have planktotrophic larvae in high latitudes, but a high percentage of animals in equatorial latitudes have such larvae. Thus, the presence or absence of planktonic larvae in the life cycles of trilobites may be of use in determining their paleogeographic distributions. Those with planktonic larvae might be expected to be widespread in tropical or warm waters, and those with benthic growth stages may be expected to form a greater proportion of endemic faunas and faunas of high paleolatitudes. A gradient of sorts occurs between the paleogeographic extremes, with the proportion of taxa with planktonic larvae increasing towards the equator.

Chatterton and Speyer (1989, 1990) and Speyer and Chatterton (1990) noted that some trilobites with planktonic, nonadult-like larvae had very widespread paleogeographic distributions prior to the onset of the Ordovician-Silurian glaciation. However, after the onset of that glaciation, with the introduction of a greater thermal gradient between high and low latitudes and the appearance of floating ice, the distribution of these trilobites was restricted to more equatorial latitudes. Thus the distribution of these taxa appears to have been controlled by the modes of life of their larval stages.

Chatterton and others (1990, p. 258) commented on the absence of known, nonadult-like protaspides among homalono- tid trilobites, despite their presence in the closely related Calymenidae. They posited that the success of homalonotid trilobites in the “Hirnantia fauna,” their survival of the Ordovician-Silurian mass extinction (Chatterton & Speyer, 1989), and their later success in the cold, southern, Malvinokaffric faunas may be associated with their having had large embryos in a yolked egg and their having emerged from the egg to become large, benthic larvae.

Forteý (1985) noted that some telephinids and cyclopygids with pelagic adults have wide geographic ranges, and these forms appear to have been more independent of facies changes than benthic trilobites found in the same collections. The cyclopygids probably also had planktonic larvae. Trilobites with mature stages that lived in deep, cold environments may also have dispersed widely (e.g., Agnostida) since the deep oceans may not have been barriers, except during periods when layering of the oceans took place, and deep water was anoxic (Forteý, 1989).

Chatterton and Speyer (1989) and Speyer and Chatterton (1990) noted that trilobites with different life-history strategies were affected in different fashions at times of other extinctions in the Ordovician. Those with all pelagic larvae (strategy I) underwent a minor extinction at about the time of onset of the Ordovician-Silurian glaciation (see Fig. 164) and were virtually wiped out during the episode of mass extinction near the end of the Ordovician close to or at the level of maximum glaciation. Only one genus, Raphiophorus, containing very few species
Trilobites with pelagic adults (strategy IV) were not obviously affected by the first of these episodes but did not survive the second. Trilobites that had a single, nonadult-like, planktonic stage with the rest of the life cycle being benthic (strategy II) were unaffected by the first episode and suffered to a lesser degree during the second. Trilobites with all known stages benthic (strategy III) were affected only slightly during the first episode and moderately during the second. Chatterton and Speyer argued that these patterns could be explained best by environmental changes associated with the onset, advances, and retreats of the Ordovician-Silurian glaciation.

An important result of this pattern of extinctions was that almost all of the trilobite taxa that survived the Late Ordovician (Fig. 165) had life-history strategies II and III, and these two groups thus gave rise to almost all of the new taxa that radiated after that extinction. The only representative with life-history strategy I to survive, Raphiophorus, never radiated significantly and existed only in small numbers and with low diversity to near the end of the Silurian. The life history of that genus is not known in detail but is inferred from related raphiophorid trilobites such as Lonchodomas (see Fig. 174). When the autecology of this genus is better understood, we may understand why it alone managed to survive the Late Ordovician mass extinction but failed to radiate to occupy niches vacated by its relatives. Examination of life-history strategies at times of other extinctions (the Late Cambrian biomere boundaries and Late Devonian, in particu-
Survivors of Ashgill extinction

New genera in Llandovery

Fig. 165. Percentage of trilobite genera that survived the Ashgill extinction (1) and new genera that originated in the Llandovery (2) grouped into life-history strategy categories (for explanation of strategies, see Fig. 156 and text). Note the high proportion of forms that had benthic protaspides (strategy III).

© 2009 University of Kansas Paleontological Institute
more adult-like stages in the same life cycle. The problem of correct association of these small, nonadult-like larval stages is exacerbated by the change in mode of life that apparently occurred at the same time as the radical metamorphosis. Thus, the small, nonadult-like stages did not necessarily live or die in the same place as later growth stages.

Fig. 166. Globular, nonadult-like protaspides, some of which are of uncertain attribution. 1–4, From the Crown Point Formation, Middle Ordovician, New York (locality PB81); 1, 2, dorsal and ventral views of a protaspis, possibly of a premetamorphic growth stage of a lichid; 1, NYSM 16401, ×89; 2, NYSM 16402, ×91; 3, anteroventral view of very small protaspis of a cheirurid; NYSM 16403, ×153; 4, ventral view of nonadult-like protaspis of asaphid Isotelus sp., NYSM 16404, ×62 (new). 5, 6, From the Wenlock Delorme Formation of northwestern Canada (locality AV 126T); 5, ventral view of nonadult-like early protaspis, possibly of an Illaenina, UA 8480, ×88; 6, ventral view of protaspis of illaenid trilobite, UA 8481, ×74 (new). 7, 8, Dorsal and ventral views of small protaspides of harpionotid trilobite (Dolichoharpes?) from the Crown Point Formation, Middle Ordovician, New York (locality PB81); 7, NYSM 16405, ×65; 8, NYSM 16406, ×65 (new).
of the same species. This renders correct assignment through repeated stratigraphic occurrence or matching abundance more difficult.

Ontogeny aids in the correct determination of homologies by allowing the tracing of the formation of structures. Phylogenetic studies depend on the homologies of the characters used in the analyses. It is often difficult to trace these characteristics back to a common ancestor. They can usually be considered to be homologous if they have a common embryological or early ontogenetic origin from the same part of the organism. The homologies of such structures as cranidial lobes of various taxa have been suggested by studying ontogenies (Lichidae by Chatterton, 1971, 1980; Tripp & Evitt, 1981; Cybeloides by Evitt & Tripp, 1977).

In this section, we define the more important larval characteristics evident at the ordinal level and also for some suborders and superfamilies.

ORDER AGNOSTIDA, SUBORDER AGNOSTINA

Meraspid to holaspid growth stages have been described by numerous authors, including Barrande (1852), Palmer (1955), Snajdr (1958), Robison (1964), Rushton (1966, 1979), Hunt (1967), Öpik (1979), Qian (1982), Müller and Walossek (1987), Shergold (1991), and in this work (Fig. 167).

Protaspides stages assigned to Pseudagnostus benxiensis by Qian (1982) come from a bed also containing Parachangshania hsiashihensis. The ontogeny of the latter was described by Chen (1958) from the same locality, the protaspid being different from that assigned to P. benxiensis. Both protaspides are very similar to those of polymerid trilobites, and X. Zhang (1989, p. 13) expressed the opinion that they are “far more likely to be polymerid larvae.” The smallest meraspides of Agnostina (including Pseudagnostus benxiensis) are all isopygous or almost isopygous. The largest protaspid illustrated by Qian (1982) has a proptopygidium that is considerably smaller than the cranidium, requiring a radical metamorphosis between that stage and the earliest of P. benxiensis, should these two stages actually belong to the same taxon. Thus, if these protaspides belong to Pseudagnostus, they provide strong evidence of miomerid-polymerid affinity, which is also supported by the form of eodiscoid protaspides. If they do not, then they should be assigned to some polymerid that has yet to be described from this locality.

We find it difficult to understand why no protaspides of Agnostus have been discovered in the Swedish Orsten fauna if they existed (Müller & Walossek, 1987). This phosphatized fauna is so well preserved that the appendages are known for early meraspides stages of A. pisiformis (Fig. 82).

The reasons why no protaspides of Agnostina have so far been found have been discussed and center in part around the mode of life of the adult. A number of workers have argued in favor of a pelagic mode of life for Agnostina (Robison, 1972a; Stitt, 1975; X. Zhang, 1989), citing the small size of adults and their widespread distributions. Other workers consider Agnostina to have been benthic (Fortey, 1975b; Chatterton & Speyer, 1990), living in deep, cool, marginal environments where the levels of light (accounting for blindness) and oxygen (accounting for the paucity of other benthic organisms and high organic contents of the rocks) were often low. Both modes of life could account equally well for the widespread geographic distributions and deepshelf, marginal or basinal distributions of Agnostina. Some workers have even suggested such alternative modes of life as parasitism (Bergström, 1973a) and epifaunal attachment to algae (Pek, 1977). We favor the benthic mode of life for several reasons (see Chatterton & Speyer, 1990).

(1) Almost all pelagic arthropods have large eyes, whereas Agnostina were blind. (2) It is difficult to imagine an enrolled individual staying suspended in the water column. (3) The ventral side of the exoskeleton is virtually planar, implying that it was constrained in space, as is true of most benthic trilobites. (4) The exoskeleton of Agnostina, in
proportion to the size of the animal, shows few signs of weight reduction. We disagree with the view that the exoskeleton of Agnostina was thin. We have found that, in the Middle Ordovician Edinburg and Upper Cambrian Rabbitkettle formations, Agnos-
tina, although thin-shelled, are at least as thick-shelled as co-occurring, clearly benthic, usually olenid trilobites (see also data by FORTEY and WILMOT, 1991). (5) The distribution data, with beds containing enormous numbers but a low diversity of Agnostina, matches the distributions of gregarious or low-diversity, benthic organisms much better than it does the stratigraphic distributions of pelagic organisms. MÜLLER and WALOSSEK (1987, p. 1) considered that Agnostus pisiformis inhabited a “floculent zone at the bottom of the Alum Sea, where the animals swam or floated around.” If Agnostina were benthic, it is feasible that they passed through the protaspide stages as uncalcified embryos or larvae. Such accelerated development is common in crustaceans of small size (e.g., ostracodes and copepods). X. ZHANG (1989) presented the alternate hypothesis that the absence of a protaspis was the result of their inhabiting a different environment from the adults. If this were common in trilobites, associating larvae with more mature stages would be exceedingly difficult.

In attempting to assess whether QIAN’s (1982) assignments of protaspides to the agnostid Pseudagnostus are correct, it is useful to consider the following points. (1) Protaspides of Agnostina have not been described from extensive collections of silicified and phosphatized trilobites, including both Agnostina extending to M0 and many small polymerid protaspides. (2) The protaspides described by QIAN (1982), at least in the shape of the simple glabella, are morphologically similar to small meraspides of Agnostina. (3) Marginal spines of the M0 transitory pygidium are not apparent, either through absence or lack of preservation on the protaspide protopygida. (4) The disparity between the size ratio of the protopygidium to cranidium and the size ratio of the M0 transitory pygidium to cranidium is greater for Pseudagnostus benxiensis than for the eodiscoids Neocobboldia chinlinica and Pagetia ocellata. (5) The genal swellings, bacculae, and more anterolateral lobes apparent in the eodiscoid protaspides are not apparent on the protaspides assigned to the Agnostina. Because of the comparatively poor state of preservation of the protaspides described by QIAN (1982) and their broad morphological similarity to meraspide cranidia of Agnostina from the same locality, we are reluctant to state categorically that they are not Agnostina. However, their greater similarity in gross morphology to some polymerid protaspides, rather than to those of eodiscoids, and the comparatively radical metamorphosis required to change these protaspides into meraspides of Agnostina leads us to favor the hypothesis that these specimens are polymerid protaspides.

ORDER AGNOSTIDA, SUBORDER EODISCINA

Protaspides have been assigned to eodiscoid trilobites by HU (1971), X. ZHANG (1989), SHERGOLD (1991), and X. ZHANG and CLARKSON (1993). JELL (1975a) and X. ZHANG (1989) suggested that the protaspis assigned to Pagetia clytia by Hu (1971) may belong to a polymerid trilobite. However, as discussed below, we consider that this specimen is very similar to those assigned to the eodiscoids Neocobboldia (X. ZHANG, 1989) and Pagetia (SHERGOLD, 1991). There is little doubt that the latter forms are correctly assigned because of the number of specimens available, the size progression, and the clear similarity between protaspid and meraspide stages demonstrated by X. ZHANG (1989) and SHERGOLD (1991). We note here that the forms called anaprotaspides by X. ZHANG would be termed metaprotaspides by most workers (see HU, 1971, who called the similar protaspis of Pagetia a metaprotaspis), and the forms referred to as metaprotaspides by X. ZHANG are meraspides.

Characteristics of eodiscoid protaspides (Fig. 168.1; and X. ZHANG & CLARKSON, 1993, fig. 3, 7) include: (1) a distinct axis that extends backward almost to the posterior margin and forward to just behind a very short (sag.) anterior border and that has a distinct occipital ring and at least two poorly
defined transglabellar furrows; (2) two distinct lobes on the fixigena, one subcircular a short distance anterolateral to the occipital ring (baccula?) and the other much larger (elongate-ovoid in outline and almost bicomposite), located farther anterolaterally and having an anteromedially directed axis; (3) a proparian facial suture; (4) a comparatively large protopygidium that comprises about one-third of the area of the cranidium; and (5) a protopygidium that appears to be indented posteromedially in dorsal view. The specimens of *Neocobboldia* illustrated by X. Zhang (1989) also have a sculpture of fine ridges and grooves and some tubercles, particularly posterolaterally, somewhat similar to that of asaphoid protaspides illustrated by Speyer and Chatterton (1989). The protopygidium is turned down and slightly forward posteromedially. The doublure is incurved rather than inturned. The overall form of the eodiscoid larvae is adult-like and benthic in the terms of Speyer and Chatterton (1989), and we also regard the adults as having a benthic morphology. The progressive loss of the eyes in eodiscoids appears to be an example of convergent evolution with the Agnostina. This is not surprising when the functional significance of the similarity in size and overall morphology of the two groups is considered.

X. Zhang (1989) recognized 13 instars of *Neocobboldia*. This species apparently underwent ecdysis more than once within some
Ontogeny

meraspid degrees (perhaps three times as M0, termed metaprotaspides Mp0–Mp2 by X. Zhang). The number of ecdyses suggested by X. Zhang was based on the assumption that the linear dimensions of successive instars increase at a constant geometric rate for each species. While exceptions to this rule occur, particularly in association with radical metamorphoses, it applies in general among trilobites and among other arthropods (see earlier discussion of growth). Hunt (1967) certainly demonstrated that the nine instars of Trinodus elspeithi increased in size by a nearly constant geometric ratio (1.21 to 1.25). The ratio used by X. Zhang (1.20) was close to that determined by Hunt. X. Zhang, however, was unable to distinguish instars as distinct size clusters. Both workers demonstrated that more than one instar may occur within the same meraspid degree in the Agnostida. The comparatively small number of instars, due to the early onset of maturity, apparently was a cause of the small size and low number of thoracic segments in the Agnostida.

ORDER REDLICHIIDA

Small growth stages of Redlichiida (Fig. 168.3–5, 169) usually have large eyes with well-developed ocular lobes that curve forward and inward to be adjacent to the glabella in the region of the frontal glabellar lobe, if distinguishable as a separate lobe. There is a short, complete anterior border and usually a very short or indistinct preglabellar field that lengthens in later meraspid stages. The rostral plate is wide (tr.), short (sag.), and curved to accommodate the curved anterior outline of the cephalon. Transverse segmentation of the glabella and even the fixed cheeks may be well developed in some taxa, which were regarded as primitive by Weller (1969).

Superfamily Redlichioidea

Protaspides have been described by Lu (1940), Kautsky (1945), Kobayashi and Kato (1951), W. Zhang, Lu, and others (1980), and Pillola (1991). Strenuella is usually classified in the Ellipsocephalidae, but Fortey (1990a, p. 549, 563) suggested that some ellipsocephalids should be included in the Ptychopariina. These are small and ovoid and are preserved in shales; little is known of their ventral morphology. The apparent lack of intergenal spines on most specimens may be a function of this mode of preservation, or it may have been their nature in life. Drawings by W. Zhang, Lu, and others (1980) do not show any intergenal spines, but such intergenal spines are apparently present in a meraspid degree 3 of Redlichia chinensis (see Kobayashi & Kato, 1951, fig. 2). Some of the protaspides of that
species illustrated by those authors have marginal spines, the anteriormost of which may be intergenal spines; and one specimen apparently has genal spines (KOBAYASHI & KATO, 1951, pl. 4, fig. 6). Some of these specimens were reassigned to R. (Pteroredlichia) murakamii by W. ZHANG, LU, and others (1980, pl. 26). KOBAYASHI and KATO (1951, pl. 4, fig. 1, 2, 11) included sagittal glabellar furrows in their drawings of some of the redlichioid protaspides. These were not, however, apparent in any of the drawings of redlichiid protaspides by W. ZHANG, LU, and others, despite the fact that one of the specimens upon which these furrows are based is reproduced in both works several times (KOBAYASHI & KATO, 1951, pl. 1, fig. 1, pl. 2, fig. 1, pl. 4, fig. 2; W. ZHANG, LU, & others, 1980, fig. 61.1, pl. 26, fig. 1). All workers appear to agree that transglabellar furrows are well developed in these protaspides.

Superfamily Paradoxidoidea

Paradoxidid protaspides (Fig. 168.4,5) have been described by BARRANDE (1852), RAYMOND (1914a), ŠUF (1926), WESTERGÅRD (1936), RŮŽIČKA (1943), WHITTINGTON (1957b), and ŠNAJD (1958); and meraspides have been described by most of these workers and ŠNAJD (1990). Most of the paradoxidid protaspides can be assigned to species of *Paradoxides* and others to *Hydrocephalus*.

Xystridurid protaspides (Fig. 168.4) have been described by ÖPIK (1975a); and meraspides were illustrated earlier by WHITEHOUSE (1939) and later by McNAMARA (1981a, 1986a). Several features are shared with paradoxidid protaspides. These include a forwardly expanding glabella; long, sharply pointed intergenal spines; comparatively large and long ocular lobes that are adjacent to the anterior portion of the glabella anteriorly and separated from the glabella by a comparatively broad (tr.) fixigena posteriorly; and a complete, short anterior border. The genal spines are apparently located at the genal angle on the free cheeks of both groups. Some paradoxidid protaspides have more expanded glabellas that are often subdivided by sagittal and transverse glabellar furrows to produce as many as eight separate glabellar lobes. These furrows are often reduced in number, with only a few of the lobes distinguishable. Early meraspid cranidia of these two groups are even more similar, except that S1 and S2 are usually complete medially in paradoxidids but not in *Xystridura*. Intergenial spines disappear from both groups at a stage early in the meraspid period. Preglabellar fields are very short to insignificant in protaspides and early meraspides but lengthen during the meraspid period to become well developed in both families. Distinct occipital rings are visible in all protaspid and meraspid cephalas, and occipital nodes are usually present on meraspid cranidia and in some protaspid cranidia. Protopygidia and transitory pygidia are not particularly well known, but marginal spines are present. The axis is well developed, macropleural spines can be recognized on more anterior thoracic segments early in the ontogeny, and pleural furrows are distinct on more anterior segments.

The early growth stages of paradoxidids and xystridurids are similar enough to each other to justify their inclusion in the same superfamily and similar enough to those of the redlichioids to be included in the same order.

Superfamily Eumelloidea

POCOCK (1970) described the only known ontogenetic series of this group. Its members have dorsal facial sutures and a protaspis but like *Olenellina*, which lack these features, have a prothorax and opisthothorax and transverse furrows on the fixed cheeks of small meraspid cranidia.

The protaspin of *Balcoracania flindersi* (POCOCK, 1970, fig. 8) has a glabella and fixed cheeks with transverse furrows (SO, S1, S2, S3 on the glabella), a distinctly expanded frontal lobe that reaches the anterior margin, and a protopygidium that has an undifferentiated axis and is considerably shorter than the cranidium. His photographs and
drawings of early meraspid degrees are considerably more instructive (see Fig. 168.3). These have what can be interpreted as proparian facial sutures; medium-sized eyes near the midlength of the cranidium; distinct eye ridges running into the posterior half of the frontal lobe; transverse glabellar furrows (SO, S1, S2, S3 and S4); subtransverse fixigenal furrows that run outward and slightly backward; posterior border furrows on the cranidium that turn forward distally; genal spines on the free cheeks but no intergenal spines; and interpleural, axial, and ring furrows on the transitory pygidium. A short anterior border develops and increases slightly in length during the meraspid period. A sagittal furrow is not distinct but could be present in the frontal lobe of early meraspid cranidia. One of POCOCK’s photographs (1970, pl. 110, fig. 2) could be interpreted as showing a very faint sagittal furrow, but no furrow was shown in his reconstruction of early meraspid cranidia. In his description of the earliest meraspid cranidia, he did mention (1970, p. 541) that the “frontal glabellar lobe is thus expanded to the anterior (although partially subdivided).” It is not clear whether this partial subdivision is longitudinal or transverse, although he noted earlier in his description that the frontal lobe is partially subdivided by an indistinct furrow aligned with the anterior edge of the eye ridge. The absence of an anterior border in the early cranidia of this superfamily, if real, is also unusual among primitive Lower Cambrian trilobites. The absence, however, could be only apparent and a function of the quality of preservation of POCOCK’s material. Only one poorly preserved protaspis is illustrated in that work. A reexamination of POCOCK’s material or collection of new, better-preserved specimens might resolve these problems.

Suborder Olenellina

Small growth stages of a number of Olenellina have been described, but none is an undoubted protaspis, although some small meraspid cranidia have been referred to as protaspides (e.g., WALCOTT, 1910; C. POULSEN, 1932; STORMER, 1942; LOCHMAN, 1956; V. POULSEN, 1974). Workers who have described small meraspid stages of Olenellina include FORD (1877, 1881), WALCOTT (1886, 1910), KIAER (1917), C. POULSEN (1932), STORMER (1942), RICCIO (1952), LOCHMAN (1952, 1956), WHITTINGTON (1957a, 1959b), PALMER (1957), HU (1971, 1985b), FRITZ (1972), and in this publication (Fig. 169). PALMER (1957, p. 106–107, fig. 1) discussed and illustrated a silicified, ontogenetic series of Olenellus gilberti and Olenellus clarki (Fig. 169). Despite the discovery of very small meraspid cranidia, he found no protaspides. The smallest meraspid cranidia are comparable morphologically to the specimens that have been called protaspides by earlier workers. Thus, there is reason to believe that growth stages equivalent to the protaspides of other trilobites may have been passed through as embryonic stages. Olenellina share with the Agnostina the lack of known protaspid stages, and they compete for a position as the sister group of all other trilobites (FORTEY & WHITTINGTON, 1989; FORTEY, 1990a; RAMSKOLD & EDGECOMBE, 1991). An alternative hypothesis is that the protaspis is an acquired synapomorphy of advanced trilobites. If so, the absence of a protaspis in Olenellina and Agnostina is the result of these taxa having diverged from the rest of the trilobites before this feature was acquired.

Distinctive morphological features of early meraspid cephal of Olenellina include the following: (1) well-developed intergenal spines, which usually disappear in later stages; (2) an anterior border and a preglabellar field; (3) large ocular lobes that are greater than one-third the sagittal length of cranidium; (4) a distinct, often narrow (tr.), frontal lobe opposite, adjacent to, and sometimes continuous with the anterior parts of the ocular lobes; (5) small, marginal genal and precranidial spines; (6) three glabellar lobes between distinct frontal glabellar and occipital lobes; (7) a small occipital node; (8) interocular areas that may have
posterolaterally directed furrows that are often convex anterolaterally; and (9) hypostomes with numerous (usually 13) marginal spines, wide, transversely pointed anterior wings, distinct posteromedially directed middle furrows, and shallow posterior border furrows. The early thoracic segments are much narrower than the cephalon (see Palmer, 1957, pl. 19, fig. 3, 12), and macropleural spines are distinct in these early stages.

Palmer (1957, p. 126) discussed the sutures of Olenellina and commented that the “only suture whose presence is recognized by all workers with olenellid trilobites is the marginal or perrostral suture that separates the rostrum from the doublure.” He also pointed out that the position of this suture does not appear to change during ontogeny (contra Stormer, 1942). The anterior and posterior ocular lines (Fig. 16) observed in holaspids Olenellina were discussed in an earlier section on the patterns of facial sutures (p. 25).

ORDER CORYNEXOCHIDA, SUBORDER CORYNEXOCHINA

Protaspides of Corynexochina have been described by the authors listed below (see also Fig. 170.10–12).

Albertella
Bathyuriscus
Corynexochides
Fieldaspis
Fuchoia
Glosopleura
Piarmigiania

Protaspides of Corynexochides and Bathyuriscus are similar to those of other Corynexochina. This similarity of form supports the monophyly of the group that includes these two genera. Robison (1967) argued for a heterochronic origin of this order through paedomorphosis from the Ptychopariida. One of the important synapomorphies of corynexochoines, the fused hypostomal suture, could be regarded as paedomorphic since this feature is often fused in early growth stages and functional in later growth stages of other groups of trilobites. This suture remains fused throughout the life cycle of Corynexochina. We note, however, that in some taxa the hypostomal suture may be fused secondarily in later growth stages and free in early growth stages (e.g., the cheirurid Hyrokybe, see Chatterton & Perry, 1984). The strong similarity between Corynexochina and Ptychopariina at all growth stages certainly supports common ancestry of these two taxa.

Distinctive features of protaspides of Corynexochina appear to include: (1) a widely (tr.) anteriorly expanded frontal lobe on the glabella; (2) a glabella that is very narrow, reaches the anterior margin, and is depressed slightly below the level of the cheeks immediately behind the anterior lobe (L3); (3) a pair of pits that deepens the axial furrows adjacent to the frontal lobes of the glabella, possibly for attachment of the rostral-hypostomal plate; (4) distinct anterolateral palpebral lobes that are almost continuous with the anterolateral extremities of the frontal glabellar lobe; (5) transglabellar furrows that are very shallow to indistinct; (6) a proparian facial suture; (7) a protopygidium that is downturned to even slightly curved anteroventrally, with short marginal spines; (8) small anterior, middle, and posterior fixigenal spines; (9) a rostral plate that is fused to the hypostome in all growth stages; and (10) a hypostome that has marginal spines in small protaspides, with the anteriormost pair being longer, postero-laterally directed, and quite close to the back of the hypostome.

At least two and probably more protaspid instars occur in the life cycle of Corynexochina. Robison (1967, fig. 2) showed that there is a considerable range in the size and morphology of protaspides of Bathyuriscus fimbriatus. A distinct increase in width occurred with the acquisition of a protopygidium. He suggested that at least four instars occurred within the protaspid period but was unable to distinguish biometrically or morphologically separate groups for the smallest instars. The two largest protaspid instars, which have protopygidia, are morphologi-
FIG. 170. Ptychopariina and Corynexochida from the Pika? Formation, Middle Cambrian, near Columbia Ice Fields, western Canada. 1–9, Ptychoparioidea, *Spencella*? *sp.*; 1, dorsal view of small protaspis, UA 8433, X62.5 (new); 2,3, ventral views of small protaspid stages (rostral plate and hypostome are attached in each case), UA 7751, 7752, X62.5 (Fortey & Chatterton, 1988, pl. 17, fig. 9,10); 4, dorsal view of second protaspid stage, UA 8434, X62.5 (new); 5, ventral view of small hypostome, UA 7757, X62.5 (Fortey & Chatterton, 1988, pl. 17, fig. 19); 6, dorsal view of second protaspid stage, UA 7754, X62.5 (Fortey & Chatterton, 1988, pl. 17, fig. 13); 7, dorsal view of largest protaspid stage, UA 7753, X62.5 (Fortey & Chatterton, 1988, pl. 17, fig. 16); 8, ventral view of broken largest protaspid stage (free cheeks and hypostome are attached), UA 7756, X62.5 (Fortey & Chatterton, 1988, pl. 17, fig. 18); 9, ventral view of largest protaspid stage (free cheeks and rostral plate are attached), UA 7755, X62.5 (Fortey & Chatterton, 1988, pl. 17, fig. 17); 10–12, Corynexochina, *Bathyuriscus* *sp.*; 10, dorsal view of small protaspis, UA 8435, X62.5 (new); 11, ventral view of small protaspis (fused hypostome and rostral plate are attached to ventral surface, out of place), UA 7760, X62.5 (Fortey & Chatterton, 1988, pl. 17, fig. 12); 12, ventral view of small protaspis (note out-of-place attached fused hypostome and rostral plate), UA 8436, X62.5 (new). [In Fortey & Chatterton (1988, pl. 17), the taxonomic names were inadvertently reversed in the plate explanation.]
cally and biometrically distinct and can be clearly distinguished from earlier growth stages.

ORDER CORYNEXOCHIDA, SUBORDER ILLAENINA

Protaspides have been described by the following authors (see also Fig. 171).

- Brevicecutellum Feist, 1970
- Dentaloscutellum Chatterton, 1971
- Failleana Chatterton, 1980; Ludvigsen & Chatterton, 1980
- Ilaenus Hu, 1976
- Kouropeltis Kácha & Šaríc, 1991
- Nilillaenus Chatterton, 1980
- Raymondaspis Hu, 1974a
- Scutellum Chatterton, 1971

Hu and Chatterton included protaspides separated by a distinct metamorphosis within the ontogeny of taxa within this suborder. We now believe this to be the rule rather than the exception for species in this suborder. That is, illaenids characteristically display a Type II life-history strategy. There is, however, some doubt as to which of the small, bulbous protaspides found associated with these trilobites actually belong in the growth series as premetamorphic growth stages.

There is little doubt as to the form of later, more adult-like protaspides of this group. They are very similar to meraspides and holaspides, and distinctly different forms can be recognized for styginids and illaenids. Adult-like styginid protaspides are comparatively large (about 1 mm long) and have a distinct cranidium and protopygidium. The glabella expands forward and may reach the anterior margin; an occipital spine or node is usually present; a pattern of paired tubercles or spines may be apparent on the glabella and fixed cheeks that is similar to those of some odontopleurids, lichids, and proetids; the facial suture is opisthoparian; the connective sutures are paired and functional; a posterior border on the cranidium is usually transversely directed but may turn forward distally; the palpebral lobes are large and near the midlength of the cranidium; the protopygidium is subdivided by shallow to indistinct pleural furrows into several segments that terminate distally in tubular, pointed spines and has a distinctively shaped, slightly posterodorsally swollen and downturned postmedian portion; the doublure is narrow and tightly incurved with a small number of terrace ridges and is usually slightly pinched posteromedially; the hypostome is subrectangular with the marginal spines short and bluntly tipped so that they appear more like a posterolateral border that is subdivided by four slits (Fig. 152.9–10). In this character, they are quite similar to the Lichida.

Illaenid adult-like protaspides differ from styginid adult-like protaspides in that the posterior border of the cranidium is usually turned backward distally; the postmedian portion of the protopygidium is shaped differently with a strong median indentation and without posterodorsal inflation and downturnting; and the marginal spines are more flattened in section and triangular (less tubular) in plan view. Chatterton (1980, pl. 3, fig. 17) illustrated a protaspis free cheek of Nilillaenus that has a distinct genal spine. Protaspis free cheeks are not known with certainty for any Ilaenina, but we consider that they are probably similar in form (perhaps with more tubular genal spines, as shown by Chatterton, 1971, fig. 4a,b).

There is a greater problem as to the form of the earlier, premetamorphic larvae. Hu (1976, pl. 28) assigned protaspides to Ilaenus valvulus that we would assign to three different taxa, and only the most mature of these would we assign to that species. Chatterton (1980) assigned two very different protaspides to the illaenid Failleana calva.

Meraspides of Ilaenina have been described by several workers, in addition to those listed above, including Snájer (1960) and Whittington and Campbell (1967).

ORDER CORYNEXOCHIDA, SUBORDER LEIOSTEGIINA

Hu (1970, 1971) described two protaspides of Leiostegiina: Komaspidella (Leiostegiidae) and Missisquoia (Missisquoiiidae).

More recently, several workers have assigned
Ontogeny

Missisquoia to the Leiostegioidea, including Shergold (1975), Ludvigsen (1982), and Westrop (1986b). The protaspiodes of Komaspidella and Missisquoia are not very similar to one another. They are more similar to generalized protaspiodes of Ptychopariina than to those of Corynexochida, leading one to question why the Leiostegiina is included in the Corynexochida and not the Ptychopariida. Certainly, the hypostome of neither of these taxa is fused to the rostral plate, one of the distinguishing features of corynexochids.

ORDER PTYCHOPARIIDA,
SUBORDER PTYCHOPARIINA

The disparity between some of the protaspiodes included in this order reflects the...
distant relationships among some of the taxa. Thus, the protaspides are dealt with here at the superfamily level so that larval characters of very different trilobites are not confused. The ontogenies of many ptychopariids include at least three or four different protaspid instars, and few of these are very well preserved or have been illustrated with scanning electron micrographs.

Superfamily Ptychoparioidea

Protaspides referred to genera and families mainly within the Ptychoparioidea have been described and are listed below (see also under Classification Uncertain below).

[Phylacteidae LUDVIGSEN & WESTROP [(1989)] is a senior synonym of Cliffiidae Hohensee [(1989)] by a few weeks.]

Cedariidae
- Cedaria [HU, 1971; HU & LI, 1971]
- Cedaria [HU, 1971; HU & Li, 1971]
- Parscedaria [HU, 1971; HU & Li, 1971]

Coosellidae
- Coosella [HU, 1968, 1978]
- Nixonella [HU, 1972]

Crepicephalidae
- Crepicephalus [HU, 1971]
- Syspacheilus [HU, 1972]

Elviniidae
- Elvinia [HU, 1979]
- Irvingella [HU, 1979]

Kingstoniidae (including the Shumardiidae)
- Kingstonia [HU, 1968, 1986]
- Shumardia [STUBBLEFIELD, 1926]

Lonchocephalidae
- Glaphyraspis [PALLER, 1962b; HU & Tan, 1971]

Norwoodiidae
- Hardyoides [PALLER, 1962b]
- Holocene [HU, 1978; HU & Li, 1971]
- Norwoodella [HU, 1963]

Phylacteidae
- Aplectotaxon [HU, 1980]
- Cliffia [HU, 1979]

Plethopeltidae
- Austapnia [HU, 1986]

Ptychopariidae
- Amecephalus [HU, 1985b]
- Chancia [HU, 1985b]
- Grassamera [PALLER, 1958]
- Dunderbergia [HU, 1971]

Kochina [HU, 1985b]
“Liostracus” [BROGGER, 1875; MATTHEW, 1888, 1889 (reillustrated as Ptychoparia)]
Pachyaspis [HU, 1986]
Plazella [HU, 1985b]

Solenopleuridae
- Barrande, 1852; Whittington, 1957a; SNAJDR, 1990

Fortey and Rushton [(1980)] illustrated meraspides for *Acanthopleurella* from degree 0 up, and **Fortey and Owens** [(1991)] illustrated those of *Shumardia*.

Opik [(1970a)] described some meraspides of nepiid trilobites and described the origin of typically nepiid characters during the meraspis period. Small meraspides of this group are for the most part similar to equivalent growth stages of other ptychopariids.

Very small ptychopariid protaspides (Fig. 170.1–3) are shaped like an inverted saucer, with weak axial furrows. A few taxa have a sagittal furrow, particularly behind the frontal lobe and dividing L2 and L3. The frontal lobe reaches the anterior margin; the posterior margin may be convex or slightly concave; the protopygidium is usually difficult or impossible to distinguish; transverse glabellar furrows are usually indistinct, except in those taxa with a sagittal furrow, forming two pairs of glabellar lobes behind the frontal lobe; a weak, bicrescentic posterior border may be present; a palpebral lobe or ridge runs for a short distance along the anterior margin from the anterior half of the frontal glabellar lobe; the fossula may be present at the junction between the posterior edge of the palpebral ridge and the glabella; and three pairs of small marginal spines are apparent in a few taxa (e.g., *Dunderbergia, Pachyaspis, Plazella*).

Later ptychopariid protaspides (Fig. 170.4–9) lack a sagittal furrow and usually have very short, shallow, or indistinct glabellar furrows outlining an occipital lobe (LO) and four preoccipital lobes (L1, L2, L3, and the frontal lobe). The eye ridge is slightly behind the anterior margin; a posterior border of the cranidium turns forward distally and a protopygidium becomes distinguishable;
Ontogeny

the glabella is usually semicylindrical with a slightly wider, rounded frontal lobe; one or more segments on the protopygidium may be delineated by interpleural furrows; pleural furrows are apparent in late larval stages of very few taxa; and marginal spines are usually blunt or absent, and restricted to the genal angles and protopygidial segments. Larval hypostomes, where known, are attached to the doublure (HU, 1971; FORTEY & CHATTERTON, 1988) and have spinose margins, which may be blunted in later protaspides. Because in adult ptychoparioids the hypostome was natant, it must have become detached from the doublure during later ontogeny. Details of the sculpture are poorly known, but granules and small, paired tubercles are present on the glabella and genae of some taxa. The glabellas of ptychoparioid protaspides do not have the degree of narrowing and depression in height just behind the frontal lobe that is characteristic of the glabella in protaspides of Corynexochina.

Similarities between some ptychoparioid protaspides with both adult-like and nonadult-like forms and those of other, later orders, Phacopida in particular, suggest that the paraphyletic Ptychopariida includes the ancestors of several other orders.

Superfamily Ellipsocephaloidea

Protaspides of the Ellipsocephalidae were described by KAUTSKY (1945, Strenuella). The form of the protaspis of this genus is in some ways as similar to those of Redlichiina as it is to some ptychoparioids. For instance, the sagittal subdivision of the frontal lobe of the glabella is found in the Redlichiina but absent in most ptychoparioids (with the exception of some Olenina; see below). The similarity between some of the small meraspid cranidia illustrated by KAUTSKY (pl. 16, fig. 4–5, 9) and those of a meraspid cranidium assigned to Paradoxides by RAYMOND (1914a) is striking. Differences, however, include an absence of glabellar furrows (except for an occipital furrow) behind the furrow that delineates the frontal lobe in Strenuella. Other close similarities of the protaspides of Strenuella are mainly with those of the Olenina.

ORDER PTYCHOPARIIDA, SUBORDER OLENINA

Protaspides of Olenina were described by the authors listed below (see also Fig. 172).

<table>
<thead>
<tr>
<th>Species</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acerocare</td>
<td>HU, 1971</td>
<td></td>
</tr>
<tr>
<td>Hedinaapis</td>
<td>TAYLOR, 1976</td>
<td></td>
</tr>
<tr>
<td>(Papryriaspidae)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highgatella</td>
<td>HU, 1971</td>
<td></td>
</tr>
<tr>
<td>Leptoplatus</td>
<td>WHITWORTH, 1970</td>
<td></td>
</tr>
<tr>
<td>Olenus</td>
<td>STRAND, 1927; HU, 1971; CLARKSON & TAYLOR, 1995</td>
<td></td>
</tr>
<tr>
<td>Parabolinella</td>
<td>LUDVIGSEN, 1982</td>
<td></td>
</tr>
<tr>
<td>Pelura</td>
<td>C. POULSEN, 1923; WHITTINGTON, 1958; HU, 1964a</td>
<td></td>
</tr>
<tr>
<td>Triarthrus</td>
<td>FORTEY, 1974b</td>
<td></td>
</tr>
</tbody>
</table>

BEECHER (1893b) described a protaspis of Triarthrus, which is not very similar to the specimen described by FORTEY (1974b) of the same genus and is much more similar to those normally assigned to the Proetida (WHITTINGTON, 1957b and CHATTERTON, 1980, but not CISNE, 1973b). EDGECOMBE (personal communication, 1991) has found proetid meraspid cranidia associated with these protaspides that overlap in size with the smallest definite meraspides of Triarthrus so that BEECHER’s specimen is almost certainly a proetid and not Triarthrus. WALCOTT (1879), WHITTINGTON (1957b), and CISNE (1973b) described a series of meraspid degrees of Triarthrus from New York. RAW (1925) described in detail meraspis to holaspid ontogeny for Leptoplatus. FORTEY (1974b) and WHITTINGTON (1965) also described meraspis stages of olenid trilobites.

Features shared by protaspides assigned to the Olenina include (1) well-developed, transverse glabellar furrows; (2) a transverse anterior margin without an anterior border or preglabellar field medially; (3) broad fixigenae; (4) a well-developed posterior border furrow on the cranidium that turns forward distally to delineate a lateral border extending into a sutural ridge anteriorly; (5) a weak eye ridge extending outward from

© 2009 University of Kansas Paleontological Institute
Trilobita

Fig. 172. Ptychopariida, Olenina. *Parabolinella panosa* Ludvigsen from the Rabbitkettle Formation, Lower Ordovician, northwestern Canada (locality KK113). We consider specimens assigned by Ludvigsen to *P. cf. P. prolata* Robison & Pantoja-Alor to be synonymous with *P. panosa*. 1, Dorsal view of protaspis, UA 8440, ×65; 2, ventral view of protaspis; note attached yoked free cheeks and hypostome, UA 8441, ×61; 3, ventral view of protaspis, UA 8442, ×60; 4, ventral view of protaspis; note attached but out-of-place yoked free cheeks, UA 8443, ×63; 5, dorsal view of meraspid degree 1 with free cheeks missing, UA 8444, ×44; 6, dorsal view of outstretched meraspid degree 0 with free cheeks missing, UA 8445, ×63; 7, ventral view of meraspid degree 0 with free cheeks present but slightly out of place, UA 8446, ×62.5; 8, dorsal view of yoked free cheeks, transitory pygidium and free cheeks attached but out of life position, UA 8447, ×32.5; 9, dorsal view of small cephalon and attached thoracic segments, UA 8448, ×26.25; 10, dorsal view of small cranidium, UA 8449, ×27.5; 11, dorsal view of small pygidium, UA 8482, ×16; 12, dorsal view of transitory pygidium, UA 8450, ×43 (new; specimens courtesy of R. Ludvigsen).
Features that vary among the olenid protaspides include a sagittal glabellar furrow, which is present in L2 and L3 of the smallest protaspides of Olenus and Acerocare (Hu, 1971). A sagittal glabellar furrow occurs in the anterior part of the frontal lobe of some olenid early growth stages (Olenus in Strand, 1927; Balnibarbi, Cloacaspis, and Hypermecaspis in Fortey, 1974b) and may persist into more mature stages of some olenids (Cloacaspis, Hypermecaspis, and Placiotolina in Fortey, 1974b). Late protaspides or early meraspides may show pitting in the genae. Examples include protaspides of Bienvillia (Fortey, 1974b, personal communication, 1986); Acrocare (Hu, 1971); meraspides of Peltura (C. Poulsen, 1923; Whittington, 1958); and Olenus (Strand, 1927; Hu, 1971). The glabella may be barrel shaped, with the frontal lobe narrower than L3 (Peltura, Leptoplastus, Acerocare), or may expand very slightly forward and have a frontal lobe wider than L3 (Olenus, Bienvillia). The facial suture usually changes from proparian to opisthoparian well into the meraspid period. The anterior border and preglabellar field that are so distinctive of mature olenid trilobites develop comparatively late in the ontogeny and appear only in the meraspid period. The anterior border and preglabellar field that are so distinctive of mature olenid trilobites develop comparatively late in the ontogeny and appear only in the meraspid period. Genal spines are present at the posterolateral corners of the fixigenae in protaspid and early meraspid stages, and the genal spines were presumably transferred to the librigenae some time during the meraspid period, when the suture became opisthoparian.

The smallest stages of Parabolinella found with librigenae attached are protaspides (see Fig. 172). These specimens, which are not very well preserved, have cheeks already fused to one another. Their preservation is such that it is not clear whether the free cheeks have genal spines until the meraspid period. There is no doubt, however, that early meraspid cranidia (degree 0) of Parabolinella are opisthoparian and no longer have fixigenal spines.

Fortey (1974b, p. 40) discussed the usefulness of examining morphological similarity between early meraspid cranidia within the Olenidae. He was impressed by the differences shown within the family and concluded that “ontogenies are useful only in confirming relationships between closely related genera, for example within a single subfamily.”

ORDER ASAPHIDA

Fortey and Chatterton (1988) described larval and adult stages of this group and noted that one of the more important synapomorphies is the presence of a median connective suture. Most taxa within this order also share a planktonic, nonadult-like protaspis (Fig. 148, 155); this type of protaspis was termed asaphoid by Fortey and Chatterton (1988, p. 178, fig. 9.1, 11.1–11, and 14). More primitive members of this order (Anomocaroidea) lack the asaphoid protaspides and have larvae that are very similar to those of the Ptychopariida.

Superfamily Anomocaroidea

The authors listed below have described protaspides of species of genera in the superfamily Anomocaroidea.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Author(s)</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dytremacephalus</td>
<td>Hu, 1971</td>
<td></td>
</tr>
<tr>
<td>Glyphaspis</td>
<td>Hu, 1971</td>
<td></td>
</tr>
<tr>
<td>Glyphopeltis</td>
<td>Hu, 1986</td>
<td></td>
</tr>
<tr>
<td>Housia</td>
<td>Hu, 1970</td>
<td></td>
</tr>
<tr>
<td>Taenicephalus</td>
<td>Hu, 1981</td>
<td></td>
</tr>
</tbody>
</table>

Anomocaroid protaspides are so similar to those of ptychoparioids that the rather general description of ptychoparioid protaspides provided above would serve equally well here. They are certainly more similar to ptychoparioid protaspides than they are to asaphoid protaspides, although shared characters are evidently primitive. The morphology suggests to us that the Anomocaroidea are more closely related to Ptychopariida than to Corynexochida, Redlichiida, or Agnostida. Classification of anomocaroids in
the Asaphida is based largely upon sharing a median connective suture. One interesting possible synapomorphy between anomocaroids and other Asaphida, however, is the discovery of a rostellum in some protaspides of Lonchodomas (see below). This feature was first described for the anomocaroid Auritama and the asaphid Griphasaphus by Öpik (1967, p. 60).

Connective sutures have been described for the early growth stages of few anomocaroids. Palmer (1962b, fig. 2.6) showed paired connective sutures in a small protaspis assigned to the pterocephaliid Aphelaspis. Hu (1969, fig. 3.1) illustrated a hypostome and rostral plate that suggest a similar connective suture for an early growth stage of the same genus. This pattern is different from that found in asaphoid protaspides. However, Fortey and Chatterton (1988) noted that the width of the rostral plate in relation to the hypostome may vary ontogenetically and phylogenetically. Recent work (Chatterton & others, 1994) on the raphiophorid Lonchodomas suggests that the asaphid median connective suture may have originated through narrowing of the rostral plate and its reduction into a small triangular plate separating only the anterior parts of the free cheeks in some early growth stages (the rostellum of Öpik, 1967). In the trinucleoids, this small plate apparently became fused into the yoked cheeks, but in the later Asaphida it may have been further reduced in size finally to disappear and leave only a median connective suture.

Superfamilies with asaphid protaspides?

Asaphoid protaspides have been described by the following authors (see also Fig. 144.3, 145.5, 146.3, 150.3–6, 151.1–5, 152.12, 173–174). Hu’s (1975a) taxonomic assignment of certain sclerites seems problematic.

<table>
<thead>
<tr>
<th>Superfamily</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampyx</td>
<td>Whittington, 1959a</td>
</tr>
<tr>
<td>Ampyxoides</td>
<td>Fortey & Chatterton, 1988</td>
</tr>
<tr>
<td>Cryptolithus</td>
<td>Whittington, 1959a; Fortey & Chatterton, 1988; Chatterton, 1988; Chatterton & others, 1994</td>
</tr>
<tr>
<td>Globampyx</td>
<td>Fortey & Chatterton, 1988</td>
</tr>
<tr>
<td>Isotelus</td>
<td>Evitt, 1961; Hu, 1975a; Chatterton, 1986; Tripp & Evitt, 1986; Speyer & Chatterton, 1989</td>
</tr>
<tr>
<td>Lonchodomas</td>
<td>Shaw, 1968; Speyer & Chatterton, 1989; Chatterton & others, 1994</td>
</tr>
<tr>
<td>Menoparia</td>
<td>Ross, 1951a</td>
</tr>
<tr>
<td>Remopleurides</td>
<td>Whittington, 1959a; Hu, 1975a; Chatterton, 1980; Fortey & Chatterton, 1988; Speyer & Chatterton, 1989</td>
</tr>
<tr>
<td>Tretaspis</td>
<td>Whittington, 1959a; Hu, 1975a</td>
</tr>
<tr>
<td>asaphid protaspis</td>
<td>Whittington, 1965</td>
</tr>
<tr>
<td>possible Asaphida</td>
<td>Demeter, 1973</td>
</tr>
<tr>
<td>Nileid</td>
<td>Fortey & Chatterton, 1988</td>
</tr>
</tbody>
</table>

These planktonic, asaphoid protaspides are spherical to ovoid, with up to three main pairs of submarginal spines. The doublure is curved inward in a continuous fashion with the dorsal exoskeleton or is very narrow and inturned. The hypostome is large and has up to nine marginal spines that are usually long and sharply conical. The connective suture is fused or median, and the rostral plate is either absent or a small anterior rostellum is present. There is no obvious preglabellar field or anterior border medially.

Fortey and Chatterton (1988) included the Trinucleoidea in the Asaphida on the basis of both larval and adult characters. A metamorphosis took place between these planktonic juvenile stages and more mature, usually benthic, stages (see Fig. 154, 173, 174). This metamorphosis typically took place between the protaspid and meraspid periods. In some remopleuridids, however, it took place later during the meraspid period (Fig. 158). Fortey (1985) suggested that adults of some remopleuridids may have been pelagic. The metamorphosis might have been delayed or not have been as extreme in taxa with pelagic adults. Meraspides of trinucleoids were described by Rushton and Hughes (1981).

Hu (1975a) clearly disagreed with Whittington (1959a) in the assignment of protaspides and early meraspides of Remo-
pleurides and Isotelus. Later workers, however, have supported Whittington's earlier work rather than Hu's assignment of the protaspides to Isotelus (Hu appears to have included protaspides of Tretaspis and protaspides and meraspides of Remopleurides in this genus). Chatterton (1980), however, assigned protaspides very similar to some of those assigned by Hu (1975a, pl. 2, fig. 3–4, 6–7, 12–13) to Remopleurides caelatus to Remopleurides pattersoni.

Meraspides of Asaphida have been illustrated by the following workers.

Ilaenopsis
Fortey & Owens, 1987

Isotelus
Chatterton, 1980; *Ludvigsen*, 1979a

Nobiliasaphus
Kříž & Pek, 1974

Parabarrandia
Šajdr, 1975, 1990

Pseudogygites
Ludvigsen, 1979a

Nileid meraspides are unusually large, following large protaspid stages (Fortey &
Fig. 174. Asaphida, Raphiophoridae. All specimens are of Lonchodomas spp. from the Crown Point Formation, Middle Ordovician, New York (locality PB 81). 1, Dorsal view of protaspis type P1, NYSM 16334, ×62.5; 2, dorsal view of protaspis type P2, NYSM 16335, ×62.5; 3, ventral view of protaspis type P2, NYSM 16020, ×62.5; 4, external view of enrolled meraspis degree 0, NYSM 16336, ×58; 5, 7, dorsal view of meraspis degree 0, NYSM 16337; 5, ×58, 7, ×38; 6, ventral view of small protaspis stage; note attached, out-of-place fused cheeks and hypostome, NYSM 16338, ×62.5; 8, ventral view of fused free cheeks and hypostome of small protaspis stage, NYSM 16339, ×90; 9, ventral view of meraspis degree 2, NYSM 16340, ×39; 10, ventral view of meraspis degree 1, USNM 16341, ×40 (new).

Chatterton, 1988), compared to those of most other trilobites. Meraspides of Parabandia illustrated by Snajdr (1975, 1990) are very large (M1 = 7.5 mm for P. crassa),
Ontogeny

and the meraspid pygidium of Illaenopsis (Fortey & Owens, 1987, fig. 69) is the largest transitory pygidium known (approximately 18 mm wide). This may have resulted from a heterochronic pattern involved in the evolution of the Nileidae (perhaps post-displacement). A M0 meraspid, 3.8 mm long, that was illustrated by Snajdr (1990, p. 45) and assigned to Zbirovia arata is more similar to nileid meraspides than it is to illaenid meraspides.

ORDER PHACOPIDA

Whittington (1954c) first suggested the grouping together of a number of higher taxa now included in the Phacopida on the basis of their larval characters. This suggestion was followed by Harrington, Moore, and Stubblefield (1959). Chatterton and others (1990), using cladistic methodology and morphological data from protaspides, found evidence for monophyly of the Calymenoida and the Phacopina.

Suborder Phacopina

Protaspides of Phacopina have been described by the authors listed below (see also Fig. 175).

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calyptraulax annulata</td>
<td>Shaw, 1968; Speyer & Chatterton, 1989</td>
</tr>
<tr>
<td>Calyptraulax callirachis</td>
<td>Chatterton, 1980</td>
</tr>
<tr>
<td>Calyptraulax streubergeri</td>
<td>Hu, 1971</td>
</tr>
<tr>
<td>Dalmanites puticuliferus</td>
<td>Whittington & Campbell, 1967</td>
</tr>
<tr>
<td>Dalmanitina</td>
<td>Snajdr, 1990</td>
</tr>
<tr>
<td>Dalmanitina olini</td>
<td>Temple, 1952</td>
</tr>
<tr>
<td>Dalmanitina socialis</td>
<td>Barrande, 1852; Whittington, 1956a</td>
</tr>
</tbody>
</table>

Chatterton (1971) assigned a nonadult-like protaspid to Phacops. We now believe that this larva should, perhaps, be assigned to the suborder Illuena.

Meraspid to holaspid Phacopina were described by the following authors.

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acernaspis</td>
<td>Ramskold, 1988</td>
</tr>
<tr>
<td>Dalmanitina</td>
<td>Snajdr, 1990</td>
</tr>
<tr>
<td>Delmanitina</td>
<td>Lu & Wu, 1983</td>
</tr>
<tr>
<td>nanchangensis</td>
<td></td>
</tr>
<tr>
<td>Phacops</td>
<td>Jahnke, 1969; Chatterton, 1971; H. Alberti, 1972</td>
</tr>
</tbody>
</table>

Distinctive characters of protaspides of Phacopina include (1) the highly arched (tr.) form of smaller protaspides; (2) proparian sutures; (3) eye lobes that are far forward; (4) a glabella that widens anteriorly; (5) up to four transglabellar furrows, including occipital ones; (6) fixigenae that may be pitted; (7) a short anterior border that is present medially; (8) marginal spines that are present on genae and that may splay out laterally in a radial arrangement; (9) an occipital node; (10) paired spines that are present on the anterior border and may also occur on glabella and genae; (11) a distinct, posterior marginal cephalic furrow and posterior cephalic border that are present in larger protaspides; (12) sharp, tubular marginal spines in the protopygidium; (13) paired spines that may be visible on axial rings of protopygidium; and (14) an incurled, narrow doublure that may have fine terrace ridges. Marginal spines on the cephalon may be restricted to a small pair of anterior fixigenal spines (next to the eye lobes) and a large pair of posterior fixigenal spines.

Suborder Cheirurina

Protaspides of Cheirurina have been described by the following workers (see also Fig. 176–178).

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthoparypha</td>
<td>Whittington & Evitt, 1954; Whittington, 1959b; Hu, 1974b (non Ceraurinella); Chatterton, 1980</td>
</tr>
<tr>
<td>Balizoma</td>
<td>Edgecombe, Speyer, & Chatterton, 1988</td>
</tr>
<tr>
<td>Ceraurinella</td>
<td>Chatterton, 1980</td>
</tr>
<tr>
<td>Cromus</td>
<td>Edgecombe & Chatterton, 1992</td>
</tr>
<tr>
<td>Cybeloides</td>
<td>Evitt & Tripp, 1977; Chatterton, 1980; Forney & Chatterton, 1988</td>
</tr>
<tr>
<td>Cybelurus</td>
<td>Forney & Morris, 1978</td>
</tr>
<tr>
<td>Deiphon</td>
<td>Chatterton & Perry, 1984</td>
</tr>
<tr>
<td>Hadromeros</td>
<td>Chatterton & Perry, 1984</td>
</tr>
<tr>
<td>Heliomerosides</td>
<td>Chatterton, 1980</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
Fig. 175. Phacopida, Pterygotopidae. All specimens are of *Calyptaulax annulata* (Raymond) from the Crown Point Formation, Middle Ordovician, New York (locality PB 81); 1–3. examples of large protaspis; 1, dorsal view, NYSM 16342, X62.5; 2, ventral view; note attached free cheeks, hypostome, and rostral plate, USNM 16343, X62.5; 3, ventral view, example lacking free cheeks, rostral plate, and hypostome, NYSM 16344, X65; 4, dorsal view of small meraspid cranidium, NYSM 16345, X67.5; 5, ventral view of small cranidium, NYSM 16346, X48; 6, lateral view of free cheek (6a) and ventral view of hypostome (6b) of same larger protaspis, NYSM 16347, X103; 7, ventral view of cephalon with attached hypostome and thoracic segment, NYSM 16348, X46; 8, detail of ventral cephalic margin of larger protaspis, NYSM 16349, X500; 9, dorsal view of enrolled meraspid, degree uncertain, NYSM 16350, X31; 10, ventral view of enrolled meraspid degree 0, NYSM 16351, X45; 11, ventral view of smaller protaspis stage; note free cheeks and rostral plate attached to ventral surface, NYSM 16352, X125 (new).
FIG. 176. Phacopida, Encrinuridae. All specimens from the Crown Point Formation, Middle Ordovician, New York (locality PB81). 1–4, Protaspides of *Physemataspis insularis* SHAW; 1, 2, dorsal and ventral views of small protaspid stage; note attached hypostome, rostral plate, and free cheeks; 1, NYSM 16353, ×63.5; 2, NYSM 16354, ×74; 3, 4, dorsal and ventral views of larger protaspid stage; note attached hypostome; 3, NYSM 16355, ×55.5; 4, NYSM 16356, ×55.5 (new). 5–8, *Cybeloides prima* (RAYMOND); 5, 6, dorsal and ventral views of small protaspid stage; note attached hypostome and free cheeks; 5, NYSM 16357, ×62.5; 6, NYSM 16358, ×62.5; 7, 8, dorsal and ventral views of larger protaspid stage; 7, NYSM 16359, ×66; 8, NYSM 16360, ×62.5 (new).
Trilobita

Holia CHATTERTON, 1980

Hyrokybe CHATTERTON & PERRY, 1984

Liberella Hu, 1971; EVITT & TREF, 1977

Lynapge FORTEY & MORRIS, 1978

Mackenziurus EDGECOMBE & CHATTERTON, 1990a

Perryus EDGECOMBE, SPEYER, & CHATTERTON, 1988

Physemataspis EDGECOMBE, SPEYER, & CHATTERTON, 1988

Pseudocybele ROSS, 1951a; WHITTINGTON, 1959b; FORTEY & CHATTERTON, 1988

Rossaspis ROSS, 1951b (= Protopliomerops)

Sphaerexochus CHATTERTON, 1980; CHATTERTON & PERRY, 1984

EDGECOMBE, SPEYER, and CHATTERTON (1988) redescribed and discussed most known encrinurid larval stages. An important autapomorphy of this group is the presence of IV-1 and V-1 glabellar tubercles. Midfixigenal spines are apparent in early encrinurid larvae but are usually indistinguishable on later growth stages.

Larvae of Cheirurina may be divided into early and late stages. The early stages may have the glabella partly divided sagittally into two pairs of lobes behind an undivided frontal lobe, a plesiomorphic trait shared with some Ptychopariina, Redlichiina, and Calymenina. The later protaspides, without the paired glabellar lobes, are usually characterized by the following features: a proparian facial suture; eye lobes present anterolaterally; a narrow anterior border sagittally; a glabella that expands slightly forward and may be subdivided by a distinct occipital furrow and up to three glabellar furrows that are distinct laterally and usually indistinguishable on later growth stages.

SIVETER (1983) provided some information on allometric growth of meraspide and holaspid stages of a species of *Calymene*.

Suborder Calymenina

Protopasides of this suborder have been described by workers listed below (see also Fig. 179).

Apocalymene CHATTERTON, 1971 (only largest of three protaspides belongs to this genus)

Brongniartella CHATTERTON & others, 1990

Calymene CHATTERTON & others, 1990

Flexicalymene Hu, 1971; CHATTERTON & others, 1990

Platycoryphe Lu & Wu, 1982

phacopoid WHITTINGTON, 1957b

Nonadult-like protaspides succeed nonadult-like larvae in some Calymenina (Fig. 179.1–2.11) assigned to the Calymenina are characterized by (1) a globular-quadrate form; (2) a fused rostral-hypostomal plate that lies under much of the ventral surface and has sharply pointed marginal spines (usually nine, but the number may be lower and varies intraspecifically, always with a posteromedial spine); (3) three pairs of prominent, sharp, conical submarginal cranidial spines (anterior, middle, and posterior fixigenal spines); (4) a pair of palpebral lobes adjacent to the glabella running along the anterior margin; and (5) a glabella composed of an undivided frontal lobe that extends to the anterior margin, there being no anterior border, two pairs of glabellar lobes separated by sagittal and transverse glabellar furrows, and an occipital lobe that is not obviously separated from any possible protopygidial axis that may be present. The outline of the glabella is barrel-shaped, and it is narrowest toward the back of the frontal lobe.

Adult-like protaspides succeed nonadult-like larvae in some Calymenina (Fig. 179.3–4). In the adult-like protaspides, the exoskeleton remains fairly strongly arched (tr);
Ontogeny

Fig. 177. Phacopida, Cheiruridae. 1–9, Sphaerocoryphe sp. from the Crown Point Formation, Middle Ordovician, New York (locality PB 81); 1, dorsal view of protaspis, NYSM 16361, ×47.5; 2, ventral view of protaspis, NYSM 16362, ×50; 3, lateral view of protaspis, NYSM 16027, ×65; 4, dorsal view of small meraspid cranidium, NYSM 16363, ×36.5; 5, anterodorsolateral view of protaspis, NYSM 16364, ×57.25; 6, dorsal view of transitory pygidium, NYSM 16365, ×36.5; 7, ventral view of transitory pygidium with six unreleased protothoracic segments, NYSM 16366, ×36.5; 8, dorsal view of small cranidium, NYSM 16367, ×25.5; 9, dorsal view of pygidium, NYSM 16368, ×19. 10, Deiphon sp. from the Wenlock Delorme Formation of northwestern Canada (locality AV4 126T), ventral view of hypostome, UA 8451, ×47 (new).

the sagittal glabellar furrows have disappeared and the glabella is semicylindrical; the hypostomal suture is functional; the marginal spines of the hypostome are shorter and the median spine is lost; fine marginal spines appear on the anterior border, rostral plate, and cheeks, and the submarginal spines of earlier stages (particularly the anterior and midfixigenal spines) are relatively less prominent; an occipital ring with a tubercle is distinguishable from more anterior parts of the glabella and a protopygidial axis; the eyes are
Trilobita comparatively far forward and opposite the frontal lobe of the glabella; an eye ridge is separated from the anterior margin by a short anterior border; a protopygidium is large and distinct, with marginal spines (two in more mature specimens) at the distal ends of the segments; paired tubercles are visible on the fixed cheeks and sometimes on the glabella; three pairs of glabellar furrows are present as shallow marginal indentations.

Fig. 178. Phacopida. 1–6, From the Crown Point Formation, Middle Ordovician, New York (locality PB81); 1,2, dorsal and ventral views of large protaspides of Cerurinella latipyga SHAW, Cheiruridae; note attached free cheeks and hypostome; 1, NYSM 16369, x35; 2, NYSM 16370, x42; 4,5, dorsal and ventral views of small cheirurid protaspides (possibly Acanthoparypha or Cerurinella); note presence of hypostome and free cheeks; 4, NYSM 16371, x61; 5, NYSM 16372, x75; 3, 6, dorsal and ventral views of smaller protaspis of Cerurinella latipyga, NYSM 16373, x62 (new). 7,8, From the Wenlock Delorme Formation, northwestern Canada (locality AV4 126T); 7, dorsal view of protaspis of Balizoma sp., Encrinuridae, UA 7826; 8, dorsal view of small protaspis of Hyrokybe sp., Cheiruridae, UA 8452, x47 (new).
Ontogeny

FIG. 179. Phacopida. Protaspides of species in this order may (life-history strategy II) be planktonic (P1, P2) in early stages, benthic in later stages (B1, B2); see CHATTERTON and others (1990, p. 257) for this terminology. 1–4, 11, 12, Flexicalymene senaria (CONRAD), Calymenidae, from the Martinsburg Formation, Middle Ordovician, Virginia; 1, dorsal view of smallest protaspis (P1), AMNH 43943, X75; 2, dorsal view of second protaspis stage (P2), AMNH 43938, X75; 3, dorsal view of third protaspis stage (B1), NYSM 16374, X41.7; 4, dorsal view of fourth protaspis stage (B2), NYSM 16375, X42.5; 11, ventral view of fused hypostome and rostral plate from last pelagic protaspis stage (P2), AMNH 43939, X63; 12, ventral view of small hypostome from benthic protaspis stage, AMNH 43942, X130 (new). 5,6, Calymene sp., Calymenidae, from the Wenlock Delorme Formation of northwestern Canada (locality AV4 1267); 5, ventral view of last protaspis stage (B2), UA 7928, X33.5; 6, dorsal view of small cranidium, UA 8453, X34 (new). 7–9, Brongniartella sp., Homalonotidae, from the Martinsburg Formation, Middle Ordovician, Virginia; 7, dorsal view of protaspis (B2), AMNH 43960, X31.4; 8, ventral view of protaspis (B2), AMNH 43961, X31.4; 9, dorsal view of small cranidium, NYSM 16376, X29 (new). 10, Apocalymene quadrilobata (CHATTERTON), Calymenidae, from the Emsian Receptaculites Limestone of New South Wales, Australia; dorsal view of protaspis, UA 8454, X36.8 (new).
and the doublure is narrow, curved inward, and without obvious terrace ridges.

Meraspides of Calymenina have been described by a number of workers (for details, see Chatterton & others, 1990; see also Rabano, 1990, Calpocoryphe). The facial suture, although it migrates backward during ontogeny, stays proparian until quite late in the ontogeny and becomes gonatoparian only in mature stages of certain taxa.

ORDER PROETIDA

Protaspides of this order have been described by the following authors (see also Fig. 180–182).

- **Bathyurus** Chatterton, 1980
- **Carrickia** Chatterton & Ludvigsen, 1976; Chatterton, 1980 (=Phorocephala)
- **Cyphaspis** Chatterton, 1971
- **Dimeropyge** Hu, 1976; Chatterton, 1980; Tripp & Evitt, 1983; Speyer & Chatterton, 1989
- **Licnocephala** Ross, 1953
- **?Mesotaphraspis** Hu, 1976
- **Phaseolops** Hu, 1971
- **Proetus** Chatterton, 1971; Hu, 1975b (as “Proetus”) and 1976; Chatterton, 1980
- **Scharzia** Owens, 1974; Snajdr, 1980, 1981a, 1990; Speyer & Chatterton, 1989
- **Tricornotarion** Chatterton, 1971
- **protoid** Beecher, 1893b, 1895a

There is some confusion regarding the assignment of sclerites to Dimeropyge and ?Mesotaphraspis by Hu (1976): e.g., the hypostomes belong to Cheirurina. A protaspis assigned by Hu (1975b, fig. 1a, pl. 1, fig. 1) to Otarion trilobus Hu is an encrinurid, Encrinuroides cf. E. tholus (see Edgecombe, Speyer, & Chatterton, 1988, p. 780).

There may be as many as four different protaspides in the ontogeny of Proetida (e.g., Scharzia, Fig. 180). The earliest is very small (about 0.3 to 0.4 mm long) and has a re-entrant posterior margin, usually between two sharp, spinose projections. There may be also a spinose projection anteromedially. Later protaspides lack the re-entrant posterior and have an entire protopygidial margin.

Characteristics of later protaspides include an opisthoparian facial suture; functional connective sutures; a very flat ventral profile and an elliptical to ovoid outline in dorsal view; an anterior border and usually a preglabellar field; eyes located near or just in front of the midlength of the glabella; an axis weakly defined but usually distinguishable; a glabella divided by a transverse occipital furrow but with other furrows usually shallow (e.g., S1 in largest protaspides) to indistinct; genal spines that may (Dimeropyge) or may not (Scharzia) project outward to affect the outline in dorsal view; sculpture that is smooth, finely granulose, or has a pattern of larger, paired tubercles on the axis and pleurae; a hypostome of even width; and a relatively flat doublure that is sharply turned inward and upward at the margins, with no or few terrace ridges. The hypostome is usually small and without spines or otherwise subdivided posterolateral margins in protaspid stages of this order. One feature that appears to be distinctive of protaspides of Proetida is the very early development of a preglabellar field, a feature that does not develop until the meraspid period in the otherwise rather similar Psychopariina.

Meraspides of Proetida have been described by several workers, apart from those listed above, including Ross (1951b, 1953), Hintze (1953), Whittington and Evitt (1954), Whittington (1963), and Whittington and Campbell (1967). Fortey and Owens (1975) used similarities between meraspid cranidia to support their concept of a new order Proetida. Fortey (1990a) diagnosed this order on the basis of ontogenetic similarities. Chatterton (1980) argued that there appear to be two lineages within the Proetida, one with small growth stages having smooth protaspid and early meraspid growth stages (Proetus, Phaseolops, Licnocephala, and Bathyurus), and one with distinct, organized patterns of tubercles (hystricurinids, telephinids, dimeropygids, gaphurids, aulacopleurids, and Scharzia). Phylogeny and ontogeny in Proetida have been insufficiently studied, however, to
Ontogeny

FIG. 180. Proetida. All specimens are of the brachymetopid *Scharyia* aff. *S. redunzoi* PERRY & CHATTERTON from the Wenlock Delorme Formation of northwestern Canada (locality AV4 126T). 1,2. Dorsal and ventral views of the largest protaspid stage (of at least three and probably four stages); 1, UA 8455, ×32.5; 2, UA 7901, ×30.5; 3,4. dorsal and ventral views of the smallest protaspid stage; note free cheeks and rostral plate still attached; 3, UA 8456, ×91; 4, UA 8457, ×91; 5. dorsal view of an early transitory pygidium, UA 8458, ×30.5; 6. ventral view of an intermediate protaspid stage; note free cheeks and rostral plate attached; genal spine not apparent, UA 8459, ×91; 7. ventral view of smallest protaspid; note that free cheeks and rostral plate are attached and the possibly natant position of hypostome is close to inferred life position, UA 8460, ×112; 8. dorsal view of small cranidium, UA 8461, ×31; 9. dorsal view of transitory pygidium, UA 8462, ×32.5; 10,11. dorsal and ventral views of last protaspid stage; note attached free cheeks and absence of genal spine; 10. ×62.5; 11. UA 7902, ×126; 12,13. dorsal and ventral views of transitory pygidia belonging to penultimate meraspid degree; 12. UA 8463, ×32.5; 13. UA 8464, ×32.5 (new).
judge whether these are separate lineages. Certainly, prominent spines of early growth stages are often lost secondarily and perhaps sometimes regained. It is unwise to recognize large phyletic groups using a single character that may be homoplasious. ŠNAJD (1990, p. 40) illustrated a slab of shale from the Wenlock Liten Formation.
ONTENETY

covered in late meraspid molts and carcasses of one species, *Aulacopleura konincki*. SNAJDR believed this sample to be representative of a site where a large number of individuals of this species molted. He suggested that some of the molts that are disarticulated may have been disturbed by other molting individuals.

ORDER LICHIDA, FAMILY LICHIDAE

Ordovician to Devonian protaspides of this family have been described by workers listed below (see also Fig. 183–184).

Acanthopyge Whittington, 1956c; Chatterton, 1971
Amphilichas Chatterton, 1980; Hu, 1974a; Tripp & Evitt, 1981

Some problems of protaspid assignments were resolved by Tripp and Evitt (1981). Lichid protaspides are so similar to one another and so different from those of other taxa that they strongly support the monophyletic nature of this group. Protaspides have been found for members of the Lichinae (Dicranopeltis), Tetrachininae (Amphilichas), and Ceratarginae (Hemiarges and Radiolichas). The later protaspides are adult-like, very similar to meraspides of the same taxa, and clearly had a benthic life mode. It is now apparent to us that lichids (Fig. 166.1,2) may also have had an earlier nonadult-like, planktonic growth stage. As with all small stages that are separated from later growth stages by a radical metamorphosis, some uncertainty attends associating these with adult stages. Chatterton originally assigned larvae, which we now consider may belong to a lichid (*Acanthopyge*) planktonic stage, to one growth stage of *Apocalymene quadrilobata* (Chatterton, 1971, fig. 18h,i, pl. 19, fig. 8–10, pl. 21, fig. 1–3). This reassignment is still controversial, since similar stages have not been found for all other lichid ontogenies.

Features of the more adult-like protaspides of lichid trilobites were described by Chatterton (1980, p. 12) and include an opisthoparian facial suture; distinct axial and pleural regions; a comparatively wide (sag. and exsag.) anterior border; a posterior border and posterior marginal furrows to the cranidium; distinct palpebral lobes just in front of or close to the midlength of the cranidium; an occipital tubercle and a pattern of larger tubercles that is usually present on the axis and pleurae (see Chatterton, 1971 and Fig. 149 for terminology); a librigenal spine is usually absent; three or five pairs of marginal spines present on the protopygidium; interpleural furrows present on protopygidium; a doublure with terrace ridges distally and a sharp ridge around the proximal ends of marginal spines; and a hypostome with blunt-ended marginal spines that make the margins appear to be subdivided by four pairs of slits.

The distinctive anterolateral glabellar lobes or bullae of adult lichids may be absent in protaspides or present as small lobes along the axial furrows (*Acanthopyge* in Chatterton, 1971). After they appear as small lobes in or proximally adjacent to the axial furrows of later protaspids or early meraspids, they expand forward and outward but apparently remain glabellar, with the axial furrows surrounding them. The postero-olateral cranidial lobes also expand outward from early meraspids stages onward and may incorporate genal as well as glabellar material as they expand (see detailed arguments in Chatterton, 1971; and Thomas & Holloway, 1988). A sequence of developmental stages of an Ordovician species of _Hemiarges_ is shown in Figure 184.

ORDER LICHIDA, FAMILY ODONTOPLEURIDAE

Protaspides of this family have been described by the workers listed below (see also Fig. 185.1,2,5,11,12).

Ceratocephala Chatterton, 1980
Ceratocephalina Chatterton, 1971
Diacaenaspis Whittington, 1956d; Hu, 1974b
_Dudleyaspis* (Taemasaspis) Chatterton, 1971

Small odontopleurid meraspides have been described by the above workers as well.
Fig. 182. Proetida. Specimens of Dimeropyge aff. *D. clintonensis*, Dimeropygidae, from the Esbataottine Formation, Middle Ordovician, northwestern Canada (locality P17.2); compare Figure 160. 1, External view of protaspis P2, lacking free cheeks, UA 8466, X80; 2, external view of enrolled meraspid degree 0, UA 8467, X64; 3, dorsal view of late protaspis, UA 8468, X97.5; 4, dorsal view of small meraspid thoracic segment and transitory pygidium (degree 1?), UA 8469, X63; 5, external view of partly enrolled meraspis (degree 1), UA 8470, X64; 6, ventral view of meraspis (degree 2 or more), UA 8471, X49; 7, dorsal view of reconstructed meraspis (cephalon found separate from thoracic segment and transitory pygidium), UA 8472 and UA 8469, X71; 8, dorsal view of meraspid degree 2, UA 8473, X72 (new).

as Whittington and Evitt (1954), Shaw (1968), Whittington and Campbell (1967), Chatterton and Perry (1979, 1983), and Ramskold and Chatterton (1991). Protaspides for this group are small and adult-like. No nonadult-like protaspides have been associated with this family.

The Dameselloidea are regarded as a sister group of Odontopleuroidea by Fortey (1990a) and herein. Endo (1939a, 1939b) provided poor illustrations considered to be of protaspides of the damesellid *Blackwelderia* from the Cambrian of China. Restudy of this material will be necessary before
Ontogeny

Fig. 183. Lichidae. 1–6, Protaspides of Hemiarges aff. H. turneri CHATTERTON & LUDVIGSEN from the Crown Point Formation, Middle Ordovician, New York (locality PB81): 1, dorsal view of small protaspid, NYSM 16383, X62; 2, dorsal view of protaspid free cheek, NYSM 16384, X63.5; 3, ventral view of small protaspid growth stage; rostral plate, hypostome, and free cheek are attached, NYSM 16385, X62.5; 4, anterodorsolateral view of small protaspid, NYSM 16386, X67; 5, dorsal view of large protaspid stage, NYSM 16387, X53.5; 6, ventral view of large protaspid stage, NYSM 16388, X50. 7, Dorsal view of large protaspid stage of Amphilichas sp. from the Lower Edinburg Formation, Middle Ordovician, Virginia (locality 4), NYSM 16389, X37. 8,9, Dorsal and ventral views of Amphilichas minganensis (BILLINGS), small protaspid growth stage with single free cheek attached, from the Crown Point Formation, Middle Ordovician, New York (locality PB81), NYSM 16390, X61.5 (new).
FIG. 184. Lichidae. Development of cranidial lobation in lichids. All specimens are from the Crown Point Formation, Middle Ordovician, New York (locality PB 81). 1–7, Dorsal views of cranidia and protaspis of *Hemiarges aff. H. turneri* CHATTERTON & LUDVIGSEN; 1, cranidium (bullae very small but distinguishable on glabellar side of axial furrow in L2 position), NYSM 16391, ×62; 2, last protaspid stage (cranidial lobes indistinct; note that this is not NYSM 16014 as in SPEYER & CHATTERTON, 1989, fig. 4e), NYSM 16392, ×56.25; 3, small cranidium (bullae expanded transversely to affect outline of glabella; posterolateral lobes barely distinguishable in L1 position as part of sides of glabella), NYSM 16393, ×62.5; 4, small cranidium (bullae expanded outward and slightly forward; posterolateral lobes (L1) expanding slightly outward behind bullae), NYSM 16394, ×44.6; 5, small cranidium (bullae expanded farther outward and forward to opposite at least part of L3; posterolateral lobes expanded outward but not quite as far as bullae; transverse width of glabella apparently slightly reduced towards front of posterolateral lobes, opposite fixigenal spine pair A1 of CHATTERTON, 1971), NYSM 16395, ×31.25; 6,7, larger cranidia (bullae and (Continued on facing page.)
Ontogeny

posteralateral lobes slightly more expanded than in smaller cranidia; axial furrows shallow, particularly opposite A1; posterolateral part of fixigena in front of border furrow slightly swollen so that boundary between anterior part of posterolateral lobe and fixigena is not very distinct); 6, NYSM 16396, ×21.5; 7, NYSM 16397, ×21.8, Amphilichas conradi CHATTERTON & LUDVIGSEN from the lower Esbataottine Formation, Middle Ordovician, northwestern Canada (locality P17.2); bullae not delineated posteriorly by distinct furrow, but longitudinal furrow separating bullae from rest of glabella is very shallow to indistinct behind L2, and axial furrows are distinct, UA 8474, ×47 (new).

© 2009 University of Kansas Paleontological Institute
FIG. 185. Odontopleuridae. 1–9,12, Ceratocephala triacantheis Whittington & Evitt; 1–3, from the Crown Point Formation, Middle Ordovician, New York (locality PB81); 1,2, dorsal and ventral views of protaspis, NYSM 16398, X117; 3, small cranidium, NYSM 16399, X67 (new). 4–9,12, from the Esbataottine Formation, Middle Ordovician, northwestern Canada (locality P17.2); 4, dorsal view of small cranidium, UA 8175, X64; 5, dorsal view of incomplete protaspis, UA 8475, X65; 6, ventral view of cranidium, UA 8173, X64; 7, dorsal view of transitory pygidium (lost specimen), X50; 8, ventral view of transitory pygidium, UA 8179, X64; 9, dorsal view of small cranidium, UA 8174, X64; 12, ventral view of transitory pygidium, UA 8176, X64. 10,11, Dorsal and ventral views of protaspis of Diacanthaspis secretus Whittington from the lower Edinburg Limestone of Virginia (locality 4), NYSM 16400, X80 (new).
Ontogeny

FIG. 186. Odontopleuridae. 1–3, From the Mackenzie Mountains, early Llandovery, northwestern Canada (locality AV1-95.5); 1,3, ventral and dorsal views of meraspid degree 0 of Kettneraspis jaanussoni CHATTERTON & PERRY, with genal spine on fixigena, not on free cheek, and attached rostral plate and hypostome, UA 8271, X86; 2, dorsal view of meraspid cranidium of K. jaanussoni; facial suture has migrated inward so genal spine is now on free cheek, UA 8476, X60 (new). 4–8, From the Wenlock Delorme Formation of northwestern Canada (locality AV4 126T); 4,5, dorsal views of cranidia of K. longstaffei; in this clade of Kettneraspis small cranidia have a large occipital spine and reduced or absent subsidiary occipital spines; 4, UA 8477, X32.5; 5, UA 8478, X13.9; 6,7, ventral and dorsal views of small meraspid cranidium of K. lenzi, UA 8273, X45.5; 8, dorsal view of meraspid cranidium of K. lenzi. Note that in K. lenzi the facial suture migrates inward to displace the genal spine from the fixed cheek to the free cheek. Also, it is quite clear from the similarities of the small cranidia of K. jaanussoni and K. lenzi (including prominent pairs of subsidiary occipital spines and a short, knoblike occipital tubercle) that they form part of a clade that is distinct from the clade that includes K. longstaffei (and K. bellii CHATTERTON & PERRY, K. besti CHATTERTON & PERRY and K. boltoni CHATTERTON & PERRY) and has a prominent, long, sharp occipital spine in small cranidia. The patterns of the other prominent spines or tubercles on the cranidia of both of these clades are essentially the same, UA 8479, X45.5 (new).
EVOLUTIONARY HISTORY

RICHARD A. FORTEY and ROBERT M. OWENS

The history of the trilobites extends through some 300 million years. There is evidence that trilobites were capable of rapid evolutionary change, and refined zonal schemes of wide geographical application have been based on successions of species, especially in the Cambrian and Ordovician. Where these zones can be compared with those based on other organisms, trilobites appear to have changed relatively rapidly. For example, in the Upper Ordovician (Ashgill) INGHAM (1970) recognized as many as eight shelly zones, largely based on trinucleid trilobites, spanning an interval equivalent to perhaps three graptolite zones and extending through approximately 7 to 8 million years. The Upper Cambrian zonation of Scandinavia (HENNINGSMOEN, 1957a) is based on species of olenid trilobites (Fig. 187), and the average duration of these zones may be from one to two million years, depending on which absolute age assessment is accepted for the Cambrian. Given such rapid change over so long a time period, no short summary of trilobite evolutionary history can do justice to its complexity. Some general features of trilobite history are addressed here, together with examples of evolutionary change that can be studied directly from the stratigraphic record. The problems of trilobite phylogenetics are not considered further, and emphasis will be placed on those aspects of trilobite history that do not depend on having a completely resolved phylogenetic classification (FORTEY & OWENS, 1990a).

CHANGES IN MORPHOLOGY THROUGH TIME: GENERAL FEATURES

Primitive morphology is exemplified either by such Olenellina as Olenellus or by Redlichiiina, such as Eoredlichia and Redlichia. Olenellina and Redlichiiina share many features that are presumed to be primitive for the Trilobita, the main difference between the groups being the absence of facial sutures in Olenellina. This absence is regarded as primitive by most authors (FORTEY & WHITTINGTON, 1989), and the presence of facial sutures, unique to trilobites, is considered to be a characteristic of Redlichiiina and all higher trilobites, except where they are again secondarily lost.

Most Redlichiiina and Olenellina share the following features, which may be taken as an inventory of the primitive condition in the trilobites. They have relatively low dorsoventral convexity and typically the oval exoskeleton is about two-thirds as wide as long. Genal spines are present. The thorax is composed of a large number of spinose segments, of which the third may be macropleural; the articulation was nonfulcrate (WHITTINGTON, 1990) and allowed considerable arching of the body, if not complete enrollment. The pygidium is small but appears to be composed of more than one segment. Eyes are long and extend close to the glabella anteriorly; the eye ridge and eye lobe form a continuous structure (the ocular lobe) that may be subdivided by one or more furrows (PILLOLA, 1991). The visual surface is surrounded by a circumocular suture, so that the eye surface is rarely found in place. PALMER and HALLEY (1979) have shown that the visual surface may be attached in some early olenellid growth stages, implying that the circumocular suture may not have been functional early in ontogeny. The primitive glabella tapers forward and is relatively long (sag.), with the frontal lobe bosslike or acuminate and three pairs of long (tr.) glabellar furrows that may be transglabellar; the occipital ring is defined. FORTEY (1990a) maintained that the primitive hypostomal condition is conterminant (or attached by a pronglike doublural extension in some Olenellus species); primitive hypostomes have narrow borders, lack such features as posterior forks, and have small maculae. Olenellina, for which few ontogenies are
known, apparently did not have a calcified protaspid; the development of Redlichia from protaspid to adult (W. Zhang, Lu, & others, 1980) was gradual without a metamorphosis at any stage.

From this bauplan the range of trilobite morphology was derived by modification of one or more features. These modifications became more extreme and more pervasive after the Cambrian, which is often described as a time when morphology was generally conservative. The changes are not easy to demonstrate quantitatively, but Foote (1991) has succeeded in showing that the range of morphology exhibited by post-Cambrian trilobites increased considerably, as revealed by the complexity of morphological maps of cranidia (Fig. 188). The same is shown by the appearance of more instances of those morphotypes associated with pelagic habits, trilobites with fringes, and other distinctive morphologies. Such changes were pervasive and tended to recur in several unrelated phylogenetic lineages.

CHANGES FROM PRIMITIVE MORPHOLOGY

Important changes from the primitive morphology as exemplified by Eoredlichia are summarized in Figures 189 and 190.

SHAPE OF EXOSKELETON

The general form of the exoskeleton may become transverse, i.e., wide in relation to length (Gastropolus, some trinucleoids), or elongate (Opipeuter, Remopleurides). The transverse shape may be accompanied by reduction in number of thoracic segments and widening (tr.) of the pleurae, while in elongate forms the pleurae may be reduced in width (tr.). A transverse outline is not common, but it is most typical of Trinucleoidea in the Ordovician; its most extreme manifestation is found in the Chinese genera Taklamakania and Pseudampyxina (W. Zhang, 1980) in which the thoracic segments are reduced to as few as three. Some Cambrian genera were elongate, such as Bathynotus, Elvinia, and some paradoxids and Agnostina, as were many Ordovician genera, especially those associated with pelagic habits (Fortey, 1974a, 1985). The extreme in pleural reduction is attained in the bizarre trilobite Bohemilla, which was excluded from the class Trilobita in the last edition of the Treatise (Whittard in Moore, 1959), not least because it apparently lacked pleurae completely. Early bohemillids, however, retain remnants of the pleurae, and their trilobite affinity is no longer in dispute. Very elongate trilobites are uncommon after the Ordovician, which may reflect the loss of pelagic habits. The nearest proportions to those of the Ordovician forms are probably to be found in such cheirurids as Crota-

CONVEXITY

Convexity is highly variable in trilobites. Some species, especially illaenids (Owen & Brunt, 1980) and such Upper Cambrian genera as Plethometopus (Stitt, 1975), are both effaced and with the cephalic shield especially convex in the sagittal direction. Such convexity may be associated with the bumastoid stance (Westrop, 1983), in which the trilobite is supposed to have burrowed backwards into the sediment, leaving only the convex cephalic shield projecting, the eyes being horizontal in this attitude. Other convex trilobites are greatly vaulted across the thorax but not especially so across the cephalon and may be generally smoother; this is particularly characteristic of Homaloo-

© 2009 University of Kansas Paleontological Institute
Evolutionary History

neath it (Eldredge, 1971). Most trilobite families display a range of convexity, and it is not a character of taxonomic importance above the generic level. Even within the Lower Cambrian a few convex genera are known (Giordanella, Bonnia, and some earlier codiscoids), and dorsoventrally flattened and convex trilobites coexisted in most later trilobite faunas.

INCREASED SIZE OF PYGIDIUM

A large pygidium is believed to be an advanced character. In trilobites other than Agnostida the size of the pygidium increases on average through the Cambrian to the Ordovician but not greatly thereafter (Fig. 191). Pygidial size is easily modified via heterochronic change (see previous section on ontogeny, p. 173), and increased caudalization is not, perhaps, a character of great importance. This is shown by the fact that pygidial size may vary widely within a single family. In Olenidae the pygidium may be small to almost isopygous. Moreover, if Naraoiidae is the sister group of other trilobites, the pygidium of naraoiids has already attained its largest possible size. By the end of the Early Cambrian, isopygous trilobites had appeared in several groups (Agnostida as well as gigantopygids and yinitids in

<table>
<thead>
<tr>
<th>ZONES</th>
<th>SUBZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acerocare</td>
<td>Acerocare ecorne</td>
</tr>
<tr>
<td></td>
<td>Westergaardia spp.</td>
</tr>
<tr>
<td></td>
<td>Peltura costata</td>
</tr>
<tr>
<td></td>
<td>Peltura transiens</td>
</tr>
<tr>
<td>Peltura scarabaeoides</td>
<td>Peltura paradoxo</td>
</tr>
<tr>
<td></td>
<td>Parabolina lobata</td>
</tr>
<tr>
<td></td>
<td>Ctenopyge linnarsoni</td>
</tr>
<tr>
<td></td>
<td>Ctenopyge bisulcata</td>
</tr>
<tr>
<td>Peltura minor</td>
<td>Ctenopyge affinis</td>
</tr>
<tr>
<td></td>
<td>Ctenopyge tumida</td>
</tr>
<tr>
<td></td>
<td>Ctenopyge spectabilis</td>
</tr>
<tr>
<td></td>
<td>Ctenopyge similis</td>
</tr>
<tr>
<td>Protopeltura praecursor</td>
<td>Ctenopyge flagellifera</td>
</tr>
<tr>
<td></td>
<td>Ctenopyge postcurrents</td>
</tr>
<tr>
<td></td>
<td>Leptoplastus neglectus</td>
</tr>
<tr>
<td>Leptoplastus</td>
<td>Leptoplastus stenotus</td>
</tr>
<tr>
<td></td>
<td>Leptoplastus angostatus</td>
</tr>
<tr>
<td></td>
<td>Leptoplastus crassicorne</td>
</tr>
<tr>
<td></td>
<td>Leptoplastus naphidophorus</td>
</tr>
<tr>
<td></td>
<td>Leptoplastus poucisegmentatus</td>
</tr>
<tr>
<td>Parabolina spinulosa</td>
<td>Parabolina spinulosa</td>
</tr>
<tr>
<td></td>
<td>Parabolina brevispinosa</td>
</tr>
<tr>
<td>Olenus with</td>
<td>Olenus scanicus</td>
</tr>
<tr>
<td>Homagnostus obesus</td>
<td>Olenus dentatus</td>
</tr>
<tr>
<td></td>
<td>Olenus attenuatus</td>
</tr>
<tr>
<td></td>
<td>Olenus wahlenbergi</td>
</tr>
<tr>
<td></td>
<td>Olenus truncatus</td>
</tr>
<tr>
<td></td>
<td>Olenus gibbosus</td>
</tr>
</tbody>
</table>

Fig. 187. Biozones in the Upper Cambrian of Scandinavia, based on olenid trilobites, showing fine stratigraphical subdivision (adapted from Henningsmoen, 1957a).
Redlichiina), and such forms lived alongside species with smaller pygidia. This applies throughout the remainder of the history of Trilobita, although by the Devonian and later periods, elements in the fauna with small pygidia (e.g., Aulacopleura) were less numerous. In any case, there is no suggestion that small pygidia were heavily selected against, because the shift from generally small to generally large pygidia takes place over almost 200 million years. Species with large pygidia tend to be enrolled tightly (Bergström, 1973a) because of the coaptation of cephalic and pygidial margins. A few

Fig. 188. Post-Cambrian trilobites occupied greater morphospace than Cambrian trilobites, as shown by morphological maps of the first two principal components (PC1 and PC2) (adapted from Foote, 1991, fig. 2).
examples are known in which a reversal to a small pygidium has taken place. Primitive remopleuridoids had large pygidia (*Apatokephalus*) with at least four segments, whereas a more derived genus (*Remopleurides*) has a minute pygidium—usually with two segments. The remopleuridid *Hypodicranotus* from the middle to the upper part of the Ordovician may have but a single segment in the pygidium (Ludvigsen & Chatterton, © 2009 University of Kansas Paleontological Institute)
Trilobita

1991). It seems likely that a similar reversal has taken place in the Ordovician family Celmidae (*Celmus*), which has an extraordinarily small pygidium (BRUTON, 1983), because the families to which it may be related all have pygidia of normal proportional size. LANE (1971) has recognized a trend toward reduction in the number of pygidial seg-

© 2009 University of Kansas Paleontological Institute
ments in cheirurid lineages from the Ordovician and Silurian. However, where the pygidium and cephalic margin attained close peripheral contact in enrollment, as in asaphids and Agnostida, there was little change in pygidial size thereafter. Changes in style of enrollment were accompanied by changes in the pleural articulating facets, which are summarized in Figure 192.

LOSS OF GENAL SPINES

Genal spines were lost repeatedly. In many families the presence or absence of genal spines is of significance only at the generic level, and in some families (e.g., Olenidae) there are genera that span the range between having very long (*Olenus*), short (*Leptonoeplastus*), or no (*Huayiuspis*) genal spines (Fig. 193). Short genal spines may be present in small growth stages even when absent in adults (Calymenidae, Nileidae). Nonetheless, some families typically lack genal spines—for example, Calymenidae, Cyclopygidae, Phacopidae, and Illaenidae. Presumably, exceptions (e.g., the illaenid *Thaleops*) may constitute a reversal: the reappearance of the genal spine may be paedomorphic. This has been demonstrated in the nileid *Peraspis* (Fortey, 1975b). Other families never lost their genal spines; for example, we know of no spineless member of the superfamilly Trinucleoidea. In this superfamilly the genal spines are presumed to play an obligatory part in the functional morphology, and all trinucleoids have a short body, which the genal spines greatly exceed in length. Normally, genal spines may have assisted in molting, added protective armory (especially in the enrolled condition when the spines increase the diameter of the animal), and prevented yawing as the trilobite sank through the water column (cf. Fisher, 1975). It is likely that several of these functions were combined. The readiness with which spines were lost in many families, however, shows that these functions could be suspended. A common tendency was for genal spines to become advanced, to originate far forwards on the cephalon. This happens early in Lower Cambrian Olenellina and Redlichina and later in such families as Olenidae (Upper Cambrian species), Remopleurididae (Ordovician), and Telephinidae (Ordovician).

EYES

The eyes of all early trilobites are circumscribed by ocular sutures. The earliest example with the eye surface attached is a meraspid olenellid figured by Palmer and Halley (1979), but so far as we know the adults had a circumocular suture. By contrast, nearly all post-Cambrian trilobites had the visual surface attached to the free cheek. It is virtually certain that the circumocular suture was lost polyphyletically, having disappeared in parallel in several lineages (in Asaphida, in Olenina, and in Phacopida). After the Ordovician, the Calymenidae were alone in retaining the primitive condition. It is curious that loss of this suture happens in several clades within a short interval of time from the Late Cambrian to the Early Ordovician.

Clarkson has discussed evolution of the eye in an earlier section. It was primitively large, close to the glabella anteriorly, and probably had a striplike profile. Even in some Early Cambrian species the eye had moved away from the glabella (*Metadoxides*; see Pillola, 1991) to take up a position midway across the cheek; this position is highly characteristic of plesiomorphic ptychoparioids and, indeed, of most Middle to Late Cambrian trilobites. In such forms the eye ridge remains prominent and runs inwards to a homologous point near the anterolateral corner of the glabella. In many later, Ordovician to Devonian trilobites the eye ridge is effaced, but in some groups (Odontopleurida and some Aulacopleuridae) it remains distinct, even in species with stalked eyes. Species in which the eye is so far forward that the eye ridge runs inwards and backwards are very rare but occur in the Hapalopleuridae (*Jegorovaia*) and Olenidae (*Remizites*). Hyptertrophied eyes and blindness are discussed below as typical evolutionary trends. Eye size
FIG. 191. General increase in the size of the pygidium through time in trilobites other than Agnostida as shown by the proportion of the total exoskeletal length occupied by the pygidium, measured from entire exoskeletons (new).
Evolutionary History

is a variable character of trilobites but has been rather widely used in generic diagnoses. Position of the eye in relation to the glabella is constant in many clades; interestingly, after the Late Cambrian there was a reversion to having eyes close to the glabella in several groups, including Proetidae, most Asaphidae, Remopleuridae, and Phacopidae. In several respects remopleuridids look like Olenellina (for example, in the long, curved eye lobe and small pygidium), but we know from phylogenetic analysis that this resemblance is a product of convergence. At the Permian end of their history, the trilobites had their eyes as close to the glabella as they did at the beginning but with the important difference that these stratigraphically youngest trilobites completely lacked the palpebral furrows and eye ridges of their predecessors.

GLABELLAR FORM

The glabella is one of the most variable of trilobite features and has rightly assumed great importance in taxonomy. Here we only

Fig. 192. Advanced and primitive types of articulating facets. 1, Asaphid, Asaphus sp., BM 15430, Middle Ordovician, Russia, X8. 2, Nileid, Synephyraeus palperebrum, BM It20684, Middle Ordovician, Sweden, X8. 3, Granulose dalmanitoid facet, Dalmanites caudatus, BM 167a, Silurian, with postfacetal type of pleural furrow, X8. 4, Primitive type, smooth, in the Silurian aulacopleurid Otarion diffactum, BM It3003, X12. 5,6, Primitive type in the Middle Cambrian ptychoparioid Elrathia; 5, BM It5396, dorsal surface, X12; 6, BM It5397, narrow doublure with terrace ridges primitive for Asaphina, X15. 7, Granulose calymenoid facet, with epifacetal type of pleural furrow, Calymene sp., BM It20685, Upper Ordovician, Anticosti Island, X10 (Fortey & Chatterton, 1988, fig. 13).
note some broad evolutionary features. The elongate shape found in Olenellina and the more generalized Redlichiina is probably primitive and is found also in the early Eodiscina. The Agnostina soon acquired glabellar peculiarities of their own, which have led some workers to propose a separate nomenclature for furrows and other cephalic features of these trilobites (Fig. 6). Although inflation of any glabellar lobe can occur, it is perhaps commonest in the frontal lobe and is already displayed by some Early Cambrian Olenellina (Wanneria); in Middle Cambrian paradoxidids; in many such Ordovician families as Encrinuridae (Oedicybele), Bathyuridae (Bathynurus), Dalmanitidae as a whole, and trinucleids; and in the Silurian-Devonian Phacopida and Cheiruridae. After the demise of these groups, phillipsiids acquired similar anterior glabellar inflation in the Perm-Carboniferous. Inflation of the basal glabellar lobe occurred particularly in Ordovician-Silurian Calymenidae. One can find examples where the second glabellar lobe has become particularly inflated (Chasmops) or perhaps uncommonly the third lobe (certain Cybelinae). The whole glabella may be inflated in the manner of Sphaeroexochus. No convincing functional explanation of such inflation has been advanced. A common glabellar modification is the effacement of glabellar furrows, which proceeds to completion in many families from the Lower Cambrian onwards (Agraulidae, Illaenuridae, Illaenidae, Plethopeltidae). In general, the occipital furrow and IS are last to become effaced (see Bollandia), compared with the more anterior furrows. The question of effacement is considered in more detail below.

The extent to which the glabella of so-called advanced trilobites might incorporate genal material is the subject of some controversy. The ontogeny of several trilobites (Encrinuridae, see Evitt & Tripp, 1977; Raphiophoridae, Endymionia, see Whittington, 1965) shows that inflated bullar lobes appear in the axial furrows of very small growth stages, and these get larger during subsequent growth stages, growing into the axial region as they do so. In adulthood such lobes would traditionally have been regarded as glabellar—strictly speaking such a glabella would not be homologous with those of other trilobites, because it would incorporate nonaxial material. It is not always clear, however, whether some specialized gabellass include extra-axial material. The curious lateral lobes of lichids (Thomas & Holloway, 1988) can be interpreted in several ways—as wholly glabellar, wholly extraglabellar, or partly either. It is clear,
Evolutionary History

however, that lateral glabellar lobes similar to the bulba have been produced several times in post-Cambrian trilobite history, in several distinctive clades (Monorakidae, Lichidae, Trinucleoidea, Encrinuridae). Bacculae adjacent to the base of the glabella may also have been incorporated into the axial lobe (Carolinites, see Fortey, 1975b). It is probable that all these glabellar modifications were connected with the insertion of musculature for operation of cephalic limbs and, hence, were of fundamental importance for the life of the trilobite. However, trilobites for which limbs are known do not include species with modified glabellar structure, so one cannot say whether peculiar glabellas accompany peculiar cephalic limbs. The only exception may be Cryptolithus, which Bergström (1972) claimed had appendages that differed from those of other trilobites.

ENROLLMENT

Articulation of the thorax and enrollment have been described in preceding sections. Trilobites having nonfulcrate articulation need further investigation, but this primitive form appears to be known only in Olenellina, some Redlichiina, and rarely in other Cambrian taxa. Nonfulcrate articulation may have allowed complete enrollment but only of the cylindrical type with a lateral gap. Complete enrollment to form a closed exoskeletal capsule characterized Agnostida, is known in the Lower Cambrian Crassifimbra (Palmer, 1958) and ellipsocephalids (e.g., Westergård, 1936, pl. 11, fig. 9), and may well have become more general among Upper Cambrian trilobites; it is the dominant form of enrollment in the post-Cambrian periods. Presumably enrollment protected trilobites from predation and from sudden changes in the environment. It is now known (Briggs, 1994) that large predators capable of inflicting injury on trilobites were present in the Lower and Middle Cambrian. After the Cambrian more varied and swiftly moving predators (cephalopods and, later, fish) may have increased predation pressure and led to the dominance of the closed capsule and the proliferation of coaptative devices (see previous discussion of the evolution of such devices, p. 67). Pleural facets in post-Cambrian trilobites (Fortey & Chatterton, 1988, fig. 13; Chatterton & Campbell, 1993, fig. 1d, 1h, 2f, 3g–h) were in some groups large and bore sculpture.

CEPHALIC SUTURES

The opisthoparian facial suture of the Redlichiina is assumed to be primitive, and it is retained by most trilobites. The proparian pattern was derived in the Early Cambrian (Eodiscina), Middle Cambrian (Schmalenseeia), Late Cambrian (Norwoodiidae, Loganopeltidae), and Early Ordovician (Olenidae, Phacopida) in what are now known to be independent evolutionary lines. Because a proparian stage is present in early ontogenies of all or nearly all opisthoparian trilobites, the appearance of this feature in a range of adults has been explained as an instance of heterochrony. This appears to be a one-way process, because although opisthoparian sister groups are known or likely for proparian forms (e.g., within Pelturinae in Olenidae, see Henningmoen, 1957a), we know of no example where a proparian ancestor has been claimed for an opisthoparian trilobite. This implies that once paedomorphosis (broadly interpreted, see McNamara, 1982) has happened it was not possible to revert to the ancestral condition, the later (opisthoparian) phases having been permanently lost from the development program.

On the cephalic doublure, the rostral plate might be interpreted as showing a general tendency towards reduction (Fig. 194): it decreases in width (tr.) through the major trilobite phylogenetic sequence shown by Fortey (1990a, fig. 14). It comprises the bulk of the venter in Olenellina; in Redlichiina it is frequently still wider than the glabella, but the doublure of the free cheek occupies the rest of the cephalic doublure. In most Ptychopariina it is narrower still, being of the same width (tr.) or less than that of the glabella. The complete loss of the rostral plate followed; the earliest examples are
probably Middle Cambrian Anomocaridoidea with a median suture (Fortey & Chatterton, 1988). Yoked cheeks, in which ventral sutures have ankylosed, are known in early Late Cambrian Olenidae (Olenus, see Henningsmoen, 1957a, fig. 12) and arose independently in numerous later and phylogenetically unrelated families such as Kainellidae, Nileidae, Trinucleidae, Phacopidae, and Shumardiidae.

Most types of ventral sutures, however, persisted side by side after the Middle Cambrian to the end of the Ordovician, when all forms with a median suture became extinct. Wide rostral plates are typical of the Illaenidae, for example, while narrower rostral plates persisted in some Bathyuridae, Odontopleuridae, and Proetidae. The evidence is that the rostral plate was a persistent structure even when it became exceedingly narrow, as it did in Encrinuridae (Tripp, 1962) and Dimeropygidae (Whittington, 1963). On this basis Fortey and Chatterton (1988) believed that its reduction to a median suture was likely to be a character of major phylogenetic importance. However, fusion or ankylosis of the sutures appears to have happened more readily; for example, fused cheeks are known in some examples of large asaphids where median sutures are present in smaller individuals of the same species (Isotelus). Fused cheeks derived from loss of the median suture look identical to those derived from ankylosis of the connective sutures, and phylogenetic analysis is needed to reveal the history. We believe that the Olenidae, Shumardiidae, and Phacopidae were derived from ancestors having rostral plates, whereas Nileidae, Kainellidae, Cyclopygidae, and probably Trinucleoidea were derived from ancestors having a median suture.

HYPOSTOMAL ATTACHMENT

Different modes of attachment of the hypostome remain constant through whole trilobite clades: Odontopleurida and Lichida are always conterminant, Ptychoptariina na
tant, and Phacopidae impendent, for example. However, it is clear that there is an
evolutionary sequence in some trilobites from natant to conterminant to impendent. This is because advanced members of well-established clades have attached hypostomes, and primitive ones have natant hypostomes. Particularly good examples are known from the Remopleuridoidea and Proetida (Fig. 195). Furthermore, trilobites having impendent hypostomes were more advanced than those with conterminant hypostomes. There is no known instance of trilobites with such secondarily attached hypostomes having given rise to trilobites with natant hypostomes. Trilobites with the natant hypostomal condition correspond broadly with Ptychopariida in the sense of the 1959 Treatise (Moore, 1959).

It is known that Redlichiina had conterminant hypostomes (W. Zhang, Lu, & others, 1980, pl. 20, fig. 9), and if it is assumed that this represents the primitive trilobite morphology, it is then apparent that the Ptychopariina (having a natant hypostome) were themselves a derived group. The derivation of the detached, natant hypostome can be traced to the upper Lower Cambrian, where some protolenids were undoubtedly natant but which otherwise retained many of the primitive characters of the Redlichiina. Hence, the conterminant hypostomal condition can be either primitive (primary conterminant condition) or secondarily derived from a natant condition. Primary conterminant trilobites include such important Cambrian groups as the Corynexochida and probably the Lichida, Odontopleurida, and Illaenina. Secondarily conterminant trilobites appear in the geological record after the appearance of the natant condition, as would be expected. The earliest secondary attachment of the hypostome to the doublure is probably the ceratopygid Proceratopyge in the upper Middle Cambrian (Rushton, 1983). In Proetida all known early species from the Ordovician were natant, and the conterminant and impendent forms only became prevalent in the later (Carboniferous to Permian) history of the group, after all other conterminant and impendent trilobites belonging to other trilobite orders had died out. Clearly, the hypostomal attachment condition closely reflected the feeding mode of the trilobite, and such Proetida were presumably filling niches that were previously occupied by styginiid (conterminant) or phacopoid (impendent) trilobites.

The sequence of events is illustrated in Figure 196. The paraphyletic redlichiids gave rise both to derived groups of trilobites with primary conterminant hypostomal attachment (Corynexochida, Lichida, etc.) and to the first natant forms. The latter speciated...
rapidly in the Middle to Late Cambrian, but quite soon secondary attachment of the hypostome occurred in some groups, so that by the Ordovician primary conterminant, natant, and secondary conterminant trilobites lived side by side. Impendent trilobites became common at this time. Some of the secondarily conterminant families of Asaphina became extinct at the end of the Ordovician. Later, some of the groups of
Proetida became secondarily conterminant, and following the Late Devonian extinctions, this group alone was the source of all modes of hypostomal attachment.

HYPOSTOMAL SPECIALIZATION

This specialization is connected with hypostomal attachment because all the known specialized hypostomal forms are associated with the conterminant or impenent condition. Natant hypostomes are remarkably similar in the many different groups in which they occur, from the Lower Cambrian to the Carboniferous (Fig. 197). They are also similar to many hypostomes of Redlichiina, characteristic features being an elongate middle body with short middle furrows, narrow borders, and the lack of prominent forks, distinctive maculae, coarse sculpture, or other specializations like the rhychos. Hypostomes attached to the doublure were usually rigidly braced (WHTINGTON, 1988a, 1988b). Regardless of whether they were primarily or secondarily attached, modifications of the Redlichiina bauplan follow a number of directions. Appearance of posterior forks is doubtless polyphyletic, being known from asaphids, lichids, calymenids, remopleuridids, and late Proetida. The deepest known forks are in the remopleuridid *Hypodiscranotus* and the asaphid *Lycophron*. Hypostomes that are wider (tr.) than long are uncommon; the widest known is that of the cyclopygid *Degemella*, but hypostomes of some nileids (*Nilens*) and *Remopleurides* are also wide (tr.). In Nileidae much of this width is accounted for by wide lateral borders, and wide borders occur also in the hypostomes of several other families, especially Dameselloidea, Asaphidae, and Lichida. The macula is found principally upon attached hypostomes (Fig. 198). Many rigidly attached hypostomes developed a strong surface sculpture on the middle body. In some Asaphidae, Nileidae, and Illaenidae, strong terrace ridges run continuously from the cephalic doublure to the hypostome, and it is clear that together the two comprise a single functional unit. This may be the best known instance in which terrace ridge systems had a sediment-gripping function (see SCHMALFUSS, 1981). Other hypostomes may be granulose (invariably so in Cheiruroidea, and in most Phacopina and Odontopleurida) or even coarsely tuberculate. The inner edge of the
fork may be equipped with grinding surfaces (Silurian Odontopleurida, Chatterton & Perry, 1983) or rasping surfaces (the Ordovician asaphid *Isotelus*). It is clearly not fanciful to suppose that in these trilobites the margin of the hypostome assisted in the maceration and preparation of food, and it is reasonable to add that tougher or bulkier items could be handled by trilobites equipped with these hypostomal modifications. While the hypostome (both conterminant and natant) primitively occupied quite a small part of the cephalic venter (e.g., *Elrathia*, see Fortey, 1990a, pl. 1), in derived forms with forks and the like the hypostome can occupy a much larger area, the maximum possibly being in the Lichida. This suggests that, in addition to playing a fuller part in the preparation of food, the hypostome also protected the delicate underside of the head. Conversely, natant hypostomes remained proportionately rather small, regardless of geological age. This, coupled with their conservatism, is additional evidence that natant forms probably habitually dealt with small particles and may have included the detritivores and filter feeders among the trilobites.

SCULPTURE

Sculptural type is exceedingly variable in the trilobites. Fortey and Wilmot (1991) showed that thicker cuticles (greater than 200µ) tend to be associated with inshore sites, at least in the Early Ordovician. Because coarse tuberculation is associated with thick cuticle, it is not surprising that this sculptural type is commonest in epeiric habi-
Evolutionary History

tats (many Phacopidae, Brachymetopidae, etc.). However, such sculpture appears to have been relatively rare before the Late Cambrian, regardless of habitat. It may be that most early Cambrian trilobites had thin cuticles, but there are few data.

Many trilobite families have species characterized by different surface sculptures: granules, raised lines, terrace ridges, fine pits, smooth, or any combination of these. Whittington (1959a) and Nikolai sen (1983) have shown that various species of Ordovician Remopleuridae are typified by such sculptures. Fortey (1974b) recognized different species of the Ordovician olenid Balniharbi by their different surface sculpture. In life, sculptural patterns may have been enhanced by color patterns and functioned in species recognition or camouflage; some tubercles and pits may also have been associated with sensory organelles.

Most surface sculpture is surficial (as the name implies), and internal surfaces of the cuticle are comparatively smooth. However, in some trilobites (see illaenids in Whittington, 1965) different sculptures occur on internal and external cuticular surfaces. The smaller kinds of granules and ridges are considered to be too small to have had much function in strengthening the cuticle. They also tend to be absent over so-called muscle insertion areas. The evolution of sculptural types, if they functioned in species recognition, may have been somewhat haphazard; certainly there is no consistent progression from smooth to granulose to ridged. Some higher taxa of trilobites are broadly typified by one sculptural type. The granulose-reticulate sculpture of the cheiruroid genae is one example, the Bertillon pattern of Styginidae another. With a little experience most observers recognize the typical lichid sculpture of variously sized pustules. Nonetheless, the function of these particular kinds of surface sculpture remains obscure.

Concentric terrace ridges are present on the doublure of most trilobites, including Redlichiida, and they were probably lost in only two groups: Phacopida and Odontopleurida, where they were replaced by pustules or small, scalloped ridges. The function of terrace ridges is controversial, and hence the significance of their loss is difficult to interpret. Miller (1975) claimed that terrace ridges functioned as part of a system for monitoring currents. If, as claimed by Schmal fuß (1981), terrace ridges gripped the sediment during the creation of a filter chamber beneath the trilobite, then their loss would indicate abandonment of filter-feeding habits. Miller (1976) and McNamara (1980) have suggested that some Phacopida may have been predators, for example. On the other hand, some terrace ridges on the doublure cannot have gripped the sediment, especially in those species where the doublure is broad and reflexed against the dorsal exoskeleton to extend close to the axis, at which the appendages articulated (Symphysurus, Fortey, 1986). In most Cambrian species, especially primitive libristomates, ventral terrace ridges are feebler. They become strongly developed in some younger families, especially on the cephalic doublure: Asaphidae (Niobe), Illaenidae, Nileidae, Brachymetopidae. In such forms the ridges may have rested on, restrained, or shoveled sediment. It does not seem possible for this function to have applied to odontopleurids with a border of downward-pointing spines, and perhaps this explains the loss of terrace ridges in this family.

EVOLUTION OF REPEATED MORPHOTYPES IN TRILOBITE HISTORY

During the course of trilobite history some designs appeared repeatedly. What is known of the phylogenetics of the group indicates that these designs appeared independently within different major taxa. Fortey and Owens (1990a) described these distinctive designs as morphotypes. Some morphotypes can be linked with a specific life habit; for others this habit is unknown or is the subject of debate.

Many trilobites become effaced—that is, they lose defined dorsal furrows. Often glabellar furrows are effaced first (Eremiproetus),
Trilobita morphotypes can be recognized, but this sample provides some measure of evolutionary activity in the trilobites because there were times at which these morphotypes were numerous and others when they are rare. The morphotypes are summarized as follows (Fig. 199–200).

PHACOMORPH

These are convex trilobites that are nearly isopygous and have tuberculate sculpture in many species. Other characteristics include a tumid glabella, which expands forward, with the posterior glabellar furrows (when present) forming the intercalating ring and a pygidium with strongly furrowed pleural fields and prominent axis. Large-eyed phacomorphs are typical shelf inhabitants. As the name implies *Phacops* is the typical representative, but phacomorphs are derived from other families such as Bathyuridae (*Bathyurus*, *Petigurus*), Asaphidae (*Nora-saphus*), Hammatocnemidae (*Ovalocepha-lus*), and Phillipsiidae (*Ditomopyge*).

PELAGIC

This morphology was described by Fortey (1985). Hypertrophied and often convex eyes and reduced (tr.) thoracic pleurae are typical features. Telephinidae, Bohemillidae, and Cyclopygidae are exemplars of this morphotype (Fig. 199.1–2).

ILLAENIMORPH

These trilobites are among the most highly effaced of all trilobites, and they are characterized by lack of a marked change in convexity between the axial and pleural areas as well as by effacement of glabellar and ring furrows. The eyes are relatively far back. Typically the sagittal convexity of the cephalon exceeds that of the thorax and pygidium, which may have been partly buried in soft sediment in the bumastoid stance described by Westrop (1983). Illaenidae (Fig. 199.3–4) provide the type examples, but there is also a confusing range of similar forms from Plethopeltidae, Koldinioididae, Styginidae, and Proetidae.

MORPHOTYPES AND THEIR STRATIGRAPHIC DISTRIBUTION

Fortey and Owens (1990a) distinguished eight trilobite morphotypes, which are common and distinctive morphologies appearing in several phylogenetic lineages. More morphotypes can be recognized, but this sample provides some measure of evolutionary activity in the trilobites because there were times at which these morphotypes were numerous and others when they are rare. The morphotypes are summarized as follows (Fig. 199–200).

PHACOMORPH

These are convex trilobites that are nearly isopygous and have tuberculate sculpture in many species. Other characteristics include a tumid glabella, which expands forward, with the posterior glabellar furrows (when present) forming the intercalating ring and a pygidium with strongly furrowed pleural fields and prominent axis. Large-eyed phacomorphs are typical shelf inhabitants. As the name implies *Phacops* is the typical representative, but phacomorphs are derived from other families such as Bathyuridae (*Bathyurus*, *Petigurus*), Asaphidae (*Nora-saphus*), Hammatocnemidae (*Ovalocepha-lus*), and Phillipsiidae (*Ditomopyge*).

PELAGIC

This morphology was described by Fortey (1985). Hypertrophied and often convex eyes and reduced (tr.) thoracic pleurae are typical features. Telephinidae, Bohemillidae, and Cyclopygidae are exemplars of this morphotype (Fig. 199.1–2).

ILLAENIMORPH

These trilobites are among the most highly effaced of all trilobites, and they are characterized by lack of a marked change in convexity between the axial and pleural areas as well as by effacement of glabellar and ring furrows. The eyes are relatively far back. Typically the sagittal convexity of the cephalon exceeds that of the thorax and pygidium, which may have been partly buried in soft sediment in the bumastoid stance described by Westrop (1983). Illaenidae (Fig. 199.3–4) provide the type examples, but there is also a confusing range of similar forms from Plethopeltidae, Koldinioididae, Styginidae, and Proetidae.
ATHELOPTIC

These trilobites have greatly reduced eyes although their close relatives are known to have had normal eyes (Fortey & Owens, 1987). (Agnostina are not atheloptic because eye reduction typifies the whole clade.) They are often but not invariably associated with deeper-water biofacies. The dalmanitid **Ornathops** is typical, but this is a common morphotype from the Middle Cambrian onwards.

MINIATURIZATION

Miniature trilobites, which achieve maturity at a millimeter or two in length, are possibly always the product of progenesis.
Trilobita

(P. 199.10,11). Shumardia is a typical example.

PITTED-FRINGE TRILOBITES

The trinucleid trilobite is typical of this morphotype, in which a fringe is formed by more than one row of pits in the dorsal cephalic margin, which are opposed by a wide, lower lamella carrying corresponding pits on the external surface. Harpetids and dionidids are similarly constructed (Fig. 199.9).

OLENIMORPH

These are Olenus-like trilobites with thin cuticle, narrow axis, wide (tr.) but short (exsag.) thoracic pleurae, and many thoracic segments. Olenimorphs were probably adapted to cope with low oxygen concentrations, the numerous segments and the wide pleural regions increasing both the number and length of respiratory excites. Stratigraphically early examples include Mexicella, while the latest example is probably the aulacopleurid Aulacopleura (Fig. 199.8).

MARGINAL CEPHALIC SPINES

Trilobites with an array of spines around the cephalic margin are typically odontopleurid, but a similar morphology has been derived from other sources, e.g., the Upper Cambrian entomaspidid Bowmania (Fig. 199.5–6).

A plot of the distribution of these morphotypes through time (Fig. 200) shows that more examples were contributed by more families during the Ordovician than at any other time, after a build-up in the Late Cambrian. The end-Ordovician extinction produced a drastic decline in the number of families providing the morphotypes, and the pelagic morphotype disappeared forever. The Silurian had fewer families than the Devonian. Several more of the morphotypes, including olenimorphs and pitted fringes, disappeared at the Frasnian-Famennian extinctions. Proetida alone continued to provide several of the morphotypes until the end of the Permian.

This history of morphotypes provides, in microcosm, a pattern such as has been described for trilobite morphology as a whole and for hypostomal attachment: increase in variety through the Cambrian, a burst in the Ordovician that is curtailed by the end-Ordovician extinction, and subsequent recruitment of similar morphotypes from other families until the Late Devonian extinctions, after which the Proetida alone simulated earlier morphologies.

SPECIES-LEVEL EVOLUTION:

CASE HISTORIES

In view of the number of trilobites known, there are very few well-supported examples of species-level change through stratigraphic sequences. Even fewer are supported by plausible scenarios giving a functional explanation of claimed trends. In contrast, there are many phylogenies of families, usually given at the end of a monographic treatment of the group in question in the form of a tree linking genera by dotted lines. Such phylogenetic diagrams have been proposed for the following families: Phacopidae (CHLUPÁC, 1977), Cheiruridae (LANE, 1971), Encrinuridae (STRUSZ, 1980), Lichida (THOMAS & HOLLOWAY, 1988), Calymenoidea (HAMMANN, 1983), and Proetinae (LÜTKE, 1980). Such analyses are useful summaries, but they are, nonetheless, theoretical constructs. Cladistic analyses of the same taxa may produce different patterns, which can also be interpreted phylogenetically. Here we refer only to case histories that are alleged to represent the evolutionary history itself, species by species.

Fig. 200. The distribution of important trilobite morphotypes through geological time, showing periods of optimal diversity of design, especially during the Ordovician, with major reduction following the late Ordovician extinction event and subsequent recovery (adapted from Fortey & Owens, 1990b, fig. 7.6).
Evolutionary History

Change in diversity with time

Total number of families

Number of families

Total number of families

Morphological Characters

Fig. 200. For explanation, see facing page.

© 2009 University of Kansas Paleontological Institute
LOSS OF EYES AND BLINDNESS

Loss of eyes and blindness occur as a repeated trend in trilobite evolution. In Phacopoidea it is known to be highly polyphyletic (Fig. 201; see also Fig. 118) and can happen in two ways: the eye can migrate to a marginal position to become eventually eliminated or the number of lenses can be progressively reduced. Few examples from phacopoids, however, include all stages from ancestors with eyes to blind descendant species; most are plausible morphological series. Figure 119 gives an example of a true lineage in which much of the rest of the morphology of the trilobite remains the same, and it is clear that loss of the eyes does not involve major genetic restructuring. It is known that cave-blindness happens readily among living, aquatic arthropods.

ANTERIOR FUSION OF HYPERTROPHIED EYES

The pelagic morphotype has enlarged eyes, and there are several examples in which the eyes migrated anteriorly. In its extreme development, the eyes eventually touch on the midline to form one enormous visual organ. This morphology has its analogue in the living hyperid crustacean Cystosoma. These monocular trilobites are always stratigraphically younger than closely related species with normal paired eyes, and hence this is another example of a polyphyletic trend. In the Ordovician Cyclopygidae (MAREK, 1961) such anterior fusion occurs in three genera, Cyclopyge, Pricyclopype, and Microparia. However, a species-to-species lineage recording this fusion is known only in Pricyclopype through an apparently gradualistic series of subspecies of P. binodosa (SALTER) collected from successive zones in the late Arenig to Llanvirn (Fig. 202). Although there is variation in the separation of the eyes within any one population of the earlier subspecies, the eyes are eventually conjoined in P. binodosa synophthalma (KLOUCEK). Anterior enlargement and fusion of the eyes was presumably particularly useful to pelagic trilobites and occurs exclusively in this morphotype.

OLENID EVOLUTION

Olenidae often lived in oxygen-poor environments that preserve an exceptionally complete stratigraphic record. Bed-by-bed collecting through olenid-rich sequences has yielded plausible phyletic series of species (HENNINGSMOEN, 1957a) that have been studied in great detail. KAUFMANN (1933) described the succession of Olenus species in the earlier part of the Scandinavian Upper Cambrian, using quantitative analysis of large samples. A series of olenid species could be identified using cranial characters that appeared suddenly in the stratigraphic record, but within these species rapid change in pygidial characters occurred. Although KAUFMANN regarded the species as having been derived from a conservative stock not present in the sections studied, the succession of species could equally be regarded as an example of rapid change, i.e., punctuated equilibrium (see, however, HOFFMAN & REIF, 1994). FORTEY (1974b) used the latter explanation to describe a lineage of olenid species from the Lower Ordovician (Arenig) of Spitsbergen, but in this lineage more aspects of morphology changed between species than in Olenus, including width of preglabellar field, eye position, and pygidial size. An interesting feature of the lineages from Spitsbergen was that different, closely related species were typified by different surface sculpture patterns, which may have functioned during sexual selection. Changes of surface sculpture are commonly seen in trilobites and are not otherwise readily explainable.

COAPTATIVE DEVICES IN ENROLLMENT

Changes in coaptative devices in lineages such as that of species of Placoparia (Fig. 69) are particularly persuasive as evolutionary examples because most of the other morphological features were little changed. The species in this series are described as part of a

© 2009 University of Kansas Paleontological Institute
punctuated lineage. The inference that the evolutionary changes resulted in the capacity for tighter enrollment is a reasonable one.

TRINUCLEID FRINGES

The size, number, and arrangement of pits in the Ordovician trinucleid fringe vary greatly and provide important criteria for systematics (C. P. Hughes, Ingham, & Addison, 1975). Changes in species of *Onnia* were described by Owen and Ingham (1988), but no functional hypothesis explains the kind of changes that occurred.

GRADUALISTIC CHANGE IN PYGIDIAL RIBBING

Sheldon (1987) described sequential changes in pygidal ribs through a British Ordovician sequence based on very large quantitative samples. Similar increases in number of pygidal ribs at the population level take place in several co-occurring lineages from different trilobite families. Within the general trend, Sheldon observed short-lived reversals in the ribbing number. This work is important because it is one of the few quantitatively based studies where apparently gradualistic change has been demonstrated in more than one genus at one time. The fact that similar changes occur in several lineages might argue for some eco-phenotypic control (rather than speciation), but Sheldon correctly noted that end members would certainly be regarded as species in conventional trilobite taxonomy.

HETEROCHRONIC CHANGES

Heterochronic lineages of species of Cambrian olenellids were described by McNamara (1978). Heterochrony has been invoked as an important source of evolutionary novelty, but there are comparatively few examples where species-by-species evolution by means of heterochrony has been demonstrated, although it is plausible in many instances. See, for example, comments on origins of Agnostida in the section on classification (p. 297) and the cases of evolutionary reversal discussed above.

EVOLUTION IN RELATION TO PALEOGEOGRAPHY

Trilobites inhabited marine environments from equatorial to polar paleolatitudes. The dalmanitoid *Mucronaspis*, for example, accompanied the Late Ordovician glaciation and was adapted to cool temperatures (Jaanusson, 1979). Conversely, the Early Ordovician family Bathyruridae was confined to paleoequatorial regions (Whittington, 1963; Cocks & Fortey, 1982). Trilobite niches extended from inshore, even intertidal, habitats to deep-marine, continental slope habitats. Probably no other Paleozoic group of organisms had such a wide geographic spread. This leads to the possibility of evolution within different habitats and on separate continental plates. Because the Paleozoic included periods when continents drifted apart or converged, as well as major climatic fluctuations, there is a complex pattern of evolution that reflects shifting biofacies and changing paleogeography.

TRILOBITE BIOFACIES

Onshore to offshore biofacies patterns (Fig. 137) are typical of much of the history of the trilobites. These patterns may occur in relation to a former continent edge—that is, they record a transect from inner shelf to continental slope—or they may reflect paleoenvironments within intracratonic basins. There may be no genera in common between contemporaneous faunas occupying inshore and deep-water sites; these faunas from different biofacies may be as different as those from different faunal provinces (Fortey, 1975a). Of the various terms that have been applied to describe the constant association of genera in relation to paleoenvironmental site—community, community type, constant generic association (CGA), realm, and so on—biofacies is probably most commonly used and least confusing.

Lower Cambrian faunas show some differentiation into biofacies across the carbonate shelf (W. Zhang, Lu, & others, 1980). However, deeper-water sites with trilobites are
Fig. 201. Loss of eyes in Phacopoidea as an example of a polyphyletic evolutionary trend. The selected examples do not necessarily represent evolutionary lineages but illustrate the kinds of successive change that occurred.—1a–d, Ormuthops, Ordovician, Arenig and Llanvirn series; 1a, O. borni DEAN; 1b, O. atavus (BARRANDE); 1c, O. lllavirnensis (HICKS); 1d, O. nicholsoni (SALTER).—2a,b, Mucronaspis and Songxites, Ordovician, Ashgill Series; 2a, M. mucronata (BRONGNIART); 2b, Songxites sp.—3a–c, Phacopidella and Denckmannites, Silurian, Wenlock and Ludlow series; (Continued on facing page.)
Evolutionary History

almost unknown at this early time in trilobite history, although some of the earlier Agnostina (late Early Cambrian) may already have occupied sites marginal to former continents (RASSETTI & THEOKRITOFF, 1967), and by the late Early Cambrian *Atops* may represent the first atheloptic trilobite (Fig. 139). By mid-Cambrian times the whole inshore to deep-water range of biofacies was occupied by trilobites, with Agnostina particularly common in more oceanward sites (ROBISON, 1972a), where they may have been accompanied by the diverse atheloptic assemblages attributed to the Conocoryphiidae.

Similar inner-shelf to outer-shelf transects have been described by LU (1974), who recognized what he termed bioenvironmental control of Cambrian trilobite distribution in China. PALMER (1972) has described how North American Late Cambrian trilobites relate to distribution of the inner detrital belt, carbonate belt, and outer detrital belt. In all these cases the Cambrian pattern is a comparatively simple one relating to more or less concentric facies belts running approximately parallel to an inferred shoreline (Fig. 203). Carbonate ramps in the tropical belt may have developed steep margins, thus providing a rather abrupt contact between shelf and marginal biofacies, as in the Upper Cambrian of parts of the western United States (COOK & TAYLOR, 1975). The deeper biofacies are often associated with olenid trilobites, as was appreciated already by WILSON (1957); at that time such biofacies were attributed to an association with geosynclines, which would now be understood to indicate proximity to a Cambrian ocean. However, the olenid sea of Scandinavia (HENNINGSMOEN, 1957a) extended more widely over shelf areas, and this may be a reflection of the stratified nature of the Upper Cambrian oceans. Cambrian trilobites may have subdivided the habitat much more finely than is indicated by the broad shelf-to-ocean transect. Such associations of genera have been recognized by WESTROP (1986b) and LUDVIGSEN, WESTROP, and KINDLE (1989) using Q- and R-mode analysis of Upper Cambrian faunas from Alberta and western Newfoundland, respectively. Such analyses may reveal something about niche width in these early faunas. It is also clear that fidelity to a biofacies was an important factor in trilobite evolution.

Similar shelf-to-ocean Ordovician biofacies were recognized by FORTEY (see Fig. 137) in Spitsbergen, which was in a paleoequatorial position at that time (Fig. 204). The olenid biofacies persisted from the Cambrian and comprised the most oceanic biofacies. The open-shelf nileid biofacies was named after one of its dominant families, although shumardiids, asaphids, remopleuridids, and raphiophorids were also typical. A carbonate-mound biofacies, which may have developed at the edge of a carbonate platform in tropical areas, was typified by illeainids and cheirurids. The inner-shelf carbonate bathyurid biofacies (FORTEY, 1979) was dominated by the eponymous trilobite family but also had restricted asaphids, dimeropygids, pliomerids, and other such trilobites. LUDVIGSEN (1978b) recognized a similar suite of biofacies for mid-Ordovician
FIG. 202. Anterior convergence of the eyes of *Pricyclopyge*: an evolutionary trend repeated in several lineages of pelagic trilobites; in its extreme development the eyes are fused. 1, *P. binodosa eurycephala* FORTEY & OWENS; 2, *P. binodosa binodosa* (SAUER); 3, *P. synophthalma* (KLOUČEK) (Fortey & Owens, 1990a, fig. 5.1b).

western Laurentia, and CISNE and others (1980) noted the influence of paleoenvironments on the evolution of some species of *Flexicalymene* and other trilobites in eastern Laurentia. A comparable suite of biofacies has been recognized off Ordovician Gondwana (FORTEY & OWENS, 1978, 1987), but because Gondwana was at a high paleolatitude, a different selection of trilobites was generally dominant in the biofacies there (see Fig. 209). The Olenid biofacies, however, could be found in deeper-water sites off both Laurentia and Gondwana—indeed, it is virtually pandemic (COCKS & FORTEY, 1990). Similar biofacies patterns persisted to the Ashgill (e.g., PRICE & MAGOR, 1984) but appear to have broken down at the Late Ordovician extinction event.

The early Silurian is regarded as a time when trilobite faunas are not well differentiated into biofacies. We know of no unequivocal deep-water trilobite biofacies from the Llandovery, for example. However, depth- and facies-related trilobite associations have been reported widely from the later Silurian (Fig. 205) and Devonian (CHLUPÁČ, 1987 (Silurian of Bohemia), CHLUPÁČ, 1983 (Devonian of Bohemia), THOMAS, 1980 (Silurian of Great Britain), MANNIL, 1982 (Silurian of East Baltic), CHATTERTON and PERRY, 1983 (Silurian odontopleurids of arctic Canada), and G. ALBERTI, 1969, 1970, 1981 (Devonian of Morocco)]. The most diverse of these are the Bohemian examples described by CHLUPÁČ, who matched many of the benthic associations he recognized with those defined by BOUCOT (1975). He noted persistence through time of some environmentally related assemblages but identified change in their taxonomic composition. For example, the illaenid-cheirurid assemblage was replaced in the Devonian by a styginid-proetid community.

The Old World Province in Europe and adjacent areas comprises the Rhenish and Hercynian (or Bohemian) magnafacies (ERBEN, 1964), dominated respectively by nearshore clastics and offshore carbonates (Fig. 206). The former contain a restricted trilobite fauna with homalonotids, acas-tomorphs, and asteropyginids dominating, while the latter contains a diverse fauna with proetids, tropidocoryphids, cheirurids, phacopids, odontopleurids, and lichids. Various subprovinces, which are probably...
Evolutionary History

Facies-controlled, have been discriminated and include Uralian (with some Appalachian elements), Tasman, and New Zealand (see House, 1979 for summary).

Figure 207 illustrates biofacies of the Lower Carboniferous of northern England. Few benthic trilobite associations have been described from the Carboniferous and Permian, but Brezninski (1986b) gave a detailed analysis for the Lower Carboniferous (Mississippian) of Missouri in which he recognized three such natural associations of species. He also noted variations in surface sculpture of one species that depended on the enclosing lithology. Hahn and Hahn (1988) briefly discussed associations from the Dinantian of Belgium and northeastern Germany. Brezninski (1992) described depth-related associations in the Permian of Texas, and Cisne (1971) observed decreasing taxonomic and numerical diversity with increase in depth in a Permian sequence in the western United States.

For the evolution of trilobites the importance of biofacies is threefold. (1) Evolution may have proceeded within biofacies, as has been described for the Olenidae above. Indeed, some families appear to have been remarkably loyal to a biofacies. Lane (1972) and Fortey (1980a) noted the persistence of the carbonate-mound, illaenid-cheirurid biofacies from Early Ordovician until Devonian times. It is not surprising that some of the most long-lived trilobite genera (Scotoharpes, Decoroproetus) favored this habitat. (2) Deeper-water biofacies include more pandemic species and genera (Taylor & Forester, 1979; Fortey, 1980b) and hence have a more limited capacity for provincial speciation. Wilson (1957) presciently noted the almost worldwide relationship of occurrences of Cambrian olenid trilobites to what were then termed geosynclinal habitats. These would now be recognized as oceanward environments fringing paleocontinents. Deep-water genera may also be long lived (Fortey, 1980a). (3) By contrast, inshore biofacies tend to include endemics, which respond to local conditions of substrate, temperature, water chemistry.
and the like. Speciation among these was more likely to relate directly to the distribution of paleocontinents by paleolatitude or to geographic separation. This has resulted in what have usually been termed trilobite provinces.

DISTRIBUTION OF ANCIENT CONTINENTS AND TRILOBITE EVOLUTION

That some kinds of trilobites were characteristic of extensive paleogeographic areas has been recognized for a long time. The application of plate tectonics to the Paleozoic to produce more reliable paleogeographic maps has made new sense of such provincial distributions, especially when they are taken in conjunction with biofacies patterns within a single paleocontinent (for example, Cocks & Fortey, 1988, referring to Gondwana). Indeed, trilobite distributions themselves have played a part in deducing the distributions of paleocontinents, especially in the early Paleozoic (Whittington & Hughes, 1972; Cocks & Fortey, 1982). Because the inshore biofacies are more likely to be confined to a single paleocontinent, the distribution of such biofacies is the best guide to former distribution of continents, and evolution inshore is most likely to have proceeded as an endemic phenomenon. Some degree of endemism characterizes the greater part of trilobite history, because the climatic gradient, combined with the effects of separation of continental plates, produced endemic faunas. Hence the evolution of trilobites may have been driven as much by extrinsic, paleogeographic factors as by intrinsic, morphological change. No doubt this accounts, in part, for the repeated appearance of morphotypes, as described above.

Geographic separation of trilobite faunas is apparent from the Lower Cambrian (Atdabanian) onwards (Richter & Richter, 1941b; Cowie, 1971). The differentiation into major realms characterized by Olenel-
Evolutionary History

lina (especially in Laurentia) and Redlichiina (especially in China and Australia) must, therefore, have happened in pre-Atababanian times, but this phase of differentiation and vicariance has left no record. Hardly any genera are common to both regions, so that geographic differentiation was implicated early in the diversification of faunas (Fig. 208). There are characteristic Eodiscina and Redlichiina in China and distinctive Olenellina in Laurentia, and these are assumed to be the product of in situ evolution in those areas. Mixed faunas occur in Morocco and Siberia, but there are also endemics in these localities as in Scandinavia, which may indicate that there were already in the Early Cambrian still further biogeographic subdivisions. These early faunas were almost entirely inhabitants of shelves.

Later Cambrian faunas were also differentiated paleogeographically. By this time shelf faunas were differentiated from more marginal biofacies. Generally widespread faunas occur at some times, however—for example, at the Glyptagnostus reticulatus Zone as Kobayashi (1949) observed. Such widespread faunas resulted from onlap of more cosmopolitan faunas onto shelf regions at times of marine transgression. In general, Middle to Upper Cambrian trilobites differ at the generic or even familial level among biogeographic areas, and Öpik (1967) even described one superfamily (Rhyssometopoidea) endemic to Australia in the Mindyallan fauna. A sample horizon taken about the level of the Middle-Upper Cambrian boundary shows rich endemic eastern Gondwanan faunas characterized by Dameselloidea, Laurentian endemics especially in shelf limestones, and another suite of genera in platform Siberia, while the North Atlantic realm of authors marks the inception of the olenid

Fig. 205. Biofacies of middle Silurian continental shelf of Gondwana. Note in Figures 203 to 207 the persistence of paleoenvironmental associations from the Late Cambrian until the Carboniferous. Different genera and families occupied these habitats, often developing homeomorphic trends (adapted from Thomas, 1979).
There may be an element of taxonomic artifice in this pattern; for example, a critical comparison of Siberian with North American trilobites has not yet been made. Nonetheless, it seems probable that paleocontinental distribution was a prime control of trilobite speciation and distribution. The Early Ordovician was a time of wide continental dispersal, with the north pole in present-day North Africa. Strong faunal provinciality was the result (Fig. 209). Paleoequatorial Laurentia and Siberia were typified by trilobites of the family Bathyuridae (Whittington, 1963), which were confined to inshore carbonates and which did not survive the Ordovician. Tropical sediments at the eastern edge of Gondwana (South China, central Australia, Argentina) were not colonized by bathyurids, but a whole suite of endemic asaphids (Lycophron), dikelokephalins (Asaphopsis, Hungioides, Dactylocephalus), dalmanitoids (Prosopiscus), and leiostegids (Annamitella) were typical of this area. By contrast, inshore, high-latitude Gondwana (Henry, 1980a; Cocks & Forey, 1988) was dominated by a calymenoid-dalmanitoid fauna including Ormathops, Zeliszkella, Neseuretus, Calymenella, and Plaeiscomia. Baltica was in temperate latitudes and was occupied by another suite of endemics, especially genera belonging to the families Asaphidae (Megistaspidinae, Ptychopygiidae) and Nileidae (Varvia). Enough is known about the Early Ordovician platform faunas for us to be sure that knowledge of these paleogeographic areas is not the product of biased monographic coverage. They hold their integrity through much of the Ordovician, but by the upper Caradoc the distinctions are somewhat less clear. This is because of a complex interaction between several factors: notably, the proto-Atlantic Ocean (Iapetus) had partly closed; the Caradoc transgression had brought some of the more widespread, deeper-water faunas into shelf environments; and climatic dete-
Evolutionary History

Prioration may have begun. Even in the late Caradoc, however, trilobite faunas are not pandemic: some genera remain restricted to eastern Gondwana (*Paraphillipsinella*), western Gondwana (*Mucronaspis*), or Laurentia (*Isotelus*).

The glaciation at the end of the Ordovician, which culminated during the Hirnantian Stage (Brenchley, 1984), profoundly affected trilobite faunas. The relatively impoverished, cool-water, shelf faunas, with *Mucronaspis* (Fig. 210) and *Brongniartella*, spread at the expense of warmer-water faunas. The tropical belt was severely restricted, but reef environments survived in a few places, such as Anticosti Island.

Following the extinction of many trilobite clades at the end of the Ordovician, Llandovery trilobites are reported as showing relatively little provincial differentiation. For a while, the faunal composition was apparently dominated by those taxa that survived the Ashgill crisis. Such trilobite-based Silurian provinces as have been claimed (Kobayashi & Hamada, 1974; Schrank, 1977) are of broad extent and embrace several paleocontinents. Cocks and Fortey (1990) noted the generally cosmopolitan nature of Silurian faunas but discriminated several biogeographic regions in the upper part of the system. A circumpolar, low-diversity *Clarkeia* fauna, named for a characteristic brachiopod, included also a few homalonotid trilobites and is perhaps analogous to the Ordovician calymenoid-dalmanitoid fauna (Fig. 209). Temperate paleolatitudes tended to be dominated by deposits of terrigenous clastics, and there was once again a tropical carbonate belt; both of these included some endemic forms. Many Silurian trilobite genera are widespread, as are some species: the cheirurid *Sphaerexochus mirus*, for example, under several different names, occurs in North America, Europe, Japan, and eastern Australia. Those genera with a more restricted distribution were...
Trilobita presumably restricted to specific facies. *Coronocephalus* is a distinctive encrinurid that is restricted to eastern Gondwana: South China, Pamirs, Japan, and eastern Australia (Fig. 211).

Three contrasting provinces mark the earlier part of the Devonian (Fig. 212). The southern, polar Malvinokaffric Province had a taxonomically restricted fauna dominated by calmoniids (*ELDRIDGE & ORMISTON*, 1979; *ELDRIDGE*, 1980; *ELDRIDGE & BRAWN*, 1980), some of which developed remarkable homeomorphy with phacopids. The remainder of the world was dominated by the Old World Province with an Appalachian Province developed more locally in eastern North America. In the former, many taxa are widely distributed. Subspecies of *Warburgella rugulosa* occur almost worldwide at the base of the Lochkovian (G. ALBERTI, 1975) in the Hercynian magnafacies along with the conodont *Icriodus wouchmidii* and the graptolite *Monograptus uniformis*, while species of *Acastella* occur at the same level in the Rhenish magnafacies. The common occurrence of species of *Warburgella* and *Acastella* in parts of Europe and North Africa permits correlation of widespread, lowermost Devonian strata. Old World Province faunas in some areas include locally distinctive features along with widespread taxa: arctic Canada and arctic Russia lack phacopids (*ORMISTON*, 1967), while there are endemic phacopids in faunas from Inner Mongolia and northeastern Japan (*Zhigiang ZHOU & CAMPBELL*, 1990).

The Appalachian Province of eastern North America was a marine gulf opening to the south for at least some of its history. Heterogeneous local facies, which are dominated by clastics and nearshore deposits, with more limited calcareous and reef deposits, influence the kind of trilobites that are found, which include proetids, phacopids,
Evolutionary History

and lichids belonging to genera distinct from those of the Old World Province. Some elements of the Appalachian Province fauna, however, are also known from central Kazakhstan (MAXIMOVA, 1968) and Xinjiang Province, China, which is an indication that there is an element of facies control over the occurrence of these trilobites (HOUSE, 1971).

In the Late Devonian, pelagic sediments with an atheloptic fauna were widespread over Europe, southern Urals, southeastern Asia, South China, and northwestern Australia. At the very end of the Devonian, Phacops (Omegops) accipitrinus was widespread in Europe, northern Africa, Afghanistan, central Asia, and China.

In Carboniferous rocks, OWENS and HAHN (1993) distinguished three broad faunal tracts in the Tournaisian and Viséan: in the former, Breviphillipsia-Thigriffides (North America), Cummingella-Phillipsia (Europe to the Urals), and Conophillipsia (central Asia, Japan, and eastern Australia) and in the latter, occupying the same three regions, faunas characterized by Paladin-Girffithides, Cummingella, and Palaeophillipsia, respectively (Fig. 213).

From the Namurian onwards, two major realms are recognized (Fig. 214). The North American-Andean area maintained its distinctness from Paleotethys, which embraced Eurasia, North Africa, and Australia. Typical trilobite faunas have been named after some of their characteristic constituents: for the North American-Andean area, Paladin-Sevillia (Namurian), Ameura (Westphalina-Stephanian), Anisopyge (Permian); and for Paleotethys, Paladin-Cummingella (Namurian), Pseudophillipsia-Cummingella (Westphalian-Stephanian), and Pseudophillipsia (Permian). The distinctive features of these realms can be explained in part by the separation of the landmasses of North America and Paleotethys after the Viséan (and before that time possibly by differences in local habitats, water temperature,
and depth). Some genera, however, were cosmopolitan—for example, *Pudoproetus* in the Early Carboniferous, *Brachymetopus* throughout the Carboniferous, and *Ditomopyge* in the Late Carboniferous and Permian.

TIMES OF MAJOR CHANGE IN TRILOBITE HISTORY

During some periods in the history of the Trilobita, faunal composition changed rapidly, either through extinction or through the appearance of new clades. These periods usually corresponded with similar events affecting other organisms and provide the most important extrinsic control on the history of the trilobite.

LOWER CAMBRIAN

As with many groups of marine organisms, some trilobite clades that were to last for tens of millions of years began in the Early Cambrian. In many stratigraphic sections the trilobite-bearing beds are underlain by beds containing the remains of Tommotian small shelly faunas. Most complete sections of this kind have a relatively species-poor fauna at the base, and more species appear upwards in the section (Brasier, 1989, fig. 7.16–7.19). The appearance of new supraspecific taxa is generally quite sudden, and, with the possible exception of the Olenellina, stratigraphically based species-to-species lineages of the early trilobites are not obvious. Nor do first appearances of new clades coincide in the various sections (Briggs & Fortey, 1992), so it seems likely that much of the early history of cladogenesis is not recorded in known fossils. As was discussed previously, there is also marked provincialism in these early faunas. Within the span of the Lower Cambrian, Olenellina and Redlichiina had diversified, and Corynexochida, Agnostida, and libriformate Ptychopariina had appeared. In that some of these are probably paraphyletic groups, they may well include sister groups of other higher taxa, and the so-called extinction of the Redlichiina at the top of the Lower Cambrian may have resulted primarily from their continuation within more advanced clades.

UPPER CAMBRIAN

The biomes of the Upper Cambrian described by North American authors (Palmer, 1965a; Stitt, 1975) have been de-
Evolutionary History

scribed as packages of rapid evolution, eventually followed by widespread extinction events affecting especially shelf faunas. They have a cyclical pattern, which some authors maintain also applies to the Early Ordovician hystricurid or symphysurinid biomere. It is not clear, however, that biomeres were global phenomena; nor is there agreement about how fundamental was their influence on the taxonomic composition of faunas (Fortey, 1983). Deeper-water faunas were supposedly relatively unaffected by the biomere phenomenon. Ludvigsen (1982) and Westrop and Ludvigsen (1987) related biomeres to sedimentary cycles and the shift in biofacies disposition; the extinction events have also been related to cool water incursions onto the platform. Although platform endemics no doubt evolved and were extinguished in Cambrian epeiric seas, it is uncertain whether the biomere events were the equal of the other events listed here.

LOWER ORDOVICIAN

Many of the clades that dominated Ordovician and later trilobite faunas have their first known occurrence in the Lower Ordovician. The Cambrian-Ordovician boundary marks a period of faunal turnover, but although extinction was undoubtedly involved in this change in faunas, it is as a time of origination of clearly differentiated clades that the Early Ordovician is remarkable. Cambrian sister groups of some of these taxa are now being recognized. Insofar as they are known, the new clades do not all appear suddenly at the base of the Tremadoc, but their first occurrences lie in an interval spanning the Upper Cambrian and the lowest two Series of the Ordovician: Proetidae (Arenig); Cheiruridae (lower Tremadoc); Cyclopogoida (uppermost Cambrian–basal Tremadoc); Dalmanitoidea (Arenig); Dimeropygidae (upper Tremadoc); Trinucleoidea (Upper

FIG. 211. Reconstruction of middle Silurian global paleogeography (based on world maps of Scotese & McKerrow, 1990) showing the provincial distribution of shelf trilobites related to distributions and paleolatitudes of continents. The wide distribution of Sphaerexochus, Encrinurus, and Balizoma is typical of many taxa, but Coronocephalus is an example of more restricted distribution (new).
Trilobita

Cambrian); Illaenidae (basal Arenig); Harpina (uppermost Cambrian). The combination of these new families and superfamilies with those of longer pedigree (Asaphidae, Agnostina, Remopleurididae, Olenidae) lend the Ordovician faunas their distinctive characteristics.

UPPER ORDOVICIAN

The extinction event at the end of the Ordovician was one of the most important in the history of the biosphere, and the trilobites were affected drastically by it. Many families with Cambrian origins and those listed as typically Ordovician were either greatly reduced or extirpated at the end of the Hirnantian. Many families (Asaphidae, Cyclopygidae, Nileidae, and the Tri nucleoidea) belong to the Asaphida, which has led some authors to conclude that the planktonic asaphoid protaspis was especially vulnerable (Speyer & Chatterton, 1990). There was a reduction in diversity before the Hirnantian (Brenchley, 1984, 1989), but many Ordovician families persisted into this short time period (Owen, 1986), and had they survived it is possible that they would readily have recovered to their former diversity. The fact that they did not argues for an exceptional crisis at the Ordovician-Silurian boundary. This has been associated with widespread anoxia in the oceans during the postglacial rebound. It seems to be true that the families of trilobites eliminated were especially those that were oceanic (all pelagics), deeper water (olenids, agnostids), or those having pelagic larvae (Asaphida). Some of the shelf-dwellers (Lichida, Dalmanitoidea, Cheiruridae, Calymenidae, Illaenidae, Harpetidae) were survivors. It is also clear that there were some Lazarus taxa (e.g., Scharryia) that must have existed in refugia during the crisis as they are found in strata below the uppermost Ordovician and they reappear (or a close relative does) in strata well above the base of the Silurian. There is no doubt, however, about the profound effect of the end-Ordovician extinction. The lowest Silurian (Llandovery) has faunas of relatively low diversity, but more diverse faunas are present by the late Llandovery, and cladogenesis builds continuously into the Devonian. The general composition of trilobite faunas in terms of families present remained essentially...
Evolutionary History

MIDDLE TO UPPER DEVONIAN

A drastic series of extinctions, brought about by global eustatic perturbations, affected the Trilobita in the Middle to Late Devonian (Briggs, Fortey, & Clarkson, 1988; Feist, 1991; Feist & Schindler, 1994) (Fig. 215). In the late Eifelian, a change from well-oxygenated to oxygen-deficient conditions in the outer shelf (the Kačák-otomari event) resulted in a depletion in the number of species and the extinction of the synphorids and rorringtoniids. A regression associated with expansion of the cool-water, Malvinokaffric, calmoniid faunas at or about this time has been interpreted as a result of a sudden lowering of global climatic gradient (Boucot, 1988, 1990). The mid-Givetian Taghanic or Pharciceras event was a marine transgression that resulted in the loss of trilobite clades adapted to life in shallow-water habitats. Lichids and cheirurids disappeared from the record at this time; in total, five families and one order became extinct. The end-Frasnian Kellwasser event (and the subsequent end-Famennian Hangenberg event) involved sudden changes of sea level leading to a break in the redox equilibrium, which has been invoked as the cause of extinction of a large number of specialized lineages (Feist, 1991). The Kellwasser event was one of the most dramatic extinctions in the history of the Trilobita—three orders and all but five families were terminated. This event has been claimed to coincide with a major meteorite impact, but may better be accounted for by the loss of specialized groups through an influx of oxygen-depleted water (Feist & Schindler, 1994). Of the survivors, the Phacopidae disappeared with the Hangenberg event, and only Proetida...
crossed into the Carboniferous. The restriction of aulacopleurids, brachymetopids, and proetids in the Late Devonian was probably an example of pseudoextinction (Owens, 1994) because several of these taxa reappeared in the Carboniferous when appropriate habitats were reestablished.

PERMIAN

No deeper-water, atheloptic trilobite faunas are known from strata younger than Namurian, although they were varied in earlier Carboniferous offshore basinal environments. The youngest trilobites are all in shallower-water, shelf habitats. Comparatively diverse faunas of Proetida remained in such habitats until the late Kazanian or Guadalupian, from which rocks seventeen genera are known belonging to five phillipsiid subfamilies, together with one proetid and one brachymetopid. However, only two genera, the ditomopyginids *Pseudophillipsia* and *Acropyge*, seem to have survived into the latest Permian. The major extinction seems to have accompanied a drastic regression that particularly affected reef and perireef habitats. The decline of the trilobites, therefore, seems to have happened shortly before the coup de grace at the end of the Paleozoic.

Fig. 214. Reconstruction of Late Permian global paleogeography (based on world maps of Scotese & Mckerrow, 1990) showing the provincial distribution of shelf trilobites related to continent distribution and paleolatitudes. *Pseudophillipsia* and *Anisopyge* are examples of mutually exclusive distribution in Paleoethys and western North America, respectively (adapted from Owens & Hahn, 1993).
Evolutionary History

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Middle Devonian</th>
<th>Upper Devonian</th>
<th>Carboniferous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eifelian</td>
<td>Givetian</td>
<td>Frasnian</td>
</tr>
<tr>
<td>Proetida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proetidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropidocoryphidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulacopleuridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachymetopidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rorringtoniidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phillipsiida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ptychopariida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harpetida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynexochida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styginida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phacopida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheirurida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homalonotidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calymenida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calmoniida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synphoriida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalmanitiida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phacopida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontopleurida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontopleuridae</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 215. Fossil record of important trilobite groups through a series of Late Devonian extinctions (recognized in Europe, but also elsewhere), showing staggered last appearances of orders (stippled arrows) and families. The names given to the extinction events are those currently in use (adapted from Feist, 1991).
A group as large and as complex as the trilobites poses particular problems in classification. Systems of classification seek to achieve a measure of stability, but changes in taxonomic methods as well as new discoveries mean that such stability has remained elusive. Harrington (in Moore, 1959, p. 145) remarked that a “wholly satisfactory, natural classification of the trilobites is beyond possibility at the present moment.” This is still true a quarter of a century later.

Harrington was inclined to ascribe the difficulties in developing a higher classification to our incomplete knowledge of trilobite morphology and ontogeny. Many more ontogenies have been described in the last two decades, and these have contributed to improvements in classification. It is still true that we know the appendages of very few trilobite species, and, because appendages are among the most important criteria for classifying living arthropods, it would certainly be desirable to know more. With the exception of those of the highly specialized Agnostus (Müller & Walossek, 1987), trilobite appendages appear to be rather similar along the length of the animal. The extremes of specialization of appendages found among living crustaceans may not have generally obtained in the trilobites. On the other hand, there are many striking modifications of the dorsal and ventral exoskeletons that have no counterparts among the living arthropods, and it was the exploitation of the possibilities of a tough, calcareous cuticle that contributed to the success and adaptive range of the group. The inevitable limitations on our knowledge of trilobite limbs does not necessarily imply that a natural classification is impossible.

The history of trilobite classification shows that some groups that would still be accepted as natural—that is, monophyletic—were recognized very early by the more perceptive, early students of the group. Salter (1864a), for example, classified trilobites into the following families: Phacopidae, Cheiruridae, Proetidae, Acidaspidae (=Odontopleuridae), Lichidae, Bronteidae (=Styginidae), Calymenidae, Cyphaspidae (=Aulacopleuridae), Asaphidae, Harpedidae (=Harpetidae), Olenidae, Trinucleidae, Agnostidae, and Conocephalidae. Of these, only the Conocephalidae is not in use today; all the others refer to good clades of trilobites, even though Salter included more genera than are in the taxa of the same name today. More families were introduced in the latter part of the nineteenth (e.g., by Beecher, 1897) and the first four decades of the twentieth century (Gürich, 1907; Kobayashi, 1935), and, for the most part, these are also used today. Figure 216 shows the enduring status of many of these families, which have been been passed on from one classification system to the next, with more and more families being added with the passage of time and the discovery of more fossils. The last comprehensive treatment before the 1959 edition of the Treatise on Invertebrate Paleontology was that of Hupé (1954, 1955a), who recognized some 170 families, nearly all of which are accepted today.

The recognition of a family implies that several genera share some well-characterized features that permit their inclusion in a higher taxon. The Asaphidae, for example, are isopygous or subisopygous trilobites with effaced glabellar furrows having eight thoracic segments with petaloid facets and a ventral median suture; many have hypostomes with a posteromedian fork. The identification of Asaphidae implies that this combination of characters did not arise more than once—and, indeed, no students of the group have claimed asaphids as polyphyletic, even though there have been many opinions on how further to subdivide them. Most trilobite families can be characterized by features that allow confidence in the monophyly of the group concerned. This is true in
Fig. 216. Trilobite families in some of the principal classification systems developed through the mid-nineteenth to mid-twentieth centuries. Family-level taxa are the most enduring concepts, which, once proposed, survive into modern classification, but the list of families has been progressively augmented. Families that have always been known by the name listed in the lefthand column are shaded gray. Families that, while encompassing a similar concept, have undergone one or more nomenclatural changes over the period under consideration are indicated by the diagonal shading. For example, the family Cyclopygidae was known as Aeglinidae by some early authorities but embodies a similar suite of genera (new).
particular of families younger than Cambrian in age, because morphological gaps between clades were apparently wider then. Where problems of defining families occur (such as in Ptychopariina), they seem to come about because of problems in discriminating convincing morphological characters to define the clades. Particular Cambrian families have been discriminated on the basis of features that would not merit familial status in younger trilobites, such as details of the shape of the glabella or the size of the eyes. The traditional importance accorded to trilobites in Cambrian biostratigraphy may have contributed to these problems because the families often appear to be stratigraphically rather than morphologically bounded. Thus, there are few families found in the Ordovician that have a stratigraphic range of a span less than that of the whole system, and many that extend into the systems above or below; by contrast, there are only two families, Agnostidae and Ptychopariidae, that extend throughout the Cambrian, and the Ptychopariidae is not regarded as a satisfactory taxon. Many trilobite families regarded as typically Cambrian do not extend through more than a few biozones. Because the morphological range encompassed by Cambrian trilobites is, as a whole, less than that of Ordovician and later forms (Foote, 1991) and the Cambrian is also known to represent a shorter timespan than the Ordovician, it seems probable that both the short geological ranges and the difficulties with definition of some Cambrian trilobite families are to some extent a result of taxonomic practice, with the Cambrian groups being the more finely split.

More contentious problems, however, appear with classification above the family level. Whereas the families are generally diagnosable entities, the arrangement and status of superfamilies and orders have changed repeatedly, as opinions on the importance of one morphological character or another have been altered. Harrington (in Moore, 1959) ably summarized the main contributions to the higher classification made prior to the 1959 Treatise, and no particular purpose is served by repeating his discussion in detail here. The Treatise (Moore, 1959) classification has remained the general reference for the last thirty-five years. Since 1959, Lu and others (1965) published a compendium of the Chinese trilobite fauna; Bergstrom (1973a) attempted a new comprehensive classification; Fortey and Owens (1975) proposed a new order Proetida; and a start has been made on phylogenetic analysis using cladistic methods (Fortey & Chatterton, 1988; Fortey, 1990a). In these, as in the earlier works, it is the higher taxonomic categories that have differed from one publication to another.

A few higher taxa have been stable. For example, the Phacopida has been consistently recognized as including phacopids and dalmanitids since the last century, although there have been differences of opinion as to whether the Calymenina should be classified with the Phacopida; and the status of the group has varied from superfamily to order. There are several readily recognizable morphological features that obviously unite the suborder Phacopina (Phacopoidea and Dalmanitoidea): the schizochroal eye; forwardly expanded glabella with long S3; proparian sutures combined with yoked cheeks; and typical pygidial form. These are all advanced characters, connecting what are otherwise rather disparate morphologies.

HIGH-LEVEL TAXA THAT ARE REDUNDANT

The problems with stability of other high-level taxa have stemmed from the difficulties in recognizing suites of characters appropriate for the discrimination of major natural groups. There are few groups as neatly defined as the Phacopida.

In the course of the debate about high-level classifications, some characters have come to assume particular importance. Prime among these are the patterns of cephalic sutures, which were emphasized in classical papers by Beecher (1897) and
Trilobita

Stubblefield (1936). Suture patterns continue to be of importance in trilobite classification at ordinal level, although they are no longer accorded the primacy that they once had. Harrington (in Moore, 1959) sketched the voluminous history of the debate about which suture patterns were to be regarded as primitive for the group as a whole. The division of most trilobites into the two orders Proparia and Opisthoparia (or their several synonyms) on the basis of propararian and opisthoparian sutural patterns, respectively, enjoyed a widespread currency in the first half of this century (Richter, 1932; Stormer, 1942). Consideration of the total morphology, however, showed that the inclusion of such propararian families as Eodiscidae, Norwoodiidae, and Phacopidae in the same higher taxon was entirely arbitrary, and the Proparia as construed was polyphyletic. The demonstration that propararian sutures could appear within the monophyletic family Olenidae (Henningmoen, 1957a)—most genera of which were opisthoparian—administered the coup de grace to the indiscriminate use of this suture pattern in classification. Nonetheless, it remains a useful character, among others, in the definition of clades; propararian suture pattern is a genuine derived character, and no example is known of a propararian trilobite that is ancestral to an opisthoparian one. It is abundantly clear, however, that propararian sutures in adult trilobites evolved more than once.

While it remains true that the Agnostida include the greatest number of trilobites with only two or three thoracic segments, it is no longer true that major ordinal divisions can be defined on the basis of thoracic segment number alone. This was the basis of the division of the Trilobita (Jaeke, 1909) into the orders Miomera (with two to three segments) and Polymera (six or more segments). Indubitable corynexochoids (Robison & Campbell, 1974) and trinucleoids (W. Zhang, 1980), however, have now been described with numbers of segments that are typical of Miomera but which are otherwise clearly unrelated both to each other and to any miomerid previously described. Also, a shumardiid trilobite, Acanthopleurella, is known that has four thoracic segments, forming a bridge between Miomera and Polymera (Fortey & Rushton, 1980). Because it is now clear that the release of segments into the thorax is under developmental control, the generation of lineages with but a few thoracic segments does not seem to be a matter of great difficulty. All that is required is a process whereby release of segments from the front of the pygidium during ontogeny is inhibited and is accompanied by precocious sexual maturation. This is a neotenous process and is more strictly described as progenesis (McNamara, 1983). As with suture patterns, the number of thoracic segments remains a useful taxonomic character, but it is not diagnostic in a simple way.

There have been various attempts to interpret the original cephalic segmentation (see discussion, p. 132), which have proved problematic with regard to the number of segments and their disposition in the preoral parts of the cephalic anatomy. Thus Hupé (1951) regarded the rostral plate, hypostome, and free cheek as comprising a single, ocular segment. Because the larval hypostome takes up much more of the venter, at which size it also shows paired, marginal spines, another interpretation might include more than one segment in the hypostome alone. None of these interpretations has contributed significantly to high-level classification, and the resolution of cephalic segmentation is still far from clear; it is probably preferable that untested and possibly untestable assumptions about homology not be built into systems of classification.

Systematic Position of Olenellina

Olenellus, Fallotaspis, and allied genera have occupied a special place in discussions of trilobite phylogeny and classification (Stormer, 1942; Hupé, 1954). In many stratigraphic sections spanning the Precambrian-Cambrian transition, they are the first trilobites to appear near the base of
the Lower Cambrian. They have several features that have been regarded as primitive—most conspicuously, a lack of facial sutures—and this has invited speculation about how they relate to other early or primitive arthropods.

Laubach (1980, 1983) suggested that Olenellina are not trilobites at all. This interpretation of their morphology stresses alleged homologies between the tagmatization of merostome chelicerates and some of the species of Olenellina. This view has been repeated in some textbooks (Ax, 1987). Stormer (1933) had pointed out earlier the similarities between trilobites and merostomes. Cladistic analyses of the arthropods as a whole (Briggs, Fortey, & Wills, 1992) also place trilobites into a larger clade that includes Limulus and its allies. It seems likely that trilobites and merostomes shared a common ancestor shortly before the Cambrian radiation. However, consideration of those characters shared between undoubted trilobites and Olenellina (Fortey & Whittington, 1989) shows that there are more features that support trilobite relationships of these Early Cambrian forms than support merostome affinities (also Edgecombe & Ramskold, 1991). The features shared by Olenellina and higher trilobites include the pygidium, the calcified cuticle, the structure of the hypostome, and the eye ridges; also once the cuticle was calcified, a perrostral suture facilitated molting, and the calcitic corneal surface of the eye (also unique to trilobites) was molted separately by means of a circumocular suture.

Hence it is probable that Olenellina and all other trilobites comprise a good clade, which descended from a common ancestor late in the Precambrian. The general resemblance between Olenellina and more generalized Redlichiina is striking, but the latter have functional facial sutures. This is a character unique to higher trilobites (although sutures are secondarily lost in several highly derived clades). The absence of such sutures in Olenellina is usually regarded as a primitive feature. Certainly, Olenellina retain other characters that are primitive: thin cuticle, no evidence of a calcified protaspid, nonfulcral thoracic articulation, and minute pygidium. Moreover, some species have many additional thoracic segments grouped in a posterior opisthothorax.

The taxonomic status that should be accorded Olenellina and their close relatives is also a problem. The group as a whole is united by primitive (symplesiomorphic) characters. On the other hand, their position near the root of the trilobites has resulted in their being recognized as a higher taxon (e.g., order Olenellida in Bergström, 1973a). Both Olenellina and Redlichiina are probably paraphyletic groups. It is considered preferable, therefore, to unite these more or less primitive trilobites into a single order Redlichiida, while recognizing that future phylogenetic studies may well further limit its scope.

The recognition that the morphology of Olenellina is primitive for the Trilobita is important in determining which characters are advanced in other trilobites and hence in determining the diagnostic features of clades within the group.

STATUS OF NARAOIIDS

Naraoia and a number of other genera placed in the family Naraoiidae cannot be included within the diagnosis of Trilobita given here because they lack a calcified cuticle, evidence of sutures, and other important features of the group. On the other hand, naraoiids have a large pygidium, a trilobite-like arrangement of cephalic limbs, and, where known in Tarricoia (Hamann, Laske, & Pilolla, 1990), nonfulcral thoracic segments. Naraoia has been described from the Lower Cambrian of China (W. Zhang & Hou, 1985); hence its stratigraphic occurrence is not relevant in determining its relationships other than being consistent with its being primitive.

Naraoiids have an obvious if superficial resemblance to Agnostida by virtue of their enormous pygidia. They differ, however, in that the cephalic shield is shorter than the...
pygidium, a condition that is otherwise known only in a few, advanced trilobites belonging to the Asaphidae and Styginidae. Furthermore, naraoiids are not progenetic (as are Agnostida) because they reach normal—even large—trilobite size. Instead, they may have arisen by a different neotenic process known as hypermorphosis. *Naraoia* resembles a giant, degree 0 meraspis in lacking a thorax and in having a relatively large pygidium.

The likely relationship of naraoiids to other calcified trilobites is that they form an uncalcified sister group of the larger, more diverse clade (Whittington, 1977; Briggs, Fortey, & Wills, 1992). They comprise a clade that, while having several peculiarities (autapomorphies) of their own, had not acquired some of the other, typical trilobite characters (e.g., calcite cuticle, sutures). In a formal classification system they might be recognized as a higher taxon commensurate with their inferred phylogenetic position, and the name Nektaspida Raymond (used as an order by Moore, 1959) is available to accommodate the group. But it does not seem appropriate to use a class to encompass this handful of fossils, as would be required formally to recognize its sister group status to the class Trilobita. Instead, it is proposed to treat the family Naraoiidae as Trilobita order uncertain (essentially as a plesion in relation to the higher and diverse clade of calcified trilobites, see Ramskold & Edgecombe, 1991). The inclusion of Naraoiidae in the class acknowledges their systematic position, but the open, higher taxon allows the formal definition of Trilobita to be based upon the characters of calcified forms.

TAXONOMIC POSITION OF AGNOSTINA

Agnostina are remarkably abundant in Cambrian rocks and exhibit a wide range of morphology within the constraints imposed by their small size. They are clearly highly specialized: diminutive, blind, and isopygous, with two thoracic segments and various modifications of the axial segmentation. The distinctive limbs of *Agnostus pisiformis* have been described by Müller and Walossek (1987).

The systematic position of Agnostina has been much debated. Some maintain that the Agnostina are not trilobites, a view promulgated by C. E. Resser in the 1930s ["This group of Crustacea . . . a subclass parallel to the Trilobita . . . " (1938, p. 47)] and espoused most recently by Shergold (1991). This opinion lays emphasis upon the unique characters of Agnostina, as an indication that they must have had a phylogenetically separate arthropod origin. The same view also regards Eodiscina as not being closely related to Agnostina. No one doubts that Eodiscina are trilobites; for example, early members of the group have facial sutures, and all have typical trilobite thoracic structures. Under the view of Agnostina as nontrilobites, therefore, such similarities as there are between Agnostina and Eodiscina are a matter of convergence. Advanced Eodiscina, for example, include species that were blind and have only two thoracic segments.

The other view contends that Agnostina are trilobites, albeit of a very specialized kind. The similarities between them and Eodiscina are indicative of their shared common ancestry, with the Eodiscina representing the more primitive morphology. This is not to say that any particular species of Eodiscina is necessarily nominated as ancestor of the Agnostina. This opinion would regard the peculiar features (autapomorphies) uniquely possessed by Agnostina as not relevant to determining their systematic position, however interesting these may be in determining their life habits or evolution within the group; for example, Agnostina have a unique exoskeletal opening, the cephalothoracic aperture, between the occipital part of the cephalon and the axial part of the thorax, which is exposed during enrollment. Instead, emphasis is placed on those characters shared between Agnostina and Eodiscina (synapomorphies) as indicating common descent. Such a view on classi-
Classification

fication has been articulated recently by JELL (1975a), W. ZHANG, LU, and others (1980), and FORTEY (1990a).

It is not possible completely to falsify a hypothesis invoking convergence between groups. Trilobite history has several examples of remarkable morphological convergence between groups that are not close phylogenetically. The evolution of phacopid-like Proetida late in the history of the group is one instance; and the resemblance between some early Cambrian Redlichiina and Ordovician remopleuridids is another. In these cases, the convergence is revealed by one of two methods: (1) a series of morphologically intermediate species is known connecting the homeomorph in question with its mother group, and (2) critical analysis of the homology of characters reveals fundamental similarities that betray the convergence. Thus, in the examples given, the inspection of ventral, hypostomal, or pygidial characters will reveal the origins of the phacopid-like Proetida, or the origins of the remopleuridids from Asaphina. There is, however, no final arbitration to say how far homeomorphy may proceed, and the usual procedure is to weigh up the characters to see which hypothesis of relationship is supported by the most derived (synapomorphic) characters.

For the Agnostina, a suite of species connecting the group with some other taxon is not yet known (which is perhaps not surprising, given that Agnostina go back to the Early Cambrian), and we are obliged to accept comparison of homologous characters to determine phylogenetic relationships.

In a comparison between the possible theories of the relationships of the Agnostina, FORTEY (1990a) found that more shared characters supported Agnostina and Eodiscina having descended from a common ancestor than their having separate origins. In particular, the ventral surface of both groups has a narrow marginal selvage (not a wide doublure), which in one agnostid is backed by a calcified rostral plate like that of Olenellina (HUNT, 1966). In either case, the venter is certainly not like that of Redlichiina and all higher trilobites. The hypostome is not suturally attached. The long (sag.) cephalic shield, wide (tr.) occipital ring, reduction in number of thoracic segments, and features of cephalic and pygidial margin are also shared by the two groups. It seemed to FORTEY (1990a) to be less parsimonious to assume that all these characters were acquired in parallel by Eodiscina and Agnostina, particularly in the absence of a plausible sister group for the latter. As discussed above, the naraoiids are not likely candidates. SHERGOLD (1991) chose to put great emphasis on the discovery of an eodiscoid protaspis (of usual trilobite type) as an indication that this group is closer to other trilobites, especially ptychoparioids, and that the Agnostina were independently derived. No calcified protaspis of a species of Agnostina has yet been discovered. In this regard, Agnostina are like Olenellina. The simplest explanation, however, is that Agnostina have retained a primitive or plesiomorphic condition; since Olenellina are trilobites, there is nothing special in lacking a calcified protaspis. A less simple alternative would be for Agnostina to have descended from an Eodiscina-like ancestor, the loss of the calcified protaspis being secondary—a reversion to the primitive state—and another specialized character of Agnostina among many. Agnostina may well have been planktonic animals (ROBISON, 1972a), and both small size and accelerated development are not implausibly associated with planktonic habits. In any case there is nothing especially persuasive about the protaspis of Eodiscina as an indication of separate origins for the Agnostina and Eodiscina. In the classification below the two groups are included within a single clade, but it is noted that this opinion is not held by all specialists in Agnostida.

THE PROBLEM OF THE PTYCHOPARIINA

Beginning in the Lower Cambrian and extending into the Ordovician there occurs commonly a type of trilobite with a rather
uniform bauplan. It might be termed the ptychopariid morphology and has a tapering glabella, a preglabellar field, opisthobarian sutures, rimlike cephalic borders extending into genal spines, natant hypostome, usually more than 12 thoracic segments, and a small, transverse, well-furrowed pygidium without remarkable features. Such a morphology is often referred to as generalized, but it is quite far removed from the primitive Redlichenida design, and it might be better to refer to it as exceptionally durable by virtue of a successful specialization. Where taxa of Ptychopariina occur, they often do so in great profusion. A typical example, *Elrathia kingi* (Middle Cambrian), has been extracted from its type locality in Utah in tens of thousands, and abundant specimens remain. This abundance suggests that these trilobites may have occupied a place comparatively low in the food chain, possibly by directly ingesting the sediment or living by filter feeding.

Partly because of the success and persistence of the design, Ptychopariina pose peculiar taxonomic difficulties. These difficulties stem from three sources. First, these trilobites have a range of morphological variations within a basically conservative design, which intergrade in such a way as to make the recognition of discretely bounded taxa genuinely debatable. Many of the changes that occur, concerning the size of the eye, width of border or preglabellar field, or depth of furrows, are trivial ones. Even generic diagnoses are difficult to frame using such characters, let alone those of families. Second, many of the taxa are known only from cranidia and pygidia—often only the former. It is possible that thoracic or librigenal characters may have been important. Third, in the absence of distinctive morphological characters, stratigraphic and geographical criteria have come into play in the taxonomy, and the result has probably been excessive splitting. For example, generic names applied in the Cambrian of Siberia or China are different from those in North America without critical evaluation of their morphological justification. For this group of trilobites in the Cambrian, generic stratigraphic ranges have tended to be artificially short, crossing neither stage nor biomere boundaries. The result has been a proliferation of taxa with imprecise morphological definitions.

Even the definition of Ptychopariina as a whole is problematic. So-called ptychoparioid ancestors have been invoked for several other higher trilobite taxa: Olenina, Proetida, Harpina, Asaphida, and, more doubtfully, Phacopida. These groups have distinctive characters, which unite them and ensure their discreteness, but their earliest and most primitive members have a more general resemblance to the typical Ptychopariina morphology. In the previous edition of the *Treatise* (Moore, 1959), there was no consistency about classifying these orders and suborders together in a still higher taxon, as they should be if they were ultimately descended from a common ancestor. Fortey (1990a) described the ventral sides of typical Ptychopariina and noted that in these the hypostome was natant. In many of the groups derived from Ptychopariina, the hypostome was secondarily attached to the doublure (Whittington, 1988b). Fortey applied the name Libristoma to the huge monophyletic group that includes Ptychopariina together with all those groups descended from this taxon that have a natant hypostome.

Ptychopariina represent the primitive morphology of the libristome groups. A paraphyletic suborder Ptychopariina can be defined as including trilobites with a natant hypostome that do not belong to one or another of the derived groups, that is, which retain the primitive exoskeletal morphology. This is not entirely satisfactory, but it does provide a phylogenetic rationale for this most difficult group. The order Ptychopariida includes also those other suborders, Harpina and Olenina, in which the bulk of the species retain the natant condition, even though they are good clades from other morphological criteria. The definition of Ptychopariida is accordingly a more re-
stricted one than that used in the previous edition of the Treatise (Moore, 1959).

It is not yet possible to resolve many of the problems within Ptychopariina at the family and generic levels. Many of the taxa will probably remain those of convenience rather than natural groups.

OUTLINE OF CLASSIFICATION

The growth in the number of trilobite genera described since the previous edition of the Treatise on Invertebrate Paleontology (Moore, 1959) has made it necessary to publish the revised edition in several parts. An outline of classification is necessary to determine which families should be included in each part. This account accompanies the first part and naturally cannot anticipate what advances will be made as subsequent parts are compiled. Nor can numbers of genera within each family be given, as did Harrington (in Moore, 1959), because this will change as work proceeds. Nonetheless, it is of service briefly to describe the systematic arrangement and to note some of the changes that have occurred since 1959. Superfamily endings have been changed from -acea to -oidea following Recommendation 29A in the International Code of Zoological Nomenclature (1985).

Criteria relating to larval characters can now be incorporated into diagnoses of high-level taxa because many more ontogenies have been described. The descriptions of exquisitely preserved, silicified faunas over the last thirty years have probably added the most new morphological information. Bergström (1973a) brought some features of thoracic construction to attention that are useful at a high taxonomic level, but his general system of classification has not been adopted. Whittington (1988a, 1988b) and Fortey (1990a) have emphasized the characters of the hypostome and its attachment in high-level classification.

This first volume includes primitive trilobites that appeared early in the geological record: these are grouped together in the orders Agnostida and Redlichiida. The problems with the definition of these taxa and their status within the Trilobita have been discussed previously. The second volume will probably include the orders Corynexochida, Lichida, and Phacopida. Libristomate orders and problematica comprise a third volume.

The orders recognized at this stage are discussed below.

ORDER AGNOSTIDA

The order embraces suborders Agnostina and Eodiscina. The view that these should be classified separately was discussed previously. All Agnostina have distinctive articulating structures on their two thoracic segments and a cephalothoracic aperture between cephalic shield and thorax. Eodiscina have either two or three thoracic segments of normal trilobite form and a wide range of morphological characters (with or without eyes, different forms of pygidial segmentation, effacement) that are the basis of family divisions within the group. Classification of Agnostina is based particularly upon the work of Öpik (1979) and Shergold, Laurie, and Sun (1990). Advances in classification of Eodiscina were made by Jell (1975a) and W. Zhang, Lu, and others (1980).

ORDER AGNOSTIDA
SUBORDER AGNOSTINA

Superfamily Agnostoidea
Family Agnostidae
Family Ptychagnostidae
Family Spinagnostidae
Family Peronopsidae
Family Diplagnostidae
Family Clavagnostidae
Family Metagnostidae
Superfamily Uncertain
Family Phalacromidae
Family Sphaeragnostidae
Superfamily Condylopygoidea
Family Condylopygidae

SUBORDER EODISCINA

Superfamily Eodiscoidea
Family Tsunydiscidae
Family Libriprosopidae
Family Eodiscidae
Family Libristomata

© 2009 University of Kansas Paleontological Institute
Family Hebediscidae
Family Calodiscidae
Family Weymouthiidae
Family Yukonidae
Family Eodiscidae

ORDER REDLICHIIDA

This order includes the suborders Olenellina (Palmer & Repina, 1993) and Redlichiina (W. Zhang, Lu, & others, 1980). Olenellina lack facial sutures and a calcified protaspis and have a wide rostral plate and nonfulcrate thoracic articulation, all characters which can be regarded as primitive. Redlichiina have facial sutures, a rostral plate bounded by connective sutures, and, where known, a calcified protaspis, characters which may be regarded as derived relative to Olenellina.

ORDER REDLICHIIDA

SUBORDER OLENELLINA
Superfamily Olenelloidea
Family Olenellidae
Family Holmiidae
Superfamily Fallotaspidioidea
Family Fallotaspididae
Family Archaeaspididae
Family Judomiidae
Family Neltneriidae
Family Nevadaiidae

SUBORDER REDLICHIINA
Superfamily Emuellioidea
Family Emuellidae
Superfamily Redlichiioidea
Family Redlichiidae
Family Dolerolenidae
Family Yinitidae
Family Maiellidae
Family Gigantopygidae
Family Saukiandidae
Family Metadoxididae
Family Abadiellidae
Family Kueichowiidae
Family Menneraspididae
Family Redlichinidae
Family Chengkouaspidae
Superfamily Paradoxidoidea
Family Paradoxididae
Family Centroleuridae

ORDER CORYNEXOCHIDA

This order is more inclusive here than in the previous edition of the Treatise (Moore, 1959). Three suborders are placed in this group: Corynexochina, Illaenina, and Leiostegiina. All have conterminant (or impendent, derived therefrom) hypostomal attachment, often ledgelike cranidial borders, and typically elongate and pestle-shaped glabella with splayed glabellar furrows (Fortey, 1990a). This glabellar shape resembles that of protaspides and early meraspides of other trilobites, and its presence in the adult is therefore probably neotenous. As with Agnostida, there is the question whether such a neotenous transformation could occur more than once and thus whether the Corynexochida might be polyphyletic. At the present time the evidence for this is not conclusive. Advanced members of all groups included may become effaced, which conceals their diagnostic characters. The suborder Corynexochina characteristically has the hypostome fused with the rostral plate.

ORDER CORYNEXOCHIDA

SUBORDER CORYNEXOCHINA
Family Corynexochidae
Family Cheirurodidae
Family Chenghuiidae
Family Dorypygidae
Family Ogygopsidae
Family Oryctocephalidae
Family Dolichometopidae
Family Edelsteinaspididae
Family Jakutidae
Family Longduiidae
Family Zacanthoididae
Family Dinesidae

The suborder Illaenina is part of the suborder Illaenina as used by Moore (1959). Other members formerly placed in this group have now been assigned to the order Proetida (Fortey & Owens, 1975). The older name Illaenina is preferred to Scutellina. That the Illaenidae and Styginidae together comprised a monophyletic group was suggested by Fortey (1980b, p. 59) and
LANE and THOMAS (1983). An important synapomorphy of the group is the presence of an extra-axial cephalic muscle impression, the lunette. FORTEY (1990a) added the family Tsinaniidae to the group. The relationship of the families here incorporated into the suborder Leiostegiina to those in the Corynexochina or Illaenina has not yet been determined.

SUBORDER ILLAENINA
Superfamily Illaenoidea
Family Styginidae (=Scutelluidae)
Family Phillipsinellidae
Family Illaenidae
Family Tsinaniidae

SUBORDER LEIOSTEGIINA
Superfamily Leiostegioidea
Family Leiostegiidae
Family Pagodiidae
Family Kaolishaniidae
Family Cheilocephalidae
Family Lecanopygidae (=Illaenuridae)
?Family Shirakellidae

ORDER LICHIDA
Superfamily Lichoidea
Family Lichidae
Family Lichakephalidae
Superfamily Odontopleuroidea
Family Odontopleuridae
Family Selenopeltidae
Superfamily Dameselloidea
Family Damesellidae

ORDER PHACOPIDA
The order Phacopida comprises three suborders: Calymenina, Cheirurina, and Phacopina. All three share a distinctive protaspis type; the latter two are proparian. Calymenoids and cheiruroids retain a rostral plate from their common ancestor, but in virtually all phacopoids the free cheeks are yoked as a single piece. All three groups have epifacial pleural furrows. Phacopoids have schizochroal eyes and a typical glabellar structure. Cheiruroids have distinctive thoracic segments, and typically spinose pygidia. As WHITTINGTON (1988b) noted, the anterior wing of the hypostome of these superfamilies carries a prominent process. Granulate sculpture is very common and invariant among cheiruroids. The Calymenina include the most primitive morphology of the group, both with regard to the facial suture pattern and the presence of a circumocular suture. The coherence of this clade has been challenged by ELDREDGE (1977), who emphasized several of the ptychoparioid characters of Calymenina. More characters support its unity. It is possible that Phacopida was derived from a libriform ancestor, but while several plausible ptychoparioids are known (eulomids and lonchocephalids among
them), none is linked to the Phacopida by unequivocal characters. For this reason Phacopida are not included with other libristomate trilobites.

ORDER PHACOPIDA
SUBORDER CALYMENINA
Superfamily Calymenoidea
Family Calymenidae
Family Homalonotidae
Family Carmonidae
Family Bathycelidae
SUBORDER PHACOPINA
Superfamily Phacopoidea
Family Phacopidae
Family Pterygometopidae
Superfamily Dalmanitoidea
Family Dalmanitidae
Family Prospiscidae
Family Diaphanometopidae
Superfamily Acostaidea
Family Acastidae
Family Calmoniidae
SUBORDER CHEIRURINA
Superfamily Cheiruroidea
Family Cheiruridae
Family Pliomeridae
Family Pilekiidae
Family Encrinuridae
Family Staurocephalidae
Family Hammatocnemidae

LIBRISTOMATE TRILOBITES

Trilobites that either have a natant hypostomal condition or were derived from such trilobites by secondary joining of the hypostome to the cephalic doublure were included in a subclass Libristoma by Fortey (1990a). This formal subdivision is not adopted here, partly because the analysis necessary to determine other clades at this highest taxonomic level has not yet been done. Nonetheless, the orders below probably comprise a major clade, and hence their diagnoses are interdependent.

Order Proetida

This order was introduced by Fortey and Owens (1975) to include families that had been placed in the Illaenina in the previous edition of the *Treatise* (Moore, 1959), an assignment that is not considered to reflect their true systematic affinities. After some debate (Bergström, 1977; Fortey & Owens, 1979; Chatterton, 1980; Lütke, 1980), the order Proetida has achieved wider acceptance, although not invariably accorded ordinal status. The order includes those trilobites that were included by Moore (1959) in the superfamilies Proetacea, Bathyracea, Dimeropygacea, and Holotrachelacea, here combined into three superfamilies: Proetoidea, Aulacopleuroidea (see Owens & Hammann, 1990), and Bathyroidea. Much more is known of ontogenies of Proetida than in 1959, and these demonstrate a common likeness among protaspides (see section on ontogeny). Fortey (1990a) suggested that the natant condition may have been initiated earlier in ontogeny in Proetida. Although the bulk of the group retains the natant condition in the adult, there are good examples of the secondarily conterminant hypostome in late Proetida and Bathyuridae.

ORDER PROETIDA
Superfamily Proetoidea
Family Proetidae
Family Phillipsiidae
Superfamily Aulacopleuroidea
Family Aulacopleuridae
Family Brachymetopidae
Family Rorringtoniidae
Superfamily Bathyroidea
Family Bathyuridae
Family Dimeropygidae
Family Celmidae
Family Lecanopygidae
Family Glaphuridae
Family Holotrachelidae (downgraded from monotypic superfamily)
Family Telephinidae

Order Asaphida

The classification of trilobites included in this group was discussed in detail by Fortey and Chatterton (1988).
with Moore (1959), the Asaphidae and Ceratopygidae are united within the same superfamily, Asaphoidea, based on their glabellar structure, while the Cyclopygoidea includes other families (Nileidae, Taihungshaniidae) besides the highly specialized Cyclopygidae, again based on cephalic characters. The superfamily Remopleuridioidea includes Remopleurididae and some allied families. The superfamily Dikelokephaloidea is used as revised by Ludwigsen and Westrop (1983b) to include saukiids and ptychaspidids as well as Dikelokephalidae. Primitive Asaphida are united in the Anomocaroidea, which includes a number of families retaining the natant hypostomal condition. All the above taxa have a ventral median suture, at least in primitive species, and many of the more advanced members have an inflated, globular protaspid, termed asaphoid by Fortey and Chatterton (1988). The Trinucleoidea is also included within the Asaphida; it was one of the so-called ptychoparioid groups in previous classifications. The systematic position of this important and specialized group has always been difficult to decide. Numerous Ordovician species of raphiophorids and trinucleids have their free cheeks yoked together, but the protaspid invites comparison with the asaphoid protaspid. However, yoked cheeks also occur among Asaphidae and Cyclopygidae, which have a median suture in early species. Liostracinidae include Cambrian species with a probable median suture and that show other points of resemblance to advanced trinucleoids (for example, a pyriform glabella). Inclusion of Trinucleoidea in Asaphida seems to be the best hypothesis available (see Chatterton & others, 1994). The median suture may have arisen by reduction and eventual loss of the rostral plate. An intermediate grade of organization is probably shown by those trilobites that have a small, triangular rostral remnant termed a rostellum by Opik (1967). There is a possibility that this evolved more than once (Robison, 1964). While this is conceivable, there is no convincing evidence for it, and the similarity of early Asaphida (together with the Cambrian age of the rostellum-bearing forms) argues against such polyphyly.

ORDER ASAPHIDA

Superfamily Anomocaroidea
- Family Anomocaridae
- Family Pterocephaliidae (includes Housiinae)
- Family Parabolinoiidae
- Family Dikelokephalinae
- Superfamily Asaphoida
- Family Asaphidae
- Family Ceratopygidae
- Superfamily Dikelokephaloidea
- Family Dikelokephalidae
- Family Saukiidae
- Family Ptychaspididae
- Family Eurekiidae
- Family Loganellidae
- Superfamily Remopleuridioidea
- Family Remopleurididae
- Family Kainellidae
- Family Opipeteuridae
- Family Bohemillidae
- Family Auritamiidae
- Family Idahoiidae
- Family Hungaiidae
- Superfamily Cyclopygoidea
- Family Cyclopygidae
- Family Taihungshaniidae
- Family Nileidae
- Superfamily Trinucleoidea
- Family Trinucleidae
- Family Dionididae
(=?Tongxinaspidae)
- Family Orometopidae
- Family Raphiophoridae
- Family Alsataspididae
- Family Orometopidae (includes Myindidae, Hapalopleuridae, Jegorovaiidae)
- Family Liostracinidae
- Superfamily Uncertain
- Family Rhysometopidae (includes Mapaniidae, Plectriferidae)
- Family Monkaspididae
(=?Chelidonocephalidae)
Order Ptychopariida

The problem of defining the Ptychopariina was discussed above. In the current classification the Ptychopariida includes only libristomates in which the secondary conterminant condition of the hypostome is not far advanced. The most primitive (plesiomorphic) families are lumped into the suborder Ptychopariina, which is dominated by families having the typical morphology as exemplified by Ptychoparia itself or Elrathia. The families are not all readily definable on unequivocal characters. When more is known of their morphology, they may be assigned as sister groups to one or another of the more derived clades, but for the moment they are retained together.

Two other suborders are included in Ptychopariida: Olenina and Harpina. The former has been well studied from Cambrian and Ordovician stratigraphic sections; all except the very earliest olenids (which have rostral plates) have yoked free cheeks, connected by a very narrow strip of cephalic doublure. Extremely thin cuticles are typical. Harpina were formerly classified with Trinucleina, but the resemblance between the two groups is probably merely one of convergence. The families Entomaspididae and Loganopeltidae from the Upper Cambrian to Lower Ordovician are considered to be related to Harpina.

ORDER PTYCHOPARIIDA

SUBORDER PTYCHOPARIINA

Superfamily Ellipsocephaloidea
 Family Ellipsocephalidae
 Family Protolenidae
 Family Agraulidae

Superfamily Ptychoparioidea
 Family Ptychopariidae
 Family Marjumiidae
 Family Solenopleuridae
 Family Conocoryphidae
 Family Dokimokephalidae
 Family Onchonotopsidae
 Family Nepeitidae
 Family Crepicephalidae
 Family Lonchocephalidae

TRILOBITA ORDER UNCERTAIN

Here are included a number of distinctive taxa that are not accommodated into the broad classification given above. Burlingiidae and Bathynotidae are undoubtedly trilobites, but their place within the group is uncertain. As discussed above, Naraoiidae is regarded as the sister group of the calcified Trilobita.
EXPLANATORY NOTES FOR THE CAMBRIAN CORRELATION CHART

By John H. Shergold

BACKGROUND

Biostratigraphic subdivision of the Cambrian probably began earlier in Scandinavia than elsewhere, particularly in Sweden and Norway where pioneering schemes for the Middle and Upper Cambrian, which foreshadowed the subdivisions shown in Table 1, were published between 1854 and 1883 (see Martinsson, 1974). Subsequently, a high-resolution biostratigraphy based on Agnostina was established for the Middle Cambrian by Westergård (1946), who also made contributions to Upper Cambrian biostratigraphy (1922, 1947). An Upper Cambrian zonation based on olenid trilobites was worked out in great detail by Henningmoen (1957a).

Biostratigraphic division of the Lower Cambrian of Scandinavia has developed at a slower pace than that of the Middle and Upper with the use of local zones. Because the lowest Cambrian lacks trilobites, zonations using trace fossils and small shelly fossils have been established for the Precambrian-Cambrian type area in southeastern Newfoundland (see Laurentia, Table 1.4, "Tommotian" and "Nemakit-Daldynian" faunas). That part of the Lower Cambrian zoned on the basis of trilobites in Scandinavia (Table 1.3) follows the latest correlations of Møn, Bergstrøm, and Lendzion (1990). Essentially this is the scheme of Bergstrøm and Ahlberg (1981), Ahlberg (1985), and Shergold and Brasier (1986) with the substitution of the Zone of Holmia inusitata for that of Holmia sp. nov. (see Ahlberg, Bergstrøm, & Johansson, 1986).

In Scandinavia, biostratigraphers use stages based on groups of zones; these stages are named after characteristic trilobites, the stage being divided into zones that are defined at specific level.

An Iberian Cambrian biostratigraphy (Table 1.3) was first established by Lotze (1961) in which thirty-two trilobite horizons were recognized and assigned to three informal series (A–C). Sdzuy (1968) described Middle Cambrian stages, subsequently demoted to substages. He also introduced three Lower Cambrian stages (Ovetian–Bilbilian) (Sdzuy, 1971a, 1971b, 1972). Linán and Fernández-Carrasco (1984) added the Cordubian Stage. This stadial scheme has been reviewed recently by Linán, Perejón, and Sdzuy (1993), and the trilobites that define the Lower Cambrian Ovetian–Bilbilian interval were discussed. Previously, eleven informal archaeocyathan zones (I–XI) were determined by Perejón (1986). No formal zonation by either trilobites or archaeocyathans has been published.

The stadial divisions shown here (Table 1.3) for the Lower and lowest Middle Cambrian of Morocco are based on the recent conclusions of Geyer (1990a, 1990b, 1993). These are based essentially on the pioneering work of Hupé (1952, 1953a, 1960) and on revisions by Sdzuy (1971a, 1971b, 1972, 1978) and Geyer (1983). The two stages, Soussien and Issafénien, recognized by Hupé have been replaced by the three shown in Table 1.3. The Tissafinian Stage, the Aguilizien Substage of Hupé, is now regarded by Geyer (1990a) as lowermost Middle Cambrian following the discovery of a paradoxidoid and an Olenellina trilobite together in the Cephalopyge notabilis Zone. An independent archaeocyathan biostratigraphy calibrated to the Hupé (1960) trilobite zonation has been published by Debrenne (1990).

In the Cambrian of Laurentia, with the exception of the lowest Cambrian, the bio-
Trilobita stratigraphy is based on a succession of trilobite genera (Fig. 254). Assemblages of species within such generic zones are regarded variously as subzones, faunizones, and biozones, among others, but these assemblages are the most highly resolved biostratigraphic units used for correlation. Zones based on genera are grouped into stages that have developed historically and often in multiplicity. Neither the stages of the Lower nor Middle Cambrian are satisfactorily defined. WALCOTT originally called the Lower Cambrian the Georgian Epoch, but, according to RESSER and HOWELL (1938), he subsequently (1912b) substituted the name Waucoban when it was realized that the Georgian contained rocks younger than Early Cambrian. Nevertheless, LOCHMAN-BALK and WILSON (1958) and Ö PIK (1975b) have continued to use the term Georgian. PALMER (1971) preferred to use neither. Waucoban, however, is favored here because it apparently refers to definite trilobite-bearing Lower Cambrian zones in North America: “Fallotaspis,” “Nevadella,” and Bonnia-Olenellus (PALMER & REPINA, 1993).

A Lower Cambrian biochronology has been developed recently for the Avalonian part of North America as a result of the deliberations on the Precambrian-Cambrian boundary. There, the biochronological interval covered by the previously proposed Etcheminian (MATTHEW, 1899a) and Hanfordian (HAYES & HOWELL, 1937) Series has been revised by LANDING (1993) and LANDING and others (1989), who recognized the Placentian and Branchian Series, in ascending order.

As with the Lower Cambrian, two series names have long been available for the Middle Cambrian of Laurentian North America: Acadian and Albertan. Because Acadian, like Georgian, has several connotations, Albertan was used for the Bathyraricusp-Elrathina (=Ehmaniella) and Bolaspidella Zones. The Upper Cambrian Croixian Series (WINCHELL, 1873), originally Potsdamian or Saratogan (WALCOTT, 1912a), traditionally contains the Dresbachian (WINCHELL, 1886), Franconian (HOWELL & others, 1944), and Trempealeauan (HOWELL & others, 1944) Stages defined from the Mississippi Valley and applied continent-wide.

An alternative stadial terminology for the upper Middle and Upper Cambrian of Laurentian North America has been applied by LUDVIGSEN and WESTROP (1985). The bases of their Marjuman, Steptoean, and Sunwaptan Stages are tied to well-defined and readily correlated trilobite assemblage-zones: Acidusus atavus, Aphelaspis (Glyptagnostus reticulatus), and Irvingella major Zones. They are shown here (Table 1.2, 1.4) as an alternative to the traditional stages. Although regarded by LUDVIGSEN and WESTROP (1985) as an initial Ordovician stage, the Ibexian is here regarded as terminal Cambrian, at least initially (see discussion below). Its base, at the first appearance of the conodont Cordylodus proavus, is widely correlatable.

The Lower Cambrian of the Siberian Platform, characterized by its succession of small shelly fossils and archaeocyathan biotas, has become a standard for the biostratigraphic subdivision of carbonate-platform sequences. Most of the stages shown on Table 1.3 are those recommended by SPIZHARSKI and others (1983) and SPIZHARSKI and others (1986) and are the official stage names currently recognized by the Interdepartmental Stratigraphic Committee of Russia. This committee has traditionally regarded the lowest Cambrian stage as the Tommotian. The newly defined base of the Cambrian in Newfoundland, however, now demands recognition of the Nemakit-Daldynian (KHO-MENTOVSKY, 1976) as the initial Lower Cambrian stage of the Siberian Platform (ROZANOV & ZHURAVLEV, 1992).

The Middle Cambrian of the Siberian Platform, containing Agnostina, is readily correlatable, although the Lower-Middle Cambrian boundary is problematical (see below). That part of the Amgaian Stage containing Triagnostus gibbus and the first appearance of Hypagnostus parvisfrons at the base of the Mayaian Stage are significant da-
Cambrian Correlation Chart

In Kazakhstan (Table 1.2, 1.4), the Upper Cambrian stadial scheme established by Ergaliev (1980) and recommended by Spizharski and others (1983, 1986) is demonstrably incomplete, as is that of Astashkin and others (1991). In Lesser Karatau sections, southern Kazakhstan, and particularly at Batyrbai, Upper Cambrian stages younger than Aksayan are recognized on the basis of both trilobites and conodonts (Apollonov, Chugaeva, & Dubinina, 1981; Chugaeva & Apollonov, 1982; Apollonov & Chugaeva, 1982; Dubinina, 1982). The Batyrbaian and Ungarian stages, defined by trilobites and conodonts, were proposed by Apollonov (1991) and are accepted here, even though their published correlations may not be entirely correct.

Ergaliev (1990) introduced new stages for the Kazakh Middle Cambrian sequences. The Amgaian Stage of the Siberian Platform is replaced by Tyesaian, Mayaian by Zhanaarykian, and additionally the Ayusokkanian extended downward to encompass the whole of the range of Lejopyge laevigata. The last goes some way to resolving the Mayaian-Ayusokkanian boundary in the earlier scheme. The Sakian remained unchanged in concept, as did the Aksayan, but a new Kazakhstani stage was proposed to replace Batyrbaian. This seems unnecessary since nothing new is added. Accordingly, this stage is not included on the chart.

Traditionally, Chinese Cambrian biostratigraphy has been closely tied to lithostratigraphic units. All the stage names currently in use relate to formations and, by inference, the faunas they contain diagnose the stages. Facies changes are not accounted for, and the units are assumed to be correlatable across China. The Chinese column in Table 1.2, 1.4 follows the systems proposed by Xiang and others (1979, 1981) and W. Chang (1980, 1988), which were in turn derived from the zonal biostratigraphy outlined by Lu and others (1974). Following current Chinese official preference, the stage names are now given in Pinyin transliteration.

The Lower Cambrian in southwestern China has been exhaustively investigated in connection with the search for the Precambrian-Cambrian boundary, and the placement of stage boundaries and their correlation, particularly with Siberia and Kazakhstan, has fluctuated considerably since their original definition. The correlation suggested here is based on those made by Shergold and Brasier (1986), Shergold, Laurie, and Sun (1990), and Brasier (in McKittrick, Scotese, & Brasier, 1992), in preference to those of Landing (1992, 1993). In these correlations, the Toyonian Stage of Siberia is considered to encompass the interval from the mid-Canglangpuan to the Maozhuangian of China and most of the Proamphx linnarsoni Zone and Acadoparadoxides (Baltoparadoxides) oelandicus Stage of Scandinavia.

As elsewhere, the interval represented by the Xuzhuangian Stage is closely confined by the Triplagnostus gibbus and Acidusus atavus Zones. The Middle-Upper Cambrian transition has been addressed by Dong (1990) and Xiang (1991), who relied on the last appearance of Lejopyge laevigata to indicate the top of Middle Cambrian rocks (see also Daily & Jago, 1975), but this is recognized largely in the Chiangnan Belt (Lu, Zhu, & others, 1974) and the northern marginal belt of the North China Platform. Strata of the Gushanian Stage show an endemized Australo-Sinian trilobite biofacies, which does not contain L. laevigata. The concepts of its constituent zones, based on Blackwelderia and Drepanura, however, can be supported by correlation with Australasia (Ovik, 1967; Daily & Jago, 1975). Zhangshanian and Fengshanian Stages are also based on the faunas of carbonate-platform
environments representing Australo-Sinian Upper Cambrian biofacies (Shergold, 1988), and their intercontinental utility depends also on the precision with which they can be correlated with the faunas of the Chiangnan Belt.

The history of the development of the Cambrian time scale in Australia (Table 1.2, 1.4) has been discussed at length by Shergold (1989). Whitehouse (1927, 1930) was the first to erect a detailed subdivision of the Cambrian in Australia, and with subsequent additions and modifications (Whitehouse, 1931, 1936, 1939; Whitehouse in David, 1932; David & Browne, 1950) this scheme remained current until the research of Öpik. With the advantage of Westergard’s (1946) conclusions in Scandinavia, Öpik was able to formulate a more highly resolved Middle and lower Upper Cambrian biostratigraphy. The uppermost Cambrian series has also been intensely investigated, and a complete zonation is available for the eastern Georgina basin (Shergold, 1989, 1993). A complete, local, stage nomenclature has been applied to both the Middle and Upper Cambrian in the same area. No local stage terminology has been established for the Lower Cambrian of Australia. The stage nomenclature of the Siberian Platform, however, has been applied to the archaeocyathan and small-shelly-fossil-bearing deposits of South Australia, the Amadeus basin and southwestern Georgina basin of central Australia. “Upper Atdabanian–Lower Botomian” (Qiongzhusian) trilobite zones have been proposed in South Australia (Jell in Bengtson & others, 1990).

In northern Australian basins, the Middle Cambrian has been zoned wholly on the basis of trilobites, particularly Agnostina. Original concepts relating to the Ordian and Templetonian stages have been reviewed by Southgate and Shergold (1991) with the result that the Ordian Stage (Öpik, 1967) has been merged with the lower Templetonian because the latter is so difficult to discriminate from it biostratigraphically. The upper Templetonian (the Triagnostus gibbus Zone) logically belongs with the succeeding Floran Stage (Öpik, 1979), which contains the zones of Acidusus atatus and Euagnostus opimus. This is in turn was succeeded by the Undillan (Öpik, 1979) and Boomerangian (Öpik, 1979) stages, which cover the zones of Ptychagnostus punctuosus to Lejopyge laevigata. The Mindyallan Stage (Öpik, 1963) straddles the Middle-Upper Cambrian boundary, which was placed within the Acmarhachis quasivespa Zone by Daily and Jago (1975). Idamean (Öpik, 1963), Iverian (Shergold, 1993), Payntonian, and Datsonian stages (Jones, Shergold, & Druce, 1971) complete the Upper Cambrian stadial scheme, the last two subdivided by zones based on both trilobites and conodonts (Nicoll & Shergold, 1991; Shergold & Nicoll, 1992).

CONTENTIOUS LEVELS OF CORRELATION

Traditionally, Lower Cambrian rocks were thought to have been characterized by the occurrence of Olenellina, Redlichia, and Protolenidae; the Middle Cambrian by Paradoxidoidea; and the Upper Cambrian by Olenidae. With increased biostratigraphic discrimination, these divisions are no longer so clear-cut.

In Spain and Morocco there is an apparent overlap of protolenid, holmiid, and ellipsocephalid with paradoxoid trilobites (Sdzuy, 1972; Geyer, 1990a, 1990b, 1993), which has led Geyer (1990a, 1990b, 1993) to correlate the Moroccan Tissafinian Stage (Table 1.3) with the Proamphi paradoses insularis Zones (i.e., lower Acandparadoxides (Baltoparadoxides oelandicus Stage) of Scandinavia and the Tysse Stage and lower part of the Amsullian Stage in Siberia. In China and Australia (Table 1.4), late species of Redlichia occur in the Longwangmiaoan and Ordian Stages. Since Walcott’s work (1912c), Chinese authorities have regarded rocks containing Redlichia as Lower Cambrian, as have
Australian authorities until the mid-1950s. Öpik (1968) developed his Ordian Stage from an earlier concept of Whitehouse (1930, 1931, 1936). Characterized by the occurrence of Redlichia, the Ordian Stage also contains the first species of Xystridura, which Öpik (1975a) regarded as a possible affiliate of both Protolenidae and Paradoxididae. Hypostomal morphology suggests a relationship between Xystridura and Paradoxides (Whittington, 1988a). Thus, a relationship between Paradoxidoidea and Redlichina is surmised. Jell (in Bengston & others, 1990, p. 310) denied the relationship between Xystriduridae and Paradoxididae, believing that it is the result of contemporaneous homeomorphy. Accordingly, he considered the Xystriduridae to represent a family of Ellipsocephaloidea that should be classified alongside Ichangiidae, Protolenidae, and Ellipsocephalidae. The correlations suggested here favor a relationship between Xystriduridae and Paradoxididae and the conclusions of Geyer (1990a, 1990b). They are supported by the correlation of the succeeding sequences of the upper Acadoparadoxides oelandicus Stage (Eccaparadoxides pinus Zone) in Scandinavia with the Lower Templetonian of Australia and the Maozhuangian Stage of China, postdating the ranges of Olenellina, Redlichina, and Protolenidae (see also W. Zhang & Jell, 1987; Kruse, 1990).

The placement of the Middle-Upper Cambrian boundary is debatable but less problematic than the Lower-Middle Cambrian boundary. There is a growing consensus of support for the observations of Daily and Jago (1975) that the disappearance of Lejopyge laevigata marks the end of Middle Cambrian time. This is indicated by current work in China (e.g., Dong, 1990; Xiang, 1991) and by the revision of the Ayusokkanian Stage by Ergaliev (1990) in Kazakhstan. The disappearance of L. laevigata is recorded primarily in outer-shelf environments. In carbonate-platform rocks, correlation must be made through intermediate steps via other Agnostina. Based on this criterion, the Ayusokkanian, Mindyallan, and Dresbachian stages straddle the Middle-Upper Cambrian boundary. Both the problems of this boundary and those of the Lower-Middle Cambrian boundary were avoided by Ludvigsen and Westrop (1985) and Pratt (1992), who recognized only Lower and Upper Cambrian, the boundary between them lying at the base of their Marjuman Stage, at the base of the Bolaspidella Zone (=Acidusus atavus Zone).

The exact position of the Cambrian-Ordovician boundary has yet to be agreed upon internationally. There is considerable support for defining the base of the Ordovician System at the base of the Tremadoc Series or its correlative, which in biostratigraphic terms means at the first appearance of the nematophorus graptoloids or at the conodont biostratigraphic datum closest to this event. Initial correlation of the base of the Tremadoc with the first appearance of Cordylodus proavus is incorrect by the magnitude of a stage. The Zone of Cordylodus lindstromi is regarded here as the closest correlate to that of Dictyonema flabelliforme sociale. Therefore, the upper Peltura and Acerocare Zones of Scandinavia, the Unguarian Stage of Kazakhstan, the Xinchangian Stage of China, the Datsonian Stage of Australia, and the basal Ibexian Stage are wholly or partly uppermost Cambrian.
Table 1.1. Correlation Chart of the Cambrian (part 1).

<table>
<thead>
<tr>
<th>Zones</th>
<th>Scandinavia</th>
<th>Iberia</th>
<th>Morocco</th>
<th>Siberia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 University of Kansas Paleontological Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.2. Correlation Chart of the Cambrian (part 2).

<table>
<thead>
<tr>
<th>Kazakhstan</th>
<th>China</th>
<th>Australia</th>
<th>Laurentia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordylopus caseyi</td>
<td>Diboloccephalina</td>
<td>Cordylopus angulatus</td>
<td>Waniangxingia</td>
</tr>
<tr>
<td>Cordylopus sp.</td>
<td>Cordylopus litoralis</td>
<td>Yaxianaurus</td>
<td>Cordylopus litoralis</td>
</tr>
<tr>
<td>Cordylopus sklohmennisi</td>
<td>Cordylopus intermedius</td>
<td>Cordylopus prolitoralis</td>
<td>Hirunodens simplex</td>
</tr>
<tr>
<td>Cordylopus junarai</td>
<td>Cordylopus procerus</td>
<td>Mississipia proceris</td>
<td>Cordylopus procerus</td>
</tr>
<tr>
<td>Procereodus mulleri</td>
<td>Procereodus mulleri</td>
<td>Procereodus mulleri</td>
<td>Procereodus mulleri</td>
</tr>
<tr>
<td>Wanggaodohua furnishiana</td>
<td>Procereodus mulleri</td>
<td>Procereodus mulleri</td>
<td>Procereodus mulleri</td>
</tr>
<tr>
<td>Oncagnostus anguliformis</td>
<td>Oncagnostus anguliformis</td>
<td>Oncagnostus anguliformis</td>
<td>Oncagnostus anguliformis</td>
</tr>
<tr>
<td>Oncagnostus kazachstanicus</td>
<td>Oncagnostus kazachstanicus</td>
<td>Oncagnostus kazachstanicus</td>
<td>Oncagnostus kazachstanicus</td>
</tr>
<tr>
<td>Polagnostus pseudangustus</td>
<td>Polagnostus pseudangustus</td>
<td>Polagnostus pseudangustus</td>
<td>Polagnostus pseudangustus</td>
</tr>
<tr>
<td>Ischnagnostus tibini</td>
<td>Maladesiella</td>
<td>Stigmata diastoma</td>
<td>Stigmata diastoma</td>
</tr>
<tr>
<td>Polagnostus "variorum"</td>
<td>Changbaia cenis</td>
<td>Erizostracum serotum</td>
<td>Erizostracum serotum</td>
</tr>
<tr>
<td>Oncagnostus longiformis</td>
<td>Changbaia cenis</td>
<td>Proceraspis cryptica</td>
<td>Proceraspis cryptica</td>
</tr>
<tr>
<td>Glyptagnostus reticulatus</td>
<td>Oungangia kaita</td>
<td>Glyptagnostus reticulatus</td>
<td>Glyptagnostus reticulatus</td>
</tr>
<tr>
<td>Glyptagnostus stichus</td>
<td>Dapianu</td>
<td>Glyptagnostus stichus</td>
<td>Glyptagnostus stichus</td>
</tr>
<tr>
<td>Glyptagnostus pseudolodanis</td>
<td>Glyptagnostus pseudolodanis</td>
<td>Glyptagnostus pseudolodanis</td>
<td>Glyptagnostus pseudolodanis</td>
</tr>
<tr>
<td>Leipigge kalgumata</td>
<td>Desipanu</td>
<td>Acanthopoda quasivespa</td>
<td>Acanthopoda quasivespa</td>
</tr>
<tr>
<td>Desipanu</td>
<td>Acanthopoda quasivespa</td>
<td>Acanthopoda quasivespa</td>
<td>Acanthopoda quasivespa</td>
</tr>
<tr>
<td>Blackwelderia</td>
<td>Endoaspis ovatus</td>
<td>Endoaspis ovatus</td>
<td>Endoaspis ovatus</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
TABLE 1.3. Correlation Chart of the Cambrian (part 3).

<table>
<thead>
<tr>
<th>Scandinavia</th>
<th>Iberia</th>
<th>Morocco</th>
<th>Siberia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agnostus pisiformis</td>
<td>Lejopyge laevigata</td>
<td>Solenopleuropsidae frenz</td>
<td>Glyptagnostus validatus</td>
</tr>
<tr>
<td>Lejopyge laevigata</td>
<td>Solenopleuropsidae frenz</td>
<td></td>
<td>Agnostus pisiformis</td>
</tr>
<tr>
<td>Jiuella bouchynieta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonagnostus nasherti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudagnostus punctatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypagnostus punctifer</td>
<td>Solenopleuropsidae frenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomagnostus fissus</td>
<td>Pandathelminia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomagnostus gibbus</td>
<td>Bedeleunia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidoparadoxides pisum</td>
<td>Acidoparadoxides insularis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidoparadoxides insularis</td>
<td>Ornamentaspis frequens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td>Cephalopyge notabilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td>Hupeolenus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td>Sectigena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protolenus Paradoxides paradoxissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmia Paradoxides forchhammeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadoparadoxides (Baltoparadoxides) oelandicus</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.4. Correlation Chart of the Cambrian (part 4).

<table>
<thead>
<tr>
<th>Kazakhstan</th>
<th>China</th>
<th>Australia</th>
<th>Laurentia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyptagnostus stolidotus</td>
<td>Depanusa</td>
<td>Glyptagnostus stolidotus</td>
<td>Crepisphalus</td>
</tr>
<tr>
<td>Agnostus pioferiensis</td>
<td>Blackwelderia</td>
<td>Agnostus quadricornis</td>
<td>Cedaria</td>
</tr>
<tr>
<td>Proagnostus jovialis</td>
<td>Dancella-Yaleia</td>
<td>Eudiaspis emers</td>
<td>Lejopyle laevisata</td>
</tr>
<tr>
<td>Goniagnostus nathorsti</td>
<td>Leiozocyonia</td>
<td>Latitania-Poiana</td>
<td>Lejopyle laevisata</td>
</tr>
<tr>
<td>Ptychagnostus punctunus</td>
<td>Anaphoton</td>
<td>Goniagnostus nathorsti</td>
<td>Psychagnostus punctunus</td>
</tr>
<tr>
<td>Acidous stater</td>
<td>Belloella-Lioparia</td>
<td>Eaugastus opticus</td>
<td>Enagnostus opticus</td>
</tr>
<tr>
<td>Ptychagnostus intermedius</td>
<td>Periagnumes</td>
<td>Teplagnostus gibbus</td>
<td>Enagnostus opticus</td>
</tr>
<tr>
<td>Pernopsis akikma</td>
<td>Shantangipas</td>
<td>Vazafusellina</td>
<td>Enagnostus opticus</td>
</tr>
<tr>
<td>Palaeolenus</td>
<td>Yosiyanella</td>
<td>Xystridura templetonensis</td>
<td>Radilichia chinensis</td>
</tr>
<tr>
<td>Megapaleolemus</td>
<td>Purtanesenus</td>
<td>Pararaia janeae</td>
<td>Bonnia-Olenellus</td>
</tr>
<tr>
<td>Paleolenus</td>
<td>Depanusanus</td>
<td>Pararaia buynwarmensis</td>
<td>Pararaia tanai</td>
</tr>
<tr>
<td>Yosiyanaea</td>
<td>Yosiyanella</td>
<td>Pararaia tanai</td>
<td></td>
</tr>
<tr>
<td>Malangia</td>
<td>Euredlichia-Wutingapies</td>
<td>Abadiella huoi</td>
<td></td>
</tr>
<tr>
<td>Enedlichia-Wutingapies</td>
<td>Abadiella</td>
<td>Abadiella huoi</td>
<td></td>
</tr>
<tr>
<td>“Tommotian” faunas</td>
<td>“Nemakhi-Dalhynas” faunas</td>
<td>“Tommotian” faunas</td>
<td>“Nemakhi-Dalhynas” faunas</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
MORPHOLOGICAL TERMS APPLIED TO TRILOBITA

H. B. WHITTINGTON and S. R. A. KELLY

This glossary is based on that of Harrington and others (in Moore, 1959) and terms proposed since that date. Earlier definitions have been modified to reflect the results of research over the past 30 years. For clarity, all paired structures are referred to in the singular. Terms considered to be of lesser or greater importance are not distinguished here by typeface, but those regarded as synonyms are thought to be less desirable alternatives. Many terms are discussed and illustrated in the introductory sections.

A compilation by S. R. A. Kelly was the starting point for this glossary, the terms included and their definitions having been changed by H. B. Whittington as the introductory sections were prepared. Comments from P. D. Lane and other contributing authors are gratefully acknowledged, as are the terminology for Agnostina prepared by J. H. Shergold and J. R. Laurie (Fig. 6, 11, 13) and the collaboration of W. H. Fritz and A. R. Palmer on terms applicable to Olenellina (Fig. 16).

abathochroal eye. Similar to schizochroal eye in that lenses were separated, but lacking scleral projections and intrascleral membranes. Each lens probably with a separate cornea fixed at the lens margin to the interlensar sclera.

abaxial. Away from axial line.

accessory furrow. A diagonal furrow in the pygidium of Pseudagnostus arising at the posterolateral corner of the second axial ring and directed abaxially and rearward (syn., pseudofurrow).

accessory upper horizontal row. Row of lenses in eye lying above upper horizontal row but consisting of few lenses and confined to posterior part of visual surface.

acrolobe. Portion of cephalon or pygidium enclosed within border furrow in Agnostina. Described as constricted when lateral margin curves slightly adaxially and unconditioned when lateral margin maintains constant curvature.

adaxial. Toward the axial line.

aggregate eye. See schizochroal eye.

ala (pl., alae). Smooth, depressed area adjoining posterolateral portion of glabella in Harpetidae (syn., alar lobe).

alar furrow. Curved furrow bounding ala.

alar lobe. See ala.

alimentary canal. Digestive tract extending from mouth to anus.

anaprotaspis (pl., anaprotaspides). Smallest protaspid in a size series in which protopygidium is supposedly recognizable. Inadequately defined and not recommended as a subdivision of protaspis period.

antenna (pl., antennae). Multijointed sensory appendage attached to front part of cephalon on ventral side.

antennal notch. Notch in the anterior cephalic border immediately outside of where the connective suture crosses the border in, for example, Odonotrepleuridae (syn., antennular notch).

antennary pit. See fossula.

antenniform cercus (pl., cerci). Uniramous, multijointed appendage immediately behind posterior limb, probably attached to the telson; known only in Olenoides serratus (syn., caudal ramus, cercus).

antennular notch. See antennal notch.

antennular pit. See fossula.

anterior accessory area. See anterior pleural band.

anterior accessory ridge. Ridge on anterior pleural band separated by a flattened area (the pleural furrow) from principal pleural ridge.

anterior arch. Formed by anterior border of cephalon, as seen in anterior view, rising dorsally to midline because of convexity of cephalon.

anterior area (of fixed cheek). See anterior area (of fixigena).

anterior area (of fixigena). Portion of fixigena in front of preglabellar furrow and eye ridge. If eye ridge is absent, posterior boundary of the area is marked off by imaginary transverse line passing through anterior extremity of pulpebral lobe. This area is the left or right side of the frontal area (syn., anterior area of fixed cheek, anterior fixigena, anterior region of fixigena, preocular cheek).

anterior baccular ridge. Short, low ridge running anteriorly on floor of the axial furrow from the baccula to behind the anterior lateral glabellar lobe in Eodiscidae.

anterior band of pleura. See anterior pleural band.

anterior border (of cephalon). Portion of cephalic border between anterior branches of facial sutures, when anterior branches of suture cross border; otherwise term is ill defined.

anterior border (of hypostome). Extends between anterior wings in front of middle body; bounded by anterior border furrow.

anterior border furrow (of cephalon). Portion of border furrow bounding anterior border (syn., front furrow, frontal furrow).

anterior border of cranidium (in Encrinuridae). Extends between axial furrows and is bounded by preglabellar furrow and rostral and facial sutures (previously referred to as a portion of preglabellar field (syn., false preglabellar field, pseudoglabellar area).

anterior boss. See fossular apodeme.

anterior branch (of facial suture). Portion of facial...
suture lying anterior to eye (syn., anterior section
of facial suture), preocular branch (of facial su-
ture), preocular suture).

anteroglabella. Portion of fixigena in front
of eye ridge and glabella and inside anterior border
furrow; this area is the left or right side of frontal
field (syn., anterior fixigenal field).

anterolateral furrow. See anterior section (of fixigena).

anteroaxis. See anterior field of fixigena.

anterioglabellar furrow. See anterior field of fixigena.

anterioglabellar spine. Prominent anterior spine on
protocranidium of protaspis; may be adjacent to
either branch of facial suture.

anteroflange. See flange.

anterofossula. See fossula.

anterofurrow. Furrow bounding laterally the
preglabellar area in Neseuretus. Also used for false
preglabellar furrow in Encrinuridae, and for
tranglabellar furrow in Agnostina.

anteroglabellar furrow. See lateral glabellar furrow.

anterohalf rib. See articulating half rib.

anterolimb. See frontal area.

anterlobe (of glabella). Portion of glabella anterior
to transglabellar furrow in Agnostina (syn.,
anterolateral lobe of posterior lobe of glabella.

anterolateral lobe of posterior lobe of glabella. In
Agnostina a low inflation on external surface imme-
diately behind transglabellar or anterolateral furrow;
on internal mold it forms the anterolateral muscle
scar impression.

anteromedian depression. Depression in sagittal line
that may be in the preglabellar furrow or extend
forward from it or may join the longitudinal med-
dian glabellar furrow.

anterostral hood. Low swelling of frontal area reflect-
ing shape of rostral plate.

apodemal pit. Excavation in external surface of exos-
keleton corresponding to apodeme on internal sur-
face (syn., appendiferal pit).

appendiferal pit. See apodeme.

appendiferal pit. See apodeme.

arc. Curving row of pits on trinucleid fringe (syn.,
concentric row).

articulated pleura. See inner portion of pleura.

articulating boss (and socket). Corresponding struc-
tures on margins of thoracic segment, posterior
margin of cephalon, and anterior margin of py-
gidium. See also axial process, axial socket, fulcral
pit and apodeme on inner surfaces.

appendage. See biramous appendage (or limb).

appendiferal pit. See apodeme.

appendiferal pit. See apodeme.

anterolateral furrow. Lateral portion of transglabellar
furrow in Agnostina, when transglabellar furrow is
interrupted by the axial glabellar node.
axial articulating half ring. See articulating half ring.

axial bar. Convex floor of the articulating furrow of the pygidium in Agnostina.

axial furrow. Groove on external surface formed by fold in exoskeleton that outlines axial region of cephalon, thorax, and pygidium (syn., circumaxial furrow, dorsal furrow, rachial furrow).

axial glabellar carina. A narrow, exsagittal ridge between the axial and terminal nodes of the glabella, situated immediately abaxial to the sagittal, axial glabellar sulcus in internal molds of Pseudagnostinae.

axial glabellar node. In Agnostina an elongate node lying near midlength of glabella, either between (condition known as papillionate) or behind (condition known as spectacle) the anterolateral lobes of the posterior glabellar lobe. An axial glabellar carina may run back from the node to the terminal glabellar node (syn., axial node of glabella, median node). See also glabellar node.

axial line. See sagittal line.

axial lobe. See axis.

axial node. Median (or paired) tubercle on external surface of axial ring of thorax or pygidium.

axial node of glabella. See axial glabellar node.

axial process. Projection from anterior edge of thoracic segment at axial furrow.

axial region. See axis.

axial ridge. Triangular projection of axis over posterior border of pygidium as in Proetoidea.

axial ring. Central portion of thoracic segment or of a segment of pygidium, bounded laterally by axial furrow (syn., rachial ring, ring). May be subdivided by intra-annular furrow into preannulus and postannulus.

axial shield. Articulated exoskeleton lacking librigenae, rostral plate, and hypostome (i.e., consists of articulated cranidium and thoracopygon).

axial socket. Indentation on posterior edge of axial furrow of thoracic pleura into which axial process fits.

axial spine. Median (or paired) pointed structure projecting from external surface of axial ring.

axiolobate. Referring to Agnostina with basic unmodified pygidial axial lobe.

axis (pl., axes). Median region of dorsal exoskeleton, bordered by axial furrow including preglabellar furrow (syn., axial lobe, axial region, rachis, rhachis).

axis (of pygidium). Median region of pygidium, bordered by axial furrow (syn., pygorachis). May be subdivided into apodomal and post-apodomal sectors.

axis (of thorax). Median region of thorax, outlined by axial furrow.

baccula (pl., bacculae). Swelling flanking posterior portion of glabella, which may be separated from glabella by axial furrow or may merge with anterolateral corner of occipital ring and which may be separated from fixigena by baccular furrow or may merge into fixigena.

baccular furrow. Furrow separating baccula from fixigena; may be considered the lateral part of the axial furrow if the baccula is within the axial furrow as in Eodiscidae.

band furrow. Furrow delimiting posterior band of occipital and axial thoracic rings in asaphids.

basal glabellar furrow. See lateral glabellar furrow.

basal lobe (of glabella). See lateral glabellar furrow. In Agnostina, triangular or pear-shaped in outline, situated at posterolateral corner of glabella and separated from it by curved or sinuous basal furrow; may be effaced.

beak. See frontal process.

Bertillon pattern. Pattern of anastomosing, subcentrically arranged, symmetrical ridges (lirae) on external surface resembling a fingerprint (syn., fingerprint pattern). See also hapsidium.

bicomposite glabellar lobe. See bullar lobe.

bigeniculate (glabellar furrow). Glabellar furrow having two marked changes in direction.

biramous appendage (or limb). Ventral appendage having an outer branch (ramus) and an inner branch (syn., appendage).

border. Outer dorsal portion of cephalon and pygidium and outer ventral portion of hypostome, usually bounded by border furrow (has been referred to as rim, marginal rim, or marginal limb, but the term rim is restricted here to narrow peripheral ridge of fringe of Trinucleidae, etc.).

border furrow. Furrow defining adaxially border of cephalon, pygidium, and hypostome (syn., marginal furrow).

border pit. One of a row of pits along anterior border furrow of cephalon as in Angelina; may occur also in lateral border furrow as in Euloma (syn., marginal pit).

border roll. Tubular border of cephalon formed by convex border and doublure that is convex ventrally.

border sector. Outer, anterior portion of rostral plate separated by sharp flexure from the inner, doublure sector.

border spine. Spine (other than genal, fixigenal, librigenal) on anterolateral border of cephalon and to pleural spine of pygidium when border is present.

brim. Peripheral portion of fringe, bounded on inward side by girder or corresponding inflexion of upper lamella as in Harpetidae, Harpididae, and Trinucleidae (formerly used for frontal field).

brim prolongation. Peripheral portion of fringe prolongation, bounded by girder; represents posterior extension of brim as in Harpetidae and Harpididae.

bulla (pl., bullae). Rudimentary swelling in early lichid growth stage (situated inside the axial furrow and opposite L2), which grew rapidly in subsequent stages to form bullar lobe or composite lobe.

bullar lobe. Lateral glabellar lobe in lichid trilobite in position of L2 and L3 and formed by growth of bulla. This term replaces bicomposite or tricomposite glabellar lobe.

burlingiform sutures. Proparian sutures in which the anterior and posterior sections are subparallel, diverging outward and forward at an angle of about 45˚ to axial line of cephalon as in Burlingia.
Trilobita

buttress. Projection from abaxial wall of axial furrow of cephalon, opposing a papilla of glabellar lobe. See also papilla, papillate-buttress structure.

caecal node. Point at which diverticulum or major caecum branches.

cae sura (pl., caesurae). Line of separation between two differently oriented blocks of rows of lenses in a schizochroal eye.

carapace. Term applied to Crustacea; incorrectly used for trilobite exoskeleton.

cast. A replica of an original, made from a mold. See arc.

caudal spine. See posterior spine.

cedariform suture. Opisthopharian suture in which the cerdariiform suture.

caudal shield. See pygidium.

central area (of glabella). Middle portion of glabella between frontal lobe and occipital furrow, bounded laterally by adaxial ends of lateral glabellar furrows (syn., central region (of glabella), median cervical lobe, median lobe (of glabella)).

central body (of hypostome). See middle body (of hypostome).

central region (of glabella). See central area (of glabella).

cephalic axis. See glabella.

cephalic beak. Median anterior protuberance from doublure of cephalon that on enrollment interlocks with a depression on the median posterior doublure of the pygidium.

cephalic recess. Upwardly arched recess below occipital band, visible in posterior view of cephalon in Agnostina. See cephalothoracic aperture.

cephalic region. See cephalon.

cephalic sutures. General term for all the sutures (circumocular, connective, facial, hypostomal, perrostral, rostral) of the cephalon.

cephalon (pl., cephal). Anterior tagma composed in trilobites of a number of fused somites, applied by authors to anterior portion of exoskeleton separated from remainder of exoskeleton by an articulation (syn., cephalic region, head, head shield).

cephalothoracic apert ure. An elliptical gap in the exoskeleton in Agnostina, in the median portion of the axial region, between the cephalic recess and the thoracic recess. The gap was open in the enrolled exoskeleton (Fig. 48).

cercus (pl., cerci). See antenniform cercus.

teach. See gena.

teach area. See gena.

teach field. See genal field.

teach lobe. See gena.

teach region. See gena.

teach roll. See genal roll.

teach roll prolongation. See genal roll prolongation.

circumaxial furrow. See axial furrow.

circumocular suture. Suture surrounding the visual surface; in trilobites having a facial suture, it is composed of an upper section, the palpebral suture, and a lower section, the ocular suture.

teapation (coaptative, adj.). Fitting together of two independent parts of the same animal. In trilobites coaptative structures are morphological devices that interlocked when the exoskeleton was fully enrolled.

teapite internal mold. Mold of internal surface of dorsal exoskeleton and impression of external surface of ventral exoskeleton (i.e., of hypostome, rostral plate, and doublure).

teapite lobe. Lobe formed by partial or complete fusion of bullar lobe with L1 in lichid trilobites.

teapentic row. See arc.

teapite doublure. Bridging piece that unites the doublures of the librigenae medianly where connective sutures are lacking.

teapite band. Vertical to horizontal band (depending on convexity) immediately behind the pygidial axis and anterior to the border furrow and that may connect the pleural fields of pygidium. This term has been used as a synonym for occipital band.

teapite sutures. One of paired longitudinal sutures transecting border or doublure in front of hypostome and defining rostral plate laterally.

teapstricted. See acrolobe.

teapterminant (condition of hypostome). Hypostome underlies anterior portion of glabella and is attached at a suture to the anterior cephalic doublure.

teapna (corneal membrane). A thin external covering on the surface of the lens of the eye, continuous in the holochroal eye, discrete in the schizochroal and abathochroal eye.

tear angle. Angle between outer lateral and posterior margins of librigena.

tear furrow. Groove extending obliquely outward from axial furrow at anterolateral corner of glabella as in Strenua lia.

teaxa. Proximal podomere of biramous appendage, attached directly to ventral surface of body (syn., coxite, coxopodite).

teaxite. See coxa.

teaxon. See coxa.
deltoid depression. Triangular depression in Agnostina, formed by expansion of anterior border furrow at its junction with the median prelabellar furrow.
detached (condition). See hypostome, natant (condition) of hypostome.
deuterolobate. Agnostina in which the deuterolobe is well defined by tumidity and accessory furrow.
deuterolobe. Composite pygidial lobe of confluent pleural and axial regions, which lies between anterior lobe of axis defined by axial furrow and posterior border furrow. Laterally it is defined by the accessory furrow (syn., endlobe, pseudolobe).
distal. Portion of body away from the point of origin or sagittal line.
distal portion of pleura. See outer portion of pleura.
dome. Area of cuticle that bulges above the general level, thinning markedly at the apex of the bulge.
dorsal exoskeleton. See exoskeleton.
dorsal furrow. See axial furrow.
dorsal shield. See exoskeleton.
doubilural plate. See lower lamella.
doubilure. Reflexed continuation of dorsal exoskeleton onto ventral surface.
doubilure sector. Inner part of rostral plate separated from border sector by sharp flexure. E. See external.
edecysis. Processes of preparing to cast off and casting off (exuviation) old exoskeleton.
effaced. Condition in which furrows and lobes are obliterated to give smooth or almost smooth surface. The term therefore implies that ancestral forms were not effaced, i.e., were en grande tenue.
elliptical ring. See intranotular axis.
endite. Inwardly directed lobe of podomere of inner branch.
endlobe. See deuterolobe.
endopodite. See inner branch (of biramous appendage).
endopodite. See inner branch (of biramous appendage).
en grande tenue. Condition in Agnostina in which furrows and lobes are distinct (syn., non-effaced).
entomaspidiform suture. Opisthionic facial suture in which anterior branch is retrodivergent, running outward and backward from eye to lateral margin as in Entomaspis.
epiborder furrow. Furrow or change in slope between the convex inner, and flattened outer portions of the cephalic border in dalmanitids; associated with a doublure that has a flat outer portion and a steeply upturned inner portion, the latter being beneath the inner portion of the border. In eodiscoids a furrow on the cephalic border in which the distal ends of the scrobiculariae lie.
epifacial (type of pleural furrow). Outer portion of pleural furrow that leaves posterior margin of articulating facet and continues as a narrow, distinct furrow on articulating facet. See postfacetal pleural furrow.
epipalpebral furrow. See ocular furrow.
epistoma. See hypostome, rostral plate.
epistomal plate. See rostral plate.
epistome. See rostral plate.
europathic rostral suture. Connective suture marginal to a broad (tr.) rostral plate (contrast with stenoptychopariid). See ptychopariid suture.
fossula (pl., fossulae). Small, circular or oval depression that may occur in axial furrow at or near anterolateral edge of glabella and that lies at junction with anterior edge of eye ridge (when present) (syn., antennary pit, antennular pit, anterior fossula, anterior pit, eye ridge fossula, hypostomal pit, pore, pseudoanntenary pit).

fossular apodeme. Projection from parietal surface formed by inbending of exoskeleton corresponding to fossula on external side (syn., anterior boss).

free cheek. See librigena.

free pleura. See outer portion of pleural fringe. External pitted portion of cephalon in Harpetidae, Harpидidae, and Trinucleidae.

front furrow. See anterior border furrow (of cephalon).

frontal area. Portion of cranidium lying between anterior branches of facial suture (and rostral suture, if developed), preglabellar furrow, and eye ridge. If eye ridge is absent, postero-lateral boundary of this area is marked off by imaginary line connecting anterior extremity of palpebral lobe with end of preglabellar furrow (syn., anterior limb, limb). See also frontal field.

frontal boss. See preglabellar boss.

frontal field. Portion of frontal area posterior to border furrow (syn., brim of HOWELL & others, 1947).

frontal furrow. See anterior border furrow (of cephalon).

frontal glabellar spine. Median or paired spine projecting forward from frontal part of glabella.

frontal lobe (of glabella). Lobe of glabella between preglabellar furrow and most anterior lateral glabellar furrows; may be referred to as LA. See also anterior lobe of glabella.

frontal process. Projection of anterior border and doublure of cephalon; may bifurcate or trifurcate anteriorly as in Neoprobolium (syn., anterior median process, beak).

frontal spine. Projection of anterior border and doublure of cephalon ending anteriorly in point (syn., median anterior border spine).

fron-to-median lobe. Frontal lobe and central area of glabella.

fulcrum (pl., fulcra). Ball and socket articulating device in the axial furrow.

fulcrate. Describes thoracic segment that has the fulcrum.

fulcrum (pl., fulcra). Geniculation of pleural region separating horizontal inner portion from inclined outer portion (syn., geniculation).

furrow process and socket. Ball and socket articulating device in the axial furrow.

genae (pl., genae). Lateral portion of dorsal exoskeleton of cephalon, abaxial to imaginary sagittal line bisecting frontal area, and to axial furrow (syn.,
Morphological Terms

glabella (pl., glabellae). Axial portion of cephalon, bounded by axial and preglabellar furrows (syn., cephalic axis); only in Agnostina is basal lobe and occipital band excluded from the glabella.
glabellar carina. See glabellar keel.
glabellar culmination. Rounded or angulate posterior extremity of the posterior glabellar lobe (postero-glabella) in Agnostina.
glabellar furrow. See lateral glabellar furrow; trans-glabellar furrow.
glabellar impression. See muscle scar.
glabellar keel. Sagittal ridge on parietal surface of glabella, preserved as a groove, the axial glabellar sulcus, in internal molds of Agnostina (syn., glabellar carina).
glabellar lobe. See lateral glabellar lobe.
glabellar node. Median (or paired) tubercle developed in some part of fronto-median lobe of glabella (syn., glabellar tubercle, median glabellar tubercle). See also median sensory organ.
glabellar spine. Median (or paired) spine arising from glabella. See also cranial spine, frontal glabellar spine, median glabellar spine, occipital spine.
glabellar tongue. Subparallel-sided axial part of cranium anterior to eye lobes, bounded by confluent anterior sections of facial suture, and continuous with posterior portion of glabella (which occupies axial region between eye lobes as in Remopleuridae).
glabellar tubercle. See glabellar node.
glyptagnostoid articulating device. Modification in Agnostina in which articulating half ring is a narrow, raised rim and articulating furrow is a wide, elliptical depression with exsagittal pair of notulae.
gonatoparian suture. Facial suture with posterior section reaching cephalic margin at genal angle.
granule. Minute protuberance from exterior surface of exoskeleton, smaller than tubercle or pustule.
groove. Groove or recess below posterior margin of inner portion of pleura or posterior border of cephalon, into which flange fits.
halfring. See articulating half ring.
hapsidium (pl., hapsidia). Concentric cluster of closed ridges of sculpture or of loops of ridges (cf. Bertillon pattern).
head. See cephalon.
head shield. See cephalon.
hinge. Line of articulation between adjoining tergites (syn., hinge line).
hinge line. See hinge.
holaspis period. Period of growth after specific number of thoracic segments had been attained.
holaspis (pl., holaspides). Exoskeleton at any particular stage of development during holaspis period.
holocnem. Concave zone parallel to and near the lateral and posterior margins of the pygidium in some Ilaenina.
holochroal eye. Compound eye consisting of numerous adjoining lenses covered by a continuous cornea.
horn. See prolongation.
hyperglabella. Term introduced for immature glabella of Daguisinaspis because S5 is said to be present in addition to S1−S4.

© 2009 University of Kansas Paleontological Institute
hypoparian. Condition in which facial suture traverses margin of cephalon.

hypostoma. See hypostome.

hypostomal pit. See fossula.

hypostomal suture. Line of junction between posterior margin of anterior doublure, rostral or perrostral plate, and anterior margin of hypostome.

hypostome (pl., hypostomes). Ventral sclerite situated beneath anterior portion of glabella, described as conterminant (attached) when in sutural contact with rostral plate and/or doublure of librigenae and described as natant (detached) when not in such contact (syn., epistoma (partim), hypostoma).

I. Abbreviation for internal.

impending (condition of hypostome). A modified conterminant condition of the hypostome, in which the glabella is extended forward so that the most anterior portion is overlain by the cephalic doublure.

ingluvial sac. See ingluvie.

ingluvie. Expansion of the alimentary canal; in trilobites may be bilaterally arranged sacs or an axial boss (syn., ingluvial sac).

inner branch (of biramous appendage). Inner branch (ramus) of appendage arising from coxa, composed of a number of podomeres connected to each other and the coxa by movable articulations (syn., endopodite, leg branch, telopodite, telegnathite, walking leg).

inner margin (of fringe). Line separating genal region and preglabellar field (if present) from pitted area and running into posterior border as in Harpeditae [syn., lateral line (of fringe)].

inner margin (of lower lamella). See flange.

inner margin (of upper lamella). Boundary between genal region and fringe on dorsal side of cephalon; coincides with inner margin of fringe as in Harpeditae and Trinucleidae.

inner portion of pleura. Portion of pleura adaxial to fulcrum (syn., articulated pleura, proximal portion of pleura).

inner spine angle. Angle between median line of genal spine and margin of posterior border of cephalon.

insloping. Situation in genal or pleural region of exoskeleton of cephalon or pygidium in which exterior surfaces face upwards or inwards toward axial surfaces.

integument. The epidermal cell layer of the body and the overlying cuticle that has secreted.

integument attachment. See flange.

intercalary lobe. See median preopercipital lobe.

intercalating furrow. Transverse furrow at anterior margin of intercalating ring.

intercalating ring. Ring anterior to occipital ring formed by fusion of L1 lobes across glabella as in phacopids (syn., preopercipital ring).

intercheek suture. See median suture.

interglenal angle. The angle in the posterior cephalic border where it may be flexed forward, so that the base of the genal spine lies in a transverse line well in advance of the occipital ring as in certain Olenellina and Redlichina.

interglenal ridge. Ridge in Olenellina extending from interocular area of gena opposite L1, along or across border furrow to base of interglenal spine; prominent in early growth stages (syn., metagenal ridge, posterior genal ridge).

interglenal spine. Spine projecting posteriorly from cephalic border adaxial to genal angle (syn., interocular spine, metacranidial spine, metagenal spine).

interglenal swelling. Inflation of posterior border of cephalon at base of interglenal spine; may be present when spine is absent in holaspis.

interlamellar suture. Suture through the pillars that connect the dorsal and ventral pits in upper and lower lamellae of fringe in harpeditids and trinucleids.

interlensar sclera. That part of visual surface that lies between schizochroal lenses and is not covered by cornea.

intermediate lobe. Small lobe on median glabellar lobe at anterior, adaxial end of S1 in some calydesmids (syn., supplementary lobe).

internal (I). Used in referring to arcs of pits, to individual pits, or to irregularly arranged pits in trinucleid fringe adaxial to girder.

internal axial septum. Septum located on the paliar surface at the posterior end of pygidial axis in Pseudophyllusia.

internal mold of exoskeleton. Mold of interior (parietal) surface of dorsal exoskeleton; may be combined with mold of external surface of doublure or hypostome. See composite internal mold.

internal rim. Smooth inner border of fringe, adjacent to thorax and extending from posterior margin of genal region to posterior tip of prolongation as in Harpeditae.

interocular area. Used in Olenellina for area adaxial to ocular lobe. See also palpebral area (of fixigena).

interocular channel. Transverse channel lying immediately behind eye ridge, extending between palpebral lobe and axial furrow in Ausiodigna.

interocular cheek. See palpebral area (of fixigena).

interocular fixigena. See palpebral area (of fixigena).

interocular spine. See interglenal spine.

interocular swelling. Inflation by which palpebral area is swollen and repeats form of palpebral lobe.

interpleural furrow. Transverse groove extending from axial furrow across pleural region of pygidium, indicating boundary of fused pleurae (syn., interpleural groove, rib furrow).

interpleural groove. See interpleural furrow.

inter-radial plate (or ridge). Plate or ridge that separates adjacent radial rows of pits in trinucleid cephalic fringe on both upper and lower lamellae; particularly evident when radial rows of pits lie in sulci.

inter-ring furrow. Groove bounding successive axial rings of pygidium (syn., ring furrow, transaxial furrow). In Agnostina referred to as F1, F2, F3, numbering from the anterior backward.

intersulcal field. Area between outer and inner border furrows in Proetidae.

intervening furrow. Lateral glabellar furrow intervening between IO and L1, recognized in olenids and an oryctocephalid.
Intervening glabellar lobe. Lateral glabellar lobe isolated by intervening furrow curving back to meet occipital furrow, considered to intervene between occipital ring and L1.

Intra-annular furrow. Furrow separating anterior part of thoracic axial ring (preannulus) from posterior part (postannulus), visible on exterior but not parietal surface of exoskeleton.

Intra-axial furrow. Furrow between median and lateral lobe of thoracic axial ring of Agnostina.

Intrascleral membrane. Membrane holding lenses in position in schizochroal eye.

Intrapalpebral ridge. Deep groove crossing border and doublure between shoulder and anterior wing of hypostome.

Isoteliform suture. Adjective derived from Libristoma, the group of trilobites in which the hypostome was doublure, not separated by connective or median suture.

Isoteline suture. See nileiform suture.

Isoteloid suture. See levisellid-type suture.

Isotypous. Having a pygidium of about the same width (tr.) and length (sag. and exs.) as the cephalon.

Isoteliform suture. See asaphid suture.

Kainelliform suture. Sagittal groove between axial and terminal nodes of pygidial axis in Agnostina; may be impressed into axial node posteriorly.

Kainelliform suture. Abbreviation for lateral glabellar lobe or transverse furrow bounding lateral border in pygidium.

Kainella. Having a pygidium of about the same area of fixigena.

Kainelliform suture. See Kainella.

L. Abbreviation for lateral glabellar lobe or transverse division; numbered forward from posterior, LO (occipital ring), L1, L2, L3, etc.

LA. Abbreviation for frontal lobe of glabella.

Lanceoloid field. See intranotular axis.

Larval notch. See posterior indentation.

Larval ridge. Supposed combination in a single ridge of frontal glabellar lobe, ocular lobe, and intergenal ridge in such Olenellina as Ellipsocephala.

Lateral axial lobe. Lobe at lateral margin of axial ring.

Lateral band. Lower half of lateral side of pygidial axis, which joins upper half at change in slope. Axial rings and inter-ring furrows are indistinct. Used for Proetioidea.

Lateral border (of cephalon). Portion of cephalic border between anterior section (branch) of facial surface and genal angle.

Lateral border (of hypostome). Extends from anterior wing to posterolateral corner of hypostome, bounded by lateral border furrow.

Lateral border furrow (of cephalon). Portion of border furrow bounding lateral border.

Lateral border furrow (of pygidium). Portion of border furrow bounding lateral border in pygidium.

Lateral glabellar furrow. Bilaterally symmetrical pairs of narrow grooves on external surface formed by fold in exoskeleton, extending partway across glabella from (or near) axial furrow. Furrows vary in length, depth, and direction; they may be short (tr.), limited to pits in or close to axial furrow, or isolated from axial furrow (syn., glabellar furrow). When three pairs are present, they have been referred to as anterior, median, and basal (syn., posterior glabellar furrow, preoccipital glabellar furrow). Numbering from the back forward is preferred: occipital as SO, preoccipital as SI, and continued forward as S2, S3, etc.

Lateral glabellar lobe. Portion of glabella outlined and more or less separated by successive lateral glabellar furrows, may or may not be inflated. Numbering is from posterior end forward: L1, L2, etc. (syn., glabellar lobe). In lichids it is considered that L1 is subdivided into the posterior L1a and anterior L1b, and similar subdivisions are recognized in odontocephalids. When three pairs are present they have been referred to as anterior, median, and basal lobes (syn., preoccipital glabellar lobe). See also posterior lobe (of glabella).

Lateral line (of fringe). See inner margin of fringe.

Lateral margin (of cephalon). Margin between anterior branch of facial suture and genal angle (if former is absent, anterior limit of lateral margin is obscure).

Lateral notch (of hypostome). Deep groove crossing border and doublure between shoulder and anterior wing of hypostome.

Lateral occipital lobe. Lateral or anterolateral portion of occipital ring, if differentiated; referred to as LO (syn., occipital lobe, occipital lobula).

Lateral pit. See posterior fossula.

Lateral preoccipital lobe. Lobe L1: lateral portion of glabellar region directly in front of occipital ring, where differentiated, as in Otarion, Ditomopyge (syn., pre-occipital glabellar lobe). See also posterior lobe (of glabella), lateral glabellar lobe.

Lateral projection of hypostome. See shoulder (of hypostome).

Lateral tongue furrow. Portion of axial furrow bounding side of glabellar tongue as in Remopleuridae.

Leg branch. See inner branch.

Levisellid-type suture. See nileiform suture.

Librigena (pl., librigeneae). Portion of cephalon abaxial to facial suture (syn., free cheek, movable cheek, paria).

Librigenal field. Portion of librigena within border furrow (syn., eye field, eye platform, field of free cheek, ocular platform).

Librigenal plate. The Librigeneae, united by connecting doublure, not separated by connective or median suture.

Librigenal spine. Spine borne by border of librigena (syn., parial spine).

Libristomate. Adjective derived from Libristoma, the group of trilobites in which the hypostome was conterminant in the protaspis but became natant during the meraspid and holaspid periods.
lira (pl., lirae). Symmetrical raised ridge on external surface of exoskeleton.

lirst. A concentric ridge on the upper lamella occurring between arcs in trinucleids.

longitudinal furrow. Posteriorly directed extension of anterior lateral glabellar furrow as in Lichidae and Odontopleuridae.

longitudinal median glabellar furrow. Furrow commencing in preglabellar furrow and extending sagitally back.

lower lamella. Ventral exoskeleton of fringe as in Harpetidae, Harpidae, and Trinucleidae (syn., doublural plate).

lower rim (external or internal). Smooth, may be raised or thickened peripheral portion of lower lamella of fringe as in Harpetidae, Harpidae, and Trinucleidae.

lunette. Raised crescentic area on inner (parietal) surface of exoskeleton at abaxial margin of axial furrow, where glabella is narrowest (tr.) and approximately in transverse line with eye lobe; characteristic of Illiciidae.

M. Used in Agnostina only to denote transverse divisions of axis of glabella (where it is equivalent to L1 and numbered 1 to 3 from the posterior forward) or axis of pygidium (where it is equivalent to axial ring and numbered posteriorly from anterior margin of pygidium). Also used as abbreviation for meraspis period, in numbering degrees as M0, M1, etc.

macroleura (pl., macroleurae). Pleura in which the inner portion becomes longer (exs.) abaxially and the outer portion is a long, stout spine, or in which only the pleural spine is markedly longer than those adjacent (syn., macroleural segment).

macroleural segment. See macroleura.

macroleural spine. Pleural spine of macroleura.

macroleural unit. Macroleural sixth thoracic segment that is fused to fifth as in Eumuellidae.

macropygous. Having a pygidium exceeding in maximum width (tr.) that of the cephalon.

macrospine. Axial spine, much larger than those adjacent.

macula (pl., maculae). Small area lying laterally in, or on posterior side of middle furrow of hypostome; it may be sunken, flat, or elevated, smooth or with lenslike structures on the surface.

major posterior (muscle) scar of posterior glabellar lobe (posteroglabella). In Agnostina a paired, circular, depressed area situated at the maximum width of the posterior glabellar lobe.

margin. Distal edge of portion of exoskeleton.

marginal band. Narrow vertical band uniting upper and lower edges of rim as in Harpetidae and Trinucleidae.

marginal connective device. Device for articulation between adjacent pleurae at base of pleural spine.

marginal furrow. See border furrow.

marginal gutter. Broad, overdeepened border furrow of either cephalon or pygidium in Agnostina.

marginal limb. See border.

marginal pit. See border pit.

marginal rim. See border.

marginal spine. Pleural spine of pygidium when border is not defined.

marginal suture. Suture traversing marginal band of cephalon, as in Harpetidae.

median anterior border spine. See frontal spine.

median axial lobe. Median portion of axial ring between lateral axial lobes.

median body (of hypostome). See middle body (of hypostome).

median border spine. See posterior spine.

median cervical lobe. See central area (of glabella).

median gap. See pygidial collar.

median glabellar spine. Median spine arising from central area of glabella (syn., preoccipital glabellar spine).

median glabellar tubercle. See glabellar node.

median lateral glabellar furrow. Furrow S2 when three pairs are present (see lateral glabellar furrow).

median lateral glabellar lobe. Lobe L2 when three pairs are present. See lateral glabellar lobe.

median lobe (of glabella). See central area (of glabella).

median node. See axial glabellar node.

median preglabellar furrow. Furrow along sagittal line in front of glabella as in Agnostina and Dimeropygidae (syn., preglabellar median furrow).

median preglabellar ridge. Ridge along sagittal line in front of glabella.

median preoccipital lobe. Median portion of glabellar region between L1 lobes as in Ditomopyge (syn., intercalary lobe).

median sensory organ. Median glabellar node in which either the exoskeleton is thinner or there are symmetrically arranged pits.

median suture. Median longitudinal suture transecting doublure in front of hypostome (syn., intercheek suture).

meraspis period. Period of development from appearance of first transverse articulation in exoskeleton until specific number of thoracic segments less one had been attained (see degree of meraspis period).

meraspid (pl., meraspides). Exoskeleton at any particular degree of development during meraspis period.

mesentery. Membrane attached to inner (parietal) surface of skeleton serving as a partition between and a support for organs.

metacranidial spine. See intergenal spine.

metaxonial spine. See intergenal spine.

metagenal ridge. See intergenal ridge.

metagenal spine. See intergenal spine.

metamere. See somite.

metatarsuran suture. Sutural pattern in Olenellina in which the two branches of the facial suture are supposed to have been secondarily fused.

metaprotaspis (pl., metaprotaspides). Next largest protaspides to anaprotaspides in a size series, in which protopygidium is recognizable. Not recommended as a subdivision of protaspis period.

metastoma. See metastome.

metastome. Supposed small plate lying posterior to mouth opening on ventral side of body (syn., metastoma, postoral plate).

micropygous. Having a pygidium considerably shorter (sag. and exs.) and narrower (tr.) than the cephalon.

midcheck furrow. Furrow in Agnostina extending ob-
liquely from axial furrow adjacent to anterior portion of posteroglabella to border furrow.

middle body (of hypostome). Swollen middle portion of hypostome inside border, divided by middle furrows into anterior and posterior lobes (syn., central body (of hypostome), median body (of hypostome)).

middle furrow. Inward and backwardly directed furrow dividing middle body of hypostome into anterior and posterior lobes.

mid-fixigenal spine. Prominent spine on lateral border of protocranidium of protaspis.

midmost glabella. See posterior lobe (of glabella).

miomerid. Term originally proposed for trilobites having two or three thoracic segments (i.e., Agnostina and eodiscoids) and used as a convenient abbreviation to refer to them.

mold. See composite internal mold, external mold, internal mold of exoskeleton.

molding. The entire sequence of events, including ecdysis and postecdysis, between one shedding of the exoskeleton and the next.

movable cheek. See librigena.

mucro. Median, pointed posterior projection from posterior border of pygidium in dalmanitids and encrinurids. See posterior spine.

muscle scar (or impression). Smooth, may be slightly depressed, paired area in external surface of axial region of exoskeleton, interpreted as area of muscle attachment; may be darker in color than surrounding regions. Paired muscle impressions on glabella may be numbered from posterior forward as 1g, 2g, etc. (in Scutellulidae) or, in same manner as lateral glabellar furrows, as S1, S2, etc. In Agnostina they are preserved as shallow depressions on internal mold, reflecting raised rim of scar on parietal surface (syn., glabellar impression).

natan (condition of hypostome). Hypostome lies below anterior portion of glabella, but is not attached to the cephalic doublure.

neck furrow. See occipital furrow.

neck node. See occipital node.

neck ring. See occipital ring.

neck spine. See occipital spine.

nileiform suture. Cephalic suture in which two anterior branches (or sections) meet marginally in the midline; there is no median suture across the doublure (syn., leviselldid-type suture).

nibuiform suture. See asaphid suture.

node. Small subcircular or suboval swelling on external surface of exoskeleton.

nonadult-like protaspis. See asaphoid protaspis.

non-effaced. See en grande tenue.

nonfulcrate. Describes a thoracic segment that lacks the fulcrum (i.e., has no inner horizontal portion) but curves downward and outward from the axial furrow.

notula (pl., notulae). Small pit in internal mold of exoskeleton that may be included in an area occupied by a muscle scar.

notular furrow. Longitudinal furrow developed between notulae.

notular line. A longitudinal line of notulae converging on terminal node of the pygidial axis.

nuchal furrow. See occipital furrow.

nuchal node. See occipital node.

nuchal ring. See occipital ring.

nuchal spine. See occipital spine.

O. Abbreviation for occipital ring.

oblique lateral muscle scars of posteroglabella. Grooves in Agnostina arranged in a arc running from the axial glabellar node to the basal glabellar lobe. The oblique lateral ridge flanks these grooves adaxially.

occipital band. Narrow (sag. and exsag.), depressed posterior band of occipital ring in odontopleurids; in Agnostina a narrow band that connects the basal lobes behind the posteroglabella. See also connective band.

occipital furrow. Transverse furrow (SO) that isolates occipital ring from remainder of glabella (syn., neck furrow, nuchal furrow).

occipital lobe. See lateral occipital lobe.

occipital lobula (pl., lobulae). See lateral occipital lobe.

occipital node. Median (or paired) tubercle developed on exterior of occipital ring (syn., neck node, nuchal node, occipital tubercle).

occipital ring. Axial region of most posterior segment of cephalon, bounded at sides by axial furrows, at front by occipital furrow, and at back by posterior margin. Considered part of glabella in all trilobites (syn., neck ring, nuchal ring).

occipital spine. Median (or paired) pointed structure projecting from exterior of occipital ring (syn., neck spine, nuchal spine). See also cranidial spine.

occipital tubercle. See occipital node.

occipitogenal diverticulum. Low ridge in eodiscoids that runs between occipital ring and inner, posterior corner of genal field.

occiput. Independently convex portion of glabella, bounded anteriorly by S1, lateral glabellar furrows, and posteriorly by the occipital furrow. Used in describing Triunucleidae, whereas intercalating ring is used for the similar structure in phacopids.

ocular band. See eye ridge.

ocular furrow. Furrow dividing the ocular lobe of Olenellina along its length into inner and outer bands (syn., epipalpebral furrow, ocular striga, striga).

ocular incisure. The abaxially convex curve of the margin between the eye lobe and the librigena.

ocular lobe. The ridge on the gena of Olenellina that curves outward and backward from the glabella immediately in front of S3 and bears on its outer, distal portion the curved visual surface of the eye.

ocular platform. See librigenal field.

ocular ridge. See eye ridge.

ocular striga. See ocular furrow.

ocular suture. Lower section of circumocular suture separating visual surface from librigena.

opisthoparian suture. Facial suture with posterior section cutting posterior margin of cephalon adaxial to genal angle, which is carried by librigena. See also cedariaform suture.

opisthothorax. Posterior portion of thorax when it is
 divisible into a wider (tr.) anterior portion (the prothorax) and narrower posterior portion (syn., postthorax).

opistopleura (pl., opistopleurae). See posterior pleural band.

axial furrow. Furrow near anterior margin of frontal glabellar lobe in Chasmops close to, and parallel with, preglabellar furrow.

ornament. See sculpture.

outer branch (of biramous appendage). Outer branch (ramus) of appendage arising from coxa (syn., exite, exopod, exopodite, gill branch).

glabellar region. See posterior lobe (of glabella).

outer portion of pleura. Portion of pleura outside fulcrum, which slopes downward and outward, may bear a facet, and has a doublure (syn., distal portion of pleura, free pleura).

outer spine angle. Angle between lateral border of cephalon and median line of genal spine.

paired eye ridge. See eye ridge.

palpebral area of fixigena. Portion of fixigena lying between eye ridge and imaginary transverse line connecting posterior corner of palpebral lobe with axial furrow (syn., interocular area, interocular cheek, interocular fixigena, palpebral region of fixigena).

palpebral furrow. Usually curved groove separating palpebral lobe from palpebral area of fixigena.

palpebral lobe. A marked ledge or groove situated on the palpebral lobe between the palpebral suture and the palpebral furrow as in Lophosaukia.

palpebral ledge. Protruding subsemicircular flange of fixigena bounded distally by palpebral suture. See eye ridge.

palpebral rim. Raised or thickened portion of palpebral lobe bordering palpebral suture.

palpebral suture. Portion of facial suture bounding distal edge of palpebral lobe.

palpebral view of cranidium. View normal to plane passing through palpebral lobes.

palpebro-ocular ridge. Curved ridge formed by confluence of eye ridge and palpebral lobe. The ridge may be subdivided by a longitudinal furrow into an outer (anterior) band and an inner (posterior) band.

pander organ. See panderian organ.

panderian notch. Notch in inner margin of cephalic or pleural doublure, assumed to have partially surrounded a panderian opening.

panderian opening. Small, rounded or elliptical opening in posterior genal and thoracic pleural doublure.

panderian organ. Supposed organ associated with panderian opening (syn., pander organ).

panderian protuberance. Small and rounded, elliptical, or elongate protuberance immediately adjacent to panderian opening; term also applied to raised anterior edge of panderian notch.

papillate. See axial glabellar node.

papilla (pl., papillae). In calymenids refers to projections over axial furrow from lateral glabellar lobe or frontal lobe. See also buttress, papillate-buttress structure.

papillate-buttress structure. Projection bridging axial furrow of cephalon in calymenids, consisting of papilla and opposing buttress. See also papilla.

paradoublural line. Furrow, flexure, or ridge on dorsal exoskeleton of cephalon and pygidium, which is conformable with inner edge of doublure.

parafrontal band. Narrow, raised band following anterior border of frontal lobe of glabella and forming continuation of outer, anterior band of palpebro-ocular ridge as in protoleninids.

paraglabellar area. Arculate, slightly depressed area at inner, posterior corner of fixigena; may be gently convex and outlined by furrow or change in slope as in homalonotids.

para-ocular facial line. See genal ridge.

para-postaxial ridge. Postaxial ridge on pygidium in which sagittal crest is prolonged into spine as in Odontochile and Dalmanites.

paraprotaspin (pl., paraprotaspidae). Late protaspis stage, not precisely defined. Not recommended as a subdivision of protaspis period.

para-thoracic segment. Region of transitory pygidium having the form of a thoracic segment, but still fused into pygidial exoskeleton.

palia. See librigena.

palial spine. See librigenal spine.

palial surface. Inner surface of exoskeleton. See also visceral features.

pelturoid. Describes outline of gena when lateral and posterior margins form even curve.

pergenal spine. See procranidial spine.

peri-terminal pleural lobe. That part of the pygidial pleural region flanking or even enclosing deuterolobe in Agnostina.

peristomial suture. Ventral intramarginal cephalic suture crossing doublure at genal angle below spine as in Olenellina (syn., ventromarginal suture).

petaloid facet. See posterior lobe (of glabella).

petaloid suture or shovelfulcal suture. See axial glabellar node.

petaloid ridge. See para-postaxial ridge.

petaloid spine. Spine of lophosaukia as in Agnostina.

petaloid spine of genal spine. Spine of genal spine of Agnostina.

petaloid spine of thoracic segment. See petaloid spine.

petaloid spine of thoracic spine. See petaloid spine.

petaloid suture. See peristomial suture.

petalotrichous. Describes spines of pygidium as in Agnostina.

petalotrichous spine. Spine of lophosaukia as in Agnostina.

petalotrichous spine of genal spine. Spine of genal spine of Agnostina.

petalotrichous spine of thoracic segment. See petalotrichous spine.

petalotrichous spine of thoracic spine. See petalotrichous spine.

petalogous. Describes spine of pygidium as in Agnostina.

petalogous spine. Spine of lophosaukia as in Agnostina.

petalogous spine of genal spine. Spine of genal spine of Agnostina.

petalogous spine of thoracic segment. See petalogous spine.

petalogous spine of thoracic spine. See petalogous spine.

petalogous suture. See peristomial suture.

petaloplicate. Describes spines of pygidium as in Agnostina.

petaloplicate spine. Spine of lophosaukia as in Agnostina.

petaloplicate spine of genal spine. Spine of genal spine of Agnostina.

petaloplicate spine of thoracic segment. See petaloplicate spine.

petaloplicate spine of thoracic spine. See petaloplicate spine.

petaloplicate suture. See peristomial suture.

petaloplicous. Describes spine of pygidium as in Agnostina.

petaloplicous spine. Spine of lophosaukia as in Agnostina.

petaloplicous spine of genal spine. Spine of genal spine of Agnostina.

petaloplicous spine of thoracic segment. See petaloplicous spine.

petaloplicous spine of thoracic spine. See petaloplicous spine.

petaloplicous suture. See peristomial suture.
pleural furrow. Groove in external surface of thoracic pleura or pleural region of pygidium, formed by fold in exoskeleton. See epifacial and postfacetal types.

pleural lobe. See pleural region.

pleural node. Inflated triangular area on adaxial part of thoracic pleura in Olenidae.

pleural platform. See pleural field.

pleural region. Lateral portion of thorax or pygidium abaxial to axial furrow (syn., pleural lobe, pleurothorax, side lobe).

pleural rib. See rib.

pleural ridge. Ridge along either anterior or posterior pleural band, latter commonly prominent as principal pleural ridge.

pleural spine. Hollow, pointed extension of distal end of a pleura or of either band of the pleura, of thorax or pygidium. See also border spine, marginal spine.

pleural stop. Ridge separating facet from pleural furrow in outer portion of second thoracic segment in certain Agnostina; morphologically equivalent to the anterior pleural band.

pleural zone. See pleural field.

pleuroccipital border. See posterior border (of cephalon).

pleuroccipital furrow. See posterior area of fixigena.

pleuroccipital furrow. Surface. See fossula.

posterior area of fixigena. Portion of fixigena lying behind imaginary transverse line connecting posterior margin of palpebral lobe with axial furrow [syn., limb, posterior area of fixed cheek, posterior fixigena, posterior limb, posterior region (of fixigena), posteroventral limb, postocular cheek, postocular fixigena].

posterior band of occipital ring. Narrow (sag. and exsag.) band, widest in midline, situated below and behind main part of occipital ring.

posterior area of pleura. See posterior pleural band.

posterior border (of ceph- halon). Portion of cephalic border between genal angle and occipital ring (syn., pleuroccipital border).

posterior border (of hypostome). Portion of cephalic border between genal angle and occipital ring.

posterior border furrow (of ceph- alon). Portion of boundary furrow bounding posterior border furrow.

posterior border furrow (of hypostome). Portion of boundary furrow bounding posterior border furrow (syn., pleuroccipital furrow, posteroventral furrow).

posterior branch (of facial suture). Portion of facial suture lying behind eye [syn., posterior section (of facial suture), postocular branch, postocular su- ture].

posterior field (of fixigena). Portion of posterior area of fixigena lying anterior to posterior border furrow.

posterior fixigena. See posterior area of fixigena.

posterior fixigenal spine. Prominent spine at postero- lateral corner of protocanium in protaspis.

posterior flange. Narrow border extending along posterior edge of inner portion of pleura.

posterior fossula. Pit at lateral extremity of posterior border furrow opposed by a pit on flange of lower lamella in Trinucleidae (syn., lateral pit).

posterior genal ridge. See intergenal ridge.

posterior glabellar furrow. See lateral glabellar furrow.

posterior indentation. Small indentation in posterior margin of transitory pygidium in asaphids and immature prostoid pygida (syn., larval notch).

posterior limb. See posterior area (of fixigena); see also posterolateral projection (of fixigena).

posterior lobes (of glabella). Lateral glabellar lobe L1. In Agnostina used for posterior portion of glabella (postero-lateral antenniferous furrow). In some Agnostina a change in slope or faint exsa- gittal furrow divides this lobe into midmost glabella and outer glabellar regions.

posterior margin (of ceph- alon). Edge of cephalon between genal angles.

posterior median lobe of pygidium. See terminal axial piece.

posterior notch (of hypostome). Median notch in posterior border between posterolateral spines.

posterior oculare line. Ridge in Olenellina outside intergenal ridge, directed backward and outward from posterior end of ocular lobe.

posterior pleural band. Strip of thoracic or pygidial pleura bounded anteriorly by deepest part of pleural furrow (syn., opisthopleura, posterior band of pleura, postpleura).

posterior pleural spine. Pointed extension of distal end of posterior pleural band (syn., principal pleural spine).
posterior region (of fixigena). See posterior area of fixigena.

posterior section (of facial suture). See posterior branch (of facial suture).

posterior spine. Posterior extension of border and doublure of pygidium (syn., caudal spine, median border spine, mucirow).

posterior wing (of hypostome). Extension of doublure of lateral border of hypostome.

posteroaxial. In Agnostina that portion of the pygidial axis lying behind the posterior inter-ring furrow (P2).

posterglabella. Posterior portion of glabella as in Centropleura, formed by occipital ring plus ring formed by fusion of L1 and S1. In Agnostina synonymous with posterior lobe of glabella.

posteralateral furrow. See posterior border furrow (of cephalon).

posteralateral limb. See posterior area of fixigena.

posteralateral projection (of fixigena). Portion of fixigena lying abaxial to imaginary exsagittal line from posterior end of palpebral suture to posterior margin of cranidium (syn., posterior limb as used by some authors, but not as defined by Howell & others, 1947).

posteralateral spine (in Agnostina). Spine arising from posteralateral border of cephalon or pygidium.

posteralateral spine (of hypostome). Spine on posterolateral border of hypostome.

postfacetal pleural furrow. Outer portion of pleural furrow that runs behind facet in transverse direction until it becomes obsolete (in asaphids, bathyurids, etc.).

postocular area (of fixigena). Portion of posterior area of fixigena between axial furrow and imaginary exsagittal line from posterior end of palpebral suture [syn., postocular region (of fixigena)].

postocular branch. See posterior branch (of facial suture).

postocular cheek. See posterior area of fixigena.

postocular fixigena. See posterior area of fixigena.

postocular glabella. That part of the glabella behind adaxial end of eye ridge.

postocular margin. Margin of librigena defined by posterior branch of facial suture.

postocular region (of fixigena). See postocular area (of fixigena).

postocular spine. See posterior area of fixigena.

postocular suture. See posterior branch (of facial suture).

postocular tubercle. Tubercle at rear of field of fixigena in exsagittal line with or adaxial to palpebral lobe.

postoral plate. See metastome.

post-palpebral furrow. A furrow running from posterior end of palpebral lobe and crossing fixigena to meet posterior border furrow inside posterolateral angle of cranidium.

postpleura. See posterior pleural band.

postrachial ridge. See postaxial ridge.

post-thorax. See opisthothorax.

preannulus. Anterior portion of thoracic axial ring separated from postannulus by intra-annular furrow.

precraniaual lobe. Area of librigena between facial suture, connective suture, and anterior border of cephalon in Encrinuridae (syn., false preglabellar area, pseudoglabellar area).

prefrontal furrow. Lateral portion of preglabellar furrow in Pliomerina.

prefrontal lobe. Lobe separated from rest of glabella by shallow furrow; it is lateral part of anterior border of cranidium in Pliomerina.

preglabellar area. Portion of cranidium between imaginary exsagittal lines running anteriorly from each end of preglabellar furrow, including preglabellar field if developed and median portion of anterior border.

preglabellar boss. Subcircular swelling of preglabellar field (syn., frontal boss).

preglabellar field. Portion of cranidium lying between front of glabella and anterior border furrow.

preglabellar furrow. Portion of axial furrow outlining front of glabella.

preglabellar keel. See preglabellar ridge.

preglabellar median furrow. See median preglabellar ridge.

preglabellar pit. Pit in preglabellar furrow as in Dimeropygidae.

preglabellar ridge. Sagittal ridge or fold in preglabellar field (syn., preglabellar keel). Contrast with transverse preglabellar ridge.

preglabellar glabellar furrow. See lateral glabellar furrow.

preoccipital glabellar lobe. See lateral glabellar lobe L1.

preoccipital glabellar spine. See median glabellar spine.

preoccipital ring. See intercalating ring.

preoccipital area (of fixigena). Portion of fixigena anterior to eye and eye ridge and abaxial to preglabellar area and including border.

preoccipital branch (of facial suture). See anterior branch (of facial suture).

preoccipital cheek. See anterior area (of fixigena).

preoccipital facial line. See facial line.

preoccipital field (of fixigena). Portion of preoccipital area inside border furrow.

preoccipital glabella. That part of the glabella in front of adaxial end of eye ridge; not coincident with the frontal glabellar lobe.

preoccipital suture. See anterior branch (of facial suture).

presulcal depression. Sagittally expanded part of outer anterior border furrow in Proetidae.

principal genal vein. See genal ridge.

principal pleural ridge. Refers to ridge of posterior pleural band when it is more prominent than ridge on anterior band; see also pleural ridge.

principal pleural spine. See posterior pleural spine.

procraniaul spine. Spine on anterolateral border of cephalic shield, directed horizontally, in early developmental stages of Olenellina (syn., pergenal spine).

profixigenal spine. Spine projecting from border and doublure of fixigena in front of genal spine, as in Sphaerourygae.
prolibrigenal spine. Spine projecting from border and doublure of librigena.

proloration. Extension of fringe beyond posterior margin of genital regions as in Harpetidae and Harpидidae (syn., horn).

prong. Short projection at fulcrum at anterior margin of thoracic segment or pygidium in Agnostina. See fulcral process.

proparian suture. Facial suture with posterior branch cutting lateral margin of cephalon in front of genital angle.

proparian (pl., propariae). See anterior pleural band.

propleuron. See anterior pleural band.

prosopon. See sculpture.

prosopon period. Period of development during which there is no transverse articulation in exoskeleton.

protaspid (pl., protaspidae). Smallest known exoskeleton, subglobular to spherical in form; may exhibit size series, but lacking transverse articulation.

protothoracic (pl., protothoraces). Segment in protopygidium or transitory pygidium destined to become thoracic segment.

protocranidium. Cephalic portion of protaspid exoskeleton.

protoccephalon. Cephalic portion of protaspid exoskeleton.

protocranium. Cranial portion of protaspid exoskeleton.

protothoracic segment. Segment in protopygidium or transitory pygidium destined to become thoracic segment.

proximal. End of part or organ that is nearest to point of origin or sagittal line of body.

proximal portion of pleura. See inner portion of pleural lamina.

pseudoantrum (pl., pseudantra). See fosula.

pseudoarticulating half ring. Lenticular or subrectangular median depression between anterior pygidial axial rings, resulting from embayment in posterior edge of ring and consequent widening of inter-ring furrow.

pseudoconal lobe. Composite structure forming anterior part of glabella characteristically in Trinucleidae, bounded posteriorly by S2 and incorporating much reduced or absent S3.

pseudofurrow. See accessory furrow.

temporal. Any concentric ridge occurring between E or T arcs on lower lamella in trinucleids.

pseudoglabellar area. See anterior border of cranidium (in Encrinuridae). paramedian lobe.

pseudohemispherical lobe. See deuterolobe.

pseudoral furrow. Furrow running obliquely across palpebro-ocular ridge at anterior end of palpebral rim as in Resupros.

pseudoposteraxial ridge. A short (tag) and narrow postaxial ridge that does not reach the posterior margin of the pygidium.

pseudoposteroparian suture. See cedariiform suture.

pseudometergium. A ridge in the same position as the tropidium, but not reflected as groove on inner surface of exoskeleton.

psychopariid suture. Opisthophariian suture in which anterior branches are directed forward and inward, librigenae are separated by connective sutures from rostral plate, and rostral plate is not suturally connected to hypostome; see eupythopariid and stenopariid sutures.

pulvinar furrow. Longitudinal furrow bounding pulvinus abaxially.

pulvinus. Swollen longitudinal lobe bounded adaxially by axial furrow and abaxially by pulvinar furrow in encrinurids Cybelinae.

pustule. Small, rounded elevation on any part of external surface of exoskeleton. See tubercle.

pygidial collar. Curved ridge on inner side of posterior border of pygidium of Agnostina; may be continuous or have a median gap.

pygidium (pl., pygidia). Posterior tagma in trilobites, composed of fused somites, applied by authors to posterior portion of exoskeleton separated from thorax by articulation (syn., caudal shield, tail, tail shield).

pygopleura (pl., pygopleurae). See pleural field (of pygidium).

pygorasch. See axis (of pygidium).

pygosternum. See thoracycopeyon.

pygosternum furrow. See axial furrow.

pygal furrow. See accessary furrow.

pygal ring. See axial ring.

rachis (pl., rachises). See axis.

rachial furrow. See axial furrow.
rachial ring. See axial ring.

radian. Descriptive of Agnostina when notular line is present on pygidial axis.

rhynchos. Swollen anteromedian protuberance on anterior lobe of middle body of hypostome (as in encrinurids or calymenids).

rib. Portion of pygidial pleural region bounded by two successive pleural furrows (syn., pleural rib).

rib furrow. See interpleural furrow.

rim. Narrow peripheral ridge on either upper or lower lamella of fringe in Trinucleidae and Harpidae; rims united at external edge by a flat, vertical marginal band. In Harpidae rim present on external and internal edges of prolongation.

ring. See axial ring.

ring furrow. See inter-ring furrow.

ring process. Projection backward from posterolateral corner of axial ring, fitting into socket in next posterior ring.

ring socket. Hollow at extremity of articulating furrow and articulating half-ring for reception of ring process of next anterior ring.

rosette. Axial node in flared depression separating posteroatrial exoskeleton.

rostellum. Small subtriangular plate enclosed between...
rostral suture. Suture bounding anterior edge of unpai
ded, median rostral plate and separating it from the cran
dium.

rostrum. See rostral plate.

Ruga (pl., rugae). Ramifying, relatively broad, radiating ridges on the acrolobe of Agnostina.

S. Abbreviation for occipital or lateral glabellar furrow (sulcus), numbered forward from posterior, SO (oc
cipital), S1, S2, S3, etc.

Sagittal. Direction along axial line of body (abbreviation, sag.).

Sagittal band. Smooth zone along pygidial axis, level with and joining tops of axial rings, interrupting inter-ring furrows.

Sagittal groove. Smooth zone along pygidial axis, depressed below axial rings, which it interrupts partly or completely.

Sagittal line. Median line of body (syn., axial line).

Schizochroal eye. Eye with visual surface consisting of number of biconvex lenses, rounded or polygonal in outline, each lens covered by individual cornea and separated from others by sclerotic walls (syn., aggregate eye).

Sclerite. Portion of exoskeleton into which it is divided either by an articulation (or during exuviation) by a suture.

Scrobiculae. Radiating furrows between rugae in Agnostina; groove or row of pits between border and epiborder furrows in eodis
cords.

Scrobiculate. Refers to presence of scrobiculae in Aggnostina.

Sculpture. Refers to the features of the external surface of the exoskeleton, whether it is smooth or bears lirae, terrace ridges, tubercles, granules, pits, etc. (syn., ornament, prosoxon).

Segment. Exoskeleton of individual thoracic somite, divided into axial ring and pleura with doublure. Also used as a synonym of podomere.

Semi-ankylosed segment. Posterior thoracic segment that may or may not be fused to the pygidium as in certain Redlichini and paradoxicids.

shield. See exoskeleton.

shoulder (of hypostome). Anterolateral part of lateral border of hypostome, separated from anterior wing by lateral notch, generally the widest and most inflated part of lateral border; ridge crosses doublure of hypostome below shoulder (syn., lateral projec
tion of hypostome).

shoulder of pygidium in Agnostina. Ridge on ante
orior edge of pleural lobe, borders facet on inner side.

shoulder furrow (of pygidium in Agnostina). Separates shoulder from acrolobe; may be continuous with border furrow or cross border to margin.

side lobe. See pleural region.

Simplimarginate. Pygidium of Agagnosta in which border is not modified by pygidial collar.

Sole. See eye sole.

Somite. Transverse division of arthropod body (syn., metamer).

Spectaculate. See axial glabellar node.

Spine furrow. Longitudinal furrow on genal spine, a continuation of the lateral or posterior border furrow, or of both furrows.

Stenopcephopariid rostral suture. Connective suture marginal to narrow (tr.) rostral plate (contrast with euptychopariid suture).

Sternite. Sclerite of ventral portion of a somite.

Subcostula. See subcostula groove.

Subocular furrow. See vincular structure.

Subcranial furrow. See vincular structure.

Subgenal notch. Notch in posterior margin of cephalon attached to base of genal spine.

Submarginal suture. Suture following margin of cephalon, slightly inside and below distal edge.

Subocular area. Small, smooth area of librigena adjoining posterior portion of eye.

Subocular groove. Smooth, bandlike depression of librigena surrounding visual surface of eye.

Subocular ridge. Narrow ridge confining axially the subocular groove.

Supplementary lobe. See intermediate lobe.

Sutural ridge. Narrow ridge upon (or beside) which either branch of facial suture may be present on exterior surface of dorsal exoskeleton (syn., false eye ridge).

Suture. Line along which portions of cephalic exoskel
ton separated at exuviation. See cephalic, circum
cocular, connective, facial, hypostomal, marginal, perrostral, and rostral sutures.

tail. See pygidium.

tail shield. See pygidium.

telopod. See inner branch.

telopodite. See inner branch.

telson. Postsegmental part of arthropod body, bearing anus and commonly caudal furca or pair of cerci. Postcephalopod somites form successively at the ante
orior margin of the telson during ontogeny.

tergite. Sclerite of dorsal portion of a somite. Not pre
cisely equivalent to thoracic segment, because latter includes doublure.

terminal area (of pygidium). That part of pleural field or pleural region (in species having a ribbed field) that lies posterior to last rib.

terminal axial piece (or ring). Portion of axis of pygidium behind last inter-ring furrow (syn., posterior median lobe of pygidium, terminal axial segment).
terminal axial segment. See terminal axial piece.

terminal axial spine. Projection of median dorsal surface of terminal portion of axis of pygidium.

terminal node (of glabella). Small node at rear of glabella in Agnostina.

terminal node (of pygidial axis). In Agnostina, node at rear extremity of posteroaxis or intranotular axis.

terminal septum. Internal septum produced by median thickening of exoskeleton at steep termination of the axis in Proetoidea.

terrace ridges. Asymmetrical ridges on external surface of exoskeleton, having a steep scarp and gentle dip slope, may be parallel, subparallel, or anastomosing.

test. See exoskeleton.

thoracic recess. Median indentation in anterior margin of first thoracic segment (which lacks the articulating half ring) in Agnostina. See cephalothoracic aperture.

thoracic segment. See segment.

thoracopygon (pl., thoracopyga). Exoskeleton of thorax and pygidium (syn., pygothorax).

thorax. Region of trilobite body between cephalon and pygidium in which successive somites are articulated; also used to refer to exoskeleton of region, the segments of thorax. The thorax may show a division into prothorax and opisthothorax.

torular tubercle. Surmounts torulus and may persist in similar position after torulus has disappeared.

torulus. Rounded swelling beside glabella (typically opposite S2) on fixigena in early growth stages of encrinurids.

transaxial furrow. See inter-ring furrow.

transglabellar furrow. Continuous furrow across glabella resulting from meeting of adaxial ends of a pair of lateral glabellar furrows. In Agnostina furrow (F3) that separates the anterior and posterior glabellar lobes, anteroglabella and posterglabella (syn., anterior furrow).

transitory pygidium. Fused segments of posterior region of exoskeleton during meraspid period.

transmarginal genal spine. Genal spine that arises from genal field, not from border.

transverse. Term used to designate the direction at right angles to sagittal line (abbreviation, tr.).

transverse preglabellar ridge. Transverse ridge crossing preglabellar field a short distance behind anterior border furrow. Contrast with preglabellar ridge.

tricomposite glabellar lobe. See bullar lobe.

tropidial ridges. Short, discontinuous, raised ridges that occupy similar position to tropidium.

tropidium (pl., tropidia). Concentric ridge that traverses preglabellar field and librigena a short distance inside and parallel with anterior border. Not coincident with inner margin of doublure.

tubercle. Small, knoblike prominence on external surface of exoskeleton. See pustule.

unconstricted. See acrolobe.

upper lamella. Upper or dorsal plate of fringe, as in Harpetidae, Harpididae, and Trinucleidae.

upper rim (external or internal). Smooth, raised portion of upper lamella of fringe as in Harpetidae, Harpididae, and Trinucleidae.

ventromarginal suture. See perrostral suture.

vincular structure. Furrow (subcephalic, subcranial), depression (or series of depressions), protuberance, ridge, or other structure associated with enrollment. See coaptation.

visceral features. Features of inner surface of exoskeleton.

visual surface (of eye). External surface of eye that bears lenses and is bounded above by palpebral portion of facial suture (syn., eye lappet). The visual surface may be bounded below by an ocular suture, so that there is a circumocular suture.

walking leg. See inner branch.

wing (of hypostome). See anterior wing, anterior wing process, posterior wing.

zonate. Situation in pygidium of Agnostina in which border is duplicated by pygidial collar between marginal spines.
SYSTEMATIC DESCRIPTIONS OF THE
CLASS TRILOBITA

H. B. WHITTINGTON, W. T. CHANG, W. T. DEAN, R. A. FORTEY, P. A. JELL,
J. R. LAURIE, A. R. PALMER, L. N. REPINA, A. W. A. RUSHTON, and J. H.
SHERGOLD

[Diagnoses of ordinal and higher taxa by R. A. FORTEY and H. B. WHITTINGTON; authorship
of other diagnoses indicated within.]

Class TRILOBITA Walch, 1771

[nom. correct. ex Trilobiten WALCH, 1771, p. 120] [This name, as
"Trilobiten," was published by WALCH (1771, p. 120) in his volume III of
KNORR and WALCH (1768–1774). WALCH's work was rejected for nomen-
clatorial purposes by the International Commission on Zoological Nomen-
clature (Opinion 529, 1958). However, the Commission's remit extends
only to the family-group level (Article 1b(4), International Code of Zoologi-
cal Nomenclature, 1985), hence the name, emended to "Trilobita," remains
available. The designation of the genus Dalmanites as type
(HENNINGSMOEN & MOORE in MOORE, 1959, p. 172) is invalid.]

Extinct marine arthropods, body divided
by furrows longitudinally into median (axial)
and lateral (pleural) regions, transversely into
cephalon of fused segments, thorax of articu-
lated segments, and pygidium of few to
many fused segments. Length of mature in-
dividuals ranges from a little over 1 mm to
about 700 mm.

Dorsal exoskeleton and periphery of ven-
ter (doublure) calcified (but see comments
on Naraoiidae); calcified plate (hypostome)
[pro Agnostini SALTER, 1864a, p. 2] anterior to mouth and below anterior axial
region. Anterior wing of hypostome extend-
ning dorsally to a fossula in the axial furrow.
Facial suture characteristic, absent in
Olenellina, but may be secondarily lost or
modified. Rostral plate or median suture
present, or cheeks conjoined. Cephalon with
one pair of eyes (which may be lost), each eye
lobe connected to axial region by raised
ridge; eye lenses of crystalline calcite. Slightly
oblique-transverse pleural furrows at poste-
rionic of cephalon, on each thoracic segment,
and on pygidial segments. Growth of exo-
skeleton proceeded by molting from calcified
protaspid about 1 mm long to adult, and by
sequential release of segments into thorax.
Protaspides of Olenellina and Agnostina not
known. Limbs (where known) include one
pair of antennae, followed postorally by se-
ries of generally similar biramous limbs, of
which three (possibly four in one species) are
cephalic. Lower Cambrian (Atdabanian)—
Upper Permian.

Order AGNOSTIDA Salter, 1864

[nom. correct. Shergold, LAURIE, & SUN, 1990, p. 32, pro Agnostini
SALTER, 1864a, p. 2] [pro Miomera JAEKEL, 1909, p. 394; Agnostida
KOBAYASHI, 1935, p. 81, see discussion in ROBISON & CAMPBELL, 1974,
p. 281]

Diminutive, isopygous, 2 or 3 fulcrate
thoracic segments. Cephalic shield with
deeply parabolic outline and maximum
width (tr.) usually anterior to genital angle;
border convex; glabella commonly fusiform,
widest at base (except in Condylopygidae).
Hypostome natant; rostral plate lacking or
uncalcified. Outline of pygidium closely
matching that of cephalon. Lower Cam-
brian—Upper Ordovician.

Suborder AGNOSTINA
Salter, 1864

[nom. correct. Shergold, LAURIE, & SUN, 1990, p. 32, pro Agnostini
SALTER, 1864a, p. 2]

No eye or facial suture; 2 thoracic seg-
ments; cephalothoracic aperture present;
pygidium generally with wide axis, margin
commonly bearing posterolateral spine. Cu-
ticle thin. Calcified protaspid not known.
Lower Cambrian—Upper Ordovician.

INTRODUCTION TO THE
SUBORDER AGNOSTINA

JOHN H. SHERGOLD and JOHN R. LAURIE

The historical background to the classifi-
cation of this suborder has recently been
discussed in detail (Shergold, LAURIE, & SUN,
1990, p. 1–3). The classification presented
here is as developed in that paper and essen-
tially follows ideas on relationships that have

© 2009 University of Kansas Paleontological Institute
been generated mainly in Australia, through the work of A. A. ÖPIK, and North America, particularly by R. A. ROBISON, during the past three decades.

ÖPIK (1967, p. 65) arrived at the general conclusion that due to the “combinative nature” of most taxa, “all agnostoids within their suborder are relatively close to each other, constituting a single superfamily, Agnostacea, with a restricted number of interrelated families.” ÖPIK’s classifications rely heavily on basic objective characteristics that allow intergrading morphologies to be independently diagnosed (e.g., ÖPIK, 1979). Although we do not follow his classifications here implicitly, we do agree that only characteristics in combination can be used for sophisticated taxonomic discrimination. Accordingly, we have made use of extended diagnoses particularly at family rank to facilitate assessment of the fullest range of permutations. In general, fewer, more succinctly diagnostic characteristics link genera at subfamilial level, as indicated in the review below. The approach has been adopted because Agnostina reiterate morphological conditions at different times in different familial groups, e.g., varying effacing or emphasizing external morphology, constricting acrolobes, developing zonate borders, effacing the anterior glabellar lobe or sagittally splitting it, or modifying the posterior pygidial axial lobe. We have in general made use of axial criteria to define broad groups at the familial and subfamilial level and degrees of effacement or scrobiculation at the generic and subgeneric level. As a result we emphasize morphological continuity.

Compared to treatment of Agnostina in the previous Treatise, we have also given more extended geographic and stratigraphic ranges. The former are given to state or province regions and the latter to local biochronological stage and zone. This is an acknowledgment of the stratigraphic and biofacies importance of these trilobites on a global scale, particularly during the Cambrian. First and last occurrences of taxa may not be the same in different zoogeographical provinces with different biofacies relationships and biochronologic schemes.

In addition, because the Linnean system of classification relies on the concept of the type specimen, we have included what is currently known about the status of the type material, its repository, and numbers assigned. Several old collections remain unlocated; several taxa are based on syntype material requiring the designation of lectotypes; and in some instances types are known to be lost, necessitating the search for topotype material and justification of neotypes.

In almost all instances the extant type material has been illustrated, frequently supplemented by more complete material to better illustrate the generic concepts. Where type material is not identified, suitable topotypes or other subjectively selected specimens are figured.

Suborder Agnostina, as used here, is based on concepts traditionally attributed to SALTER (1864a), who recognized a Section Agnostini. This is the suborder Agnostina of MOORE (1959), RUSHTON (1966), and ÖPIK (1961b, 1967, 1975b, 1979), and the order Agnostida of RASSETTI (1945a, 1948b, 1952a), SHERGOLD, LAURIE, and SUN (1990), and SHERGOLD (1991). ROBISON (1984) has also diagnosed an order Agnostida but attributed it to KOBAYASHI (1935) rather than SALTER (1864a).

A total of 190 generic and subgeneric taxa assignable to the Agnostina have been assessed. Of these, four taxa are rejected from Agnostina, and a further six are *nomina nuda*. About thirty percent of the rest are synonyms, leaving for classification 123 valid taxa. These are assigned to the superfamilies Condylopogoidae and Agnostoidea and two families of uncertain affinity, Phalacromidae and Sphaeragnostidae.

Although Condylopogoidae is based on the single family Condylopogidae RAYMOND, 1913a, itself containing only two genera, *Condylopsis* and *Pleuroctenium*, its concept is stable and goes back to the first attempted generic subdivision of *Agnostus* by HAWLE and CORDA (1847). At one taxonomic rank
or another, the constituent genera of Condylopygidae have retained independent status in all classifications. We follow KOBAVASHI (1962) in recognizing them at the superfamilial level, but the familial concept remains that advocated by RAYMOND (1913a). The characteristic expansion of the anterior glabellar lobe, the apparent presence of occipital structures instead of the basal lobes, the possible retention of a cephalothoracic aperture (if RUSHTON, 1979, p. 45 is correct), and the presence always of three anterior segments in an otherwise axiolobate pygidium differentiate Condylopygoidea from Agnostoidea. Condylopygoids are also prone to spinosity: an occipital spine may be developed, and the elongate axial cephalic node may be an aggregation of small spines (see RUSHTON, 1979, p. 47, fig. 2a). Pleuroctenium also displays spines developing from the axial nodes of the thoracic and anterior three pairs of pygidial segments. Fringing spines or crenulations occur on the pygidia of both genera. There is also a tendency, well illustrated by WESTERGÅRD (1946, pl. 2), for both cephalic and pygidial acrolobes to become transversely divided. Division occurs adjacent to the anterior glabellar furrow of the cephalon and the third, posteriormost (F3), transverse furrow of the pygidal axis. It is only among the Pseudagnostinae that such features are displayed among Agnostoidea. Condylopygoidea are therefore most distinctive members of the Agnostina.

The great bulk of agnostoid genera and subgenera are assigned to the superfamily Agnostoidea and distributed among seven families and ten subfamilies. A significant number of genera cannot be classified with confidence at the familial level, either because they are inadequately preserved or are not diagnosable. Many of these genera are highly effaced, and most are in need of thorough revision. Agnostoid families recognized include Agnostidae, Ptychagnostidae, Spinagnostidae, Peronopsidae, Diplagnostidae, Clavagnostidae, and Metagnostidae. Micagnostidae (HOWELL, 1935b), Glyptagnostidae (WHITEHOUSE, 1936), Hastagnostidae (HOWELL, 1937), and Rudagnostidae (LERMONTOVA, 1951a) are all considered synonyms of Agnostidae. Agnostidae, the largest family of Agnostina, is presently considered to embrace three subfamilies: Agnostinae with fourteen genera and subgenera; Ammagnostinae with seven genera and subgenera; and Glyptagnostinae with two genera. A further five genera cannot be placed in subfamilies. Agnostid genera can be divided in several ways, but the axial characteristics, particularly of the pygidium, have been primarily used in the present classification. In Agnostinae the pygidium is simple and axiolobate; in Ammagnostinae the posterior lobe of the pygidal axis is invariably expanded and lengthened and contains a well-developed secondary axial node; in Glyptagnostinae, although the simple axiolobate situation is commonly obscured by scrobiculation, a secondary axial node is developed in association with a well-defined transverse depression that occurs in the rear of the posterior lobe.

Use of the subgeneric rank is made within Agnostinae to express end members of gradational morphological series. Hence, Homagnostus is reinstated as a subgenus of Agnostus, representing morphs with a laterally expanded and extended pygidal axis. Lotagnostus (Lotagnostus), L. (Eolotagnostus), and L. (Distagnostus) represent recognizable degrees of effacement. In the revived genus Oncagnostus (WHITEHOUSE, 1936), the subgenus Strictagnostus is made available for morphs with short axes that have characteristically flared or tapered acrolobes, and the subgenus Kymagnostus is used for those with long axes without deliquiate border furrows. LUDVIGSEN, WESTROP, and KINDLE (1989) have shown that Trilobagnostus should not be referred to Lotagnostus. It is here given generic status but could also be interpreted as a subgenus of Oncagnostus. The species referred to the genera and subgenera Oncagnostus, Strictagnostus, Kymagnostus, and Trilobagnostus seemingly form a continuum in great need of revision. Innitagnostus and Acutatagnostus could also be regarded as
subgenerically related. *Micagnostus*, following the suggestions of FORTEY (1980b, p. 20), is restricted in specific composition but decidedly separated from *Geragnostus* (Metagnostidae) with which it has long been associated.

Glyptagnostinae is here regarded as a subfamily of Agnostidae rather than a family in its own right (KOBAYASHI, 1938, 1939a; WESTERGÅRD, 1947; HENNINGSMOEN, 1958; ÖPIK, 1961b; SHERGOLD, 1982). It is restricted here to the genera *Glyagnostus* and *Agnostostis*, as envisaged by ÖPIK (1963, p. 38). The previously recognized subgenus *Lispagnostus* is considered here to be synonymous with *Ammagnostus*. The highly *scrobiculate* and deuterolobate *Pseudoglyagnostus*, which has been associated with Glyptagnostinae, is referred to *Pseudagnostinae* (family Diplagnostidae) and regarded as an *en grande tenue* subgenus of *Agnostotes*. We prefer to regard Glyptagnostinae here as a subfamily of Agnostidae, rather than of Diplagnostidae as proposed by ÖPIK (1967), on the basis of cephalic axial similarity with such genera as *Innitagnostus* and pygidial axial similarity with *Agnostus* itself.

Genera of the Ammagnostinae form a cohesive group with the exception perhaps of the diminutive *Kormagnostella* as recognized by ÖPIK (1967). *Tentagnostus* is considered to be an *en grande tenue* subgenus of *Agnostotes*. *Proagnostus* is revived following ROBISON's (1988) designation of a lectotype for *P. bulbus*. *Agnostostis* and *Agnostostus (Paragnostostus)* must now be regarded as synonyms of *Proagnostus*.

Of uncertain subfamilial classification, *Aistagnostus* is partially effaced, the pygidium of Agnostinae type. The cephalon, however, is not like that of members of this subfamily. The remaining unclassified genera have long or long and expanded, posterior axial pygidial lobes. *Idolagnostus* is diminutive, could be deuterolobate, and may represent a genus of *Pseudagnostinae*. *Acmarhachis* has been similarly classified (PALMER, 1960, 1962a), and *Connagnostus* has been regarded by ÖPIK (1967) as a Diplagnostinae. Until investigated in greater detail, however, we prefer to give these genera an undefined status among Agnostidae.

The family Ptychagnostidae is here considered to represent an independent family (*fide* ROBISON, 1984, p. 10), rather than a subfamily of the Agnostidae as originally established (KOBAYASHI, 1939a, p. 151) and often considered (ÖPIK, 1967, p. 90; 1979, p. 86; ERGALIEV, 1980, p. 67; PENG, 1992, p. 82; LAURIE, 1988, p. 171). The members of this family, although sharing some features with members of the Agnostidae, do not seem to be closely related to that family. Although there has been recent debate about the validity of many of the genera belonging to Ptychagnostidae (ÖPIK, 1979; ROBISON, 1982, 1984; LAURIE, 1988), there has been general agreement with regard to the association of species in the family. Genera belonging to the Ptychagnostidae usually have a median preglabellar furrow, a relatively elongate anterior glabellar lobe, elongate basal lobes, a basic articulating device, well-developed pygidial axial F1 and F2, an acuminate posterior pygidial axial lobe, and a tendency toward spinosity. Included in this family is *Tomagnostus*, the early species of which seem to be closely related to *Onymagnostus*. Using the principle of first reviser, SHERGOLD, LAURIE, and SUN (1990) selected Ptychagnostidae (KOBAYASHI, 1939a) as the family name. It may be possible to recognize several subfamilies using some of the synonymous familial names (Triplagnostinae, Lejopyginae), but this has not been attempted herein.

The family Spinagnostidae was established by HOWELL (1935a, p. 218) to accommodate the subfamilies Spinagnostinae and Quadragnostinae, both of which were founded on only one genus, each containing one species. The types of these species are very poorly preserved. For some time now the genus *Spinagnostus* has commonly been considered synonymous with *Hypagnostus* (see WESTERGÅRD, 1946, p. 44), despite ÖPIK's (1979, p. 66) belief that it should be considered a separate genus. This synonymy is upheld herein but does not invalidate the
family name. The types of the eponymous genus of the subfamily Quadragnostinae are very poorly preserved and are largely uninterpretable. Quadragnostus is therefore restricted to its type material.

As understood herein, the family Spinagnostidae contains two subfamilies: Spinagnostinae and Doryagnostinae. All members of this family have nondeliquiate border furrows; a nonspinose cephalon; small, triangular basal lobes; usually broadly rounded glabellar culmination; and usually effaced pygidial axial F1 and F2. While the Spinagnostinae may be polyphyletic, all of its members have a tendency to efface the anterior glabellar lobe, usually lack the median preglabellar furrow, have the glabellar node near the F2 furrows, and lack a secondary axial node on the posterior lobe of the pygidial axis. The subfamily Doryagnostinae consists of only three genera, which form a closely related, monophyletic group. All possess a well-developed anterior glabellar lobe, have the glabellar node located from level with F1 to midway between F1 and F2 furrows, and have a small secondary axial node located on the posterior pygidial axial lobe.

One genus assigned to Spinagnostidae, Pseudoperonopsis (Harrington, 1938), cannot be placed in a subfamily. This is because the types have never been satisfactorily illustrated and were not available to us for study. Subsequent interpretations vary considerably.

There are probably well over a hundred species that have been assigned to Peronopsis, and these remain there despite refinement in agnostoid taxonomy over the last few decades. This genus has for a long time been the receptacle for almost any Early to Late Cambrian agnostoid having an axiolobate, simplimarginate pygidium with effaced pygidial axial F1 and F2 and a cephalon with a bilobate glabella lacking a median preglabellar furrow. This has led to Peronopsis being, as it presently stands, probably the most morphologically diverse genus of the Agnostina. Herein, the genus is restricted to its type species and is associated with the rehaborinated genus Diplorrhina and with Peronopsis and Gratagnostus in the family Peronopsidae (Westerård, 1936). This family is of uncertain relationships, but the included genera have a distinctive morphology.

The family Diplagnostidae is essentially reserved for agnostoids that are commonly modified axiolobate (in the sense of Öpik, 1967) and frequently zonate. Thus the family includes the subfamilies Diplagnostinae, Oidalagnostinae, and Pseudagnostinae. The Diplagnostinae have a characteristically zonate pygidium in combination with an axiolobate or only slightly modified axiolobate condition; the cephalon has an often sulcate and occasionally bilobate anterior glabellar lobe and angulate glabellar culmination. Frequently, a transverse depression is developed behind the pygidial axial node in the anterior half of the posterior lobe. Such characteristics tend to unite the genera Diplagnostus, Linguagnostus, Dolichagnostus, and Tasagnostus into a close morphological group.

Öpik (1967, 1979) also included the genera Baltagnostus (Lochman in Lochman & Duncan, 1944) and Oedorbachi (Resser, 1938) in the subfamily Diplagnostinae. In the former, it is only the type species, B. centerensis, that is convincingly zonate. Other species assigned to this genus by subsequent workers are simplimarginate or have thickened posterior pygidial borders that are not really zonate in the sense of Diplagnostus or Linguagnostus: they are quasizonate, having a gentle doubling of the border. Similar are the species attributed by Öpik (1979) to Pseudoperonopsis (Harrington, 1938), which form a well-defined group stratigraphically but will require generic reassessment when the type species, Agnostus sallesi (Munier-Chalmas & Bergeron in Bergeron, 1899), is revised. As noted by Öpik (1967, p. 69), specimens illustrated as Peronopsis fallax by Westergärd (1946, pl. 2, figs. 18–24) also have an incipient zonation. All the above may, therefore, form a second group of taxa that lies intermediate between the basically nonzonate Peronopsidae and
the typically zonate Diplagnostinae. Species assigned to *Oedorhachis* are generally acceptably zonate but are also trispinose and have a variably laterally expanded posterior pygidial axial lobe, a combination of characteristics that sets them slightly apart from other Diplagnostinae.

The subfamily Oidalagnostinae also has a zonate pygidium, but there is a gap in the pygidial collar. The pygidia have a modified axiolobate condition, the posterior lobe is subquadrate and extends to the pygidial collar, and a third marginal spine is situated sagittally. The morphologies of the constituent genera, *Oidalagnostus* and *Cristagnostus* are readily related to and probably derived from Diplagnostinae. A major feature in their phylogeny is the separation of the anterior portion of the posterior axial lobe as seen in *Diplagnostus*, apparently as a third axial ring, and the manifestation of lateral bosses as appendages to this third segment (see Westergård, 1946, pl. 9, fig. 6 for extreme condition). These features seem to foreshadow the development of the accessory furrows and deuterolobe that characterize Pseudagnostinae.

The Pseudagnostinae are usually simplimarginate diplagnostids, which develop a deuterolobe proper and accessory furrows. They are linked to other groups of Diplagnostidae by the occasional presence of a third pygidial spine, as in *Pseudagnostus* (*Sulcatagnostus*), and triannulate anterior part of axis, as in *Xestagnostus*. The Pseudagnostinae are a large group of genera that exhibit a wide range of deuterolobe morphology and degrees of effacement. Relationships of genera and subgenera are determined by the situation of the axial glabellar node relative to the F2 and F3 furrows (Shergold, 1975, 1977, 1980), falling into groups related to *Pseudagnostus*, *Neoagnostus*, and *Rhaptagnostus*, respectively. Degree of effacement varies from nearly total in *Litagnostus* to extreme scrobiculation in *Neoagnostus* (*Machairagnostus*), *Agnostotes* (*Agnostotes*) (Örik, 1963) and *A. (Pseudoglyptagnostostus)*, with its synonym *Glyptagnostostes* (Lazarenko, 1966), has been classified by authors in Glyptagnostinae (for example, Xiang & Zhang, 1985), but they are here classified among the Pseudagnostinae because their pygidia seem to be typically deuterolobate (see particularly Lazarenko, 1966, pl. 2, fig. 1–2, 5–6, 8, 10–12). Characters of the cephalon of Glyptagnostinae, like the elaborate development of the lateral glabellar lobes and division of the anterior lobe by a median sulcus, are apparent in the scrobiculate subgenus *Pseudoglyptagnostostus* but much less marked in the more effaced *Agnostotes*. Neither subgenus possesses the typical posterior axial lobe with its secondary axial node and associated transverse depression. Örik (1963, 1967) has explored alternative possibilities for the classification of *Agnostotes* within the Diplagnostidae.

The definition of the deuterolobe has been debated (see Pratt, 1992, for discussion and opinion different from that below). It is a composite posterior pygidial lobe that comprises both axial and pleural elements and that extends therefore to the posterior border furrow and is anterolaterally at least circumscribed by accessory furrows. Possibly, then, such genera as *Oxyagnostus* should be excluded from Pseudagnostinae and such forms as *Idolagnostus* included. Some others, for example *Formagnostostes*, judging from its relationship with *Nahannagnostostes* (i.e., the bulgosus species group of *Pseudagnostostus*; see Shergold, 1977), seem to indicate derivation from Agnostidae and suggest that the subfamily Pseudagnostinae could be polyphyletic. Further revision is required to solve such issues. Fortey (1980b, p. 28) has regarded the Pseudagnostinae as somehow related to the Metagnostidae because some of them possess what might be taken to be an intranotular axis behind the defined extent of the pygidial axis. He also noted the glabellar furrow patterns, the deliquiation of the border furrows, common pygidial articulating device, and the occurrence of a common prosopon. However, many morphological trends found among agnostoids are subsequently reiterated in apparently unrelated groups. Features of Pseudagnostinae are found in Middle Cambrian Oidalagnostinae.
(Diplagnostidae) and in Glyptagnostinae (Agnostidae). The transverse division of the cephalic acrolobe of the latest Cambrian genus _Trisulcagnostus_ may be observed also in Condylopygidae.

Clavagnostidae has been long recognized as an independent family, like Condylopygidae, of unknown origin and with unknown descendants. It has been discussed at length by Öpik (1967), whose subfamilial division into Clavagnostinae and Aspidagnostinae is followed here. Clavagnostidae are distinguished by the fused anterior and posterior glabellar lobes and generally shortened glabella. Clavagnostinae have a relatively simple pygidium, characterized by an acuminate axis posteriorly bisected by a transverse furrow somewhat similar to that of Glyptagnostinae. In Aspidagnostinae the pygidial axis has both F1 and F2 furrows, the posterior transverse one, and a secondary axial node, also rather reminiscent of Glyptagnostinae. The posterior border of taxa in Clavagnostinae is, however, zonate, and there is a gap in the collar as in _Oidalagnostus_. A hint of a third marginal pygidial spine in Aspidagnostinae also recalls _Oidalagnostus_. _Utagnostus_ is temporarily placed with the Clavagnostidae by virtue of its trispinose pygidium and nature of its cephalic spines.

The family name Metagnostidae was revived by Fortey (1980b, p. 24) to embrace some of the genera previously most commonly referred to Geragnostidae (Howell, 1935b; see also Howell in Moore, 1959, p. 176). Fortey (1980b, p. 27) also included the genera _Segmentagnostus_ and _Corrugagnostus_, those genera with a chevronate furrow separating the two main glabellar lobes. This taxonomic scheme is followed herein with modifications, notably some of those introduced by Zhiyi Zhou (1987).

Two, long-accepted families, Phalacro- midae and Sphaeragnostidae are unclassified at superfamilial rank. The former is based on the genera _Phalacroma_, _Lisogoragnostus_, and _Dignagnostus_ and the latter on _Sphaeragnostus_ alone.

Phalacromidae, concept and composition, has been discussed at some length by Öpik (1961b) and Jago (1976). It has been regarded as polyphyletic (Öpik, 1967, p. 82). We follow Öpik (1961b, p. 54) in recognizing the validity of the family, but restrict it to the genera noted above. All other genera previously associated with Phalacromidae (Phalagnostus, Grandagnostus, Valenagnostus, Phoidagnostus) are classified elsewhere. The inclusion here of _Dignagnostus_ (Hajrullina in Repina, Petrunina, & Hajrullina, 1975) is based on pygidial characteristics, and there is no certainty that associated cephalothorax illustrated by this author are correctly assigned. If the association of cephalothorax and pygidium illustrated by Hajrullina is correct, then _Dignagnostus_ must be rejected from Phalacromidae, which would then be restricted to _Phalacroma_ as indicated by Öpik (1967). Pygidia of _Dignagnostus grandis_ and _Phalacroma bibullatum_ are unified by the long (sag.), wide (tr.), and laterally expanded axis; effacement of transverse furrows; shape and position of the axial node; and retention of a transverse depression behind the axial node, a characteristic feature of _Peronopsis_ and _Diplagnostus_, which may indicate the derivation of Phalacromidae. If cephalothorax assigned to _Dignagnostus_ are ignored, species of Phalacromidae are relatively large and mostly effaced.

Effacement also is responsible for the isolation of Sphaeragnostidae. The genus _Sphaeragnostus_ is widely distributed during the Ordovician and quite characteristic. The cephalon is completely effaced, and the pygidial axis an unfurrowed, spheroidal structure of substantial width (tr.). Thoracic axial structures are also very wide (tr.), limiting the extent of the pleurae. There is no guarantee that Sphaeragnostidae or Phalacromidae are true Agnostina, as the presence of a cephalothoracic aperture is not confirmed in either group.

Twenty-one genera are left unclassified at familial level. Mostly this is because their type specimens are not readily interpreted due to effacement of diagnostic morphology (Agnostogonus, Delagnostus, Letagnostus, Monazagnostus, Phoidagnostus, Glabergagnostus, Grandagnostus, Škrjagnostus, and...
Valenagnostus) or adverse preservation (Arhachagnostus, Armagnostus, Blystagnostus, Hastagnostus, and Quadragnostus), or both (Ciceragnostus and Gallagnostus). Plurinodus is a diminutive genus that may prove supragenerically classifiable when more material becomes available. Phalagnostus may be classifiable when it is properly illustrated.

PRATT (1992) has recently erected the family Phalagnostidae for the effaced genus Phalagnostus, whose relationships with otheragnostoids, particularly Grandagnostus and Valenagnostus, have not been thoroughly explored.

Four genera are rejected from Agnostida. Two of them, Discagnostus (ÖPIK, 1963), the sole representative of the family Discagnostidae, and Mallagnostus (HOWELL, 1935b), on which Mallagnostidae (HOWELL, 1935b) is based, are considered better classified among Eodiscina. Gallagnostoides, founded by KOBAYASHI (1939b, p. 580) with Aeglinia boa (HICKS, 1875, p. 185, pl. 10, fig. 9, 9a) as type species, is a mid-Arenig species of the cyclopygid subgenus Microparia (Microparia) Hawle & Corda, according to FORTEY and OWENS (1987, p. 172). Pseudotrinodus (KOBAYASHI & HAMADA, 1971), from the Devonian of western Malaysia, is referred to Aulacopleurinae by THOMAS and OWENS (1978, p. 74).

Acknowledgments

We are grateful to the following people for criticism and advice on the manuscript and for assistance in obtaining information and illustrations of type material: H. B. Whittington, Sedgwick Museum, Cambridge; R. A. Fortey and S. E. Morris, Natural History Museum, London; A. W. A. Rushton and T. P. Fletcher, British Geological Survey; A. T. Thomas and P. J. Osborne, School of Earth Sciences, University of Birmingham; Pierre Lespérance, University of Montreal; Brian R. Pratt, University of Saskatchewan, Saskatoon; R. A. Robison, University of Kansas, Lawrence; F. J. Collier, Museum of Comparative Zoology, Harvard University, Cambridge; Jann Thompson, National Museum of Natural History, Washington, D.C.; George Theokritoff, State University of New Jersey, Newark; Miguel Manceño, Natural Science Museum, La Plata; J. B. Jago, University of South Australia, Ingle Farm; Sun Xiaowen, University of Adelaide; D. L. Bruton and Gunnar Henningsmoen, Paleontological Museum, University of Oslo; Valdemar Poulsen, Department of Historical Geology and Palaeontology, University of Copenhagen; Merete Bjerreskov and Arne Nielsen, Geological Museum, University of Copenhagen; Richard Reyment, Institute of Historical Geology and Paleontology, Uppsala University; Valdar Jaanusson and Christina Franzén-Bengtson, Swedish National Museum of Natural History, Stockholm; Yngve Grahn, Vivianne Berg-Madsen, and Göran Kjellstrom, Swedish Geological Survey, Uppsala; Per Ahlberg, Department of Historical Geology and Paleontology, University of Lund; Wolfgang Struve and Anne Archinal, Senckenberg Museum, Frankfurt am Main; Hermann Jaeger, Museum for Natural Science, Humboldt University, Berlin; Klaus Sdzuy and Gerd Geyer, Institute for Paleontology, University of Würzburg; Raimund Feist, University of Montpellier; Daniel Vízcaíno, Carcassonne; Françoise Debrène, National Museum of Natural History, Paris; Jiří Kríž and Radko Šarić, Czech Geological Survey, Prague; Michal Mergl, Department of Biology, Plzen; Gappar Ergaliev, K. I. Satpaev Institute of Geological Sciences, Alma-Ata; N. E. Tchernysheva, VSEGEI, Leningrad; N. P. Suvorova, Moscow; the late L. N. Repina, Institute of Geology and Geophysics, Novosibirsk; A. V. Zakharov, Paleontological Institute, Moscow; Xiang Liwen, Chinese Academy of Geological Sciences, Beijing; Zhang Wenhao and Zhou Zhiyi, Academia Sinica, Institute of Geology and Palaeontology, Nanjing; Teiichi Kobayashi, University of Tokyo.

© 2009 University of Kansas Paleontological Institute
Superfamily AGNOSTOIDEA
M'Coy, 1849

Agnostina—Agnostoidea

Family AGNOSTIDAE M'Coy, 1849

Agnostina with basal glabellar lobes anteriorly expanded, anterior glabellar lobe not laterally expanded. Lower Cambrian–Upper Ordovician.

Family AGNOSTINAE M'Coy, 1849

En grande tenue to effaced; border furrows nondeliquiate to deliquiate; cephalic border narrow and pygidial border of variable width; acrolobes usually unconstituted; median preglabellar furrow absent to well developed. Glabella with variably shaped anterior lobe; F3 straight or curved; F2 absent to well developed; glabellar culmination rounded, subquadrato, or obtusely angular; glabellar node from midway between F1 and F2 to in front of F2; basal lobes variable in size, usually simple, occasionally incorporating lateral portions of M2 lobe. Pygidium with usually long axis, commonly reaching border furrow, commonly constricted across M2; F1 variably impressed or effaced; M1 usually trilobate; F2 variably impressed or effaced; posterior lobe usually long and semiovate, ogival, semicircular, or bulbous, commonly with either a secondary axial node in posterior half or with a terminal node. Middle Cambrian–Upper Ordovician.

Subfamily AGNOSTINAE M'Coy, 1849

[=Agnostinae M'COY, 1849, p. 402]

Pygidium bispinose or nonspinose, with agnostoid or basic articulating device; pygidal axis simple, axiolobate, usually long but not reaching border furrow; F1 and F2 variably impressed; posterior lobe with or without terminal node. Middle Cambrian–Lower Ordovician.

Agnostus BRONGNIART, 1822, p. 38 [Entomostracites pisiformis WAHLBERG, 1818, p. 42; SD JAEKEL, 1909, p. 399; lectotype cephalon (WAHLBERG, 1818, pl. 1, fig. 5); SD SHERGOLD, LAURIE, & SUN, 1990, p. 32, ex Agnostinae M'Coy, 1849, p. 402]. Generally with relatively narrow borders. Cephalon with median preglabellar furrow; anterior glabellar lobe ovigal or rounded; posterior lobe tapering forward; axial node level with or slightly behind variably developed F2; basal lobes variable in size. Pygidium with long (sag.), variably wide (tr.), and tumid axis, usually not reaching border furrow, lacking median postaxial furrow; marginal spines present. upper Middle Cambrian–lower Upper Cambrian: Cosmopolitan.

A. (Agnostus) [=Battus DALMAN, 1827, p. 151 (type, Entomostracites pisiformis WAHLBERG, 1818, p. 42, pl. 1, fig. 5; SD JAEKEL, 1909, p. 399)]. Cephalon with ovigal anterior glabellar lobe, basal lobes of moderate to large size. Pygidium with long (sag.), relatively narrow (tx.), posteriorly pointed, or narrowly rounded axis; F1 and F2 very weak or effaced. upper Middle Cambrian–lower Upper Cambrian: northern Greenland; Sweden, Norway, Denmark, England, Wales, Canada (New Brunswick, Newfoundland). L. laevigata–A. pisiformis Zones; Australia (Queensland), E. erecta Zones. upper Middle Cambrian: Argentina.—Fig. 217,1a,b. *A. (A.) pisiformis (WAHLBERG), Upper Cambrian (A. pisiformis Zone), Sweden (Hönsäter, Hallevad-Billingen, Västergötland); a, lectotype, cephalon, PM Vg819a, X7.55 (new); b, paralectotype, pygidium, PM Vg819b, X6.95 (new).

A. (Homagnostus) HOWELL, 1935c, p. 15 [*Agnostus pisiformis LINNAEUS var. obesus BELT, 1867, p. 294; OD; lectotype (BELT, 1867, pl. 12, fig. 4a); SD RUSHTON in ALLEN, JACKSON, & RUSHTON, 1981, pl. 16, fig. 2; L7646, BMNH, London]. Pygidium with posteriorly broadly rounded axis extending nearly to posterior border furrow. Axis constricted across M2 with posterior lobe variably but always laterally expanded; F2 well developed; F1 always impressed laterally and only occasionally impressed medially; M1 variably tripartite. Upper Cambrian: northern Greenland; England, Wales, O. gibbosus–O. cataractes Zones; Sweden, Norway, Denmark, Olenus Zone; Russia (Novaya Zemlya, Yakutia, Altay Mountains), Kazakhstan, Pedinocephalina/Toxotis–Irvigellia Zones; China (Zhejiang, Manchuria, Liaoning; Pedinocephalina/Toxotis–Irvigellia Zones; Russia (Novaya Zemlya, Yakutia, Altay Mountains), Kazakhstan, Pedinocephalina/Toxotis–Irvigellia Zones; China (Zhejiang, Manchuria, Liaoning), O. gibbosus–O. cataractes Zones; South Korea, Pedinocephalina/Toxotis–Irvigellia Zones; Canada (Newfoundland, North-west Territories). *Cedaria minor et Irvigellia major Zones.—Fig. 217,2a,b. *A. (H.) obesus (BELT), Upper Cambrian (Olenus Zone), a, lectotype, northern Wales (Afon Mawddach, Dolmelynllyn), X8 (Allen, Jackson, & Rushton, 1981, pl. 16, fig. 2); b, exoskeleton, BMNH T66, England (Nuneaton district), X6.67 (Rushton, 1978, pl. 25, fig. 4).

© 2009 University of Kansas Paleontological Institute
Trilobita

340

Acutagnostus Ergaliev, 1980, p. 91 [*A. acutatus; OD; holotype (Ergaliev, 1980, pl. 11, fig. 16), 1950/184, GMAN, Alma-Ata]. Like Innitagnostus but with median preglabellar furrow only evident proximally; anterior glabellar lobe long and ogival; F2 well developed but F1 weak. Pygidium with retrally located spines; long axis extending almost to posterior border furrow; M1 and M2 clearly trilobate; F1 only laterally impressed. Upper Cambrian (Sakian); Kazakhstan, H. longiformis- P. curtare Zones.—Fig. 217, 3a,b. *A. acutatus Ergaliev, Upper Cambrian (Oncagnostus longifrons Zone).

© 2009 University of Kansas Paleontological Institute
Kazakhstan (Kirshabakty River, Lesser Karatau mountains); a, holotype, cephalon, GMAN 1950/184, X11; b, pygidium, GMAN 1950/185, X12 (Ergaliev, 1980, pl. 11, fig. 16–17).

Gymagnostus ROBINSON & PANTOJA-ALOR, 1968, p. 776 [*G. gongros; OD; holotype (ROBINSON & PANTOJA-ALOR, 1968, pl. 97, fig. 29), 158892, USNM, Washington, D.C.]. Almost effaced, but cephalon retaining very narrow borders, faint axial glabellar node, and partly outlined basal lobes. Pygidium with broader border, faintly constricted acrolobe, and weakly defined axial furrows and terminal node, which indicate the short axis; axial node prominent; posterolateral spines advanced. Upper Cambrian: Mexico, Cordylodus proaurus Zone; USA (Alabama, Newfoundland), Bolivia, Neoperabolina argentina Zone.—— Fig. 217, a,b. *G. gongros, Mexico (Santiago Ixtaltepec, Nochixtlán region, Oaxaca), Cordylodus proaurus Zone; a, cephalon, USNM 158887, X10; b, holotype, pygidium, USNM 158892, X10 (new).

Innagnostus ÖPIK, 1967a, p. 98 [*I. innitens; OD; holotype (ÖPIK, 1967, pl. 58, fig. 2), CPC 5853, AGSO, Canberra]. Median preglabellar furrow variably developed. Glabella with broad, trapeziform anterior lobe; F3 well impressed, nearly straight; posterior lobe with well-developed F1 and F2; lateral portions of M2 commonly separated from midmost glabella by weak longitudinal (exag.) furrows; glabellar node located from midway between F1 and F2 to level with F2; basal lobes of moderate size, trapezoidal. Pygidial axis of moderate length, constricted across M2; M1 trilobate; F1 well impressed, bent forward; F2 straight laterally, bent rearward by strong axial node. Posterior lobe ogival to semioval, usually narrowly rounded posteriorly, not reaching border furrow. Median postaxial furrow absent. Upper Cambrian: China (Guizhou, Hunan); Australia (Queensland), Mindyallan–Idamean (E. eretse to S. doloma Zones); Russia (Siberia), Kazakhstan, G. solidatus to P. curtare Zones; Canada (Northwest Territories, British Columbia, Newfoundland), Glyptagnostus reclusulus to Olenaspella regularis Zones; USA (Alabama, Nevada, Texas), Aphelaspis Zone.—— Fig. 217, a,b. *I. innitens, Upper Cambrian (Mindyallan, G. solidatus Zone), western Queensland (Boulia district); a, holotype, cephalon, CPC 5853, X8; b, topotype, pygidium, CPC 5854, X8 (new).

Ivshinagnostus ERGALIEV, 1980, p. 65 [*I. ivshini; OD; holotype (ERGALIEV, 1980, pl. 13, fig. 2), 1950/204, GMAN, Alma-Ata]. Anteriorly expanding cephalon and posteriorly expanding pygidium; median preglabellar furrow absent. Glabella strongly tapered, with small, rounded anterior lobe; posterior lobe with F2 furrow; very weak, F1 furrow; basal furrows weak; glabellar node a short distance behind F2 furrows; basal lobes indistinct. Pygidium bispinose; axis tapering, unconstricted, short; F1 weak; M1 weakly trilobate; F2 very weak. Upper Cambrian (Sakian): Kazakhstan, I. ivshini Zone.—— Fig. 217, a,b. *I. ivshini, Kazakhstan (Kirshabakty River, Lesser Karatau mountains); a, cephalon, GMAN 1950/203, X5,5; b, holotype, pygidium, GMAN 1950/204, X6,8 (Ergaliev, 1980, pl. 13, fig. 2–3).

Lotagnostus WHITEHOUSE, 1936, p. 101 [*Agnostus tricostatus SALTER, 1864b, p. 10; holotype by monotypy (SALTER, 1864b, pl. 1, fig. 11), BGS 8768, London]. Variously effaced, with usually nondeliquetate border furrows and uncontricted acrolobes, with or without a median preglabellar furrow. F3 furrow straight or bent backward; posterior lobe with well-developed F2 furrows; glabellar node located from midway between F1 and F2 furrows to level with F2 furrow. Basal lobes large, triangular, in some species incorporating the narrow (tr.) portions of the M2 lobe. Pygidium bispinose; axis long (sag.); M1 trilobate; F1 impressed at least laterally; M2 trilobate; F2 always impressed. Posterior lobe elongate, semioval to ovigal, with well-developed terminal node. Upper Cambrian.

L. (Lotagnostus). Commonly scrobiculate, variably deliquetate. Median preglabellar furrow present. Glabella with long (sag.), subpentagonal anterior lobe; posterior lobe with F2 furrow well developed, in some species curving forward to intersect F3 furrow, isolating anterolateral lobes. Pygidial axis weakly constricted across M2; F1 clearly impressed. uppermost Cambrian: Argentina; England, Wales, P minor Zone; Sweden, P minor–P. scarabaeoides Zones; Canada (Nova Scotia, Quebec), Peltura Zone, (Newfoundland), Sunwaptan; China (Xinjiang, Zhejiang, Hunan, Anhui, Guizhou), L. (L.) punctatus, L. (L.) bedini, H. regulus Zones & zones correlated with them; Kazakhstan, E. scrobularis Zone; USA (Vermont, Maryland), upper Trempealeaunian.—— Fig. 218, 1a,b. *L. (L.) tricostatus (SALTER), Upper Cambrian (Peltura minor Zone), Sweden (Andrarum, Skåne); a, cephalon, SGU 127, X7,2; b, pygidium, SGU 128, X7,2 (new).—— Fig. 218, c. *L. (L.) tricostatus (SALTER), Upper Cambrian (Merioneth Series, Peltura scarabaeoides Zone), northern Wales (Dolgellau); plastoholotype, pygidium, wax impression, BGS 8768, X8 (new).

L. (Eolotagnostus) ZHOU in Zhiqiang ZHOU, LI, & QU, 1982, p. 217 [*E. ganzenensis; OD; holotype (Zhiqiang ZHOU, LI, & QU, 1982, pl. 57, fig. 10), Tr 008, XIGMR, Beijing]. Cephalon weakly scrobiculate and pygidium nonscrobiculate; median preglabellar furrow absent or weakly developed, Glabella with long (sag.), semioval to ovigal anterior lobe; posterior lobe with F2 furrows angled slightly forward. Pygidial axis variably constricted across M2, with F1 impressed laterally and mediadly effaced. uppermost Cambrian: China (Gansu, Xinjiang, Zhejiang), L. punctatus–Hedina Zone; Kazakhstan, E. scrobularis Zone; Australia (Tasmania), Iverian.—— Fig. 218, 2a,b. *L. (E.) ganzenensis (ZHOU), Upper Cambrian (Fengshanian), China (Gansu); a, paratype, cephalon, XIGMR Tr 007, X5; b, holotype, pygidium, XIGMR Tr 008, X5 (Zhiqiang ZHOU, LI, & QU, 1982, pl. 57, fig. 9–10).
Trilobita

L. (Distagnostus) Shergold, 1972, p. 17 [*D. ergodes; OD: holotype (Shergold, 1972, pl. 4, fig. 3), CPC 9667, AGSO, Canberra]. Exoskeleton largely effaced with only traces of axial furrows on both cephalon and pygidium. Pygidial axis weakly constricted across M2; F1 and F2 weakly impressed. uppermost Cambrian: Canada (Quebec); Argentina; Australia (Queensland), R. bifas or N. denticulatus or R. clarki maximus or R. papilio Zones; USA (Nevada), S. pyrene Zone.—Fig. 218,3a,b. *L. ergodes (Shergold), Upper Cambrian (Iverian, Rhaptagnostus clarki maximus or R. papilio Assemblage-Zone), western Queensland (Momedah anticline); a, paratype, cephalon, CPC 9671, X10; b, holotype, pygidium, CPC 9667, X12 (Shergold, 1972, pl. 4, fig. 1–3).

Micagnostus Howell, 1935b, p. 233 [*Agnostus calvus Lake, 1906, p. 23; OD: lectotype (Lake, 1906, pl. 2, fig. 18; SFortey, 1980b, p. 23), A548, SM, Cambridge]. En grande tenue; nonschorbiculate; border furrows nondeliquiate; acrol obes unconstricted; median preglabellar furrow absent. Glabella with semiovate anterior lobe; F3 straight; posterior lobe parallel-sided with F2 weakly developed or absent; glabellar culmination broadly rounded; glabellar node level with or slightly behind F2. Basal lobes small. Pygidium
minutely bispinose; axis relatively short, unconstricted or weakly constricted over M2; M1 trilobate; F1 traversing axis; F2 well impressed, slightly deflected by axial node. Posterior lobe semioval. Median postaxial furrow absent. Upper Cambrian—Lower Ordovician (Arenig): Wales, Spitsbergen, Asaphellus–D. bifidus Zones; Argentina, N. argentina–K. meridionalis Zones; Sweden, M. dalecarlicus Zone. —Fig. 219,4.a. *M. calvus (Lake), Lower Ordovician (Tremadoc), northern Wales (Nant Rhos Ddu); lectotype, SM A548, X 10 (new).

Oncagnostus Whitehouse, 1936, p. 84 [*Agnostus boi Y. Sun, 1924, p. 28; OD; lectotype (Y. Sun, 1924, pl. 2, fig. 2c; SD X. Sun, 1989, p. 70), 515, NIGP, Nanjing]. En grande tense; nonscrobiculate; usually with delicate border furrows in both shields. Median preglabellar furrow absent. Median postaxial furrow usually absent; glabellar node level with F2 furrows. Pygidium posteriorly flared with posteriorly tapering acrobe. Pygidium posteriorly flared with posteriorly tapering, gently constricted acrobe; short (sag.), posteriorly tapering pygidal axis, commonly slightly constricted at anterior lobe; short posterior lobe; posteriorly tapering, posteriorly tapering posterior lobe. Nonscrobiculate, terminating in advance of postero-lateral spine bases. Upper Cambrian—Lower Ordovician: Australia (Queensland), R. bifas or N. denticulatus to R. maximus or R. papilio Zones; Argentina, Bolivia, K. meridionalis Zone; USA (Texas), M. typicus Zone; South Korea, Asaphellus Zone; China (Anhui), Upper Cambrian; Afghanistan, Tremadoc; Kazakhstan, T. trisulcus Zone. —Fig. 219,3a,b. *O. (S.) chronius (Shergold), Australia (Black Mountain, western Queensland); a, topleotype, cephalon, CPC 11730, Upper Cambrian (Iverian, Rhodeagnostus clarki maximus or R. papilio Assemblage-Zone), X 15; b, holotype, pygidium, CPC 11732, Upper Cambrian (Iverian, Rhodeagnostus bifas or Neoagnostus denticulatus Assemblage-Zone), X15 (Shergold, 1975, pl. 13, fig. 3, 5).

O. (Oncagnostus) [=*Euradagnostus Lerмонтова, 1951b, p. 7 (type, E. grandis Lerмонтова, 1951a, p. 8, pl. 2, fig. 1–4)]. Pygidial axis long (sag.), broad (tr.), and nearly parallel sided, with posterior lobe relatively broad. Upper Cambrian (Gryagnostus reticulatus to Peltura scabraeoides Zones): Sweden, P. aciculata Zone; Russia (Siberia), Kazakhstan, P. pseudangustilobus to T. trisulcus Zones; China (Hebei, Hunan, Liaoning), Chaungia to k. belia or A. sinensis Zonae; South Korea, Chaungia to Chaungia Zones; Australia (Queensland), S. diloma to R. maxima or R. papilio Zones; Antarctica (northern Victoria Land). Danderbergia Zone; USA (Alaska, Montana, Wyoming, Nevada, Texas), Aphelaspis to Elvinia Zones; Canada (Newfoundland), Sunwaptaen. —Fig. 219,2a–c. *O. (O.) boi (Sun), Upper Cambrian (Changhsanian, Changhsania Zone); a, b, China (Kushan, Changingxian, Shandon); c, cephalon, NIGP 89034, b, pygidium, NIGP 89031, both X 10 (X. Sun, 1989, pl. 1, fig. 1–7); c, lectotype, pygidium, NIGP 515, China (Renzhuang, near Tanghai, Hebei), X 10 (Y. Sun, 1924, pl. 2, fig. 2c). —Fig. 219,2de. O. (O.) tumidus (Hall & Whitefield), Upper Cambrian (Dresbachian, Danderbergia Zone), USA (Eureka district, Nevada), d, plesiotype, cephalon, USNM 36813a, X 13; e, pleiotype, pygidium, USNM 136831b, X 13 (Palmer, 1960, pl. 4, fig. 1–2).

O. (Kymagnostus) Hohensee in Hohensee & Stitt, 1989, p. 861 [*K. hartii; OD; holotype (Hohensee & Stitt, 1989, fig. 3.1)], 16666a, UMC, Columbia). Cephalic border narrow; pygidial border wide, flattened. Pygidial axis long (sag.), broad (tr.), nearly parallel sided or expanding posteriorly, axial furrows commonly effaced or isolated posterior lobe. Upper Cambrian: USA (Arkansas, Texas), Elvinia Zone. —Fig. 219,1a,b. *O. (K.) hartii (Hohensee), USA (Ouachita Mountains, Arkansas); a, holotype, cephalon, UMC 16666a, X 16, b, paratype, thorax, cephalon, UMC 16667, X 16 (Hohensee & Stitt, 1989, fig. 2–3).
Pygidium generally bispinose with broad, flattened border; pygidial axis long, broad, reaching border furrow, with long, expanded posterior lobe having well-developed secondary axial node in posterior half; F1 effaced or weakly impressed laterally, curving forward to intersect articulating furrow, isolating anterior lateral lobes; F2 variably impressed and deflected by well-developed axial node. upper Middle Cambrian–lower Upper Cambrian.

Ammagnostus Öpik, 1967

[Amagnostinae Öpik, 1967, p. 137]

Pygidium generally bispinose with broad, flattened border; pygidial axis long, broad, reaching border furrow, with long, expanded posterior lobe having well-developed secondary axial node in posterior half; F1 effaced or weakly impressed laterally, curving forward to intersect articulating furrow, isolating anterior lateral lobes; F2 variably impressed and deflected by well-developed axial node. upper Middle Cambrian–lower Upper Cambrian.

Figs. 220, 221. *A. (Tentagnostus) x. sun*, L. sinensis Zone, Liaoning; *A. psammius*, Lower Cambrian (Changhsian), Liaoning; *A. quadriceps*, Upper Cambrian (Changhsian), Liaoning; *A. (T.) quadriceps*, Upper Cambrian (Changhsian), China (Saima, Fengchenxian, Liaoning); *A. holotype*, cephalon, CPC 5936, Australia (Boulia area, western Queensland), X8; b, holotype, pygidium, CPC 5937, Australia (Duchess area, western Queensland), X8 (new).

Formosagnostus Ergaliev, 1980, p. 92 [*F. formosus*; OD; holotype (EGRALIEV, 1980, pl. 5, fig. 11), 1950/92, GMAN, Alma-Ata] [*Kunshanagnostus Qian & ZHOU, 1986, p. 173 (type, *K. kunshanensis*; OD)]. En grande tenue, with deliquiate or subdeliquiate border furrow and narrow border in cephalon and poorly defined, deliquiate border furrow and broad, flattened border in pygidium. Median preglabellar furrow clearly developed. Glabella with ogival to subpentagonal anterior lobe; F3 bent backward; posterior lobe with well-developed F2 furrows, F1 furrows absent or weakly developed, broadly rounded glabellar culmination; glabellar node immediately behind F2 furrows. Pygidial axis with F1 only impressed laterally, curving forward to intersect articulating furrow and isolating small, subtriangular anterolateral lobes; F2 clearly impressed, deflected strongly backward by long, low axial node. lower Upper Cambrian: Antarctica; Kazakhstan, *K. simplex*–*G. reticulatus* Zones; Australia (Queensland), *E. eretes* Zone; China (Jiangsu, Liaoning).——Fig. 221a,b, [*F. formosus*, Upper Cambrian (Ajusokkian), Kazakhstan (Lesser Karatau mountains)]; a, holotype, cephalon, GMAN 1950/92, *Kormagnostella* (Aptagnostinae) Zone, X8; b, paratype, pygidium, GMAN 1950/133, *Glyptagnostus stolidotus* Zone, X7.5 (Ergaliev, 1980, pl. 5, fig. 11; pl. 8, fig. 12).

Hadragnostus Öpik, 1967, p. 102 [*H. las*; OD; holotype (ÖPÍK, 1967, pl. 58, fig. 8), CPC 5861, AGSO, Canberra], Cephalon and pygidium transverse; en grande tenue, with subdeliquiate border furrows and narrow border on cephalon and moderately wide border on pygidium. Median preglabellar furrow broad, short. Glabella relatively long with short (sag.), subtriangular to ogival anterior lobe; F3 straight; posterior lobe with weakly developed F2 and broadly rounded glabellar culmination; glabellar node absent. Pygidial axis tapering forward from middle of posterior lobe with constriction across M2 weak or absent; F1 and F2 furrows effaced. lower Upper Cambrian: Australia (Queensland), *E. eretes* Zone; Iran, *Drepanura* Zone; Canada (Northwest Territories), *Cedaria selucyi* to *C. brevisformis* Zones; USA (Montana), *Crepicephalus* Zone.——Fig. 220, 5, [*H. las*, upper Cambrian (Mindyaillian, *Glyptagnostus stolidotus* Zone); a, paratype, cephalon, CPC 5936, Australia (Boulia area, western Queensland), X8; b, holotype, pygidium, CPC 5937, Australia (Duchess area, western Queensland), X8 (new).
Agnostina—Agnostoidea

Agnostina—Agnostoidea

Fig. 219. Agnostidae (p. 343)

gidium nonspinose, axial furrows only impressed anteriorly, adjacent to M1 and anterior portion of M2. Axial node of moderate size. Weakly developed terminal node located adjacent to border furrow.

K. glabrata, Upper Cambrian (Ayusokkanian, *Glyptagnostus stolidotus* Zone), southern Siberia (Altay Mountains); holotype, cephalothorax, ZSGU 152/153, and associated pygidium, ZSGU 152/166, X9 (Romanenko & Romanenko, 1967, pl. 1, fig. 22–23).

Kormagnostus" Resser, 1938, p. 49 [*K. simplex*; OD; syntypes (Resser, 1938, pl. 9, fig. 11–13), 94842, USNM, Washington, D.C.]. Anterior glabellar lobe effaced, with deliquiate border furrow in cephalon and poorly defined, deliquiate border furrow and
broad, flattened border in pygidium. Median preglabellar furrow absent. Glabella with straight F3; a broad, anteriorly tapering posterior lobe with weakly developed F2 furrows; a broadly rounded glabellar culmination; and with glabellar node immediately behind F2 furrows. Pygidial axis usually widest across posterior lobe with very slight constriction over M2; F1 and F2 effaced. uppermost Middle Cambrian–lower Upper Cambrian: northern Greenland; USA (Alabama, Georgia, Missouri, Montana, Nevada, Tennessee, Texas, Utah, Wyoming), Bolaspiddelidae and Cesiocephalidae Zones; Canada (Quebec, Northwest Territories), Cedaria minor–C. brevifrons Zones; Australia, Bolaspiddelidae Zone; Australia (Queensland), E. eretes Zone, (Tasmania), P. punctatus to G. nathorsti Zones; China (Hunan, Guizhou), Paradamesops jimaensis or Cycloorenella Zone; Kazakhstan, K. simplex Zone.—Fig. 220, 4a,b. *K. simplex, Upper Cambrian (Dresbachian), USA (Rogersville district, Tennessee); a, syntype, cephalon, USNM 94842a, X10; b, syntype, pygidium, USNM 94842b, X10 (new).—Fig. 220, 4c,d. K. selcous (Walcott, 1884b), uppermost Middle Cambrian (Lejopyge laevigata Zone), northern Greenland (Gustav Holm Dal, Peary Land); c, cephalon, MGUH 17.158, X12; d, pygidium, MGUH 17.165, X8 (Robison, 1988, fig. 11.7.13).

Proagnostus Butts, 1926, p. 76 [*P. bollus*; OD; lectotype (Butts, 1926, pl. 9, fig. 12; SD Robinson, 1988, p. 41, fig. 8.12), 94867, USNM, Washington, D.C.] [Agnostus Opik, 1967, p. 147 (type, A. gravis; OD); Agnostus (Paragnostactus) Peng, 1992, p. 85 (type, A. (P.) sinensis; OD)]. Cephalon narrow, trapeziform or semi-ovate; with nondeliquetate border furrows and with a narrow border in the cephalon and a wider, flattened border in the pygidium. Median preglabellar furrow well developed. Glenula with subquadrate to semi-ovate anterior lobe; F3 straight or bent strongly forward; posterior lobe with well-developed F2 furrows; glabellar culmination broadly rounded to obtusely angular; glabellar node in front of M2 furrows. Pygidial spine retral or advanced; axis with well-developed constriction across M2; F1 weakly impressed or effaced; F2 weakly impressed or absent, deflected posteriorly by strong axial node. upper Middle Cambrian–lower Upper Cambrian: northern Greenland; USA (Alabama, Cedaria Zone; Canada (Northwest Territories), Cedaria minor Zone; Australia (Queensland), E. eretes Zone, (Tasmania), L. laevigata Zone; China (Hunan, Guizhou), Paradamesops jimaensis or Cycloorenella Zone, (Xinjiang), Agnostus orientalis (=Proagnostus orientalis) Zone; Kazakhstan, Kormagnostus simplex Zone, (Russia (Siberia), L. laevigata to G. solidatus Zone,—Fig. 220, 3a–c. *P. bulbus*: a, Upper Cambrian (Dresbachian), USA (Cedar Bluff, Alabama), lectotype, exoskeleton, USNM 94867, X10 (Resser, 1938, pl. 10, fig. 17); b,c, latest Middle Cambrian (Lejopyge laevigata Zone), northern Greenland (Gustav Holm Dal, Peary Land); b, pygidium, MGUH 17.128 and c, cephalon, MGUH 17.126, X8 (Robison, 1988, fig. 8.14–15).

Subfamily GLYPTAGNOSTINAE

Whitehouse, 1936

[Glyptagnostinae Whitehouse, 1936, p. 101]

Median preglabellar furrow well developed. Glenula with strong F2 furrow and broadly rounded culmination. Axiolobate pygidium with glyptagnostoid articulating device; secondary axial node developed in association with well-defined transverse depression occurring in rear of posterior lobe; median postaxial furrow well developed. upper Middle Cambrian–lower Upper Cambrian.

Glyagnostus Whitehouse, 1936, p. 101 [*G. torensum*; OD; Agnostus reticulatus Angelin, 1851, p. 8; lectotype (SD Westergård, 1947, pl. 1, fig. 2), Ar 9794, RM, Stockholm] [Barrandagnostus IVSHIN in KHALFIN, 1960, p. 166 (type, B. barrandi; OD)]. Of low convexity; both cephalon and pygidium strongly scrobiculate. Glenula with anterior lobe subpentagonal to subquadrate; commonly with median sulcus; F3 straight or bent forward. Posterior lobe with very well-developed F1 furrow and with lateral portions of M2 separated from the midmost glabella by longitudinal (exsaq.) furrows. Glenulal node located from midway between F1 and F2 to level of F2. Basal lobes large, triangular. Pygidial axis constructed across M2; M1 trilobate; F1 bent forward; M2 trilobate; axial node extending well on to posterior lobe. lower Upper Cambrian (upper Mindysallan–lower Idamean);
Trilobita

Cosmopolitan.—Fig. 222,1a,b. *G. reticulatus (Angelin), Upper Cambrian (Olenus Zone), Sweden (Andrarum, Skåne); a, lectotype, cephalon, RM Ar 9794, X8; b, paralectotype, pygidium of Angelin (1851), RM Ar 9796, X8 (new).

Agnostardis Öpik, 1963, p. 39 [*A. amplinatis; OD; holotype (Öpik, 1963, pl. 3, fig. 8), CPC 4270, AGSO, Canberra]. Nonscrobiculate or faintly scrobiculate. Glabella with anterior lobe ogival to subpentagonal; F3 straight or bent backward; posterior lobe lacking F1; with glabellar node located midway between F1 and F2. Basal lobes of moderate size. Pygidial axis tapering posteriorly; F1 and F2 effaced; axial node moderately large. Posterior lobe subtriangular. upper Middle Cambrian–lower Upper Cambrian: Australia (Queensland), G. stolidotus Zone; China (Gansu, Guizhou), L. laevigata Zone.—Fig. 222,2a,b. *A. amplinatis,
Upper Cambrian (Mindyallan, *Glyptagnostus stolidotus* Zone), Australia (Wells Creek, Boulia area, western Queensland); a, paratype, cephalon, CPC 4265, X8; b, holotype, pygidium, CPC 4270, X8 (new).

Subfamily UNCERTAIN

Acmarhachis *RESSER, 1938, p. 47 [*A. typicalis*; OD; holotype (*RESSER, 1938, pl. 10, fig. 5), 94858, USNM, Washington, D.C.]; *→* Cyclagnostus *Lermontova, 1946, p. 126 (synonyms, *Cyclagnostus elegans Lermontova, 1940, p. 127, pl. 49, fig. 10, 10a); Wannagnostus *Qu in Qui & others, 1983, p. 30 (type, *W. anhuensis*; OD).* Median preglabellar furrow weak or absent. Glabella with long ovoid to subquadratoanterior lobe; F3 straight; posterior lobe not divided across M2; broad, tumid posterior lobe bearing terminal node and sometimes intranatorial axis. **Upper Cambrian:** USA (Alaska, Nevada, Maryland, Vermont), *Crecephalus* to *Dunderbergia* Zones; *Crepicephalus* to *Dunderbergia* Zones; China (Zhejiang), *Kormagnostus simplex* Zone; Russia (Kharaulakh), *L. laevigata* to *P. pseudangustilobus* Zones; China (Zhejiang), *L. sinensis* Zone, (Anhui), zone uncertain. ———Fig. 222.4a–c. *A. typicalis.* a, Upper Cambrian (Dreischau), USA (McCalla, Alabama), holotype, pygidium, USNM 94858, X10 (new); b, c, Upper Cambrian (Dreischau, Crecephalus Zone), USA (McGill, Nevada), b, cephalon, USNM 143145a and c, pygidium, USNM 143145b, X10 (Palmer, 1962a, pl. 2, fig. 12–13).

Aistagnostus *Xiang & Zhang, 1985, p. 68 [*A. laevigatus*; OD; holotype (*Xiang & Zhang, 1985, pl. 6, fig. 1a,b), T1415a, CAGC, Beijing]. Small, en grande tenue, with axial furrows weakly impressed and nondeliquiate border furrows. Anterior glabellar lobe short, broad, subpentagonal; posterior glabellar lobe short, broad, with median node at midlength; basal lobes simple. Median preglabellar furrow absent. Pygidial axis short, broad, posteriorly rounded, tripartite, with transverse furrows weakly impressed. Median postaxial furrow absent. Pygidial marginal spines small. Possibly belongs to Agnostinae. **Upper Cambrian (Changhsanian):** China (Xinjiang), *Agnostites tianjingsis* Zone. ———Fig. 222.6a,b. *A. laevigatus.* a, paratype, cephalon, CAGC T1415a, X12; b, holotype, pygidium, CAGC T1415b, X12 (Xiang & Zhang, 1985, pl. 6, fig. 1a,b).

Connagnostus *Örik, 1967, p. 128 [*C. venerabilis*; OD; holotype (*Örik, 1967, pl. 58, fig. 11a,b), CPC 5809, AGSO, Canberra]. Nonscrobiulate, with nondeliquiate to delicately border furrow and narrow border in cephalon; delicately border furrow and broad, flattened border in pygidium; cephalic acrolobe unconstricted and pygidial acrolobe unconstricted to weakly constricted; median preglabellar furrow absent. Glabella with semicircular to semiovate anterior lobe; F3 bent slightly forward; F2 weakly developed; glabellar culmination rounded; glabellar node elongate, keel-like, extending from level with F2 nearly to F3; basal lobes of moderate size. Pygidial axis long, broad, extending to or nearly to border furrow, with very weak constriction over M2; F1 clearly impressed, deflected forward by anterior end of axial node; F2 nearly straight, deflected by axial node. Axial node well defined, elongate, ovate. [Possibly an Ammagnostinae or a diplagnostid.] **Lower Upper Cambrian:** Australia (Queensland), *Idolagnostus*; Russia (Siberia), *Nganasan Gorizont.* ———Fig. 222.3a,b. *C. venerabilis.* Upper Cambrian (Mindyallan, *G. stolidotus* Zone), Australia (Queensland), Mindyallan–Idamean (E. erotes to S. diloma Zones); China (Qinghai), lower Upper Cambrian. ———Fig. 222.7a,b. *I. agrestis.* a, holotype, cephalon, CPC 5872, X8; b, paratype, pygidium, CPC 5872, X8 (new).

Quadrathomagnostus *CHR, 1959, p. 91 [*Homagnostus (Quadrathomagnostus) subquadratus*; OD; holotype (*CHR, 1959, pl. 1, fig. 21), 9429, NIGP, Nanjing]. Nonscrobiulate; median preglabellar furrow very weak to absent. Glabella with small to moderately sized, subrhombic to subcircular anterior lobe; F3 curved strongly rearward; F2 effaced or weakly impressed, crossing glabella, and curved forward; glabellar node immediately behind F2 furrow; glabellar culmination narrowly rounded to angular; basal

© 2009 University of Kansas Paleontological Institute
lobes of moderate to large size. Pygidial axis long, parallel-sided or expanding slightlyrearwards, nearly reaching border furrow. [Unassigned because of glabellar characteristics; lower Upper Cambrian: China (Henan, Liaoning), B. paronai to D. premenzili Zones.—Fig. 222, 5a, b. Q. subquadriculatus (Zhu), Upper Cambrian (Gushanian); a, paratype, pygidium, NIGP 9431, China (Wutingshan, Yentai, Liaoning), Drepanura premenzili Zone, X10; b, holotype, cephalon, NIGP 9429, China (Yaobao, Tientsin, Liaoning), Blackwdleria paronai Zone, X10 (Chu, 1959, pl. 1, fig. 21, 23).

Family PTYCHAGNOSTIDAE
Kobayashi, 1939

Usually en grande tenue, with nondeliquate border furrows and unconsticuted acrobloses; usually with median preglabellar furrow and elongate basal lobes; axial glabellar node variable in position. Pygidium usually simpilimarginate, rarely weakly zonate, nonspinose or bispinose; with basic articulating device; aXioblate with F1 furrow well developed, F2 furrow rarely absent; posterior axial lobe usually long, acuminate or rounded posteriorly, occasionally with a transverse depression in anterior half; median postaxial furrow usually present. Middle Cambrian–lower Upper Cambrian.

Ptychagnostus Jaekel, 1909, p. 401 [*Agnostus punctuosus Angelin, 1851, p. 8; OD (publication date discussed by Shergold & Laurie, 1991); lectotype (SG Westergard, 1946, pl. 72, fig. 3a, b), Ar 9539, RM, Stockholm]. Scrobiculate; prosopon finely granulose or pustulose. Anterior glabellar lobe semiolate; posterior glabellar lobe evenly convex, with F2 furrows well developed, glabellar node slightly behind to slightly in front of F2 furrow; basal lobes divided or entire. Pygidium nonspinose; axis with small node on M2; median postaxial furrow present. Middle Cambrian: Argentina; China (Liaoning); Sweden, Denmark, Norway, uppermost H. pareifrons to P. punctuosus Zones; Australia (Queensland), P. punctuosus to D. notalibrata Zones; Kazakhstan, P. punctuosus Zone; Russia (Siberian Platform), A. henrici Zone; England, Canada (Newfoundland), P. davidi Zone; USA (Utah, Nevada), A. atavus to P. punctuosus Zones, (New York), Bolaspellida Zone.—Fig. 223, 1a, b. *P. punctuosus (AngelIn), Middle Cambrian (Psystognostinae punctuosus Zone), Sweden (Andrarum, Skåne); a, lectotype, cephalon, RM Ar 9539, X8; b, paralectotype, pygidium, RM Ar 9540, X8 (new).

Acidusus Öpik, 1979, p. 100 [*Ptychagnostus (Acidusus) acidusus; OD; holotype (Öpik, 1979, pl. 46, fig. 2–3), CPC 14248, AGSO, Canberra] [=Canagnostus rusconi, 1951, p. 13 (type, C. henslowi; OD)]. Commonly scrobiculate; prosopon smooth or pustulose; nonspinose or with cephalic spines, axial spine on posterior thoracic segment, and pygidial marginal spines. Anterior glabellar lobe ogival, semiovate or trapeziform; posterior glabellar lobe tapering strongly anteriorly, evenly convex to slightly posteriorly inflated, with F2 furrows well developed; glabellar node located slightly in front of F1 furrows; basal lobes divided or entire. Pygidial axis with moderate to large, elongate node on M2 strongly deflecting F2 furrow; posterior lobe long, with or without small terminal tubercle; median postaxial furrow occasionally absent. Middle Cambrian: Sweden, T. fisus or A. atavus Zone; Sweden, Norway, Denmark, S. brachymetopa Zone; Australia (Queensland), A. atavus to A. cassis Zones, (Tasmnia), A. cassis or P. agnus Zone; Kazakhstan, A. atavus Zone, beds with Planaspis recta; Russia (Siberian Platform), T. fisus, A. henrici, L. allachiyyenesis Zones, (Altay-Sayan), A. limbataeformis Zone; USA (Alaska), Bolaspellida Zone, (Utah), B. limbataeformis to B. contracta Subzones; China (Zhejiang, Hunan), P. atavus to L. armata Zones, (Guizhou), zone uncertain.—Fig. 223, 2.*A. acidusus (Öpik), Middle Cambrian (Undillian, Doryagnostus notalibrata Zone), Australia (northwestern Mt. Isa district, western Queensland); holotype, exoskeleton, CPC 14248, X9 (new).

Goniagnostus Howell, 1935c, p. 13 [*Agnostus nathorsti Brogger, 1878, p. 68; OD; holotype (Brogger, 1878, pl. 5, fig. 1), not traced, PMO, Oslo] [=Huagnostus rusconi, 1950b, p. 92 (type, H. costatus; OD)]. Usually scrobiculate; spinose, with or without cephalic spines and occipital spine, with axial spine and fulcral spines on the posterior thoracic segment and pygidial marginal spines. Anterior glabellar lobe depressed, subtriangular; posterior glabellar lobe broad, very strongly convex in posterior half, with F2 furrows very well developed; axial glabellar node located behind F1 furrows; basal lobes divided or entire, anterior extremities indistinct, associated with a well-developed apodemal pit. Pygidial axis with spine on M2 strongly deflecting F2 furrow rearward; posterior lobe with strong tubercle near midlength, centered on a variably developed rosette; median postaxial furrow well developed. Middle Cambrian–lower Upper Cambrian.

G. (Goniagnostus). Cephalon without arcuate scrobicules. Posterior lobe of pygidial axis with rosette weakly developed or absent. upper Middle Cambrian: Sweden, Norway, Denmark, L. lundgreni or G. nathorsti to S. brachymetopa Zones; Australia (Northern Territory, Queensland), P. punctuosus to G. nathorsti Zones; England, late P. davidi Zone; Canada (New Brunswick, Newfoundland), P. hicksi Zone; Turkestan Mountain Range, H. brevifrons bed; Russia (Siberian Platform), A. henrici to L. laevigata or A. truncata Zones. Middle

© 2009 University of Kansas Paleontological Institute
Fig. 223. Ptychagnostidae (p. 350–352)
Trilobita

Cambrian: China (Qinghai); Argentina.—Fig. 223,3a–c. *G. (G.) nathorsti* (Brögger), Middle Cambrian (Goniagnostus nathorsti Zone); a, exoskeleton, PMO 19887, Norway (Krekling, Oslo district), X8 (new); b, c, Sweden (Baskemölla, Skåne), b, cephalon, SGU 4957, X8, c, pygidium, SGU 4958, X8 (new).

G. (Allobodochus) Öpik, 1979, p. 144 [*Ptychagnostus* (G.) fumicola Öpik, 1961b, p. 81; OD; holotype (Öpik, 1961b, pl. 20, fig. 14a,b), CPC 3598, AGSO, Canberra], Cephalon lacking arculate scrobicules; glabella with very strongly developed F1 and F2 furrows, commonly with the midmost glabella separated from the outer glabella by weak longitudinal (exaxg.) furrows. Posterior pygidial axial lobe with very well developed rosette. Upper Middle Cambrian–lower Upper Ordovician; China (Hunan, Guizhou), Zones; Australia (Queensland, Tasmania). *A. cassis* to E. erites Zones; Kazakhstan (Lesser Karatau Mountains), *G. nathorsti* to L. armata Zones, L. laevigata Zone, early K. simplex Zones; China (Hunan, Guizhou), *P. jomarani* or *C. tuma Zone* (Zhejiang), P. triangularis to L. sinensis Zones.—Fig. 223,4a. *G. (A.) fumicola* (Öpik), Middle Cambrian (Boomerangan, Lejopyge laevigata Zone), Australia (Tobermory area, Northern Territory); holotype, pygidium, CPC 3598, X8 (new).—Fig. 223,4b. G. (A.) spiniger (Westergård), Middle Cambrian (Boomerangan, Lejopyge laevigata Zone), Australia (Tobermory area, Northern Territory); paratype, cephalon, CPC 14342, X8 (new).

G. (Criotypus) Öpik, 1979, p. 144 [*G. (C.) oxyturus*; OD; holotype (Öpik, 1979, pl. 57, fig. 1–2), CPC 14309, AGSO, Canberra]. Cephalon with well-developed, arculate scrobicules. Posterior lobe of pygidial axis with rosette usually absent, rarely weakly developed. Middle Cambrian: Australia (Queensland), *A. atavus* to E. opimus Zones.—Fig. 223,5a. G. (C.) lemniscatus, Middle Cambrian (Floran, Euagnostus opimus Zone), western Queensland (Camooweal area), holotype, cephalon, CPC 14311, X8 (new).—Fig. 223,5b. *G. (C.) oxyturus*, Middle Cambrian (Floran, Acidusus atavus Zone), western Queensland (Camooweal area), holotype, exoskeleton, CPC 14309, X8 (new). Lejopyge Hawle & Corda, 1847, p. 51 [*Battus laevigatus* Dalman, 1828, p. 136; OD; lectotype (SD Westergård, 1946, p. 134, pl. 13, fig. 21a,b), Ar 287b, RM, Stockholm] [=Maigastus Jaekel, 1909, p. 401 (type, Battus laevigatus Dalman, 1828, sensu Jaekel, 1909, p. 401, fig. 21); Pseudophalacroma Pokrovskaya, 1958, p. 79 (type, Peribolaebius Pokrovskaya, 1958, p. 79, pl. 3, fig. 4–6)]. Strongly convex, with very narrow cephalic border; en grande tenue to largely effaced; uncommonly scrobiculate; prosopon smooth; variably spinose. Anterior glabellar lobe narrow, subtriangular; posterior glabellar lobe with F2 furrows usually absent; glabellar node midway between F1 and F2; basal lobes small, simple. Pygidial axis with small node on M2 slightly deflecting F2 furrow rearward. Upper Middle Cambrian: Sweden, Norway, Denmark, *P. punctuosus* to L. laevigata Zones; Australia (Queensland, Tasmania), *P. punctuosus* to C. quasivespa Zones; England, *P. forchhammeri* Zone; Kazakhstan, Uzbekistan, *L. armata* to L. laevigata Zones, *H. bresiifrons* beds; Russia (Siberian Platform), *L. landgreni* Subzone to L. laevigata or A. truncata Zone; China (Zhejiang), *P. triangularis* to L. sinensis Zones, (Guizhou), L. laevigata Zone, (Hunan), L. laevigata, Paramphoton Zone; USA (New York), Bolaimidella Zone, (Utah, Nevada), *P. punctuosus* to L. laevigata Zones; Greenland, L. laevigata Zone; Canada (Newfoundland, Northwest Territories), Caledaria minor Zone. Middle Cambrian: Alaska; China (Qinghai); Argentina.—Fig. 224,5a, b. *L. laevigata* (Dalman), Middle Cambrian (Lejopyge laevigata Zone), Sweden (Krekling, Västergötland); a, paralectotype, pygidium, RM Ar 287a, X12; b, lectotype, cephalon, RM Ar 287b, X12 (new).

Myrmecominus Öpik, 1979, p. 136 [*M. tribulis*; OD; holotype (Öpik, 1979, pl. 36, fig. 1, 1a, 2), CPC 14179, AGSO, Canberra]. Small, strongly convex; en grande tenue or with anterior glabellar lobe, median preglabellar furrow, and median post-axial furrow effaced; nonscrobiculate; nonspinose or with short cephalic spines. Posterior glabellar lobe very strongly convex, subhexagonal or subcircular, lateral glabellar furrows absent; basal lobes elongate, entire. Thorax nonspinose. Pygidial axis usually short, with very strongly inflated M2 and posterior lobe. Middle Cambrian: Australia (Queensland), *P. punctuosus* to D. notalibrae Zones; Russia (Siberian Platform), Pseudanomocarina Zone.—Fig. 223,6. *M. tribulis*, Middle Cambrian (Undifilan, Doryagnostus notalibrae Zone), Australia (northwestern Mt. Isa, western Queensland); holotype, exoskeleton, CPC 14179, X9 (new). Onymagnostus Öpik, 1979, p. 107 [*O. angulatus*; OD; *Agnostus gibbus* var. hybridus Brögger, 1878, p. 62; lectotype herein designated (Brögger, 1878, p. 62), 28906, PMO, Oslo] [=Onymagnostus (Agnostosynus) Öpik, 1979, p. 114 (type, O. (A.) semiriims; OD)]. Usually en grande tenue; very strongly convex, particularly in the pygidium; borders in both shields moderately wide; axial furrows variably impressed; median postaxial furrow absent; uncommonly scrobiculate; nonspinose or with very small pygidial marginal spines. Anterior glabellar lobe low, semiovate; posterior glabellar lobe evenly convex, with F2 furrows weak to developed well; glabellar node a short distance behind F2 furrows; basal lobes short to slightly elongate, entire, commonly indistinct anteriorly. Pygidial axis very strongly convex, with large node on M2 strongly deflecting F2 furrow; posterior lobe very long, semiovate to subtriangular, narrowly rounded posteriorly. Middle Cambrian: Sweden, Norway, Denmark, *T. fissus* or *A. atavus* to L. landgreni or G. nathorsti Zones; Australia (Queensland, Northern Territory), late *G. gibbon* to *G. nathorsti* Zone, *G. punctuosus* or *G. nathorsti* Zone; England, Wales, *P. punctuosus* to L. laevigata Zones; Greenland, L. laevigata Zone; Canada (Newfoundland, Northwest Territories), Caledaria minor Zone. Middle Cambrian: Alaska; China (Qinghai); Argentina.—Fig. 224,6a, b. *L. laevigata* (Dalman), Middle Cambrian (Lejopyge laevigata Zone), Sweden (Krekling, Västergötland); a, paralectotype, pygidium, RM Ar 287a, X12; b, lectotype, cephalon, RM Ar 287b, X12 (new).
aurora to early \emph{P. davidis} Zone; Canada (Newfoundland, New Brunswick). \emph{P. hickii} to \emph{P. forchhammeri} Zones; Russia (Siberian Platform), \emph{?Kounamkites}\ Zone; Kazakhstan, Uzbekistan, \emph{Pseudanomocarina} Zone; Czechoslovakia, \emph{E. pusillus} Zone; USA
Triagnostus HOWELL, 1935c, p. 14 [*Agnostus gibbus LINNARSSON, 1869, p. 81; OD; types not identified]. Rarely scrobiculate; spinose. Median preglabellar furrow well developed. Anterior glabellar lobe subtriangular, semiovate or subpentagonal. Posterior glabellar lobe strongly convex in entirety or only in posterior half, with axial glabellar node located level with F1 furrows; basal lobes divided or entire. Pygidial axis with spine or large node on M2 deflecting F2 furrow rearward. Median postaxial furrow well developed or absent. Middle Cambrian.

T. (Triagnostus) *Solenagnostus WHITEHOUSE, 1936, p. 86 (type Agnostus longefrons NICHOLAS, 1916, p. 453, pl. 39, fig. 1); (T. (Aristarius) ÖPIK, 1979, p. 125 (type, T. (A.) aristarius; OD)). Anterior glabellar lobe low, subtriangular to semiovate; posterior glabellar lobe very strongly convex in posterior half; F2 furrows variably developed. Pygidial axis with spine or large node on M2 strongly deflecting F2 furrow rearward; posterior axial lobe long, semiovate to subtriangular, usually with small median tubercle near midlength. Middle Cambrian: England; Poland; Antarctica; Canada (Newfoundland); Sweden, Norway, Denmark, T. gibbus to T. fissus or A. atavus Zones; Australia (Queensland), T. gibbus to G. nathorsti Zones; Russia (Siberian Platform), upper Kounamkites, T. gibbus, T. fissus, Pseudanomocarina Zones; Kazakhstan, lower A. atavus Zone; USA (New York), Bathyuriscus-Elrathia Zone, (Utah, Nevada), T. gibbus Zone. ——Fig. 225,1a,b. *T. (T.) gibbus (LINNARSSON), Middle Cambrian (Triagnostus gibbus Zone), Exsulans Limestone; a, cephalon, SGU 4891, Sweden (Brantevik, Skåne), X8; b, pygidium, SGU 4890, Sweden (Andrarum, Skåne), X8 (new).

T. (Aotagnostus) ÖPIK, 1979, p. 133 [*A. culminosus; OD; holotype (ÖPIK, 1979, pl. 34, fig. 1), CPC 14166, AGSO, Canberra]. Anterior glabellar lobe slightly to strongly inflated, subtriangular to subhypriform; posterior glabellar lobe short, tapering forward, very strongly convex with F2 furrows very weak to absent. Pygidial axis with large spine or node on gibbous M2 strongly deflecting F2 furrow; posterior lobe of short or moderate length, semiovate; median postaxial furrow well developed. upper Middle Cambrian: Australia (Queensland), E. opimus to G. nathorsti Zones.——Fig. 225,2. *T. (A.) culminosus (ÖPIK), upper Middle Cambrian (Undillan, Doryagnostus notalibrae Zone), Australia (northwest of Mt. Isa, western Queensland); holotype, exoskeleton, CPC 14166, X9 (new).

Zetagnostus ÖPIK, 1979, p. 105 [*Z. incautus; OD; holotype (ÖPIK, 1979, pl. 45, fig. 1), CPC 14242, AGSO, Canberra]. Commonly scrobiculate. Anterior glabellar lobe subtriangular; posterior glabellar lobe evenly convex with F2 furrows weakly developed or absent and with axial glabellar node from a short distance in front of F1 furrow to a short distance behind F2 furrow; basal lobes divided or en-
Agnostina—Agnostoidea

Family SPINAGNOSTIDAE
Howell, 1935

En grande tenue or with anterior glabellar lobe variably effaced; usually nonscrobiculate; with nondeliquiate border furrows and narrow to moderately wide borders; unconstricted acrolobes; cephalon nonspinose; median preglabellar furrow well developed to absent. Glabella with ogival, semiovate, subpentagonal, or effaced anterior lobe; F3 straight, variably bent forward or effaced; posterior lobe with F2 usually developed; glabellar culmination usually broadly rounded; glabellar node from level with F1 to slightly in front of F2; basal lobes small, simple. Pygidium nonspinose or bispinose, with axis usually long, not reaching border furrow, ogival, and constricted across M2; F1 and F2 usually effaced; axial node of moderate size; median postaxial furrow usually present. upper Lower Cambrian–middle Upper Cambrian.

Subfamily SPINAGNOSTINAE
Howell, 1935

Commonly nonscrobiculate, with most species variably effacing the anterior glabellar lobe and some also effacing F3; cephalic border usually narrow; pygidial border wider; median preglabellar furrow usually absent, rarely weakly developed. Anterior glabellar lobe semiovate, subpentagonal, or

Fig. 225. Psychagnostidae (p. 354)
more commonly effaced; posterior lobe with F2 weak or absent; glabellar node located from short distance behind F2 to short distance in front of F2. upper Lower Cambrian–Upper Cambrian.

Commonly weakly scrobiculate. Glabella with efaced anterior lobe; F3 bent forward, rounded or chevronate; posterior lobe short, variably ovate, with F2 weak or absent; glabellar node level with or slightly in front of F2 furrows. Pygidium usually nonspinose; axis usually long, broadly ogival or less commonly short and posteriorly rounded. Median postaxial furrow usually developed. **Upper Cambrian**—lower Upper Cambrian: Argentina; Sweden, Wales, *H. parvifrons* to *L. laevigata* Zones; England, *H. parvifrons* to *A. pisiformis* Zones; Norway, *P. tessini* to *P. forchhammeri* Zones; Denmark, *P. tessini* Zone; Czechoslovakia, *P. (P.) gracilis* Zone; USA (Vermont, New York), *B. lobiata* Zone, (Alaska), late Dresbachian, (South Carolina), zone uncertain; Canada (Newfoundland, New Brunswick, Quebec), *H. parvifrons* Zone; Australia (Queensland, Tasmania), *P. atavus* to *E. everts* Zones; China, *H. parvifrons* to *G. stolidus* Zones; Russia (Salair, Altay, southeastern Siberia), Turkestian Mountain Range, Kazakhstani, *P. atavus* Zone, *T. fusi* or *P. hickii* to *L. laevigata* or *A. truncata* Zones; Kazakhstan, *K. simplex* to G. reticulatus Zones.—**FIG. 226, a,b.* "H. parvifrons" (LINNARSSON), Middle Cambrian (Hypagnostus parvifrons Zone), Sweden (Hälleklit, Kinnèkulle, Västergötland); a, lectotype, cephalon, SGU 4769, X9; b, paratype, pygidium, SGU 4768, X9 (new).<ref>

Catalagnostus WHITEHOUSE, 1936, p. 92 [*Agnostus lens* GRÖNWALL, 1902, p. 65; OD; syntypes (GRÖNWALL, 1902, pl. 1, figs. 8–9), 149, 150, MGUH, Copenhagen], like *Hyagnagnostus* but with glabellar F3 effaced and commonly with axial furrows surrounding posterior lobe of pygidial axis efaced. **Middle Cambrian**: Argentina; China (Hunan, Guizhou); Sweden, *P. atavus* to *P. forchhammeri* Zones; Denmark, *P. davidis* Zone; Norway, *P. paradoxusimus* to *P. forchhammeri* Zones; England, Wales, *H. parvifrons* to *P. punctuosus* Zones; Canada (Newfoundland, Nova Scotia), late *P. hickii* to early *P. davidis* Zones; USA (Utah, Alaska), *B. contracta* Subzone; Australia (Queensland), *D. notalibrae* Zone; Russia (southeastern Siberia), *T. fusi* or *P. hickii* to late *P. davidis* Zones, (Kemerov), *P. forchhammeri* Zone.—**FIG. 226, a,b.* "C. lens" (GRÖNWALL), Middle Cambrian (Hyagnostus parvifrons Zone), Denmark (Bornegaard, Øie Aa, Bornholm); a, syntype, cephalon, MGUH 149, X10; b, syntype, pygidium, MGUH 150, X12 (new).<ref>

Eoagnostus RESSER & HOWELL, 1938, p. 216 [*E. roddyi*; OD; holotype (RESSER & HOWELL, 1938, pl. 3, fig. 4), 90796, USNM, Washington, D.C.]. Small; nonscrobiculate; with moderately wide borders; median preglabellar furrow absent. Glabella with anterior lobe very faintly outlined or effaced, semiovate; F3 straight; posterior lobe strongly inflated posteriorly, overlapping occipital band; glabellar node absent; glabellar culmination rounded or obtusely angular. Pygidium nonspinose; axis of moderate length, strongly convex, semiovate, narrowly rounded posteriorly; axial node indistinct; median postaxial furrow weakly developed. upper Lower Cambrian: USA (Pennsylvania, Vermont, New York), *Olenellus to Paradoxiasia im Bonnita faun- nas.—**FIG. 227, a.* "E. roddyi", Lower Cambrian (*Bonnita to Olenellus* Zones), USA (Lancaster, Pennsylvania); holotype, exoskeleton, USNM 90796, X10 (new).—**FIG. 227, b,c.* "E. acronbaccho, Lower Cambrian (*Bonnita to Olenellus* Zones), USA (Hatch Hill, New York); b, paratype, cephalon, MCZ 8548/3, X10; c, paratype, pygidium, MCZ 8545/4, X10 (new).<ref>

Eugnostus WHITEHOUSE, 1936, p. 87 [*E. opimus*; OD; holotype (WHITEHOUSE, 1936, pl. 8, fig. 11), 3195, UQF, Brisbane]. Glabella with anterior lobe broad semiobovate or variably effaced; F3 straight; posterior lobe broad with F2 weak to absent; glabellar node a short distance behind F2. Pygidial axis long, ogival, almost reaching border furrow, slightly constricted across M2; F1 and F2 effaced; median postaxial furrow well developed. **Middle Cambrian**: Canada (Newfoundland); Australia (Queensland), *E. opimus* to *D. notalibrae* Zones; USA (Utah, Nevada), early *T. gibbus* to *P. punctuosus* Zones.——**FIG. 226, 7a.* "E. opimus", Middle Cambrian (Floran, Eagnostus opimus Zone), Australia (northwest of Mt. Isa, western Queensland); holotype, pygidium, UQF 3193, X8.8 (new).—**FIG. 226, 7b.* "E. neptis" (<"E. opimus" WHITEHOUSE), Middle Cambrian (Undillard, Ptyagnostus punctuosus Zone), Australasia (northwest of Mt. Isa, western Queensland); holotype, exoskeleton, CPC 14068, X8 (new).<ref>

Micagnostus HAJRULLINA in REPINA, PETRUNINA, & HAJRULLINA, 1975, p. 115 [*M. rectus*; OD; holotype (HAJRULLINA in REPINA, PETRUNINA, & HAJRULLINA, 1975, pl. 11, fig. 13–14), 483/179, MMG, Tashkent]. Known only from cephalon. Small, nonscrobiculate, with moderately wide border. Glabella short, broad, with anterior lobe weakly outlined, semicircular to semiovate; F3 straight; posterior lobe short, broad; F2 absent; glabellar node indistinct. **Middle Cambrian**: Uzbekistan, *Pseudanomocarina Zone.—**FIG. 226, 4.* "M. rectus", Middle Cambrian (Amgaian, Pseudanomocarina beds), Uzbekistan (northern Turkestian Mountain
Agnostina—Agnostoidea

Range); holotype, cephalon, MMG 483/179, X10 (Repina, Petrunina, & Hajrullina, 1975, pl. 11, fig. 13–14).

Peratagnostus Öpik, 1967, p. 86 [*P. nobilis; OD; holotype (Öpik, 1967, pl. 52, fig. 11a–c), CPC 5787, AGSO, Canberra]. Almost completely effaced; nonscrobiculate or weakly scrobiculate; cephalic border absent or very narrow; pygidial border wider, always present. Glabella with vestigial axial furrows defining rear; glabellar node advanced. Pygidium nonspinose, retaining traces of axial furrows defining a narrowly tapering axis that does not reach posterior border furrow; median postaxial furrow effaced. Upper Cambrian: Australia
Subfamily DORYAGNOSTINAE

Shergold, Laurie, & Sun, 1990

[Shergoldiae Shergold, Laurie, & Sun, 1990, p. 28]

En grande tenue; nonscrobiculate; with borders of moderate width. Glabella with ogival to semiovate anterior lobe; F3 clear, straight or with slight median forward deflection; posterior lobe with F2 furrows.
present; glabellar node located from level with F1 to midway between F1 and F2. Pygidium with long, ogival to semiovate posterior lobe; small secondary axial node, commonly associated with a transverse depression in posterior half. Middle Cambrian.

Doryagnostus Kobayashi, 1939a, p. 148 [*Agnostus incertus* Brögger, 1878, p. 70; OD; lectotype (Nikolaensen & Henningsmoen, 1990, fig. 2a), 28200, PMO, Oslo] [*Ceragnostus* Whitehouse, 1939, p. 255 (type, *C. magister*; OD]. Median preglabellar furrow well developed, usually expanding into deltoid area anteriorly. Glabella with ogival anterior lobe; posterior lobe with weak F2 furrows; glabellar node midway between F1 and F2 furrows. Pygidium bispinose; axis ogival, acuminate posteriorly; posterior lobe ogival, commonly with transverse depression. upper Middle Cambrian: northern Greenland; England; Norway, Denmark, *P. tesini* Zone; Sweden, *P. punctuosus* Zone; Canada (Newfoundland), *P. davidis* Zone; Australia (Queensland). *E. opimus* to *G. nathorsti* Zones; Russia (southeastern Siberia), late *P. davidis* to *P. forchhammeri* Zones; China (Xinjiang), *G. nathorsti* or *P. punctuosus* Zone, (Hunan, Guizhou), zone uncertain.—Fig. 228, 1a, b. *D. incertus* (Brögger), Middle Cambrian (*Psychagnostus punctuosus* Zone), southern Norway (Krekling Station, Oslo district); a, paralectotype, cephalon, PMO H2646, X8; b, lectotype, pygidium, PMO 28200, X8 (Nikolaensen & Henningsmoen, 1990, fig. 2a, 26).

Itagnostus Öpik, 1979, p. 60 [*Agnostus elkedraensis* Etheridge, 1902, p. 3; OD; lectotype (SD Whitehouse, 1936, p. 89, pl. 9, fig. 3), 54188, AMF, Sydney]. Median preglabellar furrow absent. Glabella with semiovate anterior lobe; F3 straight; posterior lobe with F2 furrows weak or absent; glabellar node level with or a short distance in front of F1 furrows. Pygidium nonspinose or bispinose; axis broad, long, narrowly rounded posteriorly; posterior lobe semiovate, lacking transverse depression; median postaxial furrow absent. lower Middle Cambrian: Australia (Northern Territory), *T. gibbus* Zone; Russia (Siberian Platform), *Oryctocara* to *Kouamkites* Zones; Canada (British Columbia), *Bathyuriscus-Elrathina* Zone; ?Germany, *P. insularis*
Zone; China (Guizhou), Middle Cambrian.—

Fig. 228.4. *I. elkedraensis* (ETHERIDGE), Middle Cambrian (Templetonian, *Triagnostus gibbus* Zone), Australia (Elkedra area, Northern Territory); lectotype, exoskeleton. AMF 54188, X8 (new).

Rhodotypiscus OPIK, 1979, p. 79 [*R. naonis*; OD; holotype (OPK, 1979, pl. 16, fig. 1), CPC 14072, AGSO, Canberra]. Median preglabellar furrow usually weakly developed or absent. Glabella with semiovate anterior lobe; F3 straight; posterior lobe with well-developed F2 furrows; glabellar culmination strongly inflated; glabellar node level with or a short distance in front of F1 furrow. Pygidium bispinose; axis elongate ogival, acuminate posteriorly; posterior lobe ogival, commonly with well-developed transverse depression; median postaxial furrow present. *Middle Cambrian*: Canada (Quebec); Australia (Queensland), *E. opimus* Zone; USA (Utah), *T. gibbus* to lower *P. punctuosus* Zones, (Alaska), *Middle Cambrian*; Russia (Siberia), *T. fissus* Zone; China (Xinjiang), *G. nathorsti* or *P. punctuosus* Zone.—Fig. 228.3. [*R. naonis*, *Middle Cambrian* (Floran, *Eugnostus opimus* Zone), *Russia* (Siberia); exoskeleton, CPC 14072, X8 (new)].

Subfamily UNCERTAIN

Pseudoperonopsis HARRINGTON, 1938, p. 149 [*Agnostus sallesi* MUNIER-CHALMAS & BERGERON in BERGERON, 1889, p. 337; OD; holotype (MUNIER-CHALMAS & BERGERON in BERGERON, 1889, pl. 3, fig. 5), not identified]. With tendency to efface F1 and F2 furrows of pygidal axis; deliquate border furrows; unconsolated acrolobes. Cephalon with vestigial median preglabellar furrow; axial glabellar node at midlength of posterior lobe. Pygidium simplimarginate or narrowly (sag.) zonate; generally with short (sag.), pointed axis; with or without median postaxial furrow; with postaxial spinules. *Middle Cambrian*: France, *Paradoxides beds*; Spain, *Badulesia* to *Solenopleurotis* Zones; USA (Utah), *R. contracta* Subzone; *Australia* (Queensland), *A. atavus* to *D. natalibrae* Zones; China (Liao Ning, Shandong), *Crepicephalina Zone*.—Fig. 228.2.* [*P. sallesi* (MUNIER-CHALMAS & BERGERON), *Middle Cambrian* (horizon with *Conocoryphe leigyi*), France (Coulouma, Champs du Travers, Montagne Noire); pleiotype, UM Thoral H24, X5 (new)].

Family PERONOPSISIDAE

Westergård, 1936

[Peronopsidae WESTERGAARD, 1936, p. 28]

Usually en grande tenue; commonly scrobiculate; with nondeliquate border furrows and unconsolated acrolobes; cephalon nonsinose; median preglabellar furrow occasionally weakly developed. Glabella with subrectangular, trapeziform, semicircular, or semiovate anterior lobe; F3 straight or bent rearward; posterior lobe with F1 and F2 well developed; glabellar culmination narrowly rounded; glabellar node from a short distance behind F2 to a short distance in front of F2; basal lobes simple, inset behind a well-developed F1 furrow. Pygidium simplimarginate, nonsinose or bispinose; axis long, nearly reaching border furrow, ogival to subtriangular, variably constricted across M2; F1 well developed to effaced; F2 well developed to effaced, straight or deflected around axial node; posterior lobe semiovate to ogival with a usually well-developed transverse depression at about midlength or in anterior half. *Middle Cambrian*.

Peronopsis HAWLE & CORDA, 1847, p. 115 [*Battus integerr BRYCH, 1845, p. 44; OD; lectotype (PERON & VANEK), 1971, p. 270, pl. 1, fig. 6), BRYCH Collection 86(530), HMB, Berlin] [=Mesagnostus HAWLE & CORDA, 1847, p. 46, (type, *M. cuneifer*; OD); *Mesagnostus* JAEKEL, 1909, p. 397 (type, *Battus integerr* BRYCH, 1845, p. 44, fig. 19)]. Nonscrobiculate; narrow border in cephalon and wide, flat border in pygidium; median preglabellar furrow absent. Glabella with subquadrate to semiovate anterior lobe; posterior lobe with glabellar node a short distance behind F2. Pygidium nonsinose or bispinose; axis strongly convex, broadly ogival; F1 weak; F2 weak or absent, straight; posterior lobe broadly ogival, narrowly rounded to acuminate posteriorly, with a weakly developed transverse depression at about midlength. *Middle Cambrian*: *Sweden*: Czech Republic, *P. (E.) gracilis* Zone.—Fig. 229.1a,b. [*P. integerr* (BRYCH), *Middle Cambrian* (*Paradoxides gracilis* Zone), *Czech Republic* (Jince, Bohemia): a, topotype, exoskeleton, SBNM Br-190/56, X10 (Horny & Bastl, 1970); b, lectotype, pygidium, HMB BRYCH Collection 86(530), X10.7 (PERON & VANEK, 1971, pl. 1, fig. 6–7).

Diplorrhina HAWLE & CORDA, 1847, p. 46 [*D. triplicata* SD PERON & VANEK, 1971, p. 271; lectotype (SD SNAJDR, 1958, pl. 4, fig. 9), BRYCH Collection 745/66, NMP, Prague]. Commonly scrobiculate, with moderately wide border in cephalon and wider border in pygidium; median preglabellar furrow absent or weakly developed. Glabella with subrectangular, trapeziform, or semicircular anterior lobe; F3 bent rearward, rounded or chevron shaped; posterior lobe with glabellar node from a short distance behind to slightly in front of F2 furrows. Pygidium bispinose; axis of low convexity, ogival to subtriangular; F1 well developed to effaced, bent forward; F2 well developed or effaced, straight; posterior lobe acuminate posteriorly. *Middle Cambrian*: Czech Republic, *P. (E.) paillus* to *D. gracilis* Zones; *Sweden*: *H. parvifrons* to S. brachy-
metopa Zones; England, Canada (Newfoundland), upper P. hicksi to lower P. davidis Zone.——Fig. 229,2. *D. triplicata, Middle Cambrian (Eccaparadoxides pusilla Zone), Czech Republic (Skryje, Bohemia); lectotype, exoskeleton, NM Hawle Collection 745/66, ×10 (Pek & Vanek, 1971, pl. 1, fig. 1).

Gratagnostus HAJRULLINA in REPINA, PETRUNINA, & HAJRULLINA, 1975, p. 113 [*G. latus; OD; holotype (HAJRULLINA in REPINA, PETRUNINA, & HAJRULLINA, 1975, pl. 11, fig. 10), 483/189, MMG, Tashkent]. Nonscrobiculate; narrow to moderately wide border in cephalon and wider border in pygidium; median preglabellar furrow absent. Glabella with trapeziform to semicircular anterior lobe; posterior lobe with glabellar node midway between F1 and F2. Pygidium bispinose; axis broad, ogival; F1 well developed; F2 well developed, deflected around axial node; posterior lobe narrowly rounded posteriorly. Middle Cambrian: Uzbekistan, Pseudanomocarina Beds; England, P. aurora to T. fissus Zones; Sweden, T. fissus or A. atavus Zone; Canada (Newfoundland), P. bennetti Zone.——Fig. 229,3a,b. *G. latus, Middle Cambrian (Angaian Stage beds with Pseudanomocarina), Uzbekistan (Shodymira region, southern Tyan-Shan Range); a, paratype, cephalon, MMG 483/176a, ×10; b, holotype, pygidium, MMG 483/189, ×10 (Repina, Petrunina, & Hajarullina, 1975, pl. 11, fig. 10, 12).

Peronopsella SDZUY, 1968, p. 88 [*P. pokrovskajae; OD; holotype (SDZUY, 1968, pl. 1, fig. 1), 24000, SMF, Frankfurt am Main]. Similar to Peronopsis but cephalon with F3 and F2 and axial furrows surrounding anterior half of glabella effaced. Pygidium with F1, F2, and usually axial furrows surrounding posterior axial lobe effaced. Middle Cambrian: Spain (Asturias), C. ovata beds, Acadolenus to Badulesia Zones, (Zaragoza), Badulesia to Pardailhania Zones; Germany, P. paradoxissimus beds, T. gibbus to A. atavus Zones; England, lower T. fissus Zone; Canada (Newfoundland), P. bennetti Zone.——Fig. 229,4a,b. *P. pokrovskajae, Middle Cambrian
Family DIPLAGNOSTIDAE
Whitehouse, 1936

[Diplagnostidae WHITEHOUSE, 1936, p. 90]

Varily effaced; commonly scrobiculate; usually with deliquiate border furrows; with pygidial border simplimarginate or variably zonate; cephalon nonspinose; cephalic acrolobe usually unconstricted; pygidal acrolobe commonly constricted; median preglabellar furrow variably developed. Glabella with anterior lobe variable in shape; F3 variably impressed, straight to V-shaped; posterior lobe with glabellar culmination variably rounded to angular; glabellar node from slightly behind F2 to near F3; basal lobes of moderate to large size, simple. Pygidium with basic or glyptagnostoid articulating device; bispinose or occasionally posteriorly angulate or trispinose; axis of variable length, commonly deuterolobate; F1 variably impressed or effaced; M1 commonly trilobate; F2 usually impressed, deflected by axial node; in axiolobate forms, posterior lobe with transverse depression; deuterolobate forms with well-developed terminal node. Middle Cambrian–Lower Ordovician.

Subfamily DIPLAGNOSTINAE
Whitehouse, 1936

[Diplagnostiniae WHITEHOUSE, 1936, p. 90]

En variably tenue; usually nonscrobiculate; with variably zonate pygidal border. Glabella with subquadrate to semicircular anterior lobe; F3 variably impressed, straight; posterior lobe with variably developed F2 and F1; glabellar node from slightly behind to slightly in front of F2. Pygidium usually bispinose, occasionally posteriorly angulate or trispinose; axis of variable length, usually slightly constricted over M2; F1 and F2 well developed to effaced; posterior lobe variable in shape, usually with transverse depression; pygidial collar usually present, incipient, arcuate or sinuous. Middle Cambrian–Lower Upper Cambrian.
(Texas), Bolapiddella Zone, (South Carolina), zone uncertain; Russia (Siberia), T. fuscus, Pseudanomocarina, A. henrici Zones, (Kirgizia), Amgatan-Mayanian; China (Hunan, Guizhou), D. sp. cf. D. richtshofeni to lower P. jimaensis-C. tuma Zones, (Xinjiang), G. nathorsti on P. punctuosus Zone.—Fig. 230, 8a, b *A. fallax (Linnarsson), Middle Cambrian (Triagnostus gibbus Zone), Sweden.
(Djupadalen, Västergötland); a, cephalon, SGU 4717, X9; b, lectotype, pygidium, SGU 4716, X9 (Laurie, 1990, fig. 1b.d).

Baltagnostus Lochman in Lochman & Duncan, 1944, p. 132 [*Proagnostus? centroensis* Resser, 1938, p. 48; OD; holotype (Resser, 1938, pl. 10, fig. 18), 94868, USNM, Washington, D.C.]. Nonscrobiculate, with deliquiate border furrows; unconstriicted acrolobes; median preglabellar furrow absent. Glabella with subquadrate to subpentagonal anterior lobe; F3 clear; posterior lobe with weak F2 furrows; glabellar culmination narrowly rounded or angular; glabellar node about level with F2 furrows. Pygidium bispinose; axis long, reaching border furrow; F1, F2 effaced; posterior lobe semiovate, broadly rounded posteriorly; pygidial collar sinuous, extending to pygidial collar, broadly rounded posteriorly; F1, F2 angulate posteriorly; axis long, extending to pygidial collar, broadly rounded posteriorly; glabellar node about level with F2 furrows; posterior lobe very broad, semiovate, rounded posteriorly; F1, F2 clearly impressed; F2 weakly developed or absent; glabellar node about level with F2 furrows. Pygidium bispinose or trispinose, commonly with postaxial notch on margin, short, broadly ogival, unconstriicted or slightly constricted across M2; F1 effaced to clearly impressed laterally; F2 effaced to clearly impressed; posterior lobe short, broad, subtriangular, with transverse depression at about midlength. Pygidial collar sinuous, extending onto acrolobe, upper Middle Cambrian: Sweden, England, P. punctuosus Zone; Denmark, P. davidis Zone; Norway, P. forchhammeri Zone; Wales, P. paradoxissimus Zone; Russia (Siberia, Tuva), Turkestan Mountain Range, Tadzhikistan; Kazakhstan, L. laevigata, Anopolenus, L. allachjunensis Zones; China (Hunan, Guizhou, Qinghai, Zhejiang), L. armata Zone; Australia (Queensland, Northern Territory), T. gibbus to L. laevigata Zones.——Fig. 230, a,b. *L. kjerulfi* (Brogger, Middle Cambrian (Paradoxides forchhammeri beds), Norway (Krekeling, Oslo district); a, paralectotype, cephalon, PMO 28682, X5,5; b, lectotype, pygidium, PMO 28684, X5,5 (new).

Dolichagnostus Pokrovskaya, 1958, p. 34 [*D. admirabilis*; OD; holotype (Pokrovskaya, 1958, pl. 3, fig. 1), 3534/3, GIN, Moscow]. Nonscrobiculate, with broad, deliquiate border furrows; pygidial acrolobe commonly constricted; median preglabellar furrow well developed. Glabella with trapeziform anterior lobe; F3 weak; posterior lobe with F2 weak or absent; glabellar culmination narrowly rounded or angular; glabellar node about level with F2 furrows. Pygidium bispinose; axis long, reaching border furrow; F1, F2 effaced; posterior lobe very broad, semiovate, rounded posteriorly; pygidial collar arcuate, narrowly rounded or angular; glabellar node about level with F2 furrows. Pygidium bispinose; axis long, reaching border furrow, commonly well developed. Glabella with trapeziform to subrectangular anterior lobe, commonly with median sulcus; F3 clearly impressed; F2 weakly developed or absent; glabellar culmination narrowly rounded or angular; glabellar node about level with F2 furrows. Pygidium bispinose or trispinose, commonly with postaxial notch on margin, short, broadly ogival, unconstriicted or slightly constricted across M2; F1 effaced to clearly impressed laterally; F2 effaced to clearly impressed; posterior lobe short, broad, subtriangular, with transverse depression at about midlength. Pygidial collar sinuous, extending onto acrolobe, upper Middle Cambrian: Sweden, England, P. punctuosus Zone; Denmark, P. davidis Zone; Norway, P. forchhammeri Zone; Wales, P. paradoxissimus Zone; Russia (Siberia, Tuva), Turkestan Mountain Range, Tadzhikistan; Kazakhstan, L. laevigata, Anopolenus, L. allachjunensis Zones; China (Hunan, Guizhou, Qinghai, Zhejiang), L. armata Zone; Australia (Queensland, Northern Territory), T. gibbus to L. laevigata Zones.——Fig. 230, a,b. *L. kjerulfi* (Brogger, Middle Cambrian (Paradoxides forchhammeri beds), Norway (Krekeling, Oslo district); a, paralectotype, cephalon, PMO 28682, X5,5; b, lectotype, pygidium, PMO 28684, X5,5 (new).

Oedorchasis Resser, 1938, p. 50 [*O. typicalis*; OD; holotype (Resser, 1938, pl. 10, fig. 16, 22, 28), 94868, USNM, Washington, D.C.]. Similar to *Baltagnostus* but with incipient zonation only and lacking transverse furrow in posterior pygidial axial lobe, upper Middle Cambrian–lower Upper Cambrian: northern Greenland; ?Sweden; Australia (Queensland), G. Nathorsti to A. quassiacapra Zones; Argentina, Bolaspindela Zone; Canada (Northwest Territories), Cedaria minor Zone; USA (Alabama, Tennessee), G. stolizotus Zone; China (Liaoning, Qinghai), Blackwelleria Zone.——Fig. 230, a,b,c. *O. typicalis*; a,b, upper Middle Cambrian (Leiopyge laevigata Zone), northern Greenland (Gustav Holm Dal, Peary Land); a, cephalon, MGUH 17,115, X8, b, pygidium, MGUH 17,118, X8 (Robison, 1988, fig. 4, 8,1); c, Late Cambrian (Drever Formation, Crescipephalus Zone), USA (Cedar Bluff, Alabama), holotype, exoskeleton, USNM 94866, X6 (new).

Tasagnostus Jago, 1976, p. 161 [*T. deborii*; OD; holotype (Jago, 1976, pl. 26, fig. 1), 86869e, UTGD, Hobart]. Nonscrobiculate, with broad, deliquiate border furrows; zonate pygidial border; acrolobes unconstriicted; median preglabellar furrow weak. Glabella with trapeziform to subpentagonal anterior lobe, commonly with median sulcus; F3 clearly impressed; F2 weakly developed or absent; glabellar culmination narrowly rounded or angular; glabellar node about level with F2 furrows. Pygidium bispinose or trispinose, commonly with postaxial notch on margin, short, broadly ogival, unconstriicted or slightly constricted across M2; F1 effaced to clearly impressed laterally; F2 effaced to clearly impressed; posterior lobe short, broad, subtriangular, with transverse depression at about midlength. Pygidial collar sinuous, extending onto acrolobe, upper Middle Cambrian: Sweden, England, P. punctuosus Zone; Denmark, P. davidis Zone; Norway, P. forchhammeri Zone; Wales, P. paradoxissimus Zone; Russia (Siberia, Tuva), Turkestan Mountain Range, Tadzhikistan; Kazakhstan, L. laevigata, Anopolenus, L. allachjunensis Zones; China (Hunan, Guizhou, Qinghai, Zhejiang), L. armata Zone; Australia (Queensland, Northern Territory), T. gibbus to L. laevigata Zones.——Fig. 230, a,b. *L. kjerulfi* (Brogger, Middle Cambrian (Paradoxides forchhammeri beds), Norway (Krekeling, Oslo district); a, paralectotype, cephalon, PMO 28682, X5,5; b, lectotype, pygidium, PMO 28684, X5,5 (new).

Tasagnostus Jago, 1976, p. 161 [*T. deborii*; OD; holotype (Jago, 1976, pl. 26, fig. 1), 86869e, UTGD, Hobart]. Nonscrobiculate, with broad, deliquiate border furrows; zonate pygidial border; acrolobes unconstriicted; median preglabellar furrow weak. Glabella with trapeziform to subpentagonal anterior

© 2009 University of Kansas Paleontological Institute
lobe; F3 weak; posterior lobe with F2 weak or absent; glabellar culmination acutely angular; glabellar node about level with F2 furrows. Pygidium trispinose; axis long, constricted across M2; F1, F2 effaced; posterior lobe slightly bulbous, broadly rounded posteriorly, extending to pygidial collar, with well-developed transverse furrow in anterior half; pygidial collar extending across entire posterior margin between pygidial spines, but not extending onto acrolobe. upper Middle Cambrian: Australia (Tasmania), *L. laevigata* to *D. torosa* or *A. janitrix* Zones.—Fig. 230,a,b. *T. debori*, Middle Cambrian (Boomerangian, *Lejopyge laevigata* Zone), Australia (Christmas Hills, northern Tasmania); a, paratype, cephalon, UTGD 86877e, \(\times 7.7 \); b, holotype, pygidium, UTGD 86869e, \(\times 7.4 \) (Jago, 1976, pl. 26, fig. 1, 9).

Subfamily OIDALAGNOSTINAE
Öpik, 1967

En grande tenue; scrobiculate; zonate pygidial border; commonly constricted pygidial acrolobe; median preglabellar furrow usually weak. Glabella with trapeziform furrow to subrectangular anterior lobe; F3 well developed, straight; posterior lobe with variably developed F2; glabellar culmination narrowly rounded; glabellar node about level with F2 furrows. Pygidium trispinose; axis long, extending to pygidial collar or posteriorly effaced; F1 and F2 variably impressed; posteroaxis variably quadrate with deep, transverse depression in anterior half defining a third anterior annulation and posterior portion subrectangular, tumid or effaced. upper Middle Cambrian–lower Upper Cambrian.

Oidalagnostus Westergård, 1946, p. 65 [*O. trispinifer*; OD; holotype (Westergård, 1946, pl. 9, fig. 6), 4879, SGU, Uppsala] [*Oimalagnostus Lu in Li, Zhou, & others, 1974, p. 81 (type, Oidalagnostus changi Lu in Wang, 1964, p. 30, pl. 3, fig. 11)]. Median preglabellar furrow weakly developed. Pygidial axis long, extending to pygidial collar; posteroaxis with tumid, subrectangular posterior portion; posterior portion commonly separated from pleural field by paired bosses and weak accessory furrows; pygidial collar arcuate, with median depression. uppermost Middle Cambrian–lower Upper Cambrian: northern Greenland; Sweden, *L. laevigata* Zone; Australia (Queensland, Tasmania), *L. laevigata*, *C. quasivespa*, *G. stolidotus* Zones; Canada (Newfoundland), *A. pisiformis* Zone; Russia (northwestern Siberia), *Pedinocephalus* or *Tozatis* Zone, (southern Siberia), *L. laevigata* Zone; China

(Zhejiang), *L. armata* to *L. sinensis* Zones, (Hunan), *L. laevigata* Zone.—Fig. 231,2a,b. *O. trispinifer*, Middle Cambrian (*Lejopyge laevigata* Zone), Sweden (Gudhem, Västergötland); a, cephalon, SGU 4878, \(\times 6 \); b, holotype, pygidium, SGU 4879, \(\times 6 \) (new).

Cristagnostus Rushton, 1978, p. 262 [*C. papilio*; OD; holotype (Rushton, 1978, pl. 26, fig. 5), BDA 1320–1321, BGS, London]. Very weakly scrobiculate; median preglabellar furrow variably developed. Pygidial axis with F1 well developed; F2 weak; posteroaxis with only anterior portion

© 2009 University of Kansas Paleontological Institute
defined by axial furrow and transverse depression; axial furrow effaced behind transverse depression; pygidial collar simous, extending on to acrolobe. uppermost Middle Cambrian—lowermost Upper Cambrian: Russia (southwestern Siberia); England, Canada (Newfoundland), A. psiformis Zone; Russia (northern Siberia), uppermost Middle Cambrian.——Fig. 231. 1. *C. papilion. Upper Cambrian (Agnostus psiformis Zone), central England (Merevale #3 borehole, Nuneaton); holotype, exoskeleton, BGS BDA 1320, X9.3 (Rushston, 1978, pl. 25, fig. 5).

Subfamily PSEUDAGNOSTINAE

Whitehouse, 1936

[Pseudagnostinae Whitehouse, 1936, p. 97]

En grande tenue to largely effaced; commonly scrobiculate; usually with wide borders; pygidial border usually simplimarginate; pygidial acrolobe commonly constricted; median preglabellar furrow well developed to absent. Glabella with anterior lobe variable in shape; F3 variably impressed, straight to V-shaped, rarely bent forward; posterior lobe with glabellar node from a short distance behind F2 to near F3. Pygidium bispinose, rarely trispinose; axis long, deuterolobe often effaced or weak; deuterolobe often effaced, with terminal node. Upper Cambrian—Lower Ordovician.

Pseudagnostus JAEKEL, 1909, p. 400 [*Agnostus cyclopyge TULLBERG, 1880, p. 26; OD: topotypes (WESTERGÅRD, 1922, pl. 1, fig. 7–8), 3066t, 3067t, LO, Lund] [*Plethagnostus CLARK, 1923b, p. 124 (type, P. gym; OD)]. Variably convex, spectaculate pseudagnostines; en grande tenue to partly effaced; possessing median preglabellar furrow; lacking median preglabellar furrow; strongly spectaculate; with subdeliquiate border furrows; lacking median preglabellar furrow; unconstrected acrolobes; clearly incised, transverse anterior glabellar furrow; pygidium weakly deuterolobate; F1, F2 furrows effaced; postero-lateral spines generally close to rear of deuterolobe. Upper Cambrian: USA (Alabama, Nevada, Virginia), Cedaria to Crepiscephalus Zones; Canada (Northwest Territories), Cedaria minor to C. brevifrons Zones; Australia (Queensland), G. solidotus Zone; Kazakhstan, G. solidotus Zone; South Korea, Drepunaura to Stephanocephalus Zone; China (Hunan, Liaoning, Shandong), Gushanian.——Fig. 232, Aa, b. *P. (P.) contracta (PALMER, 1962a) (Dresbachian, Cedaria Zone), USA (Woodstock, Alabama); a, paratype, cephalon, USNM 143150, X16; b, holotype, pygidium, USNM 143151, X16 (Shergold, 1977, pl. 15, fig. 11–12).

P. (Sulcatagnostus) KOBAYASHI, 1937b, p. 451 [*Agnostus securiger LAKE, 1906, p. 20; OD: holotype (LAKE, 1906, pl. 2, fig. 11), 57650, BGS, London]. En grande tenue, with deliquiate border furrows and strongly constricted acrolobes, possessing median preglabellar furrow; pygidium trispinose. Upper Cambrian: England, O. cata-ractes Subzone; Canada (Northwest Territories), Olenaspella regularis Zone; China (Zhejiang), L. punctatus Zone, (?Xinjiang, ?Hunan), zone uncertain; Australia (Tasmania), post-Idamean.——Fig. 232, 5. *P. (S.) securiger (LAKE), Upper Cambrian (Olenus Zone), England (Nuneaton, Warwickshire); holotype, exoskeleton, BGS 57650, X6 (Shergold, 1977, pl. 15, fig. 13).

Agnostostes OPIK, 1963, p. 43 [*A. inconstans; OD: holotype (OPIK, 1963, pl. 3, fig. 11), CPC 4272, AGSO, Canberra]; Large; en grande tenue; variably scrobiculate, with nondeliquiate border furrows, narrow borders, and unconstrected acrolobes; median preglabellar furrow well developed. Glabella with broad anterior lobe; F3 bent forward; posterior lobe with well-developed, forwardly directed F2 furrows and broadly rounded glabellar culmination; glabellar node located level with or slightly in front of F2 furrows. Pygidium bispinose; deuterolobe subsquarose to subpyriform, with well-developed terminal node; nodular lines usually developed. Upper Cambrian.
A. (Agnostotes). Scrobiculate; axial furrows weakly impressed. Glabella with anterior lobe broad (tr.) and subpentagonal; F3 slightly convex forward; posterior lobe with clearly developed F2; glabellar node level with or slightly in front of F2 furrows. Pygidial axis with weakly impressed accessory furrows; axial node extending slightly onto deuterolobe; deuterolobe subcircular with notular lines erratically developed. Upper Cambrian: China (Qinghai); Australia (Queensland). I. tropica Zone.——Fig. 232, 3a, b. *A. (A.) inconstans*, Upper Cambrian (post-Idamean).
Trilobita

Irvingella tropica Zone, Australia (Burke River area, western Queensland); a, paratype, cephalon, CPC 4272, X8.5 (new); b, holotype, pygidium, CPC 4272, X7 (new).

A. Pseudolagagnostus

Liu in Wang, 1964, p. 32

[*Pseudolyagnostus clavatus; OD; holotype (Lu in Wang, 1964, pl. 4, fig. 7), 23719, NIGP, Nanjing] [=Lagagnostus Lazarevko, 1966, p. 42 (type, G. elegans; OD)]. Both shields strongly scrobiculate. Glabella with anterior lobe broad and trapeziform, with variably developed median sulcus; F3 bent strongly forward; posterior lobe with well-developed F2 and F1; lateral portions of M2 commonly separated from midmost glabella by longitudinal (exag.) furrows; glabellar node located in front of F2 furrow. Pygidial axis with F1 impressed laterally and F2 clearly impressed; axial node extending row. Pygidial axis with F1 impressed laterally; axial glabellar node subcentral or slightly advanced. Pygidium with highly inflated deuterolobe; F1 and F2 mostly effaced; posterolateral spines minute. Upper Cambrian: Russia (Siberia), Ayuokskian; Kazakhstan, Kormagnostus simplex Zone; Canada (Northwest Territories, Newfoundland), Cedaria selunyi to Cedaria brevifrons Zones; USA (Utah, Nevada, Missouri, Texas), Cedaria to Crepsicephalus Zones; Australia (Queensland), Enaksiaspis eretes and Glyagnostus stolidotus Zones; China (Hunan, Zhejiang), Glyagnostus stolidotus Zone.——Fig. 234, 1a, b *N. naganasanicus (Rozova), Upper Cambrian (Ayuokskian, Nangasan Horizon), Russia (Kulyumbe River, northwestern Siberian Platform); a, cephalon, CSGM 1138999, X10; b, holotype, pygidium, CSGM 113879, X5 (Rozova, 1964, pl. 16, fig. 3, 11).

Nahannahagnostus

Pratt, 1992, p. 35 [*N. pseudagnostus naganasanicus Rozova, 1964, p. 27; OD; holotype (Rozova, 1964, pl. 16, fig. 3), 113875, CSGM, Novosibirsk]. Cephalon and pygidium strongly convex; median prediglabellar furrow well defined; anterior glabellar lobe extremely small; F3 partly effaced; axial glabellar node subcentral or slightly advanced. Pygidium with highly inflated deuterolobe; F1 and F2 mostly effaced; posterolateral spines minute. Upper Cambrian: Russia (Siberia), Ayuokskian; Kazakhstan, Kormagnostus simplex Zone; Canada (Northwest Territories, Newfoundland), Cedaria selunyi to Cedaria brevifrons Zones; USA (Utah, Nevada, Missouri, Texas), Cedaria to Crepsicephalus Zones; Australia (Queensland), Enaksiaspis eretes and Glyagnostus stolidotus Zones; China (Hunan, Zhejiang), Glyagnostus stolidotus Zone.——Fig. 234, 1a, b *N. naganasanicus (Rozova), Upper Cambrian (Ayuokskian, Nangasan Horizon), Russia (Kulyumbe River, northwestern Siberian Platform); a, cephalon, CSGM 1138999, X10; b, holotype, pygidium, CSGM 113879, X5 (Rozova, 1964, pl. 16, fig. 3, 11).

Neognagnostus

Kobayashi, 1955, p. 473 [*N. aspidoides; OD; holotype (Kobayashi, 1955, pl. 7, fig. 5), 12745, GSC, Ottawa]. Spectaculate; partially effaced to en grande tenue, with generally wide borders and subdelique to delique to border furrows; acrolobes weakly constricted; cephalon and pygidium frequently subquadrate. Cephalon with variably developed median prediglabellar furrow; generally small, rhomboid anterior lobe; variably defined, V-shaped F3; chevronate F2 behind anterolateral lobes of posterior glabellar lobe; anterolateral lobes close together or meeting sagittally. Pygidium with third annulation in anterior part of axis; weakly to strongly deuterolobate, with retrol posterolateral spines. Upper Cambrian—Lower Ordo
dvician.

N. (Neognagnostus) [*Pseudohyperagnostus Lermontova, 1951a, p. 12, 11–17]; Euplitagnostus Lermontova, 1940, p. 126 (type, E. simplex Lermontova, 1951a, p. 12, 2, fig. 11–17); Euplitagnostus Lermontova, 1940, p. 126 (type, E. subangulatus; OD); Hyperagnostus Kobayashi, 1955, p. 475 (type, H. birostris; OD); Tanayagnostus Suarez-Soruco, 1975, p. 133 (type, T. corrugatus; OD); Calagnostus J. Zhang & Wang, 1985, p. 332 (type, C. magellanus; OD). En grande tenue to partly effaced; cephalon nonscrobiculate; glabella proportionately long; median prediglabellar furrow variably developed; variably deuterolobate. Upper Cambrian—Lower Ordovician: Canada (British Co
lumbia, Newfoundland, Quebec), Eunina to Mississippian Zones; USA (Minnesota, Wisconsin, Texas); Canada (Alberta), Taenicephalus Zone to Elphinstoecephalid; silvestris Subzone, (Newfoundland), Sunwaptan, (Quebec): England, upper Tremadoc.——Fig. 233, 4a, b. *L. levisiensis, Upper Cambrian (Sunwaptan, Keithia subulata fauna of LUDVIGSEN & others, 1989), Canada (Boulder 36, Lévis, Quebec); a, syntype, cephalon, LU 1103a, X5; b, syntype, pygidium, LU 1103b, X5 (Rasetti, 1944, pl. 36, fig. 5–6).

© 2009 University of Kansas Paleontological Institute
Agnostina—Agnostoidea

?Cordyodus proavus Zone; Australia (Queensland, Tasmania), W. iota or R. apsis to N. quasibilobus or S. nomas Zones; China (Anhui, Guizhou, Shanxi, Zhejiang, Xinjiang, Yunnan), L. punctatus to M. perpetis Zones, (Shandong), Kaolishania Zone, (Hunan), Tremadoc; South Korea, Kaolishania Zone; Kazakhstan (Altay-Sayan), Russia (Kuznetsk Alatau, Yakutia), Irvingella to M. mutabilis Zones; Wales, Tremadoc; ?Argentina, lower Tremadoc; Bolivia,
Trilobita

Neoparabolina argentina Zone.—Fig. 233,2a. *N. (N.) aspidoides, ?Lower Ordovician ("Symphysurina fauna"), Canada (Harrogate, British Columbia); holotype, cephalon, GSC 12745, X7 (Shergold, 1977, pl. 16, fig. 6).—Fig. 233,2b,c. *N. (N.) bilobus (Shaw), uppermost Cambrian (Mississqua Zone), USA (Highgate Falls, Vermont); b, paratype, cephalon, USNM 124467, X16; c, holotype, pygidium, USNM 124468, X12.5 (Shergold, 1977, pl. 16, fig. 7–8).

N. (Machairagnostus) Harrington & Leanza, 1957, p. 64 [*Machairagnostus tmetus; OD; holotype (HARRINGTON & LEANZA, 1957, fig. 7.4), BAF CB, Buenos Aires]. En grande tenue but with partially effaced glabellar furrows; cephalon scrobiculate, possessing median preglabellar furrow and proportionately short glabella; pygidium nonscrobiculate, weakly deuterolobate, preserving intranotal axis. Uppermost Cambrian: Argentina, Neoparabolina argentina Zone; Kazakhstan, E. scrobicularis to P. asiatica Zones.—Fig. 233,5. *N. (M.) tmetus (HARRINGTON & LEANZA), uppermost Cambrian (N. argentina Zone), Argentina (Iruya, Salta); holotype, exoskeleton, BAF CB 1297, X11.5 (Harrington & Leanza, 1957, fig. 7.4).

Oxyagnostus ÖPIK, 1967, p. 159 [*O. apicula; OD; holotype (ÖPIK, 1967, pl. 63, fig. 6), CPC 5916, AGSO, Canberra]. Both cephalon and pygidium with constricted acrolobes, relatively narrow borders, and deliquiate border furrows. Cephalon lacking median preglabellar furrow; glabellar culmination angular; glabellar node advanced. Pygidium with axis constricted at M2, and long, subpentagonal, laterally expanded posterior lobe; deuterolobe not obvious externally; posteralateral spines slightly in advance of terminal axial node. Upper Cambrian: Australia (Queensland), G. stolidotus Zone; USA (Alabama), Crepicephalus Zone.—Fig. 234,2a,b. *O. apicula, Upper Cambrian (Mindyallan, Glyptagnostus stolidotus Zone), Australia (Boulia district, western Queensland): a, paratype, cephalon, CPC 5917, X8; b, holotype, pygidium, CPC 5916, X8 (new).

Rhaptagnostus Whitehouse, 1936, p. 97 [*Agnostus cyclopygeformis Y. Sun, 1924, p. 26; OD; lectotype (Y. Sun, 1924, pl. 2, fig. 1e), 507, NIGP, Nanjing]. Characteristically with subovoid to subcircular cephalon and pygidium; effaced to partly effaced; with nondeliquiate border furrows. Cephalon papilionate, with effaced median preglabellar furrow. Pygidium variably deuterolobate, with weakly constricted acrolobe; marginal spines well in advance of rear of deuterolobe. Upper Cambrian: Australia (Queensland), W. iota or R. apsis to N. quasiabilobus or S. nosmas Zones; China (Anhui, Hebei, Liaoning, Shandong, Yunnan, Qinghai, Xinjiang), Kaolishania to Tsiniana Zones, (Zhejiang), L. punctatus Zone, (Guizhou), zone uncertain; North and South Korea, Fengshanian, Tsiniana to Esorhbus Zones; Kazakhstan, E. scrobicularis to T. triulcus Zones, Russia (Yakutia), P. perlata Zone; Canada (Northwest Territories, Newfoundland), Yukonapis Zone; USA (Alaska, Montana, Nevada, Vermont), S. pyrene to S. serotina Subzones; Mexico, pre-Cordylodus proavus Zone.—Fig. 233,3a. *R. cyclopygeformis (Sun), Upper Cambrian (Changshanian, Kaolishania Zone), China (Kaolishan, Taian, Shandong); lectotype, pygidium, NIGP 507, X7 (X. Sun, 1989, pl. 5, fig. 10).—Fig. 233,3b,c. R. convergens (PALMER), Upper Cambrian (Tempecalcauan, Sakhicka pyrene Subzone), USA (Eureka district, Nevada); b,

© 2009 University of Kansas Paleontological Institute
Agnostina—Agnostoidea

paratype, cephalon, USNM 123563, X10; c. holo-
type, pygidium, USNM 123562, X0.5 (Shergold, 1977).

Trisulcagnostus Ergaliev, 1980, p. 116 [*T. trisulcus; OD; holotype (Ergaliev, 1980, pl. 18, fig. 13), 1950/289, GMAN, Alma-Ata] [*Pseudagnostus (Tririgmagnostus) Qiu, 1983, p. 40 (type, P. (T.) anhubiensis; OD)]. Like *Rhapagnostus*, but with narrow borders and nondeliquiate border furrows, well-defined median preglabellar furrow, and additionally a pair of transverse furrows crossing cephalic acrolobe from axial furrow to border furrow at level of anterolateral lobes of posterior gla-
bellar lobe; pointed anterior lobe, papilionate; py-
gidium unknown. Upper Cambrian: China (Anhui, Hunan); Kazakhstan, *E. scrobiculatus* to *T. trisulcus* Zones;——FIG. 233,6. *T. trisulcus* Ergaliev; Upper Cambrian (Barytaian, *Trisulcagnostus* Zone), Kazakhstan (Lesser Karatau Mountains); holotype, cephalon, GMAN 1950/289, X10.2 (Ergaliev, 1980, pl. 18, fig. 13).

Xestagnostus Opik, 1967, p. 161 [*X. legirupa; OD; holotype (Opik, 1967, pl. 64, fig. 1), CPC 5922, AGSO, Canberra]; Moderately large; relatively flat; externally ecafaced. Cephalon lacking median preglabellar furrow; sculpturate; large, triangular basal lobes; glabellar culmination angulate; unconstricted acrolobe; scrobiculate on internal mold. Pygidium with constricted acrolobe; internally scrobiculate pleural lobes; rectangular anteroxiofus; ecafaced accessory furrows; weakly deuterolobate, concave articulating facets; fulcrum spines; simple articulating device represented by elliptical, depressed plate; advanced postoralateral spines. Upper Cambrian: Australia (Queensland), *A. quasievpa* to *G. stolidotus* Zones;——FIG. 234,3a,b. *X. legirupa*, Upper Cambrian (Mindyallan, *Glyptagnostus stolidotus* Zone), Australia (Glennormiston area, western Queensland); a. paratype, cephalon, CPC 5924, X8; b. holotype, pygidium, CPC 5922, X8 (new).

Family CLAVAGNOSTIDAE

Howell, 1937

En grande tenue; commonly scrobiculate, with nondeliquiate to deliquiate border fur-
row in cephalon and nondeliquiate border furrow and commonly zonate border in py-
gidium; unconstricted acrolobes and well-developed cephalic spines. Median preglab-ellar furrow well developed to absent. Glabella acuminate, rounded, or obtusely angular anteriorly, usually with anterior and posterior lobes fused; F2 absent or weakly developed; glabellar culmination variably rounded, or angular; glabellar node elongate, located near midlength or in anterior half of glabella; basal lobes of small to moderate size, simple. Pygidium bispinose or trispino-
ose, with long, usually ogival to subtri-
angular axis; construed across M2; F1 ef-
faced or clearly impressed, curving forward to articulating furrow to isolate anterolateral lobes; F2 effaced or clearly impressed, strongly deflected by long axial node; poste-
rior axial lobe long, usually ogival, subtriangular or subpyriform, commonly extending to border furrow, with a transverse depression commonly associated with a pair of longitudinal (exsag.) pits at about midlength of lobe. upper Middle Cambrian—lower Upper Cambrian.

Subfamily CLAVAGNOSTINAE

Howell, 1937

[Clavagnostinae Howell, 1937, p. 1164]

Pygidium simplimarginate; axis with F1 and F2 effaced. upper Middle Cambrian—lower Upper Cambrian.

Clavagnostus Howell, 1937, p. 1164 [*A. repandus* Westergård in Holm & Westergård, 1930, p. 13; OD; holotype (Holm & Westergård, 1930, pl. 4, fig. 11), 3131T, LO, Lund] [*=Tomorhachis Renier, 1938, p. 51 (type, *T. spinanata*; OD); Culipagnostus Ruscioni, 1952, p. 11 (type, *C. chiguiensis*; OD); Stigmagnostus C. Poulsen, 1960, p. 15 (type, *T. cannotesius* Ruscioni, 1951, p. 14, 26, fig. 29); Acanthagnostus Qian, 1982, p. 640 (type, *A. longispinus*; OD); Clavagnostus (Leptagnostus) Lu & Lin, 1989, p. 199 (type, *C. (L.) lancrulatus*; OD)]. Nonscrobiculate; median preglabellar furrow variably developed. Glabellar node elongate, located in anterior half of glabella. Pygidium bispinose or trispinose; posterior lobe commonly reaching border furrow or connected to it by median postaxial furrow, with a broad transverse depression and a pair of longitudinal (exsag.) pits at about lobe midlength. upper Middle Cam-
brian—lower Upper Cambrian: USA (Vermont, Alabama); Argentina; Germany; Sweden, *L. laevigata* Zone; Russia (Bennett Island), *P. forchhammeri* Zone, (southwestern Siberia, Altay Mountains, Salair), *L. laevigata* Zone, (northwestern Siberia), *L. armata* to *M. mirabilis* Zones, (southeastern Sibe-
ria), *Solenoparia* Zone; Turkestan Mountain Range, *L. laevigata* Zone; Kazakhstan, *L. armata* to *K. simplex* Zones; Canada (Northwest Territories), *Cedaria minor* Zone; Australia (Tasmania), *L. laevigata* Zone, (Queensland), *E. eretus* to *G. stolidotus* Zones; China (Zhejiang), *L. armata* to *G. stolidotus* Zones, (Shandong), *Drepanura* Zone, (Anhui, Hunan, Qinghai), zone uncertain;——FIG. 235,2a,b. *C.
repandus (WESTERGÅRD), Middle Cambrian (Para-
doxides forchhammeri Stage), Sweden (Andrarum,
Skåne); a, holotype, cephalon, LO 3131T, ×6; b,
paratype, pygidium, SGU 5461, ×6; (Westergård,
1946, pl. 4, fig. 19–20).

Subfamily ASPIDAGNOSTINAE

Pokrovskaya, 1960

[Aspidagnostinae POKROVSKAYA, 1960, p. 60]

Pygidium trispinose, zonate; F1 impressed
laterally, curving forward to articulating fur-
row to isolate subtriangular anterolateral
lobes; F2 strongly deflected by long axial
node extending nearly to midlength of pos-
terior axial lobe. Upper Cambrian.

Aspidagnostus WHITEHOUSE, 1936, p. 104 [*A.
parmatus; OD; holotype WHITEHOUSE, 1936, pl. 9,
fig. 5], 3213, UQF, Brisbane] [=Biragnostus
Pokrovskaya in Khalifin, 1960, p. 161 (type, B.
clena, nom. nud.; OD)]. Commonly scrobiculate,
with nondeliquiate to deliquiate border furrow and
anteriorly angulate border in cephalon; median
preglabellar furrow well developed. Glabella acumi-
nate or narrowly rounded anteriorly; glabellar cul-
mination narrowly rounded to angular; glabellar
node elongate, located at or in front of glabellar
midlength; basal lobes small to moderate-sized,
commonly divided. Pygidium with weak to well-
developed, secondary axial node on posterior lobe;
nondeliquiate border furrow and zonate border
with collar crossed by deep median gap, commonly
flanked by a pair of knobs. Lower Upper Cambrian:
Australia (Queensland, Tasmania), G. stolidotus to
G. reticulatus Zones; Kazakhstan, G. stolidotus to G.
reticulatus Zones; England, A. pisiformis Zone;
Canada (Northwest Territories), Cedaria brevisrons
to G. reticulatus Zones; USA (Nevada), upper
Crevicephalus Zone, (Alabama, Nevada), G.
reticulatus Zone; China (Zhejiang), G. stolidotus to
G. reticulatus Zones. Upper Cambrian: Russia (Sibe-
ria).——Fig. 235, 1a. *A. parmatus, Upper Cam-
brian (stage and zone uncertain), Australia
Agnostina—Agnostoida

373

(Glenormiston district, western Queensland); holotype, cephalon, UQF 3213, X12.7 (new).—Fig. 235, 1b, c. A. inquisitus, Upper Cambrian (Mindallan, Gymagnostus stolitzius Zone), Australia (Glenormiston district, western Queensland); holotype, cephalon, CPC 5828, X16; c. paratype, pygidium, CPC 5831, X12 (new).

Triadaspis Ørsted, 1864, p. 125 [*T. bigeriensis; OD; holotype (Ørsted, 1867, pl. 54, fig. 6), CPC 5804, AGSO, Canberra]. Known only from poorly preserved pygidium; with nondeliquiate border furrows; zonate border lacking a gap in the collar. Lower Upper Cambrian: Australia (Queensland), E. etreze Zone.—Fig. 235, 4. *T. bigeriensis, Upper Cambrian (Mindallan, Eriodaspis etreze Zone), Australia (Glenormiston district, western Queensland); holotype, pygidium, CPC 5804, X18 (new).

Subfamily UNCERTAIN

Utagnostus Robison, 1964, p. 533 [*U. tripinclus; OD; holotype (Robison, 1964, pl. 82, fig. 25), 141226, USNM, Washington, D.C.]. Small; en grande tenue; nonscrobiculate, with nondeliquiate border furrows; narrow cephalic and broad pygidial border; cephalic spines well developed; median preglabellar furrow absent. Glabella with small, low, semiovate anterior lobe; F3 weakly impressed, nearly straight; glabellar node about level with F2 furrows; basal lobes very small, simple. Pygidium trispinose; F1 effaced; F2 clearly impressed, strongly deflected by elongate axial node; posterior lobe semiovate, broadly rounded posteriorly, of low convexity, upper Middle Cambrian—lower Upper Cambrian: USA (Utah), upper P. punctuosus to lower L. laevigata Zones; Australia (New South Wales); *P. punctuosus Zone.—Fig. 235, 5a,b. *U. tripinclus, upper Middle Cambrian (Bolaspidea contracta Subzone), USA (House Range, western Utah); a, paratype, cephalon, USNM 141223, X9; b, holotype, pygidium, USNM 141226, X10 (Robison, 1964, pl. 82, fig. 21, 25).—Fig. 235, 3c. U. neglectus, upper Middle Cambrian (Boomerangian, Lepopyge laevigata Zone), Australia (Christmas Hills, northwestern Tasmania); holotype, exoskeleton, UTGD 86844i, X11 (Jago, 1976, pl. 23, fig. 13).

Family METAGNOSTIDAE Jaekel, 1909

(Metagnostidae Jaekel, 1909, p. 398) [=Trinodidae HOWELL, 1935b, p. 231; Arthrorhachidae RADOJDA, 1913a, p. 139]

Usually en grande tenue; nonscrobiculate; border furrows nondeliquiate; acrolobes unconnected; cephalon nonscrobiculate; median preglabellar furrow usually absent. Glabella usually with semiovate, semicircular, or subcircular anterior lobe; F3 effaced, variably chevron shaped or concave forward; posterior lobe with F2 furrows absent or chevron shaped; glabellar culmination broadly rounded or obtusely angular; glabellar node at or near F3 furrow; basal lobes small to moderate-sized, simple. Pygidium with agnostoid articulating device, usually bispinose; axis usually short, not reaching border furrow; F1 impressed laterally, curving forward to articulating furrow, isolating anterolateral lobes; F2 impressed, straight or deflected by axial node; posterior lobe variable in length, trapeziform, subrectangular, semiovate, or subtriangular, commonly with terminal node; median postaxial furrow absent. ?Upper Cambrian—Ordovician.

Arthrorhachis HORE & CORIA, 1847, p. 114 [*Batus tardus BARRANDE, 1846, p. 35; M. lectotype (BARRANDE), Upper Ordovician (Ashgill, Prague) [=Metagnostus JAEKEL, 1909, p. 398 (type, M. erraticus; OD); Girvanagnostus KOBAYASHI, 1939a, p. 174 (type, Agnostus givaniensis REED, 1903, p. 4, pl. 1, fig. 2–4)]. Glabellar F3 effaced or with straight medial portion, lateral portions curving forward and outward; posterior lobe with F2 furrows weak; glabellar node immediately behind F3 furrow. Pygidial axis very short, tapering rearward; posterior lobe transverse, subrectangular, trapeziform or subtriangular; commonly with weak terminal node. Ordovician: Czechoslovakia, upper Caradoc–Ashgill; Poland, England, Ireland, Uzbekistan, Norway, Denmark, Ashgill; Scotland, Caradoc; Kazakhstan, Tremadoc–Ashgill; Argentina, upper Tremadoc; eastern USA, lower middle Ordovician; Turkey, upper Arenig; France, lower Arenig. Sweden, upper Tremadoc–lower Caradoc; Spitsbergen, upper Canadian; China (Shanxi), upper middle Ordovician, (Jiangsu), Ashgill; Germany, middle Ordovician.—Fig. 236, 2. *A. tarda (BARRANDE), Upper Ordovician (Ashgill, Tretaspis granulata to T. seticornis seticornis horizons), Czechoslovakia (Libomysl, Bohemia); lectotype, exoskeleton, NM-CD 1812, X10 (Pek, 1977, pl. 8, fig. 2).

Anglagnostus HOWELL, 1935b, p. 233 [*Agnostus duex CALLAWAY, 1877, p. 665; OD; holotype by monotypy (CALLAWAY, 1877, pl. 24, fig. 3), 693, BU, Birmingham]. Type species known from one articulated specimen having short glabella with semiovate anterior lobe; F3 clearly impressed, weakly concave forward; posterior lobe with F2 furrows absent; glabellar culmination broadly rounded; glabellar node not preserved; basal lobes small, transverse. Pygidium minutely bispinose; axis very short, quadrate; posterior lobe transverse, subrectangular with terminal node; F1 and F2 impressed. Lower Ordovician (Tremadoc): England; ?France; China (Hunan), A. latilimbatus or T. affinis Zone.—Fig. 236, 1. *A. duex (CALLAWAY), England (Shinoton, Shropshire); holotype, exoskeleton, BU 693, X8 (new).

© 2009 University of Kansas Paleontological Institute
Chatkalagnostus Hajrullina & Abdullaev in Abdullaev & Khaletskaia, 1970, p. 20 [*C. mirus; OD; holotype (Abdullaev & Khaletskaia, 1970, pl. 1, fig. 1), 4/3, IGiG, Tashkent] [=Oculagnostus Ahlberg, 1988, p. 116 (type, Agnostus frici Holub, 1908, p. 9, pl. 1, fig. 1a,b)]. Large; en grande tenue; usually scrobiculate; border furrows wide, deliquiate; median preglabellar furrow absent. Glabella broad, with large, subquadrate anterior lobe; F3 nearly straight, curving rearward laterally; posterior lobe with F2 furrows well developed, chevronate; glabellar node immediately behind F3 furrow. Py-
Corrugagnostus KOBAYASHI, 1939a, p. 173 [*Agnostus porrectus* BARRANDE, 1872, p. 143; OD; [*A. maior* Salter, 1864b, p. 7; holotype by monotypy (Salter, 1864b, pl. 1, fig. 13), 8699, BGS, London] [*Segmentagnostus* Pek, 1977, p. 17 (type, *Agnostus caducus* BARRANDE, 1872, p. 142, pl. 14, fig. 12–13); *Granulagnostus* KOLOBova, 1981, p. 257 (type, *G. granulatus*; OD)]. En grande tenue; usually scrobiculate; median preglabellar furrow present in more strongly scrobiculate forms. Glabella with semiovate to semicircular anterior lobe; F3 chevron shaped; posterior lobe with F2 variably developed, chevron shaped; glabellar node from immediately behind F3 to well onto anterior glabellar lobe. Pygidial axis very short, tapering rearward or with slight constriction across M2; posterior lobe transverse, subrectangular to trapeziform, usually with weak terminal node. [*Upper Cambrian–Upper Ordovician*: Czechoslovakia, Llandeilo–lower Caradoc; England, Arenig–lower Llanvirn; Scotland, upper Caradoc–Ashgill; Ireland, Ashgill; Belgium, Llandeilo; France, lower Arenig; Argentina, lower Tremadoc; Russia (Altay Mountains); [*Upper Cambrian*–*Upper Ordovician*: Kazakhstan, middle–upper Caradoc; Uzbekistan, Ashgill; China (Zhejiang, Jiangsu), [*Tremadoc*–*Ashgill*; USA (Texas), Lower Ordovician; Poland, Ashgill.—*Fig. 236, 4a,b. *G. perconvexus*; [*Granulagnostus* KOBAYASHI & HAMADA, 1978, p. 8 [*Granulagnostus* Pek, 1977, pl. 3, fig. 6); [*C. mirus* (BILLINGS), middle Ordovician (White Rock)], lower Ordovician (Llanvirn); a, England (Shelve Inlier, Shropshire), holotype, cephalon, BGS 8699, X5 (new); b, England (Old Church Stoke, Shropshire), b, cephalon, BGS 92922, X5; c, pygidium, BGS 92923G, X5 (new).]

Dividiagnostus KOBOLeya, 1982, p. 21 [*D. minor* OD; holotype (KOBOLeya, 1982, pl. 1, fig. 5), 1-358, KazLMS, Alma-Ata] [*Pezzingastus* Ju in Qiu & others, 1983, p. 29 (type, *P. typica*; OD)]. Glabella with bulbous, subcircular anterior lobe; F3 strong, chevronate; posterior lobe subcircular, lacking F2; glabellar node from a short distance behind to immediately behind F3 furrow. Pygidial axis short, with well-developed constriction across M2; posterior lobe nearly equidimensional, semiovate to subrectangular, without terminal node. [*Lower Ordovician–Upper Ordovician*: Kazakhstan, middle Ordovician; China (Zhejiang), [*Tremadoc*, lower Ashgill (Gansu), Caradoc–Ashgill (Jiangsu), upper Caradoc, Wales, middle Arenig, Llandeilo–lower Caradoc, England, lower Llandeilo; Australia (New South Wales), upper Gisbornian–lower Estonian; [*Canada* (Newfoundland), Tremadoc.—*Fig. 237, 3. *D. mecyi* (Salter), middle Ordovician (upper Llandeilo), central Wales (Pen–Cerig Lake, Builth–Llandrindod area); exoskeleton, BMNH Ht 2671, X5 (C. P. Hughes, 1969, pl. 1, fig. 3).]

Galagnostus WHITTINGTON, 1965, p. 304 [*Agnostus galba* BILLINGS, 1865, p. 297; OD; lectotype (Whittington, 1965, pl. 305, pl. 3, fig. 1–2, 4), 689b, GSC, Ottawa], Glabella short, broad; F3 effaced; F2 weak; glabellar node very advanced, near anterior margin of glabella. Pygidial axis very short, tapering rearwards; posterior lobe transverse, trapeziform, with indistinct median ridge and deepening of axial furrow behind this ridge. [*Lower to Middle Ordovician–middle Ordovician*: Canada (Newfoundland), White Rock, Ireland, [*Sweden, lower Arenig–Llanvirn; Turkey, lower–upper Arenig.—*Fig. 236, 4a,b. *G. galba* (BILLINGS), middle Ordovician (White Rock), Canada (Table Point, western Newfoundland); a, lectotype, cephalon, GSC 689b, X6; b, pygidium, GSC 18395, X15 (Whittington, 1965, pl. 3, fig. 1; pl. 4, fig. 9).]

Geragnostella KOBAYASHI, 1939a, p. 171 [*Agnostus tullbergi* NOVAK, 1883, p. 59; OD; neotype (Pek, 1977, pl. 13, pl. 3, fig. 6), 1-356, OMR, Rokycany]. Mostly en grande tenue, with tendency to efface axial furrows surrounding posterior pygidial axial lobe. Glabella with F3 usually effaced or with straight median portion impressed; F2 weak; glabellar node immediately behind F3 furrow. Pygidial axis of moderate length, tapering rearward; posterior lobe semiovate, variably effaced, with strong terminal node. [*Ordovician*: Czech Republic, Llanvirn; Spain, lower Llanvirn; [*Sweden, lower Arenig–Llanvirn; Turkey, lower–upper Arenig.—*Fig. 236, 4a,b. *G. tullbergi* (NOVAK), lower Ordovician (Llanvirn); a, Czech Republic (Sárka, Bohemia), pygidium, SBNM–CD 310, X10 (Pek, 1977, pl. 3, fig. 4); b, Czech Republic (Osek, near Rokycany), neotype, pygidium, MR 1-356, X6.5 (Pek, 1977, pl. 3, fig. 6).]

Geragnostus HOWELL, 1935b, p. 231 [*Agnostus sidenbladhi* LINNARSSON, 1869, p. 82; OD; lectotype (LINNARSSON, 1869, pl. 2, fig. 61; SD ÅHLBERG, 1889, p. 310, 25, SGU, Uppsala] [*Geragnostus KOBAYASHI & HAMADA, 1978, p. 8 (type, *G. perconvexus*; OD); Neptunagnostella Pek, 1977, p. 14 (type, *Agnostus convexus* HOLS, 1912, p. 6, pl. 1, fig. 5). En grande tenue to nearly entirely effaced. Glabella with semiovate anterior lobe; F3 effaced or with straight median portion, lateral portions curving forward and outward; posterior lobe with weak F2 furrows; glabellar node immediately behind F3 furrow. Pygidial axis of moderate length, commonly constricted across M2; posterior lobe nearly equidimensional, semiovate to subrectangular, commonly with weak terminal node. [*Ordovician*: Sweden, upper Tremadoc–Llanvirn; Norway, upper Tremadoc; [*France, upper Tremadoc–lower Arenig; [*Czech Republic, Arenig–Llanvirn; Scotland, Llandeilo; England, upper Tremadoc; [*Canada* (Newfoundland), White Rock; Argentina, Tremadoc; Turkey, Arenig; Tadzhikistan, Arenig; [*Uzbekistan, Ashgill; [*China (Hubei, Hunan), [*Tremadoc–*Ashgill]; [*Sweden, ?Arenig–*Lower Ordovician; [*Malaysia, [*Middle Ordovician.—*Fig. 237, 4a,b. *G. sidenbladhi* (LINNARSSON), Lower Ordovician (upper Tremadoc, *Apatokephalus serratus* Biozone);
Trilobita

Granuloagnostus Pek, 1970, p. 129 [*Agnostus dusli Novák, 1883, p. 58; OD; holotype by monotypy (Novák, 1883, pl. 1, fig. 12a–d), CD 314, NMP, Prague]. Known only from a pygidium; pygidium similar to that of Galbagnostus but with coarsely pustulose prosopon. Ordovician (Llanvirn): Czech Republic.—Fig. 237, 2. *G. dusli (Novák), Lower Ordovician (Llanvirn), Czech Republic (Osetek, Sárka, Bohemia); holotype, pygidium, NM-CD 314, ×8.5 (Pek, 1970).

Homagnostoides Kobayashi, 1939a, p. 178 [*Agnostus ferralsensis Munier-Chalmas & Bergeron in Bergeron, 1889, p. 342; OD; syntypes (Bergeron, 1889, pl. 4, fig. 8–9), not located]. Pygidium with short (sag.), laterally expanded, flasklike posterior...
Agnostina—Agnostoida 377

axial lobe; posteriorly truncate; long axial node extending across entire anterolobe; acrolobe constricted, lacking median postaxial furrow; borders wide; border furrows nondeliqiate, retri serripines. Ordovician (Tremadoc); France.—FIG. 237, 1a–d. *H. ferralsensis (Munier-Chalmas & Bergeron), a,b: Lower Ordovician (Tremadoc, horizon e of Courrois & Pillet in Capera, Courrois & Pillet, 1978), France (Montagne Noire, Hérault); unlocated syntypes, X4.7 (Bergeron, 1889, pl. 4, fig. 8–9); c,d: Lower Ordovician, southern France (Montagne Noire), c: pleiotype, cephalon, YPM B 49009, upper Tremadoc, X8 (new), d: pleiotype, pygidium, YPM B 49010, lower Arenig, X8 (new).

Trinodus McCoy, 1846, p. 56 [*T. agnostiformis; M; holotype by monotypy (McCoy, 1846, pl. 4, fig. 3), IV-3, NMING, Dublin]. Name restricted to type specimen, an incomplete and distorted internal mold of a cephalon, by Fortey (1980, p. 27). Ordovician (Llandovery): Ireland.—FIG. 236.6. *T. agnostiformis, Ireland (Greenville, Wexford County); holotype, cephalon, NMING IV-3, X8.4 (Whittington, 1950, pl. 68, fig. 1).

Family UNCERTAIN

Agnostogonus Öpik, 1967, p. 94 [*A. incognitus; OD; holotype (Öpik, 1967, pl. 57, fig. 8), CPC 5846, AGSO, Canberra]. Cephalon and pygidium effaced but retaining narrow borders, faint indications of basal lobes and furrows, posterior margin of glabella, axial furrows of pygidial anterolobe, and axial nodes of each shield. [May belong to either Psychagnostinae or Spinagnostinae]. Lower Upper Cambrian: Australia (Queensland). G. stolidostus Zone.—FIG. 238, 1a,b. *A. incognitus, Upper Cambrian (Mindallan, Glyptagnostus stolidostus Zone), Australia (Burke River area, western Queensland); a: holotype, cephalon, CPC 5846, X8; b: paratype, pygidium, CPC 5847, X8 (new).

Archaeagnostus Kobayashi, 1939a, p. 112 [*A. primigenius; OD; lectotype (SD Rasetti & Theissin, 1967, p. 195, pl. 20, fig. 20), 18328, USNM, Washington, D.C.]; Small; nonscorbiculate, with nondeliqiate border furrows; cephalon questionably nonspinose; median preglabellar furrow absent. Glabella parallel-sided, with elongate, subquadrate anterior glabella lobe; F3 deep, straight; posterior lobe strongly inflated posteriorly, lacking F1 and F2; glabellar node posteriorly located; glabellar culmination narrowly rounded or angular; basal lobes small, simple. Pygidium nonspinose; axis of moderate length, broad, rounded posteriorly, not reaching border furrow; F1, P1 effaced; median postaxial furrow absent. Upper Lower Cambrian: USA (New York).—Fig. 239, 8a,b. *A. primigenius; Lower Cambrian (Elliptocephala fauna), USA (Salem, New York); a: lectotype, cephalon, USNM 18328, X17; b: paratype, pygidium, USNM 18327, X14 (new).

Armagnostus Howell, 1937, p. 1162 [*A. megalaxis; OD; holotype (Howell, 1937, pl. 2, fig. 15), 9786, YPM(US), New Haven]. The type species of this genus is based on a poorly preserved, distorted holotype pygidium and eleven paratypes, two of which (one cephalon and one pygidium) were illustrated by Howell (1937, pl. 2, fig. 12, 16). These are equally poorly preserved, making this species and hence the genus very difficult to interpret. Upper Middle Cambrian: USA (Vermont), Centroporella vermontensis fauna; Canada (New Brunswick).—FIG. 238,10. *A. megalaxis, upper Middle Cambrian (Centroporella vermontensis beds), USA (St. Albans, Vermont); holotype, pygidium, YPM(US) 9786, X2 (Howell, 1937, pl. 2, fig. 15).

Blystagnostus Öpik, 1961b, p. 95 [*B. laciniatus; OD; holotype (Öpik, 1961b, pl. 23, fig. 5), CPC 3628, AGSO, Canberra]. Agnostoid with short, semiglobose pygidial axis, frill-like border, and granulose prosopion. Middle Cambrian: Australia (Queensland). P. cassis Zone. — FIG. 239.8. *B. laciniatus, upper Middle Cambrian (Boomerangian, Lejopyge laevigata Zone), Australia (Bourke River area, western Queensland); holotype, pygidium, CPC 3628, X8 (new).

Cicergnostus Kobayashi, 1937b, p. 442 [*Agnostus barlouei Blet, 1868, p. 11; OD; lectotype (inferred from Lake, 1906, p. 17), 58498, BMNH, London]. Largely effaced but preserving faint indication of glabella and pygidial anterolobe; cephalic border very narrow; pygidial border wider, possibly deuterolobate. [Type species probably referable to an effaced pseudagnostinid genus. All other species Middle Cambrian and variously assigned.] Lower Ordovician (?Tremadoc): Wales.—FIG. 239.2. *C. barlouei (Blet), Wales (Dolgellau); lectotype, exoskeleton, BMNH 58498, X9.3 (Morris & Fortey, 1985, pl. 1, fig. 1).

Delagnostus Öpik, 1961b, p. 88 [*D. dilemma; OD; holotype (Öpik, 1961b, pl. 23, fig. 9), CPC 3633, AGSO, Canberra]. Pygidium largely effaced, without border or border furrows except anterolaterally; axial furrows only preserved anteriorly; vestigial axial node and faintly acuminate axis not reaching margin may be apparent; nonspinose; smooth. Upper Middle Cambrian: Australia (Queensland, Northern Territory), upper L. laevigata Zone.—Fig. 239.9. *D. dilemma, upper Middle Cambrian (Boomerangian, Lejopyge laevigata Zone), Australia (Burke River area, western Queensland); holotype, pygidium, CPC 3633, X9 (new).

Gallagnostus Howell, 1935b, p. 227 [*G. geminus; OD; holotype (Howell, 1935b, pl. 22, fig. 21), Miquel Collection H 13, UM, Montpellier]. Holotype of type species is a distorted, poorly preserved, complete exoskeleton. Apparently totally effaced, apart from cephalic and pygidial border furrows; borders narrow but retaining narrow borders, faint indications of axial furrows only preserved anteriorly; posteriorly truncate; long axial node extending across entire anterolobe; acrolobe constricted, lacking median postaxial furrow; borders wide; border furrows nondeliqiate, retri serripines. Ordovician (Tremadoc); France.—FIG. 238,5. *G. geminus, France (Coulouma, Hérault); holotype, exoskeleton, UM Miquel Collection H13, X7 (new).

Glabragnostus Romanenko, 1985, p. 57 [*G. altarius; OD; holotype (Romanenko, 1985, pl. 5, fig. 5), 11604, pl. 2, fig. 15], ZSU, Novokuzezerski]. Cephalon smooth, lacking a border, and mostly effaced, with

© 2009 University of Kansas Paleontological Institute
Trilobita

bella defined only posteriorly; basal lobes small. Pygidium smooth; smaller than cephalon, with well-developed border and wide border furrow; axis defined laterally, posteriorly indistinct; axial node indistinct; marginal spines small or absent. lower Upper Cambrian: Russia (Altay Mountains), G. reticulatus Zone. —Fig. 238, 7. *G. altaicus, Upper Cambrian (Sakian, Glyptagnostus reticulatus Zone), Russia (Altay Mountains, Siberia); holotype, esoskeleton, ZSGU 1160/4, X4 (Romanenko, 1985, pl. 5, fig. 5).

Grandagnostus Howell, 1935a, p. 221 [*G. vermontensis; OD; holotype (Howell, 1935a, pl. 22, fig. 8), 9736, YPM(PU), New Haven]. Generic name confined to the very poorly preserved holotype cephalon of the type species by Robison ex-
Almost completely effaced; cephalic border extremely narrow (sag.) or absent; glabellar node advanced. **upper Middle Cambrian: USA (Vermont).** — Fig. 239, 7. *G. vermontensis*, upper Middle Cambrian, USA (St. Albans, Vermont); holotype, cephalon, YPM(PU) 9736, X3 (Robison, 1988, fig. 12.7).

Hastagnostus HOWELL, 1937, p. 1165 [*H. angustus; OD: holotype (Howell, 1937, pl. 3, fig. 4), 9795, YPM(PU), New Haven]. The type species of this genus is based on a very poorly preserved, complete exoskeleton, which is difficult to interpret. **upper Middle Cambrian: USA (Vermont).** — Fig. 239, 3. *H. angustus*.

© 2009 University of Kansas Paleontological Institute
Phalagnostus **Ivshin in KHALFIN, 1960,** p. 167 [*P. orkhoformis*; OD; holotype (**Ivshin in KHALFIN, 1960,** p. 168, fig. 48), Por-1, ZSGU, Novokuznetsk]. Ivshin's type specimen has never been satisfactorily illustrated. The description does not permit distinction between this and other effaced genera. **Upper Cambrian:** Russia (Altai Mountains), Kazakhstan (Lesser Karatau Mountain Range), *G. reticulatus* to *P. curtare Zones.*

Phoidagnostus **Whitehouse, 1936,** p. 93 [*P. limbatus*; OD; holotype (**Whitehouse, 1936,** p. 9, fig. 10), 3207, UQF, Brisbane]. Only cephalon known; acrolobe moderately convex, unconfined, scrobiculate; border narrow; border furrow nondeliquiate; axial furrows anteriorly effaced, weakly developed posteriorly; median preglabellar furrow clearly developed; glabellar culmination rounded; elongate axial node anterior to cephalic midline, flanked by subtriangular depressions; basalmost lobes short, transverse, tumid; procorallum smooth. **Upper Middle Cambrian:** Australia (Queensland), *P. cassis Zone.**——Fig. 238, *P. limbatus,* upper Middle Cambrian (Boomerangian, *Leopolyrachys lorigata Zone*), Australia (Burke River area, western Queensland); holotype, cephalon, UQF 3207, X6 (Whitehouse, 1936, pl. 9, fig. 10).

Plurinodus **Özik, 1967,** p. 170 [*P. discretus*; OD; holotype (**Özik, 1967,** pl. 60, fig. 17), CPC 5889, AGSO, Canberra]. Diminutive pygidia with broad borders, deliquiate border furrows, and unconstricted acrolobe; anteroaxis tapers rearward, defined by deep and wide axial furrows; F1, F2 effaced; completely effaced posterior lobe; terminal node situated at border furrow; retral marginal spines; agnostidi articulating device. Cephalon with depressed or effaced anterior glabellar lobe may be associated. [May belong to *Pseudagnostinae.*] **Lower Upper Cambrian:** Australia (Queensland), *G. stolidotus Zone.**——Fig. 238, *P. discretus,* Upper Cambrian (Mindyllan, *Glyptagnostus stolidotus Zone*), Australia (Duchess area, western Queensland); holotype, pygidium, CPC 5889, X8 (new).

Quadragagnostus **Howell, 1935a,** p. 219 [*Q. solus*; OD; holotype (**Howell, 1935a,** pl. 22, fig. 6), 9793, YPM(PU), New Haven]. The type species of this genus is based on a very poorly preserved holotype pygidium and an equally poorly preserved, fragmentary paracone cephalon, both of which are difficult to interpret. **Upper Middle Cambrian:** USA (Vermont), *Oncopeltus vermuntensis* beds.——Figs. 238, *Q. solus,* USA (St. Albans, Vermont); holotype, pygidium, YPM(PU) 9793, X8.5 (Howell, 1935a, pl. 22, fig. 6).

Skrnyagnostus **Snajdr, 1957,** p. 236 [*S. pompeckji;** OD; holotype (**Snajdr, 1957,** pl. 6, fig. 4), Snajdr Collection, Br-191, NMP, Prague]. Exoskeleton almost totally effaced, except for a hint of axial furrows around rear of basal glabellar lobes and the presence of extremely narrow (sag.) border in both cephalon and pygidium. **Middle Cambrian:** Czech Republic. *E. pusillus Zone*; Russia (northwestern Siberia). *Pedinocambus or Javosti Zone.**——Fig. 238, *S. pompeckji,* Middle Cambian (*Eccaparadoxides mystaceus Zone*).
Agnostina—Superfamily Uncertain

Family PHALACROMIDAE

Hawle & Corda, 1847

[Phalacromidae Hawle & Corda, 1847, p. 42 [*Phalacromatidae Howell, 1935b, p. 228]

Cephalon variably effaced; pygidium with long (sag.) and laterally expanded axis; pygidal axial node close to middle of axis, elongate; transverse groove or furrow present immediately behind axial node; variable border morphology and spinosity. Middle Cambrian.

Phalacroma Hawle & Corda, 1847, p. 43 [*Battus bibullatus BARRANDE, 1846, p. 14; SD RAYMOND, 1913a, p. 139; lectotype (BARRANDE, 1852, pl. 49, fig. 6; SD SNDALE, 1958, p. 74), CC 244, NMP, Prague [*=Phalacromatidae Howell, 1935b, p. 228 (type, P. immensus, OD)]. Cephalon almost totally effaced, having barely perceptible border and axial furrows that are defined only posteriorly; basal lobes effaced. Pygidium with very wide (tr.) axis extending to narrow (sag.) posterior border; nonspinose. Middle Cambrian: Czech Republic, Eocambaceous beds; Russia (Siberia), T. fissus or P. hicksi to upper P. davidi zones.—Fig. 240,1. *P. bibullatum (BARRANDE), Middle Cambrian (E. pusillus Zone), Czech Republic (Třinec, Bohemia); lectotype, exoskeleton, NM-CC 244, No. 1027, X8.7 (Horný & Bastl, 1970, pl. 1, fig. 1).

?Dignagnostus HAJRULLINA in REPINA, PETRUNINA, & HAJRULLINA, 1975, p. 111 [*D. grandis; OD; holotype (REPINA, PETRUNINA, & HAJRULLINA, 1975, pl. 12, fig. 7–8), 483/218B, MMG, Tashkent]. With tendency to efface pygidial F1 and F2 furrows while retaining axial and border furrows. Pygidial axis pyriform, transversely expanded, long (sag.), reaching posterior border furrow; acrolobe unconstricted; pleural fields very narrow (tr.); borders of significant width; posterolaterally spinose. Middle Cambrian: Uzbekistan, Srewelella-Aegunaspis beds.—Fig. 240.6. *D. grandis; holotype, pygidium, MMG 483/218B, X10 (Repina, Petrunina, & Hajarillina, 1975, pl. 12, fig. 7–8).

Lisogagnostus ROZOV in LSOGOR, ROZOV, & ROZOV, 1988, p. 64 [*L. kalisae; OD; holotype (LSOGOR, ROZOV, & ROZOV, 1988, pl. 5, fig. 9), 1935b/36, CSGM, Novoshihirsk]. Cephalon partly effaced, with vestigial basal lobes and glabellar culmination; well-defined border furrows. Pygidium apparently lacking border or border furrows, with wide (tr.), short (sag.) axis bearing a low axial node anteriorly and lacking F1 and F2 furrows. Middle Cambrian: Kazakhstan, beds with Peronopsis fallax; Russia (Siberian Platform), Tomagnostus fissus Zone.—Fig. 240.5. *L. kalisae, Middle Cambrian (Amaigian, beds with Peronopsis fallax), southern Kazakhstan (Kishshak River); holotype, exoskeleton, CSGM 848/36, X12 (Lisogor, Rozov, & Rozov, 1988, pl. 5, fig. 9).

Family SPHAERAGNOSTIDAE

Kobayashi, 1939

Agnostina with totally effaced cephalon, but retaining pygidial border, and short

Superfamily UNCERTAIN

Family PHALACROMIDAE

Hawle & Corda, 1847

[Phalacromidae Hawle & Corda, 1847, p. 42 [*Phalacromatidae Howell, 1935b, p. 228]

Cephalon variably effaced; pygidium with long (sag.) and laterally expanded axis; pygidal axial node close to middle of axis, elongate; transverse groove or furrow present immediately behind axial node; variable border morphology and spinosity. Middle Cambrian.
(sag.), convex, subcircular pygidial axis. Ordovician.

Sphaeragnostus Howell & Resser in Cooper & Kindle, 1936, p. 361 [*Agnostus similis* Barrande, 1872, pl. 14, fig. 17–18; OD; holotype (Barrande, 1872, pl. 14, fig. 17–18), CD 489 (see Pex, 1977, pl. 7, fig. 6), NMP, Prague]. Cephalon totally e-faceted, lacking traces of border furrows, axial furrows, and glabellar node externally. Pygidium with well-defined, nondeliquiate border furrows, narrow border, and axial furrows defining short (sag.), broad (tr.), convex (tr., sag.), subcircular, unfurrowed axis bearing both axial and terminal nodes; acrolobe unconstricted, convex, lacking median postaxial furrow; posterolateral spines minute or absent. Pleural regions of thoracic segments extremely restricted (tr.); axial portions short (sag.), very wide (tr.). Ordovician: Czech Republic, Llandeilo; Wales, Llandeilo–Ashgill; Denmark,
Sweden, Poland, Ashgill; Ireland, lower Ashgill; Kazakhstan, upper Tremadoc, Caradoc; Turkestan Mountain Range, Ashgill; China (Jiangu, Zhejiang, Nei Mongol, Jiangsu), Ashgill, (Hunan), Llandeilo; Canada (Quebec), middle Ashgill.

Superfamily CONDYLOPYGÓIDEA

Raymond, 1913

[Condylopogidae RAYMOND, 1913a, p. 139] [nom. transl. SHERGOLD, LAURIE, & SUN, ex Condylopogidae RAYMOND, 1913a, p. 133, partim]

Agnostina with transverse basal glabellar lobes separated by a median plate rather than joined by connective band bearing median tubercle or spine; anterior glabellar lobe laterally expanded. Pygidial axis with triannulate anteroaxis and posteriorly rounded posteroaxis. Lower Cambrian–Middle Cambrian.

Family CONDYLOPYGIDAE

Raymond, 1913

[Condylopogidae RAYMOND, 1913a, p. 139]

With characteristics of superfamily. Lower Cambrian–Middle Cambrian.

Condylopoghe HAWLE & CORDA, 1847, p. 50 [*Battus rex BARRANDE, 1846, p. 17; M; lectotype (BARRANDE, 1852, pl. 49, fig. 5); SD SNÁDR, 1958, p. 52, CC 237, NMP, Prague] [=Paragnostus JAEKEL, 1909, p. 396 (type, Battus rex BARRANDE, 1846, p. 17); Fallagnostus HOWELL, 1935b, p. 230 (type, *F. hylane*; OD)]. En grande tenue; cephalon and pygidium with strongly deliquiate border furrows; anterior glabellar lobe very large, approximately semicircular; posterior lobe cylindrical, with retral axial node; pygidial axis bearing elongate keel formed by fusion of axial nodes anteriorly; spines, where developed, short; prosopon smooth. Upper Lower Cambrian–Middle Cambrian: Czech Republic, Eocaparadoxides pusillus Zone; England, *Paragnostus* to *P. punctuosus* Zones; Wales, *H. parvifrons* Zone, Middle Cambrian.

NOMINA NUDA

Cenagnostus WHITTARD, 1940, p. 157.

Munagnostus IVISHI in KHALFIN, 1960, p. 17.

Pseudagnostella KOROLEVA, 1982, p. 35.

REJECTED GENERA

Suborder EODISCINA

Kobayashi, 1939

[nom. correct MOORE, 1959, p. 187; pro Eodiscida KOYASHI, 1939b, p. 74]

With or without eye, facial suture proparian when present; two or three thoracic segments, articulating half ring on anterior segment; pygidium with axis usually

© 2009 University of Kansas Paleontological Institute
Trilobita extending close to border, pleural region segmented in some species. Protaspis calcified (known in few taxa). Lower Cambrian–Middle Cambrian.

INTRODUCTION TO SUBORDER EODISCINA

P. A. Jell

Origin and Phylogeny

Eodiscoids are generally considered to have evolved from polymerid trilobites by paedomorphosis (Stubblefield, 1936; Jell, 1975a; Fortey, 1990a; Shergold, 1991). Fortey (1990a, p. 556) suggested that Sinodiscus changyangensis S. Zhang, 1980 (in W. Zhang, Lu, & others) might be the most primitive eodiscoid. Another candidate could be the oldest genus known, Tsunydiscus W. Chang, 1966. Evaluation of Tsunydiscus begins by comparison with Dipharus clarki Korobov, 1980. That species may represent an immature redlichioid rather than an eodiscoid because of the dominant palpebro-ocular ridges, extremely long librigenae, and free pleural tips on the pygidium of variable numbers of segments. Furthermore, it occurs with several species of the redlichioid Bulaiaspis Lermontova, 1956 (in Tcherneyshewa & others), to any one of which it may belong. Glabellae of D. clarki and Tsunydiscus are extremely similar and distinct from all other eodiscoids, prompting separation of Tsunydiscus at the family level in the classification below. Among the species of Tsunydiscus are to be found those features (well-defined dorsal furrows and eye ridges and short preglabellar field) thought by Fortey (1990a) to characterize the primitive eodiscoid along with long librigenae as a redlichioid legacy; reduction in length of librigenae is evident on all eodiscoid lineages.

The phylogenetic scheme of Jell (1975a), which recognized three major lineages within the superfamily, is adopted here and is essentially unchanged except for reallocation and reassessment of several genera, identification of the Tsunydiscidae as the probable ancestor to all three lineages, and separation of the three lineages at family level (Fig. 241).

Descendants

The possibility that the Agnostina descended from the Eodiscoidea has been extensively debated, with Fortey (1990a) outlining the case for and Shergold (1991) the case against this possibility. Fortey (1990a, fig. 14) listed derived characters of Agnostida as: (1) reduction in number of thoracic segments to three or fewer, (2) loss of calcification of rostral plate, (3) an occipital width greatly exceeding width of preoccipital glabella, (4) broad, rolled cephalic border, (5) long cephalic shield (with maximum width in front of posterior margin in most species), (6) reduced or absent genal spines, and (7) fulcrate articulation. He identified the derived character of the Agnostina out of this group as the cephalothoracic aperture. Modifications to the occipital structure in miomerids (which bounds this aperture anteriorly) produce significant derived features; the trend in the Weymouthiidae to shortening and obliteration of the occipital ring is carried on in the Agnostina with the occipital ring divided into basal lobes as had evolved already in the eodiscoids Chelediscus...
Eodiscina—Introduction

385

and Tannudiscus. Tannudiscus has been advanced as the eodiscoid closest to the ancestor of the Agnostina, with its bilobed glabella, basal glabellar lobes, both glabella and pygidial axis isolated from border furrow, and undivided pygidial axis. Although Shergold (1991) acknowledged Tannudiscus as a good candidate for the ancestor of Agnostina, he argued against such ancestry on the basis of stratigraphic difficulties and poor quality of Lower Cambrian materials involved. These negative arguments are not accepted here. Rasetti (1945b, 1948a, 1952a) championed the major distinction between eodiscoids and Agnostina, and Shergold regarded his discussion (1991) as supporting Rasetti’s views. Rasetti (1972), however, had already rescinded his opinion on this matter, acknowledged the close relationship between the two groups, stated that the Agnostina were almost certainly derived from eodiscoids, and considered that the two groups together formed the Miomera.

Lack of a calcified protaspis in Agnostina had been employed as negative evidence for a relationship between eodiscoids and Agnostina, prior to the discovery of such a protaspis in Neocobboldia chinlinica by X. Zhang (1989) and Pagetia ocellata by Shergold (1991). Shergold (1991) used this discovery to separate eodiscoids and Agnostina, although protaspides are unknown in the Weymouthiidae, the eodiscoids thought to be ancestral to Agnostina. This is despite the record of a calcified protaspis in Pseudagnostus benxiensis Qian, 1982 (this record is questioned herein by Chatterton and Speyer, p. 213) and the argument of Fortey (1990a) that secondary loss of calcification in protaspides of Agnostina should be expected in light of their other specializations. Arguments based on the lack of this ontogenetic feature are surely premature in light of Qian’s (1982) possible discovery and the need to search in more detail for protaspides of Agnostina.

Müller and Walossek (1987) argued for isolation of the Agnostina because the appendages of Agnostus pisiformis are entirely distinct from any other trilobite, but this argument must be set aside until appendages of eodiscoids are known; miomerids are specialized trilobites, with Agnostina the more specialized within the group, so appendages of Agnostina would be expected to be distinct from most other trilobites that are not so specialized.

Descent of Agnostina from Eodiscoidea has not been established beyond doubt. A large body of accepted inferential evidence makes it distinctly likely, but more research is needed.

History of Classification

During the last century almost all eodiscoid species were assigned to Microdiscus (Emmons, 1855), despite the fact that the type of that genus was known to be a juvenile of a post-Cambrian trilobite and not an eodiscoid. Matthew’s (1896) subdivision of that genus into four sections was the first attempt at classification within the group. Kobayashi (1944a) thought the most significant subdivision should be based on whether there are two or three thoracic segments, with the next level of classification based on presence or absence of eyes and effacement of dorsal furrows. On this basis he arranged fifteen genera into five families, although from his table 4 showing phylogenetical relationships among the genera it is clear that he did not consider the Eodiscidae, one of his five families, a phylogenetic group.

Rasetti (1952a) repeated the observation that number of thoracic segments and presence or absence of eyes were the best characters for subdivision of the group. Kobayashi (1944a) thought the most significant subdivision should be based on whether there are two or three thoracic segments, with the next level of classification based on presence or absence of eyes and effacement of dorsal furrows. On this basis he arranged fifteen genera into five families, although from his table 4 showing phylogenetical relationships among the genera it is clear that he did not consider the Eodiscidae, one of his five families, a phylogenetic group.

Rasetti (1972), however, had already rescinded his opinion on this matter, acknowledged the close relationship between the two groups, stated that the Agnostina were almost certainly derived from eodiscoids, and considered that the two groups together formed the Miomera.

History of Classification

During the last century almost all eodiscoid species were assigned to Microdiscus (Emmons, 1855), despite the fact that the type of that genus was known to be a juvenile of a post-Cambrian trilobite and not an eodiscoid. Matthew’s (1896) subdivision of that genus into four sections was the first attempt at classification within the group. Kobayashi (1944a) thought the most significant subdivision should be based on whether there are two or three thoracic segments, with the next level of classification based on presence or absence of eyes and effacement of dorsal furrows. On this basis he arranged fifteen genera into five families, although from his table 4 showing phylogenetical relationships among the genera it is clear that he did not consider the Eodiscidae, one of his five families, a phylogenetic group.

Rasetti (1972), however, had already rescinded his opinion on this matter, acknowledged the close relationship between the two groups, stated that the Agnostina were almost certainly derived from eodiscoids, and considered that the two groups together formed the Miomera.

Lack of a calcified protaspis in Agnostina had been employed as negative evidence for a relationship between eodiscoids and Agnostina, prior to the discovery of such a protaspis in Neocobboldia chinlinica by X. Zhang (1989) and Pagetia ocellata by Shergold (1991). Shergold (1991) used this discovery to separate eodiscoids and Agnostina, although protaspides are unknown in the Weymouthiidae, the eodiscoids thought to be ancestral to Agnostina. This is despite the record of a calcified protaspis in Pseudagnostus benxiensis Qian, 1982 (this record is questioned herein by Chatterton and Speyer, p. 213) and the argument of Fortey (1990a) that secondary loss of calcification in protaspides of Agnostina should be expected in light of their other specializations. Arguments based on the lack of this ontogenetic feature are surely premature in light of Qian’s (1982) possible discovery and the need to search in more detail for protaspides of Agnostina.

Müller and Walossek (1987) argued for isolation of the Agnostina because the appendages of Agnostus pisiformis are entirely distinct from any other trilobite, but this argument must be set aside until appendages of eodiscoids are known; miomerids are specialized trilobites, with Agnostina the more specialized within the group, so appendages of Agnostina would be expected to be distinct from most other trilobites that are not so specialized.

Descent of Agnostina from Eodiscoidea has not been established beyond doubt. A large body of accepted inferential evidence makes it distinctly likely, but more research is needed.

History of Classification

During the last century almost all eodiscoid species were assigned to Microdiscus (Emmons, 1855), despite the fact that the type of that genus was known to be a juvenile of a post-Cambrian trilobite and not an eodiscoid. Matthew’s (1896) subdivision of that genus into four sections was the first attempt at classification within the group. Kobayashi (1944a) thought the most significant subdivision should be based on whether there are two or three thoracic segments, with the next level of classification based on presence or absence of eyes and effacement of dorsal furrows. On this basis he arranged fifteen genera into five families, although from his table 4 showing phylogenetical relationships among the genera it is clear that he did not consider the Eodiscidae, one of his five families, a phylogenetic group.

Rasetti (1952a) repeated the observation that number of thoracic segments and presence or absence of eyes were the best characters for subdivision of the group. Kobayashi (1944a) thought the most significant subdivision should be based on whether there are two or three thoracic segments, with the next level of classification based on presence or absence of eyes and effacement of dorsal furrows. On this basis he arranged fifteen genera into five families, although from his table 4 showing phylogenetical relationships among the genera it is clear that he did not consider the Eodiscidae, one of his five families, a phylogenetic group.

Rasetti (1972), however, had already rescinded his opinion on this matter, acknowledged the close relationship between the two groups, stated that the Agnostina were almost certainly derived from eodiscoids, and considered that the two groups together formed the Miomera.

Lack of a calcified protaspis in Agnostina had been employed as negative evidence for a relationship between eodiscoids and Agnostina, prior to the discovery of such a protaspis in Neocobboldia chinlinica by X. Zhang (1989) and Pagetia ocellata by Shergold (1991). Shergold (1991) used this discovery to separate eodiscoids and Agnostina, although protaspides are unknown in the Weymouthiidae, the eodiscoids thought to be ancestral to Agnostina. This is despite the record of a calcified protaspis in Pseudagnostus benxiensis Qian, 1982 (this record is questioned herein by Chatterton and Speyer, p. 213) and the argument of Fortey (1990a) that secondary loss of calcification in protaspides of Agnostina should be expected in light of their other specializations. Arguments based on the lack of this ontogenetic feature are surely premature in light of Qian’s (1982) possible discovery and the need to search in more detail for protaspides of Agnostina.

Müller and Walossek (1987) argued for isolation of the Agnostina because the appendages of Agnostus pisiformis are entirely distinct from any other trilobite, but this argument must be set aside until appendages of eodiscoids are known; miomerids are specialized trilobites, with Agnostina the more specialized within the group, so appendages of Agnostina would be expected to be distinct from most other trilobites that are not so specialized.

Descent of Agnostina from Eodiscoidea has not been established beyond doubt. A large body of accepted inferential evidence makes it distinctly likely, but more research is needed.

History of Classification

During the last century almost all eodiscoid species were assigned to Microdiscus (Emmons, 1855), despite the fact that the type of that genus was known to be a juvenile of a post-Cambrian trilobite and not an eodiscoid. Matthew’s (1896) subdivision of that genus into four sections was the first attempt at classification within the group. Kobayashi (1944a) thought the most significant subdivision should be based on whether there are two or three thoracic segments, with the next level of classification based on presence or absence of eyes and effacement of dorsal furrows. On this basis he arranged fifteen genera into five families, although from his table 4 showing phylogenetical relationships among the genera it is clear that he did not consider the Eodiscidae, one of his five families, a phylogenetic group.

Rasetti (1952a) repeated the observation that number of thoracic segments and presence or absence of eyes were the best characters for subdivision of the group. He recognized, however, that the number of thoracic segments could not be used at the family level. Moreover, he clearly acknowledged the likelihood that eyes and sutures had been independently lost in several lineages. Nevertheless, he proposed a classification into two families based solely on the presence or absence of eyes and facial sutures, stressing that this was a matter of expedience in view of the incomplete knowledge of the group and not necessarily relevant to phylogeny.
This classification was employed by Moore (in Harrington & others, 1959) and has been the basis of almost all classificatory schemes developed for or applied to the group since that date (including S. Zhang in W. Zhang, Lu, & others, 1980; Korobov, 1980; Repina & Romanenko, 1978).

A phenetic approach to classification (Jell, 1975a) showed that presence or absence of eyes and sutures was not a major discriminator, and the three lineages identified during that study each contained blind and sighted genera. By 1975 the range of morphology in the 34 genera was sufficient to start piecing together lineages with the intention of establishing a classification from the phylogeny. This was not entirely successful, and the resulting two families have not been universally accepted despite the fact that this classification is demonstrably closer to phylogeny than any previous scheme. Öpik (1975a) also recognized the inappropriateness of Rasetti’s utilitarian classification and proposed three families that correspond roughly to the lineages identified by Jell (1975a). Öpik’s tabulation of the features of the group indicated a mosaic pattern of morphology without clearcut family indicators.

Present Classification

There are now more than 50 genera. Some are intermediate between earlier established genera, but others exhibit entirely new phyletic branches, sometimes clarifying and sometimes complicating our understanding of the group. In the present classification the findings of Jell (1975a) and Öpik (1975a) are employed. These findings, along with the many new taxa described since 1976, lead to a classification into six families based on all available features, but the structure of the glabella and, in particular, modifications of the occipital area are key features. If the group evolved by neoteny from the Redlichioidea, as discussed above, the primitive structure of the eodiscoid occipital ring would be that seen in the Hebediscidae and Calodiscidae where SO is transverse and of more or less uniform depth and where LO is of uniform length, usually the same as L1, and may have a posterior spine; this is the primitive occipital structure. The Calodiscidae have the apomorphy of a reduced number of segments in the pygidial axis, although this feature is not exclusive to that family. The Yukoniidae plus Eodiscidae have the unique feature of the expansion of the rear of the glabella (mostly L1) into a long, slender posteromedian spine that lies over and disrupts the occipital ring. The Eodiscidae have the further distinction of scrobicules developed on the anterior border. (These may be secondarily effaced on some species.) The Weymouthiidae are all blind and include forms with the rear of the glabella roundly expanded over the occipital ring or vertically spinose, forms with the occipital ring obliterated by general glabellar expansion, and forms with primitive occipital structure but greatly increased numbers of axial segments.

Eodiscoid phylogeny is still incompletely understood, and assignment of some genera to higher taxa will remain a difficult task because of the great variety of glabellar modifications, progression to effacement in numerous lineages, and demonstrated parallel evolution of certain features (e.g., border nodes in the Calodiscidae and Serrodiscidae). The suprageneric classification cannot yet be considered stable because the phylogenetic relationships between all genera are far from clear, and the evolutionary pathways of several lineages are uncertain, particularly near their origins.

Superfamily EODISCOIDEA

Raymond, 1913

Glabella usually well defined, and subcylindrical, tapered forward, or narrowed, or expanded near midlength; LO may be simple ring of uniform length (sag.), may be almost obliterated by enlargement posteriorly of L1 portion of glabella into
large, posterior spine overlying LO, may be shortened by rounded posteromedia
cal expansion of the L1 portion of the glabella, or may be divided into basal lobes by such expan-
sion. Genae elevated laterally, depressed in front of glabella. Cephalic border may be
smooth or have marginal spines, tubercles, or radial grooves (scrobicules). Eye small and
abathochroal, may be present in the absence of facial sutures, or may be only an eye tu-
bercle. Thorax with second or third segment
bearing posteromedia spine in some. Py-
gidial axis of 3 to 12 simple, unmodified
rings or with ring furrows effaced; usually
prominent, with axial spine or spines in
some. Pleural fields furrowed or not. Border
narrow, with denticulate or spinose margin.
Doublure narrow. Lower Cambrian–Middle
Cambrian.

Family TSUNYDISCIDAE
S. Zhang, 1980

Glabella extremely narrow, lateral glabel-
ar furrows usually obscure, with rounded
and expanded frontal glabellar lobe. SO
transverse, complete; LO at least as long as
L1, usually expanded laterally, may bear
sharp, posteriorly directed spine. Long,
curved posterior fixigenal spine may be
present. Librigena long. Pygidium with nar-
row, multisegmented axis (six or more seg-
ments). Lower Cambrian.

Tsunydiscus W. CHANG, 1966, p. 150 [*Hebediscus
niutitangensis* W. ZHANG, 1964, p. 3; OD; holotype
(W. ZHANG, LU, & others, 1980, pl. 5, fig. 3),
21470, NIGP, Nanjing] [=Mainzundiscus S. ZHANG
& ZHU in W. ZHANG, LU, & others, 1980, p. 44
(type, *M. armatus*; OD; NIGP 37389); Lianghan-
discus S. ZHANG in W. ZHANG, LU, & others, 1980,
p. 46 (type, *L. lianghanensis*; OD; NIGP 37400);
Eneidiscus L. Li, 1980, p. 44 (type, *E. planilimi-
atus*; OD; CIGMR 2279); Hupeidiscus W. CHANG
in LU & others, 1974, p. 83 (type, *H. orientalis*
W. ZHANG, 1953, pl. 1, fig. 1; OD; NIGP 7033);
Shizhudiscus S. ZHANG & ZHU in W. ZHANG, LU, &
others, 1980, p. 51 (type, *S. longguanensis*; OD;
NIGP 37431); Guizhoudiscus S. ZHANG in W.
ZHANG, LU, & others, 1980, p. 55 (type, *G. kai-
yangensis*; OD; NIGP 37460; =Eodiscus chin-ing-
shanensis LU, 1942, p. 180)]. Glabella conical,
slightly expanded in frontal lobe; S1 and S2 usually
evident but variable; SO variable but may be well
impressed; border smooth or with epiborder furrow,
row of nodes, or median expansion. Thorax with
three segments. Pygidium with extremely narrow
axis reaching close to posterior border furrow; axis
multisegmented, with 6 to 10 axial rings; pleural
areas with or without pleural furrows; border nar-
row, with or without marginal nodes. Lower Cambrian–middle Lower Cambrian: China (Hubei,
Guizhou, Sichuan, Shaanxi, Yunnan).—F IG. 242.
T. niutitangensis, lower Lower Cambrian (Shuijing-
tuo Formation), Guizhou (near Zhun Yi City); ho-
lotype, ×20 (W. Zhang, Lu, & others, 1980).

Family HEBEDISCIDAE
Kobayashi, 1944

Glabella wide at base, usually without lat-
eral furrows, tapering forward or parallel
sided, separating fixigenae anteriorly. SO
transverse, complete; occipital ring as long as
L1, rarely spinose or bluntly expanded. Py-
gidium with anteriorly wide, tapering axis of
four or more rings plus terminus. Lower Cambrian–lower Middle Cambrian.

Hebediscus WHITEHOUSE, 1936, p. 89 [*Psychoparia
attleborensis* SHALER & FOSTER, 1888; OD; holo-
type (SHALER & FOSTER, 1888, pl. 2, fig. 14),
18332, USNM, Washington, D.C.]. Glabella
straight sided, anteriorly truncated; LO poorly
defined if at all; anterior border furrow elongate; border short, flat; palpebral lobe long, usually without palpebral furrow; librigena large for family. Thorax with three segments. Pygidium semieliptical; axis reaching border furrow posteriorly, with seven or more rings plus small terminus; pleural area narrow, with or without furrows; border narrow, smooth or with marginal denticles. Lower Cambrian: USA (Massachusetts), Canada (Newfoundland), England, Spain, Russia (Siberian Platform, Altay), Mongolia, Morocco.—Fig. 243, 5a, b. *H. attleborensis*, Lower Cambrian, Hoppin Slate, Massachusetts (North Attleboro); a, cranidium, X8; b, pygidium, X8 (Shaw, 1950).

Delgadella W. ALCOTT, 1912c, p. 560 [*Lingulepis lusitanica* DELGADO, 1904, p. 365; OD; type not
Eodiscina—Eodiscoidea

FIG. 244. Hebediscidae (p. 389–390)

traced [=Alemtejoia KOBAYASHI, 1943, p. 40 (type, Microdiscus souzai DELGADO, 1904, p. 351; SD KOBAYASHI, 1944a, p. 68); Delgadomia Vogdes, 1917, p. 27 (type, Microdiscus caudatus DELGADO, 1904, p. 349); Delgediscus KOBAYASHI, 1935, p. 112 (type, Microdiscus caudatus DELGADO, 1904, p. 349); Pagetellus LEMERTOVA, 1940, p. 119 (type, P. amousikeyevi; OD; SMF 41767)]. Cephalon convex; axial furrow almost obsolete, particularly on external surface; glabellar furrows absent; border furrow and narrow border distinct; palpebral lobe poorly defined; librigena long. Thorax with three segments. Pygidium with long axis of 10 rings; axial furrow almost obsolete; pleural area usually smooth; border and border furrow narrow. Lower Cambrian: Russia (Siberian Platform, Mt. Altay), Mongolia, Spain, Sardinia, Portugal, Morocco, Canada (Newfoundland).—FIG. 243,2. D. lenaicus (TOUL), Lower Cambrian (Botomian), Siberian Platform (Lena River, Yakutia); lectotype, ×3.5 (Lermontova, 1951a).

Dicerodiscus W. ZHANG, 1964, p. 3 [*D. tsunyiensis; OD; holotype (W. Zhang, Lu, & others, 1980, pl. 1, fig. 5), 37305, NIGP, Nanjing]. Glabella conical, unfurrowed; LO usually with small spine; pair of long, anterior fixigenal spines running laterally from anterior border then curving posteriorly; border long between spines, narrow laterally; facial suture lacking; eye lobe indistinct on lateral part of cheek elevation. Thorax unknown. Pygidium convex; parallel-sided axis not reaching border furrow; three pairs of pleural furrows; border narrow. Lower Cambrian (Qiongzhusian–Canglangpuan): China (Guizhou, Sichuan).—FIG. 243,6a. *D. tsunyiensis, Lower Cambrian (Canglangpuan), Guizhou; holotype, cephalon, X20.—FIG. 243,6b. D. pertenus, Lower Cambrian (Qiongzhusian), Sichuan; pygidium, X15 (W. Zhang, Lu, & others, 1980).

Luvsanodiscus KOROBOV, 1980, p. 72 [*L. gammatus; OD; holotype (Korobov, 1980, pl. 4, fig. 16), 66, coll. 4251, PIN, Moscow]. Glabella with straight, parallel to slightly tapering sides, with truncated anterior, weak or no lateral glabellar furrows; LO poorly defined, with median tubercle; palpebral lobe overhanging border laterally; palpebral furrow shallow, exsagittal. Pygidium with axis of seven rings; ring and pleural furrows poorly impressed; border extremely narrow, with short marginal spines. Lower Cambrian (Atdabanian): Mongolia. —FIG. 244,1a,b. *L. gammatus, Lower Cambrian (Atdabanian, Egyngolskaya Suite), northwestern Mongolia; a, holotype, cranidium, X11; b, pygidium, X11 (Korobov, 1980).

Natinalina E. ROMANENKO in REPINA & ROMANENKO, 1978, p. 128 [*N. incita; OD; holotype (Repina & Romanenko, 1978, pl. 6, fig. 15), 1811/80, ZSGU, Novokuetsnetsk] [=Limbadiscus KOROBOV, 1980, p. 66 (type, L. dilatum; OD; PIN 58, coll. 4251)]. Glabella parallel sided, anteriorly rounded, unfurrowed, without posterior spine; border furrow long; border flat to gently convex, tapering laterally; palpebral lobe projecting from fixigenal elevation; palpebral furrow distinct; librigena small, longer than wide. Pygidium with almost parallel-sided axis of six rings plus terminus reaching into posterior border furrow; pleural area narrow, smooth; border furrow wide; border rimlike, of uniform width. Lower Cambrian (Botomian): Russia (Altay, Gorno-Altayskaya).—FIG. 243,4a,b. *N. incita, Lower Cambrian (Sanashkygol, Gorno-Altayskaya (Sema River)); a, holotype, cranidium, X10; b, pygidium, X10 (Repina & Romanenko, 1978).

Neopagetina POKROVSKAYA, 1960, p. 56, nom. nov. pro Pageotina LEMERTOVA, 1940, p. 121, non BARNARD, © 2009 University of Kansas Paleontological Institute
1931 [*Pogetina rjonsitzkii LERMONTOVA, 1940, p. 121; OD; holotype (LERMONTOVA, 1951a, pl. 3, fig. 7a), 34/5156, TgGM, St. Petersburg]. Glabella tapering forward to rounded anterior; preglabellar median furrow short, wide, depressed; anterior border extremely short, smooth; may be medially elongate; eye ridge anteriorly convex; librigena extremely short; LO simple, may have short occipital spine. Pygidial axis of six rings plus terminus, not reaching border furrow; pleural field with well-impressed pleural furrows; border narrow, smooth. Lower Cambrian (Botomian, Tomonian): Russia (Siberian Platform, Mt. Altay), Mongolia, Greenland.—Fig. 244, 2a, b. *N. rjonsitzkii, Botor- mian, Kutorgina Formation, Siberia (Feleduy River); a, lectotype, cranidium, X12; b, pygidium, X7 (LERMONTOVA, 1940).

Parapagetia REPINA in REPINA & others, 1964, p. 258 [*P. limbata; OD; holotype (REPINA in REPINA & others, 1964, pl. 38, fig. 1), 253/1, CSGM, Novosibirsk] [*Planodiscus KOROBOV, 1980, p. 65 (type, P. patusus; OD; PIN 54, coll. 4251)]. Glabella parallel sided, relatively short; occipital spine absent or short; preglabellar field long; anterior border poorly defined, usually slightly elongate mediadally. Pygidium with short axis of four rings plus terminus; border and border furrow together wide, with poor definition between them; border sometimes elongate postmedianally. Lower Cambrian (Botomian): South Australia, Mongolia, Russia (Gorno-Altayskaya, Tuva), Mongolia.—Fig. 243, 1a. *P. limbata, Lower Cambrian (Sanash- tygol), Gorno-Altayskaya (River Katun); holotype, cranidium, X15.—Fig. 243, 1b. P. plavae E. ROMANENKO, Lower Cambrian (Sanashtygol), Gorno-Altayskaya (River Ulfmen); pygidium, X15 (Repina & others, 1964).

Tchernyshevioidei HAJRULLINA in REPINA, PETRUNINA, & HAJRULLINA, 1975, p. 100 [*T. nicae; OD; holotype (REPINA, PETRUNINA, & HAJRULLINA, 1975, pl. 7, fig. 1–2), 483/160, MMG, Tashkent]. Glabella long, reaching anterior border furrow; SO well impressed; occipital ring with long postero dorsal spine; palpebral lobe short, prominent, and situated well forward; librigena tiny. Pygidium with axis of five rings plus terminus; pleural furrows impressed; border narrow, smooth. Middle Cambrian (Ampgian): Asia (Tian-Shan), Morocco.—Fig. 243, 3a–c. *T. nicae, Ampgian (Pseudoconocarina Zone), Tian-Shan (Sulyukta region); a, holotype, cranidium, X8; b, lateral view of cranidium, X8; c, pygidia, X8 (Repina, Petrunina, & Hajrullina, 1975).

Family CALODISCIDAE Kobayashi, 1943

Calodiscus HOWELL, 1935b, p. 224, nom. nov. pro Goniodiscus RAYMOND, 1913b, p. 101, non MÜLLER & TROSCHIEL, 1842 [*Agnostus lobatus HAL, 1847, p. 258; OD; syntypes (RASSETTI, 1952a, pl. 51, figs. 8–11), 210, AMNH, New York] [*Brevidiscus KOBAYASHI, 1943, p. 39 (type, B. lobulus; OD; USNM 15393)]. Glabella parallel sided, with two, shallow transglabellar furrows; glabellar anterior reaching border furrow; border narrow laterally, smooth or with a few tubercles laterally; eyes and facial sutures absent. Pygidial axis of few rings (four or five), wide, reaching border furrow or close to it; border narrow, with smooth or serrated margin. Lower Cambrian (Atdabanian, Botomian): Sweden, England, Germany, Morocco, Siberia (Mt. Altay), USA (Massachusetts, New York, Alaska), Canada (Newfoundland, Greenland).—Fig. 245, 4a, b. *C. lobatus (Hall), Botomian (West Castleton Formation), New York (Troy); a, syntype, cephalon, X12; b, syntype, pygidium, X12 (Rasetti, 1952a).

Chelediscus RUSHTON, 1966, p. 18 [*C. acifer; OD; holotype (RUSHTON, 1966, pl. 2, fig. 26a–e), A-57104, SM, Cambridge]. Glabella conical, bilobed (anterior lobe much smaller in type); LO depressed, forming basi-lobae; median preglabellar furrow present; border furrow with line of pits; border with pair of marginal spines laterally and pair of genal spines. Thorax with two segments. Pygidium strongly convex; axis wide, tapering strongly in posterior half, of five or six rings; pleural areas with rudimentary furrows; border narrow. Lower Cambrian (Botomian): England, USA (New York), Canada (Newfoundland), Russia (Siberian Platform).—Fig. 245, 4a–c. *C. acifer, upper Protolenus Zone, Purley Shale, England (Warwickshire); a, paratype, cephalon, X8; b, c, enrolled holotype in pygidial and lateral views, X8 (Rushton, 1966).

Korobovia JELL in BENGTSON & others, 1990, p. 263 [*K. ochyta; OD; holotype (JELL in BENGTSON & others, 1990, fig. 177c, f), 112656, NMVP, Melbourne]. Glabella may be subconical, reaching border furrow, with vague transverse furrow about one-third length from anterior; eye ridge convex forward, leading to small palpebral lobe situated well forward and low on fixigenal elevation; border short, rimlike, with two small nodes just behind small librigena. Pygidium transverse; axis broad, of 3 rings plus terminus, each with high, spinelike tubercle; pleural furrows impressed; border narrow, with or without marginal spines. Lower Cambrian (Botomian): South Australia, Mongolia, Russia (Gorno-Altayskaya).—Fig. 245, 3a–c. *K. ochyta.
FIG. 245. Calodiscidae (p. 390–392)

Eodiscina—Eodiscoidea

lata, Pararria janae Zone, Orarapina Shale, South Australia (Flinders Range); a, holotype, cranidium, X15; b, pygidium, X15; c, lateral view of pygidium, X15 (Bengston & others, 1990).

Neocobboldia Rasetti, 1952a, p. 438, nom. nov. pro Cobboldia Lermontova, 1940, p. 120, non Brauer, 1887; nec Leiper, 1910 [*Cobboldia dentata Lermontova, 1940, p. 120; OD; holotype (Lermontova, 1951a, pl. 3, fig. 2) 23/5156, TsGM, St. Petersburg] [*Cobboldia(?) dentata Lermontova, 1951a, pl. 3, fig. 2) 23/5156, TsGM, St. Petersburg]* [*Cobboldia dentata Lermontova, 1951a, pl. 3, fig. 2)*. Glabella parallel sided, anteriorly rounded at border furrow, unfurrowed except for well-impressed, transverse SO; fixigenae narrow, separated anteriorly by short, depressed median preglabellar field; border furrow usually longer than border; anterior border short, convex, tapering only slightly laterally; palpebral furrow slitlike, exsagittal, short. Pygidium transverse; axis wide, of 3 or 4 rings plus terminus, finishing at border furrow; pleural areas usually with well-impressed pleural furrows; border narrow, denticulate. Lower Cambrian (Botomian): Russia (Siberian Platform, Gorno-Altayskaya); Mongolia.——Fig. 245, 2a–c. *N. dentata, Lower Cambrian (Protolenus Zone), Siberia (Lena River, Yakutia); a, holotype, cranidium, X6.5; b,c, thorax and pygidium, X6.5 (Lermontova, 1951a).

Pseudocobboldia Hupe in Boudda, Choubert, & Faure-Muret, 1979, p. 73 [*Cobboldia(?) pulchra Hupe, 1953a, p. 113; OD; holotype (Hupe, 1953a, pl. 11, fig. 21), not traced]. Glabella subconical, anteriorly rounded at border furrow, unfurrowed except for well-impressed SO; border smooth, short, and flat; prominent eye tubercle situated laterally above narrowest part of border; eye ridge running from axial furrow behind glabellar anterior to eye. Pygidium transverse; axis wide, consisting of three rings plus terminus that does not reach border furrow; pleural area narrow, with shallow pleural
furrows; border narrow, tapering posteriorly, weakly denticulate. Lower Middle Cambrian: Morocco.—Fig. 246a,b. *P. pulchra* (Hupe), Lower Middle Cambrian (Jbel Wawrmast Formation), Morocco (Anti-Atlas Mountains); a, holotype, cranidium, Xu4 (Hupe, 1953a); b, pygidium, Xu4 (Geyer, 1988).

Sinodiscus

W. CHANG in LU & others, 1974, p. 83 [*S. shatinensis*; OD; holotype (W. Chang in Lu & others, 1974, pl. 31, fig. 5), 37350, NIGP, Nanjing] = [Tolgojaj 1980, p. 81 (type, *T. quadrateae*; OD: PIN 99, coll. 4251)]. Glabella cylin- drical except for gently expanded and rounded anterior lobe and wide LO, reaching anterior border furrow, with 2 transglabellar furrows variably impressed; LO wide, as long as L1, nonspinose; border short, upturned, uniform; palpebral lobe short, level with anterior glabellar lobe, defined by well-impressed palpebral furrow; librigena small. Thorax with three segments. Pygidial axis wide, of two to five rings plus posteriorly rounded terminus isolated from border furrow; pleural furrows well impressed; border narrow, uniform, without marginal spines. Lower Cambrian (Botomian, upper Qionghusian): Mongolia, China (Hubei, Guizhou).—Fig. 245, 5a,b. *S. shatinensis*, upper Qionghusian (Shipai Formation), western Huei; a, holotype, cranidium, Xu6; b, pygidium, Xu6 (Lu & others, 1974).

Family WEYMOUTHIIDAE

Kobayashi, 1943

Most taxa in this family are large for the superfam- ily. Glabella wide at base, normally parallel sided but may taper gently or expand medially, usually without glabellar furrow but, if present, furrow may be incomplete or transglabellar and deeply impressed. Fixige- nae normally confluent in front of glabella. SO often not impressed but dorsally complete when evident; LO simple or shortened by posterodorsal expansion of rounded L1. Without eyes. Pygidium with long, strongly tapering axis; axis with 10 or more rings (when segmentation is evident); segmentation commonly effaced. Lower Cambrian—Middle Cambrian.

Weymouthia

Raymond, 1913b, p. 102 [*Agnostus nobilis* Ford, 1872, p. 421; OD: types not traced, reported lost by Walcott, 1890b]. Cephalon effaced except for border furrow; border narrow, bearing tubercles laterally. Thorax with three segments. Pygidium effaced except for border furrow; border narrow. Lower Cambrian: USA (Massachusetts).—Fig. 246c,d. *W. nobilis* (Ford), Lower Cam- brian (Hoppin Slate), Massachusetts (North Attleboro); articulated specimen, X5 (Shaw, 1950).

Acidiscus

Rasetti, 1966a, p. 11 [*A. birds*; OD: holotype (Rasetti, 1966a, pl. 6, fig. 11–12), 145987, USNM, Washington, D.C.]. Cephalon border with one or two pairs of marginal spines; glabella isolated from border furrow, with two short, pitlike pairs of lateral furrows; occipital and genal spines present. Pygidium like *Serrodiscus*, axis with ten rings; pleu- rae smooth; doublure may be extended into short spines. Upper Lower Cambrian: USA (New York), Canada (Newfoundland).—Fig. 246, 4a,b. *A. birds*, upper Lower Cambrian (Acinetopus bilobatus faunule), New York (Grishold Farm); a, holotype, cranidium, X2; b, paratype, pygidium, X2 (Rasetti, 1966a).

Acinetopus

Rasetti, 1966a, p. 13 [*A. bilobatus*; OD: holotype (Rasetti, 1966a, pl. 4, fig. 1–4), 145991, USNM, Washington, D.C.]. Cephalic border strongly convex, with a pair of marginal spines laterally; glabella strongly divided by deep furrow (S1 plus S2) with large anterior lobe isolated from border furrow, with L2 as a pair of small, separated, subtriangular lobes, and with L1 large and inflated posterodorsally into a cranidial spine; LO short and low behind L1; genal spines present. Pygidial axis of type with nine rings, strongly inflated, with vertical spine on second ring; border furrow deep; border narrow, without spines. Upper Lower Cambrian: USA (New York), England.—Fig. 246, 4a–d. *A. bilobatus*, upper Lower Cambrian (Acinetopus bilobatus faunule), New York (Grishold Farm); a, holotype, cranidium, X5; b, same in lateral view, X5; c, paratype, pygidium, X5; d, paratype, py- gidium in lateral view, X5 (Rasetti, 1966a).

Analogos

Rasetti, 1966a, p. 15 [*A. bifasciatus*; OD: holotype (Rasetti, 1966a, pl. 6, fig. 1–3), 145993, USNM, Washington, D.C.]. Glabella extending forward into merged axial and border furrows; S1 long but not deep; L1 large, drawn out postero- dorsally into glabellar spine; anterior lobe wider than anterior portion of L1; LO indistinct beneath...
glabellar spine. Anterior border swollen medially, defined by furrows running anterolaterally from axial furrow at front of glabella, ending in a pit; border absent laterally; posterior border furrow fading out a little in front of genal angle. Pygidium with long axis (eight rings in type); border narrow, defined by equally narrow border furrow; doublel forming vertical face without spines. upper Lower Cambrian: USA (New York).——Fig. 247,1–c. *A. bipunctata, upper Lower Cambrian (Acinetopodiscus bilobatus faunule), New York (Griswold Farm); a, holotype, cranidium, X6; b, lateral view of same, X6; c, paratype, pygidium, X6 (Rasetti, 1966a).

Bathyp dicus Rasetti, 1966a, p. 16 [*B. dolichometopus; OD; holotype (Rasetti, 1966a, pl. 9, fig. 1–3), 145995, USNM, Washington, D.C.]. Glabella wide, convex, unfurrowed except for faint occipital furrow; glabellar spine gently arched in anterior view; posterior border with pair of erect spines close to axial furrow as in Oediscus. Pygidial axis wide, tapering, unfurrowed; border furrow wider posteriorly; border narrow, depressed posteriorly; doublel vertical and high laterally (i.e., not reflexed parallel to dorsal exoskeleton), much lower posteriorly. upper Lower Cambrian: USA (New York), Canada (Newfoundland).——Fig. 247,5a–c. *B. dolichometopus, upper Lower Cambrian (Acinetopodiscus bilobatus faunule), New York (Griswold Farm); a, holotype, cranidium, X4; b, paratype, pygidium, X5; c, paratype, pygidium, X4 (Rasetti, 1966a).

Bolboparia Rasetti, 1966a, p. 18 [*B. superba; OD; holotype (Rasetti, 1966a, pl. 5, fig. 1–4), 145998, USNM, Washington, D.C.]. Glabella anteriorly pointed, extended posterodorsally into a spine, with poorly defined lateral furrows; LO short, behind glabellar spine; cheeks inflated anterolaterally, hanging over border; preglabellar field depressed as broad furrow; anterior border expanded medially, with a pair of marginal spines laterally and near the genal angle one or more pairs of tubercles in front of transverse furrow running from border furrow to margin; genal spines present. Pygidial axis of ten rings, spine on second ring; narrow border extended into ventrally directed spines. Surface densely granulose in three known species. upper Lower Cambrian: USA (New York), Canada (Quebec).——Fig. 246,2a,b. *B. superba, upper Lower Cambrian (Acinetopodiscus bilobatus faunule), New York (Griswold Farm); a, holotype, cranidium, X4; b, lateral oblique view of same, X4 (Rasetti, 1966a).——Fig. 246,2c,d. B. elongata, upper Lower Cambrian (Acinetopodiscus bilobatus faunule), New York (Griswold Farm); c, paratype, pygidium, X4; d, lateral view of same (Rasetti, 1966a).

Cephalopyge Geyer, 1988, p. 123 [*C. notabilis; OD; holotype (Geyer, 1988, fig. 61), 41781, SMF, Frankfurt am Main]. Cephalon subcircular except for straight posterior; externally smooth, convex, and hanging over extremely narrow border; glabella evident on internal mold, conical, with SO being only furrow evident; LO short, hanging over posterior margin. Thorax with three segments. Pygidium externally smooth, convex; internal mold showing conical axis extending to posterior margin; border not present. upper Lower Cambrian: Morocco.——Fig. 248,2. *C. notabilis, upper Lower Cambrian (Jbel Wawermast Formation), Morocco (Anti-Atlas Mountains); holotype, X4 (Geyer, 1988).

Cobboldites Kobayashi, 1943, p. 38 [*Microdiscus comleyensis Cobbold, 1910, p. 21; OD; lectotype (Cobbold, 1910, pl. 3, fig. 2), A18.478, SM, Cambridge]. Glabella conical, broadly rounded anteriorly at border furrow, unfurrowed; border flat, narrowing laterally. Pygidium with seven axial rings (usually not evident on exterior surface) tapering posteriorly to the border furrow; border narrow, tapering posteriorly, without spines or tubercles. upper Lower Cambrian: England, Morocco. *Middle Cambrian: England.——Fig. 247,4a,b. *C. comleyensis, upper Lower Cambrian (Comley Series, Protolenus Limestone), England (Shropshire); a, syntype, cranidium, X5; b, syntype, pygidium, X5 (Cobbold, 1910).

Jinghediscus Xiang & Zhang, 1985, p. 92 [*J. nummularius; OD; holotype (Xiang & Zhang, 1985, pl. 1, fig. 1), T1348, CAGC, Beijing]. Like Mallagnostus, with bilobed glabella divided by transverse furrow and posteriorly inflated. [Questionably a synonym of Mallagnostus.] lower Middle Cambrian: China (Xinjiang), Australia (Queensland).——Fig. 246,4a,b. *J. nummularius, lower Middle Cambrian (Xyridura Zone), Xinjiang; a, holotype, cranidium, X8; b, pygidium, X10 (Xiang & Zhang, 1985).

Leptochilodiscus Rasetti, 1966a, p. 25 [*L. punctulatus; OD; holotype (Rasetti, 1966a, pl. 11, fig. 1–3), 146009, USNM, Washington, D.C.] [=Kerherodiscus Rasetti, Owens, & Rushton, 1976, p. 630 (type, K. succinctus; OD; NMW 75.5G.7)]. Glabella long, narrow, tapering to pointed anterior, and not reaching border furrow; SO well impressed; LO short; border extremely narrow. Pygidial axis with ten axial rings, almost effaced, reaching posterior border furrow; border extremely narrow, extended ventrally with series of short spines; margin arched over median line in posterior view. upper Lower Cambrian: USA (New York), Canada (Quebec), Wales.——Fig. 248,5a–c. *L. punctulatus, upper Lower Cambrian (Acinetopodiscus bilobatus faunule), New York (Griswold Farm); a, holotype, cephalon, X7.5; b,c, pygidium, posterior and dorsal views, respectively, X5 (Rasetti, 1966a).

Litometopus Rasetti, 1966a, p. 26 [*L. longipinus; OD; holotype (Rasetti, 1966a, pl. 8, fig. 1–3), 146012, USNM, Washington, D.C.]. Cephalon almost semicircular; glabella tapering forward to border furrow, unfurrowed; border convex, with pair of small marginal spines laterally and large genital spines. Pygidium same shape as cephalon; axis tapering posteriorly to border furrow, unfurrowed to very faintly furrowed; border flat, wide, with doublel sloping adaxially, and with serrated margin. [Questionably a synonym of Cobboldites.]
Fig. 247. Weymouthiidae (p. 392–398)
upper Lower Cambrian: USA (New York).——Fig. 246, 5a,b. *L. longispinus*, upper Lower Cambrian (*Acinetopus bilobatus* fauna), New York (Taconic, Griewold Farm); a, holotype, cephalon, ×3; b, pygidium, ×3 (Rasetti, 1966a).

Eodiscina—Eodiscoidea

397

Eodiscina—Eodiscoidea

VNIGNI 3536/85]. Cephalon semieliptical; glabella unfurrowed (pits situated laterally indicate furrows in one species), finishing well behind broad border furrow; LO short, ill-defined, not spinose; anterior border long, only gently convex, tapering laterally; border furrow running to margin just anterior to genal angle. Thorax with three segments. Pygidium same shape as cephalon, with conical axis of eight or more rings, not reaching to posterior border furrow; pleural areas smooth. upper Lower Cambrian: USA (New York), Canada (Newfoundland), Spain, England, Russia (Tuva, Gorno-Altayskaya), Mongolia. Middle Cambrian: China (Tian Shan), Russia (Yakutia).——Fig. 248, La. *M. deideratus* (WALCOTT), upper Lower Cambrian, New York; holotype, cranidium, X10 (Rasetti & THEOKRISTOFF, 1967).——Fig. 248, Lb. *M. llarenai*, upper Lower Cambrian (serratus-Band), Herrerias-Mergel Formation, Spain (Cala); holotype, pygidium, X4 (Richter & Richter, 1941a).

Meniscuchus ÖPIK, 1975a, p. 28 [*M. menetus*; OD; holotype (ÖPIK, 1975a, pl. 4, fig. 1–2), CPC 13171, AGSO, Canberra]. Glabella rounded anteriorly at border furrow, strongly divided by complete S2 and S3; L3 of variable length (lateral lobes only in some species), posteriorly inflated and widened; LO short, low behind inflation of glabella; anterior border elongate, strongly convex, tapering laterally. Pygidium relatively narrow; axis tapering and reaching border furrow posteriorly, deeply segmented (with 4 to 10 axial rings); pleural areas unfurrowed; border uniformly narrow; doublure wide and almost vertical. Lower Cambrian (Botomian): USA (Alaska, New York), Canada (Newfoundland, Quebec), Russia (Siberian Platform, Gorno-Altayskaya), Australia (New South Wales).——Fig. 247, 2a,b. *M. menetus*, Lower Cambrian (Cymbic Vale Formation), New South Wales; a, holotype, cranidium, X8; b, pygidium, X11 (ÖPIK, 1975a).

Ninadiscus KOROBOV, 1980, p. 101 [*N. strobulatus*; OD; holotype (KOROBOV, 1980, pl. 9, fig. 3), 139, coll. 4251, PIN, Moscow]. Glabella tapering gently forward to sharply rounded anterior at border furrow, with L1 expanded posterodorsally into well-rounded protrusion; S1 and S2 well impressed; L2 shorter than frontal lobe, which is shorter than L1; LO short and lower than L1; border furrow uniform throughout, may swing gently to posterior in midline; border narrow laterally, elongate sagittally, may bear up to three symmetrically arranged tubercles anteriorly. Pygidium with long, narrow axis of 10 rings reaching almost to posterior border; pleural areas smooth; border extremely narrow. Lower Cambrian (Botomian): Mongolia, USA (New York).——Fig. 249, 1a,b. *N. strobulatus*, Lower Cambrian (Egyngolskaya Suite), northwestern Mongolia; a, holotype, cranidium, X15; b, pygidium, X10 (Korobov, 1980).

Oodiscus Rasetti, 1966a, p. 28 [*O. subgranulatus*; OD; holotype (RASETTE, 1966a, pl. 10, fig. 1–3), 146014, USNM, Washington, D.C.]. Cephalon tending towards subquadrate outline; glabella wide (one-third cephalic width), strongly convex, completely unfurrowed except for shallow lateral depressions posteriorly as occipital furrow; preglabellar field short; border with 1 or 2 pairs of marginal spines laterally and a pair of small spines posteriorly (one species has a pair of tubercles anteriorly). Pygidium same shape as cephalon; axis tapered, unfurrowed, not reaching posterior border; border virtually flat, usually slightly wider laterally than long posteriorly. upper Lower Cambrian: USA (New York), Canada (Newfoundland).——Fig. 248, 6a,b. *O. subgranulatus*, upper Lower Cambrian (Actinometopus kilobatus faunule), New York (Griswold...
Serrodiscus

Stigmadiscus

Semadiscus

Runcinodiscus

Trilobita

S. sollennis, Lower Cambrian (lower Tannuolaicus); OD; holotype (Pokrovskaya, 1959, p. 11, fig. 20), 3536/98, VNIGNI, Moscow. Glabella long, wide, bilobed; posterior lobe lacking furrow or spine but may be rounded inflated posteriorly; LO short, low at rear of inflated rear of glabella; border convex, moderately wide, elongate sagittally and extending back to anterior of glabella in some species. Thorax with three segments. Pygidial axis conical, of seven or eight rings, may or may not reach posterior border furrow; ring furrows indistinct or obsolete; border almost flat, similar in width to cephalic border. Lower Cambrian (Toyonian): England, Canada (Newfoundland), Russia (Gorno-Altayskaya, Tuva), China (Gansu).——Fig. 248,3a–c. *T. tannuolaicus, Toyonian (Shivelikskaya Suite), Tuva (Shivelik-Khem River, eastern Tannu-Ola Mountains); holotype, X10 (Pokrovskaya, 1959).——Fig. 248,3b,c. *T. balanus Rushhton, 1966, Lower Cambrian (Parley Shales), England (Warwickshire); holotype, cranidium in dorsal and lateral views, X12 (Rushton, 1966).

Family YUKONIIDAE S. Zhang, 1980

Glabella narrow, usually parallel sided and anteriorly rounded. SO a pair of pits low on sides of glabella and angling back beneath median cranidial spine; LO extremely short, overridden by cranidial spine. Large spine arising from L1 medially and directed back almost horizontally to pointed tip. Preglabellar area usually long, with smooth anterior border. Pygidium variable with axis of three to seven rings. Lower Cambrian–Middle Cambrian.

Yukonias Palmer, 1968, p. 38 [*Y. intermedia; OD; holotype (Palmer, 1968, pl. 2, fig. 14), 146674.}
USNM, Washington, D.C.], Glabella relatively wide, unfurrowed, strongly tapered into cranidial spine; eye tubercles situated laterally just above the border furrow. Thorax with three segments. Pygidium transverse, with narrow, poorly segmented axis; border narrow, with irregular (possibly weakly spinose) margin. Lower Cambrian: USA (Alaska).

——Fig. 250, 1a,b. *Y. intermedia*, Lower Cambrian (Alaskan), Alaska (Water Level area, Yukon River); a, holotype, cranidium, ×20; b, paratype, pygidium, ×15 (Palmer, 1968).

Alaskadiscus S. Zhang in W. Zhang, Lu, & others, 1980, p. 31 [*Neoembolidae spinosa* Palmer, 1968, p. 34; OD]; holotype (Palmer, 1968, pl. 2, fig. 9–10), 146670, USNM, Washington, D.C.], Glabella unfurrowed except for SO low on sides at rear, reaching rear of long border furrow; SO running up to cranidial spine just behind greatest tapering of the cranidial spine; LO short, overlain by slender, horizontal cranidial spine (much narrower than glabella); border uniformly short; palpebral furrows well impressed; librigena short, small. Thorax with two segments. Pygidium transverse; axis of five or six rings, with large geniculate spine on third and fourth; border narrow, with several pairs of marginal spines. Lower Cambrian: USA (Alaska).

——Fig. 250, 3a,b. *A. spinosa* (Palmer), middle Lower Cambrian (Adams Argillite), Alaska (Yukon River); a, holotype, cranidium, ×15; b, left lateral view of pygidium, ×15 (Palmer, 1968).
Egnygolia KOROBOV, 1980, p. 83 [*E. obtusa; OD; holotype (KOROBOV, 1980, pl. 7, fig. 1), 102, coll. 4251, PIN, Moscow] [=Mongolodiscus KOROBOV, 1980, p. 99 (type, M. zaveroi; OD; PIN 137, coll. 4251)]. Glabella wide; SO to S3 impressed as deeply circular pits isolated or almost isolated from axial furrow; S1 and S2 may continue faintly across the axis; palpebral lobes short but prominently raised; librigena tiny; anterior border usually a short rim marginal to long border furrow. Thorax with three segments. Pygidium with axis of six or seven rings and tiny terminal portion, with small tubercle on each ring, and no terminal spine; pleural areas usually with pleural furrows; border narrow, usually with six pairs of small marginal tubercles. Lower Cambrian (Asiabarian): Russia (Siberian Platform, Dzhagdy Mountains), Mongolia, South Australia.——FIG. 250, a–d. *E. obtusa, Lower Cambrian (Botomian), Siberia (Lena River); a, cranidium, X20; b, partial cranidium, X20; c, holotype, pygidium, X10; d, pygidium, X20 (Repina & Preladov, 1988).

Yukonides FRITZ, 1972, p. 10 [*Y. lacrini; OD; holotype (FRITZ, 1972, pl. 8, fig. 1–2), 27278, GSC, Ottawa]. Glabella narrow; with marked preglabellar depression; eye ridge, when elevated, extending to eye tubercles on lateral margin; librigenae absent. Pygidium with axis of five to seven rings; border bearing inconspicuous marginal spines or nodes. middle Lower Cambrian: USA (New York), Canada (Northwest Territories). Russia (Siberian Platform).——FIG. 250, 5a,b. *Y. lacrini, “Nevadella” Zone, Sekwi Formation, Northwest Territories (Mackenzie Mountains); a, holotype, cranidium, X8; 7; b, pygidium, X10.8 (Fritz, 1972).

Family EODISCIDAE Raymond, 1913

Same as Yukonidae, but anterior border scrobiculate. Pygidial axis of four to ten rings. upper Lower Cambrian–Middle Cambrian.

Eodiscus HARRT in WALTCE, 1884b, p. 24 [*E. pulchellus; OD; syntypes (Rasetti, 1952a, pl. 54, fig. 10–11), 3794, CU, Ithaca; =Microdiscus scanicus LINNARSSON, 1883, p. 29; lectotype (LINNARSSON, 1883, pl. 4, fig. 17), 5602, SGU, Upsala] [=Spinodiscus KOBAYASHI, 1943, p. 39 (type, Microdiscus punctatus SALTER, 1864c, p. 237; OD; lectotype BMNH 42646); Deladiscus KOBAYASHI, 1943, p. 39 (type, Microdiscus punctatus precursor Matthew, 1886, p. 75; OD; ROM 47; =Microdiscus scanicus LINNARSSON, 1883, p. 29)]. Glabella may be anteriorly acuminate; S1 and S2 discontinuous lateral indentations only; fronta area relatively long, with median preglabellar furrow; border short, uniform; scrobicules may be effaced; eyes and facial sutures absent. Thorax with three segments. Pygidium with long, narrow axis of 10 or more rings; border narrow. Surface ornament variable between species. Middle Cambrian: Canada (Newfoundland, Newfoundland), Sweden, Spain, Wales, England, Norway, Russia (Siberian Platform).——FIG. 252, la–c. *E. scanicus (LINNARSSON), Middle Cambrian (Ptychagnostus atavus Zone), Sweden; a, whole specimen, X6; b, lectotype, cranidium, SGU 5602; X6; c, cranidium, X6 (Westergård, 1946).

© 2009 University of Kansas Paleontological Institute
Dawsonia Hartt in Dawson, 1868, p. 655 [*Microdiscus dawsoni; OD; types not traced] [\=Acauleodiscus SNAJD, 1950, p. 201 (type, A. bohemicus; OD; NMP 52028); Metadiscus KOBAYASHI, 1943, p. 39 (type, Microdiscus sculptus HICKS in HARKNESS & HICKS, 1871, p. 400; OD; SM A1088)]. Coarsely granulose; glabella poorly furrowed laterally; anterior border convex; blind. Thorax with two segments. Pygidium with axis of six rings plus terminus; pleural furrows deeply incised; border extremely narrow. Middle Cambrian: Canada (Newfoundland, New Brunswick), Sweden, Wales, Czechoslovakia, Russia (Siberian Platform).——FIG. 253, 2 *D. dawsoni, Middle Cambrian (Fossil Brook Formation), New Brunswick (Fossil Brook); latex cast of whole specimen, \(\times 8\) (Rasetti, 1952a).

Helepagetia Jell, 1975a, p. 82 [*H. bitruncula; OD; holotype (Jell, 1975a, pl. 29, fig. 1), 27793, ANU, Canberra]. Small species; like Pagetia except that eyes are present and facial sutures are absent. Pygidium with few axial rings and a terminal or subterminal axial spine. Ornament of dense, fine pustules with larger granules sparsely interspersed. Middle Cambrian: Australia (Queensland, Tasmania), P. punctuosus to L. laevigata Zones.——FIG. 252, 5a,b. *H. bitruncula, Middle Cambrian (Currant Bush Limestone), western Queensland; a, holotype, cephalon, \(\times 15.6\); b, paratype, pygidium, \(\times 12.5\) (Jell, 1975a).

Kiskinella ROMANENKO & ROMANENKO, 1962, p. 24 *K. cristata; OD; holotype (Romanenko & Romanenko, 1962, pl. 3, fig. 3), 1328/1958, ZSGU, Novokuznetsk]. Glabella not reaching border furrow, unfurrowed except for SO; median preglabellar furrow separating fixigenae; librigenae extremely small; palpebral lobe small, low on side of fixigenal elevation. Pygidium with parallel-sided axis of four rings (plus terminal portion) finishing well before border furrow; pleural furrows deep; border extremely narrow. Middle Cambrian (Amgaian): Russia (Gorno-Altyskaya).——FIG. 252, 6a,b. *K. cristata, Middle Cambrian (Amgaian), Gorno-Altyskaya (Kiska River); a, holotype, cranidium, \(\times 9\); b, pygidium, \(\times 9\) (Romanenko & Romanenko, 1962).

Macannaia Jell, 1975a, p. 71 [*Pagetia maladenis Resser, 1939, p. 25; OD; holotype (Resser, 1939, pl. 2, fig. 5, right), 98491a, USNM, Washington, D.C.]. Small; similar to Pagetia; glabella narrow, occupying small part of cranidium, may be anteriorly truncated; preglabellar field short, depressed immediately in front of glabella; palpebral lobes usually highly elevated. Thorax with two segments, with geniculate spine on axis of second segment. Pygidial axis narrow, reaching posterior border furrow, usually expanded dorsally at rear, with spine varying from minute node to long horizontal spine; border widest in midlength of pygidium. Middle Cambrian: Spain; USA (Idaho), Glosopleura Zone; Australia (New South Wales), Peronopsis longinqua Zone; Russia (Siberian Platform), upper Toyonian.
Opsidiscus Westergård, 1950b, p. 606, nom. nov. pro Aulacodiscus Westergård, 1946, p. 26, non Douville, 1921 [*Aulacodiscus bilobatus Westergård, 1946, p. 26; OD; holotype (Westergård, 1946, pl. 1, fig. 21), 4702, SGU, Uppsala]. Small species; like Pagetia, but has small abathochroal eye and fused facial suture. Thorax with two segments, the second segment bearing small, geniculate median spine. Pygidium with axis of two to six rings plus terminal portion but no terminal spine. upper Middle Cambrian: Sweden, Russia (Siberian Platform, Gorno-Altayskaya), Australia (Queensland, Tasmania), India, Antarctica.—Fig. 253, i–k. *O. bilobatus, upper Middle Cambrian (Lejopyge laevigata Zone), Sweden; a, holotype, cranidium, Östergotland, ×8 (Westergård, 1946).

Pagetia Walcott, 1916b, p. 407 [*P. bootes; OD; syntypes (Walcott, 1916b, pl. 1, fig. 1), 62855–62861, USNM, Washington, D.C.] [=Eopagetia Kobayashi, 1943, p. 40 (type, Microdiscus significans Etheridge, 1902, p. 3; OD; lectotype chosen Whitehouse, 1936, p. 83, AMF 9138A); Meso-pagetia Kobayashi, 1943, p. 40 (type, Pagetia clytia Walcott, 1916b, p. 408; OD; syntypes USNM 62862–62867)]. Glabella may taper forward, usually with furrows poorly impressed laterally; preglabellar field of variable length, usually depressed; border tapering laterally; abathochroal eye present; facial suture proparian. Thorax with two or
three segments, with geniculate, posteriorly directed median spine on second. Pygidium with axis of three to six rings plus terminal portion bearing spine of variable length; axis not reaching border furrow. **upper Lower Cambrian**: USA (New York), Canada (Yukon Territory). **Middle Cambrian**: USA (Idaho, New York), Canada (Quebec, British Columbia), India, Russia (Siberian Platform), Korea, China (Guizhou, Yunnan), Antarctica, Australia (Queensland, New South Wales, Northern Territory, South Australia). —— **Fig. 252.4.** *P. bootes, Bathynuriscus-Elarchina Zone, Burgess Shale, British Columbia; articulated syntype, X8 (Rasetti, 1966b).

Pagetides RASSETTI, 1945b, p. 311 [*P. elegans; OD; holotype (Rasetti, 1945b, pl. 1, fig. 1), 304a, LU, Montreal] [≡ *Disomesites* ÖPNK, 1975b, p. 32 (type, *D. fragum; OD; AGSO 13177)]. Like *Pagetia*, but with well-developed palpebral furrows. Pygidium without axial spine. **upper Lower Cambrian**: Scotland, USA (Alaska, New York, Vermont), Canada (Northwest Territories, Quebec), Russia (Siberian Platform), Australia (New South Wales), Antarctica. **lower Middle Cambrian**: Canada (Newfoundland). —— **Fig. 252.2a,b.** *P. elegans, upper Lower Cambrian (Sillery Formation), Quebec (Levis); a, holotype, cranidium, X6; b, pygidium, X6 (Rasetti, 1945b).

Sinopagetia W. ZHANG & YUAN, 1981, p. 162 [*S. neimengguensis; OD; holotype (W. ZHANG & YUAN, 1981, pl. 2, fig. 1), 62248, NIGP, Nanjing; *Pagetia jinnanensis* LIN & WU in W. ZHANG, LIN, & others, 1980, p. 47; holotype (W. ZHANG, LIN, & others, 1980, pl. 1, fig. 1), 51075, NIGP, Nanjing]. Glabella wide at base, tapering forward; LO expanded posteriorly but not spinose; anterior border elongate medially; librigena subquadrate; palpebral furrow not impressed. Pygidial axis of five rings and terminal portion, lacking posterior spine, not reaching posterior border furrow; ring furrows not well impressed; border extremely narrow, smooth. **lower Middle Cambrian**: Inner Mongolia, China (Shaanxi). —— **Fig. 253.3a,b.** *S. jinnanensis, lower Middle Cambrian (Hsuchuang Formation), Inner Mongolia (Gangdeershan); a, holotype, cranidium, X20; b, pygidium, X18 (W. Zhang & Yuan, 1981).

GENERAE PREVIOUSLY ASSIGNED TO EODISCIOIDEA BUT HERE CONSIDERED DOUBTFUL OR EXCLUDED

Diphurus CLARK, 1923a, p. 478 [*D. insperatus; OD; holotype (Shaw, 1950, pl. 79, fig. 18), 1693, MCZ, Cambridge] [≡ *Pseudodiphurus* KOBOROV, 1980, p. 91 (type, *P. privus; OD; PIN 128, coll. 4251)]. Glabella subconical, narrow, extending to anterior border furrow, with slightly expanded frontal lobe and up to three pairs of poorly impressed lateral glabellar furrows; LO medially elongate, without a spine; fixigenae with a prominent tubercle behind eye ridge; palpebral lobe long, curved, defined by well-impressed palpebral furrow, and continuing into eye ridge and meeting axial furrow at level of anterior of glabella; border extremely short; librigena long and narrow. Pygidium with posteriorly tapering axis of six rings plus terminal portion, finishing just forward of border furrow; pleural areas with pleural and interpleural furrows extending across border area so that pleural ribs extend into

© 2009 University of Kansas Paleontological Institute
exagittal marginal spines. [Probably the juvenile form of a Redlichida; too imperfectly known.]

Lower Cambrian: USA (Massachusetts), Mongolia.

Discagnostus ORIP., 1963, p. 55 [*D. spectator*; OD; holotype (ORIP., 1963, pl. 2, fig. 14–15), CPC 4262, AGSO, Canberra]. Glabella short, with continuous glabellar furrow dividing short anterior glabellar lobe, with rear of glabella rounded posterodorsally; border with closely spaced, radial scrobicules; two pairs of prominent normal tubules situated anteriorly and posteriorly. [SHERGOLD and others (1980) assigned this genus to the Eodiscidea. If this genus is a derivative of the Pegertia-Opistiscus lineage, one of the pairs of genal tubules would be a new feature; if it is an Agnostina, both pairs of tubules are new features. Its assignment, which is doubtful, must await further knowledge, particularly of the cephalothoracic area and pygidium.] *Upper Cambrian*: Australia (Queensland). *Glyptagnostus nocturnus* Zone.

Glabrella LERMONTOVA, 1940, p. 120 [*G. ventrosa*; OD; syntypes (LERMONTOVA, 1940, pl. 35, fig. 9, 9a–j), 64, 74, 77, TiGM, St. Petersburg]. Probably belongs to Kingstoniidae or Corynexochida. *Middle Cambrian* (Amgaian): Russia (Gorno-Altayskaya).

Mendodiscus RUSCONI, 1950a, p. 74 [*M. tuberculatus*; OD; holotype (RUSCONI, 1956, fig. 4), 2644, MHN, Mendoza]. The holotype and only figured specimen is a trilobite pygidium, probably belonging to the Corynexochida; it is not an eodiscoid, much less a cranidium. *Lower Middle Cambrian*: Argentina.

Miraculaspis ROMANENKO in ROMANENKO & ROMANENKO, 1967, p. 72 [*M. picta*; OD; holotype (REFINA & ROMANENKO, 1978, pl. 7, fig. 14–15), 1329/18, ZSGU, Novokuznetsk]. Cephalon unknown. Pygidium subquadrate; axis wide, parallel-sided to slightly narrowed at rear of first ring, bluntly rounded posteriadly at border furrow, with 3 pairs of pits laterally but isolated from axial furrow; pleural areas narrow, shorter than axis, with widely spaced tubercles; border furrow and border forming wide flange tapering forward and crossed by numerous dividing radial ridges. [Style of furrows laterally on axis and caecal network suggest a cephalon, but structure of the transverse margin, particularly the oblique lateral sections, suggest a pygidium. Similar furrows on the pygidal axis are known on pygidia of the Condylopygidae (Agnostina). Moreover, an expanded border region is common in the Condylopygidae. Assignment of this genus must await a cephalon.] *Lower Cambrian* (Botomian): Russia (Gorno-Altayskaya).

Triangulaspis LERMONTOVA, 1940, p. 120 [*Psychoparia megalithkii* TOLL, 1899, p. 22; OD; holotype (LERMONTOVA, 1940, pl. 35, fig. 5), 21/5156, TiGM, St. Petersburg] [=Angusteva HUPE, 1953a, p. 114 (type, *Psychoparia* annio COBBOLD, 1910, p. 24; OD; syntypes Cobbold Nos. 401–403); *Acutaspis* REFINA in REFINA, BELYAYA, & SOROLEV, 1976, p. 151 (type, *A. facilis*; OD; IGGN 509/51)]. Pygidium not known with certainty as markedly different forms have been assigned to different species apart from the type. [Probably belongs to Ellipscoephaloidea, especially after *Sedov* (1962b) showed the Spanish species *T. fusca* (pl. 22, fig. 13) with at least five thoracic segments.] *Lower Cambrian* (Andabanian, Botomian): Russia (Siberian Platform); England, Spain, Morocco, Canada (Newfoundland).

Triangullina REFINA in KHMENKOVSKY & REFINA, 1963, p. 107 [*T. parasuda*; OD; holotype (KHMENKOVSKY & REFINA, 1965, pl. 1, fig. 11), 265/97, CSGM, Novosibirsk] [=Plenudiscus KOROBOV, 1980, p. 74 (type, *P. crassus*; OD; PIN 71, coll. 4251)]. Probably belongs to Ellipscoephaloidea; closely related to *Triangulaspis*. *Lower Cambrian* (Adabanian): Russia (Siberian Platform); Mongolia.

Order REDLICHIIDA

Richter, 1932

[nom. transl. FORSYTH & WHITTINGTON, herein, ex suborder Redlichida RICHTER, 1932, p. 852]

Ocular lobe attached to glabella in front of S3, prominent throughout development; eye ridge may be subdivided. Many-segmented thorax, with pleural spines; may be subdivided into prothorax and opisthothorax. *Lower Cambrian–Middle Cambrian*.

The systematic arrangement of this section follows recent practice, but these views were questioned by GEYER (1996), who gave arguments for placing the Fallotaspidoidea in Suborder Redlichina.

Suborder OLENNELINA

Walcott, 1890b

No facial suture; wide (tr.) rostral plate extending between genal angles, perrostral suture. Hypostome probably conterminant in holaspides in which preglabellar area was

© 2009 University of Kansas Paleontological Institute
short (sag.) or absent (Fig. 30.1). Thorax nonfulcrate. Pygidium narrow (tr.), with few segments. Calcified protaspis unknown; earliest meraspis with segmented interocular area. Lower Cambrian.

INTRODUCTION TO SUBORDER OLENNELINA

A. R. PALMER and L. N. REPINA

Olenellina are a morphologically varied and highly diverse group of generally micropygous trilobites that share a primary absence of facial sutures, the presence of a well-developed ocular lobe at all developmental stages, and an ontogeny in which the first mineralized stages are already early meraspids (PALMER, 1957). They are restricted to and characteristic of rocks of later Early Cambrian age and constitute a major suborder within the order Redlichiida (MOORE, 1959). More than 50 genera or subgenera and their associated higher taxa are recognizable (PALMER & REPINA, 1993). These taxa form the principal basis for biostratigraphic subdivisions (Fig. 254) of the later Lower Cambrian rocks of Laurentia (North America exclusive of the eastern seaboard from Newfoundland to Florida and including Spitsbergen and northwestern Scotland) and are major indices for the later Lower Cambrian biostratigraphy of Baltica (northern Europe exclusive of the British Isles), Avalonia (England, Wales, eastern Newfoundland, Nova Scotia, eastern New England, USA), Siberia, and the Moroccan sector of Gondwana (including Spain).

Ancestry of the Olenellina can only be speculative. They first appear as fully developed and morphologically diverse trilobites in the early, but not earliest, part of the shelly fossil record and are the oldest trilobites known. The principal phylogenetic trend within the Olenellina involves the relationship between the ocular lobe and the frontal (anterior) lobe (LA) of the glabella (REPINA, 1990a). In all of the earliest Olenellina, which include forms from Siberia, Laurentia, and the Moroccan sector of Gondwana, the glabella has parallel sides or tapers forward, LA is short, and the ocular lobe is attached along the entire margin of LA (Fallotaspidoidea, Daguinaspidinae). In later genera, LA first becomes elongate, so that the ocular lobes connect only to its posterior part (Judomiidae, Nevadiidae), and then generally expands laterally, and the glabella as a whole expands anteriorly from the level of S1 (Olenellidae, Holmiidae). LA in these genera is also commonly inflated. Accompanying this modification, the distal parts of L3 extend laterally and posterolaterally and encroach on L2, often isolating the S2 furrows (Fig. 255), and L3 takes on a broad M-shape.

This phylogenetic trend underlies the proposed classification of the superfamilies. Within the Fallotaspidoidea, all Fallotaspidoidea, the earliest family of the Olenellina, have the ocular lobe attached along the entire margin of LA and an unmodified L3, and the anterior end of LA does not project forward of a line tangent to the anterolateral margin of the ocular lobe. In the remaining, generally younger families of the Fallotaspidoidea (Archaeaspididae, Judomiidae, Neltneriidae, Nevadiidae), the anterior end of LA projects forward of the junction with the anterior margin of the ocular lobe, but L3 remains unmodified. All Olenelloidea, which includes the youngest Olenellina, have the ocular lobe attached to the posterior part of LA and have a modified L3.

Within the superfamilies of the Olenellina, morphological changes of taxonomic value at the family level follow different patterns. The principal character distinguishing the two families in the Olenelloidea is the relationship between the extraocular area and the interocular area. The Holmiidae all have a narrow extraocular area that is less than twice the width of the interocular area. With minor exceptions (Olenelloides and some undescribed Laurentian forms), the Olenellidae have a wide extraocular area that is more than twice the width of the interocular area. With minor exceptions (Olenelloides and some undescribed Laurentian forms), the Olenellidae have a wide extraocular area that is more than twice the width of the interocular area. In the Fallotaspidoidea, the relationship between the ocular lobe and LA, the shape of the glabella (parallel sided versus tapered),
Fig. 254. Ranges of Olenellina within the principal paleogeographic regions of the Early Cambrian world (adapted from Palmer & Repina, 1993).
and the outline of the cephalon distinguish families.

Subfamilies of the Olenellidae are discriminated by the shape of the glabella and form of the thorax. Subfamilies of the Holmiidae are discriminated by general form of the thorax, by presence or absence of a preglabellar field, and by relative positions of the genal and intergenal spines. Subfamilies of the Fallotaspididae are discriminated by presence or absence of genal spines.

At the generic and subgeneric level, all taxonomically useful characters represent parts of continuous trends, including exsagittal shortening of the ocular lobes, changes in width of the interocular area, modification in sagittal length of the preglabellar field, position of the genal spines relative to the posterior cephalic margin, elaboration of the third thoracic segment, loss of genal spines, and position and degree of development of the intergenal spines. These characters are thus difficult to characterize precisely. Nevertheless, within-population variability in these characters is low (RICCO, 1952; COWIE & MCNAMARA, 1978), and their various combinations generally distinguish groups of species.

One of the many mysteries regarding the Olenellina is their complete absence from Lower Cambrian rocks of the Asiatic sector of Gondwana/peri-Gondwana (Australia, Antarctica, India, and southeastern Asia), where the characteristic Early Cambrian trilobites are Redlichiina. This has been traditionally expressed in an Early Cambrian biogeography that has recognized an olenellid realm or province (e.g., RICHTER & RICHTER, 1941b; COWIE, 1971; W. ZHANG, 1989). Olenellina and Redlichiina coexisted in the Moroccan sector of Gondwana, in the epicontinental seas of southern Siberia, and in areas now included in some central Asian orogens. In these areas of coexistence, the earliest Olenellina may be direct ancestors of the earliest Redlichiina (REPINA, 1990a). Perhaps their subsequent geographic segregation resulted from some kind of environmental or competitive control of dispersal to the more peripheral parts of the Cambrian world.

Superfamily OLENELLOIDEA
Walcott, 1890

LA usually enlarged; glabella narrowest at L2 or S1. L3 usually modified distally with posterolateral part bending backward and encroaching on L2. Ocular lobe connected only to posterolateral part of LA. Lower Cambrian.

Family OLENELLIDAE Walcott, 1890

Width (tr.) of interocular area generally half or less that of extraocular area. Third thoracic segment slightly to strongly macropleural. Lower Cambrian.

Subfamily OLENELLINAE
Walcott, 1890

Glabellar furrows weakly to moderately defined. Width (tr.) of anterior part of L1 equal to or only slightly less than width (tr.) of occipital ring. LA slightly to moderately expanded anteriorly. Posterior tip of ocular lobe ranging from opposite L2 to opposite posterior part of occipital ring. Posterior margin of cephalon nearly straight or slightly deflected forward distal to intergenal spine or swelling. Intergenal spine or distinct intergenal angle usually present. Prothorax, where known, with axis narrower than inner part of pleurae. Third thoracic segment weakly to moderately macropleural, with pleural spine not greatly elongated. Fifteenth thoracic segment with long axial spine. Opisthothorax with variable number of uniformly small segments, each bearing narrow
pleurae. Pygidium small, subquadrate, may have 1 or 2 pairs of short marginal spines. Lower Cambrian.

Olenellus HALL, 1861, p. 114 (for explanation of date

O (Olenellus). Genal spines at posterolateral cephalic corners or slightly advanced to position opposite L1; intergenal spines, if present, small, close to genal spines, and directed slightly posterolaterally. Preglabellar field absent or very short, length (sag.) usually less than twice length (sag.) of anterior border; occular lobe curved, its posterior tip convergent toward glabella and situated opposite or posterior to posterior part of L1; S2 isolated from axial furrow, usually present as distinct transverse slit. Lower Cambrian: North America (including Greenland), northwestern Scotland, Spitsbergen, Argentina (San Juan area), Olenellus Zone; Novaya Zemlya, zone uncertain.

O. (Mesolenellus) PALMER & REPINA, 1993, p. 22 [*Olenellus hamoculus* COWIE & McNAMARA, 1978, p. 627; OD; holotype (COWIE & McNAMARA, 1978, pl. 70, fig. 3), 13302, GSE, Edinburgh]. Posterior margin of cephalon nearly straight posteriorly; genal spine slightly anterolaterally distal to intergenal spine; intergenal spine about midway between genal spine and axial furrow. Length (sag.) of preglabellar field equal to or slightly greater than that of anterior border; posterior tip of occular lobe directed nearly straight posteriorly; situated opposite of or anterior to medial part of L1; interocular area may be extended posteriorly as low, broad ridge. Most species with width (tr.) of inner part of macropleural third segment, exclusive of spine, less than 1.5 times width of axis. Pygidium, known only for type species, with 2 pairs of short marginal spines. Lower Cambrian: North America (all parts), northwestern Scotland, middle and upper Olenellus Zone.——Fig. 255.2. *O. (M.) vermontanus* (HALL), Vermont; complete individual, topotype, USNM 15399a, X1.3 (Palmer & Repina, 1993, fig. 3.2).

O. (Paedeumias) WALCOTT, 1910, p. 304 [*Paedeumias transitans*; OD; lectotype (WALCOTT, 1910, pl. 34, fig. 1; SD RESSER, 1928, p. 3), 56808b, USNM, Washington, D.C.]. Posterior margin of cephalon nearly straight or only slightly angled forward distal to position of intergenal spines; intergenal spine or swelling generally closer to genal spine than to axial furrow. Length (sag.) of preglabellar field greater than twice length (sag.) of anterior border; posterior tip of palpbral lobe convergent toward glabella, opposite or posterior to posterior part of L1. Lower Cambrian: North America (all parts), northwestern Scotland, Olenellus Zone.——Fig. 255.3. *O. (P.) transitans* (WALCOTT), Vermont; complete individual, lectotype, USNM 56808b, X3 (Palmer & Repina, 1993, fig. 3.3).

Fremontella Harrington, 1956, p. 58 [*Winnemia halli* WALCOTT, 1910, p. 301; OD; lectotype (WALCOTT, 1910, pl. 31, fig. 3; SD HARRINGTON, 1956, p. 58), 56806c, USNM, Washington, D.C.]. External surface smooth. Genal spine strongly advanced; genal spine angle anterior to S2; intergenal angle nearly a right angle. Preglabellar field absent; posterior tip of occular lobe opposite anterior part of L1. Lower Cambrian: USA (Alabama), Argentina (San Juan area), Olenellus Zone.——Fig. 256.2. *F. halli* (WALCOTT), Alabama; cephalon, lectotype, X1.25 (Palmer & Repina, 1993, fig. 3.4).
Mummaspis Fritz, 1992, p. 17 [*Wanneria occidentis* Walcott, 1913b, p. 314; OD; holotype (WALCOTT, 1913b, pl. 53, fig. 2), 60080, USNM, Washington, D.C.]. Parts of external surface reticulate. Posterior margin of cephalon nearly straight; intergenal swelling slightly distal to midlength of posterior margin. Preglabellar field absent or length (sag.) less than that of border; S3 deep, continuous across glabella; occipital spine may be present. Ocular furrow deep; outer band of ocular lobe narrower than inner band. Third thoracic segment generally only weakly macropleural. Lower Cambrian: Canada (southern Rocky Mountains), lower Olenellus Zone.—**Fig. 256,1.a,b.** *M. occidentis* (WALCOTT); a, complete individual, topotype, USNM 443745, X4 (Fritz, 1992, pl. 9, fig. 2); b, cephalon and partial thorax, topotype, USNM 435750, X1.7 (Fritz, 1992, pl. 10, fig. 2).

Subfamily BICERATOPSISINAE

Pack & Gayle, 1971

Glabella narrowest at midlength; glabellar furrows very poorly developed; width (tr.) of L1 less than width (tr.) of occipital ring; ocular lobe close to glabella, its posterior tip opposite or anterior to L1. Genal spine absent or opposite midlength of ocular lobe; intergenal spine absent; intergenal angle may be extended posterior to end of thorax. Thorax divided into prothorax and opisthothorax; third segment strongly expanded distally; pleural spine extremely long, with tips posterior to body; fifteenth segment with long axial spine. *Lower Cambrian.*

Biceratops Pack & Gayle, 1971, p. 895 [*B. nevadensis*; OD; holotype (Pack & Gayle, 1971, pl. 102, fig. 2–3), 168225, USNM, Washington, D.C.]. Posterior margin of cephalon nearly straight; genal angle broadly rounded; genal and intergenal spines absent. Length (sag.) of preglabellar field equal to or less than that of anterior border; ocular lobe prominent, close to glabella, with posterior tip opposite S1 and elevated above top of glabella. Opiostotheorax of at least 11 segments. *Lower Cambrian:* USA (Arizona, Nevada), upper Olenellus Zone.—**Fig. 257.1.** *B. nevadensis,* Nevada; complete individual, holotype, USNM 168225, X3 (Pack & Gayle, 1971, pl. 102, fig. 2).

Peachella Walcott, 1910, p. 342 [*Olenellus iddigi* Walcott, 1884b, p. 28; OD; holotype (WALCOTT, 1884b, pl. 9, fig. 12), 15407a, USNM, Washington, D.C.]. Posterior margin of cephalon nearly straight. Glabella extended to or nearly to border furrow; posterior tip of ocular lobe approximately opposite S1; genal spine at posterolateral corner or slightly advanced, strongly inflated. Opisthothorax of at least 10 segments. *Lower Cambrian:* USA (California, Nevada), upper Olenellus Zone.—**Fig. 257.2.** *P. iddigi* (WALCOTT), California; nearly complete individual, LACMIP 11621, X2 (Palmer & Repina, 1993, fig. 4.2).

Subfamily BRISTOLIINAE

Palmer & Repina, 1993

Glabella usually strongly constricted at S1 or L2; width (tr.) of anterior part of L1 usually distinctly narrower than occipital ring; glabellar furrows generally well developed. Preglabellar field shorter (sag.) than anterior border or absent. Posterior tip of ocular lobe opposite or anterior to L1. Third thoracic segment with inner part of pleural region strongly expanded distally; pleural spine may be extended posterior to end of thorax. Opisthothorax well developed. Pygidium not known. *Lower Cambrian.*

Bristolia Harrington, 1956, p. 59 [*Mesonacis bristoliensis* Resser, 1928, p. 7; OD; lectotype (Resser, 1928, pl. 2, fig. 5–6; SD Harrington, 1956, p. 59), 78390, USNM, Washington, D.C.]. Cephalon subpentagonal to subquadrato in outline; genal spine originating opposite or anterior to L2; intergenal spine absent. Preglabellar field absent; posterior tip of ocular lobe opposite or anterior to L1. Fifteenth thoracic segment with long axial spine; opisthothorax of at least 17 segments. *Lower Cambrian:* USA (California, Nevada), Greenland (Inglefield Land), Olenellus Zone.—**Fig. 258.1.** *B. bristoliensis,* California; nearly complete individual, UCR 107, X1 (Palmer & Repina, 1993, fig. 4.5).

Arcuolenellus Palmer & Repina, 1993, p. 24

[Olenellus arcuatus* Palmer in PALMER & HALLEY, 1979, p. 67; OD; holotype (PALMER & HALLEY, 1979, pl. 2, fig. 12), 177200, USNM, Washington, D.C.]. Posterior margin of cephalon strongly and evenly curved back distally; genal spine short, situated at posterolateral corner well behind level of occipital ring; intergenal spine absent. Preglabellar field short (sag.); width of interocular area about half width of glabella at L2; posterior tip of ocular lobe opposite L1. *Lower Cambrian:* USA (California), Olenellus Zone; Argentina (San Juan area), Olenellus Zone.—**Fig. 258.2.** *A. arcuatus* (PALMER), California; cephalon, holotype, USNM 177200, X6 (Palmer & Halley, 1979, pl. 2, fig. 12).

Bolbolenellus Palmer & Repina, 1993, p. 24

[Olenellus euryparia* Palmer in PALMER & HALLEY, 1979, p. 67; OD; holotype (PALMER & HALLEY, 1979, pl. 2, fig. 12)]
Olenellina—Ollenelloidea

FIG. 256. Olenellidae (p. 408–409)

1979, p. 69; OD; holotype (PALMER & HALLEY, 1979, pl. 2, fig. 18). 177204, USNM, Washington, D.C.). Posterior margin of cephalon nearly straight or deflected anterolaterally distal to intergenal spine or intergenal angle; genal spine originating opposite or posterior to L1; intergenal spine present on some species. LA prominent, subglobular, may overlap border in dorsal view; preglabellar field absent; posterior tip of ocular lobe approximately opposite occipital furrow. Lower Cambrian: USA (California, Nevada), Canada (Cordilleran region, Devon Island), ?northern Greenland, Mexico (Caborca), middle? and upper Olenellus Zone.——FIG. 258, 3.

Nephrolenellus PALMER & REPINA, 1993, p. 24*

N. multinodus (PALMER), California; cephalon, holotype, USNM 177204, ×2 (PALMER & HALLEY, 1979, pl. 2, fig. 18).——FIG. 258, 4a.

Subfamily GABRIELLINAE

Palmer & Repina, 1993

Posterior margin of cephalon curved forward. Intergenal angle variably developed, situated slightly distal to midlength of width of interocular area approximately half or more width of glabella at L2; posterior tip of ocular lobe opposite L1. Third thoracic segment macropleural, having extremely long pleural spine with tip posterior to end of thorax; prothorax of 13 segments; opisthotorax of at least 17 segments; 15th segment lacking strong axial spine. Lower Cambrian: USA (California, Nevada); Canada (southern Rocky Mountains), upper Olenellus Zone.—FIG. 258, 4b. Nephrolenellus sp., Nevada; nearly complete individual, USNM 466556, ×5 (PALMER & REPINA, 1993, fig. 4.3).
Opisthothorax not clearly differentiated. Pygidium elongate; sides convergent posteriorly; end bluntly pointed. Lower Cambrian.

Gabriellus Fritz, 1992, p. 20 [*G. lanceatus*; OD; holotype (Fritz, 1992, pl. 17, fig. 6), 443792, USNM, Washington, D.C.] Characters as for subfamily. Lower Cambrian: USA (Nevada), Canada (Cordilleran region), lower Olenellus Zone.—Fig. 259.3. Gabriellus sp.; complete individual, Canada, GSC 104195, ×1.7 (Palmer & Repina, 1993, fig. 4.9).

Subfamily LAUDONIINAE

Palmer & Repina, 1993

Cephalon subquadrate to subhexagonal in outline. Genal spine strongly advanced, originating anterior to S1. Intergenal spine strongly developed in adult at posterolateral corner of cephalon. Width (tr.) of anterior part of L1 nearly equal to that of occipital ring. Thorax with third segment weakly macropleural; 15th segment lacking axial spine. Opisthothorax not clearly differentiated. Pygidium small, bilobate. Lower Cambrian.

Laudonia Harrington, 1956, p. 60 [*L. bipinata*; OD; holotype (Harrington, 1956, pl. 15, fig. 4), 9465T1, KUMIP, Lawrence]. Cephalon subquadrate to subpentagonal in outline; genal spine originating opposite or anterior to L3; procranidial spine not developed in adult; intergenal ridge distinct. Preglabellar field absent or shorter (sag.) than border; posterior tip of ocular lobe opposite or anterior to L1. Thorax of about 20 segments. External surface reticulate. Lower Cambrian: Canada (southern Rocky Mountains), USA (Nevada), Mexico (Caborca), lower Olenellus Zone.—Fig. 259.2. L. amputata Fritz; cephalon and partial thorax, Canada, USNM 443754, ×2 (Fritz, 1992, pl. 11, fig. 4).

?Olenelloides Peach, 1894, p. 668 [*Olenellus (Olenelloides) armatus* Peach, 1894, p. 669; OD; lectotype (Peach, 1894, pl. 32, fig. 4; SD McNamara, 1978, p. 637), 472, GSE, Edinburgh]. Cephalon subhexagonal in outline; prominent procranidial, genal, or intergenal spine at each angle of the hexagon; intergenal spine close to glabella; LA subglobular. Preglabellar field absent; width (tr.) of narrow interocular area about equal to width of equally narrow extraocular area opposite midlength of ocular lobe; posterior tip of ocular lobe opposite L2. Thorax with 9 segments; axis wider than inner part of pleural region exclusive of spines; third and sixth thoracic segments macropleural. Lower Cambrian: northwestern Scotland, middle Olenellus Zone.—Fig. 259.2a,b. *O. armatus* (Peach); a,
reconstruction of entire individual, ×5 (McNamara, 1978, fig. 1); b, cephalon, lectotype, GSE 472, ×8 (McNamara, 1978, pl. 71, fig. 1).

Subfamily WANNERIINAE Hupé, 1953

LA enlarged. Posterior margin of cephalon straight or curved backward towards base of
gena. Intergenial spine absent. Preglabellar field absent. Posterior tip of ocular lobe opposite or anterior to occipital furrow. Thorax with 17 segments, not divided into prothorax and opisthothorax; third segment unmodified; fifteenth segment bearing long axial spine. Pygidium small, subquadrate, with prominent median notch. External surface reticulate; polygons may have central granule; on well-preserved specimens

FIG. 258. Olenellidae (p. 409–411)
boundaries of polygons marked by rows of perforations on underside of exoskeleton. Lower Cambrian.

Wanneria WALSOTT, 1910, p. 296 [*Olenellus (Holmia) waltoniana WANNER, 1901, p. 267; OD; lectotype (WANNER, 1901, pl. 31, fig. 1; SD RESSER & HOWELL, 1938, p. 227, pl. 10, fig. 9), 56807a, USNM, Washington, D.C.]. Characters as for subfamily. Lower Cambrian: North America (widespread, including Greenland), middle Olenellus Zone.——FIG. 260. * W. waltoniana (WANNER). Pennsylvania; complete individual, topotype, USNM 85357, X1 (Palmer & Repina, 1993, fig. 5).

Family HOLMIIDAE Hupé, 1953

Width (tr.) of interocular area more than half that of extraocular area. Third thoracic segment generally unmodified; prothorax and opisthothorax not differentiated. Lower Cambrian.

Subfamily HOLMIINAE Hupé, 1953

Glabella expanded forward. Cephalic border generally convex in cross section. Inner pleural region of thorax narrower than axis. Lower Cambrian—lowest Middle Cambrian.

Holmia MATTISON, 1890, p. 160 [*Paradoxides kjerulfi LINNARSSON, 1873, p. 790; OD; lectotype (LINNARSSON, 1873, pl. 16, fig. 1; SD PALMER & REIFNA, 1993, p. 25), 5329a,b, SGU, Uppsala]. Intergenal spine generally well developed at or slightly proximal to midlength of posterior cephalic margin. Glabella expanded anteriorly, L3 modified; posterior tip of ocular lobe opposite or posterior to L1. Thorax narrow, with 16 or 17 segments; pleural spines thornlike; each segment with axial spine. Pygidium small, subquadrate, nonpinose; posterior margin nearly straight (tr.). Lower Cambrian: Sweden, Norway, Poland, Schmidistellinae mickwitzi to Holmia kjerulfi group Zones; Russia (Siberian Platform), upper Pagetiellus anabarus Zone.——FIG. 261.1. *H. kjerulfi (LINNARSSON);

Andalusiana SOZU, 1961, p. 246 [*A. cornuta; OD; holotype (SOZU, 1961, pl. 3, fig. 4), L3072, UMU, Münster]. Lower Cambrian: Spain (Guadalcanal), Marianian stage; United Kingdom (Comley, Shropshire), Callavia Zone; Morocco (Anti-Atlas), Sectigena Zone; Norway (Oslo Region), Holmia kjerulfi group Zone.——FIG. 261.3. Andalusiana sp.; cephalon, Morocco, IGR 19613, X2 (Palmer & Repina, 1993, fig. 6.3).

Cambropallas GEYER, 1993, p. 76 [*C. telesto; OD; holotype (GEYER, 1993, fig. 3, pl. 1, fig. 1–2; pl. 4, fig. 2–3), 93VII1, PIW, Würzburg]. Lower Cambrian: Spain (Guadalcanal), Marianian stage; United Kingdom (Comley, Shropshire), Callavia Zone; Morocco (Anti-Atlas), Callavia Zone; Russia (Oslo Region), Holmia kjerulfi group Zone.——FIG. 261.4. *C. telesto; complete individual, Morocco, holotype, X0.5 (Geyer, 1993, pl. 1, fig. 1).

Esmeraldina RESSER & HOWELL, 1938, p. 228 [*Holmia rousei WALSOTT, 1910, p. 292; OD; lectotype (WALSOTT, 1910, pl. 29, fig. 3; FRITZ, 1995, p. 714), 568011c, USNM, Washington, D.C.]. Lower Cambrian: USA (New York), Canada (Quebec), Olenellus Zone.——FIG. 261.1. *H. rousei (WALSOTT);
L1. Thorax narrow, with 17 segments; pleural spines chelate; each segment with axial spine. Pygidium small, expanded posteriorly; posterior margin spinose. External surface granulate. Lower Cambrian; USA (Nevada), lower "Nevadella" Zone.—

Fig. 259. Olenellidae (p. 412–413)

Holmiella Fritz, 1972, p. 25 [*H. preancora; OD; holotype (Fritz, 1972, pl. 4, fig. 4–6), 27241, GSC, Ottawa]. Outline of cephalon subpentagonal; genal spine prominent, originating opposite or anterior to S3; short intergenal spine or node located at or on axial side of intergenal angle. Glabella expanded anteriorly; posterior tip of ocellar lobe opposite or posterior to L1. Pygidium large, wider
than long, of at least three segments; anterior two segments extended into short border spines. Lower Cambrian: USA (Nevada), Canada (McKenzie Mountains), "Nevadella" Zone.——Fig. 262.2a,b. *I. contracta; cephalon, paratype, USNM 476024, X4 (Fritz, 1972, pl. 4, fig. 11); k, pygidium, holotype, GSC 27241, X5 (Fritz, 1972, pl. 4, fig. 6).

Iyouella GEYER & PALMER, 1995, p. 470 [*I. contracta; OD: holotype (GEYER & PALMER, 1995, fig. 6.9–6.10), 52260b, SMF, Frankfurt am Main]. Glabella slightly tapered forward, reaching onto anterior border. Ocular lobe long, posterior tip opposite occipital furrow. Genal spine slightly advanced; intergenal spine small, midway between axial furrow and genal spine. Lower Cambrian: Morocco (Anti-Atlas), Sectigena Zone.——Fig. 262.3. *I. contracta; incomplete cephalon, holotype, X4.5 (GEYER & PALMER, 1995, fig. 6.9).

Palmettaspis FRITZ, 1995, p. 718 [*P. consorta FRITZ, 1995, p. 720; OD: holotype (FRITZ, 1995, fig. 8.4), 476024, USNM, Washington, D.C.]. Intergenial spine generally well developed at or slightly proximal to midlength of posterior cephalic margin. Glabella parallel sided or slightly expanded anteriorly; L3 not modified. Posterior tip of ocular lobe opposite L1 or occipital furrow. Thorax narrow; pleural spines chelate or sentate; each segment with axial spine or node. Pygidium unknown. Lower Cambrian: USA (Nevada), lower "Nevadella" Zone.

Glabella subcylindrical in outline or slightly expanded anteriorly; LA extended onto inner part of border. Preglabellar field absent. Border broad. Posterior tip of ocular lobe opposite or posterior to midlength of L1. Thorax broad, with 16 to 18 segments; not clearly differentiated into prothorax and opisthothorax. Pleural regions lack macropleurae. Pleural spines elongate. Pygidium small, subquadrate. Lower Cambrian.

Callavia MATTHEW, 1897, p. 397 [*Olenellus (Mesonacis) broeggeri WALCOTT, 1890a, p. 41; SD WALCOTT, 1910, p. 275; lectotype (WALCOTT, 1890b, pl. 92, fig. 1, part; SD HUTCHINSON, 1962, p. 119), 18331, USNM, Washington, D.C.]. Intergenial spine well developed, adjacent to genal spine; intergenal ridge usually present. Lower Cambrian: United Kingdom (Comley, Shropshire), Canada (Avalon Peninsula), USA (eastern Massachusetts), Callavia Zone.——Fig. 263.1a. *C. crosbyi (WALCOTT), Canada; cephalon, topotype, USNM 462671, X1 (PALMER & REPINA, 1993, fig. 6.8).

——Fig. 263.1b. *C. crosbyi, eastern Massachusetts; complete individual, paratype, USNM 56798g, X4 (PALMER & REPINA, 1993, fig. 6.5).

Kjerulfa KIAER, 1917, p. 71 [*K. lata; OD: lectotype (KIAER, 1917, pl. 10, fig. 1; SD NIKOLAISEN &
Henningsmoen, 1990, p. 63), 61376, PMO, Oslo. Posterior margin of cephalon nearly straight or deflected slightly forward distal to intergenal swelling; intergenal swelling closer to genal angle than axial furrow. Lower Cambrian: Norway (Oslo region), Denmark (borehole in Sealand), Poland (Holy Cross Mountains), Germany (Gorlice), Holmia kjerulf group Zone; United Kingdom (Comley, Shropshire), Callavia Zone; Morocco (Anti-Atlas), Sectigena Zone. —Fig. 263,2a, b. *K. lata*, Norway: a, cephalon, lectotype, PMO 61376, X0.8 (Palmer & Repina, 1993, fig. 6.9); b, partial cephalon and thorax, paratype, PMO 73170, X0.8 (Palmer & Repina, 1993, fig. 6.10).
Glabellar outline typically cylindrical or slightly conical in dorsal view. L3 simple, its form similar to L2. Lower Cambrian.

Family FALLOTASPIDIDAE Hupé, 1953

Projection of anterior margin of ocular lobe more or less tangent to anterior end of LA or continuous as parafacial band in front of LA. Glabella slightly to moderately tapered forward. Length of LA less than one-third length of glabella, exclusive of occipital ring. Interocular area ranging from significantly wider (tr.) to slightly narrower than extraoval area. Lower Cambrian.

Subfamily FALLOTASPIDINAE Hupé, 1953

Genal spines present. Interocular area slightly wider (tr.) to slightly narrower than extraoval area. Lower Cambrian.

Fallopataspis Hupé, 1953a, p. 125 [*F. typica Hupé, 1953a, p. 131; OD; holotype (Hupé, 1953a, pl. 2, fig. 2), G.26, MNHN, Paris]. Posterior margin of cephalon straight or gently curved forward distally; intergenal spine not developed, but intergenal ridge intersecting posterior border closer to glabella than to genal spine. Glabella slightly tapered forward; ocular lobe directed posterolaterally from junction with LA; width (tr.) of interocular area slightly more than one-half width of extraoval area opposite midlength of ocular lobe; posterior tip of ocular lobe opposite occipital furrow. External surface reticulate. Lower Cambrian: Canada (Mackenzie Mountains): USA (Nevada), “Fallopataspis” Zone; Russia (Siberian Platform), Fallotaspis Zone; ?United Kingdom (Comley, Shropshire), sub-Catavea Zone.—Fig. 264, 1.*F. typica, Morocco; cephalon and partial thorax, holotype, MNHN G.26, X2 (Palmer & Repina, 1993, fig. 7.2).

Eofallopataspis Sudz., 1978, p. 89 [*E. tioutensis; OD; holotype (Sudz., 1978, pl. 1, fig. 1–2), 28567, SMF, Frankfurt am Main]. Posterior margin of cephalon nearly straight; small intergenal spine on posterior border approximately midway between axial furrow and genal spine. Glabella slightly tapered forward. Ocular lobe directed posterolaterally from junction with LA. Width (tr.) of interocular area equal to or greater than width of extraoval area opposite midlength of ocular lobe. Occipital rim simple. Thorax narrow; width (tr.) of inner pleural region of each segment less than that of axis; third segment macropleural. External surface strongly pitted. Lower Cambrian: Morocco (Anti-Atlas), Eofallopataspis Zone.—Fig. 264, 6.a,b. *E. tioutensis; cephalon, holotype, X5 (Sudz., 1978, pl. 1, fig. 1); b, cephalon and partial thorax, SMF 41984, X10 (Sudz., 1981, fig. 12).

Lenallina Repina, 1990a, p. 40 [*L. lata; OD; holotype (Repina, 1990a, pl. 3, fig. 1–2), 902/1, CSGM, Novosibirsk]. Posterior margin of cephalon directed anterolaterally distal to intergenal angle; intergenal angle closer to axial furrow than to genal spine. Glabella slightly tapered forward. Interocular area narrow; width (tr.) less than half width of extraoval area. Posterior tip of ocular lobe opposite occipital furrow. External surface reticulate. Lower Cambrian: Russia (southeastern Siberian Platform), Pagothriites anabarus Zone.—Fig. 264, 5. *L. lata; cephalon, holotype, TgGM 902/1, X6 (Repina, 1990a, pl. 3, fig. 2).

Parafallopataspis Fritz, 1972, p. 27 [*P. grata; OD; holotype (Fritz, 1972, pl. 1, fig. 1–2), 27202, GSC, Ottawa]. Posterior margin of cephalon nearly straight or slightly backswept. Glabella moderately tapered forward; pectrum strongly developed; ocular lobe directed posterolaterally from junction with LA; width (tr.) of interocular area slightly more than one-half width of extraoval area opposite midlength of ocular lobe; posterior tip of ocular lobe opposite occipital ring. Lower Cambrian: Canada (Mackenzie Mountains); USA (Nevada), “Fallopataspis” Zone.—Fig. 264, 1. *P. grata, Mackenzie Mountains; cephalon, holotype, GSC 27202, X3 (Fritz, 1972, pl. 1, fig. 1).

Pelmanaspis Repina, 1990a, p. 41 [*P. jurtii; OD; holotype (Repina, 1990a, pl. 4, fig. 1–2), 902/15, CSGM, Novosibirsk]. Posterior margin of cephalon nearly straight. Glabella gently tapered forward; occipital ring with prominent axial spine; length (sag.) of preglabellar field greater than length of border; width (tr.) of interocular area slightly more than half width of extraoval area; ocular lobe directed posterolaterally from junction with LA; posterior tip of ocular lobe opposite occipital furrow. External surface coarsely pitted, grading to reticulate. Lower Cambrian: Russia (southeastern Siberian Platform), Pagothriites anabarus Zone —Fig. 264, 1. *P. jurtii; cephalon, holotype, TgGM 902/1, X6 (Repina, 1990a, pl. 3, fig. 2).
Olenellina—Fallotaspidoeida

Siberian Platform), Pagetellus anabarus Zone.—

Fig. 264A. *P. jurii; cephalon, holotype, CSGM 902/15, X6 (Repina, 1990a, pl. 4, fig. 2).

Profallotaspis Repina in Khomentovskii & Repina, 1965, p. 110 [*P. jakutensis; OD; holotype (Khomentovskii & Repina, 1965, pl. 2, fig. 4), 265/1,
Posterior margin of cephalon straight or slightly backswept. Glabella tapered forward, but area opposite L3 and LA merging laterally with ocular lobe; ocular lobe directed only slightly posterolaterally at junction with LA; interocular area wider (tr.) than extraocular area opposite midlength of ocular lobe; posterior tip of ocular lobe opposite L1. Cephalic border concave in sagittal profile; lateral and posterior border furrows not connected across base of genal spine. External surface coarsely pitted, grading to reticulate.

Lower Cambrian: Russia (southeastern Siberian Platform), Profallotaspis jakutensis Zone.——Fig. 264, 2. *P. jakutensis*; cephalon, paratype, CSGM 265/13, ×7 (Khomentovskii & Repina, 1965, pl. 2, fig. 5).

Subfamily DAGUINASPIDINAE

Hupé, 1953

Interocular area significantly wider (tr.) than extraocular area. Genal spine absent. Lower Cambrian.

Daguinaspis Hupé & Aaboe, 1950, p. 2112 [*D. ambroggi*; OD; holotype (Hupé, 1953a, pl. 5, fig. 1), G.200, MNHN, Paris]. Anterior margin of
Olenellina—Fallotaspidoidea

Fig. 264. Fallotaspidae (p. 418–420)

© 2009 University of Kansas Paleontological Institute
of extraocular area about equal to width of ocular lobe; length (sag.) of frontal area greater than that of occipital ring. Intergenral ridge well developed. Thorax of 16 (17?) segments; pleura about equal in width to axial lobe, unmodified. Pygidium small, subquadrate. [Hüpe (1953a) created three subgenera for minor morphological variations that seem to have limited merit. These are *Eodaguinaspis* (type species, *D. (E.) abadiei*), *Daguinaspis* (type species, *D. (D.) ambroggi*), and *Epidaguinaspis* (type species, *D. (E.) angusta*).] Lower Cambrian: Morocco (Anti-Atlas), *Daguinaspis* Zone.——Fig. 265, 2. *D. ambroggi*; cephalon, holotype (at bottom), MNHN G.200, X3 (Palmer & Repina, 1993, fig. 8.2).

Choubertella Hüpe, 1953a, p. 143 [*C. spinosa*; OD; holotype (Hüpe, 1953a, pl. 4, fig. 8), G.230, MNHN, Paris]. Anterior margin of cephalon gently curved. Glabella moderately to strongly tapered forward; width (tr.) of interocular area opposite tip of ocular lobe nearly equal to basal glabellar width; width of extraocular area about equal to width of ocular lobe; length (sag.) of frontal area greater than that of occipital ring. Intergenral ridge well developed. Lower Cambrian: Morocco (Anti-Atlas), *Choubertella* Zone.——Fig. 265, 1. *C. spinosa*; cephalon, holotype, MNHN G.230, X3 (Palmer & Repina, 1993, fig. 8.1).

?Wolynaspis Tchernysheva in Kiri'ianov & Tchernysheva, 1967, p. 123 [*W. unica*; OD; holotype (Kiri'ianov & Tchernysheva, 1967, fig. 2), 1731/8, GMU, Kiev]. Anterior margin of cephalon gently curved. Glabella gently tapered forward; extraocular area steeply downsloping; width (tr.) of interocular area more than half basal glabellar width; frontal area short (sag.), length about equal to that of occipital ring. Lower Cambrian: Ukraine, zone uncertain.——Fig. 265, 3. *W. unica*; cephalon, holotype, GMU 1731/8, X2 (Kiri'ianov & Tchernysheva, 1967, fig. 2).

Family ARCHAEASPIDIDAE

Repina, 1979

Anterior part of LA anterior to line tangent to anterolateral margin of ocular lobe. Parafrontal band usually present, continuing to or nearly to anterior end of LA. Width (tr.) of interocular area approximately same as width of extraocular area. Genal spine usually present. Lower Cambrian.

Archaeaspis Repina in Khomentovskii & Repina, 1965, p. 116 [*A. hupei*; OD; holotype (Khomentovskii & Repina, 1965, pl. 4, fig. 1), 265/146, CSGM, Novosibirsk]. Glabella slightly tapered forward; LA slightly conical; width (tr.) of interocular area greater than width of extraocular area opposite midlength of ocular lobe; posterior tip of ocular lobe approximately opposite occipital furrow. Genal
Olenellina—Fallotaspidoidea

spine short, broadly based; border broad, convex, well defined, its length (sag.) greater than length of preglabellar field. External surface strongly reticulate. Lower Cambrian: Russia (southeastern Siberian Platform), lower Pagetiellus anabarus Zone.——Fig. 266.2. *A. hupei*; cephalon, holotype, CSGM 265/146, X15 (Khomentovski & Repina, 1965, pl. 4, fig. 1).

Bradyfallotaspis FRITZ, 1972, p. 19 [*B. fusa*; OD; holotype (FRITZ, 1972, pl. 3, fig. 1–3), 27226, GSC, Ottawa]. Glabellar outline subcylindrical; anterior end of glabella strongly rounded; length (sag.) of preglabellar field equal to that of border; width (tr.) of interocular area less than width of extraocular area opposite midlength of ocular lobe; ocular lobe raised above level of glabella. Lower Cambrian: Canada (northern Rocky Mountains), *"Nevadella" Zone*; GSC 102355, *F. musatovi*; cephalon, holotype, GSC 27226, X6 (Fritz, 1972, pl. 3, fig. 1).

Fallotaspidae REPINA, 1961, p. 40 [*F. musatovi*; OD; holotype (REPINA, 1961, pl. 1, fig. 1a), 3556/1001, CSGM, Novosibirsk]. Glabella slightly tapered forward, with anterior end bluntly rounded; preglabellar field short (sag.), crossed by plectrum; posterior tip of ocular lobe opposite L1; width (tr.) of interocular area about half or less width of extraocular area; posterior tip of ocular lobe opposite occipital ring. Thorax moderately developed. LA elongate. Ocular lobe connected only to posterior part of LA. Intergenial area very narrow or absent; width (tr.) equal to or less than width of ocular lobe. Inner margin of ocular lobe typically undifferentiated or only weakly differentiated from interocular area. Posterior tip of ocular lobe opposite or posterior to occipital furrow. Intergenial spine not apparent. Lower Cambrian.

Judomia LERMONTOVA, 1951a, p. 48 [*J. duxanovskii*; OD; lectotype (LERMONTOVA, 1951a, pl. 5, fig. 2; SD PALMER & REPINA, 1993, p. 30), 53/5156, CNIGR, St. Petersburg]. Cephalon barely touching border, or preglabellar field present. Border well defined, with length (sag.) greater than preglabellar field, when present, and about equal to or slightly greater than length (sag.) of occipital ring. Posterior tip of ocular lobe opposite occipital ring. Thorax with 15 to 17 segments; pleural furrows weak or absent; opisthothorax not developed; pleural spines long; width (tr.) of thoracic pleurae more than twice width of axis. Pygidium elongate, with posterior median notch; last 2 thoracic segments may be fused with pygidium in axial region only. Lower Cambrian: Russia (southeastern Siberian Platform), *Judomia* and *Bergeroniella micmaccaformis-Erbiella Zones*; Russia (Kharaulakh region), *Judomia Zone*; GSC 659/50, X2 (Palmer & Repina, 1993, fig. 10.7).

Judomiella LERMONTOVA, 1962, p. 48 [*J. beka*; OD; holotype (LAZARENKO, 1962, pl. 3, fig. 6), 8270-138, 8270-139, CNIGR, St. Petersburg]. Cephalon strongly arched (tr.); anterior and lateral borders about equal in breadth to sagittal length of occipital ring; intergenial swelling barely apparent, situated nearer to glabella than to genal spine, and marked by slight anterior deflection of distal part of posterior margin. Intergenial ridge weak. Glabella slightly constricted at L2; L3 slightly expanded distally; preglabellar field absent; width (tr.) of interocular area less than that of extraocular area; posterior tip of ocular lobe opposite L2. External surface has fine, reticulate sculpture. Lower Cambrian: Canada (southern Cordillera), *"Nevadella" Zone*; GSC 659/50, X2 (Palmer & Repina, 1993, fig. 10.7).

Selindella REPINA, 1979, p. 27 [*S. gigantea*; OD; holotype (REPINA, 1979, pl. 1, fig. 1), 5601/1, CSGM, Novosibirsk]. Glabella slightly tapered forward, sides slightly concave, and anterior end strongly rounded; posterior tip of ocular lobe opposite midlength of L1; width (tr.) of interocular area equal to width of extraocular area; length (sag.) of border about equal to that of preglabellar field. Lower Cambrian: Russia (southeastern Siberian Platform), lower Pagetiellus anabarus Zone; northern Siberian Platform, *Pseudojudomia Zone*.——Fig. 266.5. *S. gigantea*; cephalon, southwestern Siberian Platform, holotype, GSC 560/1, X1.2 (Repina, 1979, pl. 1, fig. 1).

Family JUDOMIIDAE Repina, 1979

Posterior margin of cephalon straight or curved backward distally. Glabella typically parallel sided; glabellar furrows weakly to moderately developed. LA elongate. Ocular lobe connected only to posterior part of LA. Intergenial area very narrow or absent; width (tr.) equal to or less than width of ocular lobe. Inner margin of ocular lobe typically undifferentiated or only weakly differentiated from interocular area. Posterior tip of ocular lobe opposite or posterior to occipital furrow. Intergenial spine not apparent. Lower Cambrian.
Fig. 266. Archaeaspididae (p. 422–423)

© 2009 University of Kansas Paleontological Institute
Paranevadella Palmer & Repina, 1993, p. 30
[*Paedeumia? subgroenlandicus Repina in Khomen-tovskii & Repina, 1965, p. 121; OD; holotype (Khomen-tovskii & Repina, 1965, pl. 3, fig. 8), 265/174, CSGM, Novosibirsk], Glabella weakly tapered forward to nearly parallel sided; preglabellar field present; posterior tip of ocular lobe opposite occipital ring. Interocular area distinctly developed. Lower Cambrian: USA (California), Canada (Mackenzie Mountains), "Nevadella" Zone; Russia (Siberian Platform), upper Pagetiellus anabarus Zone. — Fig. 267, 3. *P. subgroenlandicus (Repina); cephalon, southern Siberian Platform, holotype, CSGM 265/174, x3 (Palmer & Repina, 1993, fig. 10.4).

Sinskia Suvorova, 1960, p. 18 [*S. optabilis; OD; holotype (Suvorova, 1960, pl. 1, fig. 1), 496/121, PIN, Moscow]. LA slightly expanded in front of ocular lobe. Border narrow, its length (sag.) less than length (sag.) of occipital ring. Length (sag.) of preglabellar field approximately equal to that of border; posterior tip of ocular lobe opposite posterior part of occipital ring. Lower Cambrian: Russia (southern Siberian Platform), Bergeroniellus micmacaformis-Elphiella Zone. — Fig. 267, 4. *S. optabilis; cephalon and partial thorax, CSGM 452/500, x1.5 (Palmer & Repina, 1993, fig. 10.5).

Family NELTNERIIDAE Hupé, 1953
Posterior margin of cephalon deflected slightly forward distally. Glabella parallel sided, bluntly rounded anteriorly. LA elongate. Ocular lobe connected only to posterior part of LA. Ocular lobe close to glabella; interocular area poorly differentiated. Thorax with 17 segments. Lower Cambrian.

Neltneria Hupe, 1953a, p. 133 [*Wanneria Jacqueti* Neltner & Poctey, 1949, p. 74; OD; lectotype (Neltner & Poctey, 1949, pl. 6, fig. 5; SD Palmer & Repina, 1993, p. 30, R50864, MNHN, Paris]. Preglabellar field absent; interocular area poorly defined, its width (tr.) less than half that of extraocular area; posterior tip of ocular lobe opposite L1. Thorax has 17 segments; each segment with short (exsag.) pleural spine; width (tr.) of inner pleural region about same as that of axis; 11th segment macropleural; 12th to 17th segments decreasing in width (tr.) rapidly and progressively backward. Pygidium small, subquadrate, possibly of 2 or 3 segments. Lower Cambrian: Morocco (Anti-Atlas), Antatlasia gutta-pluviae Zone.——Fig. 268, 1. *N. jacqueti*; complete individual, ICS replica 122, ×2 (Palmer & Repina, 1993, fig. 11.1).

Bondonella Hupe, 1953a, p. 135 [*B. typica* Hupe, 1953a, p. 136; OD; holotype (Neltner & Poctey, 1949, pl. 6, fig. 1), R50865, MNHN, Paris]. Length (sag.) of preglabellar field about equal to that of anterior border; interocular area poorly defined, its width (tr.) more than half width of extraocular area; posterior tip of ocular lobe opposite occipital furrow. Thorax with 17 segments; width (tr.) of inner pleural region of each segment narrower than axis; no macropleural segments. Lower Cambrian: Morocco (Anti-Atlas), Antatlasia gutta-pluviae Zone.——Fig. 268, 2. *B. typica*; complete individual, holotype, MNHN R50865, ×3 (Palmer & Repina, 1993, fig. 11.2).

Family NEVADIIDAE Hupe, 1953

Glabella weakly to strongly tapered forward in dorsal view. LA elongate. Ocular lobe connected only to posterior part of LA. Interocular area narrow. Posterior tips of ocular lobes opposite or anterior to occipital furrow. Width of interocular area variable. Thorax with 15 to 27 segments, without development of macropleurae. Lower Cambrian.

Nevadia Walcott, 1910, p. 256 [*N. weeksi*; OD; lectotype (Walcott, 1910, pl. 23, fig. 2; SD Palmer
Fig. 269. Nevadiidae (p. 426–428)
Nevadella Raw, 1936, p. 250 [*Callavia eucharis* Walcott, 1913b, p. 315; SD Whitehouse, 1939, p. 191; holotype (Walcott, 1913b, pl. 53, fig. 1), 60079, USNM, Washington, D.C.]. Glabella distinctly tapered forward, sides slightly concave, narrowest opposite L2 or S2; preglabellar field short or absent; basal glabellar width (tr.) about equal to width of extraocular area opposite midlength of ocular lobe; posterior tip of ocular lobe opposite L1; width (tr.) of interocular area more than one-fourth width of extraocular area opposite midlength of ocular lobe. Thorax with 17 to 23 segments. Pleural spines long, falcate; opisthothorax not clearly differentiated. Pygidium small, subquadrate. Lower Cambrian: USA (California, Nevada), Canada (Cordilleran region), "Nevadella" Zone. ———Fig. 269, l. *N. eucharis*; complete individual, Canada, holotype, USNM 60079, X2 (Palmer & Repina, 1993, fig. 13).2.

Pseu...domia Egorova in Gor...y...s...ki, Egorova, & Savitskii, 1964, p. 22 [*P. egregia*; OD; holotype (Gor...y...s...ki, Egorova, & Savitskii, 1964, pl. 5, fig. 1a,b), 8363/15, CNIGR, St. Petersburg]. Border furrows weakly developed; cephalon strongly convex (tr.); posterior margin strongly curved backward. Glabella slightly tapered forward; basal glabellar width (tr.) about equal to width of extraocular area. Lateral parts of poorly differentiated border nearly vertical. Ocular lobe poorly differentiated from interocular area; posterior tip about opposite occipital furrow. Lower Cambrian: Russia (northern Siberian Platform), *Pseu...domia* Zone. ———Fig. 269, 3. *P. egregia*; cephalon, holotype, CNIGR 8363/15, X1.5 (Egorova & Savitskii, 1969, pl. 10, fig. 1).

Superfamily Uncertain

Poletaevella Dalmatov & Repina, 1971, p. 125 [*P. baljutica*; OD; holotype (Dalmatov & Repina, 1971, fig. 2b–d), 30213/11, BGU, Ulan-Ude]. Olennellid? with posterior margin of cephalon nearly straight. Glabella parallel sided, bluntly rounded anteriorly; occipital ring unusually short (sag.); palpebral lobe short (exsag.), prominent, located about midway between axial and lateral border furrows, and connected to posterior part of LA by narrow eye ridge, with its posterior tip opposite L2; preglabellar field longer (sag.) than anterior border. Genal spine well developed; intergenal spine not indicated. [The structure of the palpebral lobe is unlike the ocular lobe of all olenellid trilobites. Assignment of this form even to the Olennellina is questionable.] Lower Cambrian, Russia (eastern Sayan region), zone unknown. ———Fig. 270. *P. baljutica*; cephalon, holotype, X13 (Dalmatov & Repina, 1971, fig. 2b).

Postfalotaspis Orlovski, 1985, p. 234 [*P. spinatus*; OD; holotype (Orlovski, 1985, pl. 3, fig. 5a–d), 1,496, IGUW, Warsaw]. The type and only specimen of this genus is too incomplete and poorly illustrated for generic or higher level taxonomic...
Redlichiina—Redlichioidea

Suborder REDLICHIINA
Richter, 1932

W. T. CHANG, with L. N. REPINA and GERD GEYER

Opisthoparian facial suture; rostral plate narrower (tr.) than in Olenellina (except in xystridurinids, Fig. 30.3) and bounded by rostral and connective sutures. Hypostome conterminate in Redlichia (Fig. 30), but not in Dolerolenus (Fig. 27.3). Thorax fulcrate or nonfulcrate; pygidium small, or large and many-segmented. Lower Cambrian–Middle Cambrian.

The diagnosis of this suborder (and of the order) presents problems because it may be paraphyletic and because the systematic section on Redlichiina in this volume is incomplete. Xystriduridae (ÖPIK, 1975b) are not included in the section on Paradoxidoidea. Ellipsocephaloidea will be treated in a subsequent volume; currently authors (GEYER, 1990b; PILLOLA, 1991) include this group in Redlichiina, but FORTEY (1990a, p. 549, 563) considered that at least some ellipsocephaloids should be placed in Ptychopariina.

Superfamily EMUELLOIDEA
Pocock, 1970

Cranidium subquadrate; glabella cylindrical, slightly contracted at S3, with 3 pairs of glabellar furrows; preglabellar field short (sag.) or absent; eye ridge wide (tr.), long, directed slightly posterolaterally; palpebral lobe crescentic; posterior area of fixigena with fulcrum; posterior border with section abaxial to fulcrum directed anterolaterally. Anterior section of facial suture diverging anteriorly to border furrow, curving sharply inwards, and crossing anterior border diagonally before becoming marginal-ventral; connective suture concave abaxially; rostral plate narrow (tr.), notched laterally; posterior section of facial suture divergent; hypostomal suture functional. Hypostome with depressed anterior wings; median body with large, subtriangular lobe, subdivided anteriorly by median depression; posterior lobe small. Librigena with long genal spine. Thorax with prothorax of 6 segments and extremely long opisthothorax of 42 to 55 segments; 6th prothoracic segment macropleural and fused to 5th; macropleural spine long, extending to level of pygidium. Pygidium a minute, segmented disc with border entire. Lower Cambrian.

Family EMUELIDAE Pocock, 1970

Characters of the superfamily. Lower Cambrian.

Emuella POCOCK, 1970, p. 528 [*E. polymera; OD; holotype (POCOCK, 1970, pl. 106, fig. 1), F16653, AUGH, Adelaide]. Preglabellar field absent; anterior border furrow becoming shallow abruptly anterior to frontal glabellar lobe; palpebral lobe relatively short, curved; posterior border with section abaxial to fulcrum directed anterolaterally at 45° and slightly depressed; librigena with advanced genal spine. Thorax with 48 to 58 segments; axis more than half thoracic width; pleural furrows terminating before pleural spine. Strong, closely spaced granules on dorsal surface. Lower Cambrian: Australia (Kangaroo Island), Pararaia janeae Zone.—Fig. 271, 1. *E. polymera; holotype, complete dorsal exoskeleton, X9.5 (new).

Balcoracania POCOCK, 1970, p. 533 [*B. dailyi; OD; holotype (POCOCK, 1970, pl. 108, fig. 1), F16663, AUGH, Adelaide]. Preglabellar field short (sag.), down-sloping, or may be absent; palpebral lobe long, crescentic; posterior border with section abaxial to fulcrum directed anterolaterally at 60° and strongly depressed; librigena with genal spine only slightly advanced. Thorax with 53 to 61 segments; axis less than half thoracic width; pleural furrows terminating at base of pleural spines. Fine, closely spaced granules on dorsal surfaces. The cephalon of Balcoracania differs from that of Emuella in having a longer palpebral lobe and consequently shorter posterior section of the facial suture; the abaxial section of the posterior border is much more strongly depressed and not directed forward as strongly. The thoracic axis of Balcoracania is narrower than in Emuella, and the pleural furrows extend to the base of the spines. Lower Cambrian: Australia (Flinders Ranges), Pararaia janeae Zone.—Fig. 271, 2. *B. dailyi; holotype, external mold of nearly complete exoskeleton, X6.5 (new).
Superfamily REDLICHIIOIDEA
Poulsen, 1927

Characters of the suborder: preglabellar field short to long (sag., exs.), or lacking. Lower Cambrian–lower Middle Cambrian.

Family REDLICHIIDAE
Poulsen, 1927

Glabella long, tapering forward, and rounded in front, S1–3 evenly spaced, S3 faint, short, slightly oblique forward or backward, S1 and S2 oblique backward-inward, subparallel to occipital furrow; S4 and S5 present in some genera; preglabellar field short (sag.); anterior border longer, raised; eye lobe arcuate, long, arising from frontal glabellar lobe and extending to level of occipital furrow or farther back; anterior sections of facial sutures slightly to strongly divergent; posterior area of fixigena long or short (exs.); librigena wide, with or without advanced genal spine. Thorax with 14 to 19 segments, pleurae ending in spines, fulcrum distal. Pygidium small, with few segments. Surface of exoskeleton smooth or very finely granulose; facial line may be present on anterior area of fixigena. Lower Cambrian–lower Middle Cambrian.

Subfamily REDLICHIINAE
Poulsen, 1927

Proximal portion of anterior section of facial suture close to axial furrow, meeting eye lobe at level of midlength of frontal glabellar lobe; posterior extremity of eye lobe close to axial furrow; thorax with 14 to 17 segments; thoracic axial spine on 10th, 11th, 12th, 13th, or 14th axial ring. Pygidium with semiankylosed segments and slightly bilobed terminal piece. Lower Cambrian–lower Middle Cambrian.

Redlichia CoeSSMANN, 1902, p. 52, nom. nov. pro Hoeferia Redlich, 1899, p. 3, non Bittner, 1895 [*Hoeferia noetlingi* Redlich, 1899, p. 3; OD; lectotype (Redlich, 1899, pl. 1, fig. 1; SD Whitehouse, 1939, p. 188), 7/232, GSI, Calcutta] [=Mesodema Whitehouse, 1939, p. 187 (type, *M. venulosa*; OD); Dongshania Lin in Qiu & others, 1983, p. 48 (type, *D. triangularis*; OD)]. Glabella conical, S1 may be transglabellar; facial line may be present on anterior areas of fixigena. Lower Cambrian (upper Canglangpuan to Longwangmiaoan): China, Korea, Pakistan, Himalayan region, Iran, Spain, southern Siberia, Antarctica. Middle Cambrian (Ordovician). Australia.

R. (Redlichia). Facial and rostral sutures present; hypostome fused to rostral plate; rostral plate shorter (exs.) than anterior border of the cranidium. Glabella long and tapering forward; glabellar furrows shallow; occipital furrow also shallow, with deeper lateral portions. Eye lobe long, with extremiti almost reaching the axial furrow in adults. Librigena wide. Posterolateral limb of limb repeating the structure of the posterior half of the thoracic pleurae and in some also with advanced intergenal spines. Short occipital spine in some species. Hypostome with or without 2 pairs of lateral spines. Thorax gradually decreasing in width (tr.) posteriorly; pleurae with spines advanced on anterior and falcate on posterior segments. Pygidium with 3 segments, dimorphic in each species. One morph with narrow, depressed flanks and arched posterior margin, the other with continuous doublure and more or less rounded posterior margin. **Occurrence and distribution as for genus.** ———FIG. 272, 3 *R. (R.) noetlingi* (Redlich), Lower Cambrian (upper Canglangpuan), Pakistan (Salt Range); lectotype, cranidium, X2 (King, 1941).

R. (Conoredlichia) W. Chang, 1966, p. 152 [*Redlichia conica* Du & Shao, 1963, p. 304; OD; holotype (Du & Shao, 1963, fig. on p. 304; W. Chang, 1966, pl. 1, fig. 9), specimen number not traced, YIGS, Kunming]. Similar to *R. (Redlichia)*, but having relatively small, conical glabella; broad (sag.), depressed preglabellar field with prominent mesial ridge; large and triangular anterior area of fixigena; and narrower (tr.) eye lobe. Librigena, thorax, and pygidium unknown. Lower Cambrian (upper Canglangpuan): China (eastern Yunnan), Paleolenus Zone. ———FIG. 272, 2 *R. (C.) conica*, eastern Yunnan (Wuting); holotype, cranidium, X1 (Du & Shao, 1963).

R. (Latiredlichia) Hupé, 1953a, p. 194 [*Redlichia* sp. cf. *R. walcotti* Mansuy, 1912, p. 225, non Mansuy, 1912; *Redlichia satoi* Lu, 1950, p. 166; lectotype herein designated (Saito, 1934, pl. 26, fig. 19), 344, UMIUT, Tokyo]. Differs from *R. (Pteroredlichia)* in having broad and short conical glabella, short (tr.) anterior sections of facial sutures, and shorter (exs.) librigena. Lower Cambrian (Longwangmiaoan): China (Liaoning, Shandong, Hubei), northwestern Korea, Redlichia chinensis Zone. ———FIG. 272, 1a, b *R. (L.) satoi* (Lu), northwestern Korea (Anrakkol, Hwanghai-do); a, lectotype, cranidium, X2; b, paratype, librigena, X3 (Saito, 1934).
Redlichina—Emuelloidea

R. (Pteroredlichia) W. CHANG, 1966, p. 149 [*R. (P.) lui; OD; holotype (W. CHANG, 1966, pl. 1, fig. 7), 37606, NIGP, Nanjing] [*Spinoredlichia LIU, 1975, p. 14 (type, S. typicalis; OD)]. Transverse or almost transverse anterior section of the facial suture extending great distance from glabella (i.e., width of anterior area of fixigenae (tr.) equals at least 1.1 times cranial length). Thorax with 15 to 16 segments; axial spine on the 11th axial ring. Posterior margin of pygidium either entire with continuous doublure or arched upward and forward without doublure. Hypostome of adults without spines. Lower Cambrian (Longwangmiaoan): northern and southwestern China, Korea. Middle Cambrian (Ordian): Australia.—Fig. 273a-c. *R. (P.) lui, Longwangmiaoan (Redlichia chinensis Zone), northern China (western Henan); a, cranidium, X2.5; b, librigena, X2.5; c, thorax, X2.5 (W. Chang, 1966).

Syndianella LIU, 1961, p. 302, 313 [*S. yunnanensis; OD; holotype (Lu, 1961, pl. 3, fig. 9), 12678, NIGP, Nanjing]. Similar to *R. (Redlichia)*, but glabellar furrows oblique and horizontal, occipital furrow oblique and discontinuous, eye lobe less arculate, posterior tip of eye lobe distant from the glabella, and preglabellar field longer (sag.). Librigena, thorax, and pygidium unknown. Lower Cambrian (lower Canglangpuan): China (eastern Yunnan), Drepanuroidea Zone.—Fig. 274. *S. yunnanensis, eastern Yunnan (Malong); holotype, cranidium, X8 (Lu, 1961).

Subfamily METAREDLICHIINAE
Zhang & Lin, 1980

(Metaredlichinae in W. ZHANG & others, 1980, p. 136) Glabella cylindrical, frontal lobe expanded forward, or broadly conical; up to 5 pairs of glabellar furrows; preglabellar field short (sag.) or absent; intergenal angle present or absent; posterior area of fixigena broad (tr.) and long. Thorax with 15 segments. Pygidium with or without semiankylosed segment; axial lobe convex, transversely broad.

© 2009 University of Kansas Paleontological Institute
with pair of rounded swellings on terminal portion. Lower Cambrian.

Metaredlichia Lu in Lu & others, 1965, p. 66 [*Redlichia cylindrica* W. CHANG, 1953, p. 126; OD; holotype (W. CHANG, 1953, pl. 4, fig. 5), 7059a, NIGP, Nanjing]. Glabella broad, with frontal lobe broadly rounded and 4 pairs of glabellar furrows; occipital ring with small node; eye lobe long and arcuate; preglabellar field very short (sag.), border flat; anterior sections of facial sutures short and divergent. Axial lobe of pygidium with anterior ring; pleural region narrow with pair of pleural furrows situated anterolaterally. Librigena and thorax unknown. Lower Cambrian (Qiongzhusian): China (Hubei), *Eoredlichia-Wutingaspis* Zone.——**FIG. 275**, 1. *M. cylindrica* (CHANG), western Hubei (Yangtze Gorges); holotype, cranidium, ×5 (W. CHANG, 1953).

Bornemannaspis RASSETTI, 1972, p. 52 [*Olenellus solitarius* BORNEMANN, 1888, p. 470(46); OD; holotype (BORNEMANN, 1888, p. 470(46), pl. 39, fig. 9; SD RASSETTI, 1972, pl. 13, fig. 5), MLU, Halle]. Glabella very slightly tapering forward, truncate, slightly expanding in frontal lobe, almost reaching anterior border furrow; lateral glabellar furrows connected medially; anterior border fairly wide (sag.) medially; eye ridge short; palpebral lobe about half as long as glabella; anterior sections of facial sutures directed outward and forward at an angle of about 45°, relatively short. Lower Cambrian: Italy (Sardinia), *Dolerolenus longisculatus* Zone to *Dolerolenus bifidus* Zone.——**FIG. 276**, 2. *B. solitaria* (BORNEMANN), Sardinia (Canalgrande); upper part of *Dolerolenus longisculatus* Zone, holotype, dorsal view of cranidium, ×2.5 (new).

Breviredlichia CHANG & LIN in YIN & LI, 1978, p. 403 [*B. granulosa*; OD; holotype (YIN & LI, 1978, pl. 149, fig. 12), 31617, NIGP, Nanjing]. Glabella cylindrical, with frontal lobe large and globular and 2 or 3 pairs of glabellar furrows; occipital furrow narrow (sag.), curved backward; occipital ring bending slightly backward, with small median tubercle; librigena broad; advanced genal spine long and strong. Thorax with 15 or 16 segments, pleurae ending in relatively long spines. Surface granulose. Lower Cambrian (upper Canglangpuan): China (northern Guizhou, eastern Sichuan), *Megapalaeolenus* Zone.——**FIG. 276**, 1a. *B. granulosa*, northern Guizhou; holotype, cranidium, ×2 (W. ZHANG, LU, & others, 1980).——**FIG. 276**, 1b. *B. gaoqianensis*, eastern Sichuan (Pengshui), dorsal exoskeleton, ×1.5 (W. ZHANG, LU, & others, 1980).

Iglesiella RASSETTI, 1972, p. 54 [*I. ichnusae*; OD; holotype (RASSETTI, 1972, pl. 8, fig. 1), 108, SG, Rome]. Glabella nearly parallel sided; occipital furrow and preoccipital furrow (S1) consisting of oblique pairs of deep lateral furrows connected medi-
ally by faint depressions; occipital ring with short spine; S2 and S3 faintly visible; preglabellar field long (sag.) and flat; anterior border short; anterior sections of facial sutures presumably strongly divergent at anterior ends of eye lobe close to dorsal furrow; eye ridge short, directed backward; eye lobe
long and narrow; palpebral area of fixigena half as wide as glabella. Lower Cambrian: Italy (Sardinia), Iglesiella ibernasus Zone.—Fig. 277, 4. *I. ibernasus*: holotype, cranidium, X8 (Rasetti, 1972).

Jingyangia **CHANG & ZHANG** in **LU, CHANG, & others, 1974, pl. 33, fig. 8, 21476, NIGP, Nanjing.** Cranidium subquadrate; glabella expanded forward with 3 pairs of glabellar furrows; occipital furrow discontinuous; occipital ring broad (sag.) medially; cranidial border furrow narrow and deep; border narrow and convex; preglabellar field as long (sag.) as border; palpebral area of fixigena broad (tr.) posterior area of fixigena short (exs.) and wide (tr.); anterior sections of facial sutures slightly divergent; librigena with short genal spine. Thorax unknown. Pygidium relatively wide (tr.), subtriangular, with large terminal piece divided into 3 rounded lobes. Lower Cambrian (Qiongzhusian): China (southern Shaanxi), Enredlichias-Wasingapis Zone.—Fig. 277, 2. *J. zhenbaensis*: southern Shaanxi (Zhenba); holotype, cranidium, X2 (W. Zhang, Lu, & others, 1980).

Maopingaspis **LIN & YIN** in **LIN & LI, 1978, pl. 409 ["M. guizhouensis": OD; holotype (YIN & LI, 1978, pl. 148, fig. 7), Ge-079, SMNH, Shanghai].** Similar to Metaredlichia and Ubhaspis, but having narrower cranidium, no preglabellar field, relatively narrow (tr.) palpebral areas and anterior areas of fixigenae, broad (tr.) posterior areas of fixigenae, and broad, flat cranidial border. Librigena with broad border and stout, short genal spine. Pygidium elliptical; axial lobe with an anterior axial ring; border flat, broad; posterior margin slightly arched forward. Lower Cambrian (lower Canglangpuan): China (northern Guizhou), Drepanurusoides Zone.—Fig. 275, 4. "M. guizhouensis", northern Guizhou (Meitan); holotype, cranidium, X3 (Yin & Li, 1978).

Nebidella **RASSETTI, 1972, p. 51 ["N. limbata": OD; holotype (RASSETTI, 1972, pl. 12, fig. 17), 100, SG, Rome].** Globella tapering forward, rounded in front; occipital and lateral glabellar furrows shallow, straight, faintly connected medially; preglabellar field long (sag.); border narrow; eye ridge very short; eye lobe long; fixigena with maximum width of palpebral area one-third width of glabella; anterior section of facial sutures directed outward at 45° angle at anterior end of eye lobe close to dorsal furrow. Librigena wide, flat, with narrow border; facial suture cutting margin at some distance from genal angle, which extends into a short spine. Lower Cambrian: Italy (Sardinia), Dolorelenus longicollatus Zone.—Fig. 277, 6. "N. limbata": holotype, cranidium, X1.5 (Rasetti, 1972).

Parazhenbaspis **ZHUI & LIN, 1983, p. 24, 28 ["P. mohershanensis": OD; holotype (ZHUI & LIN, 1983, pl. 1, fig. 8), 69526, NIGP, Nanjing].** Globella cylindrical, broad and slightly waisted, rounded in front and reaching the border furrow, with 3 or 4 pairs of faint glabellar furrows; eye ridge short; eye lobe long and reaching the posterior border furrow; posterior border narrow and broad (tr.); anterior border convex and arched forward; anterior sections of facial sutures short and divergent, posterior sections long and extending transversely outward; hypostome ovate, with narrow border and small and triangular anterior wings. Pygidium with wide axial lobe, 1 axial ring; pleural region narrow, with pair of pleural and interpleural furrows. Lower Cambrian (lower Canglangpuan): China (eastern Xinjiang, Uygur Autonomous Region), Tianshanopecephalus Zone.—Fig. 275, 3. "P. mohershanensis", eastern Xinjiang (Kuluketage), Tianshanopecephalus Zone; holotype, cranidium, X3 (Zhu & Lin, 1983).

Pseudoredlichia **CHANG & LIN in YIN & LI, 1978, p. 404 ["P. hepingensis": OD; holotype (W. ZHANG, LU, & others, 1980, pl. 28, fig. 9), 37630, NIGP, Nanjing].** Similar to R. (Redlichia), but having 4 or 5 pairs of discontinuous glabellar furrows, occipital furrow, broad librigena, less advanced genal spine, and pair of highly elevated swellings behind pygidal axial ring. Thorax unknown. Lower Cambrian (lower Canglangpuan): China (southern Shaanxi).—Fig. 276, 3. "P. hepingensis", southern Shaanxi (Zhenba); holotype, cranidium, X2 (W. Zhang, Lu, & others, 1980).

Sardoredlichia **RASSETTI, 1972, p. 48 ["S. rostropina": OD; holotype (RASSETTI, 1972, pl. 9, fig. 1), 80, SG, Rome].** Globella moderately tapered; occipital furrow and 3 pairs of lateral glabellar furrows straight and transverse; preglabellar field moderately long, with median preglabellar ridge; border rather narrow; palpebral lobe about half as long as glabella, straight in anterior portion and widening posteriorly; maximum width of palpebral area of fixigena half the glabellar width; anterior sections of facial sutures strongly divergent; librigena with long, advanced genal spine in front of level of glabellar midpoint; hypostome with 2 pairs of lateral and posterior spines and small and triangular anterior wings; rostral plate long (tr.), narrow, and slightly arched.
Redlichina—Emuelloidea

forward. Thoracic pleura with long pleural spines. Pygidium with prominent axis and narrow (tr.) pleural region. Lower Cambrian: Italy (Sardinia), Igleciella ichnusae Zone to Dolerolenus bifidus Zone.——Fig. 277, 5. *S. praespinosa; holotype, cranidium, X3 (Rasetti, 1972).

Ushbaspis Pokrovskaya in Keller & Pokrovskaya, 1965, p. 81 [*U. granulata; OD; holotype (Keller & Pokrovskaya, 1965, pl. 3, fig. 2), 3579/2, GIN, Moscow] [=Metaredlichoides Chen & Yao in Lu, Chang, & others, 1974, p. 90 (type, M. constrictus; OD)]. Glabella cylindrical, with frontal lobe expanded forward, and 4 pairs of glabellar furrows; occipital ring with a median node; preglabellar field as long (sag.) as cranial border; posterior border furrow broad (exs.); librigena with stout genal spine. Thorax with 15 segments. Pygidium transversely subelliptical, axis with anterior axial ring and a large terminal piece having a pair of swellings, pleural region narrow (tr.) and with a pair of pleural furrows. Surface finely granulose or smooth. Lower Cambrian (lower Botoman, lower Canglangpuan); Kazakhstan, Ushbaspis limbata Zone; China (Hubei, Guizhou, Sichuan, Xinjiang Uyghur Autonomous Region), Drepanurus Zone.——Fig. 277, 1a. *U. granulata; southern Kazakhstan (Ushbas); holotype, cranidium, X2.5 (Keller & Pokrovskaya, 1965).——Fig. 277, 1b,c. U. constrictus (Chen & Yao); b, northern Sichuan (Chengkou), cranidium, X3; c, northern Guizhou (Meitan), exoskeleton, X2 (W. Zhang, Lu, & others, 1980).

Xela Jell in Bengtson & others, 1990, p. 285 [*X. drena; OD; holotype (Bengtson & others, 1990, fig. 187e), 127161, NMVP, Melbourne]. Large, coarsely tuberculate, with anteriorly rounded glabella terminating anteriorly before border furrow; anterior section of facial suture at 45° to sagittal line and isolating larger anterior area of fixigena; fixigena extremely small; palpebral lobe short; eye

Fig. 275. Redlichidiidae (p. 432–437)
FIG. 276. Redlichiidae (p. 432–434)
Redlichiina—Emuelloidea

437

ridge meeting axial furrow behind S3; genal spine not advanced, with broad base, relatively short. Pygidium with 3 short rings and distinctly bilobed terminus; posterior margin excavated; pleural area of 3 segments, each with pleural furrow and the 1st with marginal spine. Lower Cambrian: Australia (South Australia, Wirreala Mine), Pararaiaiai Zone.—Fig. 275, 2. *X. drena*; holotype, cranium, X2 (Bengston & others, 1990).

Zhenbaspis W. CHANG & ZHU in LU, CHANG, & others, 1974, p. 89 [*Z. nakamurai* Saito, 1934, pl. 1, fig. 10], 1983, p. 51 (type, L. (P.) wushangensis; OD). Three pairs of glabellar furrows; eye lobe reaching posterior border furrow and distant from glabella; anterior sections of facial sutures slightly divergent; cranial border with slightly developed plectrum. Lower Cambrian (Longwangmiaoan): China.

L. (Leptoredlichia). Characters of the genus. Lower Cambrian (Longwangmiaoan): northern China (northern Anhui, northern Jiangsu), Redlichia chinensis Zone.—Fig. 278, 1, 2. *L. tumidolimbata*, northern Anhui; holotype, cranium, X5 (W. Chang, 1966).

L. (Xenoredlichia) ZHANG in QU & others, 1983, p. 51 [*L. (X.) subhexensis*; OD; holotype (QU & others, 1983, pl. 17, fig. 5), HIT3009, NIGMR, Nanjing]. Similar to L. (Leptoredlichia), but having short and conical glabella and prominent plectrum. Librigena like R. (Redlichia), with short advanced genal spine. Lower Cambrian (Longwangmiaoan): China (northern Anhui), Redlichia chinensis Zone.—Fig. 278, 1a, b. *L. (X.) subhexensis*; a, holotype, cranium, X6; b, librigena, X3.5 (QU & others, 1983).

Olgaspis KOROBENIKOVA, 1966, p. 75 [*O. accepta*; OD; holotype (KOROBENIKOVA, 1966, pl. 1), 879/1, CSGM, Novosibirsk]. Glabella tapering forward, with 3 pairs of glabellar furrows; occipital furrow deep; occipital ring convex, long (sag.) in the middle; anterior border convex, thickened sagittally; pleural furrow shallow; palpebral lobe narrow (tr.), arcuate, and long (exs.); palpebral furrow deep; eye ridge oblique; fixigena convex; anterior section of facial suture slightly divergent. Surface of cranidium weakly granulose. Pygidium small, with wide axis gradually tapering backward; pleural ring subtriangular, flat or slightly concave. Lower Cambrian (Botoman or lower Toyonian): Russia (eastern Sayan Mountains), Pollcelllina-Laticephalus Zone.—Fig. 278, 4. *O. accepta*; holotype, cranium, X6 (Korobenikova, 1966).

Subfamily PARAREDLICHIINAE

Hupé, 1953

Glabella conical; eye lobe long and arcuate; librigena with advanced genal spine; proximal end of anterior section of facial suture and posterior extremity of eye lobe distant from axial furrow. Lower Cambrian.

Neoredlichia Saito, 1936, p. 363 [*Redlichia nakamurai* Saito, 1934, p. 224; OD; holotype (Saito, 1934, pl. 26, fig. 15), 312, UMUT, Tokyo]. Frontal glabellar lobe short, with 3 pairs of transgabellar furrows slightly bent backward; occlusal furrow deep and connected sagittally; occipital ring of uniform length (sag. and exs.) or slightly longer sagittally; eye lobe reaching level of mid-length of occipital ring, posterior tip of eye lobe distant from glabella, peglabellar field absent or slightly depressed; posterior area of fixigena slender; anterior sections of facial sutures divergent; librigena with slightly advanced genal spine. Thorax and pygidium unknown. Lower Cambrian (Longwangmiaoan): China (Shandong), northwestern Korea, Redlichia chinensis Zone.—Fig. 278, 3a-c. *N. nakamurai* (Saito), northwestern Korea (Chungchea); a, holotype, cranium, X3; b, paratype, cranium, X3; c, paratype, librigena, X2 (Saito, 1934).

Leptoredlichia W. CHANG, 1966, p. 152, 166 [*L. tumidolimbata*; OD; holotype (W. CHANG, 1966, pl. 1, fig. 10), 18146, NIGP, Nanjing]. Three pairs of glabellar furrows; eye lobe reaching posterior border furrow and distant from glabella; anterior sections of facial sutures slightly divergent; cranial border with slightly developed plectrum. Lower Cambrian (Longwangmiaoan): China.

Redlichia CHANG in LU & DONG, 1952, p. 186 [*Redlichia intermediata* Lu, 1940, p. 333; OD; lectotype (Lu, 1940, pl. 1, fig. 10); SD W. CHANG, 1962, p. 42], 7061b, NIGP, Nanjing].
Trilobita

Ushbaspis (type, *Pararedlichia pulchella*; OD);

Saukiandops Hupé, 1953a, p. 151 (type, *Redlichia walcotti* Mansuy, 1912 p. 26; OD); *Pararedlichia* Hupé, 1953a, p. 164 (type, *P. pulchella*; OD);

Galloredlichia Jago in Courtessole & Jago, 1980, p. 15 (type, *G. noiri*; OD). Glabella tapering forward, frontal lobe well rounded; S1 and S2 long, deep, and backward-oblique proximally; S3 shallow,

Fig. 277. Redlichidae (p. 434–437)
Redlichia—Emuloidea

narrow (tr.), and indistinct; occipital ring longer sagittally and slightly tri-segmented longitudinally in well-preserved specimens; preglabellar field same length (sag.) as or slightly shorter or longer than cranial border; anterior sections of facial sutures divergent; facial line near and parallel to the anterior sections of facial suture; slightly advanced genal spine. Hypostome with 2 pairs of small posteraler marginal spines. Thorax with 15 segments. Pygidium small, transversely ovate, with anteriorly ankylosed segment and large, ovate or subrounded terminal piece having 1 or 2 pairs of pits. Lower Cambrian: China (Yunnan, Sichuan, southern Shaanxi), Qiongzhusian (Eoredlichia-Wutingaspis Zone); Morocco, northern Spain, southern France, Fallotaspis tazemmourtensis Zone.

E. (Eoredlichia). Characters of genus. Lower Cambrian: Morocco, northern Spain, southern France, Sous-étage Amouslekien (basal part of Fallotaspis tazemmourtensis Zone or Fallotaspis Zone of GEYER, 1990a); China (eastern Yunnan, Sichuan, southern Shaanxi), Qiongzhusian (Eoredlichia-Wutingaspis Zone).——Fig. 279,1a,b. *E. (E.) intermedia* (Liu), eastern Yunnan (Kunming); a, lectotype, cranidium, ×3; b, paratype, nearly complete dorsal exoskeleton, ×5 (W. Chang, 1962).

E. (Pachyredlichia) W. CHANG, 1966, p. 153 [*E. (P.) shensiensis*; OD; holotype (W. CHANG, 1966, pl. 1, fig. 5), 18143, NIGR, Nanjing]. Cranidium subquadrate. Glabella cylindrical or cylindro-conical, broadly rounded in front; occipital ring convex, with or without a short spine; preglabellar field very short (sag.) or absent; eye lobe medium-sized, slightly shorter (exs.) than that of *E. (Eoredlichia)*; border convex; anterior sections of facial sutures slightly divergent; surface with fine granules. Lower Cambrian (Qiongzhusian): China (northern Sichuan, southern Shaanxi), Eoredlichia-Wutingaspis Zone.——Fig. 279,2. *E. (P.) shensiensis*, southern Shaanxi (Nanzheng); holotype, cranidium, ×3 (W. Chang, 1966).

?Irgitkhemia TCHERNYSHEVA, 1977, p. 61 [*I. insolita*; OD; holotype (TCHERNYSHEVA, 1977, pl. 14, fig. 9), 10802/9, CNIGR, St. Petersburg]. Cranidium flattened, subquadrate, with gently curved to almost straight anterior border. Glabella elongate, narrowing towards anterior end, with slight keel; glabellar furrows clear cut, short, numbering 4 pairs; occipital ring wide; fixigena flat; palpebral lobe medium-sized, raised above fixigena, transitional into stout eye ridge; preglabellar field flat, lower than front of glabella, with radial sculpture; anterior border weakly convex. Librigena, thorax, and pygidium unknown. Lower Cambrian (Tuyenian)—Middle Cambrian (Amgaian), Russia (eastern Sayan Mountains, Tuva, Batenevskii Ridge).——Fig. 280,2. *I. insolita*, eastern Sayan; holotype, cranidium, ×4 (Tchernysheva, 1977).

Lemdadella SUZUY, 1978, p. 92 [*L. spectabilis*; OD; holotype (SUZUY, 1978, pl. 1, fig. 10), 28571, SMF, Frankfurt am Main]. Glabella tapering forward, with parafrontal band; eye lobe long and arcuate, with ocular striga; preglabellar field long (sag.) to moderately long, with plectrum; anterior area of fixigena with facial line. Lower Cambrian: Spain; Morocco, Fallotaspis tazemmourtensis Zone.——Fig. 279,3a,b. *L. spectabilis*, Morocco (Lemdad syncline, Ounein area in the High Atlas); a, composite picture of holotype and silicon cast of counterpart; dorsal view of cranidium, ×5; b, dorsal view of pygidium, ×4 (photographs courtesy of G. Geyer).

Ningqiangaspis ZHANG & LIN in W. ZHANG, LÜ, & others, 1980, p. 158, 429 [*N. ningqiangensis*; OD; with ocular striga; preglabellar field long (sag.) to moderately long, with plectrum; anterior area of fixigena with facial line. Lower Cambrian: Spain; Morocco, Fallotaspis tazemmourtensis Zone.——Fig. 279,3a,b. *L. spectabilis*, Morocco (Lemdad syncline, Ounein area in the High Atlas); a, composite picture of holotype and silicon cast of counterpart; dorsal view of cranidium, ×5; b, dorsal view of pygidium, ×4 (photographs courtesy of G. Geyer).
holotype (ZHANG & LIN in W. ZHANG, LU, & others, 1980, pl. 39, fig. 6), 37743, NIGP, Nanjing]. Differing from *Eoredlichia* in having longer eye lobe, less divergent anterior section of facial suture, shorter (sag.) cranial border, and no preglabellar field. Librigena, thorax, and pygidium unknown. Lower Cambrian (Qiongzhusian): China (southern Shaanxi), *Eoredlichia-Wutingaspis* Zone. —— Fig. 280.3. *N. ningqiangensis* holotype, cranidium, X6 (W. Zhang, Lu, & others, 1980).

Redlichops RICHTER & RICHTER, 1941b, p. 13 [*Redlichia (Redlichops) blanckenhorni*; OD; holotype (RICHTER & RICHTER, 1941b, pl. 2, fig. 1), X1287a, SMF, Frankfurt am Main]. Glabella tapering forward; frontal lobe narrow; S3 furrows slightly directed forward; occipital furrow disconnected.
Redlichiina—Emulloidea

Redlichiina—Emulloidea

Redlichiina—Emulloidea

Redlichiina—Emulloidea

Redlichiina—Emulloidea

Redlichiina—Emulloidea

Redlichiina—Emulloidea

Subfamily WUTINGASPINAE

Chang, 1966

Glabella broadly conical; preglabellar field short (sag.) or absent; eye ridge slightly oblique, long; eye lobe short or of medium length; preglabellar area of fixigena broad (tr.); posterior area of fixigena broad (tr.) and relatively long (exs.). Thorax with 15 to 19 segments, thoracic axial spines absent. Pygidium small. Lower Cambrian.

Wutingaspis

KOBAYASHI, 1944c, p. 130 [*W. tingi; OD; holotype (KOBAYASHI, 1944c, pl. 10, fig. 7), Y338, UMUT, Tokyo]. Similar to Eoredlichia, but having relatively short eye lobe, broad cylindroconical glabella, longer (exs.) and broader posterior area of fixigena, slightly arcuate and more divergent facial lines, and no thoracic axial spine. Lower Cambrian (Qiongzhusian): China (eastern Yunnan, Sichuan, Guizhou, southern Shaanxi), Eoredlichia–Wutingaspis Zone.——FIG. 281, 2. *W. tingi, eastern Yunnan (Wuting); holotype, cranidium, ×2 (Kobayashi, 1944c).

Chaoaspis

W. CHANG, 1966, p. 154, 167 [*C. ovatus; OD; holotype (W. CHANG, 1966, pl. 1, fig. 13), 18149, NIGP, Nanjing]. Similar to Wutingaspis, but having short (sag.) and ovate glabella, relatively small eye lobe, broad (sag.) preglabellar field, broad but relatively short (exs.) posterior area of fixigena, and more divergent anterior sections of facial sutures. Librigena, thorax, and pygidium unknown. Lower Cambrian (Qiongzhusian): China (western Sichuan), Eoredlichia–Wutingaspis Zone.——FIG. 282, 1. *C. ovatus, western Sichuan (Emei); holotype, cranidium, ×2 (W. Chang, 1966).

Chengjiangaspis

ZHANG & LIN in W. ZHANG, Lu, & others, 1980, p. 169 [*C. chengjiangensis; OD; holotype (ZHANG & LIN in W. ZHANG, Lu, & others, 1980, pl. 44, fig. 10), 37792, NIGP, Nanjing]. Similar to Wutingaspis, but having more conical glabella, long (sag.) and depressed preglabellar field, very shallow anterior border furrow, less divergent anterior sections of facial sutures, deep and broad (sag., exs.) occipital furrow, no occipital node, and narrow librigena. Complete thorax and pygidium unknown. Lower Cambrian (Qiongzhusian): China (eastern Yunnan), Eoredlichia–Wutingaspis Zone.——FIG. 281, 3. *C. chengjiangensis; eastern Yunnan, (Chengjiang); holotype, cranidium, X6 (W. Zhang, Lu, & others, 1980).

Kepingaspis

T. CHANG, 1965, p. 154, 156 [*K. kepingensis; OD; holotype (T. CHANG, 1965, pl. 1, fig. 1), K-01, XIGMR, Urumqi]. Cranidium subtrapezoidal; glabella tapering forward, with well-rounded frontal lobe and oblique glabellar furrows; eye lobe long and arcuate; posterior area of fixigena subtriangular; preglabellar field absent; cranial border flat; librigena broad (tr.), with advanced genal spine small and short; anterior sections of facial sutures slightly divergent. Thorax with 19 segments; pleural spines short. Pygidium small, with axial ring and terminal piece divided into 2 small swellings. Lower Cambrian (Canglangpuan): China (western Xinjiang), Kepingaspis–Tianshanoupephalus Zone.——FIG. 281, 4. *K. kepingensis, western Xinjiang.
Trilobita

Xinjiang (Keping); incomplete dorsal exoskeleton, ×3 (Chang, 1965).

Kuanyangia HUPE, 1953a, p. 195 [*Redlichia pustulosa Lu, 1941, p. 78; OD; holotype (Lu, 1941, pl. 1, fig. 5), No. 2007, specimen lost during World War II], Cranidium subquadrate; glabella broad, conical; 3 pairs of oblique glabellar furrows continuous or discontinuous; occipital furrow shallow, with deeper lateral portions; preglabellar field absent or very short (sag.); anterior border convex and slightly arcuate forward; eye ridge stout; eye lobe medium-sized; thorax with 16 segments; surface pustulose. Lower Cambrian (Qiongzhusian): China (eastern Yunnan), Eoredlichia-Wutingaspis Zone.

K. (Kuanyangia). Characters of the genus. Lower Cambrian (Qiongzhusian): China (eastern Yunnan), Eoredlichia-Wutingaspis Zone.—Fig. 282, 2. *K. (K.) pustulosa (Lu), eastern Yunnan (Kunming); holotype, incomplete cranidium, ×1.5 (W. Zhang, Lu, & others, 1980).

K. (Sapushania) W. CHANG, 1966, p. 155, 167 [*Sapushania granulosa; OD; holotype (W. Chang, 1966, pl. 1, fig. 14), 18150, NIGP, Nanjing]. Similar to K. (Kuanyangia), but having smaller eye lobe and longer (exs.) triangular posterior area of fixigena. Pygidial axial lobe composed of 2 axial rings and large terminal piece and reaching posterior margin; prominent, longitudinal, depressed area on terminal piece. Surface pustulose. Lower Cambrian (Qiongzhusian): China (eastern Yunnan; Wuting, Kunming). Eoredlichia-Wutingaspis Zone.—Fig. 282, 2. *K. (S.) granulosa (Chang), eastern Yunnan (Wuting); holotype, incomplete cranidium, ×1.5 (W. Chang, 1966).

Sardaspis BRASIER, 1976, p. 273 [*S. papillosa; OD; holotype (Brasier, 1976, pl. 25, fig. 1), AZ.51a,b, OUM, Oxford; Ptychoparia laticeps Bornemann, 1891, p. 23; holotype (Bornemann, 1891, p. 47(147), pl. 39, fig. 12; Rasetti, 1972, pl. 13, fig. 11), MLU, Halle]. Glabella conical, S1 continuous; occipital furrow arcuate backward; occipital ring broad (sag.) medially, with or without occipital spine; preglabellar field absent or very short (sag.); border furrow deep; border convex; eye ridge oblique, eye lobe medium-sized; surface pustulose. Librigena, thorax, and pygidium unknown. Lower Cambrian: Italy (Sardinia), Dolerolenus longiscolus Zone; China (Guizhou, southern Shaanxi), lower Canglangpucn, Viliangella or Yunnanaspis Zone.
Redlichiidae

Fig. 282. Redlichiidae (p. 441–444)

---Fig. 282.4. *S. laticeps* (BORNEMANN), Sardinia, Doloreolus longisculatus Zone; holotype, cranidium, ×2 (Rasetti, 1972).

?Wengangaspis YIN in YIN & LI, 1978, p. 415 [*W. baiyanensis*; OD; holotype (YIN in YIN & LI, 1978, pl. 150, fig. 11), Gt-105, SMNH, Shanghai]. Similar to Kapingaspis, but having longer (sag.) cranidial border, 4 pairs of glabellar furrows, broader (tr.) palpebral area of fixigena, less divergent anterior sections of facial sutures, and outward- and
forward-bent posterior area of fixigena. Librigena, thorax, and pygidium unknown. Lower Cambrian (Canyangpuan): China (Guizhou).—Fig. 281.

†Yorkella Kobayashi, 1942c, p. 492. [Conochelites australis Woodward, 1884, p. 372; OD; holotype (Woodward, 1884, pl. 11, fig. 2), I.2349, BMNH, London]. Similar to Wutingapis but having large, strongly convex glabella two-thirds to four-fifths as wide as long, with lateral margins either parallel or gently converging in anterior part; broadly rounded glabellar anterior in anterior border furrow; glabellar furrows incomplete across axis; and ornament of coarse, pointed tubercles. Pygidium occupied mainly by axis extending to posterior margin without doublure; small pleurae of 1 segment having expanded anterior pleural band and pair of marginal spines elevated above margin of axis. Lower Cambrian: South Australia (Horse Gully, Pararua tatei Zone).—Fig. 282, 5a, b. [†Y. australis (Woodward); holotype, a, dorsal and b, lateral views of cranidium, X3.6 (new).]

Family DOLEROLENIDAE
Kobayashi, 1951

[nom. subst. in Kobayashi & Kato, 1951, p. 103, pro Olenopsidea Kobayashi, 1935, p. 120, invalid name based on junior homonym]

Glabella long, tapering forward, with 3 pairs of faint, evenly spaced, lateral glabellar furrows; occipital furrow straight; anterior border long (sag. and exs.), flat; anterior sections of facial sutures on genal field moderately divergent (less than 45°), on border curved outwards; palpebral lobe arcuate; eye ridge wide, faint; posterior areas of fixigena subtriangular; librigena wide, with stout genal spine. Thorax with 11 to 15 segments. Pygidium small, with 1 to 2 pairs of pygidial spines. Lower Cambrian.

Subfamily DOLEROLENINAE
Kobayashi, 1951

Palpebral lobe long, posterior; fixigena wide. Thorax with 14 to 15 segments; axis narrower than pleural regions; pleural spines progressively curved backward; fulcrum proximal. Pygidium small; axis short with 1 or 2 rings; posterior border with pair of small or large spines. Lower Cambrian.

Dolerolenus Leanza, 1949, p. 36, nom. subst. pro Olenopsis Bornemann, 1891, p. 459, non Ameghino, 1889 [†Olenus zappii Meneghini, 1882, p. 163; SD Walcott, 1912d, p. 240; lectotype (Meneghini, 1882, pl. 1, fig. 5, 5a; SD Nicola & Rasetti, 1970, p. 8, 17), 1, 5G, Rome]. Characters of subfamily. Lower Cambrian: southwestern China, Spain, Italy (Sardinia).

D. (Dolerolenus). Glabella rounded in front; preglabellar field as long (sag.) as border; plecpectrum faintly defined; posterior extremities of facial sutures distant from axial furrows; palpebral lobe extending between level of midlength of L3 and midlength of L1, with curvature increasing rearward. Thorax with 15 segments; pleural spines long, the posterior ones enveloping pygidium. Pygidium subrectangular; axis not tapered, composed of 1 ring and a terminal axial piece; with a median notch; pleural lobes rather long (sag.), with 1 furrow, truncate or extended into a pair of short spines; border indistinct. Lower Cambrian: Italy (Sardinia), Dolerolenus Zone.—Fig. 283, 1a–c. [D. zappii (Meneghini); a, lectotype, OD; holotype (Meneghini), Dolerolenus Zone. —Fig. 283, 1a–c. [D. zappii (Meneghini); a, lectotype, OD; holotype (Meneghini), Dolerolenus Zone. —Fig. 283, 1a–c. D. (Dolerolenus) W. baiyanensis, Zhou & Peng, 1994, p. 444; OD; holotype (Zhou & Peng, 1994, pl. 3, fig. 1), X2.2 (Pillola, 1991); C. topotype, well-preserved cranidium showing facial line, X1.75 (Pillola, 1991).

D. (Malungia) Lu, 1961, p. 307 [†Malungia larvata; OD; holotype (Lu, 1961, pl. 3, fig. 1), 12670, NIGP, Nanjing]. Differences from D. (Dolerolenus) in having 14 thoracic segments and scissors-shaped pygidium. Hypostome as in D. (Dolerolenus) with median body ovate, maculae deeply depressed, posterior lobe short (sag.), border narrow, posterior margin straight or bending backward, anterior margin forward arculate, and anterior wing triangular. Lower Cambrian (upper Qiangebian to lower Canglangpuan): China (eastern Yunnan, northern Sichuan), Eoredlichia-Wutingapis Zone to Malungia Zone. —Fig. 283, 2a, b. [‡D. (M.) larvata (Lu); eastern Yunnan (Yiliang); a, holotype, distorted dorsal shield, X2.2; b, topotype, dorsal shield, X2 (Pillola, 1991); a, topotype, well-preserved cranidium showing facial line, X1.75 (Lu, 1961).

?Subfamily PARAMALUNGIINAE
Zhang & Lin, 1980

Paramalungia W. Chang, 1966, p. 155 [†P. lubrica; OD; holotype (W. Chang, 1966, pl. 2, fig. 5), 18155, NIGP, Nanjing]. Cranidium similar to Dolerolenus (Malungia), but having relatively large, smooth glabella, smooth cranidium, occipital ring with small occipital tubercle, relatively short and
faint eye ridges, and relatively longer eye lobes. Thorax with 11 segments. Pygidium trapezoidal, with pair of anterior pleural segments extending into a pair of short, anterior, lateral pygidial spines and with a pair of short, slender, and posterior pygidial spines. Lower Cambrian (lower Canglangpuan): China (eastern Yunnan), Drepanuroides Zone.—Fig. 284. *P. lubria*, eastern Yunnan (Yiliang); holotype, cranidium, X2 (W. Chang, 1966).
Family YINITIDAE Hupé, 1953

Yinites LU, 1946, p. 188 [*Y. typicalis; OD; lectotype (LU, 1946, pl. 1, fig. 1a; W. ZHANG, LU, & others, 1980, pl. 60, fig. 1), AB126, NIGP, Nanjing]. Glabella long and rounded in front; pre-occipital and occipital furrows gently curved backward; occipital ring of uniform width; proximal end of anterior section of facial suture near axial furrow; posterior area of fixigena triangular; librigena with long and slightly advanced genal spine. Thorax with 13 segments. Pygidium with 3 or 4 axial rings, large terminal axial piece, 3 pleurae, 2 pairs of short, lateral pygidial spines, and a pair of long, backwardly directed posterior spines. Hypostome subtrapezoidal; median body large and ovate; posterior lobe narrow (sag.); posterior border very narrow and distinct; anterior wings triangular. Lower Cambrian (lower Canglangpuan): China (northern Guizhou, southeastern Yunnan, northern Sichuan, southern Shaanxi), Yiliangella Zone to Drepanoroides Zone.——Fig. 285,1a,k. *Y. typicalis, northern Guizhou (Gaotai in Meitan); a, holotype, cranidium, X4; k, paratype, pygidium, X10 (W. Zhang, Lu, & others, 1980).

Drepanopyge LU, 1961, p. 303, 314 [*D. mirabilis; OD; holotype (LU, 1961, pl. 2, fig. 2), 12659, NIGP, Nanjing]. Cranidium subrectangular; glabella broad, slightly tapering forward, and rounded in front; S1–S3 are transglabellar furrows; S3 weak; occipital furrow deeper than glabellar furrows; occipital ring uniform in length (sag. and exs.), with a small median node; preglabellar field very short (sag.); border of cranidial convex; border furrow narrow, marked by a row of small pits; eye lobe medium-sized; eye ridge distinct; fixigena wide (tr.), nearly half glabellar width; posterior area of fixigena subtriangular; posterolateral furrow broad (exs.) and shallow; librigena with slightly advanced genal spine. Thorax with 10 segments. Pygidial axis convex, with 5 or 6 rings and a large terminal piece; pleural region with 5 pleurae, each ending in a short and stout spine; posterior pair of pygidial pleurae fused behind the terminal piece; posterior margin entire and bent backward. Hypostome broadly ovate; medium body large and elongately ovate, with transverse striations; posterior lobe narrow (sag.); posterior border narrow and distinct; anterior wings triangular. Rostral plate very wide (tr.). Lower Cambrian (lower Canglangpuan): China (eastern Yunnan: Malong, Yiliang), Drepanoroides Zone.——Fig. 285,a,b. *D. mirabilis, eastern Yunnan (Yiliang); a, holotype, cranidium, X2; b, paratype, librigena, X2 (Lu, 1961).

Drepanoroides W. CHANG, 1966, p. 157 [*D. latilimbata; OD; holotype (W. CHANG, 1966, pl. 2, fig. 8), 18158, NIGP, Nanjing] [=Mayiella (Xishuiella) YIN in YIN & LI, 1978, p. 421 (type, M. (X. xishuiensis; OD)]. Differs from Drepanopyge in having broad and shallow glabellar furrows, long (sag., exs.) anterior border, and distinct para doublural line in front of glabella; prominent occipital spine. Librigena with broad (tr.) border and narrower (tr.) genal spine. Thorax with 10 segments and longer pleural spines increasing in size regularly toward posterior. Pygidium with 5 pairs of broad based marginal spines of variable length, anterior pair enlarged or continuing into long spines. Doubly broad. Lower Cambrian (lower Canglangpuan): China (eastern Yunnan, northern Guizhou), Drepanoroides Zone.——Fig. 286,2. *D. latilimbata; eastern Yunnan (Yiliang); cranidium, X1 (W. Chang, 1966).

Meitanella LIN & YIN in YIN & LI, 1978, p. 417 [*M. hastata; OD; holotype (YIN & LI, 1978, pl. 150, fig. 14; W. ZHANG, LU, & others, 1980, pl. 58, fig. 9), 37909, NIGP, Nanjing]. Glabella long (sag.), broad (tr.), and slightly constricted at middle; frontal lobe acutely pointed. All furrows on the cranidium narrow and deep; anterior border long (sag. and exs.) and cranidial border furrow strongly arched forward sagittally; eye ridge short and oblique; eye lobe of medium size, strongly bending outward, and close to the axial furrow; palpebral area of fixigena narrow (tr.); anterior section of facial suture divergent. Librigena, thorax, and pygidium unknown. Lower Cambrian (lower Canglangpuan): China (northern Guizhou), Drepanoroides Zone.——Fig. 286,3. *M. hastata; northern Guizhou (Meitan); holotype, cranidium, X2; paratype, librigena, X1 (W. ZHANG, L. & others, 1980).

Psokannia HO & LI, 1959, p. 156 [*P. chinensis; OD; holotype (HO & LI, 1959, pl. 1, fig. 3a), 5803, CUGB, Beijing]. Similar to Drepanopyge, but having relatively narrower (tr.) cranidium and palpebral area of fixigena, a very small and short genal spine, and 6 to 7 small pygidial border spines. Lower Cambrian (Canglangpuan): Kashmir (Anantnag); China (western Hubei, Sichuan, Guizhou, Jiangsu).?Drepanoroides Zone.——Fig. 285,3. *P. chinensis;
northwest Hupei (Baokang), holotype, cranidium, ×2 (Ho & Li, 1959).

Parapaokannia *Zhang & Lin* in *W. Zhang, Lu*, & others, 1980, p. 198, 431 [*P. sichuanensis*; OD; holotype (W. Zhang, Lu, & others, 1980, pl. 56, fig. 6), 37890, NIGP, Nanjing]. Cranidium subtrapezoidal; glabella broad, long, tapering forward, with frontal lobe broadly rounded and 3 pairs of weak glabellar furrows; preglabellar field absent; occipital ring of uniform length (sag. and exs.); eye ridge stout; eye lobe of moderate length, situated at mid-length of cranidium; anterior sections of facial sutures short, subparallel or slightly divergent; posterior area of fixigena broad (tr.) and long; librigena narrow, genal spine long. Thorax with 11 segments. Pygidium with prominent axial lobe; pleural field narrow, with 2 or 3 pleural furrows; doublure broadening posteriorly; border spines absent. *Lower Cambrian* (lower Canglangpuan): China (northern Sichuan); *Drepanurididae Zone*.——Fig. 286, 1, a, b. [*P. sichuanensis*, northern Sichuan (Nanjing); a, holotype, cranidium; b, paratype, incomplete dorsal exoskeleton, ×5 (W. Zhang, Lu, & others, 1980).
Parayinites Zhang & Lin in W. Zhang, Lu, & others, 1980, p. 209 [*P. spinosus; OD; holotype (W. Zhang, Lu, & others, 1980, pl. 62, fig. 10), 37941, NIGP, Nanjing]. Differing from Yinites in having broader (tr.), conical glabella, longer eye lobe, large occipital spine, very small anterior area of fixigena, and shorter and less divergent anterior sections of facial sutures. Librigena, thorax, and pygidium unknown. Lower Cambrian (Canglangpuan).—China (northern Guizhou).—Fig. 285, 2. *P. spinosus; northern Guizhou (Yuqing), holotype, cranidium, X4 (W. Zhang, Lu, & others, 1980).

Pseudopaokannia Yin in Yin & Li, 1978, p. 416 [*P. kaiyangensis; OD; holotype (Yin & Li, 1978, pl. 149, fig. 2), Gt-087, SMNH, Shanghai]. Cranidium broad (tr.), short (sag.), and subtrapezoidal; anterior border gently convex and long (sag., exs.); glabella short (sag.), tapering forward, with frontal lobe well rounded; preglabellar field long (sag.) and...
Redlichina—Emuelloidea

449

Family MAYIELLIDAE Chang, 1966

Cranidium quadrate or subquadrate; glos-
bellula cylindrical or broadly conical, with or
without glosbellar furrows; glosbellar field
absent or short (sag.); anterior sections of
facial sutures short, subparallel to slightly
divergent. Thorax with 10 segments. Py-
gidium medium sized; axial lobe cylindrical
and long (sag.), with 1 to 4 axial tubercles and
3 pairs of pleural furrows. Lower Cam-
bridian.

Mayiella W. CHANG, 1966, p. 162, 179 [M. tuber-
culata; OD; holotype (W. CHANG, 1966, pl. 5, fig. 5),
18182, NIGP, Nanjing]. Cranidium trapezoidal,
with rounded front; glosbellula tapering forward,
frontal lobe rounded; glosbellar furrows absent;
occipital furrow shallow; occipital ring of uniform
length (sag. and exs.); anterior border furrow shallow
and long (sag. and exs.), within which a row of small
tubercles may be present; anterior border gently
convex, longer sagittally; eye lobe long and arcu-
ately distally; librigena unknown. Thorax with 10 seg-
ments, articulating facets well developed on the
anterior 3 or 4 thoracic pleurae; pleural spines
short. Pygidium semicircular; border flat; no bor-
der spines. Lower Cambrian (lower Canglangpuan):
China (eastern Yunnan), Drepanuridae Zone.—
Fig. 289, 1. *M. tuberculata*, eastern Yunnan
(Malong): holotype, cranidium, thorax, and
pygidium, X6 (W. CHANG, 1966).

Qiaodella ZHANG, LIN, & ZHOU in W. ZHANG, LU, &
others, 1980, p. 222 [Q. qiaodensis; OD; holotype
(W. ZHANG, LU, & others, 1980, pl. 68, fig. 10),
37995, NIGP, Nanjing]. Cranidium subtrapezoidal,
with strongly arched front; preglabellar area in-
flated, preglabellar field and anterior border unidi-
vided; anterior border furrow long (sag. and exs.)
and shallow, curving adaxially to meet extremity
of preglabellar furrow. Glosbellula convex, slightly
tapering toward the front, anterior margin of frontal
lobe flat, rounded, with 3 pairs of weak glosbellar fur-
rows; posterior border furrow and occipital furrow
long (sag. and exs.) and deep; anterior section of
facial suture subparallel. Librigena, thorax, and
pygidium unknown. Lower Cambrian (lower Cang-
langpuan): China (northern Guizhou), Drepanuridae
Zone.—Fig. 289, 3. *Q. qiaodensis*, northern
Guizhou (Yuqing): holotype, cranidium, X4 (W.
ZHANG, LU, & others, 1980).

Yunnanaspidella W. CHANG, 1966, p. 159, 169 [Y.
spinocaudata; OD; holotype (W. CHANG, 1966, pl.
4, fig. 7), 18177, NIGP, Nanjing]. Similar to Yun-
nanaspis, but preglabellar field shorter (sag.) or ab-
sent, eye lobe longer, and posterior area of fixigena
shorter (exs.). Thorax with 13 segments. Pygidium
with 4 pairs of relatively small border spines and a
5th pair of long, outwardly and backwardly directed
spines. Lower Cambrian (lower Canglangpuan):
China (eastern Yunnan), Drepanuridae Zone.—
Fig. 288a,b. *Y. spinocaudata*, eastern Yunnan
(Malong): a, incomplete thorax and pygidium, X8;
b, topotype, incomplete exoskeleton, X2 (W.
CHANG, 1966).

Yunnanaspis W. CHANG, 1966, p. 159, 169 [Y.
bilongispinus; OD; holotype (W. CHANG, 1966, pl.
4, fig. 4), 18174, NIGP, Nanjing]. Glosbellula broad,
tapering forward, frontal lobe well rounded, and
gladder furrows obsolete; border furrow shallow;
preglabellar field short (sag.); eye ridge distinct; eye
lobe small; posterior area of fixigena broad (tr.) and
long; librigena with long genal spine. Thorax with
9 segments. Pygidium with 5 rings, large terminal
piece, 5 pleurae ending with 5 pairs of short border
spines, and a rear pair of long, backward-directed
spines. Lower Cambrian (lower Canglangpuan):
China (eastern Yunnan), Yunnanaspis Zone.—
Fig. 287, 1a,b. *Y. bilongispinus*, eastern Yunnan
(Malong): a, holotype, pygidium, X4.7; b, incom-
plete dorsal exoskeleton, X4.7 (W. CHANG, 1966).
exs.), of uniform length and gently convex; eye lobe small, Librigena, thorax, and pygidium unknown. Lower Cambrian (lower Canglangpuan): China (northern Sichuan), Drepanusoides Zone.——Fig. 289.2 *Q. quadratus; northern Sichuan (Nanjian); holotype, cranidium, X3 (W. Chang, 1966).
Family GIGANTOPYGIDAE
Harrington, 1959

Glabella tapering slightly forward, with 3 or 4 pairs of glabellar furrows; preglabellar field absent or present; anterior section of facial sutures short, subparallel or moderately divergent; posterior areas of fixigenae wide (tr.) and narrow or long (exs.); librigena with genal spine. Thorax with 14 to 16 segments and long pleural spines. Pygidial axial lobe composed of 1 to 4 rings and large or small terminal piece; pleural regions produced backward into 1 or 2 pairs of spines. Lower Cambrian.

Subfamily GIGANTOPYGINAE
Harrington, 1959

Glabella subtruncate in front, with 4 pairs of glabellar furrows; occipital ring of uniform length (sag. and exs.); preglabellar field absent; anterior border long (sag. and exs.), flat; anterior pit present, transversely elongated; eye ridge long, curving forward beside frontal and anterior glabellar lobes; eye lobe strongly arcuate, extending to level of occipital furrow; anterior sections of facial sutures moderately divergent, subparallel across border; librigenae wide. Thorax with 14 (or ?15) segments. Pygidium long, narrow; axis short, with 3 rings. Lower Cambrian.

Gigantopygus Hupé, 1953a, p. 181 [*G. papillatus; OD; holotype (Hupé, 1953a, pl. 7, fig. 2), G76 (R50882), MNHN, Paris]. Anterior (S4) lateral glabellar furrows faint; S2 and S1 almost transglabellar; occipital furrow discontinuous at midpoint; palpebral area of fixigena wide (tr.); posterior area of fixigena short (exs.) and broad (tr.). Lower Cambrian: Spain, Morocco.—Fig. 290, 3. *G. papillatus, Morocco, Longianda and Gigantopygus Zones; holotype, cranidium, ×0.9 (Hupé, 1953a).

Subfamily YILIANGELLINAE
Zhang & Lin, 1980

Glabella with 3 pairs of glabellar furrows; eye lobe medium-sized or slightly longer; posterior areas of fixigenae broad (tr.) and long (exs.). Thorax with 14 to 16 segments, Axial lobe of pygidium with 1 to 4 rings and long (sag.) or small terminal piece; posterior margin deeply notched, or rounded, between inner pair of border spines. Lower Cambrian.
Yiliangella W. CHANG, 1966, p. 161 [*Y. forficula; OD; holotype (W. CHANG, 1966, pl. 6, fig. 1), 18184, NIGP, Nanjing] [=Palaeaspis YANG, 1981, p. 78 (type, P. barbutus; OD)]. Glabella tapering forward, with frontal lobe rounded; preglabellar field absent; eye lobe relatively small; anterior cranidial border short (sag. and exs.) and convex. Thorax with 16 segments. Pygidium small, with 2 pairs of pygidial spines; pygidial axial lobe with an anterior ring and long (sag.), cylindrical terminal piece. Hypostome subtriangular, medial body ovate, border furrow well developed anterolaterally, posterior margin with 11 or 12 small spines. Lower Cambrian (lower Canglangpuan): China (eastern Yunnan, western Sichuan), Yiliangella Zone.—Fig. 290, 2. *Y. forficula*, eastern Yunnan (Yiliang); holotype, cephalon and thorax, ×2.7 (W. Chang, 1966).

Yiliangellina W. CHANG, 1966, p. 162, 170 [*Y. formosa; OD; holotype (W. CHANG, 1966, pl. 6, fig. 4), 18187, NIGP, Nanjing]. Differs from Yiliangella in having broad, smooth glabella and long (sag.), slightly depressed preglabellar field, a longer eye lobe, and shorter (exs.) posterior area of fixigena. Lower Cambrian (lower Canglangpuan): China (eastern Yunnan), Drepanuroides Zone.—Fig. 290, J. *Y. formosa*, eastern Yunnan (Yiliang); holotype, cranidium, thorax, and pygidium, ×6 (W. Chang, 1966).

Zhangshania LI & ZHANG in S. LI, KANG, & ZHANG, 1990, p. 44 [*Z. typica; OD; holotype (S. LI, KANG, & ZHANG, 1990, pl. 2, fig. 1), LY-312, CIFGMR, Chengdu]. Similar to Yiliangella, but having 14 thoracic segments, relatively larger pygidium with 4 axial rings and small terminal piece, pair of lateral pygidial spines, and broad doublure. Posterior margin of hypostome rounded, without marginal spines. Lower Cambrian (lower Canglangpuan): China (western Sichuan: Leshan), Yiliangella Zone.—Fig. 290, A. *Z. typica*; complete dorsal exoskeleton, holotype, ×1.8 (S. Li, Kang, & Zhang, 1990).
Fig. 290. Gigantopygidae (p. 451–452)
wide; anterior sections of facial sutures moderately divergent to border furrow, gently curved outward across border; eye lobe arcuate, long, reaching level of occipital furrow; palpebral area of fixigena swollen posteriorly; librigena wide. Thorax with 12 to 15 segments; fulcral proximal. Pygidium with more segments and larger than in Redlichidae; pygidial border well developed. Lower Cambrian.

Subfamily SAUKIANDINAE Hupé, 1953

[Glabellar furrow S3 commonly obsolete but short and oblique backward when present; S2 similar to S3; S1 transglabellar, oblique backward abaxially and normal to axis medially; occipital furrow deep. Thorax with 15 segments. Border of pygidium very wide, flat. Surface finely granulose. Lower Cambrian.]

Subfamily DESPUJOLSIINAE Harrington, 1959

Cranidium long; glabella long, constricted at level of L2, with 3 pairs of faint, short, lateral glabellar furrows separated from axial furrow; occipital ring wide (sag.); preglabellar field as long (sag.) as preglabellar field short (sag. and exs.); genal spines advanced. Pygidium rounded, with wide axis containing 1 to 2 rings and broadly rounded terminal axial piece; pleural fields narrow, connected behind axis; posterior margin slightly inclined. Lower Cambrian: Spain, Morocco.

S. (Saukianda), Glabella subtruncate to slightly rounded in front; 3 segments; S2 very short; S1 deep, broad; occipital furrow slightly curved backwards; occipital ring of uniform length (sag. and exs.), with short median spine; preglabellar field short (sag. and exs.); genal spines advanced. Pygidium rounded, with wide axis containing 1 to 2 rings and broadly rounded terminal axial piece; pleural fields narrow, connected behind axis; posterior margin slightly inclined. Lower Cambrian: Spain, Morocco.

S. (Pseudosaukianda) Hupe, 1953a, p. 196 [*P. lata; OD; holotype (Hupe, 1953a, pl. 8, fig. 7), G236 (R50867), MNHN, Paris]. Glabella short, broadly conical, and rounded in front; S2 and S3 short; occipital furrow with slight forward bend; genal spine not advanced but a short and very stout continuation of border. Lower Cambrian: Morocco, Longianda and Gigantopygus Zones.—Fig. 291, T. *S. (P.) lata* (Hupe); holotype, cephalon and incomplete thorax, X4.5 (Hupe, 1953a).

Glabella tapering slightly forward; preglabellar field moderately long (sag. and exs.), short, or absent; posterior extremity of palpebral lobe distant from axial furrow; advanced genal spine. Thorax with 12 to 14...
segments; 9th or 11th segment macrospinose, or macrospinose segment absent. Pygidium parabolical; axis broad, conical, with 3 to 10 rings; pleural regions with 2 to 8 pleurae, not delimited by border furrow. Lower Cambrian.
Trilobita

having stouter genal spines and macrospinose 9th thoracic pleura. Lower Cambrian: Spain.

Fig. 293.2. *P. (R.) resserianus* Richter & Richter; reconstruction of exoskeleton, X3 (Richter & Richter, 1940).

P. (Richterops) Hupé, 1953a, p. 173 [*R. (Richterops) falloti* Hupé, 1953a, p. 176; OD; holotype (Hupé, 1953a, p. 346, pl. 6, fig. 1), G74 (R50854), MNHN, Paris (on p. 177 Hupé also referred to MNHN G202 as the holotype) [=Marsaisia Hupé, 1953a, p. 149 (type, M. robauxi; OD)]. Differs from *P. (Perrector)* in having 14 thoracic segments, with 11th segment macrospinose. Lower Cambrian: Morocco, Daguanapsis and Resserops Zones.—Fig. 293, 3. *P. (R.) falloti* (Hupé), Morocco (Tazemmourt); exoskeleton, ×2 (Hupé, 1953a).

Australaspis Palmer & Gatehouse, 1972, p. 12 [*A. magnus*; OD; holotype (Palmer & Gatehouse, 1972, pl. 1, fig. 2), 169058, USNM, Washington, D.C.]. Glabella bluntly rounded anteriorly, reaching to anterior border; eye lobe stout, elongate, strongly curved; palpebro-ocular ridge bifurcated toward glabella with anterior ridge continuous around and abaxial to anterolateral corner of glabella; posterior area of fixigena moderately long, slender; librigena with broad-based genal spine continuing curvature of lateral margin. Pygidium with broad axis reaching nearly to posterior margin and 4 narrow axial rings; pleural regions less than half width of axis; margin smoothly curved. Lower Cambrian: Antarctica.—Fig. 294, 2a-c. *A. magnus*; a, holotype, boulders from moraine on Mount Spann, cranidium, ×2; b, paratype, cranidium, ×2; c, paratype, pygidium, ×2 (Palmer & Gatehouse, 1972).

Clariondia Hupé, 1953a, p. 188 [*C. chazani*; OD; holotype (Hupé, 1953a, p. 187, fig. 44.1,3), G54, MNHN, Paris]. Glabella narrow; lateral glabellar and occipital furrows oblique backward, discontinuous medially; posterior edge of occipital ring semicircular; preglabellar field moderately wide; eye lobe reaching level of occipital furrow. Pygidium with 5 axial rings, short terminal axial piece, and 5 pleurae. Lower Cambrian: Morocco, Antatlasia Zone. [The type species of this genus is based on Hupé’s description and a line drawing. G. Geyer reports that no specimens have been traced, and the exact type locality is unknown.]—Fig. 294, 3a,b. *C. chazani*; a, holotype, cranidium, X2; b, paratype, cranidium, X2; c, paratype, pygidium, X3 (Hupé, 1953a).

Dolerolichia Soszyn, 1962a, p. 1089 [*D. pretiosa*; OD; holotype (Soszyn, 1962a, pl. 1, fig. 1), X151a, SMF, Frankfurt am Main]. Anterior glabellar furrows normal to axis; occipital furrow and S1 well-marked laterally, slightly bent backward; all furrows disconnected medially; frontal lobe connected with border by wide (tr.) plectrum; preglabellar field narrow, with facial lines; palpbral lobe long, nearly reaching posterior border furrow; posterior facial suture strongly divergent. Pygidium of roundish shape; axis with 2 rings and large terminal piece; pleural field with 4 or 5 ribs. Lower Cambrian:

© 2009 University of Kansas Paleontological Institute
Trilobita

terior border of moderate width. Lower Cambrian: Morocco, Antatlasia Zone. [The type species of this genus is based on HUPÉ’s description and a line drawing. G. Geyer reports that no specimens have been traced, and the exact type locality is unknown.]——FIG. 293, 4. *

*P. transitans; holotype, cranidium, ×3 (Hupé, 1953a).

Realaspis SDZUY, 1961, p. 535 [*R. strenoides; OD; holotype (SDZUY, 1961, pl. 4, fig. 6), L3082, UMU, Münster]. S1 and S2 directed obliquely backwards; S3 very faint; palpebral lobe less than one-third as long as cranidium, with posterior end widely distant from posterior border furrow; eye ridge faint; preglabellar field very short. Librigena with strong genal spine. Pygidium semielliptical, with 3 axial rings and 2 to 3 ribs. Lower Cambrian: Spain.——FIG. 294, 1a,b. *R. strenoides, Spain (Los Cortijos); a, holotype, dorsal view of cranidium, ×3.5; b, dorsal view of pygidium, ×3 (photographs courtesy of G. Geyer).

Germany.——FIG. 294, 4. *D. pretiosa, Germany (Doberlug); holotype, cranidium, ×3 (Sdzuy, 1962a).

Eops RICHTER & RICHTER, 1940, p. 36 [*E. eo; OD; holotype (RICHTER & RICHTER, 1940, pl. 2, fig. 45), X1000b, SMF, Frankfurt am Main]. Glabella with S2 and S3 discontinuous medially; S1 chevron shaped; preglabellar field moderately long (sag.); occipital node or spine absent; anterior border long (sag. and exs.); anterior sections of facial sutures diverging at about 45°. Lower Cambrian: Spain, ?Morocco.——FIG. 293, 1. *E. eo, Andalusia (Alanis); holotype, dorsal view of cranidium, X2.5 (photographs courtesy of G. Geyer).

Pareops HUPÉ, 1953a, p. 180 [*P. transitans; OD; holotype (HUPÉ, 1953a, p. 180, fig. 42), G315, repository unknown]. Glabella anteriorly truncate; lateral glabellar furrows slightly directed backwards, disconnected medially; occipital furrow nearly completely effaced medially; occipital ring straight; anterior border of moderate width. Lower Cambrian: Morocco, Antatlasia Zone. [The type species of this genus is based on HUPÉ’s description and a line drawing. G. Geyer reports that no specimens have been traced, and the exact type locality is unknown.]——FIG. 293, 4. *P. transitans; holotype, cranidium, ×1 (Hupé, 1953a).
Family METADOXIDIDAE
Whitehouse, 1939

(Metadoxidae Whitehouse, 1939, p. 190) [=Anadoxididae Nicosia & Rasetti, 1970, p. 9]

Glabella strongly tapering forward; anterior and palpebral areas of fixigenae wide, with well-defined eye ridge and relatively small eye lobe. Thorax with 12 to 22 segments and wide (exs.) pleural furrows; pleural spines present or absent. Pygidium small. Lower Cambrian.

Metadoxides Borneann, 1891, p. 462 [*Paradoxides torous Meneghini, 1888, p. 20; SD VOGDES, 1925, p. 105; *P. armatus Meneghini, 1881, p. 307; lectotype and paratype (MENEGHINI, 1888, pl. 2, fig. 1–2; pl. 3, fig. 4; SD NICOSIA & Rasetti, 1970, p. 9), SG 10 (lectotype), SG 20–21 (paratype); lectotype for Paradoxides armatus Meneghini, 1881, p. 307 (NICOSIA & Rasetti, 1970, p. 10, pl. 2, fig. 4; SD Rasetti, 1972, p. 61), 17, SG, Rome] [=Anadoxides Matthew, 1899, p. 142 (type, P armatus Meneghini, 1881, p. 307; SD VOGDES, 1925, p. 105)]. Cephalon broad (tr.), cephalic width (tr.) about 3 times length (sag.). Cranidium broad (tr.), subtrapezoidal in outline. Glabella rounded in front, reaching anterior border; anterior area of fixigena broad (tr.) and short (exs.); eye ridge long, extending outward and backward; ocular striga distinct proximally; eye lobe small or medium-sized; palpebral area of fixigena as wide as glabella; anterior section of facial sutures subparallel. Librigena wide; border flat, extending into a stout and very short genal spine. Thorax with 22 segments; axial node present on at least some of axial rings; pleurae without spines. Pygidium subtriangular; axis wider than pleural regions, almost reaching posterior margin; with few, faint pleural and interpleural furrows; border indistinct. Surface finely granulose. Lower Cambrian: Italy (Sardinia), Spain; [*Siberia: Italy (Sardinia), Dolerolens courtesi to D. zoppii Zone.—Fig. 295, a,b. *M. armatus (Meneghini), D. zoppii Zone, Sardinia; a, lectotype, cranidium and incomplete thorax, X1.45 (Nicosa & Rasetti, 1970); b, dorsal exoskeleton, X1.45 (Pilolla, 1991).]

Churkinia Palmer, 1968, p. 39 [*C. yukonensis; OD: holotype (PALMER, 1968, pl. 1, fig. 7), 146649, USNM, Washington, D.C.]. Cranidium subtrapezoidal; glabella with 3 pairs of transglabellar furrows; L1 divided into a median and 2 lateral lobes; anterior sections of facial sutures subparallel; facial line oblique; anterior ends of eye lobes widely separated from glabella; eye lobe relatively short, terminating opposite S1; posterior area of fixigenae broad (tr.) and long (exs.). Thorax with slender pleural spine developed only from anterior pleural band. Pygidium small; axis broad, with 2 axial rings and bilobed terminal piece. Hypostome elongately ovate. Lower Cambrian: USA (Alaska).—Fig. 295, a–d. *C. yukonensis; a, holotype, cranidium, X2.9; b, librigena, X2.9; c, pygidium, X3.88; d, hypostome, X4.85 (Palmer, 1968).

Enantiaspis Rasetti, 1972, p. 69 [*Ptychoparia enantiopa Bornemann, 1891, p. 422; OD: lectotype (Borneann, 1891, pl. 39, fig. 14; SD Rasetti, 1972, pl. 11, fig. 1), specimen number not recorded, MLU, Halle]. Glabella with 3 pairs of broad, shallow, transglabellar furrows; eye ridge directed forward from axial furrow, so that anterior end of palpebral lobe is farther forward than front end of glabella; palpebral lobe semicircular, posterior end opposite S2; anterior border of cranidium almost straight. Librigena with sharp genal angle; border almost flat. Thorax with 16½ segments; pleural terminations spinelike. Pygidium with long, parallel-sided axis having a posterior median notch; postaxial portion with a small median notch; posterior margin ending in a pair of short spines. Lower Cambrian: Italy (Sardinia), Dolerolens longioculatus Zone.—Fig. 296, 1. *E. enantiopa (Borneann), Sardinia (Canalgrande); lectotype, dorsal view of cranidium, X1.5 (photograph courtesy of G. Geyer).

Fuminaspis Zhang & Lin in W. Zhang, Lu, & others, 1980, p. 172 [*Metadoxides yunnanensis W. Chang & Lin in Lu, Chang, & others, 1974, p. 86; OD: holotype (LU, CHANG, & others, 1974, pl. 31, fig. 16), 37797, NIGP, Nanjing]. Similar to Metadoxides and Hongshiyanaspis, but with narrower (tr.) cranidium, shorter (tr.) and forwardly arcuate glabellar furrows, relatively longer eye lobe, narrow (tr.) palpebral area of fixigena, and lacking intergenal angle and fixigenal spine. Librigena, thorax, and pygidium unknown. Lower Cambrian: Qiongzhusian: China (eastern Yunnan), Eoreddlichia-Wutingspis Zone.—Fig. 295, 3. *E. yunnanensis (Zhang & Lin), eastern Yunnan (Fumin); holotype, cranidium, X4.85 (W. Zhang, Lu, & others, 1980).

Hongshiyanaspis Zhang & Lin in W. Zhang, Lu, & others, 1980, p. 171 [*H. yilanensis; OD: holotype (W. Zhang, Lu, & others, 1980, pl. 45, fig. 6), 37797, NIGP, Nanjing]. Cranidium trapezoidal, with anterior border short (sag. and exs.) and convex; glabella frontal lobe well rounded, with 3 pairs of glabellar furrows; preglabellar field absent; occlusal ring convex, broad in the middle, with a small median tubercle; eye ridge divided by ocular striga; eye lobe small; posterior area of fixigena broad (tr.) and long (exs.); posterior border with intergenal angle and distal fixigenal spine; anterior sections of facial sutures short and subparallel. Thorax having no less than 14 segments. Pygidium and librigena unknown. Lower Cambrian: Qiongzhusian: China (eastern Yunnan).—Fig. 296, 4. *H. yilanensis, eastern Yunnan (Yiliang); holotype, cranidium, X8 (W. Zhang, Lu, & others, 1980).

Minusinella Repina in Khalin, 1960, p. 174 [*M. lochmanae; OD: holotype (Repina in Khalin, 1960, pl. 19, fig. 11), 3356/267, CSGM, Novosibirsk] [=Minusinella Repina, 1966, p. 83, incorrect spelling]. Cranidium subtrapezoidal; glabella with 3
pairs of glabellar furrows; S1 bifurcate proximally; occipital ring longer (sag.) medially; eye ridge long and stout; eye lobe medium-sized; preglabellar field absent; anterior border narrow (sag., exs.); anterior sections of facial sutures short, subparallel to slightly divergent. Librigena, thorax, and pygidium un-

known. Lower Cambrian: Russia (Kuznetsk Alatau), Resimopsis Zone.—Fig. 296, 3. *M. lochmanae; holotype, cranidium, ×2.5 (Khalfin, 1960).

Onaraspis Örns, 1968, p. 151 [*O. somniurna; OD; holotype (Örns, 1968, pl. 19, fig. 3), CPC 7165, AGSO, Canberra]. Similar to Metadoxides, but hav-
Family ABADIELLIDAE Hupé, 1953

Glabella conical to subovate, with 3 or 4 pairs of glabellar furrows directed obliquely backward, though S3 and S2 may be obsolete; occipital furrow slightly curved backward; occipital ring produced into stout median spine; preglabellar field long (sag.); anterior sections of facial sutures moderately divergent (generally less than 45°), proximal extremities distant from axial furrows; eye lobe arcuate, extending from anterolateral corner of glabella to level of anterior one-third of L1. Thorax with 15 to 17 segments. Pygidium small. Lower Cambrian.

Abadiella Hupe, 1953a, p. 204 [*A. bourgini; OD; holotype (Hupé, 1953a, p. 204, fig. 45.2), G318, MNHN, Paris]. Cranidium subquadrate; glabella tapering forward, acutely rounded in front; frontal lobe small and subrounded; S3 shallow, short and indistinct; S2, S1 narrow, deep, and steeply oblique backward; occipital ring longer sagittally and produced backward into a strong and longer occipital spine; preglabellar field with low plectrum; anterior area of fixigena and facial line similar to that of Eoredlichia; anterior border gently convex, longer sagittally and gradually narrower (exs.) toward distal extremities; eye ridge and eye lobe stout, eye lobe longer (exs.) than in Parabadiella, its posterior tip reaching the midlength of L1; posterior area of fixigena long (exs.) and broad (tr.); fulcrum distinct. Lower Cambrian: Morocco (Ouijjane), Daguinaspis and Resserops Zone.——Fig. 297,1. *A. bourgini; holotype, cranidium, X6 (new).

Guangyuanaspis Chang & Qian in Lu, Chang, & others, 1974, p. 88 [*G. modanquensis; OD; holotype (Lu, Chang, & others, 1974, pl. 33, fig. 7), 21475, NIGP, Nanjing]. Similar to Parabadiella, but differs in absence of plectrum, parafaunal band, facial line, and occipital spine. Proximal part of eye ridge not visible; glabellar and occipital furrows very shallow. Eye lobe short (exs.), and posterior area of fixigenae long (exs.). Lower Cambrian (Qiongzhusian): China (northern Sichuan),
Eoredlichia-Wutingaspis Zone.——Fig. 297.2. *G. modayanesensis*, northern Sichuan (Guangyuan); holotype, cranidium and incomplete thorax, X4 (Lu, Chang, & others, 1974).

Lunoleneus Suyuz, 1961, p. 549 [*L. lunaer*; OD; holotype (Suyuz, 1961, pl. 7, fig. 9), L3110, UMU, Münster], Glabella with up to 4 pairs of lateral glabellar furrows; occipital ring with long spine; palpdeo-ocular ridge extending around glabella into plectrum; preglabellar field short (sag.); anterior border long (sag. and excs.); anterior sections of facial sutures long, diverging at about 45°. Librigena with long, slender genal spine. Pterygum consisting almost entirely of wide axis with 3 rings and a faintly bilobate terminal axial piece. Lower Cambrian: Spain.—Fig. 297,3a,b. *L. lunaer*, Spain (Los Barrios de Luna); a, holotype, dorsal view of cranidium, X5; b, paratype, dorsal view of ptygyum, X5 (photographs courtesy of G. Geyer).

Malongocephalus Zhang & Lin in W. Zhang, Lu, & others, 1980, p. 179 [*M. yunnanensis*; OD; holotype (W. Zhang, Lu, & others, 1980, pl. 48, fig. 5), 37826, NIGP, Nanjing]. Glabella long; preglabellar field very short (sag.); anterior sections of facial sutures subparallel to slightly divergent, posterior sections short; posterior area of fixigena narrow (tr.). Thorax with 15 segments. Pterygum small; axial lobe rounded; pleural regions narrow (tr.), with pair of faint pleural furrows. Lower Cambrian (Qiongzhusian): China (eastern Yunnan), Eoredlichia-Wutingaspis Zone.—Fig. 298,3. *M. yunnanensis*, eastern Yunnan (Malong); holotype, exoskeleton, X2.85 (W. Zhang, Lu, & others, 1980).

Parabadiella W. Chang, 1966, p. 163, 184 [*P. huoi*; OD; holotype (W. Chang, 1966, pl. 1, fig. 1), 181,9, NIGP, Nanjing] [=Parabadiella (Danagouia) Chen, 1985, p. 333 (type, P (D) transversa; OD)]. Cranidium gently convex, rectangular in outline, broad (tr.); eye lobe medium-sized; eye ridge long and oblique; fixigena broad (tr.); anterior area of fixigena with an oblique and slightly arcuate facial line; median plectrum connected to parafrontal lobe; anterior cranidial border furrow generally distinct. Thorax with no less than 15 segments. Surface granulose. Lower Cambrian.

Parabadiella W. Chang, 1966, p. 163, 184 [*P. huoi*; OD; holotype (W. Chang, 1966, pl. 1, fig. 1), 181,9, NIGP, Nanjing] [=Parabadiella (Danagouia) Chen, 1985, p. 333 (type, P (D) transversa; OD)]. Cranidium gently convex, rectangular in outline, broad (tr.); eye lobe medium-sized; eye ridge long and oblique; fixigena broad (tr.); anterior area of fixigena with an oblique and slightly arcuate facial line; median plectrum connected to parafrontal lobe; anterior cranidial border furrow generally distinct. Thorax with no less than 15 segments. Surface granulose. Lower Cambrian.

Kueichowia Lu, 1942, p. 182 [*K. liui*; OD; holotype (Lu, 1942, pl. 1, fig. 5a), Lu16, NIGP, Nanjing]. Glabella slightly tapering forward, with frontal lobe well rounded; occipital furrow narrow, deep, and continuous; eye ridge stout and oblique; eye lobe medium-sized; posterior cranidial border furrow shallow; anterior border slightly convex; preglabellar field longer (sag.) than anterior border. Surface pustulose. Librigena, thorax, and pygidium unknown. Lower Cambrian (lower Canglangpuan): China (northern Guizhou), Drepanuroidea Zone.—Fig. 299,1. *K. liui*, northern Guizhou (Zaoyu); holotype, cranidium, X5.75 (W. Zhang, Lu, & others, 1980).

Shatania W. Chang & Lin in W. Zhang, Lu, & others, 1980, p. 176, 430 [*S. shatanensis*; OD; holotype (W. Zhang, Lu, & others, 1980, pl. 47, fig. 7), 37815, NIGP, Nanjing]. Similar to Parabadiella, but anterior border strongly forwardly curved, preglabellar field longer (sag.), glabella narrow and small, pterygum absent, border and posterolateral furrows broader, and genal spine longer. Hypostome ovate, with median body ovate, posterior lobe lunate, border narrow, and anterior wing spinulose. Thorax and pygidium unknown. Lower Cambrian (Qiongzhusian): China (southern Shaanxi), Eoredlichia-Wutingaspis Zone.—Fig. 298,2. *S. curvata*; holotype, cranidium, X7.6 (W. Zhang, Lu, & others, 1980).

Sibiriaspis Repina in Khalfin, 1960, p. 252 [*S. chomentowskii*; OD; holotype (Repinia in Khalfin, 1960, pl. 23, fig. 19; 1966, pl. 16, fig. 4), 3356/10, CSGM, Novosibirsk]. Cranidium subquadrate; occipital spine slender; preglabellar field long (sag.); palpdeo-ocular ridge stout; posterior area of fixigena narrow (tr.). Lower Cambrian: Russia (Kuznetsk Alatau); Atdabanian (Repinia in Khalfin, 1960, p. 179); L. lunae; OD; holotype (Svitikova et al., 1991), Kuznetsk Alatau, Atdabanian (Repinia in Khalfin, 1960, p. 179); L. lunae, OD; holotype, partial view of cranidium, X3.5 (Khalfin, 1960); b, paratype, cranidium, X7 (Repinia, 1966).

Family KUEICHOWIIDAE Lu, 1965

[Kueichowiidae Lu in Lu & others, 1965, p. 91]

Cranidium subquadrate, glabella cylindrical, with 3 pairs of narrow and oblique globellar furrows; eye lobe medium to long and arcuate; anterior sections of facial sutures divergent; posterior area of fixigena short (exs.), extending a very short distance (tr.) beyond posterior tip of palpbral lobe; preglabellar field long (sag.); paradoublural line generally distinct. Thorax with no less than 15 segments. Surface granulose. Lower Cambrian.
Redlichina—Emuloidea

paradoubleral line faint. Librigena and pygidium unknown. Lower Cambrian (lower Canglangpuan): China (northern Sichuan).——Fig. 299, 3. *S. shatanensis*, northern Sichuan (Shatan, Nanjiang); holotype, cranidium, ×5.75 (Lu, Chang, & others, 1974).
Family MENNERASPIDAE
Pokrovskaia, 1959

Glabella broadly cylindrical, large, and slightly expanded forward, with 3 or 4 pairs of glabellar furrows; anterior cranial border short (sag.), convex, and arched forward; no preglabellar field; anterior area of fixigena narrow (tr.); palpebral area of fixigena also narrow (tr.), about one-sixth width (tr.) of basal glabella; anterior sections of facial sutures subparallel; librigena very narrow (tr.), with advanced genal spine. Thorax with 13 segments; axial lobe broader (tr.) than pleural regions. Pygidium small, semielliptical,
Fig. 299. Kueichowiidae and Menneraspidae (p. 462–466)
with broad axial lobe and broad pleural regions; posterior margin rounded. Lower Cambrian.

Menneraspis POKROVSKAYA, 1959, p. 84 [*M. striatus*; OD; holotype (POKROVSKAYA, 1959, pl. 3, fig. 2), 3536/70, repository unknown]. Characters of the family. Lower Cambrian: Russia (Tuva), Toyonian (Kooteniella to Edelsteinaspis Zones); northwestern Siberia (northeastern Krasnoyarsk Basin), LERMONTOVA, 1940, p. 133 [*margin arched forward.

Suvorova, 1959, p. 74, pl. 6, fig. 10), 711/350, PIN, Moscow]. Characters of the family. Lower Cambrian: Russia (Tuva), Toyonian (Kooteniella to Edelsteinaspis Zones); northwestern Siberia (northeastern Krasnoyarsk Basin), LERMONTOVA, 1940, p. 133 [*margin arched forward.

 perdoma grandis-Paramicamacca petropavlovskii (Kooteniella librigena with short genal spine. Pygidial axial lobe present; anterior sections of facial sutures divergent; thorax with no less than 14 segments. Pygidium with 1 to 2 pairs of pygidial spines; posterior margin rounded or slightly arched forward. Librigena with narrow border and short genal spine. Thorax with 15 segments. Pygidium small, with broad (tr.) axial lobe and broad pleural regions. Lower Cambrian: Russia (eastern and western Sayan mountains; Krasnoyarsk Territory (Irkutsk region, eastern Sayan), Atdabanian–lower Botoman (Tungusella micmacfiformis-Erbiella Zone).——FIG. 300, 1. *S. pokrovskayae; cranidium, X5 (Pokrovskaya, 1959).]

Family REDLICHINIDAE

Zhang & Lin, 1980

[Redlichina ZHANG & LIN in W. ZHANG, LI, & others, 1980, p. 81]

Cephalon without intergenal angle; genal spine not advanced; glabella conical, with frontal lobe well rounded and 3 pairs of glabellar furrows; occipital ring with or without occipital spine; preglabellar field long (sag.); eye lobe long to medium-sized; posterior area of fixigena usually broad (tr.) and long (exs.). Pygidium with large axial lobe having 1 to 5 rings and terminal piece; pleural regions usually flat, broad; pleural furrow absent or with 1 to 2 pairs of furrows; posterior margin arched forward. Lower Cambrian.

Redlichina LERMONTSOVA, 1940, p. 133 [*R. volodzini; OD; holotype (LERMONTSOVA, 1940, pl. 39, fig. 4; SD REPINA, 1966, p. 50), 9182/127, CNIGR, St. Petersburg]. Similar to Redlichia, but having shorter eye lobe, longer (sag.) preglabellar field, longer eye ridge, longer (exs.) posterior area of fixigena and occipital spine. Pygidium with large axis, consisting of 2 to 3 rings and flat, narrow pleurae. Lower Cambrian (Atdabanian): Russia (Sayan-Altay).——Fig. 300, 5. *R. volodzini; lectotype, cranidium, X2 (LERMONTSOVA, 1940).]

Asthenaspis Suvorova, 1959, p. 74, non Asthenaspis Suvorova, 1959, p. 70; REPINA, 1960, 1966b, in error [*A. tenuis; OD; holotype (Suvorova, 1959, p. 74, pl. 6, fig. 10), 711/350, PIN, Moscow]. Palpebral area of fixigena one-third width of basal glabella; eye ridge short; eye lobe long and arcuate, reaching posterior border furrow; anterior border furrow faint; border narrow (sag.); narrow pleuron present; anterior sections of facial sutures divergent; librigena with short genal spine. Pygidial axial lobe broadly rounded, faintly segmented; pleural region bilobed. Lower Cambrian: southeastern Siberia, Botomian (Bergeroniaspis ornata Zone); southwestern Siberia, Bahbysuricella Zone.——Fig. 300, 2. *A. tenuis, southeastern Siberia; holotype, cranidium, X8 (Suvorova, 1959).]

Kolbaspis REPINA in ZHURAVLEVA & others, 1979, p. 29 [*K. sajanica; OD; holotype (ZHURAVLEVA & others, 1979, pl. 1, fig. 12), 403/40, CSGM, Novosibirsk]. Glabella subcylindrical, with faint glabellar furrows; occipital ring feebly separated; anterior border of medium length (sag.); plectrum narrow (tr.); fixigena narrow (tr.), raised towards long, feebly arcuate palpebral lobe; eye ridge short; anterior branch of facial suture slightly divergent; librigenal spine not advanced. Pygidium small, with semielliptical axial lobe and pleural region not segmented. Lower Cambrian (Botomian): Russia (eastern Sayan), Babyryuricella robustus-Jakutus quadriceps Zone.——Fig. 300, 3. *K. sajanica; holotype, cranidium, X9 (ZHURAVLEVA & others, 1979).]

Parasajanaspis TCHERNYSHEVA 1972, p. 212 [*P. lauta; OD; holotype (TCHERNYSHEVA 1972, pl. 53, fig. 6), 10319/3, CNIGR, St. Petersburg]. Dorsal shield flattened. Cranidium slightly widened transversely. Glabella tapering forward, with 3 pairs of glabellar furrows; occipital ring with medial node; fixigena flat; palpebral lobe long (exs.) merging into oblique eye ridge; preglabellar field of same length (sag.) as slightly convex anterior border. Thorax with at least 12 segments; pleural region narrower (tr.) than axis; pleurae with slightly oblique pleuralfurrows and slender spines. Lower Cambrian (Atdabanian): Russia (Pamir).——Fig. 300, 1. *P. lauta; holotype, incomplete dorsal shield, X1 (Tchernysheva, 1972).]

Sajanaspis REPINA, 1960a, p. 196 [*S. pokrovskayae; OD; holotype (REPINA, 1960, pl. 11, fig. 1), 3548/46, CSGM, Novosibirsk]. Anterior area of fixigena narrow (tr.); anterior border short (sag. and exs.); eye lobe long (exs.) and arcuate; posterior areas of fixigena very broad (tr.) and long (exs.); librigena with narrow border and short genal spine. Thorax with 15 segments. Pygidium small, with broad (tr.) axial lobe and broad pleural regions. Lower Cambrian: Russia (eastern and western Sayan, Altay, Gornaja Shoria, Tuva, Kuznetsk Alatau), Atdabanian (Sajanaspis Zone); western Mongolia, Telognya subquadrata-Sajanaspis modesta Zone; northern Mongolia, Telognya subquadrata-Margodiscus rackovskii-Sajanaspis Zone.——Fig. 300, 6. *S. pokrovskayae, eastern and western Sayan mountains; holotype, cranidium, X5 (Repina, 1960).]

Tungusella REPINA, 1960, p. 178 [*T. manica; OD; holotype (REPINA, 1960, pl. 4, fig. 6), 3544/6, CSGM, Novosibirsk]. Occipital furrow very shallow medially; occipital ring with a small median node; anterior border short (sag. and exs.); preglabellar field longer (sag.) than anterior border, with radiating striations; eye ridge oblique; eye lobe medium-sized; anterior sections of facial sutures divergent. Thorax with no less than 14 segments. Pygidium with 1 to 2 pairs of pygidial spines; posterior margin rounded or slightly arched forward. Librigena unknown. Lower Cambrian: western Krasnoyarsk Territory (Irkutsk region, eastern Sayan), Atdabanian–lower Botoman (Tungusella Zone); southwestern Yakutia, Botomian (Bergeroniellae micmacfiformis-Erbiella Zone).——Fig. 300, 4a,b. *T. manica, western Krasnoyarsk Terri-

© 2009 University of Kansas Paleontological Institute
Family CHENGKOUASPIDAE
Zhang & Lin, 1980

[Chengkouaspidae Zhang & Lin in W. Zhang, Lu, & others, 1980, p. 227]

Glabella long, convex, parallel sided, or tapering forward, with 2 to 3 pairs of glabellar furrows; anterior field of fixigena absent or short (exs.); preglabellar field absent or short (sag.); eye lobe stout and very long, not differentiated from eye ridge. Pygidium relatively large; axial lobe long and broad (tr.); pleural region broad, with or without pleural furrows; border narrow. Lower Cambrian.

Bulaiaspis Zhang & Lin in Repina, 1956, p. 145 [*B. volgodini; holotype, cranium, X3; k, paratype, pygidium, X5 (Repina, 1960).]

Family CHENGKOUASPIDAE
Zhang & Lin, 1980

[Chengkouaspidae Zhang & Lin in W. Zhang, Lu, & others, 1980, p. 227]

Glabella long, convex, parallel sided, or tapering forward, with 2 to 3 pairs of glabellar furrows; anterior field of fixigena absent or short (exs.); preglabellar field absent or short (sag.); eye lobe stout and very long, not differentiated from eye ridge. Pygidium relatively large; axial lobe long and broad (tr.); pleural region broad, with or without pleural furrows; border narrow. Lower Cambrian.

Inella Repina in Repina & others, 1964, p. 269 [*I. monstrabilica; holotype (Repina & others, 1964, pl. 35, fig. 4), 252/4, CSGM, Novosibirsk]. Cranidium semielliptical; axial furrow deep and broad (tr.); glabella subparallel behind S2, then rapidly tapering in front of S2; frontal lobe of glabella acutely rounded; 3 pairs of narrow and shallow glabellar furrows; occipital furrow deeper distally, but not connected in middle; anterior border short (sag., exs.) and convex; eye ridge bifid proximally; pleural furrow broad (tr.) and deep; pleural areas of fixigenae convex, about one-third basal width (tr.); posterior areas of fixigenae well developed and wide (tr.); posterior border furrow long (exs.) and wide (tr.). Librigena, thorax, and pygidium unknown. Lower Cambrian (Atdabanian); Russia (Sayan-Altau), Pagettiellus Zone.——Fig. 302, *I. monstrabilica; holotype, cranium, X5 (Repina & others, 1964).

Pseudoresserospis Repina in Khomentovskii & Repina, 1965, p. 126 [*P. oculatus; OD; holotype (Khomentovskii & Repina, 1965, pl. 5, fig. 2), 265/537, CSGM, Novosibirsk (although the catalog number of holotype is given as ‘265/537’ in pl. 5, fig. 1” in the text, in the plate explanation, the specimen illustrated on pl. 5, fig. 2 is 265/537)]. Cranidium subtrapezoidal; glabella convex, slightly contracted at the middle, tapering rapidly in front of S3; frontal lobe acutely rounded; S1 bifurcate proximally; occipital furrow shallow and narrow (sag., exs.), bending slightly backward; posterior margin of occipital ring rounded; anterior border flat, becoming shorter (exs.) distally; eye ridge and lobe convex, stout, feebly arcuate, its posterior tip reaching level of occipital furrow; pleural area of fixigena about three-fourths basal width (tr.); posterior areas of fixigenae long (exs.) and wide (tr.). Librigena, thorax, and pygidium unknown. Lower Cambrian (Atdabanian); Russia (southern and western Yakutia), Pagettiellus anaburicus Zone; northern Mongolia, Tolegoja subquadrate-Margodicus racovskii-Sajanaaspis Zone and Etheradiaspidella-Bulaiaspis Zone.——Fig. 301, a,b, *B. volgodini, Irkutsk, late Atdabanian stage, Bulaiaspis Zone; a, holotype, cranium, X5; b, paratype, pygidium, X11 (Repina, 1956).

Subquadrata-Margodicus racovskii-Sajanaaspis Zone and Etheradiaspidella-Bulaiaspis Zone.——Fig. 301, a,b, *B. volgodini, Irkutsk, late Atdabanian stage, Bulaiaspis Zone; a, holotype, cranium, X5; b, paratype, pygidium, X11 (Repina, 1956).

Inella Repina in Repina & others, 1964, p. 269 [*I. monstrabilica; holotype (Repina & others, 1964, pl. 35, fig. 4), 252/4, CSGM, Novosibirsk]. Cranidium semielliptical; axial furrow deep and broad (tr.); glabella subparallel behind S2, then rapidly tapering in front of S2; frontal lobe of glabella acutely rounded; 3 pairs of narrow and shallow glabellar furrows; occipital furrow deeper distally, but not connected in middle; anterior border short (sag., exs.) and convex; eye ridge bifid proximally; pleural furrow broad (tr.) and deep; pleural areas of fixigenae convex, about one-third basal width (tr.); posterior areas of fixigenae well developed and wide (tr.); posterior border furrow long (exs.) and wide (tr.). Librigena, thorax, and pygidium unknown. Lower Cambrian (Atdabanian); Russia (Sayan-Altau), Pagettiellus Zone.——Fig. 302, *I. monstrabilica; holotype, cranium, X5 (Repina & others, 1964).

Pseudoresserospis Repina in Khomentovskii & Repina, 1965, p. 126 [*P. oculatus; OD; holotype (Khomentovskii & Repina, 1965, pl. 5, fig. 2), 265/537, CSGM, Novosibirsk (although the catalog number of holotype is given as ‘265/537’ in pl. 5, fig. 1 “in the text, in the plate explanation, the specimen illustrated on pl. 5, fig. 2 is 265/537)]. Cranidium subtrapezoidal; glabella convex, slightly contracted at the middle, tapering rapidly in front of S3; frontal lobe acutely rounded; S1 bifurcate proximally; occipital furrow shallow and narrow (sag., exs.), bending slightly backward; posterior margin of occipital ring rounded; anterior border flat, becoming shorter (exs.) distally; eye ridge and lobe convex, stout, feebly arcuate, its posterior tip reaching level of occipital furrow; pleural area of fixigena about three-fourths basal width (tr.); posterior areas of fixigenae long (exs.) and wide (tr.). Librigena, thorax, and pygidium unknown. Lower Cambrian (Atdabanian); Russia (southern and western Yakutia), Pagettiellus anaburicus Zone; northern Mongolia, Tolegoja subquadrate-Margodicus racovskii-Sajanaaspis Zone and Etheradiaspidella-Malyskiania Zone.——Fig. 301, a,b, *P. oculatus; South bank of Lena River, about 300 km west of Yakutsk; holotype, cranium, X5 (Khomentovskii & Repina, 1965).
Librigena, thorax, and pygidium unknown. Lower Cambrian (Atdabanian–lower Botoman): Russia (eastern and western Sayan, Tuva), Sajanaspis and Pulellina-Serrodiscus Zones.——Fig. 301, 5. *T. coronaria; eastern Sayan, holotype, cranidium, ×4.5 (Repina, 1960).

Family UNCERTAIN

Akbashichia KOROBOV, 1989, p. 75 [*A. plana; OD: holotype (KOROBOV, 1989, pl. 3, fig. 5), 4726/39, GIN, Moscow]. Similar to Redlichia in conical glabella, in long (exs.) and arcuate palpebral lobe, and
in course of anterior section of facial suture, but frontal area longer (sag.) and cranial border furrows and glabellar furrows less distinct. Librigena, thorax, and pygidium unknown. Lower Cambrian (upper Atdabanian): western Mongolia (Akbashi, 40 km northeast of Kobodo).—Fig. 303, 1. *A. plana*; holotype, cranidium, ×2 (Korobov, 1989).

Elegestina Pokrovskaya, 1959, p. 63 [*E. antiqua*; OD; holotype (Pokrovskaya, 1959, pl. 1, fig. 11), 3536/18, GIN, Moscow]. Glabella convex, short
Trilobita

Fig. 302. Chengkouaspidae (p. 467)

(sag.), and broad (tr.); anterior margin of frontal lobe more or less acutely rounded; glabellar furrows indistinct; preglabellar field very short (sag.); border furrow narrow; border convex and long (sag.); oc- cipital furrow narrow and nearly straight; occipital ring longer (sag.) medially; oblique eye ridge narrow; p Moore, 1959, p. 212, pro Paradoxidacea Poul sen in Pospelov & Romanenko, 1980, p. 69 [P. convexa; OD; holotype (Pospelov & Romanenko, 1980, pl. 13, fig. 8), 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Poul sen in Pospelov & Romanenko, 1980, p. 69 [P. convexa; OD; holotype (Pospelov & Romanenko, 1980, pl. 13, fig. 8), 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Poul sen in Pospelov & Romanenko, 1980, p. 69 [P. convexa; OD; holotype (Pospelov & Romanenko, 1980, pl. 13, fig. 8), 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua- drate, flattened, with broadly rounded anterior margin; glabella faintly tapered to anterior end, with 3 pairs of glabellar furrows; occipital ring with node or spine; p Moore, 1959, p. 212, pro Paradoxidacea Iolgia Paratungusella Repina & others, 1964, p. 71 [*[E. antiqua] (Kraevsky, 1965, pl. 1, fig. 8) 1931/16, MWSGPC, Novokuznetsk]. Cranidium subqua-
Redlichina—Paradoxidoidea

Glabella widening anteriorly to rounded or bluntly pointed frontal lobe or may be parallel sided in early forms; L1 to L4 of equal or subequal length; S1 generally transglabellar, shallower medially; S2 long (tr.), subparallel to S1, may be transglabellar; S3 and S4 short (tr.), less deep; preglabellar field typically absent in adult stage; eye short to long (exs.), gently to strongly curved; anterior section of facial suture moderately divergent to retrodivergent (Centropleuridae); rostral suture long (tr.) and curved, delimiting rostral plate that may be fused with large hypostome to form rostral-hypostomal plate. Thorax with 14 to 21 segments ending in short to long pleural spines directed progressively more strongly backwards from front to rear (Paradoxididae) or in bluntly truncated tips (Centropleuridae); first and second segments may be macropleural. Pygidium typically small in Paradoxididae, may be medium sized in Centropleuridae. Lower Cambrian–Middle Cambrian.

Family PARADOXIDIDAE Hawle & Corda, 1847

Glabella widest across L3 or L4; S3 and S4 may be defined abaxially; palpebral lobe

Fig. 303. Family Uncertain (p. 468–470)
Trilobita

oblique and short (e.g., extending from opposite S1 to S3) to semicircular and long (from LO to L4); visual surface apparently low, with circumcocular suture; preglabellar field absent in holaspis, with front of glabella typically indenting anterior border; preglabellar field and preglabellar ridge generally present in meraspis; small occipital node behind midlength of occipital ring; anterior section of facial suture arcuate, moderately to strongly divergent; rostral suture traversing outer surface of anterior border; connective sutures converging to delimit wide (tr.) rostral plate; cephalic border continuous with long librigenal spine; intergenal angle may be present. Hyposome typically narrow (tr.) posteriorly, expanding forward to arched anterior margin; large anterior wing confluent with anterior lobe of middle body; small posterior lobe may be swollen distally, separated from lozenge-shaped anterior lobe by middle furrow that is obsolete medially; narrow (sag.) posterior border may carry pair of short spines. Thorax with up to 21 segments that may be fulcrate, nonfulcrate, or questionably both; axis well defined, occupying less than one-fourth to one-third of overall breadth; pleura may be directed slightly forwards abaxially; hindmost pair of pleural spines subparallel, ending far behind tip of pygidium. Pygidium small, subhexagonal, widest behind midlength, at posterior end of long facet directed strongly backward; lateral margin short, slightly convex; posterior margin convex, straight, or concave; axis subtriangular; pleural and postaxial regions confluent and uniformly convex. (Many specimens supposedly of Paradoxides are based on material too incomplete for confident generic determination; for example, specimens from Colombia, South America (Rushton, 1963), and a record from Australia (Whitehouse, 1939, p. 276) are here excluded.)

Middle Cambrian—upper Middle Cambrian: England, Wales, H. paradoxissimus; Pt. puncatus Zone; Sweden, Norway, Denmark, P. paradoxissimus and P. forchhammeri Stages; Czech Republic, P. gracilis Zone; Canada (eastern Newfoundland), Pt. punctatus Zone; USA (South Carolina), Russia (Novaya Zemlya). —Fig. 304, 1a. *P. paradoxissimus* (Wahlenberg), middle Middle Cambrian (P. paradoxissimus Stage), Sweden (Öltsorp, Västerbotten); lectotype, exoskeleton, RM Ar46147, X1 (new). —Fig. 304, 1b. *P. gracilis*, middle Middle Cambrian, Czech Republic (jince); rostral-hypostomal plate, SM A.1561, X1 (new).

Acadoparadoxides Snajdr, 1957, p. 238 [*Paradoxides* Sacheri Barrande, 1852, p. 369; OD; holotype (Snajdr, 1958, p. 147), CC 184, No. 76, NMP, Prague] [=Eparadoxides Soloviev, 1969, p. 16 (type, *Paradoxides harlani* Green, 1834, p. 335; OD)]. Glabella widening anteriorly, either with axial furrow nearly straight, or with strengthening in front of L2; S2 transglabellar, S3 and S4 faint; palpebral lobe arcuate, long (SO to L4); palpebral area narrower (tr.) and palpebral lobe wider than in Eccaparadoxides; intergenal angle obtuse. Librigena with broad-based genal spine; inner spine angle obtuse. Thorax (where known) with 17 to 19 segments, inner pleural region narrower (tr.) than axis; pleural spines short, hindmost extending back only to tip of pygidium. Pygidium rounded to
hexagonal. Lower Middle Cambrian–Upper Middle Cambrian: England, Wales, Scandinavia (Sweden, Norway), Czech Republic, Poland, Spain, Morocco, Turkey, eastern Canada, USA (Massachusetts), Russia (northern Siberia), western Mongolia.

A. (Acadoparadoxides). S2 shallow medially. Thorax (where known) with 19 segments. Pygidium widest at or in front of midlength, as wide as or slightly wider than long; margin rounded or subangular posteriorly; axis subtriangular, about half of pygidial length, with up to 2 axial rings; pleural fields behind axis form ridge that may be as high as, and coalesce with, terminal piece of axis. Lower Middle Cambrian–Upper Middle Cambrian: England, Wales, Czech Republic, Scandinavia (Sweden), Poland, eastern Canada (eastern Newfoundland, New Brunswick), Spain, Morocco, Turkey, USA (Massachusetts), Russia (northern Siberia), western Mongolia.—Fig. 305, 2a,b. *A. (A.) sacheri (BARRANDE), E. pusillus Zone, middle Middle Cambrian, Czech Republic (Jince); a, cranidium, MS 360, ×2 (Snajdr, 1958, pl. 16, fig. 5); b, thorax and pygidium, Schary Collection, MCZ 2752, ×1 (new).

A. (Baltoparadoxides) Snajdr, 1986, p. 174 [*Paradoxides oelandicus SJOGEN, 1872, p. 72; OD; holotype (SJOGEN, 1872, pl. 5, fig. 1, fide WESTERGAARD, 1936, p. 35), Ar 1449, RM, Stockholm]. Glabella nearly straight sided, in holaspis expanding forward slightly; in meraspis
Redlichina—Paradoxidoidea

almost parallel sided; S2 deep medially. Thorax
in type species with 17 segments; outer pleural
region wider (×1.25) than axis. Pygidium
subhexagonal, widest at or behind midlength,
with long, convex axis; posterior margin with 2
to 4 pairs of short spines that are progressively
shorter from outermost to innermost. Lower
Middle Cambrian: Sweden, Norway, Poland. A.
(B.) oelandicus Stage; ?western Mongolia.—

Anabaraceps Repina, 1972, p. 29 [*A. kharaulachiensis; OD; holotype (Repina, 1972, pl. 2, fig. 6–7), N383/101, CNIGR, St. Petersburg]. Glabella con-
convex, widening anteriorly very slightly to sub-
semicircular frontal lobe and extending to anterior
border; S2 transglabellar, shallow medi ally; L1 and
L2 of equal size; palpebral area narrow (0.4 of gla-
bella at S1); palpebral lobe extending from L3 al-
most to SO, with deep palpebral furrow; frontal
area has distinctive, broad ridge subparallel to ante-
rior border furrow; preglabellar field only slightly
longer (sag.) than low anterior border; posterior
section of facial suture short; anterior section of
facial suture cuts anterior margin almost in
exsagittal line with outer edge of palpebral lobe.
Lower Cambrian (Toyonian): Russia (northeastern
Yakutia), Paramicmacca Zone.—Fig. 306, 2. *A.
kharaulachiensis; holotype, cranidium, CNIGR
N383/101, X1.5 (new).

Anabaraspis Lermontova, 1951a, p. 91 [*A. splendens; OD; syntypes (Lermontova, 1951a, pl. 13, fig. 1,
1a–1f), N120/5156, CNIGR, St. Petersburg]. Gla-
bella subpentagonal, bluntly pointed frontally, wid-
ning gently to maximum width (tr.) across I4; S2
transglabellar, shallow medi ally; S3 and S4 faint;
fixigena wide; palpebral lobe long, curved, extend-
ing from L1 to S3 and confluent with short eye
ridge that meets glabella at or near S4; trace of
parafrontal band near S4; frontal area relatively long
(sag., exs.); preglabellar field and anterior border
undifferentiated; frontal area large, about as wide
(tr.) as distance across palpebral lobes; anterior sec-
tion of facial suture long, strongly divergent; poste-
rior section short; genal spine short, stout. Thorax
with 15 to 18 segments having long, falcate spines;
inner pleural region about as wide as axis. Pygidium
longer than wide, subhexagonal, with long, flat.
posterior area; posterior margin truncate or indented; axis short, with 1 axial ring. Surface smooth. Lower Cambrian (Toyonian–Middle Cambrian (lower Amsgan); Russia (northwestern and southeastern Yakutia), *A. splendidus* and *Oryctocara Zones*).—*Fig. 307,2a,b.* "A. splendidus". a, lectotype, cranidium, eastern Siberia, locality not specified. Lower Cambrian ("Protolenus Zone"), X1: b, exoskeleton lacking librigenae, Upper Toyonian to lower Amsgan, north central Siberia (River Olenek), X2 (Demidkóv & Lazarenko, 1964, pl. 22, fig. 1).

Eccaparadoxides Snajdr, 1957, p. 238 [*Paradoxides pusillus* Barrande, 1846, p. 11; OD: lectotype, meraspid cranidium (Snajdr, 1958, p. 117), CC 521, No. 1244, NMP, Prague] [=Phanoptes HAwle & Corda, 1847, p. 17, ICZN application pending: Macrocercus Pillet in Courteau Pillet, & Vizcaino, 1988, p. 41 (type, *Eccaparadoxodes macrocercus* Courteau, 1967, p. 495; OD)]. Glabella widest across L4 or S4, well rounded frontally; S2 shallow medially; S3 and S4, if present, moderately deep, not reaching axial furrow; palpebral lobe extending from almost SO to L4; anterior section of facial suture moderately divergent in holaspis, almost transverse in meraspis; posterior section of facial suture short, cutting posterior margin almost in line (exs.) with edge of palpebral rim; preglabellar field in meraspis long (sag.), with sagittal preglabellar ridge; in holaspis preglabellar field is absent, anterior border is narrow (sag.) medially; hypostome not fused with rostral plate. Thorax with 16 to 18 segments having short to long, falcate pleural spines; inner pleural region narrow. Pygidium typically hexagonal, with terminal area short, long and spatulate, or very long; posterior area; posterior margin truncate or indented; axis short, with 1 axial ring. Surface smooth. Lower Cambrian (Toyonian–Middle Cambrian (lower Amsgan); Russia (northwestern and southeastern Yakutia), *A. splendidus* and *Oryctocara Zones*).—*Fig. 307,2a,b.* "A. splendidus". a, lectotype, cranidium, eastern Siberia, locality not specified. Lower Cambrian ("Protolenus Zone"), X1: b, exoskeleton lacking librigenae, Upper Toyonian to lower Amsgan, north central Siberia (River Olenek), X2 (Demidkóv & Lazarenko, 1964, pl. 22, fig. 1).

Eccaparadoxides Snajdr, 1957, p. 238 [*Paradoxides pusillus* Barrande, 1846, p. 11; OD: lectotype, meraspid cranidium (Snajdr, 1958, p. 117), CC 521, No. 1244, NMP, Prague] [=Phanoptes HAwle & Corda, 1847, p. 17, ICZN application pending: Macrocercus Pillet in Courteau Pillet, & Vizcaino, 1988, p. 41 (type, *Eccaparadoxodes macrocercus* Courteau, 1967, p. 495; OD)]. Glabella widest across L4 or S4, well rounded frontally; S2 shallow medially; S3 and S4, if present, moderately deep, not reaching axial furrow; palpebral lobe extending from almost SO to L4; anterior section of facial suture moderately divergent in holaspis, almost transverse in meraspis; posterior section of facial suture short, cutting posterior margin almost in line (exs.) with edge of palpebral rim; preglabellar field in meraspis long (sag.), with sagittal preglabellar ridge; in holaspis preglabellar field is absent, anterior border is narrow (sag.) medially; hypostome not fused with rostral plate. Thorax with 16 to 18 segments having short to long, falcate pleural spines; inner pleural region narrow. Pygidium typically hexagonal, with terminal area short, long and spatulate, or very long; posterior area; posterior margin truncate or indented; axis short, with 1 axial ring. Surface smooth. Lower Cambrian (Toyonian–Middle Cambrian (lower Amsgan); Russia (northwestern and southeastern Yakutia), *A. splendidus* and *Oryctocara Zones*).—*Fig. 307,2a,b.* "A. splendidus". a, lectotype, cranidium, eastern Siberia, locality not specified. Lower Cambrian ("Protolenus Zone"), X1: b, exoskeleton lacking librigenae, Upper Toyonian to lower Amsgan, north central Siberia (River Olenek), X2 (Demidkóv & Lazarenko, 1964, pl. 22, fig. 1).

Eccaparadoxides Snajdr, 1957, p. 238 [*Paradoxides pusillus* Barrande, 1846, p. 11; OD: lectotype, meraspid cranidium (Snajdr, 1958, p. 117), CC 521, No. 1244, NMP, Prague] [=Phanoptes HAwle & Corda, 1847, p. 17, ICZN application pending: Macrocercus Pillet in Courteau Pillet, & Vizcaino, 1988, p. 41 (type, *Eccaparadoxodes macrocercus* Courteau, 1967, p. 495; OD)]. Glabella widest across L4 or S4, well rounded frontally; S2 shallow medially; S3 and S4, if present, moderately deep, not reaching axial furrow; palpebral lobe extending from almost SO to L4; anterior section of facial suture moderately divergent in holaspis, almost transverse in meraspis; posterior section of facial suture short, cutting posterior margin almost in line (exs.) with edge of palpebral rim; preglabellar field in meraspis long (sag.), with sagittal preglabellar ridge; in holaspis preglabellar field is absent, anterior border is narrow (sag.) medially; hypostome not fused with rostral plate. Thorax with 16 to 18 segments having short to long, falcate pleural spines; inner pleural region narrow. Pygidium typically hexagonal, with terminal area short, long and spatulate, or very long; posterior area; posterior margin truncate or indented; axis short, with 1 axial ring. Surface smooth. Lower Cambrian (Toyonian–Middle Cambrian (lower Amsgan); Russia (northwestern and southeastern Yakutia), *A. splendidus* and *Oryctocara Zones*).—*Fig. 307,2a,b.* "A. splendidus". a, lectotype, cranidium, eastern Siberia, locality not specified. Lower Cambrian ("Protolenus Zone"), X1: b, exoskeleton lacking librigenae, Upper Toyonian to lower Amsgan, north central Siberia (River Olenek), X2 (Demidkóv & Lazarenko, 1964, pl. 22, fig. 1).
Trilobita

13070, X1, and c, pygidium, GSC 101839, eastern Newfoundland (Trinity Bay and Random Island), X2 (new).—Fig. 306,ld. *P. sedgwickii* (Hicks); lectotype, cranidium, southwestern Wales (St. David’s), X2.5 (new).

Primorielia Repina, 1973, p. 170 [*P. bella*; OD: holotype (Repina, 1973, p. 171, pl. 35, fig. 1–2), 501/1551, CSGM, Novosibirsk]. Cranidium wider (tr.) than long; glabella convex, parallel sided posteriorly, expanding slightly to maximum width (tr.) at S4; frontal lobe subrounded, indenting roll-like anterior border; S1 transglobular but faint medially; S2 transglobular or not; S3 and S4 short (tr.), well defined; palpebral area and frontal area of equal width; eye lobe short, extending from L1 to S2 and continuous with eye ridge that ends at L4; anterior section of facial suture slightly divergent, posterior section relatively long, uppermost Lower Cambrian: Russia (far eastern Siberia), Redlichina culmenica beds.—Fig. 304.2. *P. bella*, Siberia (Primorye); holotype, cranidium, CSGM 501/1511, X2 (new).

Schagonaria Poletayeva in Egorova & others, 1955, p. 111 [*S. tannuola*; OD: syntypes (Egorova & others, 1955, pl. 12, fig. 1a–1b), repository and numbers not specified]. Glabella elongate, widening anteriorly only slightly to maximum width (tr.) between S2 and preglobular furrow; frontal lobe may reach anterior border; preglobular ridge may be present in some specimens; S1 and S2 oblique inwards and backwards, nearly straight, meeting at sagittal line; fixigena narrow; palpebral lobe long, extending from L1 to L3 and merging with short eye ridge. Thorax with 16 segments. Pygidium poorly known but spurulate. Middle Cambrian (Angatian): Russia (Ulukhama River, Tuva Region).—Fig. 307.3a,b. *S. tannuola*; a, dorsal exoskeleton, CSGM 296/75, X4; b, cranidium, CSGM 296, X2 (new).

Family CENTROPLEURIDAE

Angelin, 1854

[Centropleuridae Angelin, 1854 in 1851–1878, p. 87]

Glabella widest (tr.) across L4; S1 transglobular, relatively wide and deep; S2 and S3 incised, narrow, not transglobular; S4 very oblique forwards and outwards, making large angle with S3; palpebral lobe generally long; fixigena bearing exsagittal, ridgelike baccula; anterior section of facial suture transverse or retrodivergent; genital spine long; distal end of posterior border may curve forwards to form intergenal angle; hypostome subquadrate. Thorax with 14 or 15 to 20 (?) or more) segments; pleurae flat, truncate or with short spines; last 3 larger, with strongly falcate pleural spines. Pygidium transverse, with 2 to 4 pairs of marginal spines; width (tr.) may be one-half to two-thirds that of cephalon; surface commonly with anastomosing ridges. Middle Cambrian.

Centropleura Angelin, 1854 in 1851–1878, p. 87 [*Paradoxides Loveni Angelin, 1851 in 1851–1878, p. 2; OD: Angelin’s figured specimens (1851 in 1851–1878, pl. 3, fig. 1–3) from Andrarum, Sweden, are not identified with certainty, but a syntype and topotypes were illustrated by Westergård, 1950a, pl. 1, fig. 1–3]. S2 and S3 straight, transverse; anterior section of facial suture retrodivergent; palpebral lobe narrow (tr.); fixigena with elongate (exsag.) baccula; posterior border curving forwards distally. Thorax (where known) with 16 segments; pleural tips truncate or with short spine. Pygidium transversely oval; axis slightly more than one-half length of pygidium, with about 4 pairs axial rings; 2 pairs of marginal spines. upper Middle Cambrian: Scandinavia, Greenland, Canada, USA, Australia, Siberia, China (Xinjiang; Tianshan), L. laevigata to Centropleura Zone (Gansu, Hunan-Guizhou border).

C. (Centropleura). Glabella with prominent frontal lobe; palpebral lobe long (extending from opposite S0 or L1 to L4), curving inwards posteriorly, ending near to or well forward of posterior border; fixigena widest (tr.) opposite S1 or L2. upper Middle Cambrian: Sweden, Denmark, S. brachymetopa Zone; Greenland, L. laevigata Zone; Canada (Gaspé: ?western Newfoundland: Cow Head boulders); USA, Vermont (St. Albans Shale), New York, western Nevada; Australia, L. laevigata Zone; Bennett Island; eastern Siberia, P. forchhammeri Zone; China (Xinjiang: Tianshan), L. laevigata to Centropleura Zone (Gansu, Hunan-Guizhou border).—Fig. 308.2a,b. *C. (C.) loveni* (Angelín); a, lectotype, small cranidium, Andrarum, Skåne, RM Ar32354, X8; b, pygidium, probably same locality, RM Ar1613, X3 (new).

C. (Beishanella). Xiang & Zhang, 1985, p. 97 [*Centropleura beishanensis* Liu & Zhang, 1979, pl. 5; M; figured syntypes (Liu & Zhang, 1979, pl. 1, fig. 15–17), XT. 908–910, repository not ascertained]. Differs from C. (Centropleura) in having more weakly clavate glabella with less prominent frontal lobe; fixigena very narrow (tr.), about 0.3 of glabellar width. Thorax unknown. Pygidium similar to C. (Centropleura). upper Middle Cambrian: northwestern China (Gansu), lower part of Shuangyingshan Formation, (Tianshan), L. laevigata–Centropleura Zone.—Fig. 308.3a,b. *C. (B.) beishanensis* (Liu & Zhang), Tianshan, lower part of Shuangyingshan Formation; a, syntype cranidium, XT. 908, X1; b, syntype, pygidium, XT. 909, X2.5 (Liu & Zhang, 1979, pl. 1, fig. 15–16).

Anopolenus Salter, 1864c, p. 236 [*A. Henrici*; M; lectotype (Morris, 1988, p. 20), 42644, BMNH.
Redlichiina—Paradoxidoidea

Glabella only slightly clavat; S2 and S3 approximately transverse but slightly curved, convex forwards; anterior section of facial suture long, transverse; baccula shorter than in Centropleura; palpebral lobe broader than in Centropleura, long and evenly curved, extending from L4 to SO and reaching to posterolateral corner of cranidium; posterior margin almost straight, transverse. Thorax with 16 segments, all except last 3 having truncate pleural tips. Pygidium transversely ovate in outline, with border and 3 pairs of marginal spines; axis more than three-fourths pygidial length, with about 4 axial rings.

Middle Cambrian:
- United Kingdom, Pt. punctuosus Zone;
- Canada (eastern Newfoundland), P. davidis Zone;
- Russia (eastern Siberia), P. davidis Zone.

Clarella HOWELL, 1933, p. 219 [*Anapelenus [sic] venustus BILLINGS, 1872, p. 474; OD; lectotype selected herein, 284a, GSC, Ottawa]. Like Anapelenus, but glabella showing greater expansion forward of S1 and palpebral lobe broader and slightly curved sigmoidally. Thorax with 14? or 15 segments, where known; pygidium without border but with 3 to 4 pairs of short, marginal spines; axis short, with 1 to 2 axial rings.

Middle Cambrian–upper Middle Cambrian:
- Canada (eastern Newfoundland), P. hicksii–P. davidis Zones;
- Russia (eastern Siberia), P. davidis Zone.
Kingdom, *H. parvifrons*–*Pt. punctuosus* Zones; southern France, *Pt. punctuosus* Zone; Sweden, *Pt. punctuosus–S. brachymetopa* Zones.—Fig. 308, 1a,b. *C. venusta* (Billings), *P. hicksii* Zone, eastern Newfoundland; *a*, cranidium, lectotype, Manuels River Formation, Trinity Bay, GSC 284a, ×3; *b*, pygidium, St. Marys Bay, GSC 13106, ×5 (new).

Luhops Snajdr, 1957, p. 239 [*Paradoxides expectans* Barrande, 1852, p. 918; OD; lectotype, Skryje Formation, *E. pusillus* Zone, Skryje, Czech Republic (Snajdr, 1958, p. 153), CC 313, No. 1125, NMP, Prague]. Diagnosis based on type specimens only. Thoracic pleural tips with short spines, except for posterior 3 segments; pygidium with relatively short axis having 2 to 3 axial rings and 2 pairs of...
robust marginal spines. Assigned cranidium (Fatka, Kordule, & Snajdr, 1981) with S2 and S3 convex forwards, S3 oblique inwards and forwards; anterior section of facial suture relatively short; palpebral lobe broad at midlength, shorter than in Clarella, extending from L4 to L1, and with posterior end tapered, turned outwards, and lying well forward of posterior margin. *L. expectans*, middle Middle Cambrian: Czech Republic, *E. pusillus* Zone; United Kingdom, *T. fusi* or *H. parvifrons* Zones; Denmark, *P. punctuosus* Zone.—Fig. 309, 1a–c. *L. expectans*, Czech Republic: a, thorax and pygidium, Skryje, Schary Collection, MCZ 3151, ×1.5 (Barrande, 1872, pl. 14, fig. 35); b, pygidium, Týtovice, NMP L.14078, ×1 (Snajdr, 1977, pl. 1, fig. 3); c, cranidium, Týtovice, ×2.75 (Fatka, Kordule, & Šnajdr, 1981, pl. 2, fig. 8).
Baldwin, C. T. 1977. Internal structures of trilobite
References

Bronniart, A. 1822. Les Trilobites. In A. Brongniart

© 2009 University of Kansas Paleontological Institute
In Chinese and English.

———. 1966b. Schizochroal eyes and vision in some phacopid trilobites. Palaeontology 9:464–487, fig. 1–9, pl. 73–75.
———. 1967a. Fine structure of the eye in two species...

nal, Special Issue No. 4. Seal House Press. Liverpool. p. 31–46, fig. 1–4.

In English.

In Russian.

Dyar, G. H. 1890. The number of moults of...
lepidopterous larvae. Psyche 5:420–422.

In Russian.

phylogeny: A compromise approach. In K. A. Joysey & A. E. Friday, eds., Problems of Phylogenetic Re-
construction, Systematics Association Special Volume
234, fig. 1–17.
Fortey, R. A., & S. F. Morris. 1978. Discovery of nau-
plus-like trilobite larvae. Palaeontology 21:823–833,
fig. 1–3, pl. 94.
———. 1982. The Ordovician trilobite Neseuretus
from Saudi Arabia, and the palaeogeography of the
Neseuretus fauna related to Gondwanaland in the ear-
lier Ordovician. Bulletin of the British Museum
(Natural History), Geology 36:63–75, fig. 1–11.
———. 1978. Early Ordovician (Arenig) stratigraphy
and faunas of the Carmarthen district, south-west
Wales. Bulletin of the British Museum (Natural His-
tory) Geology 30:225–294, fig. 1–12, pl. 1–11.
———. 1979. Enrollment in the classification of tri-
———. 1987. The Arenig Series in South Wales:
Stratigraphy and Palaeontology. I. The Arenig Series
in South Wales. Bulletin of the British Museum
(Natural History), Geology 41:67–307, fig. 1–146.
121–142, 7 fig.
———. 1990b. Evolutionary radiations in the
Trilobita. In P. D. Taylor & G. P. Larwood, eds.,
Major Evolutionary Radiations. Systematics Associa-
139–164, 8 fig.
———. 1991. A trilobite fauna from the highest
Shineton Shales in Shropshire, and the correlation of
the latest Tremadoc. Geological Magazine 128(5):
437–464, 13 fig.
Fortey, R. A., & A. W. A. Rushton. 1980. Acantho-
pleurella Groom, 1902: Origin and life-habits of a
miniature trilobite. Bulletin of the British Museum
(Natural History), Geology 35:79–89, fig. 1–21.
Fortey, R. A., & J. H. Shergold. 1984. Early Ordovi-
cian trilobites, Nora Formation, central Australia.
Palaeontology 27:315–366, fig. 1–17, pl. 38–46.
Trilobita as a natural group. Historical Biology
thickness in relation to palaeoenvironment. Palaeo-
tologistische Zeitschrift 65:141–151, fig. 1–5.
Fowler, G. H. 1909. Biscayan plankton. Part 12: The
Ostracoda. Transactions of the Linnean Society of
Frey, R. C. 1989. Paleobiology of a well-preserved nau-
plusite assemblage from a late Ordovician shale unit,
620, fig. 1–9.
Fritz, W. H. 1972. Lower Cambrian trilobites from the
Sekwi Formation type section, Mackenzie Moun-
tains, northwestern Canada. Geological Survey of
———. 1973. Medial Lower Cambrian trilobites from the
Mackenzie Mountains northwestern Canada. Geolog-
1, pl. 1–8.
———. 1976. Ten stratigraphic sections from the
Lower Cambrian Sekwi Formation, Mackenzie
Mountains, northwestern Canada. Geological Survey of
———. 1978. Fifteen stratigraphic sections from the
Lower Cambrian of the Mackenzie Mountains,
northwestern Canada. Geological Survey of Canada,
Paper 77-33:1–19, pl. 1–7.
———. 1979. Eleven stratigraphic sections from the
Lower Cambrian of the Mackenzie Mountains,
northwestern Canada. Geological Survey of Canada,
Paper 78-23:1–19, fig. 1, pl. 1–7.
———. 1980. Two new formations in the Lower
Cambrian Atan Group, Cassiar Mountains, north-
central British Columbia. Current Research, Part B,
Geological Survey of Canada, Paper 80-1B:217–225,
fig. 25.1–25.3, pl. 25.1.
———. 1991. Lower Cambrian trilobites from the
Illtyd Formation, Wernecke Mountains, Yukon Ter-
76, fig. 1–5, pl. 1–17.
trilobite collection 61k, Mount Robson area, Cana-
dian Rocky Mountains. Geological Survey of Canada,
Bulletin 432:1–64, fig. 1–7, pl. 1–17.
———. 1993. New Lower Cambrian olenellid trilo-
bite genera Cirquella and Geraldinella from south-
western Canada. Journal of Paleontology 67:856–
868, fig. 1–13.
———. 1995. Emeraldina rowei and associated Lower
Cambrian trilobites (I fauna) at the base of Walcott’s
Waucoban Series, southern Great Basin, U.S.A. Jour-
nal of Paleontology 69:708–723, 10 fig.
Fritz, W. H., & E. L. Yochelson. 1988. The status of
Salterella as a Lower Cambrian index fossil. Canadian
Gaines, R. B., Jr. 1951. Biostratigraphic and
systematic-palaeontological Untersuchungen in
Grenzbereicht Unter-/Mittelkambrium von
p., 19 pl.
systematisch-paläontologische Untersuchungen in
Grenzbereicht Unter-/Mittelkambrium von
Marokko. Teil 2: Eodiscina. Neues Jahrbuch für
Geologie und Palaeontologie, Abhandlungen
177:93–133, fig. 1–112.
———. 1990a. Revised Lower to lower Middle Cam-
brian biostratigraphy of Morocco. Newsletters in
Stratigraphy 22:53–70, 2 pl.
———. 1990b. Die marokkanischen Ellipsoce-
phalidae (Trilobita: Redlichiida). Beringeria 31–363,
69 fig., pl. 1–56.
———. 1993. The giant Cambrian trilobites of Mor-
occo. Beringeria 8:71–107, 4 fig., 11 pl.
———. 1996. The Moroccan fallotaspid trilobites re-
Holmiidae (Trilobita) from Morocco and the prob-
References

Hall, J. 1863. Preliminary notice of the fauna of the Potsdam Sandstone; with remarks upon the previously known species of fossils and descriptions of some new ones, from the sandstone of the Upper Mississippi Valley, New York State Cabinet of Natural History, 16th Annual Report, Appendix D, Contributions to Palaeontology, p. 119–184, pl. Va–X1.

Hicks, Henry. 1869. On some recent discoveries of fossils in the Cambrian rocks. Report of the British Association for the Advancement of Science for 1868, Transactions of Sections, p. 68–69.
References

497

Dated 1952 on cover, published 1953.

Dated 1953, but printed in 1954.

References

499

bite genera and families. Journal of the Faculty of Science, Imperial University of Tokyo, Section II, 4(2):49–344, fig. 1–33, pl. 1–24.

1942c. Two Cambrian trilobites from the Parara limestone in the Yorke’s Peninsula, South Australia. Proceedings of the Imperial Academy, Tokyo 18:492–498, fig. 1–10.

1944a. On the eodiscids. Journal of the Faculty of Science, Imperial University of Tokyo, Section II, 7(1):1–74, pl. 1–2, table 1–4.

Kobayashi, Teiichi, & F. Kato. 1951. On the ontogeny and the ventral morphology of Redlichia chinensis, with description of Alutella nakamurai n. gen. n. sp. Journal of the Faculty of Science, University of Tokyo, Section II, 8(3):99–143, 9 fig., pl. 1–5.

Kraevskiy, B. G. 1965. Nekotorye nizhnekembriiskie
trilobity khebreta ilogo (Gornyj Altaj) [Some Lower Cambrian trilobites from Khebreta Ilogo (Gorno Altaj)]; Trudy SNIIGGIMS 34:47–56, pl. 1.

Lee, Shanchi [see Li, Shanji].

———. 1951b. Verkhnekambrijskie trilobity i brakhio- pody Boshche-Kulya (severo-vostochnyj Kazakhstan) [Upper Cambrian trilobites and bra- chiopods from Boshchekul (west Pavlodar oblast), N.E. Kazakj]. Vsesoiuznyj Nauchno-Isselovatel’nyi
Trilobita

In Chinese.

In Chinese, with English summary.

In Chinese.

In Chinese.

Ludvigsen, Rolf. 1978a. The trilobites Bathyurus and Eomacronurus from the Middle Ordovician of Oklahoma and their biofacies significance. Life Sciences Contributions, Royal Ontario Museum 114:1–18, 5 fig.

In English with Czech summary.

Martin, F., & W. T. Dean. 1988. Middle and Upper Cambrian acritarch and trilobite zonation at Manuels

In Russian.

———. 1976. The sensory fields and life mode of...
Trilobita

———. 1967. The Mindyallan fauna of north-west—
References

Pahl, R. C., & J. A. Fagerstrom. 1972. Late Paleozoic trilobites from southeastern Nebraska. Journal of...
Trilobita

Paleontology 46:789–816, fig. 1–19, pl. 1.
References

507

Pribyl, Alois, & Jirí Vanek. 1969. Trilobites of the fam-

Price, D., & P. M. Magon. 1984. The ecological signif-

Rabano, Isabel. 1989. El genero Unlichiai Delgado, 1892 (Trilobita, Lichaida) en el Ordovicico de la pen-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars. 1988. Heterochrony in Silurian phacopid tri-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

Ramsköld, Lars, Chen Jun-Yuan, G. D. Edgecombe, & Zhou Gui-Qing. 1996. Preservational fold stimulat-

References

507

© 2009 University of Kansas Paleontological Institute
arthropods. Lethaia 29:15–20, 2 fig.

This volume was published in 9 parts, which were not dated. The final part contains the title page (dated 1933) and list of contents. All parts were received together by the University Library, Cambridge, United Kingdom, on 23 March, 1933. An offprint of Crustacea (Paläontologie) sent by Richter to Professor O. M. B. Bulman (Sedgwick Museum, Cambridge) is dated 1932 on the cover in Richter’s handwriting. Stubblefield (1936) and subsequent authors date the article 1932.

Robison, R. A. 1964. Late Middle Cambrian faunas from western Utah. Journal of Paleontology 38:510–566, fig. 1–4, pl. 79–92.

———. 1979. Additional trilobites from the Ordovician of Kentucky. In John Pojeta, Jr., ed., Contribu-
Trilobita

Geological Society of America Bulletin 102:1459–1480, 6 fig.

Not bound with Band 36 (1962).

———. 1956. Quantitative trilobite studies I. The statistical description of trilobites. Journal of Paleon-
References

—. 1975. Late Cambrian and Early Ordovician trilobites from the Burke River structural belt, western Queensland. BMR Journal of Australian Geology & Geophysics, Report 296:1–11.

Spizharski, T. N., & Richard Cowen. 1976. Stereo-
Stitt, J. H. 1975. Adaptive radiation, trilobite paleo-
Stitt, J. H. 1974. Functional morphology and life hab-
Stitt, J. H. 1974. Functional morphology and life habit-
———. 1976. Functional morphology and life habits of the Late Cambrian trilobite Stenopilus pronus
———. 1983. Enrolled Late Cambrian trilobites from the
———. 1984. A complete specimen of Peachella brevispina
———. 1983. Enrolled Late Cambrian trilobites from the
———. 1976. Functional morphology and life habits of the Late Cambrian trilobite Stenopilus pronus
———. 1974. Functional morphology and life habits of the Late Cambrian trilobite Stenopilus pronus
———. 1983. Enrolled Late Cambrian trilobites from the
Suf, Jiri. 1926. O Ceskych Paradoxidech se zvlástním zretelem k jejich vyvoji. Sborník Staturho
Trilobita

516

Temple, J. T., & Hongji Wu. 1990. Numerical taxonomy of Encrinurinae (Trilobita): Additional spe-

Tripp, R. P. 1957. The trilobite Encrinurus multi-segmentatus (Portlock) and allied Middle and Upper Ordovician species. Palaeontology 1:60–72, fig. 1, pl. 11–12.

———. 1962. The Silurian trilobite Encrinurus punctatus (Wahlenberg) and allied species. Palaeontology 5:460–477, fig. 1–2, pl. 65–68.

———. 1983. Silificied trilobites of the genus
References

Dimoropyge from the Middle Ordovician of Virginia. Special Papers in Palaeontology 30:229–240.

Walcott, C. D. 1879. The Utica Slate and related formations of the same geological horizon, Transactions of the Albany Institute 10:38 p.

Author’s extras were printed in 1879; the rest were printed in 1883.

—. 1912d. The Sardinian Cambrian genus Olenopsis in America. Smithsonian Miscellaneous Collections 57(8):239–249, pl. 36.

—. 1939. The Swedish Ordovician and Lower
Silurian Lichidae. Kungliga Svenska Vetenskaps-
akademiens Handlingar (series 3) 17(4):1–162, 1 fig.,
14 pl.
Webby, B. D. & R. S. Nicoll, compilers. 1989. Aus-
tralian Phanerozoic timescales 2: Ordovician bio-
stratigraphic chart and explanatory notes. Bureau of
Mineral Resources of Australia, Record 1989/32:
42 p.
Weller, J. M. 1935. Adolescent development of
1–31.
———. 1969. The Course of Evolution. McGraw-
York. 696 p.
Wells, J. W. 1942. Supposed color-markings in Or-
dovician trilobites from Ohio. American Journal of
Science 240:710–713, 1 fig., 1 pl.
Wenndorff, Klaus-Werner. 1990. Homalonotinae
(Trilobita) aus dem Rheinischen Unter-Devon.
Palaeontographica (Abt. A) 211:1–184, fig. 1–57, pl.
1–15.
Westergård, A. H. 1922. Sveriges Olenidskiffer.
Sveriges Geologiska Undersökning, Series C, no.
477, Årsbok 40, no. 1–140, fig. 1–2, pl. 1–
31.
Westrop, S. R. 1983. The life habits of the Ordovician
illesine trilobite Buonastoides. Lethaia 16:15–24, fig.
1–4.
———. 1986a. Taphonomic versus ecologic controls on
taxonomic relative abundance patterns in tempestites.
Lethaia 19:123–132, fig. 1–11.
———. 1986b. Trilobites of Upper Cambrian
Sunwaptan Stage, southern Canadian Rocky Moun-
tains, Alberta. Palaeontographica Canad.iana 3:1–
179, 39 fig., pl. 1–41.
Westrop, S. R., & Rolf Ludvigsen. 1987. Bioge-
ographic control of trilobite mass extinction at an Up-
per Cambrian "biomere" boundary. Paleobiology 13:84–99, fig. 1–11.
Whitehouse, F. W. 1927. Notes accompanying an ex-
hibit of fossils. Proceedings of the Royal Society of
———. 1930. The geology of Queensland. Australasian Association for the Advancement of Sci-
Report of the Queensland Department of Mines for
———. 1936. The Cambrian faunas of north-Eastern
Australia. Part 1: Stratigraphical outline; Part 2:
Trilobita (Mionera). Memoirs of the Queensland
———. 1939. The Cambrian faunas of north-Eastern
Australia. Part 3: The polymerid trilobites (with
supplement no. 1). Memoirs of the Queensland
19–25.
Whittington, W. F. 1940. The Ordovician trilobite fauna
of the Shelve-Corndon district, west Shropshire. Part
I: Agnostidae, Raphiophoridae, Cheiruridae. Annals
and Magazine of Natural History (series 2) 5:153–
172, pl. 5–6.
———. 1941. The Ordovician trilobite of the Shelve
———. 1950. The Ordovician trilobites of the Shelve
pl. 16–21.
———. 1954. The Ordovician trilobite of the Shelve
2–6.
———. 1954a. Two silicified Carboniferous trilobites
from West Texas. Smithsonian Miscellaneous Collections 122(10):16, 1 fig., pl. 1–3.
———. 1954b. Ordovician trilobites from Silliman’s
Fossil Mount. In A. K. Miller, Walter Youngquist, &
Charles Collinson, Ordovician cephalopod fauna of
Baffin Island. Geological Society of America Memoir

© 2009 University of Kansas Paleontological Institute

In Chinese.

In Chinese with an English summary.

In Chinese.

In Chinese.

Zhang, Jilin. 1985. New materials of the early...
References

In Chinese, with English abstract.

In Chinese.

In Chinese, with English summary.

In Chinese, with English summary.

<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abadiella 461</td>
</tr>
<tr>
<td>ABDIELLIIDAE 461</td>
</tr>
<tr>
<td>Abakoria 392</td>
</tr>
<tr>
<td>abarthrochoal eye 116, 128</td>
</tr>
<tr>
<td>abaxial 2</td>
</tr>
<tr>
<td>absence of median or connective sutures 37</td>
</tr>
<tr>
<td>Acadagnostus 362</td>
</tr>
<tr>
<td>Acadoparadoxides 472, 474, 476</td>
</tr>
<tr>
<td>ACANTHAGNOSTIDAE 371</td>
</tr>
<tr>
<td>Acanthagnostus 371</td>
</tr>
<tr>
<td>accessory furrows 59, 64</td>
</tr>
<tr>
<td>Acidiscus 392</td>
</tr>
<tr>
<td>Acidious 350</td>
</tr>
<tr>
<td>Acimetopus 392</td>
</tr>
<tr>
<td>Acmarhachis 334, 349</td>
</tr>
<tr>
<td>acrolobe 11, 64</td>
</tr>
<tr>
<td>acron 133, 135</td>
</tr>
<tr>
<td>Aculeodiscus 401</td>
</tr>
<tr>
<td>Acutaspis 404</td>
</tr>
<tr>
<td>Acutagnostus 333, 340</td>
</tr>
<tr>
<td>adaxial 2</td>
</tr>
<tr>
<td>adult molt assemblage 154</td>
</tr>
<tr>
<td>adult-like larva 196</td>
</tr>
<tr>
<td>adult-like protaspis 187</td>
</tr>
<tr>
<td>Agnostandis 334, 348</td>
</tr>
<tr>
<td>Agnostascus 334, 347</td>
</tr>
<tr>
<td>AGNOSTIDA 331, 384</td>
</tr>
<tr>
<td>instar 216</td>
</tr>
<tr>
<td>AGNOSTIDAE 333, 334, 336, 337, 339</td>
</tr>
<tr>
<td>AGNOSTINA 325, 331, 332, 333, 335, 338, 345, 348</td>
</tr>
<tr>
<td>classification 331</td>
</tr>
<tr>
<td>mode of life 137, 213</td>
</tr>
<tr>
<td>protaspis 213, 215</td>
</tr>
<tr>
<td>systematic position 294</td>
</tr>
<tr>
<td>AGNOSTINAE 333, 334, 339</td>
</tr>
<tr>
<td>AGNOSTINI 331, 352</td>
</tr>
<tr>
<td>Agnostoglossa 344</td>
</tr>
<tr>
<td>Agnostogonus 337, 377</td>
</tr>
<tr>
<td>agnostoid 56</td>
</tr>
<tr>
<td>AGNOSTOIDAE 332, 333, 339</td>
</tr>
<tr>
<td>Agnostonymynus 352</td>
</tr>
<tr>
<td>Agnostores 334, 336, 366, 367</td>
</tr>
<tr>
<td>Agnostus 332, 334, 335, 339</td>
</tr>
<tr>
<td>Aistagnostus 334, 349</td>
</tr>
<tr>
<td>Akbashichia 468</td>
</tr>
<tr>
<td>ala 12</td>
</tr>
<tr>
<td>Alaskadiscus 399</td>
</tr>
<tr>
<td>Alemtejoia 389</td>
</tr>
<tr>
<td>alimentary canal</td>
</tr>
<tr>
<td>infilling of 99</td>
</tr>
<tr>
<td>alimentary diverticulae 100</td>
</tr>
<tr>
<td>alimentary tract 107</td>
</tr>
<tr>
<td>Allobodochus 352</td>
</tr>
<tr>
<td>AMMAGNOSTINAE 333, 334, 344</td>
</tr>
<tr>
<td>Ammagnostus 334, 344</td>
</tr>
<tr>
<td>Anabaraceps 475</td>
</tr>
<tr>
<td>Anabarapsis 475</td>
</tr>
<tr>
<td>Anadosides 459</td>
</tr>
<tr>
<td>ANADOXIDIDAE 459</td>
</tr>
<tr>
<td>Analox 392</td>
</tr>
<tr>
<td>anaprotaspis 183</td>
</tr>
<tr>
<td>Andalastiana 414</td>
</tr>
<tr>
<td>Anglagnostus 373</td>
</tr>
<tr>
<td>Angusteva 404</td>
</tr>
<tr>
<td>Angustolenellus 408</td>
</tr>
<tr>
<td>ANOMOCAROIDEA protaspis 227</td>
</tr>
<tr>
<td>Anopolenus 478, 479</td>
</tr>
<tr>
<td>antennal segment 133</td>
</tr>
<tr>
<td>anterior band 47</td>
</tr>
<tr>
<td>anterior branch 24</td>
</tr>
<tr>
<td>anterior cephalic border 20</td>
</tr>
<tr>
<td>anterior flange 25</td>
</tr>
<tr>
<td>anterior gap 72</td>
</tr>
<tr>
<td>anterior ocular line 26</td>
</tr>
<tr>
<td>anterior pleural ridge 54</td>
</tr>
<tr>
<td>anterior section 24</td>
</tr>
<tr>
<td>anterior wing 28, 41</td>
</tr>
<tr>
<td>anteroaxis 59</td>
</tr>
<tr>
<td>anterolobate 7</td>
</tr>
<tr>
<td>anteromedian depression 8</td>
</tr>
<tr>
<td>Aotagnostus 354</td>
</tr>
<tr>
<td>aplanatic lens 124</td>
</tr>
<tr>
<td>apodermal pit 44</td>
</tr>
<tr>
<td>apodeme 7, 44, 101</td>
</tr>
<tr>
<td>appendages 289</td>
</tr>
<tr>
<td>phosphatization of 168</td>
</tr>
<tr>
<td>Archaeagnostus 338, 377</td>
</tr>
<tr>
<td>ARCHAEASPIDIDAE 405, 422</td>
</tr>
<tr>
<td>ARCHAEASPIDINAE 422</td>
</tr>
<tr>
<td>Archaeaspis 422</td>
</tr>
<tr>
<td>Archaeosp 438</td>
</tr>
<tr>
<td>Arcuolenellus 409</td>
</tr>
<tr>
<td>Aristarius 354</td>
</tr>
<tr>
<td>Armagnostus 338, 377</td>
</tr>
<tr>
<td>arterial system 100</td>
</tr>
<tr>
<td>ARTHROMORHACHIDAE 373</td>
</tr>
<tr>
<td>Arthromorhachis 373</td>
</tr>
<tr>
<td>articulating furrow 3, 43, 56</td>
</tr>
<tr>
<td>articulating half ring 43, 56</td>
</tr>
<tr>
<td>articulation 3, 50</td>
</tr>
<tr>
<td>asaphid 25</td>
</tr>
<tr>
<td>ASPIDHIDA meraspis 229</td>
</tr>
<tr>
<td>asaphoid 227, 301</td>
</tr>
<tr>
<td>asaphoid protaspides 228</td>
</tr>
<tr>
<td>ASPIDAGNOSTINAE 337, 372</td>
</tr>
<tr>
<td>Aspidagnostus 372</td>
</tr>
<tr>
<td>assemblages 163</td>
</tr>
<tr>
<td>associations 163</td>
</tr>
<tr>
<td>Astenaspis 466</td>
</tr>
<tr>
<td>Asthenaspis 466</td>
</tr>
<tr>
<td>asymmetrical 150</td>
</tr>
<tr>
<td>atheloptic 163, 267, 286</td>
</tr>
<tr>
<td>AULACODISCIDAE 400</td>
</tr>
<tr>
<td>Aulacodiscus 401</td>
</tr>
<tr>
<td>Australaspis 456</td>
</tr>
<tr>
<td>autochthonous assemblage 167</td>
</tr>
<tr>
<td>Axagnostus 362</td>
</tr>
<tr>
<td>axial articulating process 56</td>
</tr>
<tr>
<td>axial cephalic musculature 105</td>
</tr>
<tr>
<td>axial furrow 3, 5</td>
</tr>
<tr>
<td>axial glabellar carina 8</td>
</tr>
<tr>
<td>axial glabellar node 8</td>
</tr>
<tr>
<td>axial process 51, 68</td>
</tr>
<tr>
<td>axial ring 43</td>
</tr>
<tr>
<td>axial socket 51, 68</td>
</tr>
<tr>
<td>axial spine 44</td>
</tr>
<tr>
<td>axiolobate 59</td>
</tr>
<tr>
<td>bacula 18, 259</td>
</tr>
<tr>
<td>baccular furrow 18</td>
</tr>
<tr>
<td>Balcoracania 429</td>
</tr>
<tr>
<td>Balagnostus 335, 364</td>
</tr>
<tr>
<td>Baltoparadoxides 474</td>
</tr>
<tr>
<td>band furrow 5</td>
</tr>
<tr>
<td>Barrandagnostus 347</td>
</tr>
<tr>
<td>Bathydiscus 393</td>
</tr>
<tr>
<td>bathyurid 146</td>
</tr>
<tr>
<td>Battus 339</td>
</tr>
<tr>
<td>behavioral asymmetry 159</td>
</tr>
<tr>
<td>Beishanella 478</td>
</tr>
<tr>
<td>Belliceps 467</td>
</tr>
<tr>
<td>benthic 144</td>
</tr>
<tr>
<td>Bertillon pattern 82</td>
</tr>
<tr>
<td>Biceratops 409</td>
</tr>
<tr>
<td>BICERATOPSINAE 409</td>
</tr>
<tr>
<td>bilaminar pitted fringe 145</td>
</tr>
<tr>
<td>biofacies and evolution 275</td>
</tr>
<tr>
<td>Cambrian 273</td>
</tr>
<tr>
<td>Carboniferous 275</td>
</tr>
<tr>
<td>Devonian 274</td>
</tr>
<tr>
<td>Permian 275</td>
</tr>
<tr>
<td>Silurian 274</td>
</tr>
<tr>
<td>biogeography 166</td>
</tr>
<tr>
<td>biomechanics 84</td>
</tr>
<tr>
<td>biomere 164, 165, 282</td>
</tr>
<tr>
<td>biostratigraphy</td>
</tr>
<tr>
<td>Australia 324</td>
</tr>
<tr>
<td>China 323</td>
</tr>
<tr>
<td>Iberia 321</td>
</tr>
<tr>
<td>Kazakhstan 323</td>
</tr>
<tr>
<td>Laurentia 321, 322</td>
</tr>
<tr>
<td>Lower Cambrian 405</td>
</tr>
<tr>
<td>Morocco 321</td>
</tr>
<tr>
<td>Scandinavia 321</td>
</tr>
<tr>
<td>Siberian Platform 322</td>
</tr>
<tr>
<td>Biragnostus 372</td>
</tr>
<tr>
<td>biramous appendage 90</td>
</tr>
</tbody>
</table>
Trilobita

- biramous limb 97
- biramous series of limbs 141
- blindness 129, 255
- Blystagnostus 338, 377
- Blackwelderia 323
- body
 - clusters 159
 - cross section 140, 141
- Bolbolnella 409
- Bolboparia 393
- Bondonella 426
- border 21
- border furrow 62
- border sector 27
- border spine 65
- Bornemannaspis 432
- Bradyfallotaspis 423
- Brevidiscus 390
- BREVIDISCINAE 390
- Brevidiscus 390
- Breviridichia 432
- Bristolia 409
- BRISTOLIINAE 409
- Buenellus 428
- Bulaiaspis 384, 467
- bulla 7, 241
- bullar lobe 7, 258
- bumastoid stance 250, 266
- burrionform 25
- burrow 142
- burrowing 148
- burrowing habit 250
- caesura 123
- Calagnostus 368
- Callavia 416
- CALLAVIIDAE 414, 416
- CALLAVINAE 414, 416, 423
- CALODISCIDAE 386, 390
- CALODISCINAE 390
- Calodiscus 390
- CALYMENINA 238
- protaspis 234
- Cambrian faunal realms 276
- Cambropallas 414
- canal 77
- CANOTAGNOSTIDAE 350
- Canagnostus 350
- Carboniferous and Permian cosmopolitan genera 282
- carcass 158, 180
- carina 8
- cedariidiform 25
- cell polygon 82
- Cenagnostus 383
- Centropleura 478, 479
- CENTROPLEURIDAE 478
- cephalic border 20
- anterior arch 141
- cephalic groove 71
- cephalic segmentation 292
- cephalic suture 24, 291
- primary role in exuviation 158
- cephalon 3, 134
- Cephalopyge 393
- cephalothoracic aperture 56, 113, 138, 297
- Ceragnostus 359
- cerc 90, 92
- Chaosipis 441
- Chatkalagnostus 374
- CHEIRURINA
- protaspis 231
- Chelediscus 384, 390
- Chengjiangaspis 441
- CHENGKOUASPIDAE 467
- Chengkouaspis 467
- Choubertella 422
- Churkinia 459
- Ciceragnostus 338, 377
- circumocular suture 13, 255, 299
- Cirquella 428
- cladogenesis
 - Lower Cambrian 282
 - Lower Ordovician 283
 - Silurian to Devonian 284
- Clarella 479, 481
- Clariondia 428
- CLAVAGNOSTIDAE 333, 337
- CLAVAGNOSTINAE 337, 371
- Clavagnostotes 383
- clusters 185
- coaptation 68
- coaptative devices 141
- evolution 270
- Cobboldia 391
- Cobboldites 393
- communities 162
- compaction 168
- complete enrollment 67, 147
- composite lateral lobe 7
- concave-dorsal flexure 147
- Condylagnostus 332, 383
- CONDYLOPHYGENAE 383
- CONDYLOPHYGIIDAE 332, 333, 337, 383, 404
- CONDYLOPHYGOIDEA 332, 333, 383
- Conagnostus 334, 349
- connective suture 25, 27
- CONOCORYPHIDAE 129
- Conoredlichia 430
- conterminant hypostome 25, 34, 41, 260, 261, 263, 300
- primitive or secondary 261
- specialized 263
- convexity 250
- Corrugatagnostus 337, 375
- CORNYNOCHIDIA 404
- CORNYNOCHIDAE 404
- CORNYNOCHINA
- instar 420
- protaspis 220
- Costalagnostus 392
- Cristagnostus 336, 365
- Cruziana 150
- Culipagnostus 371
- current sorting 166
- cuticle
 - canal 76
 - lamination 75
 - thickness 75
- Cyclus 349
- CYCLOPAGNOSTIDAE 355
- CYCLOPAGNOSTINAE 355
- Cyclopagnostus 356
- cylindrical 68
- DAGUINASPIDAE 418, 420
- DAGUINASPIDIDAE 418, 420
- DAGUINASPIDINAE 405, 420
- Daguinaspis 420
- Dalmanitidform 25
- Danagouia 462
- Dawsonia 400
- DAWSONIIDAE 400
- DAWSONIDEA 386
- Delagnostus 337, 377
- Delgadella 388
- Delgadodiscus 389
- Delgadoia 389
- DELGADOINAE 387
- deliquiate 333
- Delthea 408
- Denagnostus 368
- derived group 261
- Despujolisia 454
- DESPUJOLSIIDAE 454
- DESPUJOLSINAE 454
- deuterolobe 59, 64
- Devonian atheloptic fauna 281
- Devonian faunal realms 280
- diagenesis 168
- DICERODISCINAE 387
- Dicerodiscus 389
- Dichagnostus 383
- digestive caeca 100
- digestive gland 145
- Dignagnostus 337, 381
- dimorphic 60
- dimorphism 161, 184
- Dipharus 403
- DIPLAGNOSTIDAE 333, 334, 335, 336, 337, 362
- DIPLAGNOSTINAE 334, 335, 336, 362
- Diplognagnostus 335, 336, 337, 362
- Diplorrhina 335, 360
- Discagnostus 338, 383, 404
- Discomesites 403

© 2009 University of Kansas Paleontological Institute
Distagnostus 333, 342
Diviagnostus 375
DOLORELIDAE 444
DOLORELINA 444
Dolerenus 444
Dolerolichia 456
Dolichagnostus 335, 364
Dome 77
Dongshania 430
DORYAGNOSTINAE 335, 358
Doryagnostus 359
Doublural plate 26
doublure 4, 48, 59, 66, 67
doublure sector 27
Drepanopyge 446
Drepanuroides 446
Drepanura 323
drifting 139
Eccaparadoxides 472, 476
effaced 142
effacement 266
Egnygolia 400
Ekwiapetra 400
Elegestina 469
Elganellus 470
ELLIPSOCEPHALIDAE 325
protaspis 225
ELLIPSOCEPHALOIDEA 325, 384, 429
Ellioposthagnostus 414
ELLIPSOCEPHALINA 414
eumeila 429
EMUELLOIDEA 429
ENETagnostus 362
enrollment 103, 140, 147
entomaspidiform 26
Exaparadoxides 472, 476
Effaced 266
Egnygorgia 400
Eumia 400
Eplethagnostus 368
Euptychopariid 27
Eurudagnostus 343
evolutionary trend 72
exfoliated specimen 3
eye 255
external dorsal muscles 105
extinction 279
extinction
end-Ordovician 279, 284
Middle to Late Devonian 285
extrinsic limb musculature 111
extrinsic limb musculature 111
eye loss, blindness 270
eye ridge 12, 14, 255
eye socle 12
eye socle furrow 12
facet 47
facial line 15
facial suture 5, 12, 24
Fasculospirula 423
Fallotaspida 405, 418
FALLOTASPIDIDAE 405, 418
FALLOTASPIDINAE 405, 418
FALLOTASPIDOIDEA 405, 418
Fallotaspis 418
family groups 289
Fandianaspis 470
faunial province 165
faunal realm 165
fenestrae 54, 59, 101
fibular furrow 67
filament 97
filter feeding 151
fixigena 5
fixigenal 20
flange 51, 52
Formosagnostus 336, 344
fossite 114
fossula 5, 12, 41, 133, 134
fossular apodeme 29, 34
Fremontiella 408
Fremonta 408
FREMONTINAE 407, 409
fringe 22, 70
frontal cephalic process 157
frontal lobe 7
segments 132, 133
frontal organ 113
frontal process 23, 145
frontal spine 23
fronto-median glabellar lobe 7
fulcral process 53, 54, 68
fulcral prong 56
fulcral socket 53, 54
fulcral swelling 54, 55
fulcrate 22, 50, 56, 67
fulcrate socket 68
fulcrum 22, 46, 56
Fuminaspis 459
furrow 3
GABRIELLINAE 411
Gabrielius 412
gait 111
Galagnostus 375
Gallagnostorida 338, 383
Gallagnostus 338, 377
Gallorecliathia 438
gen 3
genal caeca 15, 100, 151
genal field 11
genal region
muscle scar 110
genal ridge 15
genal spine 23, 255
Genicranium 26
geographical distribution 165
Geragnostella 375
GERAGNOSTIDAE 337, 373
Geragnostus 334, 375
Geragnostus 334, 375
Geraldinellia 423
Geratrinodus 375
GIGANTOPYGIDAE 451
GIGANTOPYGINAE 451
Gigantopygus 451
Gigantopygus 451
Girvanagnostus 373
Glabella 5
glabellar culmination 7
glabellar furrow
effacement 258
glabellar lobe
inflation 258
glabellar segmentation 132

© 2009 University of Kansas Paleontological Institute
Index

Longianda 454
longitudinal furrow 7
longitudinal median glabellar furrow 8
Longmenshania 470
Lotagnostus 333, 341
Lower Carboniferous faunal realms 281
lower lamella(e) 22, 26
Luhops 480
luminous organ 114
lunette 8, 18, 299
Lunolenus 462
Luvsanodiscus 389
Macannaia 401
Machairagnostus 336, 370
macropleura(e) 48, 49
macropleural spine 48
macropygous 5, 61
macula 28, 263
major pleural spine 48
Margodiscus 391
Marsaisia 456
Mayiella 449
MAYIELLIDAE 449
median axial thoracic spine 145
median connective suture 227, 228
median fixigenal spine 23
median glabellar tubercle 79
median occipital spine 79
median occipital tubercle 79
median preglabellar furrow 12
median preglabellar ridge 11
median preoccipital lobe 7
median suture 25, 28, 35, 37, 260, 301
Meitanella 446
Mendodiscus 404
Meniscuchus 397
MENNERASPIDAE 464
Menneraspis 466
meraspis degree 174, 189
meraspis instars 189
meraspis molt assemblage 154
meraspis period 173, 174
accumulation phase 194
shedding phase 194
meraspi 154, 175, 184
Mesagnostus 360
Mesodema 430
Mesolenella 408
Mesonacida 404
Mesonacidae 404
Mesospheniscus 404
Mesostreptus 407
Mesostreptusidae 407
Mesostreptusidae 407
Mesopterygidae 407
mesopelagic 143, 144
Mesospheniscus 360
Metadiscus 401
Metadoxides 459, 460
METADOXIDIDAE 459
METAGNOSTIDAE 333, 334, 336, 337, 373
Metagnostus 373
Metapygostus 356
metamorphosis 197
metamorphosis in ontogeny 196
metaparian 26
metaprotaspis 183
Metaredlichia 432, 434
METAREDLICHIINAE 431
Metaredlichioides 435
metastome 99
Miagnostus 352
Mianxiandiscus 387
Micagnostus 356
Micangshania 470
MICRAGNOSTIDAE 333, 339
Micragnostus 334, 342
Microdiscus 385
Microparia 388, 383
mucro 65, 145
Mummaspis 408
Munagnostus 383
Muscle 101, 103
muscle attachment area 7, 8, 84, 85
muscle scar 62, 101
Myrmecomimus 352
Nahannagnostus 336, 368
NARAOIIDAE
systematic position 293
Natalina 389
natant hypostome 25, 30, 33, 42, 260, 263, 296, 300
unspecialized 263
Nebidella 434
Nektaspida 294
Nellina 467
Neltneria 426
NELTNERIIDAE 405, 425
NELTNERINAE 416, 425
Neoagnostus 336, 368
Neocobboldia 391
NEOCOBBOLDINAE 390
Neopagetina 389
Neoredlichia 437
NEOREDLICHIIDAE 437
neoteny 201
Nepholenellus 411
Neptunagnostella 375
Nevadella 428
Nevadia 426
NEVADIIDAE 405, 426
NEVADINAE 423, 426
new clades
Lower Ordovician 283
nileid meraspis 229
nileiform 25
Ninaulisus 397
Ningjiangaspis 439
nonadult-like larvae 196
nonadult-like protaspis 187, 211
unclassified 211
nonfalcate 22, 51, 57, 68
notula 8
occipital doublure 5
occipital furrow 3, 5
occipital ring 5
occipital tubercle 113
occulpt 7
Oculagnostus 374
ocular furrow 13
ocular lobe 13, 132
ocular striga 13
ocular suture 115, 116, 255
odontopleurid 245
ODONTOPLEURIDAE
glomer lobes 245
meraspis 241
protaspis 241
Oedorhachis 335, 336, 364
OIDALAGNOSTINAE 335, 336, 365
Oidalgognostus 336, 337, 365
OLENELLACEA 404, 407
olenellid realm 407
OLENELLIDAE 404, 407
OLENELLIDAE 404, 407, 409, 418

© 2009 University of Kansas Paleontological Institute
Olenellidea 404, 407
Olenellidae 404, 407
Olenellina 325, 404, 405, 407, 428
cephalic sutures 220
growth stages 219
meraspis 219
phylogenetic trends 405
systematic position 292
Olenellinidae 404, 407
Olenelloidea 404, 405, 407, 418
Olenellides 405, 412
Olenellus 408
Olenidae 408
Olenina 408
meraspis 227
protaspis 225
Olenopsidae 444
Olenopsida 444
Oligaspis 437
ommatidia in Phacops, supposed 125
Olenaspinus 460
Oncagnostus 333, 343
ontogeny and classification 178
Oonagnostus 334, 352
Oodiscus 397
opisthoparian 20, 25
opisthoparian suture 259
opisthothorax 49
Opsidiscidae 400
Opsidiscus 401, 404
Ordovician faunal realms 278
Ordovician glaciation 279
Ordovician-Silurian glaciation 279, 210
“Osmólska cavities” 77
outer branch 87, 90, 91, 92, 95, 96, 97
function 151
Ovalagnostus 365
Oxyagnostus 336, 370
P. bulbus 334
Pachyredlichia 439
Paecomia 408
paedomorphic evolution 205
paedomorphic pattern 203
paedomorphism 114, 124, 129, 132, 200, 201, 202, 203
Pagetia 401, 402, 403, 404
Pagetidae 400
Pagetidae 403
Pagetiellinae 387, 400
Pagetiellus 389
Pagetina 389
paired spines 79
paired tubercles 79
pairs of spines 184
Palaeoaspis 452
palaeogeographic distribution 209
Palmentaspis 416
palpebral furrow 12
palpebral ledge 13
palpebral lobe 12
palpebral rim 13
palpebral suture 114
palpebro-ocular ridge 13, 14
panderian notch 48, 50, 51, 101
panderian opening 27, 48, 51, 100
panderian organ 101
panderian projection 70
panderian protuberance 48, 50, 51, 56, 68
Paekannia 446
Parabadiella 461, 462
Paradiscus 398
paradochal to paro-ocular line 26
Paradoxiacea 470
Paradoxiidae 325, 470, 471, 472
Paradoxiidae 325, 471
Paradoxioida 429, 470
protaspis 218
Paradrepanuroides 449
Parallenopteridida 418
parafrontal band 13, 15
paraglabellar area 18, 20
Paragnostus 334, 347
Paragnostus 383
Parahoplolithus 437
Parahoplolithus 444
Paramalunghiinae 444
Paramecium 444
Paraphyllidacea 385
Parapagetiella 387
Parasajanaspis 470
Parasimetaspis 470
Paratungusella 466
Paratungusella 467
Paravutinaspis 470
Paravutinaspis 470
Parawutingaspis 470
Parawutingaspis 470
Peachella 409
pelagic 145
pelagic morphotype 266
pelagic larvae 209
Pelmanaspis 418
Pentagnostus 354
Pentagonalia 389
peramorphosis 202, 203
Peragnostus 357
Peronopsella 353, 361
Peronopsis 333, 335, 360
Peronopsis 335, 337, 360, 361
Perrector 456
perrectoral suture 27
petaloid 52
Peziziopsis 375
phacomorph 266
phacop lens
internal structure 123
Phacopina
protaspis 231
Phalacromia 337, 381
Phalacromida 332, 337, 381
Phalacroagnida 337, 338, 380
Phalagmagnostus 338, 380
Phanoptes 476
phelmen 183, 187, 198
Physacium 476
Phoidagnostoides 380
Phoidagnostus 337, 380
pit 83
pitted-fringe morphotype 268
planktonic 143
planktonic larvae 209
Planodiscus 390
Platagnostidae 381
Platagnostus 381
pectulum 11
Plenudiscus 404
Plathagnostus 366
pleura 43
inner portion 46
outer portion 46
pleural articulating facet 255
pleural band 62
pleural border 62
pleural field 62
pleural furrow 3, 47, 62
pleural guide 51
pleural region 3
pleural rib 63
pleural spine 65
Pleuroctenium 332, 333, 383
plowing 151
plowing 145
Plurinodus 338, 380
Plutonia 476
Plutonides 476
Pluteasevella 428
colorerid 43
colorerid morphism 171
core 77
postannulus 44
postaxial furrow 64
postaxial ridge 64, 66
potsedey morphite 153
posterior band 5, 47
posterior border 3, 29, 59
posterior branch 24

© 2009 University of Kansas Paleontological Institute
Trilobita

size-frequency diagrams 208
Skryjagnostus 337, 380
socket 56
Solenagnostus 354
somite 3
specialized hypostomal form 263
SPHAERAGNOSTIDAE 332, 337, 381
Sphaeragnostus 337, 382
SPINAGNOSTIDAE 333, 334, 355, 355
SPINAGNOSTINAE 334, 335, 381
Sphaeragnostus 337, 382
SPINAGNOSTIDAE 333, 334, 355
SPINAGNOSTINAE 334, 335, 381
Spinagnostus 334, 356
spine 79, 113
spine pattern 184
spines 79
Spinodiscus 400
Spinoredlichia 431
spiral enrollment 69
stenoptychopariid 27
sternite 87, 90, 99
Stigmadiscus 398
Stigmagnostus 371
Strictagnostus 333, 343
submarginal suture 26
subocular area 12
subocular groove 12
subocular ridge 12
Sulcatagnostus 336, 366
suprafamily group 291
sutural edge 28
sutural ridge 26
suture 158
fusion 158, 260
lines of movement 158
Svenax 358
swimming 137, 139
swimming mechanism 147
Syndianella 431
Szechuanaspis 400
Tannudiscus 385, 398
taphofacies 166
Tarayagnostus 368
Tasagnostus 335, 364
Tchernysheviodae 390
tectonic deformation 168
Tentagnostus 334, 344
Terechtaspis 467
terminal axial piece 62
terminal axial spine 65
terminal glabellar node 8
terrace ridge 72, 79, 81, 82
thoracic segments
number of 292
thoracoppygon 153, 154
thorax 3
back-arching of 58
number of segments 43
Tologoja 392
Tomagnostella 358
TOMAGNOSTINAE 350
Tomagnostus 334, 354
Tomorhachis 371
Toragnostus 381
torulus 188
trace fossil 145
transglabellar furrow 6
transitory pygidium 183
transverse 2
transverse preglabellar ridge 12
Triadaspis 373
Triangulaspis 404
Triangullina 404
Triagnostus 333, 343
TRILOBITEN 331
TRINODIDAE 373
Trinodus 377
trinucleid fringe
evolution 271
trinucleoids 129
TRINUCLEOIDEA 129
TRIPLAGNOSTINAE 334, 350
Triplagnostus 354
Triiramagnostus 371
Triulagnostus 337, 371
tropidial ridges 17
tropidium 17
trunk limb 90
TSUNYDISCIDAE 384, 387
Tsunydiscus 384, 387
tubercle 77, 79
Tungusella 398
tunnel 151
Upper Carboniferous–Permian
faunal realms 281
upper lamellae 22
Usbaspis 434, 435
Utagnostus 337, 373
Valagnostus 337, 338, 381
venous system 100
ventral cuticle 87, 92, 98, 99, 103
ventral longitudinal muscle 107
vertical burrow 142
vincular furrow 26, 70, 71, 74
vincular groove 70
vincular notch 53, 69, 70, 71, 72, 74
vincular socket 55
vincular structure 26, 67
Vinicella 472
visceral feature 3
visual field 118
visual surface 12
walking 104, 111, 139
Wanagnostus 349
Wanneria 414
WANNERIIDAE 413, 414
WANNERINAE 413
Wengangaspis 443
Weymouthia 392
WEYMOUTHIIDAE 384, 385, 386, 392
wing process 28, 34
Wolynaspis 422
WUTINGASPINAE 441
Wutingaspis 441, 444
Xela 435
Xenoredlichia 437
Xestagnostus 336, 371
Xingishania 470
Xishuilla 446
Xystridura 325
XYSTRIDURIDAE 325, 429
Yankongia 437
Yiliangella 452, 470
Yiliangellina 452
YILIANGELLINAE 451
Yinites 446, 448
YINITIDAE 446
Yorkella 444
Yukonia 398
Yukonids 400
YUKONIIDAE 386, 398
YUKONINAE 398
Yunnanaspidella 449
Yunnanaspis 449
Zeteagnostus 354
Zhangshania 452
Zhenbadiscus 400
Zhenxiongaspis 437
Zhenxiongaspis 437
ZHKONGIIIDAE 386, 398
© 2009 University of Kansas Paleontological Institute