TREATISE ON
INVERTEBRATE PALEONTOLOGY

Prepared under Sponsorship of
The Geological Society of America, Inc.

The Paleontological Society The Society of Economic Paleontologists and Mineralogists
The Palaeontographical Society The Palaeontological Association

Directed and Edited by
RAYMOND C. MOORE

Revisions and Supplements Directed and Edited by
CURT TEICHERT

Part R
ARTHROPODA 4

VOLUME 1

THE GEOLOGICAL SOCIETY OF AMERICA, INC.
and
THE UNIVERSITY OF KANSAS

1969

© 2009 University of Kansas Paleontological Institute
The *Treatise on Invertebrate Paleontology* has been made possible by (1) grants of funds from The Geological Society of America through the bequest of Richard Alexander Fullerton Penrose, Jr., for preparation of illustrations and partial defrayment of organizational expense and the United States National Science Foundation, in December, 1959, January, 1966, and October, 1967, for completion of the *Treatise* project; (2) contribution of the knowledge and labor of specialists throughout the world, working in cooperation under sponsorship of The Geological Society of America, The Paleontological Society, The Society of Economic Paleontologists and Mineralogists, The Palaeontographical Society, and The Palaeontological Association; and (3) acceptance by The University of Kansas of publication without cost to the Societies concerned and without any financial gain to the University.
TREATISE ON INVERTEBRATE PALEONTOLOGY

Directed and Edited by RAYMOND C. MOORE
and (for supplements and revisions) CURT TEICHERT

Assistants: LAVON MCCORMICK, ROGER B. WILLIAMS

PARTS

Parts of the Treatise are distinguished by assigned letters with a view to indicating their systematic sequence while allowing publication of units in whatever order each may be made ready for the press. The volumes are cloth-bound with title in gold on the cover. Copies are available on orders sent to the Publication Sales Department, The Geological Society of America, P.O. Box 1719, Boulder, Colorado 80302. The prices quoted very incompletely cover costs of producing and distributing the several volumes, but on receipt of payment the Society will ship copies without additional charge to any address in the world. Special discounts are available to members of sponsoring societies under arrangements made by appropriate officers of these societies, to whom inquiries should be addressed.

VOLUMES ALREADY PUBLISHED
(Previous to 1969)

Part C. PROTISTA 2 (Sarcodina, chiefly "Thecamoebians" and Foraminiferida), xxxi+900 p., 5311 fig., 1964.
Part D. PROTISTA 3 (chiefly Radiolaria, Tintinnina), xii+195 p., 1050 fig., 1954.
Part V. GRAPTOolithina, xvii+101 p., 358 fig., 1955.

THIS VOLUME

VOLUMES IN PREPARATION (1969)

Part A. INTRODUCTION.
Part B. PROTISTA 1 (Chrysomonadida, Coccolithophorida, Charophyta, Diatomacea, etc.).
Part J. MOLLUSCA 2 (Gastropoda, Streptoneura exclusive of Archaeogastropoda, Euthyneura).
Part M. MOLLUSCA 5 (Coleoidea).
Part N. MOLLUSCA 6 (Bivalvia).
Part T. ECHINODERMATA 2 (Crinoidea).
Part X. ADDENDA, INDEX.
Part F (supplement). Coelenterata (Anthozoa Rugosa).
Part G (revision). Bryozoa.
Part L (revision). Ammonoidea.
Part V (revision). Graptolithina.

CONTRIBUTING AUTHORS

[Arranged by countries and institutions; an alphabetical list follows. An asterisk preceding name indicates author working on revision of or supplement to a published Treatise volume.]

AUSTRALIA
South Australia Geological Survey (Adelaide)
N. H. Ludbrook
University of Adelaide
M. F. Glaessner
University of Queensland (Brisbane)
Dorothy Hill

AUSTRIA
Universität Wien (Paläontologisches Institut)
Adolph Papp

BELGIUM
Université de Liége
Georges Ubags
Université de Louvain
Marius Lecompte

CANADA
Geological Survey of Canada (Ottawa)
J. A. Jeletzky, A. W. Norris, G. W. Sinclair
Institute of Sedimentary & Petroleum Geology (Geological Survey of Canada, Calgary)
D. J. McLaren
National Museum (Ottawa)
A. H. Clarke, Jr.
University of British Columbia (Vancouver)
V. J. Okulitch

DENMARK
Universitet København
Chr. Poulsen

FRANCE
Unattached
André Chavan (Seyssel, Ain)
Université de Paris (Sorbonne)
Colette Dechaseaux

GERMANY
Bergakademie Freiberg (Geologisches Institut)
A. H. Müller
Freie Universität Berlin
Gerhard Hahn
Hamburg Staatsinstitut
Walter Hantzschel
Natur-Museum und Forschungs-Institut Senckenberg (Frankfurt)
Herta Schmidt, Wolfgang Struve
Unattached
Hertha Sieverts-Doreck (Stuttgart-Möhringen)
Universität Bonn
H. K. Erben, K. J. Müller
Universität Münster
Helmut Hölder
Universität Tübingen
*Jürgen Kullman, O. H. Schindewolf
Universität Würzburg
Klaus Sdzuy
ITALY
Università Modena
Eugenia Montanaro Gallitelli

JAPAN
Tohoku University (Sendai)
Kotora Hatai
University of Tokyo
Tetsuro Hanai

LIBYA
Esso Standard Libya Inc. (Tripoli)
L. A. Smith

NETHERLANDS
Rijksmuseum van Natuurlijke Historie
(Leiden)
H. Boschma, L. B. Holthuis
Vrije Universiteit Amsterdam
A. Breimer

NEW ZEALAND
Auckland Institute and Museum
A. W. B. Powell
Dominion Museum (Wellington)
R. K. Dell
New Zealand Geological Survey (Lower Hutt)
C. A. Fleming, J. Marwick

NORWAY
Universitet Oslo
Gunnar Henningsmoen, T. Soot-Ryen, Leif Størmer

POLAND
Późnstwowe Wydawnictwo Naukowe
(Warszawa)
Gertruda Biernat, Adolf Riedel

SWEDEN
Naturhistoriska Museet Goteborg
Bengt Hubendick
Riksmuseum Stockholm
Valdar Jaansson
Universitet Lund
Gerhard Regnell
Universitet Stockholm
Ivar Hessland, *Sten Schager
Universitet Uppsala
R. A. Reyment

SWITZERLAND
Universität Basel
Manfred Reichel

UNITED KINGDOM
British Museum (Natural History)
(London)
British Petroleum Company (Middlesex)
F. E. Eames
Geological Survey of Great Britain
(London)
Raymond Casey, R. V. Melville
Imperial College of Science and Technology
(London)
D. V. Ager
Iraq Petroleum Company (London)
G. F. Elliott
Oxford University Museum
*M. R. House
Queen’s University of Belfast
Margaret Jope, *R. E. H. Reid, *Ronald Tavener-Smith, Alwyn Williams, A. D. Wright
Unattached
Dennis Curry (Middlesex), R. P. Tripp (Sevenoaks, Kent), C. J. Stubblefield (London), C. W. Wright (London)
University of Birmingham
L. J. Wills
University of Cambridge
O. M. B. Bulman, M. J. S. Rudwick, H. B. Whittington
University College London
*J. H. Callomon, *D. T. Donovan
University of Durham
*G. P. Larwood
University of Glasgow
W. D. I. Rolfe, John Weir, C. M. Yonge
University of Hull
E. R. Trueeman
University of Leicester
P. C. Sylvester-Bradley
University of Reading
H. L. Hawkins
University of Wales
F. H. T. Rhodes

UNITED STATES OF AMERICA
Academy of Natural Sciences of Philadelphia (Pennsylvania)
A. A. Olsson, Robert Robertson
American Museum of Natural History
(New York)
R. L. Batten, W. K. Emerson, L. H. Hyman, N. D. Newell
Armed Forces Institute of Pathology
(Washington, D.C.)
*R. J. Cuffey

California Academy of Sciences
(San Francisco)
G. D. Hanna, L. G. Hertlein, A. G. Smith,
V. A. Zullo

California Institute of Technology
(Pasadena)
A. J. Boucot, J. G. Johnson, H. A. Lowenstam

Carnegie Museum
(Pittsburgh, Pennsylvania)
Juan Parodiz

Chevron Oil Field Research Company
(La Habra, California)
A. R. Loeblich, Jr.

Continental Oil Company
(Ponca City, Oklahoma)
J. A. Eyer

Cornell University (Ithaca, New York)
W. S. Cole, J. W. Wells

Esso Production Research Company
(Houston, Texas)
H. H. Beaver, R. M. Jeffords, S. A. Levinson, Joan Stough, J. F. Van Sant

Field Museum of Natural History
(Chicago)
Fritz Haas, G. A. Solem

Florida Geological Survey (Tallahassee)
H. S. Puri

Florida State University (Tallahassee)
W. H. Heard

Harvard University
(Cambridge, Massachusetts)
Kenneth Boss, F. M. Carpenter, W. J. Clench, H. B. Fell, Bernhard Kummel, R. D. Staton, Ruth Turner

Illinois State Geological Survey (Urbana)
M. L. Thompson

Indiana Geological Survey (Bloomington)
R. H. Shaver

Johns Hopkins University
(Baltimore, Maryland)
Franco Rasetti

Kent State University (Kent, Ohio)
A. H. Coogan

Louisiana State University (Baton Rouge)
W. A. van den Bold, H. V. Howe, B. F. Perkins, H. B. Stenzel

New Mexico Institute Mining & Geology
(Socorro)
Christina Lochman-Balk

New York State Museum (Albany)
D. W. Fisher

Ohio State University (Columbus)
Aurèle La Rocque, W. C. Sweet

Oklahoma Geological Survey (Norman)
T. W. Amsden, R. O. Fay

Oregon State University (Corvallis)
Joel Hedgpeth

Paleontological Research Institute
(Ithaca, New York)
K. V. W. Palmer

Princeton University
(Princeton, New Jersey)
A. G. Fischer, B. F. Howell

Queens College of the City of New York
(Flushing)
*R. M. Finks

Radford College (Radford, Virginia)
R. L. Hoffman

St. Mary’s College of California (St. Mary’s)
A. S. Campbell

San Diego Natural History Museum
(San Diego, California)
George Radwin

San Francisco State College
(San Francisco, California)
Y. T. Mandra

Shell Development Company
(Houston, Texas)
John Wainwright

Sinclair Oil & Gas Company
(Tulsa, Oklahoma)
A. L. Bowsher

Smithsonian Institution (Washington, D.C.)

Southern Illinois University (Carbondale)
*John Utgaard

Stanford University (Stanford, California)
Eugene Coan, A. Myra Keen

State Geological Survey of Kansas
(Lawrence)
D. E. Nodine Zeller

State University of Iowa (Iowa City)
W. M. Furnish, B. F. Glenister, H. L. Strimple

State University of New York
(Stony Brook)
A. R. Palmer

Tulane University
(New Orleans, Louisiana)
Emily Vokes, H. E. Vokes

Unattached
R. Wright Barker (Bellaire, Texas), H.
J. Harrington (Houston, Texas)
United States Geological Survey
(Washington, D.C.)
J. M. Berdan, R. C. Douglass, Mackenzie Gordon, Jr., R. E. Grant, O. L. Karklins, K. E. Lohman, N. F. Sohl, I. G. Sohn, E. L. Yochelson; Dwight Taylor (Menlo Park, Calif.)
University of California (Berkeley)
J. W. Durham, C. D. Wagner
University of California (Los Angeles)
N. G. Lane, W. P. Poppenoe, Helen Tappan
University of California (San Diego, La Jolla)
M. N. Bramlette, A. R. Loeblich III, W. A. Newman
University of Chicago (Illinois)
J. M. Weller
University of Cincinnati (Ohio)
K. E. Caster, O. B. Nye
University of Florida (Gainesville)
H. K. Brooks, F. G. Thompson
University of Illinois (Urbana)
H. W. Scott
University of Kansas (Lawrence)
A. B. Leonard, Lavon McCormick, R. C. Moore, A. J. Rowell, Curt Teichert, R. H. Thompson
University of Massachusetts (Amherst)
C. W. Pitrat
University of Miami (Florida)
F. M. Bayer, Donald Moore

University of Michigan (Ann Arbor)
University of Minnesota (Minneapolis)
F. M. Swain
University of Missouri (Columbia)
R. E. Peck
University of Missouri (Rolla)
Harriet Exline, D. L. Frizzell
University of Oklahoma (Norman)
C. C. Branson
Western Reserve University
(Cleveland, Ohio)
F. G. Stehli
Wichita State University (Kansas)
Paul Tasch
Woods Hole Oceanographic Institution
(Woods Hole, Massachusetts)
R. R. Hessler
Yale University (New Haven, Connecticut)
A. L. McAlester

DECEASED

Alphabetical List

Ager, D. V., London (Imperial College)
Amsden, T. W., Norman, Okla. (Oklahoma Geol. Survey)
Arkell, W. J., (deceased)
Bairston, Leslie, London (British Museum Nat. History)
Barker, R. W., Bellaire, Tex. (unattached)
Bassler, R. S. (deceased)
Batten, R. L., New York (American Museum Nat. History)
Beaver, H. H., Begles, France (Esso Prod. Research Co.)
Benson, R. H., Washington, D.C. (Smithsonian Inst.)
Biernat, Gertruda, Warszawa, Pologne (Panstwowe Wydawictwo Naukowe)

*Boardman, R. S., Washington, D.C. (Smithsonian Inst.)
Bold, W. A. van den, Baton Rouge, La. (Louisiana State Univ.)
Boschma, H., Leiden, Netherlands (Rijksmuseum van Natuurlijke Historie)
Boss, Kenneth, Cambridge, Mass. (Harvard Univ.)
Boucot, A. J., Pasadena, Calif. (Calif. Inst. Technology)
Bowsher, A. L., Tulsa, Okla. (Sinclair Oil & Gas Co.)
Bramlette, M. N., La Jolla, Calif. (Scripps Inst. Oceanography)
Branson, C. C., Norman, Okla. (Univ. Oklahoma)
Breimer, A., Amsterdam, Netherlands (Inst. Aardwetensch. Vrije Univ.)
Brooks, H. K., Gainesville, Fla. (Univ. Florida)
Bulman, O. M. B., Cambridge, Eng. (Univ. Cambridge)
Burch, J. B., Ann Arbor, Mich. (Univ. Michigan)
*Callomon, J. H., London (Univ. College)
Campbell, A. S., St. Mary's, Calif. (St. Mary's College)
Carpenter, F. M., Cambridge, Mass. (Harvard Univ.)
Casey, Raymond, London (Geol. Survey Great Britain)
Caster, K. E., Cincinnati, Ohio (Univ. Cincinnati)
Chavan, André, Seyssel (Ain), France (unattached)
Cheetham, A. H., Washington, D.C. (Smithsonian Inst.)
Clarke, A. H., Jr., Ottawa, Ontario, Canada (Nat. Museum)
Clench, W. J., Cambridge, Mass. (Harvard Univ.)
Coan, Eugene, Stanford, Calif. (Stanford Univ.)
Cole, W. S., Ithaca, N.Y. (Cornell Univ.)
Coogan, H. A., Kent, Ohio (Kent State Univ.)
Cook, P. L., London (British Museum Nat. History)
Cooper, G. A., Washington, D.C. (Smithsonian Inst.)
Cox, L. R. (deceased)
*Cuffey, R. J., Washington, D.C. (Armed Forces Inst. Pathology)
Curry, Dennis, Middlesex, Eng. (unattached)
Davies, L. M. (deceased)
Dechaseaux, Colette, Paris (Laboratoire de Paléont. à la Sorbonne)
Dell, R. K., Wellington, N. Z. (Dominion Museum)
Durham, J. W., Berkeley, Calif. (Univ. California)
Eames, F. E., Middlesex, Eng. (British Petroleum Co.)
Elliott, G. F., London (Iraq Petroleum Co.)
Emerson, W. K., New York (American Museum Nat. History)
Erben, H. K., Bonn, W. Germany (Univ. Bonn)
Exline, Harriet, Rolla, Mo. (Univ. Missouri)
Eyer, J. A., Ponca City, Okla. (Continental Oil Co.)
Fay, R. O., Norman, Okla. (Oklahoma Geol. Survey)
Fell, H. B., Cambridge, Mass. (Harvard Univ.)
*Finks, R. M., Flushing, N. Y. (Queens College)
Fischer, A. G., Princeton, N. J. (Princeton Univ.)
Fisher, D. W., Albany, N. Y. (New York State Museum)
Fleming, C. A., Lower Hutt, N. Z. (New Zealand Geol. Survey)
Frizzell, D. L., Rolla, Mo. (Univ. Missouri)
Furnish, W. M., Iowa City, Iowa (State Univ. Iowa)
Gardner, Julia (deceased)
Gibson, T. G., Washington, D.C. (Smithsonian Inst.)
Glässner, M. F., Adelaide, S. Australia (Univ. Adelaide)
Glenister, B. F., Iowa City, Iowa (State Univ. Iowa)

Gordon, Isabella, London (British Museum Nat. History)
Gordon, Mackenzie, Jr., Washignton, D.C. (U.S. Geol. Survey)
Grant, R. E., Washington, D.C. (U.S. Geol. Survey)
Haas, Fritz, Chicago, Ill. (Field Museum Nat. History)
Hahn, Gerhard, Berlin (Freie Univ.)
Hanai, Tetsuro, Tokyo (Univ. Tokyo)
Hanna, G. D., San Francisco, Calif. (California Acad. Sci.)
Häntzschel, Walter, Hamburg, Germany (Geol. Staatsinst.)
Harrington, H. J., Houston, Tex. (unattached)
Hass, W. H. (deceased)
Hatai, Kotora, Sendai, Japan (Tohoku Univ.)
Hawkins, H. L., Reading, Eng. (Reading Univ.)
Heard, W. H., Tallahassee, Fla. (Florida State Univ.)
Hedgepeth, J. W., Newport, Ore. (Oregon State Univ.)
Henningsmoen, Gunnar, Oslo, Norway (Univ. Oslo)
Hertlein, L. G., San Francisco, Calif. (California Acad. Sci.)
Hessland, Ivar, Stockholm, Sweden (Univ. Stockholm)
Hill, Dorothy, Brisbane, Australia (Univ. Queensland)
Hölder, Helmut, Münster, Germany (Univ. Münster)
Hoffman, R. L., Radford, Va. (Radford College)
Holthuis, L. B., Leiden, Netherlands (Rijksmuseum van Natuurlijke Historie)
*Howarth, M. K., London (British Museum Nat. History)
Hovey, H. V., Baton Rouge, La. (Louisiana State Univ.)
Howell, B. F., Princeton, N. J. (Princeton Univ.)
Hubendick, Bengt, Göteborg, Sweden (Naturhistoriska Museet)
Hyman, L. H., New York (American Museum Nat. History)
Jaanusson, Valdar, Stockholm (Rijksmuseum)
Jeffords, R. M., Houston, Tex. (Esso Prod. Research Co.)
Jeletzky, J. A., Ottawa, Ontario, Canada (Geol. Survey Canada)
Johnson, J. G., Ottawa, Ontario, Canada (Geol. Survey Canada)
Johnson, J. G., Pasadena, Calif. (California Inst. Technology)
Jope, Margaret, Belfast, N. Ireland (Queen's Univ. of Belfast)
Kauffman, E. G., Washington, D.C. (Smithsonian Inst.)
Keen, A. Myra, Stanford, Calif. (Stanford Univ.)
Kesling, R. V., Ann Arbor, Mich. (Univ. Michigan)
Kier, P. M., Washington, D.C. (Smithsonian Inst.)
Knight, J. B. (deceased)
*Kullman, Jurgen, Tubingen, W. Germany (Univ. Tubingen)
Kummel, Bernhard, Cambridge, Mass. (Harvard Univ.)
Lane, N. G., Los Angeles, Calif. (Univ. California)
La Rocque, Aurele, Columbus, Ohio (Ohio State Univ.)
*Larwood, G. P., Durham, Eng. (Univ. Durham)
Laubenfels, M. W. de (deceased)
Lecompte, Marius, Louvain, Belgium (Univ. Louvain)
Leonard, A. B., Lawrence, Kans. (Univ. Kansas)
Levinson, S. A., Houston, Tex. (Esso Prod. Research Co.)
Lochman-Balk, Christina, Socorro, N. Mex. (New Mexico Inst. Mining & Technology)
Loeblich, A. R., Jr., La Habra, Calif. (Chevron Oil Field Research Co.)
Loeblich, A. R., III, La Jolla, Calif. (Scripps Inst. Oceanography)
Lohman, K. E., Washington, D.C. (U.S. Geol. Survey)
Lowenstam, H. A., Pasadena, Calif. (California Inst. Technology)
Lucbridge, N. H., Adelaide, S. Australia (South Australia Geol. Survey)
McAlester, A. L., New Haven, Conn. (Yale Univ.)
McCormick, Lavin, Lawrence, Kans. (Univ. Kansas)
McLaren, D. J., Calgary, Alberta, Canada (Inst. Sed. & Petrol. Geology)
Mandra, Y. T., San Francisco, Calif. (San Francisco State College)
Manning, R. B., Washington, D.C. (Smithsonian Inst.)
Manton, S. M., London (British Museum Nat. History)
Marwick, J., Lower Hutt, N. Z. (New Zealand Geol. Survey)
Melville, R. V., London (Geol. Survey Great Britain)
Miller, A. K. (deceased)
Montanaro Gallitelli, Eugenia, Modena, Italy (Univ. Modena)
Moore, Donald, Miami, Fla. (Univ. Miami, Inst. Marine Sci.)
Moore, R. C., Lawrence, Kans. (Univ. Kansas)
Morgan, C. P., Ann Arbor, Mich. (Univ. Michigan)
Morris, N. J., London (British Museum Nat. History)
Miller, A. H., Freiberg, Germany (Geol. Inst. Bergakad.)
Müller, K. J., Bonn, Germany (Univ. Bonn)
Muir-Wood, H. M. (deceased)
Newell, N. D., New York (American Museum Nat. History)
Newman, W. A., La Jolla, Calif. (Scripps Inst. Oceanography)
Norris, A. W., Ottawa, Ontario, Canada (Geol. Survey of Canada)
Nuttall, C. P., London (British Museum Nat. History)
*Nye, O. B., Cincinnati, Ohio (Univ. Cincinnati)
Okulitch, V. J., Vancouver, Canada (Univ. British Columbia)
Palmer, A. R., Stony Brook, Long Island, N. Y. (State Univ. New York)
Papp, Adolph, Wien, Austria (Univ. Wien)
Parodiz, Juan, Pittsburgh, Pa. (Carnegie Museum)
Pawson, David, Washington, D.C. (Smithsonian Inst.)
Peck, R. E., Columbia, Mo. (Univ. Missouri)
Perkins, B. F., Baton Rouge, La. (Louisiana State Univ.)
Petrunkевич, Alexander (deceased)
Pitrat, C. W., Amherst, Mass. (Univ. Massachusetts)
Pojeta, John, Washington, D.C. (Smithsonian Inst.)
Pupino, W. P., Los Angeles, Calif. (Univ. Calif.)
Poulsen, Chr., København (Univ. København)
Powell, A. W. B., Auckland, N. Z. (Auckland Inst. & Museum)
Puri, H. S., Tallahassee, Fla. (Florida Geol. Survey)
Radwin, George, San Diego, Calif. (San Diego Nat. History Museum)
Rasetti, Franco, Baltimore, Md. (Johns Hopkins Univ.)
Regnér, Gerhard, Lund, Sweden (Univ. Lund)
Rehder, H. A., Washington, D.C. (Smithsonian Inst.)
Reichel, Manfred, Basel, Switzerland (Univ. Basel)
*Reid, R. E. H., Belfast, N. Ireland (Queen’s Univ. of Belfast)
Reynment, R. A., Uppsala, Sweden (Univ. Uppsala)
Rhodes, F. H. T., Swansea, Wales (Univ. Wales)
Richter, Emma (deceased)
Richter, Rudolf (deceased)
Riedel, Adolf, Warszawa, Pologne (Panstwowe Wydawnictwo Naukowe)
Rolfes, W. D. I., Glasgow, Scotland (Univ. Glasgow)
Rowell, A. J., Lawrence, Kans. (Univ. Kansas)
Rudick, M. J. S., Cambridge, Eng. (Univ. Cambridge)
*Schager, Sten, Stockholm (Univ. Stockholm)
Schindewolf, O. H., Tübingen, Germany (Univ. Tübingen)
Schmidt, Herta, Frankfurt, Germany (Natur Museum u. Forsch.-Inst. Senckenberg)
Scott, H. W., Urbana, Ill. (Univ. Illinois)
Sdzuy, Klaus, Würzburg, Germany (Univ. Würzburg)
The aim of the Treatise on Invertebrate Paleontology, as originally conceived and consistently pursued, is to present the most comprehensive and authoritative, yet compact statement of knowledge concerning invertebrate fossil groups that can be formulated by collaboration of competent specialists in seeking to organize what has been learned of this subject up to the mid-point of the present century. Such work has value in providing a most useful summary of the collective results of multitudinous investigations and thus should constitute an indispensable text and reference book for all persons who wish to know about remains of invertebrate organisms preserved in rocks of the earth's crust. This applies to neozoologists as well as paleozoologists and to beginners in study of fossils as well as to thoroughly trained, long-experienced professional workers, including teachers, stratigraphical geologists, and individuals engaged in research on fossil invertebrates. The making of a reasonably complete inventory of present knowledge of invertebrate paleontology may be expected to yield
needed foundation for future research and it is hoped that the Treatise will serve this end.

The Treatise is divided into parts which bear index letters, each except the initial and concluding ones being defined to include designated groups of invertebrates. The chief purpose of this arrangement is to provide for independence of the several parts as regards date of publication, because it is judged desirable to print and distribute each segment as soon as possible after it is ready for press. Pages in each part bear the assigned index letter joined with numbers beginning with 1 and running consecutively to the end of the part.

The outline of subjects to be treated in connection with each large group of invertebrates includes (1) description of morphological features, with special reference to hard parts, (2) ontogeny, (3) classification, (4) geological distribution, (5) evolutionary trends and phylogeny, and (6) systematic description of genera, subgenera, and higher taxonomic units. In general, paleoecological aspects of study are omitted or little emphasized because comprehensive treatment of this subject is given in the Treatise on Marine Ecology and Palaeoecology (H. S. Ladd, Editor, Geological Society of America, Memoir 67, 1957), prepared under auspices of a committee of the United States National Research Council. A selected list of references is furnished in each part of the Treatise.

Features of style in the taxonomic portions of this work have been fixed by the Editor with aid furnished by advice from representatives of the societies which have undertaken to sponsor the Treatise. It is the Editor's responsibility to consult with authors and co-ordinate their work, seeing that manuscript properly incorporates features of adopted style. Especially he has been called on to formulate policies in respect to many questions of nomenclature and procedure. The subject of family and subfamily names is reviewed briefly in a following section of this preface, and features of Treatise style in generic descriptions are explained.

A generous grant of $35,000 has been made by the Geological Society of America for the purpose of preparing Treatise illustrations. Administration of expenditures has been in charge of the Editor and most of the work by photographers and artists has been done under his direction at the University of Kansas, but sizable parts of this program have also been carried forward in Washington and London.

In December, 1959, the National Science Foundation of the United States, through its Division of Biological and Medical Sciences and the Program Director for Systematic Biology, made a grant in the amount of $210,000 for the purpose of aiding the completion of yet-unpublished volumes of the Treatise. Payment of this sum was provided to be made in installments distributed over a five-year period, with administration of disbursements handled by the University of Kansas. An additional grant (No. GB 4544) of $102,800 was made by the National Science Foundation in January, 1966, for the two-year period 1966-67, and this was extended for the calendar year 1968 by payment of $25,700 in October, 1967. Expenditures planned are primarily for needed assistance to authors and may be arranged through approved institutions located anywhere. Important help for the Director-Editor of the Treatise has been made available from the grant, but no part of his stipend has come from it. Grateful acknowledgment to the Foundation is expressed on behalf of the societies sponsoring the Treatise, the University of Kansas, and innumerable individuals benefited by the Treatise project.

ZOOLOGICAL NAMES

Many questions arise in connection with zoological names, especially including those that relate to their acceptability and to alterations of some which may be allowed or demanded. Procedure in obtaining answers to these questions is guided and to a large extent governed by regulations published (1961) in the International Code of Zoological Nomenclature (hereinafter cited simply as the Code). The prime object of the Code is to promote stability and universality in the scientific names of animals, ensuring also that each name is distinct and unique while avoiding restrictions on freedom of taxonomic thought or action. Priority is a basic principle, but under specified conditions its application can be modified. This is all well and good, yet nomenclatural tasks confronting the zoological
taxonomist are formidable. They warrant the complaint of some that zoology, including paleozoology, is the study of animals rather than of names applied to them.

Several ensuing pages are devoted to aspects of zoological nomenclature that are judged to have chief importance in relation to procedures adopted in the Treatise. Terminology is explained, and examples of style employed in the nomenclatural parts of systematic descriptions are given.

TAXA GROUPS

Each taxonomic unit (taxon, pl., taxa) of the animal and protistan kingdoms belongs to some one or another rank in the adopted hierarchy of classificatory divisions. In part, this hierarchy is defined by the Code to include a species-group of taxa, a genus-group, and a family-group. Units of lower rank than subspecies are excluded from zoological nomenclature and those higher than superfamily of the family-group are not regulated by the Code. It is natural and convenient to discuss nomenclatural matters in general terms first and then to consider each of the taxa groups separately. Especially important is provision that within each taxa group classificatory units are coordinate (equal in rank), whereas units of different taxa groups are not coordinate.

FORMS OF NAMES

All zoological names are divisible into groups based on their form (spelling). The first-published form (or forms) of a name is defined as original spelling (Code, Art. 32) and any later-published form (or forms) of the same name is designated as subsequent spelling (Art. 33). Obviously, original and subsequent spellings of a given name may or may not be identical and this affects consideration of their correctness. Further, examination of original spellings of names shows that by no means all can be distinguished as correct. Some are incorrect, and the same is true of subsequent spellings.

Original Spellings

If the first-published form of a name is consistent and unambiguous, being identical wherever it appears, the original spelling is defined as correct unless it contravenes some stipulation of the Code (Arts. 26-31), unless the original publication contains clear evidence of an inadvertent error, in the sense of the Code, or among names belonging to the family-group, unless correction of the termination or the stem of the type-genus is required. An unambiguous original spelling that fails to meet these requirements is defined as incorrect.

If a name is spelled in more than one way in the original publication, the form adopted by the first reviser is accepted as the correct original spelling, provided that it compiles with mandatory stipulations of the Code (Arts. 26-31), including its provision for automatic emendations of minor sort.

Incorrect original spellings are any that fail to satisfy requirements of the Code, or that represent an inadvertent error, or that are one of multiple original spellings not adopted by a first reviser. These have no separate status in zoological nomenclature and therefore cannot enter into homonymy or be used as replacement names. They call for correction wherever found. For example, a name originally published with a diacritic mark, apostrophe, diaeresis, or hyphen requires correction by deleting such features and uniting parts of the name originally separated by them, except that deletion of an umlaut from a vowel is accompanied by inserting "e" after the vowel.

Subsequent Spellings

If a name classed as a subsequent spelling is identical with an original spelling, it is distinguishable as correct or incorrect on the same criteria that apply to the original spelling. This means that a subsequent spelling identical with a correct original spelling is also correct, and one identical with an incorrect original spelling is also incorrect. In the latter case, both original and subsequent spellings require correction wherever found (authorship and date of the original incorrect spelling being retained).

If a subsequent spelling differs from an original spelling in any way, even by the omission, addition, or alteration of a single letter, the subsequent spelling must be defined as a different name (except that such changes as altered terminations of adjectival specific names to obtain agreement in
gender with associated generic names, of family-group names to denote assigned taxonomic rank, and corrections for originally used diacritic marks, hyphens, and the like are excluded from spelling changes conceived to produce a different name).

Altered subsequent spellings other than the exceptions noted may be either intentional or unintentional. If demonstrably intentional, the change is designated as an emendation. Emendations are divisible into those classed as justifiable and those comprising all others classed as unjustifiable. Justifiable emendations are corrections of incorrect original spellings, and these take the authorship and date of the original spellings. Unjustifiable emendations are names having their own status in nomenclature, with author and date of their publication; they are junior objective synonyms of the name in its original form.

Subsequent spellings that differ in any way from original spellings, other than previously noted exceptions, and that are not classifiable as emendations are defined as incorrect subsequent spellings. They have no status in nomenclature, do not enter into homonymy, and cannot be used as replacement names.

AVAILABLE AND UNAVAILABLE NAMES

Available Names

An available zoological name is any that conforms to all mandatory provisions of the Code. Such names are classifiable in groups which are usefully recognized in the Treatise, though not explicitly differentiated in the Code. They are as follows:

1) So-called "inviolate names" include all available names that are not subject to any sort of alteration from their originally published form. They comprise correct original spellings and commonly include correct subsequent spellings, but include no names classed as emendations. Here belong most genus-group names (including those for collective groups), some of which differ in spelling from others by only a single letter.

2) Names may be termed "perfect names" if, as originally published (with or without duplication by subsequent authors), they meet all mandatory requirements, needing no correction of any kind, but nevertheless are legally alterable in such ways as changing the termination (e.g., many species-group names, family-group names, suprafamilial names). This group does not include emended incorrect original spellings (e.g., Oepikina, replacement of Opikina).

3) "Imperfect names" are available names that as originally published (with or without duplication by subsequent authors) contain mandatorily emendable defects. Incorrect original spellings are imperfect names. Examples of emended imperfect names are: among species-group names, guerini (not Guerini), o bri en ae (not O'Brienae), terranovae (not terra-novae), nunezi (not Nuuiesi), Spironema rectum (not Spironema recta, because generic name is neuter, not feminine); among genus-group names, Broggeria (not Briggeria), Obrienia (not O'Brienia), Maccookites (not McCookites; among family-group names, Oepikidae (not Opikidae), Spironematidae (not Spironemidae, incorrect stem), Athyrididae (not Athyridae, incorrect stem). The use of "variety" for named divisions of fossil species, according to common practice of some paleontologists, gives rise to imperfect names, which generally are emendable (Code, Art. 45e) by omitting this term so as to indicate the status of this taxon as a subspecies.

4) "Vain names" are available names consisting of unjustified intentional emendations of previously published names. The emendations are unjustified because they are not demonstrable as corrections of incorrect original spellings as defined by the Code (Art. 32,c). Vain names have status in nomenclature under their own authorship and date. They constitute junior objective synonyms of names in their original form. Examples are: among species-group names, geneae (published as replacement of original unexplained masculine, geni, which now is not alterable), ohi oae (invalid change from original ohiensis); among genus-group names, Graphiodactylus (invalid change from original Graphiodactyllis); among family-group names, Graphiodactyliidae (based on junior objective synonym having invalid vain name).

5) An important group of available zoological names can be distinguished as "transferred names." These comprise au-
authorized sorts of altered names in which the change depends on transfer from one taxonomic rank to another, or possibly on transfers in taxonomic assignment of subgenera, species, or subspecies. Most commonly the transfer calls for a change in termination of the name so as to comply with stipulations of the Code on endings of family-group taxa and agreement in gender of specific names with associated generic names. Transferred names may be derived from any of the preceding groups except the first. Examples are: among species-group names, *Spirifer ambiguus* (masc.) to *Composita ambiguа* (fem.), *Neochonetes transversalis* to *N. granulifer transversalis* or vice versa; among genus-group names, *Schizoculina* to *Oculina* (*Schizoculina*) or vice versa; among family-group names, Orthidae to Orthinae or vice versa, or superfamilly Orthacea derived from Orthidae or Orthinae; among superfamilial taxa (not governed by the Code), order Orthida to suborder Orthina or vice versa. The authorship and date of transferred names are not affected by the transfer, but the author responsible for the transfer and the date of his action may appropriately be recorded in such works as the Treatise.

6) Improved or “corrected names” include both mandatory and allowable emendations of imperfect names and of superfamilial names, which are not subject to regulation as to name form. Examples of corrected imperfect names are given with the discussion of group 3. Change from the originally published ordinal name *Endoceroida* (*Teichert*, 1933) to the presently recognized Endocerida illustrates a “corrected” superfamilial name. Group 6 names differ from those in group 5 in not being dependent on transfers in taxonomic rank or assignment, but some names are classifiable in both groups.

7) “Substitute names” are available names expressly proposed as replacements for invalid zoological names, such as junior homonyms. These may be classifiable also as belonging in groups 1, 2, or 3. The glossary appended to the Code refers to these as “new names” (*nomina nova*) but they are better designated as substitute names, since their newness is temporary and relative. The first-published substitute name that complies with the definition here given takes precedence over any other. An example is *Marieta Loeblich & Tappan*, 1964, as substitute for *Reichelina Marie*, 1955 (*non Erk*, 1942).

8) “Conserved names” include a relatively small number of species-group, genus-group, and family-group names which have come to be classed as available and valid by action of the International Commission on Zoological Nomenclature exercising its plenary powers to this end or ruling to conserve a junior synonym in place of a rejected “forgotten” name (*nomen oblitum*) (Art. 23,b). Currently, such names are entered on appropriate “Official Lists,” which are published from time to time.

It is useful for convenience and brevity of distinction in recording these groups of available zoological names to employ Latin designations in the pattern of *nomen nudum* (abbr., *nom. nud.*) and others. Thus we may recognize the preceding numbered groups as follows: 1) *nomina inviolata* (sing., *nomen inviolatum*, abbr., *nom. inviol*.), 2) *nomina perfecta* (*nomen perfectum*, nom. perf.), 3) *nomina imperfecta* (*nomen imperfectum*, nom. imperf.), 4) *nomina vana* (*nomen vanum*, nom. van.), 5) *nomina translata* (*nomen translatum*, nom. transl.), 6) *nomina correcta* (*nomen correctum*, nom. correct.), 7) *nomina substituta* (*nomen substitutum*, nom. subst.), 8) *nomina conservata* (*nomen conservatum*, nom. consere.).

Additional to the groups differentiated above, the Code (Art. 17) specifies that a zoological name is not prevented from availability a) by becoming a junior synonym, for under various conditions this may be re-employer, b) for a species-group name by finding that original description of the taxon relates to more than a single taxonomic entity or to parts of animals belonging to two or more such entities, c) for species-group names by determining that it first was combined with an invalid or unavailable genus-group name, d) by being based only on part of an animal, sex of a species, ontogenetic stage, or one form of a polymorphic species, e) by being originally proposed for an organism not considered to be an animal but now so regarded, f) by incorrect original spelling which is correctable under the Code, g) by anonymous publica-

© 2009 University of Kansas Paleontological Institute
Examples of Uncorrected "imperfect names" fixa unpublished, be based in Ster first in Ruzickinidae. for a specific name by observing that it is tautonymous (Art. 11.e, which states that "a family-group name must, when first published, be based on the name then valid for a contained genus," such valid name in the case of this family being Poteriocrinites MILLER, 1821).

10) "Denied names" include all those that are defined by the Code (Art. 32.c) as incorrect original spellings. Examples are: Specific names, nova-zelandica, mülleri, 10-brachiatus; generic names, M'Coyia, Störmerella, Römerina, Westgàrdia; family name, Rüčikinidae. Uncorrected "imperfect names" are "denied names" and unavailable, whereas corrected "imperfect names" are available.

11) "Impermissible names" include all those employed for alleged genus-group taxa other than genus and subgenus (Art. 42.a) (e.g., superspecific divisions of subgenera), and all those published after 1930 that are unaccompanied by definite fixation of a type species (Art. 13.b). Examples of impermissible names are: Martellispirifer GATINAUD, 1949, and Mirtellispirifer GATINAUD, 1949, indicated respectively as a section and subsection of the subgenus Cyrtospirifer; Fusarchaias REICHEL, 1949, without definitely fixed type species (=Fusarchaias REICHEL, 1952, with F. bermudezi designated as type species).

12) "Null names" include all those that are defined by the Code (Art. 33.b) as incorrect subsequent spellings, which are any changes of original spelling not demonstrably intentional. Such names are found in all ranks of taxa.

13) "Forgotten names" are defined (Art. 23,b) as senior synonyms that have remained unused in primary zoological literature for more than 50 years. Such names are not to be used unless so directed by ICZN.

Latin designations for the discussed groups of unavailable zoological names are as follows: 9) nomina nuda (sing., nomen nudum, abbr., nom. nud.), 10) nomina negata (nomen negatum, nom. neg.), 11) nomina vetita (nomen vetitum, nom. vet.), 12) nomina nulla (nomen nullum, nom.
VALID AND INVALID NAMES

Important distinctions relate to valid and available names, on one hand, and to invalid and unavailable names, on the other. Whereas determination of availability is based entirely on objective considerations guided by Articles of the Code, conclusions as to validity of zoological names partly may be subjective. A valid name is the correct one for a given taxon, which may have two or more available names but only a single correct name, generally the oldest. Obviously, no valid name can also be an unavailable name, but invalid names may include both available and unavailable names. Any name for a given taxon other than the valid name is an invalid name.

A sort of nomenclatorial no-man’s-land is encountered in considering the status of some zoological names, such as “doubtful names,” “names under inquiry,” and “forgotten names.” Latin designations of these are nomina dubia, nomina inquirenda, and nomina obliqua, respectively. Each of these groups may include both available and unavailable names, but the latter can well be ignored. Names considered to possess availability conduce to uncertainty and instability, which ordinarily can be removed only by appealed action of ICZN. Because few zoologists care to bother in seeking such remedy, the “wastebasket” names persist.

SUMMARY OF NAME GROUPS

Partly because only in such publications as the Treatise is special attention to groups of zoological names called for and partly because new designations are now introduced as means of recording distinctions explicitly as well as compactly, a summary may be useful. In the following tabulation valid groups of names are indicated in boldface type, whereas invalid ones are printed in italics.

DEFINITIONS OF NAME GROUPS

nomen conservatum (nom. conserv.). Name unacceptable under regulations of the Code which is made valid, either with original or altered spelling, through procedures specified by the Code or by action of ICZN exercising its plenary powers.

nomen correctum (nom. correct.). Name with intentionally altered spelling of sort required or allowable by the Code but not dependent on transfer from one taxonomic rank to another (“improved name”). (See Code, Arts. 26-b, 27, 29, 30-a-3, 31, 32-c-i, 33-a; in addition change of endings for suprafamilial taxa not regulated by the Code.)

nomen imperfectum (nom. imperfect.). Name that as originally published (with or without subsequent identical spelling) meets all mandatory requirements of the Code but contains defect needing correction (“imperfect name”). (See Code, Arts. 26-b, 27, 29, 32-c, 33-a.)

nomen inviolatum (nom. inviol.). Name that as originally published meets all mandatory requirements of the Code and also is not correctable or alterable in any way (“inviolate name”).

nomen negatum (nom. neg.). Name that as originally published (with or without subsequent identical spelling) constitutes invalid original spelling, and although possibly meeting all other mandatory requirements of the Code, cannot be used and has no separate status in nomenclature (“deemed name”). It is to be corrected wherever found.

nomen nudum (nom. nud.). Name that as originally published (with or without subsequent identical spelling) fails to meet mandatory requirements of the Code and having no status in nomenclature, is not correctable to establish original authorship and date (“naked name”).

nomen nullum (nom. null.). Name consisting of an unintentional alteration in form (spelling) of a previously published name (either available name, as nom. inval., nom. perf., nom. inviol., nom. transl.; or unavailable name, as nom. neg., nom. nud., nom. van., or another nom. null.) (“null name”).

nomen oblitum (nom. oblit.). Name of senior synonym unused in primary zoological literature in more than 50 years, not to be used unless so directed by ICZN (“forgotten name”).

nomen perfectum (nom. perf.). Name that as originally published meets all mandatory requirements of the Code and needs no correction of any kind but which nevertheless is validly alterable by change of ending (“perfect name”).

nomen substitutum (nom. subst.). Replacement name published as substitute for an invalid name, such as a junior homonym (equivalent to “new name”).

nomen translatum (nom. transl.). Name that is derived by valid emendation of a previously published name as result of transfer from one taxonomic rank to another within the group to which it belongs (“transferred name”).

nomen vanum (nom. van.). Name consisting of an invalid intentional change in form (spelling) from a previously published name, such invalid emendation having status in nomenclature as a junior objective synonym (“vain name”).

nomen retinum (nom. ret.). Name of genus-group taxon not authorized by the Code or, if first published after 1930, without definitely fixed type species (“impermissible name”).

Except as specified otherwise, zoological names accepted in the Treatise may be understood to be classifiable either as nom-
ina inviolata or nomina perfecta (omitting from notice nomina correcta among specific names) and these are not discriminated. Names which are not accepted for one reason or another include junior homonyms, senior synonyms classifiable as nomina negata or nomina nuda, and numerous junior synonyms which include both objective (nomina vana) and subjective types; rejected names are classified as completely as possible.

NAME CHANGES IN RELATION TO TAXA GROUPS

SPECIES-GROUP NAMES

Detailed consideration of valid emendation of specific and subspecific names is unnecessary here because it is well understood and relatively inconsequential. When the form of adjectival specific names is changed to obtain agreement with the form of adjectival specific names is not required. Names which are not accepted for one reason or another include junior homonyms, senior synonyms classifiable as nomina van a and subjective types; rejected names are classified as completely as possible.

GENUS-GROUP NAMES

So rare are conditions warranting change of the originally published valid form of generic and subgeneric names that lengthy discussion may be omitted. Only elimination of diacritical marks of some names in this category seems to furnish basis for valid emendation. It is true that many changes of generic and subgeneric names have been published, but virtually all of these are either nomina vana or nomina nulla. Various names which formerly were classed as homonyms are not now, for two names that differ only by a single letter (or in original publication by presence or absence of a diacritical mark) are construed to be entirely distinct.

A category of genus-group taxa and names for them calls for special notice. This comprises assemblages of identifiable species which cannot with any certainty be placed in a known genus. Such assemblages are recognized by the Code as valid zoological entities called collective groups, with names for them “treated as generic names in the meaning of the Code” (Art. 42c). They differ from genera in that collective groups require no type species. Particularly for dealing with fossil assemblages of dissociated skeletal remains of echinoderms (chiefly crinoids) procedures based on definition of collective groups must find place in the Treatise. Names for these will uniformly be labeled as applied to collective groups with accompanying abbreviation “coll. coll.” (for Latin collectio collectiva, collective group or assemblage), thus distinguishing them from names for genera.

Examples in use of classificatory designations for genus-group names as previously given are the following, which also illustrate designation of type species as explained later.

Kurnatiophyllum THOMPSON, 1875 [*K. concentricum; SD GREGORY, 1917] [=Kurnatiophyllum THOMPSON, 1876 (nom. null.): Cymatophyllum THOMPSON, 1901 (nom. van.): Cymatophyllum LANG, SMITH & THOMAS, 1940 (nom. van.).

Stichophyllum POMEL, 1872 [*Manon turbinatum ROMÉR, 1891; SD RAUFF, 1893] [=Stichophyllum VOSMAER, 1885 (nom. null.): Stichophyllum MORET, 1924 (nom. null.).

Stratophyllum SMYTH, 1933 [*S. tenue] [=Echinoplasma SMYTH, 1939 (nom. van. pro Stratophyllum); Stratophyllum LANG, SMITH & THOMAS, 1940 (nom. van. pro Stratophyllum SMYTH) (nom Stratophyllum SCHIEFFEN, 1933)).

Placotelia OPPLIGER, 1907 [*Porostoma marconi FROMMENEL, 1859; SD DELAUBENFELS, herein] [=Plakotelia OPPLIGER, 1907 (nom. neg.).

Walcottella DELAUBENFELS, 1955 (nom. subst., pro Rhopalicus SCHRAM, 1936 (nom FORSTER, 1856).

Cyrtograptus CARRUTHERS, 1867 [nom. correct. LAPWORTH, 1873 (pro Cyrtograptus CARRUTHERS, 1867), nom. conserv. proposed BULMAN, 1955 (ICZN pend.)].

Pentagonopentagonalis YELTYSHEVA, 1955 (coll. coll.), for species based on crinoid-stem parts [no type species] (ICZN pend.).

FAMILY-GROUP NAMES; USE OF “NOM. TRANSAL.”

The Code specifies the endings only for
subfamily (-inae) and family (-idae) but all family-group taxa are defined as coordinate, signifying that for purposes of priority a name published for a taxon in any category and based on a particular type genus shall date from its original publication for a taxon in any category, retaining this priority (and authorship) when the taxon is treated as belonging to a lower or higher category. By exclusion of -inae and -idae, respectively reserved for subfamily and family, the endings of names used for tribes and superfamilies must be unspecified different letter combinations. These, if introduced subsequent to designation of a subfamily or family based on the same nominate genus, are nomina translata, as is also a subfamily that is elevated to family rank or a family reduced to subfamily rank. In the Treatise it is desirable to distinguish the valid alteration comprised in the changed ending of each transferred family-group name by the abbreviation "nom. transl." and record of the author and date belonging to this alteration. This is particularly important in the case of superfamilies, for it is the author who introduced this taxon that one wishes to know about rather than the author of the superfamily as defined by the Code, for the latter is merely the individual who first defined some lower-rank family-group taxon that contains the nominate genus of the superfamily. The publication of the author containing introduction of the superfamily nomen translatum is likely to furnish the information on taxonomic considerations that support definition of the unit.

Examples of the use of "nom. transl." are the following.

Subfamily STYLININAE d’Orbigny, 1851
[nom. transl. Edwards & Hume, 1857 (ex Styleidiae d’Orbigny, 1851)]

Superfamily ARCHAEOCTONOIDEA Petrunkevitch, 1949
[nom. transl. Petrunkevitch, 1955 (ex Archaeoctonidae Petrunkevitch, 1949)]

Superfamily CRIOCERATITACEAE Hyatt, 1900
[nom. transl. Wenz, 1952 (ex Cryoceratitidae Hyatt, 1900)]

FAMILY-GROUP NAMES; USE OF "NOM. CORRECT."

Valid name changes classed as nomina correcta do not depend on transfer from one category of family-group units to another but most commonly involve correction of the stem of the nominate genus; in addition, they include somewhat arbitrarily chosen modification of ending for names of tribe or superfamily. Examples of the use of "nom. correct." are the following.

Family STREPTELASMATIDAE Nicholson, 1889
[nom. correct. Wenz, 1952 (pro Streptelasmidae Nicholson, 1889, nom. imperf.)]

Family PALAEOSCORPIDAE Lehmann, 1944
[nom. correct. Petrunkevitch, 1955 (pro Palaeoscorpionidae Lehmann, 1944, nom. imperf.)]

Family AGLASPIDIDAE Miller, 1877
[nom. correct. Stromer, 1959 (pro Aglaspididae Miller, 1877, nom. imperf.)]

Superfamily AGARIICIDAE Gray, 1847
[nom. correct. Wells, 1956 (pro Agaricidae Vaughan & Wells, 1943, nom. transl. ex Agaricidae Gray, 1847)]

FAMILY-GROUP NAMES; USE OF "NOM. CONSERV."

It may happen that long-used family-group names are invalid under strict application of the Code. In order to retain the otherwise invalid name, appeal to ICZN is needful. Examples of use of nom. conserv. in this connection, as cited in the Treatise, are the following.

Family ARIETITIDAE Hyatt, 1874
[nom. correct. Habe, 1885 (pro Arietidae Hyatt, 1875) nom. conserv. proposed Arkell, 1955 (ICZN pend.)]

Family STEPHANOCERATIDAE Neumayr, 1875
[nom. correct. Fischer, 1882 (pro Stephanoceratinen Neumayr, 1875, invalid vernacular name) nom. conserv. proposed Arkell, 1955 (ICZN pend.)]

FAMILY-GROUP NAMES; REPLACEMENTS

Family-group names are formed by adding letter combinations (prescribed for family and subfamily but not now for others) to the stem of the name belonging to genus (nominate genus) first chosen as type of the assemblage. The type genus need not be the oldest in terms of receiving its name and definition, but it must be the first-published as name-giver to a family-group taxon among all those included. Once fixed, the family-group name remains tied to the nominate genus even if its name is changed by reason of status as a junior homonym or junior synonym, either objective or subjective. Seemingly, the Code (Art. 39) requires replacement of a family-group name only in the event that the nominate genus is found to be a junior homonym, and then a substitute family-group name is accepted if it is formed from the oldest available substitute name for the
nominate genus. Authorship and date attributed to the replacement family-group name are determined by first publication of the changed family group-name, but for purposes of the Law of Priority, they take the date of the replaced name. Numerous long-used family-group names are incorrect in being *nomen nuda*, since they fail to satisfy criteria of availability (Art. 11,e). These also demand replacement by valid names.

The aim of family-group nomenclature is greatest possible stability and uniformity, just as in case of other zoological names. Experience indicates the wisdom of sustaining family-group names based on junior subjective synonyms if they have priority of publication, for opinions of different workers as to the synonymy of generic names founded on different type species may not agree and opinions of the same worker may alter from time to time. The retention similarly of first-published family-group names which are found to be based on junior objective synonyms is less clearly desirable, especially if a replacement name derived from the senior objective synonym has been recognized very long and widely. To displace a much-used family-group name based on the senior objective synonym by disintering a forgotten and virtually unused family-group name based on a junior objective synonym because the latter happens to have priority of publication is unsettling.

Replacement of a family-group name may be needed if the former nominate genus is transferred to another family-group. Then the first-published name-giver of a family-group assemblage in the remnant taxon is to be recognized in forming a replacement name.

FAMILY-GROUP NAMES; AUTHORSHIP AND DATE

All family-group taxa having names based on the same type genus are attributed to the author who first published the name for any of these assemblages, whether tribe, subfamily, or family (superfamily being almost inevitably a later-conceived taxon). Accordingly, if a family is divided into subfamilies or a subfamily into tribes, the name of no such subfamily or tribe can antedate the family name. Also, every family containing differentiated subfamilies must have a nominate (*sensu stricto*) subfamily, which is based on the same type genus as that for the family, and the author and date set down for the nominate subfamily invariably are identical with those of the family, without reference to whether the author of the family or some subsequent author introduced subdivisions.

Changes in the form of family-group names of the sort constituting *nomina correcta*, as previously discussed, do not affect authorship and date of the taxon concerned, but in publications such as the *Treatise* it is desirable to record the authorship and date of the correction.

SUPRAFAMILIAL TAXA

International rules of zoological nomenclature as given in the *Code* (1961) are limited to stipulations affecting lower-rank categories (infrasubspecies to superfamily). Suprafamilial categories (suborder to phylum) are either unmentioned or explicitly placed outside of the application of zoological rules. The *Copenhagen Decisions on Zoological Nomenclature* (1953, Arts. 59-69) proposed to adopt rules for naming suborders and higher taxonomic divisions up to and including phylum, with provision for designating a type genus for each, hopefully in such manner as not to interfere with the taxonomic freedom of workers. Procedures for applying the Law of Priority and Law of Homonymy to suprafamilial taxa were outlined and for dealing with the names for such units and their authorship, with assigned dates, when they should be transferred on taxonomic grounds from one rank to another. The adoption of terminations of names, different for each category but uniform within each, was recommended.

The Colloquium on zoological nomenclature which met in London during the week just before the XVth International Congress of Zoology convened in 1958 thoroughly discussed the proposals for regulating suprafamilial nomenclature, as well as many others advocated for inclusion in the new *Code* or recommended for exclusion from it. A decision which was supported by a wide majority of the participants in the Colloquium was against the establishment of rules for naming taxa above family-group rank, mainly because it was judged that such regulation would unwise tie the hands of taxonomists. For
example, if a class or order was defined by some author at a given date, using chosen morphologic characters (e.g., gills of pelecypods), this should not be allowed to freeze nomenclature, taking precedence over another later-proposed class or order distinguished by different characters (e.g., hinge-teeth of pelecypods). Even the fixing of type genera for suprafamilial taxa might have small value, if any, hindering taxonomic work rather than aiding it. At all events, no legal basis for establishing such types and for naming these taxa has yet been provided.

The considerations just stated do not prevent the Editor of the Treatise from making "rules" for dealing with suprafamilial groups of animals described and illustrated in this publication. At least a degree of uniform policy is thought to be needed, especially for the guidance of Treatise-contributing authors. This policy should accord with recognized general practice among zoologists, but where general practice is indeterminate or nonexistent our own procedure in suprafamilial nomenclature needs to be specified as clearly as possible. This pertains especially to decisions about names themselves, about citation of authors and dates, and about treatment of suprafamilial taxa which on taxonomic grounds are changed from their originally assigned rank. Accordingly, a few "rules" expressing Treatise policy are given here, some with examples of their application.

1) The name of any suprafamilial taxon must be a Latin or latinized uninominal noun of plural form, or treated as such, a) with a capital initial letter, b) without dia­critical mark, apostrophe, diaeresis, or hyphen, and c) if component consisting of a numeral, numerical adjective, or adverb is used, this must be written in full (e.g., Stethostomata, Trionychi, Septemchitonina, Scorpiones, Subselliflorae). No uniformity in choice of ending for taxa of a given rank is demanded (e.g., orders named Gorgonacea, Milleporina, Rugosa, Scleractinia, Stromatoporoidea, Phalangida).

2) Names of suprafamilial taxa may be constructed in almost any way, a) intended to indicate morphological attributes (e.g., Lamellibranchiata, Cyclostomata, Toxo­glossa), b) based on the stem of an included genus (e.g., Bellerophontina, Na­tilida, Fungiina), or c) arbitrary combinations of letters, (e.g., Yuania), but none of these can be allowed to end in -idae or -inae, reserved for family-group taxa. A class or subclass (e.g., Nautiloidea), order (e.g., Nautilida), or suborder (e.g., Nautilina) named from the stem of an included genus may be presumed to have that genus (e.g., Nautilus) as its objective type. No suprafamilial name identical in form to that of a genus or to another published suprafamilial name should be employed (e.g., order Decapoda Latreille, 1803, crustaceans, and order Decapoda Leach, 1818, cephalopods; suborder Chonetoidea Muir-Wood, 1955, and genus Chonetoidea Jones, 1928). Worthy of notice is the classificatory and nomenclatural distinction between suprafamilial and family-group taxa which respectively are named from the same type genus, since one is not considered to be transferable to the other (e.g., suborder Bellerophontina Ul­rich & Scofield, 1897; superfAMILY Bellerophon­tacea M'Coy, 1851; family Belleroph­ontidae M'Coy, 1851). Family-group names and suprafamilial names are not co­ordinate.

3) The Laws of Priority and Homonym­my lack any force of international agree­ment as applied to suprafamilial names, yet in the interest of nomenclatural stability and the avoidance of confusion these laws are widely accepted by zoologists above the family-group level wherever they do not infringe on taxonomic freedom and long­established usage.

4) Authors who accept priority as a determinant in nomenclature of a supra­familial taxon may change its assigned rank at will, with or without modifying the terminal letters of the name, but such change(s) cannot rationally be judged to alter the authorship and date of the taxon as published originally. a) A name revised from its previously published rank is a "transferred name" (nom. transl.), as illus­trated in the following.

Order Corynexochida Kobayashi, 1935
[nom. transl. Moore, 1955 (ex suborder Corynexochida KOBAYASHI, 1935)]

b) A name revised from its previously published form merely by adoption of a different termination, without changing taxonomic rank, is an "altered name" (nom. correct.). Examples follow.
Order DISPARIDA Moore & Laudon, 1943
[nom. correct. Moore, 1952 (pro order Disparidae Moore & Laudon, 1943)]

Suborder AGNOSTINA Salter, 1864
[nom. correct. Harrington & Leanza, 1957 (pro suborder Agnostina Salter, 1864)]
c) A suprafamilial name revised from its previously published rank with accompanying change of termination (which may or may not be intended to signalize the change of rank) is construed to be primarily a nom. transl. (compare change of ending for family-group taxa -idae to -inae, or vice versa, and to superfamly) but if desired it could be recorded as nom. transl. et correct.

Order ORTHIDA Schuchert & Cooper, 1931
[nom. transl. Moore, 1952 (ex suborder Orthoidea Schuchert & Cooper, 1941)]
5) The authorship and date of nominate subordinate and superordinate taxa among suprafamilial taxa are considered in the Treatise to be identical since each actually or potentially has the same type. Examples are given below.

Subclass ENDOCERATOIDEA Teichert, 1933
[nom. transl. Teichert, 1964 (ex superorder Endoceratoidea Shimanskiy & Zhukovsky, 1961, nom. transl. ex order Endoceridae Teichert, 1933)]

Order ENOCERIDA Teichert, 1933
[nom. correct. Teichert, 1964 (pro order Endoceridae Teichert, 1933)]

Suborder ENOCERINA Teichert, 1933
[nom. correct. Teichert, 1964 (pro suborder Endoceracea Schindewolf, 1935, nom. transl. ex order Endoceridea Teichert, 1933)]
6) A suprafamilial taxon may or may not contain a family-group taxon or taxa having the same type genus, and if it does, the respective suprafamilial and family-group taxon may or may not be nominate (having names with the same stem). The zoological Code (Art. 61) affirms that "each taxon [of any rank] has, actually or potentially, its type." Taxa above the family-group level which may be designated as having the same type genus (such designations not being stipulated or recognized by any articles of the zoological Code) are considered to have identical authorship and date if the stem of names employed is the same (illustrated in preceding paragraph), but otherwise their authorship and date are accepted as various. Examples showing both suprafamilial and familial taxa in a group of spiders follow.

Class ARACHNIDA Lamarck, 1801
[nom. correct. Newport, 1830 (pro class-not family-Arachnidae Lamarck, 1801) (type, Araneus CLERCK, 1757, validated ICZN, 1948)]

Subclass CAULOGASTRA Pocock, 1893
[type, Araneus CLERCK, 1757]

Superorder LABELLATA Petrunkevitch, 1949
[type, Araneus CLERCK, 1757]

Order ARANEIDA Clerck, 1757
[nom. correct. Dallas, 1864 (pro Araneidae Blackwall, 1861, pro Araneidae Latreille, 1801, pro Aranei CLERCK, 1757, validated ICZN, 1948) (type, Araneus CLERCK, 1757)]

Suborder DIPNEUMONINA Latreille, 1817
[nom. correct. Petrunkevitch, 1955 (pro Dipneumones Latreille, 1817) (type, Araneus CLERCK, 1757)]

Division TRIONYCHI Petrunkevitch, 1933
[type, Araneus CLERCK, 1757]

Superfamily ARANEOIDEA Leach, 1815
[nom. transl. Petrunkevitch, 1955 (ex Araneidae Leach, 1815) (type, Araneus CLERCK, 1757)]

Family ARANEEIDAE Leach, 1815
[nom. correct. Petrunkevitch, 1955 (pro Araneidae Leach, 1815, pro Aranei CLERCK, 1757) (type, Araneus CLERCK, 1757)]

Subfamily ARANEINAE Leach, 1815
[nom. transl. Simon, 1892 (ex Araneidae Leach, 1815) (type, Araneus CLERCK, 1757)]

TAXONOMIC EMENDATION

Emendation has two measurably distinct aspects as regards zoological nomenclature. These embrace 1) alteration of a name itself in various ways for various reasons, as has been reviewed, and 2) alteration or taxonomic scope or concept in application of a given zoological name, whatever its hierarchical rank. The latter type of emendation primarily concerns classification and inherently is not associated with change of name, whereas the other type introduces change of name without necessary expansion, restriction, or other modification in applying the name. Little attention generally has been paid to this distinction in spite of its significance.

Most zoologists, including paleozoologists, who have signified emendation of zoological names refer to what they consider a material change in application of the name such as may be expressed by an importantly altered diagnosis of the assemblage covered by the name. The abbreviation "emend." then may accompany the name, with statement of the author and date of the emendation. On the other hand, a multitude of workers concerned with systematic zoology think that publication of "emend." with a
zoological name is valueless, because more or less alteration of taxonomic sort is intro­duced whenever a subspecies, species, genus, or other assemblage of animals is incorpor­ated under or removed from the coverage of a given zoological name. Inevitably asso­ciated with such classificatory expansions and restrictions is some degree of emenda­tion affecting diagnosis. Granting this, still it is true that now and then somewhat radical revisions are put forward, generally with published statement of reasons for changing the application of a name. To erect a signpost at such points of most-sig­nificant change is worthwhile, both as aid to subsequent workers in taking account of the altered nomenclatural usage and as indica­tion that not to-be-overlooked discussion may be found at a particular place in the literature. Authors of contributions to the Treatise are encouraged to include records of all specially noteworthy emendations of this nature, using the abbreviation "emend." with the name to which it refers and citing the author and date of the emendation.

In Part G (Bryozoa) and Part D (Proto­tica 3) of the Treatise, the abbreviation "emend." is employed to record various sorts of name emendations, thus conflicting with usage of "emend." for change in tax­onomic application of a name without alteration of the name itself. This is objection­able. In Part E (Archaeocyatha, Por­ifera) and later-issued divisions of the Treatise, use of "emend." is restricted to its customary sense, that is, significant altera­tion in taxonomic scope of a name such as calls for noteworthy modifications of a diagnosis. Other means of designating emendations that relate to form of a name are introduced.

STYLE IN GENERIC DESCRIPTIONS

CITATION OF TYPE SPECIES

The name of the type species of each genus and subgenus is given next following the generic name with its accompanying author and date, or after entries needed for definition of the name if it is involved in homonymy. The originally published combi­nation of generic and trivial names for this species is cited, accompanied by an asterisk (*), with notation of the author and date of original publication. An exception in this procedure is made, however, if the species was first published in the same paper and by the same author as that con­of the generic name followed by the trivial taining definition of the genus which it serves as type; in such case, the initial letter name is given without repeating the name of the author and date, for this saves needed space. Examples of these two sorts of cita­tions are as follows:

Diplotyra Nicholson, 1879 [*Favosites petropolitanus Pander, 1830].
Chainodictyon Foerste, 1887 [*C. laxum].

If the cited type species is a junior synonym of some other species, the name of this latter also is given, as follows:

Acervularia Schweigger, 1819 [*A. baltica (=Madrepora ananas Linne, 1758)].

It is judged desirable to record the man­ner of establishing the type species, whether by original designation or by subsequent designation.

Fixation of type species originally. The type species of a genus or subgenus, accord­ing to provisions of the Code, may be fixed in various ways originally (that is, in the publication containing first proposal of the generic name) or it may be fixed in specified ways subsequent to the original publication. Fixation of the type species of a genus or subgenus in an original publication is stipulated by the Code (Art. 68) in order of precedence as 1) original designa­tion (in the Treatise indicated as OD) when the type species is explicitly stated or (before 1931) indicated by "n. gen., n. sp." (or its equivalent) applied to a single species included in a new genus, 2) defined by use of typus or typicus for one of the species included in a new genus (adequately indicated in the Treatise by the specific name), 3) established by monotypy if a new genus or subgenus includes only one originally in­cluded species which is neither OD nor TYP (in the Treatise indicated as M), and 4) fixed by tautonymy if the genus-group name is identical to an included species name not indicated as type belonging to one of the three preceding categories (indicated in the Treatise as T).

Fixation of type species subsequently. The type species of many genera are not deter­minable from the publication in which the generic name was introduced and therefore
such genera can acquire a type species only by some manner of subsequent designation. Most commonly this is established by publishing a statement naming as type species one of the species originally included in the genus, and in the Treatise fixation of the type species in this manner is indicated by the letters "SD" accompanied by the name of the subsequent author (who may be the same person as the original author) and the date of publishing the subsequent designation. Some genera, as first described and named, included no mentioned species and these necessarily lack a type species until a date subsequent to that of the original publication when one or more species are assigned to such a genus. If only a single species is thus assigned, it automatically becomes the type species and in the Treatise this subsequent monotypy is indicated by the letters "SM." Of course, the first publication containing assignment of species to the genus which originally lacked any included species is the one concerned in fixation of the type species, and if this named two or more species as belonging to the genus but did not designate a type species, then a later "SD" designation is necessary.

Hexagonaria Gürich, 1896 [*Cyathophyllum hexagonum Goldfuss, 1826; SD Lang, Smith & Thomas, 1940].

Muriceides Studer, 1887 [*M. fragilis Wright & Studer, 1889; SM Wright & Studer, 1889].

Another mode of fixing the type species of a genus that may be construed as a special sort of subsequent designation is action of the International Commission on Zoological Nomenclature using its plenary powers. Definition in this way may set aside application of the Code so as to arrive at a decision considered to be in the best interest of continuity and stability of zoological nomenclature. When made, it is binding and commonly is cited in the Treatise by the letters "ICZN," accompanied by the date of announced decision and (generally) reference to the appropriate numbered Opinion.

Worthy of repetition is the lack of requirement of a type species for definition of collective groups (coll. coll.), but when differentiated and named these are treated for convenience as genera in the meaning of the Code (Art. 42c).

HOMONYMS

Most generic names are distinct from all others and are indicated without ambiguity by citing their originally published spelling accompanied by name of the author and date of first publication. If the same generic name has been applied to 2 or more distinct taxonomic units, however, it is necessary to differentiate such homonyms, and this calls for distinction between junior homonyms and senior homonyms. Because a junior homonym is invalid, it must be replaced by some other name. For example, Callopora Hall, 1851, introduced for Paleozoic trepostome bryozoans, is invalid because Gray in 1848 published the same name for Cretaceous-to-Recent cheilostome bryozoans, and Bassler in 1911 introduced the new name Hallopora to replace Hall’s homonym. The Treatise style of entry is:

Hallopora Bassler, 1911, nom. subst. [pro Callopora Hall, 1851 (non Gray, 1848)].

In like manner, a needed replacement generic name may be introduced in the Treatise (even though first publication of generic names otherwise in this work is avoided). The requirement that an exact bibliographic reference must be given for the replaced name commonly can be met in the Treatise by citing a publication recorded in the list of references, using its assigned index number, as shown in the following example.

Mysterium de Laubenfels, nom. subst. [pro Mysterium Schrammen, 1936 (ref. 40, p. 60) (non Roger, 1862)] [*Mystrium porosum Schrammen, 1936].

For some replaced homonyms, a footnote reference to the literature is necessary. A senior homonym is valid, and in so far as the Treatise is concerned, such names are handled according to whether the junior homonym belongs to the same major taxonomic division (class or phylum) as the senior homonym or to some other; in the former instance, the author and date of the junior homonym are cited as:

Diplophyllum Hall, 1851 [non Soshkina, 1939] [*D. caespitosum].

Otherwise, no mention of the existence of a junior homonym generally is made.

Synonymic homonyms. An author sometimes publishes a generic name in two or
more papers of different date, each of which indicates that the name is new. This is a bothersome source of errors for later workers who are unaware that a supposed first publication which they have in hand is not actually the original one. Although the names were separately published, they are identical and therefore definable as homonyms; at the same time they are absolute synonyms. For the guidance of all concerned, it seems desirable to record such names as synonymic homonyms and in the Treatise the junior one of these is indicated by the abbreviation "jr. syn. hom."

Identical family-group names not infrequently are published as new names by different authors, the author of the later-introduced name being ignorant of previous publication(s) by one or more other workers. In spite of differences in taxonomic concepts as indicated by diagnoses and grouping of genera and possibly in assigned rank, these family-group taxa are nomenclatural homonyms, based on the same type genus, and they are also synonyms. Wherever encountered, such synonymic homonyms are distinguished in the Treatise as in dealing with generic names.

SYNONYMS

Citation of synonyms is given next following record of the type species and if two or more synonyms of differing date are recognized, these are arranged in chronological order. Objective synonyms are indicated by accompanying designation

"(obj.)," others being understood to constitute subjective synonyms. Examples showing Treatise style in listing synonyms follow.

Calapoeia Billings, 1865 [*C. anticostiensis; SD Lindström, 1883*] [=Columnopora Nicholson, 1874; Houghtonia Rominger, 1876].

Stauroyclia Haeckel, 1882 [*S. cruciata Haeckel, 1887*] [=Coccosaurus Haeckel, 1882 (obj.); Phacostaurus Haeckel, 1887 (obj.).]

A synonym which also constitutes a homonym is recorded as follows:

Lyopora Nicholson & Etheridge, 1878 [*Palaeopora? favata M'Coy, 1850*] [=Liopora Lang, Smith & Thomas, 1940 (non Girty, 1915)].

Some junior synonyms of either objective or subjective sort may take precedence desirably over senior synonyms wherever uniformity and continuity of nomenclature are served by retaining a widely used but technically rejectable name for a generic assembly. This requires action of ICZN using its plenary powers to set aside the unwanted name and validate the wanted one, with placement of the concerned names on appropriate official lists. In the Treatise citation of such a conserved generic name is given in the manner shown by the following example.

Tetragraptus Salter, 1863 [*nom. correct. Hall, 1865 (pro Tetragraptus Salter, 1863), nom. conserv. proposed Bulman, 1955, ICZN pend.*] [*Fucoides serra Brongniart, 1828 (=Grapto lithus bryonoides Hall, 1858)*].

ABBREVIATIONS

Abbreviations used in this division of the Treatise are explained in the following alphabetically arranged list.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhndl., Abhandlung(en)</td>
<td>approx., approximately</td>
</tr>
<tr>
<td>Abt., Abteilung</td>
<td>Apt., Aiptian</td>
</tr>
<tr>
<td>aff., affinis (related to)</td>
<td>Aquitan., Aquitanian</td>
</tr>
<tr>
<td>Afr., Africa, -an</td>
<td>Arkt., Arctic</td>
</tr>
<tr>
<td>Ala., Alabama</td>
<td>Alg., Algeria</td>
</tr>
<tr>
<td>Alb., Albion</td>
<td>Alleghen., Alleghenian</td>
</tr>
<tr>
<td>Alg., Algeria</td>
<td>Am., America, -an</td>
</tr>
<tr>
<td>Alleghen., Alleghenian</td>
<td>Anis., Anisian</td>
</tr>
<tr>
<td>Ann., Annaeas, Annales, Annual</td>
<td>Art., Articulatus</td>
</tr>
<tr>
<td>ant., anterior</td>
<td>As., Austria</td>
</tr>
<tr>
<td>Antarct., Antarctic</td>
<td>Artt., Articulatus (of authors)</td>
</tr>
<tr>
<td>append., appendix</td>
<td>Aus., Austria</td>
</tr>
<tr>
<td>approx., approximately</td>
<td>Auvers., Auverian</td>
</tr>
<tr>
<td>Bajoc., Bajocian</td>
<td>Baj, Bajonica</td>
</tr>
<tr>
<td>Barton., Bartonian</td>
<td>B.C., British Columbia</td>
</tr>
<tr>
<td>Bd., Band</td>
<td>Bd., Band</td>
</tr>
<tr>
<td>Bel., Belize</td>
<td>B., Bovist</td>
</tr>
<tr>
<td>Bd., Band</td>
<td>Bk., Book</td>
</tr>
<tr>
<td>Bk., Book</td>
<td>Boh., Bohemia</td>
</tr>
<tr>
<td>Bol., Bolletim, Boletin</td>
<td>Boll., Bolletino</td>
</tr>
<tr>
<td>Br., British Isles</td>
<td>Brit., Britain, British</td>
</tr>
<tr>
<td>Bull., Bulletin</td>
<td>Burdig., Burdigalian</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
REFERENCES TO LITERATURE

Each part of the *Treatise* is accompanied by a selected list of references to paleontological literature consisting primarily of recent and comprehensive monographs available but also including some older works recognized as outstanding in importance. The purpose of giving these references is to aid users of the *Treatise* in finding detailed descriptions and illustrations of morphological features of fossil groups, discussions of classifications and distribution, and especially citations of more or less voluminous literature. Generally speaking, publications listed in the *Treatise* are not original sources of information concerning taxonomic units of various rank but they tell the student where he may find them; otherwise it is necessary to turn to
such aids as the Zoological Record or Neave’s Nomenclator Zoologicus. References given in the Treatise are arranged alphabetically by authors and accompanied by index numbers which serve the purpose of permitting citation most concisely in various parts of the text; these citations of listed papers are enclosed invariably in parentheses and, except in Part C, are distinguishable from dates because the index numbers comprise no more than 3 digits. The systematic descriptions given in Part C are accompanied by a reference list containing more than 2,000 entries; the index numbers for them are marked by an asterisk.

The following is a statement of the full names of serial publications which are cited in abbreviated form in the Treatise lists of references. The information thus provided should be useful in library research work. The list is alphabetized according to the serial titles which were employed at the time of original publication. Those following it in brackets are those under which the publication may be found currently in the Union List of Serials, the United States Library of Congress listing, and most library card catalogues. The names of serials published in Cyrillic are transliterated; in the reference lists these titles, which may be abbreviated, are accompanied by transliterated authors’ names and titles, with English translation of the title. The place of publication is added (if not included in the serial title).

The method of transliterating Cyrillic letters that is adopted as “official” in the Treatise is the so-called Anglo-American method given by the Geographical Society of London. It follows that names of some Russian authors in transliterated form derived in this way differ from other forms, possibly including one used by the author himself. In Treatise reference lists the alternative (unaccepted) form is given enclosed by square brackets (e.g., Chernyshev [Tschernyschew], T.N.).

List of Serial Publications

Académie Roumaine, Bulletin de la Section Scientifique. Bucharest.

Académie Royale de Belgique, Classe des Sciences, Bulletins, Mémoires. Bruxelles.

Academy of Natural Sciences of Philadelphia, Journals; Proceedings.

Akademie der Wissenschaften und der Literatur zu Mainz, mathematisch - naturwissenschaftlichen Klasse, Abhandlungen. Wiesbaden.

Akademie der Wissenschaften zu München, mathematische-physikalische Klasse, Sitzungsberichte; Denkschriften.

[K.] Akademie der Wissenschaften zu Wien, mathematische-naturwissenschaftliche Klasse, Denkschriften; Sitzungsberichte.

Akademiya Nauk SSSR, Institut Geologicheskikh Nauk, Trudy (Geologicheskaya Seryia). Moskva.

Akademiya Nauk SSSR, Institut Paleontologicheskikh Nauk, Trudy (Paleontologicheskaya Seryia); Paleontologicheskiy Zhurnal; Zoologicheskiy Zhurnal.

Allan Hancock Atlantic Expedition, Report. Los Angeles.

American Association for the Advancement of Sciences, Proceedings; Publications, Washington, D.C.

American Geologist. Minneapolis, Minn.

American Journal of Science. New Haven, Conn.

American Museum of Natural History, Novitates; Memoires; Bulletins. New York.

Anatomical Record. Philadelphia.

Annales de la Faculté des Sciences de l’Université de Dakar.

Zeitschrift für die Gesamte Naturwissenschaft. Braunschweig.
Zeitschrift für Naturwissenschaften. Halle.
Zentralblatt für Mineralogie (Before 1950, Neues Jahrbuch für Mineralogie, Geologie und Paläontologie). Stuttgart.

Zooloigesesy Zhnurnal. Moskva.
Zooloigesische Annalen. Würzburg.
Zooloigesiche Jahrbücher, Abteilung 1—Systematik (Ökologie), Geographie und Biologie; Abteilung 2—Anatomie und Ontogenie. Jena.
Zooloigesische Verhandelingen. Rijksmuseum van Natuurlijke Historie te Leiden.
Zooloigesicher Anzeiger. Leipzig.
Zoologist. London.

SOURCES OF ILLUSTRATIONS

At the end of figure captions an index number is given to supply record of the author of illustrations used in the *Treatise*, reference being made either (1) to publications cited in reference lists or (2) to the names of authors with or without indication of individual publications concerned. Previously unpublished illustrations are marked by the letter “n” (signifying “new”) with the name of the author.

STRATIGRAPHIC DIVISIONS

Classification of rocks forming the geologic column as commonly cited in the *Treatise* in terms of units defined by concepts of time is reasonably uniform and firm throughout most of the world as regards major divisions (e.g., series, systems, and rocks representing eras) but it is variable and unfirm as regards smaller divisions (e.g., substages, stages, and subseries), which are provincial in application. Users of the *Treatise* have suggested the desirability of publishing reference lists showing the stratigraphic arrangement of at least the most commonly cited divisions. Accordingly, a tabulation of European and North American units, which broadly is applicable also to other continents, is given here.

Generally Recognized Divisions of Geologic Column

EUROPE

ROCKS OF CENOZOIC ERA

NEogene SYSTEM

Pleistocene Series (including Recent)
Pliocene Series
Miocene Series

PALEogene SYSTEM

Oligocene Series
Eocene Series
Paleocene Series

ROCKS OF MESOZOIC ERA

CREtACEOUS SYSTEM

Upper Cretaceous Series
Maastrichtian Stage
Campanian Stage
Santonian Stage
Coniacian Stage

NORTH AMERICA

ROCKS OF CENOZOIC ERA

NEogene SYSTEM

Pleistocene Series (including Recent)
Pliocene Series
Miocene Series

PALEogene SYSTEM

Oligocene Series
Eocene Series
Paleocene Series

ROCKS OF MESOZOIC ERA

CREtACEOUS SYSTEM

Gulfian Series (Upper Cretaceous)
Navarroan Stage
Tayloran Stage
Austrian Stage

© 2009 University of Kansas Paleontological Institute
<table>
<thead>
<tr>
<th>Lower Cretaceous Series</th>
<th>Woodbinian (Tuscaloosan) Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albian Stage</td>
<td>Comanchean Series (Lower Cretaceous)</td>
</tr>
<tr>
<td>Aptian Stage</td>
<td>Washian Stage</td>
</tr>
<tr>
<td>Barremian Stage</td>
<td>Fredericksburgian Stage</td>
</tr>
<tr>
<td>Hauterivian Stage</td>
<td>Trinitian Stage</td>
</tr>
<tr>
<td>Valanginian Stage</td>
<td>Coahuilan Series (Lower Cretaceous)</td>
</tr>
<tr>
<td>Berriasian Stage</td>
<td>Nuevoleonian Stage</td>
</tr>
<tr>
<td>JURASSIC SYSTEM</td>
<td>Durangoan Stage</td>
</tr>
<tr>
<td>Upper Jurassic Series</td>
<td>JURASSIC SYSTEM</td>
</tr>
<tr>
<td>Portlandian Stage</td>
<td>Upper Jurassic Series</td>
</tr>
<tr>
<td>Kimmeridgian Stage</td>
<td>Portlandian Stage</td>
</tr>
<tr>
<td>Oxfordian Stage</td>
<td>Kimmeridgian Stage</td>
</tr>
<tr>
<td>Middle Jurassic Series</td>
<td>Oxfordian Stage</td>
</tr>
<tr>
<td>Callovian Stage (or Upper Jurassic)</td>
<td>Middle Jurassic Series</td>
</tr>
<tr>
<td>Bajocian Stage</td>
<td>Callovian Stage (or Upper Jurassic)</td>
</tr>
<tr>
<td>Bathonian Stage</td>
<td>Bathonian Stage</td>
</tr>
<tr>
<td>Lower Jurassic Series (Liassic)</td>
<td>Lower Jurassic Series (Liassic)</td>
</tr>
<tr>
<td>Toarcian Stage</td>
<td>Toarcian Stage</td>
</tr>
<tr>
<td>Pliensbachian Stage</td>
<td>Pliensbachian Stage</td>
</tr>
<tr>
<td>Sinemurian Stage</td>
<td>Sinemurian Stage</td>
</tr>
<tr>
<td>Hettangian Stage</td>
<td>Hettangian Stage</td>
</tr>
<tr>
<td>TRIASSIC SYSTEM</td>
<td>TRIASSIC SYSTEM</td>
</tr>
<tr>
<td>Upper Triassic Series</td>
<td>Upper Triassic Series</td>
</tr>
<tr>
<td>Rhaetian Stage</td>
<td>(Not recognized)</td>
</tr>
<tr>
<td>Norian Stage</td>
<td>Norian Stage</td>
</tr>
<tr>
<td>Carnian Stage</td>
<td>Carnian Stage</td>
</tr>
<tr>
<td>Middle Triassic Series</td>
<td>Middle Triassic Series</td>
</tr>
<tr>
<td>Ladinian Stage</td>
<td>Ladinian Stage</td>
</tr>
<tr>
<td>Anisian Stage (Virglorian)</td>
<td>Anisian Stage</td>
</tr>
<tr>
<td>Lower Triassic Series</td>
<td>Lower Triassic Series</td>
</tr>
<tr>
<td>Scythian Stage (Werfenian)</td>
<td>Scythian Stage</td>
</tr>
<tr>
<td>ROCKS OF PALEOZOIC ERA</td>
<td>ROCKS OF PALEOZOIC ERA</td>
</tr>
<tr>
<td>PERMIAN SYSTEM</td>
<td>PERMIAN SYSTEM</td>
</tr>
<tr>
<td>Upper Permian Series</td>
<td>Upper Permian Series</td>
</tr>
<tr>
<td>Tartarian Stage</td>
<td>Ochoan Stage</td>
</tr>
<tr>
<td>Kazanian Stage</td>
<td>Guadalupian Stage</td>
</tr>
<tr>
<td>Kungurian Stage</td>
<td>Lower Permian Series</td>
</tr>
<tr>
<td>Lower Permian Series</td>
<td>Leonardian Stage</td>
</tr>
<tr>
<td>Artinskian Stage</td>
<td>Wolfcampian Stage</td>
</tr>
<tr>
<td>Sakmarians Stage</td>
<td>CARBONIFEROUS SYSTEM</td>
</tr>
<tr>
<td>Asselian Stage</td>
<td>Upper Carboniferous Series</td>
</tr>
<tr>
<td></td>
<td>Stephanian Stage</td>
</tr>
<tr>
<td>PENNSYLVANIAN SYSTEM</td>
<td>PENNSYLVANIAN SYSTEM</td>
</tr>
<tr>
<td>Kawvian Series (Upper Pennsylvanian)</td>
<td>Upper Permian Series</td>
</tr>
<tr>
<td>Virgilian Stage</td>
<td>Ochoan Stage</td>
</tr>
<tr>
<td>Missourian Stage</td>
<td>Guadalupian Stage</td>
</tr>
</tbody>
</table>

© 2009 University of Kansas Paleontological Institute
<table>
<thead>
<tr>
<th>Stage</th>
<th>Age Series</th>
<th>Stage</th>
<th>Age Series</th>
<th>Stage</th>
<th>Age Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westphalian Stage</td>
<td></td>
<td>Namurian Stage</td>
<td></td>
<td>Lower Carboniferous Series</td>
<td>Visean Stage</td>
</tr>
<tr>
<td></td>
<td>Westphalian Stage</td>
<td></td>
<td>Lower Carboniferous Series</td>
<td>Visean Stage</td>
<td>Tournaisian Stage</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Lower Devonian Series</td>
<td>Emsian Stage</td>
<td>Siegenian Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Middle Devonian Series</td>
<td>Givetian Stage</td>
<td>Couvinian Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Chautauquan Series</td>
<td>Conewangoan Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Senecan Series</td>
<td>Chemungian Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Erian Series</td>
<td>Taghanian Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ulsterian Series</td>
<td>Onesquethawan Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Silurian System</td>
<td>Cayugan Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Niagaran Series</td>
<td>Includes age equivalents of upper Llandovery, Wenlock, and lower Ludlow (in New York)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Medinan Series</td>
<td>Includes age equivalents of lower and middle Llandovery (in New York)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Cincinnatian Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Ashgill Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Caradoc Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Oktan Series</td>
<td>Desmoinesian Stage</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Ardian Series</td>
<td>Lower Pennsylvanian</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Tennesseean Series</td>
<td>Upper Mississippian</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Mississippian System</td>
<td>Upper Mississippian</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Mississippian System</td>
<td>Lower Mississippian</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Ordovician System</td>
<td>Upper Ordovician</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Ordovician System</td>
<td>Middle Ordovician</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Ordovician System</td>
<td>Lower Ordovician</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Ordovician System</td>
<td>Ordovician System</td>
</tr>
<tr>
<td></td>
<td>Devonian System</td>
<td>Devonian System</td>
<td>Ordovician System</td>
<td>Ordovician System</td>
<td>Ordovician System</td>
</tr>
</tbody>
</table>

Notes:
- **Upper Devonian Series**
 - Famennian Stage
 - Frasnian Stage
- **Middle Devonian Series**
 - Givetian Stage
 - Couvinian Stage
- **Lower Devonian Series**
 - Emsian Stage
 - Siegenian Stage
 - Gedinnian Stage
- **Upper Carboniferous Series**
 - Visean Stage
- **Lower Carboniferous Series**
 - Tournaisian Stage
 - Strunian Stage
- **Silurian System**
 - Ludlow Stage
 - Wenlock Stage
 - Landovery Stage
- **Ordovician System**
 - Ashgill Stage
 - Caradoc Stage

© 2009 University of Kansas Paleontological Institute
Llandeilo Stage
Llanvirn Stage

Arenig Stage
Tremadoc Stage

CAMBRIAN SYSTEM
Upper Cambrian Series

Middle Cambrian Series
Lower Cambrian Series

EOCAMBRIAN SYSTEM
ROCKS OF PRECAMBRIAN AGE

1 Considered by some to exclude post-Pliocene deposits.
2 Classed as division of Senonian Subseries.
3 Classed as division of Neocomian Subseries.
4 Includes Purbeckian deposits.
5 Interpreted as lowermost Jurassic in some areas.

Trentonian Substage
Blackriveran Substage
Chazy Stage

Canadian Series (Lower Ordovician)

CAMBRIAN SYSTEM
Croixian Series (Upper Cambrian)
Trempealeauan Stage
Franconian Stage
Dresbachian Stage
Albertan Series (Middle Cambrian)
Waucoban Series (Lower Cambrian)

EOCAMBRIAN SYSTEM
ROCKS OF PRECAMBRIAN AGE

* Includes some Lower Triassic and equivalent to upper Thuringian (Zechstein) deposits.
7 Equivalent to lower Thuringian (Zechstein) deposits.
8 Equivalent to upper Auntsian and part of Rotliegend deposits.
9 Classed as uppermost Cambrian by some geologists.

Raymond C. Moore