Composition of Rift-Related Igneous and Sedimentary Rocks of the Keweenawan Supergroup in the Poersch No. 1, OZ-1, Finn, and Friederich Wells, Northeastern Kansas

Authors

  • Robert L. Cullers Department of Geology, Kansas State University
  • Pieter Berendsen Kansas Geological Survey

DOI:

https://doi.org/10.17161/cres.v0i235.11784

Abstract

A series of wells have been drilled up to a depth of 3,444 m (113,000 ft) into the midcontinent rift system (MRS) in northeastern Kansas. The age of a gabbro sill in the upper portion of the Precambrian rocks was determined to be 1,097.5 ± 3 Ma, and the magnetic polarity of the gabbro correlated to the lower Keweenawan rocks in the northern MRS (Van Schmus et al., 1990). The rocks below 2,259 m (7,411 ft) in the deepest well [Poersch no. 1, total depth 3,435 m (11,270 ft)] consist mostly of arkoses with subordinate amounts of shale, siltstone, and basalt. The rocks above 2,265 m (7,431 ft) in the Poersch well consist of basalt with minor siltstone, arkose, gabbro, and felsite. A proposed high-angle reverse fault could have juxtaposed the upper igneous rocks over the lower sedimentary rocks to produce a reversed stratigraphy. This would make the development of the southern MRS similar to that of the northern MRS. Thus, in the initial extensional phase of the MRS, broad subsidence coincided with abundant volcanism and little sediment production. Grabens formed in the later stages of rift development and were filled with abundant sedimentary rocks along with lesser volcanic rocks. The chemical characteristics of the basalts in the southern MRS are similar to those in the north. The southern basalts are subalkalic to alkalic and follow tholeiitic trends; a number of them are high-alumina basalts. Although there is a lot of scatter, Al2O3, Ni, and Cr concentrations decrease and Fe2O3, TiO2, K2O, rare earth elements, Ba, Hf, and Sc concentrations increase with decreasing Mg number. These trends are consistent with plagioclase, olivine, pyroxene, or spinel fractionation from primary basalts. One basalt could represent a primary magma because it has a high Mg number (0.68), high Ni (638 mg/kg) and Cr (233 mg/kg) concentrations, low incompatible element concentrations (e.g., La = 4.2 mg/kg), and a slight positive Eu anomaly. This possible primary magma could have formed by partial melting (20-25%) of an undepleted spinel peridotite at 30-40 km depth. Most basalts have not been contaminated by crustal rocks or silicic magmas. The mineralogy, chemical composition, and U-Pb geochronology of detrital zircons of the arkoses, siltstones, and shales are consistent with their derivation from the surrounding granitoid highlands with little or no input from the basalts. Even siltstones and arkoses within the mostly basaltic sequences are derived mostly from the granitoids, although the siltstones may have some input from the basalts (e.g., higher Ni concentration than the sandstones).

References

Annells, R. G., 1974, Keweenawan volcanic rocks of Michipicoten Island, Lake Superior, Ontario, an eruptive center of Proterozoic age: Geological Survey of Canada, Bulletin 218, 141 p.

Basaltic Volcanism Study Project, 1981, Basaltic volcanism on the terrestrial planets: Pergamon Press, New York, 1,286 p.

Behrendt, J. C., Green, A. G., Cannon, W. F., Hutchinson, D. R., Lee, M. W., Milkereit, B., Agena, W. F., and Spencer, C., 1988, Crustal structure of the midcontinent rift system-results from GLIMPCE deep seismic reflection profiles: Geology, v. 16, p. 81-85

Berendsen, P., Blair, K. P., and Newell, K. D., 1989, Structural aspects of the midcontinent rift system in Kansas: Transactions, 1989 AAPG Midcontinent Section Meeting, 26 p.

Berendsen, P., Borchuding, R., Doveton, J., Gerhard, L., Newell, K. D., Steeples, D., and Watney, W. L., 1988, Texaco Poersch #1, Washington County, Kansas-preliminary geologic report of the pre-Phanerozoic rocks: Kansas Geological Survey, Open-File Report 88-22, 116 p.

Brannon, J. C., Haskin, L. A., and Green, J. C., 1979, Compositional differences in planetary flood basalts: Proceedings, Lunar and Planetary Science Conference X, p. 152-154

Buckley, D. E., and Cranston, R. E., 1971, Atomic absorption analyses of eighteen elements from a single decomposition of aluminosilicates: Chemical Geology, v. 7, p. 273-284

Cannon, W. F., Green, A. G., Hutchinson, D. R., Lee, M., Milkereit, B., Behrendt, J. C., Halls, H. C., Green, J. C., Dickas, A. B., Morey, G. B., Sutcliffe, R., and Spencer, C., 1989, The North American midcontinental rift beneath Lake Superior from GLIMPCE seismic reflection profiling: Tectonics, v. 8, p. 305-332

Carlson, R. W., and Hart, W. K., 1988, Flood basalt volcanism in the northwestern United States; in, Continental flood basalts, J. D. Macdougall, ed.: Kluwer Academic Publishers, Dordrecht, Netherlands, p. 35-61

Catacosinos, R. A., 1981, Origin and stratigraphic assessment of pre-Mount Simon clastics (Precambrian) of the Michigan basin: American Association of Petroleum Geologists Bulletin, v. 65, p. 1,617-1,620

Cornwall, H. R., and Rose, H. J., Jr., 1957, Minor elements in Keweenawan lavas, Michigan: Geochimica et Cosmochimica Acta, v. 12, p. 209-224

Cox, K. G., 1980, A model for flood basalt volcanism: Journal of Petrology, v. 21, p. 629-650

Cox, K. G., and Hawkesworth, C. J., 1985, Geochemical stratigraphy of Deccan Traps at Mahabaleshwar, Western Ghats, India, with implication for open system magmatic processes: Journal of Petrology, v. 26, p. 355-377

Cox, K. G., Bell, J. D., and Pankhurst, K G., 1979, The interpretation of igneous rocks: Allen and Unwin, London, 450 p.

Cullers, R. L., 1988, Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danberg granite, Georgia: Lithos, v. 21, p. 301-314

Cullers, R. L., Barrett, T., Carlson, R., and Robinson, B., 1987, Rare earth element and mineralogic changes in Holocene soil and stream sediment--a case study in the Wet Mountains, Colorado, USA: Chemical Geology, v. 63, p. 275-297

Cullers, R. L., Chaudhuri, S., Kilbane, N., and Koch, R. J., 1979, The rare earth contents in different size fractions and whole rocks from Pennsylvanian and Permian platform sediments from the midcontinent of the USA: Geochimica et Cosmochimica Acta, v. 43, p. 1,285-1,302

Cullers, R. L., Ramakrishnan, S., Berendsen, P., and Griffin, T., 1985, Geochemistry and petrography of lamproites, Late Cretaceous age, Woodson County, Kansas, USA: Geochimica et Cosmochimica Acta, v. 49, p. 1,383-1,402

Cullers, R. L., Chaudhuri, S., Arnold, B., Lee, M., and Wolf, C. W., 1975, Rare earth distributions in clay minerals and clay-sized fractions of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma: Geochimica et Cosmochimica Acta, v. 39, p. 1,691-1,703

Daniels, P. A., Jr., 1982, Precambrian sedimentary rocks: Oronto Group, Michigan-Wisconsin; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156, p. 107-133

Davis, D. W., and Paces, J. B., 1990, Time resolution of geologic events on the Keweenawan Peninsula and implications for the development of the midcontinent rift system: Earth and Planetary Science Letters, v. 97, p. 54-64

Davis, D. W., and Sutcliffe, R. H., 1985, U-Pb ages from the Nipigon plate and northern Lake Superior: Geological Society of America Bulletin, v. 96, p. 1,572-1,579

Denison, R. E., Lidiak, E. G., Bickford, M. E., and Disvarsanyi, E. B., 1984, Geology and geochronology of Precambrian rocks in the central interior of the United States: U.S. Geological Survey, Professional Paper 1241-C, 20 p.

Dickas, A. B., 1984, Midcontinent rift system-Precambrian hydrocarbon target: Oil and Gas Journal, v. 70, p. 151-159

Dickas, A. B., 1986, Comparative Precambrian stratigraphy and structure along the midcontinent rift: American Association of Petroleum Geologists Bulletin, v. 70, p. 225-238

Elmore, R. D., 1984, The Copper Harbor Conglomerate--a Late Precambrian fining-upwards alluvial fan sequence in northern Michigan: Geological Society of America Bulletin, v. 95, p. 610-617

Godlevskiy, M. N., 1959, Trappi rudonosnze intruzil Noril'skogo raiona: Gosgeltekhizdat. Translated by Canada Translation Bureau

Gordon, G. E., Randle, K., Goles, G. G., Corliss, J. B., Beeson, M. H., Oxley, S. S., and Gram, O. E., 1968, Instrumental activation analysis of standard rocks with high resolution x-ray detectors: Geochimica et Cosmochimica Acta, v. 32, p. 369-396

Green, D. H., and Ringwood, A. E., 1967, The genesis of basaltic magmas: Contributions to Mineralogy and Petrology, v. 15, p. 103-190

Green, J. C., 1972, North Shore Volcanic Group; in, A centennial volume, P. K. Sims and G. B. Morey, eds.: Minnesota Geological Survey, p. 294-332

Green, J. C., 1982, Geology of the Keweenawan extrusive rocks; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156,p.47-56

Green, J. C., 1983, Geologic and geochemical evidence for the nature and development of the middle Proterozoic (Keweenawan) midcontinent rift of North America: Tectonophysics, v. 94, p. 413-437

Gromet, L. P., Dymek, R. F., Haskin, L. A., and Korotev, R. L., 1984, The "North American Shale composite"--its compilation, major, and trace element characteristics: Geochimica et Cosmochimica Acta, v. 48, p. 2,469-2,482

Irvine, T. N., and Baragar, W. R. A., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Science, v. 8, p. 523-548

Jacobs, J. W., Korotev, R. L., Blanchard, D. P., and Haskin, L. A., 1977, A well-tested procedure for instrumental activation analysis of silicate rocks and minerals: Journal of Radioanalytical Chemistry, v. 40, p. 321

Kaltiokoski, J., 1982, Jacobsville Sandstone; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156, p. 147-155

Klewin, K. W., and Berg, J. H., 1991, Petrology of the Keweenawan Mamainse Point lavas, Ontario--petrogenesis and continental rift evolution: Journal of Geophysical Research, v. 96, p. 457-474

Lightfoot, P. C., Sutcliffe, R. H., and Doherty, W., 1991, Crustal contamination identified in Keweenawan Osler Group tholeiites, Ontario--a trace element perspective: Journal of Geology, v.99,p.739-760

Mahoney, J. J., 1988, Deccan Traps; in, Continental flood basalts, Macdougall, J. D., ed.: Kluwer Academic Publishers, Dordrecht, Netherlands, p. 151-194

Marsh, J. S., 1989, Geochemical constraints on coupled assimilation and fractional crystallization involving upper crustal composition and tholelitic magma: Earth and Planetary Science Letters, v. 92, p. 70-80

Merk, G. P., and Jlrsa, M. A., 1982, Provenance and tectonic significance of the Keweenawan interflow sedimentary rocks; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156, p. 97-106

Morey, G. B., and Green, J. C., 1982, Status of the Keweenawan as a stratigraphic unit in the Lake Superior region; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156, p. 15-25

Morey, G. B., and Ojakangas, R. W., 1982, Keweenawan sedimentary rocks of eastern Minnesota and northwestern Wisconsin; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156, p.135-146

Nakamura, N., 1974, Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites: Geochimica et Cosmochimica Acta, v. 38, p. 757-775

Ojakangas, R. W., and Morey, G. B., 1982, Keweenawan prevolcanic quartz sandstones and related rocks of the Lake Superior region; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156, p. 85-96

Palmer, H. C., and Davis, D. W., 1987, Paleomagnetism and U-Pb geochronology of volcanic rocks from Michipicoten Island, Lake Superior, Canada--precise calibration of the Keweenawan polar wander track: Precambrian Research, v. 37, p. 157-171

Phinney, W. C., 1970, Chemical relations between Keweenawan lavas and the Duluth complex, Minnesota: Geological Society of American Bulletin, v. 81, p. 2, 487-2,696

Prestvik, T., and Goles, G. G., 1985, Comments on the petrogenesis and the tectonic setting of the Columbia River basalts: Earth and Planetary Science Letters, v. 72, p. 65-73

Roeder, P. L., and Emslie, R. F., 1970, Olivine-liquid equilibrium: Contributions to Mineralogy and Petrology, v. 29, p. 275-289

Ronov, A. B., Balashov, Y. A., Girin, Y. P., Bratishko, R. K., and Kazakov, G. A., 1974, Regularities of rare earth distribution in the sedimentary shell and in the crust of the earth: Sedimentology, v. 21, p. 171-193

Ruegg, N. R., 1976, Characteristicas de distrbuicao e teor de elementos principais em rockas basalticas da bacia do Parana: Bolivian Institute Geociencia, v. 7, p. 81-106

Serpa, L., Setzer, T., Farmer, H., Brown, L., Oliver, J., Kaufman, S., Sharp, J., and Steeples, D., 1984, Structure of the southern Keweenawan rift from COCORP surveys across the Midcontinent Geophysical Anomaly in northeastern Kansas: Tectonics, v. 3, p. 367-384

Taylor, S. R., and McLennan, S. M., 1985, The continental crust--its composition and evolution: Blackwell Scientific Publications, Oxford, England, 312 p.

Thompson, R. N., 1982, Magmatism of the British Tertiary volcanic province: Scottish Journal of Geology, v. 18, p. 49-107

Thompson, R. N., Morrison, M. A., Dickin, A. P., and Hendry, G. L., 1983, Continental flood basalts-arachnids rule OK?; in, Continental basalts and mantle xenoliths, C. J. Hawkesworth and M. J. Norry, eds.: Shiva Press, Cambridge, Massachusetts, p.158-185

Van Schmus, W. R., 1992, Tectonic setting of the midcontinent rift system: Tectonophysics, v. 213, p. 1-15

Van Schmus, W. R., and Hinze, W. J., 1985, The midcontinent rift system: Annual Reviews of Earth and Planetary Sciences, v. 13, p.345-383

Van Schmus, W. R., Martin, M. W., Sprowl, D. R., Gelssman, J., and Berendsen, P., 1990, Age, Nd and Pb isotopic composition, and magnetic polarity for subsurface samples of the 1,100 Ma midcontinent rift: Geological Society of America, Abstracts, v. 22, p. A174

Van Schmus, W. R., Bickford, M. E., Anderson, R. R., Shearer, C. K., Papike, J. J., and Nelson, B. K., 1989, Quimby, Iowa, scientific drill hole--definition of Precambrian crustal features in northwestern Iowa: Geology, v. 17, p. 536-539

Weiblen, P. W., 1982, Keweenawan intrusive rocks; in, Geology and tectonics of the Lake Superior basin, R. J. Wold and W. J. Hinze, eds.: Geological Society of America, Memoir 156, p. 57-82.

Weiblen, P. W., and Morey, G. B., 1980, A summary of the stratigraphy, petrology, and structure of the Duluth complex: American Journal of Science, v. 280-A, p. 88-133

Woelk, T. S., and Hinze, W. J., 1991, Model of the midcontinent rift system in northeastern Kansas: Geology, v. 19, p. 277-280

Wood, D. A., Gibson, I. L., and Thompson, R. N., 1976, Element mobility during zeolite facies metamorphism of the Tertiary basalts of eastern Iceland: Contributions to Mineralogy and Petrology, v. 55, p. 241-254

Downloads

Published

1993-07-01

How to Cite

Cullers, Robert L., and Pieter Berendsen. 1993. “Composition of Rift-Related Igneous and Sedimentary Rocks of the Keweenawan Supergroup in the Poersch No. 1, OZ-1, Finn, and Friederich Wells, Northeastern Kansas”. Current Research in Earth Sciences 235 (July): 55-72. https://doi.org/10.17161/cres.v0i235.11784.