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The Bradley-Terry Model in Binary Outcome Driven 
Rankings: An Application in Amateur Hockey
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Ranking systems serve critical roles in sport settings, most notably in determining 
playoff  participants and seeding. Many ranking methodologies exist that are flexible 
enough to incorporate many input measures and produce models that are highly pre-
dictive of  game outcomes. However, there are circumstances—especially for amateur 
sport leagues—in which more complex inputs are either unavailable or not desirable, 
as they may lead to adverse performance incentives. Therefore, the goal of  this paper 
is to highlight a ranking methodology that only considers binary game outcomes, i.e., 
wins and losses. Specifically, we consider the efficacy of  the Bradley-Terry Model to 
efficiently rank sport teams for playoff  consideration. We apply this method as a case 
study to the New England Prep School Ice Hockey Association (NEPSIHA), and 
compare the accuracy of  their current ranking system to the Bradley-Terry model us-
ing simulation methods. We show that Bradley-Terry significantly outperforms NEP-
SIHA’s current method, especially when teams face unbalanced strengths of  schedule. 
This result holds under various league competitive balance distributions
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Rankings and ranking systems serve 
critical roles in numerous practical 
contexts. Applied to sports, there 

are a multitude of  prominent ranking sys-
tems, such as the Massey method (Massey, 
1997), the Markov method (Govan, 2008; 
Vaziri et al., 2018), the Colley method 
(Colley, 2002), and the Elo method (Elo, 
1978; Ingram, 2021; Kovalchik, 2020), in 
addition to the simple method of  ranking 
teams by win percentage or point accumu-
lation.

Most sport leagues, from youth to 
professional, implement ranking systems 
to determine champions or playoff  par-
ticipants (Stefani, 2011). In most leagues 
and divisions, wins and losses are tallied, 
and the teams are ranked based on win 
percentage. Some leagues rank teams by 
awarding points for winning, tying, or 
reaching overtime in a game. In many sit-
uations, scheduling limitations can cause 
simple systems like these to be inequitable, 
prompting a more complex, sometimes 
even subjective, system to rank teams 
(Vaziri et al., 2018). Examples include it-
erations of  the FIFA World Ranking sys-
tem and selection committees for college 
basketball and football (Stefani, 2011). In 
these examples, the number of  teams par-
ticipating in the competition far exceed the 
number of  games played per team, result-
ing in unbalanced schedules. Teams facing 
more difficult schedules may have lower 
win percentages than some lower quality 
teams, despite being superior in skill—
hence the need to rely on alternative rank-
ing methodologies.

Ranking methods have various applica-
tions outside of  sport as well. Google uses 

advanced algorithms to rank the impor-
tance and popularity of  websites to decide 
which links to show their users (Evans, 
2007). US News ranks the quality of  uni-
versities and colleges across the country, 
utilizing metrics that include graduation 
rates, selectivity, and reviews (Standifird, 
2005). Applications and websites use rank-
ings and algorithms to provide consumers 
with recommendations, such as which 
restaurant to go to (Zhang et al., 2020).

In this paper, we focus on a particular 
ranking system: the Bradley-Terry model 
(Bradley and Terry, 1952; Bradley, 1954, 
1955). The Bradley-Terry (BT) model is 
a probability model designed to predict 
pairwise comparisons of  a sample set. It is 
estimated by maximizing likelihood func-
tions, using a series of  observed pairwise 
comparisons as inputs. Applications of  
the model are particularly relevant when 
pairwise comparisons of  every possible 
combination within the sample set are im-
possible to complete. An example is the 
ranking and comparison of  the thousands 
of  wines that exist in the world (Agresti, 
2007, p. 265). While it would be impossi-
ble for one person to try every single wine 
and be able to rank them effectively, the 
BT model can consider various one-on-
one pairwise comparisons of  wines from 
various reviewers to produce an aggregate 
ranking.

The BT model has obvious applica-
tions in sport settings. When a sporting 
contest is played, we consider this a pair-
wise comparison. While two teams may 
not play directly, we can use the BT model 
to rank them. In the simplest of  terms, if  
Team A defeats Team B, and Team B de-
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feats Team C, then BT would allow us to 
conclude that Team A is better than Team 
C, despite the fact they did not play one 
another. As the web of  teams increases 
and the schedule dynamics become more 
intricate, the BT model is flexible enough 
to adapt and produce rankings of  teams 
and hypothetical win probabilities if  two 
of  the teams were to face off. Applica-
tions of  the Bradley-Terry model in sport 
include college ice hockey (Whelan and 
Wodon, 2020), European field hockey 
(Looijen, 2019), and international cricket 
(Islam et al., 2017; Dewart and Gillard, 
2019). In the media, the BT model is used 
to make Ken’s Ratings for American Col-
lege Hockey (KRACH), which College 
Hockey News endorses “as the best sys-
tem to objectively rank teams.”

Traditionally, academic papers have 
focused less on the practical ranking of  
teams and more on the predictive mod-
eling that these sorts of  models allow for 
(Barrow et al., 2013; Dabadghao and Va-
ziri, 2021; Lasek et al., 2013; Leitner et 
al., 2010; Leung and Joseph, 2014; Stew-
art et al., 2022; Williams et al., 2020, for 
example). Occasionally, papers will con-
sider biases or look for improvements in 
current ranking systems (Servien, 2022; 
Szczecinski and Roatis, 2022) for playoff  
seeding purposes (Burer, 2012; Bigsby 
and Ohlmann, 2017), especially as it re-
lates to the NCAA March Madness Col-
lege Basketball Tournament (Coleman et 
al., 2010; Dutta and Jacobson, 2018; Paul 
and Wilson, 2012; Sanders, 2007; Stocks-
Smith, 2021; Stone and Arkes, 2018, 
among others). The BT model, especial-
ly, has received minimal consideration in 
the literature, as there are typically more 

advanced predictive models available that 
utilize a wide variety of  variables to con-
sider the strengths of  teams. The inputs 
of  these predictive models tend to in-
volve more variables, ranging in complex-
ity from margin of  victory (Szczecinski, 
2022) to expected goal metrics (Eggels, 
2016; Kovalchik, 2020). But what hap-
pens in sport settings where these vari-
ables may be unavailable, such as in many 
amateur sport settings, or where they cre-
ate adverse performance incentives that 
are counter to league objectives? A more 
simplistic methodology (maximizing like-
lihood functions is much simpler than al-
ternative approaches) that relies on fewer 
inputs may be desirable in certain settings, 
including a methodology that just focuses 
on binary game outcomes (wins and loss-
es).

We provide a case study illustrating 
the applicability of  the BT model in sport 
settings desiring binary outcome-driven 
rankings. Specifically, we assess the BT 
model’s ability to rank teams in the New 
England Prep School Ice Hockey Asso-
ciation (NEPSIHA). NEPSIHA currently 
implements its own unique ranking system 
that objectively selects and seeds teams 
for playoff  tournaments. We benchmark 
the efficiency of  the BT model to their 
current ranking system by observing 
each model’s ability to identify and rank 
the “best” teams in the league. Utilizing 
a simulation approach with hypothetical 
team skill competitive balance distribu-
tions, we identify biases and inefficiencies 
in the current NEPSIHA ranking system 
and show how implementation of  the BT 
model can address these biases.

The rest of  the paper is structured as 
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follows. First, we discuss the intricacies of  
NEPSIHA and why we have chosen this 
league in particular as our case study. Next, 
we introduce the BT model, followed by 
an overview of  the empirical strategy to 
compare the BT model to NEPSIHA’s 
current ranking system. Then, we illus-
trate simulation results, highlighting criti-
cal inefficiencies in the current NEPSIHA 
ranking system and how the BT mod-
el corrects for them. Finally, we provide 
concluding and summarizing remarks.

NEPSIHA: A CASE STUDY
The New England Prep School Ice 

Hockey Association (NEPSIHA) is a 
group of  54 high school hockey programs 
across the six states of  New England and 
New York. Known for elite academics, 
these schools are commonly referred to as 
NEPSAC schools for their membership 
in the New England Preparatory School 
Athletic Council. Hundreds of  New En-
gland Prep alumni go on to play college 
sports, and many move on to play profes-
sionally, especially in hockey. The NEP-
SIHA has alumni currently playing in the 
NHL, such as All-Stars Max Pacioretty, 
Chris Kreider, and Conn Smythe Trophy 
winner Jonathan Quick, among others. 
Abbreviations for all school names refer-
enced throughout the paper are available 
in Appendix A.

At the end of  each season, 24 NEP-
SIHA teams take part in three different 
postseason tournaments: the Stuart/
Corkery, Martin/Earl, and Piatelli/Sim-
mons tournaments. The Stuart/Corkery 
tournament is commonly referred to as 
the “Open” tournament and consists of  

the eight best teams, with the winner of  
this tournament considered the NEPSI-
HA champion. The Martin/Earl tourna-
ment consists of  the eight best “Large” 
schools not selected for the Open tour-
nament. Similarly, the Piatelli/Simmons 
tournament consists of  the eight best 
“Small” schools not selected for the Open 
tournament. The Large class vs. Small 
class distinction is made based on the en-
rollment totals of  each school. Given its 
de facto status as the NEPSIHA playoffs, 
selection for the Open tournament will be 
our main focus.

To determine the top eight teams that 
make the Open tournament, NEPSIHA 
uses a customized approach called the 
Jeremy S. Philipson Rating (JSPR) system. 
JSPR starts by calculating the Rating Per-
centage Index (RPI) of  every NEPSIHA 
team. RPI is a commonly used rating sys-
tem that was most notably used in NCAA 
Basketball before it was replaced in 2018 
by the NCAA Evaluation Tool (NET). 
For many applications, its simplicity and 
transparency can be very appealing. The 
standard RPI formula is

,
where WP is Win Percentage, OWP is Op-
ponents’ Win Percentage, and OOWP is 
Opponents’ Opponents’ Win Percentage. 
However, NEPSIHA tweaks the coeffi-
cients so that the OWP section has far less 
weight. The resulting formula is

.
It is believed that this tweak was made to 
avoid teams loading their schedule with 
difficult teams to artificially inflate their 
RPI.
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From the RPI ranking, the top 16 
teams are classified as the Teams Under 
Consideration (TUC). These teams are 
put through a pairwise comparison. This 
comparison, made between every pair of  
top 16 schools, is where the JSPR ranking 
system is very unique. There are four in-
puts to each pairwise comparison: head-
to-head record, RPI, record against com-
mon opponents, and record against TUC.

Table 1
Hypothetical JSPR Pairwise Teams Under 
Consideration Example

Team A Team B
Head-to-Head Record 1-0-0 0-1-0

RPI 0.632 0.611
Record Against 

Common Opponents 2-1-0 5-0-0

Record Against TUC 4-1-0 3-3-1

If  a team is better than the other team in 
more categories, they are awarded a JSPR 
point. Table 1 shows a pairwise example 
in which Team A is better in three (head-
to-head record, RPI, record against TUC) 
out of  the four categories, earning it the 
JSPR point. In the event each team takes 
the same number of  categories, head-to-
head record is used as the first tiebreaker, 
followed by the second tiebreaker of  RPI. 
If  teams are tied in a particular category, 
that category is not counted. For example, 
had Team A been 5-0-0 against common 
opponents, Team A would have won the 
JSPR point three categories to zero instead 
of  their actual three categories to one. 
The maximum number of  JSPR points a 
team can earn is 15, as that is a team that 
earns a JSPR point in each comparison 

against all other TUC. The team with the 
most JSPR points gets the top seed in the 
Open tournament, second-most gets the 
second seed, and so on until all eight play-
off  seeds are determined. When teams 
are tied in JSPR points, their comparison 
against each other is the tiebreaker. As an 
example, Table 2 shows the full compari-
son matrix for all 16 TUC from the 2017–
18 season, ordered by their final seeding. 
Note how WES earned the eighth and 
final playoff  spot over NMH since they 
won their JSPR pairwise comparison due 
to the head-to-head tiebreaker.

The JSPR ranking system has a num-
ber of  nuances that, a priori, led us to be-
lieve there may have been inefficiencies 
and biases, hence the motivation for con-
sidering BT as an alternative ranking sys-
tem. First, games carry varying levels of  
importance under JSPR. A game against 
an RPI top 16 opponent will impact the 
Head-to-Head, RPI category, and record 
against TUC components, while non top 
16 games would only impact the RPI cat-
egory (either game type could potentially 
impact the record against common op-
ponents category). As a result, there is a 
clear discontinuity in terms of  game im-
portance, as losing to the 16th best team 
in RPI carries significantly more conse-
quence compared to losing to the 17th 
best team in RPI. Also, JSPR systemati-
cally punishes a loss to the 16th best team 
in RPI more than a loss to the worst team 
in the league, despite the fact that such a 
loss would likely be a better indicator of  
true team ability. Lastly, RPI as a whole is 
a very outdated and inaccurate measure-
ment of  team quality. This is made evi-
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Table 2
JSPR Pairwise Points 2017–18 Season

SAL RIV KUA DEX MIL EXE CSH WES NMH THA SEB BRU GUN WIL LAW WIN Total
SAL 2-0 2-0 3-0 4-0 3-0 4-0 4-0 3-0 3-0 3-0 4-0 4-0 4-0 3-0 3-0 15
RIV 0-2 4-0 3-1 3-0 4-0 3-0 3-0 3-0 4-0 4-0 4-0 3-0 4-0 3-0 3-0 14
KUA 0-2 0-4 3-0 2-1 4-0 4-0 3-1 4-0 3-0 3-0 4-0 3-0 3-0 3-0 3-0 13
DEX 0-3 1-3 0-3 2-1 3-0 3-0 3-0 3-0 4-0 3-0 3-0 3-0 3-0 3-0 3-1 12
MIL 0-4 0-3 1-2 1-2 3-0 3-0 2-1 3-0 3-0 4-0 3-0 3-0 3-0 4-0 4-0 11
EXE 0-3 0-4 0-4 0-3 0-3 3-1 1-1** 4-0 4-0 3-1 3-0 4-0 2-1 3-0 3-0 10
CSH 0-4 0-3 0-4 0-3 0-3 1-3 2-1 2-1 3-1 2-1 3-0 3-0 4-0 3-0 3-0 9
WES 0-4 0-3 1-3 0-3 1-2 1-1 1-2 2-2* 3-0 2-1 3-1 1-3 4-0 3-0 2-1 7
NMH 0-3 0-3 0-4 0-3 0-3 0-4 1-2 2-2 3-1 2-1 3-0 2-1 3-0 3-0 3-1 7
THA 0-3 0-4 0-3 0-4 0-3 0-4 1-3 0-3 1-3 2-1 2-0 2-1 2-0 3-1 1-2 5
SEB 0-3 0-4 0-3 0-3 0-4 1-3 1-2 1-2 1-2 1-2 2-1 2-1 2-2 3-0 3-1 4
BRU 0-4 0-4 0-4 0-3 0-3 0-3 0-3 1-3 0-3 0-2 1-2 2-2* 2-1 1-1 2-1 3
GUN 0-4 0-3 0-3 0-3 0-3 0-4 0-3 3-1 1-2 1-2 1-2 2-2 3-1 2-0 2-2 3
WIL 0-4 0-4 0-3 0-3 0-3 1-2 0-4 0-4 0-3 0-2 2-2* 1-2 1-3 2-1 2-2* 3
LAW 0-3 0-3 0-3 0-3 0-4 0-3 0-3 0-3 0-3 1-3 0-3 1-1** 0-2 1-2 2-1 2
WIN 0-3 0-3 0-3 1-3 0-4 0-3 0-3 1-2 1-3 2-1 1-3 1-2 2-2* 2-2 1-2 2

*First tiebreaker of  head-to-head used **Second tiebreaker of  RPI used
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dent by the NCAA phasing out the use of  
the metric in many of  their sports, replac-
ing it with more accurate measures, such 
as NET in basketball.

When considering an alternative rank-
ing system, there is an important consid-
eration to take into account, specifically 
for NEPSIHA. Many ranking systems use 
margin of  victory as an input because it 
has been proven to be more predictive 
of  actual team ability than just wins and 
losses. For an amateur hockey association, 
however, it is preferable that only wins 
and losses are used as inputs in its rank-
ing system. From a competitive stand-
point, leagues would prefer teams to be 
win maximizers rather than goal differ-
ential maximizers. For example, if  mar-
gin of  victory affects the ranking, teams 
could be reluctant to pull the goalie late 
in the game and keep the margin of  the 
loss at one instead of  attempting to tie the 
game. From a sportsmanship standpoint, 
amateur leagues may not want teams to 
“run up the score,” or hamper partici-
pation by limiting the opportunities for 
benchwarmers to play. The focus on just 
wins and losses is a major requirement 
being imposed for any alternative ranking 
system, similar to what is done in JSPR, 
and hence why more intricate ranking sys-
tems are not under consideration.

THE BRADLEY-TERRY MODEL
The BT model uses pairwise compar-

isons to estimate the strength of  each 
subject (team) relative to each other. The 
following, known as Zermelo’s iteration, 
is used to obtain maximum likelihood es-
timates (see Hunter, 2004 for more infor-

mation) that are then compared to form 
a ranking

 ,
where  is the parameter for Team i 
in the sample,  is team i’s total wins, 
and  is the number of  Team i wins 
over Team j. For the initial iteration, all 

 parameters are set to one. Then, the 
algorithm is calculated producing new 
parameter values, which are normalized 
and replaced in the initial equations and 
recalculated. For example, after the first 
iteration, it can be shown that

 ,
where WP is a school’s overall win per-
centage. These iterations are repeated 
until the parameters converge. After 
convergence, it can be said that the prob-
ability that any Team i beats any Team j is 
given by

 .
The following is a simple example of  

the usage of  the BT model in a league of  
three teams. Suppose Team 1 beat Team 
2 twice and lost to Team 2 once; Team 3 
beat Team 2 three times and lost to Team 
2 four times; Team 1 and Team 3 never 
played each other. Below shows the first 
iteration plugging initial values into Equa-
tion 1:

,

,
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and
.

These parameters are then normalized by 
dividing them by the sum of  the parame-
ters, which is 3.19 in this case. The result-
ing parameters are [0.418, 0.313, 0.269], 
which are equivalent to what can be de-
rived by plugging in initial win percentag-
es into Equation 2. These parameters are 
then used in the second iteration:

,

,
and

.
After the second iteration, the normal-
ized parameters are [0.466, 0.296, 0.238]. 
This sequence is repeated until all three 
parameters converge. In this example, af-
ter 12 iterations, the values converge to 
[0.533, 0.267, 0.200]. As we can see, the 
BT model concludes that Team 1 is bet-
ter than Team 3, and predicts that Team 
1 would have a 72.7% win probability if  
facing Team 3, despite them never playing 
one another.

While we focus our analysis on simple 
binary game outcomes (win/loss), BT can 
be extended in numerous ways, as sum-
marized by Butler & Whelan (2004). For 
instance, general and team-specific order 
effects, such as the home field advantage, 
can be incorporated into the BT model 
(Davidson and Beaver, 1977). Suppose 
team i is always the home team. Modify-
ing Equation 3, the probability that Team 
i beats Team j is given by

 ,
where  is a non-negative parameter, 
which can be solved for when maximiz-
ing likelihood functions. While Equation 
4 only accounts for a generic home field 
advantage, the model can also be expand-
ed to allow for individual team home ad-
vantages. In addition, ties can be incorpo-
rated if  that is a desirable outcome (see 
Davidson, 1970), although in practice, 
treating a tie as half  a win and half  a loss 
typically works if  the end goal is to pro-
duce a ranking of  teams (as opposed to 
predicting game outcomes). 

COMPARING AND EVALUATING 
RANKING SYSTEMS

The goal of  most ranking systems, 
JSPR among them, is to identify a “true” 
hierarchical ordering of  team ability. This 
is typically done using observed game data, 
which could include game result, score 
differential, production measures, expect-
ed scoring measures, and more (see Gov-
an et al., 2009, among others). Of  course, 
relying on observed outcomes, which are 
inherently random and come with high 
degrees of  variance, will never perfectly 
identify “true” team skill level. The best 
team does not always win the game, and 
as long as that holds true, there is going 
to be variation in results that might cloud 
how good a team really is. Finite sched-
ules involving between 20 and 30 games 
per school exacerbate the problem. So, in 
the end, a ranking system is only an es-
timate of  a team’s quality, relative to the 
competition.
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Diverse systems can yield distinct team 
rankings, despite analyzing the same game 
outcomes. Consider the following hypo-
thetical example comparing rankings pro-
duced by two systems: RPI and BT. Table 
3 considers a simplistic scenario involving 
four teams in which teams play unbal-
anced schedules consisting of  between 15 
and 17 games. According to win percent-
age and BT, Team A emerges as the top-
ranked team, while RPI designated Team 
B as the highest ranked. This discrepancy 
arises due to variations in schedule quali-
ty. Team A is penalized in the RPI rank-
ings due to having a substantial propor-
tion of  their games being played against 
the bottom-ranked Team D. Although 
JSPR’s adjusted RPI somewhat mitigates 
this scheduling penalty by assigning less 
weight to opponent win percentage, it 
nonetheless underscores the influence of  
methodological choices on the final rank-
ings. 

The BT model possesses an addition-

al advantage over RPI, JSPR, and other 
points-based systems, as it facilitates hy-
pothesis testing. In our example, there is 
not enough evidence to reject the null hy-
pothesis that Team A and Team B are of  
equal strength, while there is sufficient ev-
idence to suggest that both Teams A and 
B are of  greater strengths than Teams C 
and D.

In terms of  evaluating ranking sys-
tems, it is difficult to do ex-post analysis 
given the sample size (there are few sea-
sons of  data) and lack of  reliable valida-
tion tools. One could consider analyzing 
the relationship between final rating and 
subsequent playoff  performance, yet this 
only considers a subset of  teams and relies 
on a small number of  overall matchups. 
Conversely, the ranking system could be 
evaluated based on its predictive ability of  
regular season matchups. However, this 
relies on roster quality homogeneity, an as-
sumption that likely falls apart when con-
sidering injuries (and other game-missing 

Table 3
RPI Versus BT Hypothetical Example

Team A Team B Team C Team D
Record Against

Team A X 3-4 1-1 1-6
Team B 4-3 X 2-4 0-2
Team C 1-1 4-2 X 3-5
Team D 6-1 2-0 5-3 X

Ranking Measures
Win Percentage 0.688 (1) 0.600 (2) 0.500 (3) 0.235 (4)

RPI 0.565 (2) 0.581 (1) 0.436 (3) 0.407 (4)
Adjusted RPI 0.567 (1) 0.526 (2) 0.490 (3) 0.404 (4)

BT Rating 0.401 (1) 0.354 (2) 0.168 (3) 0.077 (4)
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scenarios) and general team improvement 
during a season. Instead, we utilize a sim-
ulation approach to identify and compare 
the accuracy of  ranking systems using ac-
tual schedules and hypothetical team skill 
distributions. Specifically, we compare 
NEPSIHA’s current JSPR system with the 
Bradley-Terry model.

Our main methodological tool is sim-
ulation. We utilize actual schedules over 
six seasons, from the 2013–14 season to 
the 2018–19 season. This approach has 
two key benefits. First, working with six 
different seasons allows us to analyze 
ranking system quality under six differ-
ent team skill level distributions. Second, 
employing real schedules offers a more 
comprehensive depiction of  the intrica-
cies within the New England prep hockey 
calendar. We simulate regular season out-
comes and utilize both JSPR and BT to 
rank teams for playoff  consideration in 
the Open tournament. The better model 
is the one that ‘gets it right’ more often—
greater skilled teams should be selected 
for the playoff  field more frequently than 
lesser-skilled teams.

We start by assigning each NEPSIHA 
team in each season a hypothetical skill 
level, thus providing a “true” team abili-
ty benchmark. The best ranking systems 
should, on expectation, place teams in 
the order of  their true ability levels. For 
illustrative purposes, we select hypotheti-
cal skill levels that are meant to somewhat 
mimic the real-life distribution of  team 
skill levels. That said, we tweaked certain 
team rankings to introduce various com-
petitive balance features that would en-
rich final analysis. For example, we may 

consider a competitive balance structure 
where there is a clear number one team, 
six teams bunched up at the playoff  cut 
line, etc. In some settings, we also manip-
ulate certain skill levels to be equivalent 
across any number of  teams. This is espe-
cially powerful because an accurate rank-
ing system should treat them the same on 
average across the simulations, while a 
biased system might systematically favor 
one of  the teams more than the other. 
Ratings for the 16 best teams each season 
are available in Appendix B.

Next, we utilize those team skill lev-
els and simulate each team’s schedule. We 
trained a probit model to provide indi-
vidual team win probabilities given team 
ratings. For simplicity, we ignore home 
advantage, rest, and other factors that 
may impact individual team win probabil-
ity. Following each season simulation, we 
use the aforementioned JSPR methodolo-
gy and BT methods to rank teams. After 
5,000 simulations per season, we analyze 
features of  the distributions of  individ-
ual team rankings when comparing the 
two methodologies. For apples-to-apples 
comparison, we utilize both JSPR and the 
BT model for the same set of  simulations, 
rather than run a different set of  simula-
tions to be analyzed by each model. Rank-
ing systems that provide playoff  team 
ordering closest to the hypothetical team 
skill distribution are considered “better.”

When analyzing final results, it is crit-
ical to understand that these are simula-
tions with assigned hypothetical skill lev-
els. While they are designed to roughly 
reflect the real world team levels of  that 
season, they intentionally do not mimic 
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them perfectly. So, the statement “JSPR 
was biased against Team A in favor of  
Team B” does not always imply those ex-
act teams received those biases in the real 
world in that given season. Ultimately, we 
could have assigned any skill levels and 
the practical use of  the results would still 
be valid. Having a pre-established “true” 
ranking allows us to benchmark the accu-
racy and effectiveness of  the two ranking 
systems, while mimicking actual schedules 
and team abilities allows for practical and 
real-life exploration of  any biases.

RESULTS
The majority of  our analysis revolves 

around the percentage of  simulations in 
which a school was rated in the top eight 

Figure 1
Simulation Top-16 Finishes by Year

and selected for participation in the Open 
tournament. When considering rating 
system effectiveness, we expect the better 
system to put the better rated school in 
the tournament more frequently. While 
random variation in game outcomes may 
result in a school being rated lower or 
higher in a single simulation, over a large 
sample of  simulations, the better schools 
should ultimately be rated more frequent-
ly than lower rated schools. Sizeable devi-
ation from that is indicative of  a potential 
bias in the ranking system.

Overall Model Performance
Figure 1 illustrates the percentage of  

simulations in which each of  the top 16 
rated teams made the Open tournament 

Note. The proportion of  simulations in which either the BT (solid) or JSPR (dashed) models rank each 
of  the top 16 teams (by hypothetical rating) in a top-eight playoff  position. The solid vertical line indi-
cates the playoff  cut point and the dotted vertical lines separate teams of  comparable ratings.
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under the JSPR and BT models in each 
season. An efficient and equitable rank-
ing system would have higher rated teams 
with higher playoff  frequencies, and it is 
apparent that the BT model outperforms 
JSPR significantly in this department. Full 
schedule, rating, and playoff  percentage 
breakdowns are available in Appendix B.

After analyzing Figure 1, it is apparent 
that BT’s playoff  proportions much more 
strongly trend with school rating levels 
compared to JSPR. Consider competitive 
balance distributions illustrated in 2014, 
2016, and 2018. In each of  those cases, 
similarly rated teams, separated by dashed 
vertical lines in Figure 1, have more com-
parable playoff  probabilities under BT 
compared to JSPR. Visually, this is rep-
resented by the smooth solid lines for 
BT that follows the true skill level distri-
butions, while the JSPR model zig-zags 

and varies greatly. For example, in 2014, 
BT provides similar playoff  probabilities 
for similarly rated teams ranked seven 
through sixteen (13% to 23%), while JSPR 
sees significantly more variation (8% to 
31%). In 2016, there were six equal teams 
ranked sixth to eleventh, three on either 
side of  the playoff  cut line. Using BT, 
these teams made the playoffs between 
34–37% of  simulations, while JSPR had 
a significantly wider range of  25–57%. In 
2018, teams similarly ranked from three 
to eight made the playoff  field 64–68% 
of  simulations under BT, while between 
59–72% under JSPR, and teams similarly 
ranked between ninth and sixteenth made 
the playoff  field 10–15% of  simulations 
under BT while between 6–16% under 
JSPR. These three years provide clear evi-
dence that BT outperforms JSPR. 

Figure 2
Ranking Simulation Comparisons, AND vs SEB 2018–19 

Note. Ranking distribution for 2018–19 sixth rated AND (solid) and seventh rated SEB (dashed) under 
the BT and JSPR systems. The vertical dotted lines represent the playoff  cut point.
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Scheduling Biases in JSPR
Another takeaway from analyzing sim-

ulation results is the clear JSPR scheduling 
bias, especially its treatment of  matchups 
against top 16 opponents. A JSPR point is 
awarded based on teams’ records against 
top 16 opponents (TUC), yet not all games 
against top 16 opponents are truly of  the 
same difficulty. Figure 2 highlights one 
obvious example of  this bias from 2019. 
Andover (AND) and St. Sebastian’s (SEB) 
were comparably rated teams ranked sixth 
and seventh, respectively. JSPR, however, 
was much more favorable to SEB in terms 
of  making the playoffs (57.78%) com-
pared to AND (33.18%), relative to BT’s 
placement of  the two schools (36.66% 
for AND and 41.72% for SEB). AND 
had 13 games against top 16 teams with 
four against top three opponents. Mean-
while, SEB had six games against top 16 
opponents, none of  which were ranked in 
the top 8, making it very easy for them 

to have a stronger record against TUC 
than an AND team that went through the 
gauntlet of  difficult opponents. In oth-
er words, under JSPR, teams with fewer 
top eight opponents are rewarded, while 
teams playing difficult schedules are pe-
nalized.

Another example of  scheduling bias 
is presented in Figure 3, which compares 
the playoff  seed simulation outcomes for 
the top two equally rated schools from 
2018, Dexter (DEX) and Salisbury (SAL). 
As illustrated in Figure 3, JSPR was put-
ting SAL as the top seed twice as often as 
DEX (44.8% versus 22.2%), despite the 
two teams being of  identical skill, while 
BT was much more equitable (37.7% and 
36.6%, respectively). All of  DEX’s seven 
games against TUC were top nine oppo-
nents, five of  which were top eight. SAL 
had three out of  eight TUC games against 
top eight opponents, a lower rate than 
what DEX played. The BT model also 

Figure 3
Ranking Simulation Comparisons, DEX vs SAL 2017–18 

Note. Ranking distribution for 2017–18 first rated DEX (solid) and second rated SAL (dashed) under 
the BT and JSPR systems. The vertical dotted lines represent the playoff  cut point.



Journal of  Amateur Sport     Volume Ten, Issue One     Meissner et al., 2024     55

had DEX or SAL as the top team around 
74% of  the time, compared to JSPR’s 
rate of  67%. This is to say the BT model 
correctly identified one of  these two top 
teams as the best team more often than 
JSPR did.

A third example of  scheduling im-
balances impacting JSPR can be seen in 
the three equally rated 14th ranked teams 
from 2016. Simulations under BT had the 
three teams in the playoffs between two 
and four percent of  the time, while JSPR 
saw wild swings with Rivers (RIV) in the 
playoffs in 16.16% of  simulations, Noble 
and Greenough (NOB) in the playoffs 
in 5.68% of  simulations, and Deerfield 
(DEE) in the playoffs in just 0.38% of  
simulations. RIV played only four games 
against TUC, with only one being in the 
top five. Facing easier TUC opponents 
inflates that JSPR component. Also, play-
ing only four of  these types of  games 
increases the variation of  their record 
against TUC; it is not difficult for them 
to snag two (25.5% likelihood), three 
(6.3%), or even four (0.55%), of  those 
games and have that part of  JSPR be very 
inflated and helping them secure a spot in 
the playoffs. Meanwhile, DEE played an 
abnormally high fourteen games against 
top 16 opponents (over half  their sched-
ule!), including seven games against the 
top four. Their record against TUC, along 
with their playoff  chances under JSPR, 
did not stand a chance.

Where Bradley-Terry Produces Sub-
optimal Results

Despite the clear advantages of  BT 
over the incumbent JSPR system, BT is 

not necessarily without flaw. In two sea-
sons, 2015 and 2017, BT and JSPR per-
form similarly, both providing non-opti-
mal playoff  placement outcomes. In 2015, 
we incorporated a team skill distribution, 
such that teams between three and ten 
were all equally rated. With such pari-
ty, both ranking systems struggled. The 
group of  teams from three to ten showed 
zig-zag like patterns in Figure 1, with a 
playoff  proportion range of  23–68% un-
der BT and 17–59% under JSPR. In 2017, 
tied-for-ninth rated Loomis (LOO) had 
higher playoff  percentages than seven 
(under BT) and four (under JSPR) com-
parable-or-better rated schools, respec-
tively. Fifteenth ranked Belmont (BEL) 
had probabilities significantly lower than 
similarly ranked Taft (TAF) at 14th and 
much-lower ranked SEB at 16th. More 
analysis is needed to better understand 
the scheduling and competitive balance 
circumstances in which the BT model de-
viates from its more ideal performances 
in the other season simulations.

DISCUSSION AND CONCLUSION
While ranking systems are of  critical 

importance in numerous sport settings, 
the Bradley-Terry model has received 
minimal attention in the literature, most-
ly due to its sole reliance on binary game 
outcomes. However, this feature makes 
the BT model an ideal ranking system in 
settings where competitive incentives may 
make the more commonly used score dif-
ferential input a less-than ideal tool. When 
teams play balanced schedules, win-loss 
records provide an unbiased estimate of  
team rankings. For leagues like the New 
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England Prep School Ice Hockey Associ-
ation, balanced schedules are not possible 
due to numerous logistical considerations 
(travel costs, schedule length, number of  
schools in competition). The BT model 
provides a more equitable ranking even in 
the presence of  unbalanced schedules.

In highlighting NEPSIHA, we illus-
trate a flaw in their current ranking system 
and highlight BT’s effectiveness in mini-
mizing the bias’s effect. Specifically, while 
JSPR systematically punishes schools that 
face exceptionally tough competition, it 
rewards schools that play more games 
against lower-quality TUC and fewer 
games against TUC in general. Via sim-
ulated examples of  real-world competi-
tive balance setups, it was shown that BT 
does a much better job of  minimizing this 
bias and ranking teams according to their 
true skill level. While BT was not neces-
sarily perfect in each of  the season sim-
ulations—especially in situations where 
there was significant parity among the 
top teams—it generally outperformed the 
JSPR system in terms of  selecting the bet-
ter teams to participate in the playoffs.

While our focus was on high school 
hockey, there was no sport-specific ele-
ment incorporated in the methodology, 
making it extendable to other sport set-
tings. This includes other high school, col-
lege, and amateur sport leagues in which 
teams play unbalanced schedules and bi-
nary game outcomes are the desired sole 
input when ranking teams. The BT mod-
el is also flexible enough to incorporate 
additional inputs if  desired. For instance, 
we do not consider home ice advantage, a 
common input in many ranking systems 
(NET in NCAA Basketball, for example) 

that can be incorporated in the BT frame-
work.

Further work needs to be done to 
understand how sample size of  games 
(teams in NEPSIHA play between 20 and 
30 games each season, typically) and oth-
er scheduling quirks impact the general 
accuracy of  BT. As illustrated in two of  
the six simulated seasons, while BT is an 
improvement over JSPR, there may still 
be prevalent biases that impact the sys-
tem’s ability to identify the “best” teams. 
For instance, this methodology ignores 
matchup-specific tendencies. If  a team 
plays additional games against an oppo-
nent in which it has a matchup and sche-
matic-specific advantage relative to other 
teams, BT will underestimate the team’s 
true win probability in that matchup, and 
will systematically overvalue the team’s 
true ability against a generic opponent, 
leading to an inflated ranking. 

A major consideration of  the BT 
model is its need for a reasonable amount 
of  data before rankings become mean-
ingful. Maximum likelihood produces 
estimates of  team strengths, which may 
be far from their true values for noisy or 
small data sets. Leagues that implement 
the BT model will likely not have reliable 
rankings early in a season, which may be 
a desirable feature in a ranking system. 
League administrators should be aware 
of  this tradeoff  (better final rankings but 
noisy early-season rankings) when choos-
ing BT. Also, it is important to emphasize 
that the BT model is not perfect, as we il-
lustrated in our simulations. But the “per-
fect” ranking system does not exist, and 
the lack of  perfection should not come 
at the expense of  exploring obvious im-
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provements in current techniques and 
methodologies.

While implementation of  the BT mod-
el for playoff  ranking purposes would 
surely be an improvement over JSPR 
for NEPSIHA, other amateur league ad-
ministrators should understand that ev-
ery potential ranking system comes with 
empirical nuances that should be fully 
considered. BT is relatively simple to im-
plement and allows the data—the web 
of  completed matchups—to holistically 
speak together to create a final ranking. 
Although such a system may not be the 
most predictive, it balances the need to 
reward game outcomes (winning and los-
ing), while controlling for scheduling im-
balances that can inflate those outcomes. 
League administrators must identify what 
they prioritize in a ranking system, a de-
cision that is specific to league objectives 
and missions. 
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APPENDIX A: SCHOOL ABBREVIATIONS
Below are the abbreviations for all school names invoked in this paper. This is 

not a complete list of  the schools incorporated in the simulation. These are also not 
necessarily the official school abbreviations.
• ALB (The Albany Academy)
• AND (Phillips Academy - Andover)
• AVO (Avon Old Farms School)
• BEL (Belmont Hill School)
• BER (Berwick Academy)
• BRO (Brooks School)
• BRU (Brunswick School)
• CHO (Choate Rosemary Hall)
• CSH (Cushing Academy)
• DEE (Deerfield Academy)
• DEX (Dexter Southfield School)
• EXE (Phillips Exeter Academy)
• GUN (formerly The Gunnery, now The Frederick Gunn School)
• HOT (The Hotchkiss School)
• KEN (Kent School)
• KUA (Kimball Union Academy)
• LAW (Lawrence Academy)
• LOO (Loomis Chaffee School)
• MIL (Millbrook School)
• NMH (Northfield Mount Hermon)
• NOB (Noble and Greenough School)
• PAU (St. Paul’s School)
• PRO (Proctor Academy)
• RIV (The Rivers School)
• SAL (Salisbury School)
• SEB (St. Sebastian’s School)
• TAB (Tabor Academy)
• TAF (The Taft School)
• THA (Thayer Academy)
• TIL (Tilton School)
• TPS (Trinity-Pawling School)
• WES (Westminster School)
• WIL (The Williston Northampton School)
• WIN (The Winchendon School)
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APPENDIX B: SCHEDULE MATRIX
Table B1
Team Schedules and Playoff  Percentages 2018–19

    SAL DEX KUA TIL GUN AND SEB NMH CSH LAW EXE DEE KEN NOB WES PRO
Rank 1 2 3 4 5 6 7 8 8 10 10 12 13 14 15 16
Rating 0.898 0.88 0.85 0.773 0.767 0.752 0.751 0.731 0.731 0.728 0.728 0.717 0.715 0.713 0.71 0.687

BT Playoff  % 99.06% 97.02% 92.22% 52.72% 50.18% 36.66% 41.72% 31.86% 27.68% 28.52% 24.76% 19.54% 22.36% 21.36% 22.68% 14.98%
JSPR Playoff  % 97.82% 97.44% 94.92% 56.40% 47.68% 33.18% 57.78% 28.88% 23.48% 33.50% 21.20% 13.86% 14.20% 21.08% 19.66% 19.14%

SAL  0 1 0 1 1 0 0 1 0 0 2 2 1 1 0
DEX 0  0 0 0 2 0 1 2 1 2 0 0 1 0 1
KUA 1 0  3 0 1 0 1 2 0 1 2 0 1 0 3
TIL 0 0 3  0 1 0 1 0 0 1 0 0 0 0 2

GUN 1 0 0 0  0 0 0 0 0 1 0 2 0 1 0
AND 1 2 1 1 0  0 1 1 0 2 1 0 1 1 1
SEB 0 0 0 0 0 0  0 0 2 1 0 0 2 0 1

NMH 0 1 1 1 0 1 0  2 1 1 1 0 0 1 0
CSH 1 2 2 0 0 1 0 2  2 1 1 0 0 0 0
LAW 0 1 0 0 0 0 2 1 2  0 0 0 2 0 0
EXE 0 2 1 1 1 2 1 1 1 0  1 1 0 0 1
DEE 2 0 2 0 0 1 0 1 1 0 1  1 1 2 0
KEN 2 0 0 0 2 0 0 0 0 0 1 1  0 1 0
NOB 1 1 1 0 0 1 2 0 0 2 0 1 0  1 0
WES 1 0 0 0 1 1 0 1 0 0 0 2 1 1  0
PRO 0 1 3 2 0 1 1 0 0 0 1 0 0 0 0  
17–28 11 4 5 2 13 4 5 4 5 3 2 10 13 6 11 5
29–40 1 5 9 8 3 9 12 3 7 11 8 1 2 9 3 10
41–54 2 7 2 8 4 1 2 7 5 3 4 2 2 2 3 7
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Table B2
Team Schedules and Playoff  Percentages 2017–18

    DEX SAL KUA RIV MIL EXE WIN CSH THA WES SEB GUN TP NMH BRU WIL
Rank 1 1 3 3 3 6 7 8 9 9 9 9 9 14 14 14
Rating 0.897 0.897 0.822 0.822 0.822 0.82 0.819 0.816 0.717 0.717 0.717 0.717 0.717 0.713 0.713 0.713

BT Playoff  % 95.66% 96.24% 67.92% 66.86% 64.06% 64.70% 67.78% 65.44% 12.94% 11.92% 11.50% 11.46% 14.94% 11.28% 10.32% 12.54%
JSPR Playoff  % 90.84% 96.56% 69.44% 71.90% 63.64% 58.94% 70.28% 52.64% 6.46% 16.46% 11.22% 15.06% 15.16% 15.50% 15.16% 14.20%

DEX  0 0 1 0 1 1 2 2 0 0 0 0 0 0 0
SAL 0  1 0 1 0 0 1 0 1 0 1 2 0 1 1
KUA 0 1  1 1 1 0 2 0 1 0 0 0 1 1 0
RIV 1 0 1  0 1 0 0 1 0 2 0 0 0 3 1
MIL 0 1 1 0  0 1 0 2 0 2 0 0 0 0 0
EXE 1 0 1 1 0  1 1 1 0 1 1 0 1 0 0
WIN 1 0 0 0 1 1  1 0 0 1 1 0 1 0 3
CSH 2 1 2 0 0 1 1  1 0 0 0 0 2 0 1
THA 2 0 0 1 2 1 0 1  0 2 0 0 1 0 0
WES 0 1 1 0 0 0 0 0 0  0 1 1 1 1 1
SEB 0 0 0 2 2 1 1 0 2 0  0 0 0 0 1

GUN 0 1 0 0 0 1 1 0 0 1 0  1 0 2 1
TP  0 2 0 0 0 0 0 0 0 1 0 1  0 2 0

NMH 0 0 1 0 0 1 1 2 1 1 0 0 0  0 0
BRU 0 1 1 3 0 0 0 0 0 1 0 2 2 0  1
WIL 0 1 0 1 0 0 3 1 0 1 1 1 0 0 1  

17 –28 6 7 7 5 9 5 4 8 8 10 9 8 8 8 6 8
29–40 5 8 5 3 4 6 6 4 4 8 3 6 8 6 3 4
41–54 6 0 8 10 3 9 4 6 4 0 5 2 1 5 1 1
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Table B3
Team Schedules and Playoff  Percentages 2016–17

 SAL THA LAW KUA DEX GUN EXE KEN AVO LOO RIV WIN AND TAF BEL SEB 
Rank 1 2 3 3 5 6 7 7 9 9 11 11 13 14 15 16
Rating 0.84 0.809 0.794 0.794 0.789 0.783 0.779 0.779 0.776 0.776 0.75 0.75 0.719 0.707 0.705 0.681

BT Playoff  % 93.02% 77.62% 43.20% 43.10% 36.76% 42.26% 39.94% 49.72% 30.74% 54.18% 45.98% 52.46% 7.52% 22.60% 2.90% 13.44%
JSPR Playoff  

% 90.24% 72.78% 50.88% 50.98% 44.66% 41.52% 47.40% 34.70% 21.24% 46.18% 46.90% 57.50% 8.76% 11.86% 3.90% 15.30%

SAL  0 0 1 0 1 0 2 1 1 0 0 0 2 0 0
THA 0  2 0 1 0 0 0 0 0 1 1 1 0 2 1
LAW 0 2  0 0 1 0 0 0 0 0 0 0 0 2 2
KUA 1 0 0  0 0 1 0 0 0 1 0 1 0 0 0
DEX 0 1 0 0  1 1 0 0 0 1 1 1 0 0 0
GUN 1 0 1 0 1  1 2 1 1 0 0 0 0 0 0
EXE 0 0 0 1 1 1  1 0 0 1 1 1 0 0 1
KEN 2 0 0 0 0 2 1  1 2 0 0 0 2 0 0
AVO 1 0 0 0 0 1 0 1  3 0 0 0 2 0 0
LOO 1 0 0 0 0 1 0 2 3  0 0 1 1 0 0
RIV 0 1 0 1 1 0 1 0 0 0  0 0 0 2 1
WIN 0 1 0 0 1 0 1 0 0 0 0  1 0 0 1
AND 0 1 0 1 1 0 1 0 0 1 0 1  0 1 1
TAF 2 0 0 0 0 0 0 2 2 1 0 0 0  0 0
BEL 0 2 2 0 0 0 0 0 0 0 2 0 1 0  2
SEB 0 1 2 0 0 0 1 0 0 0 1 1 1 0 2  

17–28 6 9 7 10 8 7 6 4 8 6 2 7 6 3 7 9
29–40 10 3 5 8 5 10 6 10 8 9 3 3 8 12 4 2
41–58 0 4 6 5 7 1 6 0 0 0 13 7 3 0 6 4



Journal of  Amateur Sport     Volume Ten, Issue One     Meissner et al., 2024     64

Table B4
Team Schedules and Playoff  Percentages 2015–16

    SAL AVO KUA EXE BRU MIL CSH GUN TAB ALB THA LOO WES NOB RIV DEE
Rank 1 1 3 4 5 6 6 6 6 6 6 12 13 14 14 14
Rating 0.934 0.934 0.9 0.878 0.834 0.799 0.799 0.799 0.799 0.799 0.799 0.778 0.729 0.694 0.694 0.694

BT Playoff  % 99.44% 99.40% 94.02% 86.42% 61.00% 37.04% 30.98% 56.84% 34.32% 34.50% 33.70% 25.32% 8.00% 2.02% 3.90% 2.46%
JSPR Playoff  % 98.66% 98.28% 94.32% 89.48% 59.16% 37.96% 33.40% 51.56% 33.94% 26.96% 56.90% 13.28% 3.02% 5.68% 16.16% 0.38%

SAL  1 1 0 1 1 1 1 0 1 0 1 1 0 0 2
AVO 1  0 0 0 0 1 1 1 1 0 2 2 0 0 2
KUA 1 0  1 0 2 2 0 1 0 0 0 1 0 0 2
EXE 0 0 1  1 0 2 1 1 1 0 0 0 0 0 1
BRU 1 0 0 1  0 0 1 0 3 0 1 1 0 1 0
MIL 1 0 2 0 0  0 0 1 0 2 0 0 2 0 1
CSH 1 1 2 2 0 0  1 2 0 1 0 1 0 0 1
GUN 1 1 0 1 1 0 1  1 0 1 1 1 0 0 0
TAB 0 1 1 1 0 1 2 1  0 1 1 0 1 0 0
ALB 1 1 0 1 3 0 0 0 0  1 0 0 0 1 0
THA 0 0 0 0 0 2 1 1 1 1  0 0 2 1 0
LOO 1 2 0 0 1 0 0 1 1 0 0  2 0 0 2
WES 1 2 1 0 1 0 1 1 0 0 0 2  1 0 2
NOB 0 0 0 0 0 2 0 0 1 0 2 0 1  1 1
RIV 0 0 0 0 1 0 0 0 0 1 1 0 0 1  0
DEE 2 2 2 1 0 1 1 0 0 0 0 2 2 1 0  
17–28 8 8 3 6 8 7 7 12 7 7 9 7 6 9 7 4
29–40 6 4 9 8 4 5 6 3 5 2 7 6 5 6 9 5
41–58 0 2 8 7 4 3 5 2 6 5 2 2 2 4 6 2
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Table B5
Team Schedules and Playoff  Percentages 2014–15

    CSH EXE SAL GUN NOB KUA BRU LOO AVO DEX BRO HOT CHO WES KEN BEL
Rank 1 1 3 3 3 3 3 3 3 3 11 12 12 12 12 12
Rating 0.898 0.898 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.807 0.717 0.717 0.717 0.717 0.717

BT Playoff  % 78.00% 84.08% 68.28% 42.80% 55.38% 42.24% 30.98% 56.84% 22.92% 37.22% 28.90% 8.26% 5.68% 30.84% 10.34% 2.72%
JSPR Playoff  % 74.36% 84.98% 56.84% 39.30% 59.48% 52.00% 33.40% 51.56% 16.66% 43.60% 41.02% 4.68% 4.20% 22.28% 5.58% 3.82%

CSH  2 1 1 0 2 0 0 1 1 0 0 0 0 0 1
EXE 2  0 1 0 1 1 0 0 1 1 1 0 0 1 0
SAL 1 0  1 1 1 1 1 1 0 0 2 1 2 2 0

GUN 1 1 1  0 0 0 1 1 1 0 1 0 1 2 0
NOB 0 0 1 0  1 0 0 0 1 0 1 0 0 0 2
KUA 2 1 1 0 1  0 0 0 0 0 0 0 0 0 0
BRU 0 1 1 0 0 0  1 0 0 0 1 1 1 1 1
LOO 0 0 1 1 0 0 1  2 0 0 1 2 2 2 0
AVO 1 0 1 1 0 0 0 2  0 0 1 2 2 2 0
DEX 1 1 0 1 1 0 0 0 0  1 0 0 0 0 0
BRO 0 1 0 0 0 0 0 0 0 1  0 0 0 0 1
HOT 0 1 2 1 1 0 1 1 1 0 0  1 2 2 0
CHO 0 0 1 0 0 0 1 2 2 0 0 1  2 1 1
WES 0 0 2 1 0 0 1 2 2 0 0 2 2  1 0
KEN 0 1 2 2 0 0 1 2 2 0 0 2 1 1  0
BEL 1 0 0 0 2 0 1 0 0 0 1 0 1 0 0  

17–28 7 6 7 9 9 7 7 7 9 6 3 7 6 6 7 8
29–40 8 7 4 4 5 13 5 5 3 7 11 4 6 4 3 5
41–58 5 7 1 1 5 4 5 2 2 7 10 1 2 2 1 7
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Table B6
Team Schedules and Playoff  Percentages 2013–14

    KEN SAL THA CSH GUN EXE CHO BER NOB PAU DEX WES NMH KUA LOO DEE
Rank 1 2 3 3 5 5 7 7 7 7 7 7 7 7 7 7
Rating 0.931 0.922 0.86 0.86 0.859 0.859 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775

BT Playoff  % 99.59% 99.33% 74.59% 83.92% 80.53% 81.33% 25.33% 24.29% 24.13% 23.49% 28.87% 19.87% 19.97% 23.58% 21.11% 22.27%
JSPR Playoff  % 98.83% 98.03% 90.85% 86.97% 78.19% 84.95% 18.04% 13.32% 36.65% 32.03% 34.56% 12.72% 15.07% 40.37% 15.32% 15.42%

KEN  2 0 0 0 1 1 2 0 1 0 1 0 0 1 1
SAL 2  0 1 1 0 1 1 1 0 0 1 0 1 1 2
THA 0 0  1 0 0 0 0 2 2 0 0 0 0 0 0
CSH 0 1 1  0 2 0 0 0 0 3 0 2 2 0 1
GUN 0 1 0 0  1 0 2 0 1 1 1 1 0 1 0
EXE 1 0 0 2 1  0 0 0 1 1 0 2 1 0 1
CHO 1 1 0 0 0 0  1 0 0 0 2 2 0 2 2
BER 2 1 0 0 2 0 1  1 0 0 1 2 0 0 0
NOB 0 1 2 0 0 0 0 1  2 1 1 0 0 0 0
PAU 1 0 2 0 1 1 0 0 2  1 0 0 0 1 0
DEX 0 0 0 3 1 1 0 0 1 1  0 0 0 0 0
WES 1 1 0 0 1 0 2 1 1 0 0  1 1 2 2
NMH 0 0 0 2 1 2 2 2 0 0 0 1  1 1 1
KUA 0 1 0 2 0 1 0 0 0 0 0 1 1  0 2
LOO 1 1 0 0 1 0 2 0 0 1 0 2 1 0  2
DEE 1 2 0 1 0 1 2 0 0 0 0 2 1 2 2  
17–28 11 10 8 8 9 6 9 11 10 9 3 8 8 8 11 7
29–40 2 2 8 7 3 7 2 2 6 6 6 2 2 7 1 3
41–58 1 2 4 2 3 6 2 4 3 3 8 2 4 8 2 1


