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In the United States alone, approximately 
1.7 million people annually suffer a trau-
matic brain injury (TBI).1 Of that number, 
it is estimated that  2% die due to their in-
juries.2 Evidence exists that many of these 
statistics are skewed less than the actual 
occurrences given that mild TBIs are often 
not treated in hospitals.3 TBIs dispropor-
tionately affect children, the elderly, con-
tact sports athletes, and military person-
nel.3,4 Those who survive head injury are 
often left with permanent damage that can 

result in life-long depression, decreased 
cognition, decreased self-regulation, and 
an increased propensity to neurodegener-
ative diseases and stroke.5,6 There are two 
types of damage in TBIs. Primary dam-
age is the mechanical lysing of brain cells 
due directly to an impact to the head. The 
damage occurring after the initial trauma is 
referred to as secondary damage. This hap-
pens when cells neighboring the mechani-
cally lysed brain cells are killed by expo-
sure to excessive extracellular glutamate 
and calcium ions released by the damaged 
glial cells and neurons.7,8 Although gluta-
mate is a primary excitatory neurotrans-
mitter in the CNS and is also important for 
normal neuronal function. When in excess, 
it behaves as an excitotoxin that can trig-
ger neuronal cell apoptosis. Free glutamate 
in the extracellular environment binds to 
N-methyl-D-aspartate (NMDA), α-ami-
no-3-hydroxy-5-methyl-4-isoxazolepropi-
onic acid (AMPA) and kainate receptors, 
causing calcium infl ux in neuronal cells.9,10

In excess, this results in the activation of 
several calcium-dependent protease path-
ways leading to mitochondrial dysfunction 
and ultimately apoptosis.11-13 Without med-
ical intervention, the secondary damage 
is diffi cult to control and will continue to 
progress for up to several days after the 
initial trauma. Options for treatment are 
limited, ranging from therapeutic cooling 
for mild injury to craniotomy or drug in-
duced-coma for severe injury. Despite ev-
idence for therapeutic agents being bene-
fi cial for controlling secondary damage in 
animal models, there are no therapeutics 

approved for TBIs in humans.14

Phenibut is a therapeutic that shows effi ca-
cy in decreasing  TBI secondary damage in 
rodent model systems.8,15 Historically it was 
developed as an anxiolytic in Russia during 
the 1960s.16,17 In recent years it has been 
sold online as a ‘nootropic’ or cognitive en-
hancing drug. The R-enantiomer (Figure 
1) is responsible for the physiological ac-
tivity of phenibut. It functions in two ways, 
fi rst, it binds to the α2δ-1 subunit of volt-
age-dependent calcium channels, blocking 
them, it additionally binds as an agonist to 
GABA receptors.17,18  These mechanisms 
are shared with other gabapentinoids which 
have been found to reduce secondary dam-
age in animal models.19 Both mechanisms 
work to counter the excitotoxic effects of 
excessive glutamate and calcium on brain 
cells via inhibition of calcium infl ux, and 
reduction of neuronal excitation, limiting 
further glutamate release.20

 In this study, we sought to inves-
tigate phenibut as a therapeutic to attenu-
ate the progression of secondary damage 
after a TBI. This was done in vitro using 
SHSY5Y neuroblastoma cells as a mod-
el brain after ensuring they expressed the 
CACNα2δ-1 subunit that phenibut is a li-
gand of. Glutamic acid was used as an in-
ducer of neuronal apoptosis. Cell viabili-
ty was assessed in these cells exposed to 
glutamic acid, phenibut, or both to see if 
phenibut was antagonistic to glutamate-in-
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Figure 1 | Representations of the 
two enantiomeric forms of Phenibut.
(a) R-Phenibut (b) S-Phenibut
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duced apoptosis, or if phenibut possessed 
toxicity of its own. We found that phenibut 
appears to be non-toxic at the doses used, 
and antagonizes apoptosis induced by sup-
raphysiological glutamate exposure.

Materials and Methods

Chemicals 
Phenibut HCl was obtained from LiftMode 
(SKU No. PH-ENIL-C070), and Glutamic 
acid was from Bulk Supplements (SKU 
No. LGA100).

Cell culture 
SHSY5Y cells were generously donat-
ed by the KU Department of Pharma-
cology and Toxicology. Cells were cul-
tured in with DMEM (Thermo Fisher, 
Cat. No.11885092) with 10% HyClone 
Fetal Bovine Serum (Cytiva, Cat. No. 
SH30071.02).

Western Blot of SHSY5Y cells probing 
for the Voltage-Gated Calcium Channel 
(VGCC) CACNα2δ-1 subunit
 SHSY5Y cell lysates were prepared using a 
protocol titled Radio-immunoprecipitation 
Assay (RIPA) Cell Lysate Preparation by 
GoldBio.21 The RIPA buffer contained 10 
mM Tris-HCl (pH 8.0) (Corning, Cat. No. 
25-053-Cl), 1 mM EDTA (Fisher Scientifi c, 
Cat. No. 60-00-4), 1% Triton X-100 (Acros 
Organics, Cat. No. 9002-93-1), 0.1% Sodi-
um Deoxycholate (Sigma Aldrich, Cat. No. 
D6750-25G), 0.1% SDS (MP Biomedicals, 

Cat. No. 190522), 140 mM NaCl (Fisher 
Science Education, Cat. No. S25541A), 
and 1 mM PMSF (Acros Organics, Cat. 
No. 329-98-6). Protein content in lysates 
was quantifi ed using a Pierce BCA Protein 
Assay Kit (Thermo Fisher, Cat. No. 23225) 
and a Pierce Rapid Gold BCA Protein As-
say Kit (Thermo Fisher, Cat. No. A53227)
and a SpectraMax M3 Multi-Mode Micro-
plate Reader (Molecular Devices). Samples 
were prepared with Laemmli SDS-Sample 
Buffer 6x, Reducing (Bio-World Cat. No. 
10570021-2) and electrophoresed through 
a 10% acrylamide gel. After transferring to 
a nitrocellulose membrane, the membrane 
was incubated with 1:1000 CACNα2δ-1 
Rabbit Poly Ab (Proteintech, Cat. No. 
27453-1-AP), washed, incubated with Ms 
anti-Rb IgG HRP (EMD Millipore, Cat. 
No. AP1889P), exposed to ECL chemilu-
minescent substrate (Thermo Fisher, Cat. 
No. 34075) and imaged with a LI-COR 
C-DiGit Blot Scanner.

Cell viability via fl ow cytometry
SHSY5Y cells were split into 3 popula-
tions in a 6-well plate, each receiving 2 
mL of complete growth medium. Once 
roughly 80% confl uency was reached, the 
medium was removed and 2 mL of fresh 
drug-containing media was applied. Each 
population received complete media, com-
plete media with 20 mM glutamic acid, 
or complete media with 20 mM glutamic 
acid and 1 mM phenibut HCl, respectively. 
Cells were incubated for 24 hours at 37°C 
in their respective conditions. Samples 

then had their media removed followed 
by trypsinization with 500 µL of 0.25% 
Trypsin-EDTA (Thermo Fisher, Cat. No. 
) and phenol red (Thermo Fisher, Cat. No. 
25200056). Trypsinized cells were incubat-
ed at 37°C for 5 minutes and then pipetted 
into 1 mL microcentrifuge tubes contain-
ing 500 mL of complete media. Samples 
were stained with SYTOX” AADvanced™ 
Dead Cell Stain Kit (Thermo Fisher, Cat. 
No. S10274) and incubated for 15 minutes 
in the dark at 25°C prior to being run on 
an Attune™ NxT Flow Cytometer (Ther-
mo Fisher, Cat. No. A24864). The Sytox 
serves as a live-dead stain that only stains 
dead cells. The fl uorescent signal of Sytox 
was analyzed in a histogram after cell de-
bris was gated out.

Figure 2 | The band in the SHSY5Y 
lane corresponds with the 
CACNα2δ-1 subunit between 150-
250 kDa. 

Figure 3 | Sytox staining of SHSY5Y cells. Cells treated with (a) control media, (b) 20 mM glutamate, or (c) 20 mM 
glutamate + 1 mM phenibut. Peaks centered around 103 in all samples correspond to live cells that do not take up Sytox 
dye. The peak centered between 104 and 105 in the 20 mM glutamate sample corresponds to apoptotic cells that have 
taken up the dye.
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Results

Western blot for CACNα2δ-1 in 
SHSY5Y cells 
Before exploring phenibut’s inhibition 
of glutamate-induced calcium-dependent 
apoptosis in SHSY5Y cells, it was neces-
sary to determine if SHSY5Y cells express 
the α2δ-1 subunit of the N-type VGCC. 
This was done because phenibut exerts its 
TBI-relevant therapeutic effects by bind-
ing to this target resulting in the closure 
of the ion channel. Lysates of SHSY5Y 
cells were electrophoresed through a 10% 
SDS-PAGE gel, transferred to, and probed 
on a membrane using rabbit anti-human 
CACNα2δ-1 antibody and visualized with 
mouse anti-rabbit IgG HRP and ECL sub-
strate. The resulting band in the SHSY5Y 
lane confirms the presence of the 175 kDa 
CACNα2δ-1 in SHSY5Y cells (Figure 2).

Flow cytometry on glutamate and 
phenibut treated SHSY5Y cells 
To determine whether phenibut has an 
antagonistic effect on glutamate-induced 
apoptosis, the effects of glutamate or glu-
tamate + phenibut on cell viability were 
assessed using flow cytometry. The pro-
portion of dead cells was determined by 
the uptake of Sytox dye. SHSY5Y cells 
were treated with 20 mM glutamate, 1mM 
Phenibut + 20 mM glutamate, or no drug 
(control), then incubated for 24 hours prior 
to harvest and staining with Sytox. Con-
trol (no glutamate or phenibut) and 20 mM 
glutamate + 1 mM phenibut have a similar 
peak centered around 103 corresponding 
to live cells (Figure 3). The presence of a 
second peak centered between 104 and 105 
in the 20 mM glutamate sample indicates 
approximately 30% of the cells were killed. 
Taken together, these data suggest that 
phenibut interrupts the processes leading 
to glutamate release and acts in a protec-
tive manner against the secondary damage 
manifesting as glutamate-induced apopto-
sis of SHSY5Y cells.

Discussion

In this study, we confirmed the expression 
of the α2δ-1 subunit of the N-type VGCCs 
in SHSY5Y cells by western blot. This was 
done because phenibut binds to the α2δ-1 
subunit of the voltage-dependent calcium 
channels, preventing them from opening 
and allowing calcium influx into the axon 

terminal. This inhibits release of glutamate 
into the synapse. Our cell viability assay 
results showed that 20 mM glutamate was 
sufficient to induce approximately 30% 
cell death after 24 hours. 1 mM phenibut 
possessed antagonistic effects to gluta-
mate-induced apoptosis in cells exposed to 
20 mM glutamate.
In conclusion, phenibut likely has neuro-
protective effects in the context of treating 
the secondary damage of TBIs. Inhibition 
of glutamate-induced apoptosis suggests 
phenibut could reduce the progression of 
neuronal death associated with secondary 
damage, leading to better treatment out-
comes in post-TBI individuals and may 
be a worthwhile therapeutic for use in the 
treatment of TBI.

Future Directions

Further exploration into the mechanism by 
which phenibut inhibits glutamate-induced 
cytotoxicity should be performed. Differ-
entiation of neuroblastoma cells into ma-
ture neurons via Nerve Growth Factor treat-
ment would likely serve as a better model 
brain.22 It would be worthwhile to explore 
the relative abundances of GABA Type A 
receptors, GABA Type B receptors, N-type 
VGCCs, and NMDa receptors to estab-
lish a baseline of expression. From there, 
it could be investigated whether phenibut 
causes a change in expression after long-
term exposure as this would correlate with 
tolerance formation in human and animal 
models.23 Derivatives of phenibut are also 
likely a worthwhile direction to investigate 
for TBI therapeutics. Fluorophenibut is one 
such derivative that warrants further explo-
ration. Very little information exists on this 
drug’s pharmacology, making it an interest-
ing and novel avenue for research.24
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