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Abstract. Native bark beetles (Coleoptera: Curculionidae: Scolytinae) are a multi-species complex that ranks 
among the key disturbances of coniferous forests of western North America. Many landscape-level variables 
are known to influence beetle outbreaks, such as suitable climatic conditions, spatial arrangement of incipient 
populations, topography, abundance of mature host trees, and disturbance history that includes former out-
breaks and fire. We assembled open-access data for understanding the ecology of bark beetles in Alaska. We 
used boosted classification and regression trees as a machine-learning data-mining algorithm to predict rela-
tionships between 838 occurrence records of 68 bark beetle species and 14 environmental variables, compared 
to pseudo-absence locations across Alaska. Environmental variables included topography- and climate-related 
predictors as well as feature proximities and anthropogenic factors. We were able to model, predict, and map 
multi-species bark beetle occurrences across Alaska at 1-km spatial resolution: about 16% of the mixed forest 
and 59% of evergreen forest are expected to be occupied by the bark beetles based on current climatic condi-
tions and biophysical landscape attributes. The open-access dataset that we prepared, and the machine learning 
modeling approach that we used, can provide a foundation for future research not only on scolytines but for oth-
er multi-species questions of concern, such as forest defoliators, and wildlife species assemblages worldwide.

Key words: Scolytinaes, Pest insects, Outbreaks, Boosted classification and regression tree, Forest ecology, 
Spatial modeling, Machine-learning algorithm.

Introduction
Historic background

Forests are a major terrestrial ecosystem of global 
relevance encompassing about 30% of the land area 
on the earth (Schmitt et al. 2009; Liu et al. 2018). 
Forest ecosystems play a critical role in ecological 
services and reducing the threat of natural disasters, 
such as floods, droughts, and landslides (Uy and 
Shaw 2012). At the global scale, forests can mitigate 
climate change impacts via carbon sequestration and 
rainfall infiltration that safeguards drinking water 
supplies (Uy and Shaw 2012). Leaves and needles 
play major roles in such equations, but they can be 
consumed or defoliated by insects, specifically bark 
beetle species. 

Native bark beetles (Coleoptera: Curculionidae: 
Scolytinae) consist of several species complexes 
acting together as a community, and constitute one of 

the key disturbances of coniferous forests of western 
North America (Bentz et al. 2010; Seidl et al. 2014; 
Morris et al. 2016). In spite of traditional single-
species views and subsequent efforts regarding the 
‘bark beetle problem’ (e.g., Bentz et al. 2009), bark 
beetles can be perceived as a community organism 
that together plays a wider role as ecosystem engineers 
(Martikainen et al. 1999; Jonasova and Pracha 2004; 
Müller et al. 2008). Since 1990, bark beetles have 
killed billions of coniferous trees across millions of 
hectares in North American forest ecosystems from 
Mexico to Alaska (Raffa et al. 2008; Bentz et al. 
2009; Bentz et al. 2010). 

Although insects such as bark beetles constitute an 
inherent element of ecosystems, initiating succession 
and providing food sources for predators such as 
woodpeckers, bark beetle outbreaks can cause severe 
direct and indirect impacts on forest ecosystems 
and species that are dependent on or that interact 
with forests. Direct effects include tree mortality * Corresponding author
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and the ensuing changes in forest composition and 
structure, increased chance of wildfire owing to 
creation of broad areas with large quantities of dead 
trees, and a greater chance of windthrow of living 
residual trees (Schowalter 2012). Indirect impacts 
can include, for example, reduction of timber value 
resulting from accelerated salvage harvest activities 
following outbreaks, decreased carbon sequestration, 
degradation of fish and wildlife habitats, and reduced 
recreational capacity (Schowalter 2012). Rapid 
widespread tree mortality leaves longer-term impacts 
on structural and functional aspects of ecosystems 
with ongoing influences on climate, habitats, species, 
and land use (Kurz et al. 2008; McDowell et al. 2008; 
Bentz et al. 2010). 

From the ecological and biodiversity point 
of view, insects such as bark beetles represent an 
inherent part of the wider ecological and global 
web, but usually are seen as pests to be gotten rid 
of. An increasing body of evidence suggests that 
bark beetle outbreaks and post-outbreak conditions 
form part of the wider successional pattern in a 
landscape, and can have some positive impacts 
on ecosystem services. For example, tree loss can 
increase water yield (Bearup et al. 2014; Morris et 
al. 2016), improve foraging for livestock and wildlife 
species, and thus increase the population of some big 
game species and provide more wildlife viewing and 
hunting opportunities (Saab et al. 2014; Morris et al. 
2016). Bark beetles also serve as major prey species 
for many insectivores, particularly for woodpeckers 
(Bonnot et al. 2009; Saab et al. 2014). In addition, 
bark beetles have fascinating ecological relationships 
with various fungal species (Munro et al. 2019). 

Several studies found that bark beetle outbreaks 
appear to occur when factors such as drought, aging, 
and density attenuate trees’ resistance abilities against 
bark beetle attacks (Christiansen and Bakke 1988; 
Raffa 1988; Fettig et al. 2007; Bentz et al. 2010). 
Although tree- and stand-level characteristics such 
as tree vigor and size and stand density are critical 
for local infestation under endemic conditions (Raffa 
and Berryman 1983; Simard et al. 2011), landscape-
level factors influence the transition of infestation 
from endemic to epidemic conditions: a local 
eruption to regional outbreaks (Wallin and Raffa 
2004; Raffa et al. 2008; Simard et al. 2011). Strong 
correlations with environmental parameters provide 
local patches of suitable habitats that enhance 

potential for scolytine growth; this growth can lead 
to outbreaks under certain circumstances (Aukema et 
al. 2006; Raffa et al. 2008). The spread of outbreaks 
is spatially and temporally autocorrelated regardless 
of host tree vigor (Aukema et al. 2006; Aukema et al. 
2008; Simard et al. 2011). 

Several landscape-level variables facilitate 
scolytine beetle outbreaks, such as suitable climatic 
conditions, spatial arrangement of incipient 
populations, topography, abundance of mature host 
trees, and disturbance history that includes outbreak 
and fire history (Aukema et al. 2006). Identifying 
these variables could aid in understanding the 
epidemiology and ecology of these species and 
improve management strategies for outbreak control 
(Simard et al. 2011). 

Rationale 
As bark beetle issues are ecologically complex 

and multidimensional, computational approaches 
such as data mining, machine learning, and geographic 
information system (GIS) could be helpful to study 
and map the current and future spatial distributions 
of bark beetles. Use of these methods is on the rise 
(Bhattacharya 2013), which is particularly needed 
in forest ecology and management. They have 
been recently applied in quantitative modeling of 
macroscale ecological niches of tree species (Prasad 
2018), mapping aboveground biomass of trees within 
the Alaskan Boreal Forest (Young et al. 2018), 
inference questions regarding wildlife (Huettmann 
et al. 2018b), and variance assessment of predicted 
climate-scapes based on topographic variation 
(Huettmann 2018a). 

However, in a high-dimensional multivariate 
(i.e., 10-20 predictors) investigation, tools such as 
data-mining and machine-learning have not yet been 
applied to understand current and future presence 
of scolytines, considered as a community organism. 
This point is particularly true for broad-scale 
prediction and mapping for a large region such as 
Alaska, which contains part of the largest forest area 
in the world (the boreal forest) and the world’s largest 
temperate rainforest (Tongass). Machine-learning, in 
contrast to parametric methods such as regression 
models, can use many algorithms in ensembles 
(Humphries et al. 2018). Algorithms are developed to 
comprehend complex, nonlinear relationships in the 
data without requiring prior model assumptions such 
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as normally distributed model residuals and freedom 
from spatial autocorrelation (Huettmann 2018c). 
Natural phenomena do not necessarily follow known 
distributions and generally have no linear interactions 
(Ver Hoef et al. 1993). In addition, in regression 
models including logistic regression, use of residual 
analysis as a measure of model fitness is unreliable 
when modeling a high-dimensional data set, with 
nonlinear combinations of the variables (Breiman 
2001). As such, to fulfill model assumptions and 
have easily interpretable information in parametric 
models, a widely used but faulty approach is to weed 
out less-important predictor variables and consider 
effects of unmeasured variables as “noise” (Breiman 
2001). This approach can lead to wrong conclusions 
and consequently poor management strategies, more 
a reflection of the model’s mechanism rather than a 
true emulation of nature (Breiman 2001). In contrast, 
algorithmic models such as boosted classification 
and regression tree are not affected by limited and 
biased sets of predictors or by nonlinear relationships 
among predictors. This characteristic results in more 
accurate and informative conclusions (Breiman 2001; 
Elith et al. 2008; Tyralis 2019), very important for 
biodiversity conservation and forest management.

The commonly-used, single-species approach of 
species distribution modeling assumes that species 
respond individually to environmental gradients. 
However, species distributions may be influenced by 
biotic interactions, such as competition, with other 
species within a community (Araújo and Luoto 2007; 
Heikkinen et al. 2007; Chapman and Purse 2011). In 
addition, as different species within a community 
may have similar responses to environmental changes 
at regional scales (Golicher et al. 2008; Azeria et 
al. 2009; Chapman and Purse 2011), community-
level analyses of spatial patterns of biodiversity 
may provide beneficial information (Chapman and 
Purse 2011) for biodiversity conservation and natural 
resource management. 

For example, several bark beetle species, 
e.g., Polygraphus rufipennis and Pityophthorus 
nitidulus, attack the same host trees (e.g., white 
spruce and black spruce). In this sense, the common, 
individual-based approach of modeling and mapping 
spatial distributions of bark beetle species may 
not provide comprehensive information required 
for efficient forest management. In addition, the 
individual-species-based approach may not help in 

understanding the broader, overall diversity of bark 
beetle species. 

In this study, we set out to map forest landscapes 
that could favor presence of multi-species bark 
beetles, with attention to other, more poorly 
studied landscape reservoirs, such as Arctic tundra 
shrublands. The resulting map of bark beetle species 
occurrence will provide useful resources for forest 
managers and policy makers to prioritize their forest 
management measures spatially in a time- and cost-
effective manner. We assess many environmental 
variables and proxies, as well as tabulated metadata 
for 68 species of bark beetles that together comprise 
a large dataset that we make openly accessible to 
the scientific community and the broader public. 
We seek to develop an example of how large-scale 
environmental data-mining on a big set of species 
presence and pseudo-absence locations, machine-
learning, and geographic information systems can 
help to predict and map presence of scolytines, as 
a community organism. We develop this work in 
Alaskan landscapes, forested and non-forested, 
without prior model assumptions or consequent data 
perturbation resulting from violations of assumptions. 

Material and Methods
Study area

The study was conducted across the state of 
Alaska, United States, covering a total area of ~152 
x 106 ha (Figure 1) ranging from approximately 54º 
to 71º N and 130º W to 173º E (Figure 1). Within 

Figure 1. Hillshade map of the study area, the state of Alaska, 
along with 838 locations of 68 bark beetle species, the presence 
points for developing and validating the three models, provided 
by the University of Alaska Museum (UAM; white circles). A 
different record of 68 locations of 3 bark beetle species, the pres-
ence points for additionally assessing/testing the three models, 
surveyed by U.S. Department of Forest Service (USFS; black 
circles). See Appendix I for species details.
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that area, ~49 x 106 ha (~32%) is forested (defined 
as areas with >10% tree cover; Hutchison 1968, 
ADFG 2018). Most of the forested area (~43 x 106 
ha) is in interior Alaska, and is classified as “boreal 
forest.” The remaining forestland, ~5 x 106 ha, occurs 
along the southern coast of Alaska and is classified 
as “coastal temperate rainforest,” which covers the 
regions of Kodiak, Prince William Sound, and the 
islands and mainland of South Alaska, including 
the world’s largest temperate rainforest in southeast 
Alaska (Tongass) and the Chugach national forest 
in south-central Alaska (ADFG 2018). Coniferous 
communities of boreal forests are dominated by spruce 
trees including white spruce (Picea glauca (Monech) 
Voss) and black spruce (P. mariana (Miller) Britton, 
Sterns & Poggenburg) (ADFG 2018). The coastal 
temperate rainforest includes western hemlock 
(Tsuga heterophylla (Rafinesque) Sargent), Sitka 
spruce (P. sitchensis (Bongard) Carrière), mountain 
hemlock (T. mertensiana (Bongard) Carrière), 
Alaska yellow cedar (Chamaecyparis nootkatensis 
(D. Don) Farjon & D.K. Harder), western red cedar 
(Thuja plicata (Donn. ex D. Don)), and lodgepole 
pine (Pinus contorta (Douglas ex Loudon)) (ADFG 
2018). 

Alaska has a glacial history, including many 
refugia. The glaciated regions of Alaska include 
11 mountain ranges: Coast Mountains, Saint Elias 
Mountains, Chugach Mountains, Kenai Mountains 
(including Montague Island), Aleutian Range, 
Wrangell Mountains, Talkeetna Mountains, Alaska 
Range, Wood River Moun tains, Kigluaik Mountains, 
and the Brooks Range (USGS 2017). The heavily 
glaciated Alaska range spans an arc ~965 km long 
that extends from the Alaska-Canada border towards 
the Alaska Peninsula. Mount McKinley (6195 m), 
known as Denali, is the highest mountain in the 
Alaska range and North America (USGS 2017), with 
extensive alpine and forest cover. Within the study 
region, large-scale tree mortality is often caused by 
different insect species and diseases, with bark beetle 
species being among the important elements (USDA 
2008). For example, a massive mortality event that 
covered >1.3 x 106 ha during 1990–1999 was caused 
by spruce beetles (USDA 2008).

Research design
The year the species were identified varied from 

1953 to 2018, with nearly half coming from after 
2011 (Figure 2), which justifies our use of 2011 land 

cover data. Our inferences and conclusions regarding 
Alaska’s potential habitats for the bark beetle organism 
therefore focus primarily on the recent period after 
2010. This study follows a study design that has been 
applied previously for predictive modeling of the 
distribution of white spruce [Picea glauca (Monech) 
Voss] and small mammals across Alaska (Ohse et 
al. 2009, Baltensperger and Huettmann 2015a). We 
compiled 838 records of 68 bark beetle species, as 
the occurrence points for the model, provided by the 
University of Alaska Museum (UAM1; Figure 1 and 
Appendix I) in a separate record for each species. The 
occurrence data we use are not balanced by species 
nor do they come from a systematic sampling, but 
they still serve as a ‘presence record’ of the bark 
beetle community in Alaska. In absence of detailed 
knowledge about many of the bark beetle species of 
North American landscapes, this compilation helps 
to shed light on habitat preferences and dynamics 
of bark beetles in general. Among the pooled bark 
beetle species, dominant genera were Dryocoetes 
(N = 133), Trypodendron (N = 107), Ips (N = 104), 
and Dendroctonus (N = 83) (Appendix I). The most 
common species were Trypodendron lineatum (N 
= 74), Dryocoetes affaber (N = 69), Dendroctonus 
rufipennis (N = 66), and Ips perturbatus (N = 52) 
(Appendix I). The host evergreen trees from which the 
bark beetle specimens were collected included white 
spruce (Picea glauca), black spruce (P. mariana), 
Sitka spruce (P. sitchensis), western hemlock (Tsuga 
heterophylla), lodgepole pine (Pinus contorta), 
mountain hemlock (T. mertensiana), Lutz spruce (P. 
x lutzii), Tamarack (Larix laricina), Yellow cedar 
(Cupressus nootkatensis), and Western redcedar 
(Thuja plicata) (Appendix I). Some specimens were 
collected within non-evergreen forests. We extracted 
land cover types underlying 838 beetle locations 
1 http://arctos.database.museum/SpecimenSearch.cfm.

Figure 2. Frequency distributions of the year of observation for 
the 838 bark beetle presence records.

http://arctos.database.museum/SpecimenSearch.cfm


Biodiversity Informatics, 16, 2021, pp. 1-19

5

using the raster map of the National Land Cover 
Database (NLCD 2011; Table 1).23  

Following Ohse et al. (2009), Baltensperger 
and Huettmann (2015a), and Young et al. (2018), 
we created a background dataset with which to 
compare bark beetle presences, from across Alaska. 
We established 5000 random point locations using 
ArcMap 10.4 (ESRI Inc., Redlands, CA), with a 
minimum Euclidean distance from each other of 
1 km across Alaska. The 838 bark beetle presence 
locations and 5000 random points were then used to 
extract underlying pixel values of the environmental 
variables, as independent variables, for comparison 
with the binary response variable of presence/
absence of bark beetles. We created a lattice point grid 
with a 1-km Euclidean distance, in QGIS (version 
3.4.0), for the entire study area, for a total number 
of 1,522,655 points. The lattice points were used to 
extract underlying environmental variable values 
for mapping and predicting bark beetle occurrences 
across the study area based on the model. 

For additional model assessment, we used 
68 independently surveyed locations of 3 bark 
beetle species—spruce beetle (Dendroctonus 
rufipennis), western balsam bark beetle (Dryocoetes 
confusus Swaine), and northern spruce engraver 
(Ips perturbatus)—with sample sizes of 57, 8, and 
3, respectively, from surveys conducted by the 
U.S. Department of Forest Service in 2016–2017 
(Figure 1). The host trees of these observed bark 
beetle species included white spruce (Picea glauca 

2 https://mrlc.gov/data/legends/national-land-cover-database-2011-nl-
cd2011-legend.
3 Open water is a pixel and includes coastal and island locations.

(Monech) Voss), Subalpine fir (Abies lasiocarpa), 
and Sitka spruce (P. sitchensis (Bong.) Carrière). 

Environmental variables
To assess environmental requirements of bark 

beetles quantitatively, we used 14 independent 
variables (Table 2). We used aspects of mean 
monthly maximum and minimum temperature 
and total precipitation as our climate data. Slope 
and aspect maps were derived from the available 
2 Arc-second digital elevation model (DEM) at 
60 m spatial resolution provided by United States 
Geological Survey (USGS). We used a soil map unit 
that aggregates different soil components, including 
multiple soil classes and miscellaneous areas 
delineated together in spatial polygons. Generally, 
one to four soil series (or soil taxonomic classes), 
along with non-soil areas, named as miscellaneous 
areas, are attached to each map unit (Nauman and 
Thompson 2013). We also used the land cover raster 
map of NLCD (2011) that contains the following 
classes: water, including open water and perennial 
ice/snow; developed area, including open space,  
low-, medium-, and high-intensity developed regions; 
barren land; forest, including deciduous, evergreen, 
and mixed forest; shrubland, including dwarf shrub 
and shrub/scrub classes; grassland/herbaceous; 
emergent herbaceous; and woody and non-woody 
wetlands (Table 1). 

Land status, indicating ownership of the land, 
was drawn from a vector file provided by the Bureau 
of Land Management (2013), and had the following 
categories: private or municipal, state, Bureau of 
Land Management, native, National Park Service, 

Nlcd 2011
Designated no.

Land cover 
Type

Number of bark 
beetles found

Percent of bark 
beetles found

11 Open water3 47 5.6
12 Perennial ice/snow 5 0.6
21 Developed, open space 7 0.8
22 Developed, low intensity 70 8.4
23 Developed, medium intensity 39 4.7
24 Developed, high intensity 8 1.0
31 Barren land 28 3.3
41 Deciduous forest 68 8.1
42 Evergreen forest 251 30.0
43 Mixed forest 81 9.7
51 Dwarf shrub 62 7.4
52 Shrub/scrub 74 8.8
71 Grassland/herbaceous 16 1.9
90 Woody wetlands 62 7.4
95 Emergent herbaceous wetlands 19 2.3

Table 1. Number and percent of bark beetle specimens collected at different geographic locations calculated by different 
land cover types derived from NLCD 20112

https://mrlc.gov/data/legends/national-land-cover-database-2011-nlcd2011-legend
https://mrlc.gov/data/legends/national-land-cover-database-2011-nlcd2011-legend
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Variable
Type

Spatial 
resolution

D
esignated nam

e
O

riginal source
Secondary source

Soil m
ap unit

Vector and categorical
N

/A
Soilakab

https://m
rlc.gov/data

http://hdl.handle.net/11122/10870
Land status

Vector and categorical
N

/A
LandStatakab

https://sdm
s.ak.blm

.gov/sdm
s/

http://hdl.handle.net/11122/10871
N

ational land cover data in 2011
R

aster and categorical
30 m

LandC
o11akab

https://m
rlc.gov/data

http://hdl.handle.net/11122/10872
M

ean annual precipitation in 2010
R

aster and continuous
60 m

Tem
pakab

https://uaf-snap.org/
http://hdl.handle.net/11122/10873

M
ean annual tem

perature in 2010
R

aster and continuous
60 m

Precipakab
https://uaf-snap.org/

http://hdl.handle.net/11122/10874
D

igital Elevation M
odel (D

EM
)

R
aster and continuous

60 m
D

EM
60m

akab
https://ned.usgs.gov

http://hdl.handle.net/11122/10875
Slope

R
aster and continuous

60 m
Slope60m

akab
-

http://hdl.handle.net/11122/10876
A

spect
R

aster and continuous
60 m

A
spect60m

akab
-

http://hdl.handle.net/11122/10877
Euclidean distance to coastline

R
aster and continuous

60 m
D

istC
oast

https://gis.data.alaska.gov
http://hdl.handle.net/11122/10878

Euclidean distance to lakes and rivers
R

aster and continuous
60 m

D
istLakeR

iver
https://usgs.gov/

http://hdl.handle.net/11122/10879
Euclidean distance to drainage netw

ork
R

aster and continuous
60 m

D
istD

riN
et

https:// usgs.gov/
http://hdl.handle.net/11122/10880

Euclidean distance to tow
ns

R
aster and continuous

100 m
D

istTow
ns

https://gis.data.alaska.gov/
http://hdl.handle.net/11122/10881

Euclidean distance to m
ain roads

R
aster and continuous

100 m
D

istR
oads

https://gis.data.alaska.gov/
http://hdl.handle.net/11122/10882

Euclidean distance to infrastructure
R

aster and continuous
100 m

D
istInfrastruct

https://gis.data.alaska.gov/
http://hdl.handle.net/11122/10883

M
odel results

Type
Spatial 

resolution
D

esignated nam
e

O
riginal source

Secondary source

M
odel 1 (A

ppendix III)
R

aster and continuous
1 km

M
odel1

-
http://hdl.handle.net/11122/10921

M
odel 2 (Figure 3)

R
aster and continuous

1 km
M

odel2
-

http://hdl.handle.net/11122/10922
M

odel 3 (A
ppendix IV

)
R

aster and continuous
1 km

M
odel3

-
http://hdl.handle.net/11122/10923

B
inary m

ap (Figure 6)
R

aster and categorical
1 km

B
inaryM

ap
-

http://hdl.handle.net/11122/10924
Final m

ap (Figure 7)
R

aster and categorical
1 km

FinalM
ap

-
http://hdl.handle.net/11122/10925

A
dditional data

Type
Spatial 

resolution
D

esignated nam
e

O
riginal source

Secondary source

B
ark B

eetle presence points
Vector and non-categorical

N
/A

B
B

eetleakab
http://arctos.database.m

useum
/

http://hdl.handle.net/11122/10927
B

ark B
eetle pseudo-absence points

Vector and non-categorical
N

/A
R

aPointsakab
-

http://hdl.handle.net/11122/10928
1-km

 space grid points
Vector and non-categorical

N
/A

G
ridPointsakab

-
http://hdl.handle.net/11122/10929

B
ark B

eetle assessm
ent/test points

Vector and non-categorical
N

/A
B

B
eetleValidakab

https://fs.usda.gov/
http://hdl.handle.net/11122/10930

Table 2. D
escription of the environm

ental variables and additional dataset used to develop and test the m
odels, the three 

m
odel results as raster m

aps, and their open-access sources. 

http://hdl.handle.net/11122/10870
http://hdl.handle.net/11122/10871
http://hdl.handle.net/11122/10872
http://hdl.handle.net/11122/10873
http://hdl.handle.net/11122/10874
https://ned.usgs.gov
http://hdl.handle.net/11122/10875
http://hdl.handle.net/11122/10876
http://hdl.handle.net/11122/10877
https://gis.data.alaska.gov
http://hdl.handle.net/11122/10878
http://hdl.handle.net/11122/10879
http://hdl.handle.net/11122/10880
http://hdl.handle.net/11122/10881
http://hdl.handle.net/11122/10882
http://hdl.handle.net/11122/10883
http://hdl.handle.net/11122/10921
http://hdl.handle.net/11122/10922
http://hdl.handle.net/11122/10923
http://hdl.handle.net/11122/10924
http://hdl.handle.net/11122/10925
http://hdl.handle.net/11122/10927
http://hdl.handle.net/11122/10928
http://hdl.handle.net/11122/10929
https://www.google.com/search?q=https://fs.usda.gov/&spell=1&sa=X&ved=2ahUKEwjh0Mbw_YzxAhWpk4sKHacVAywQBSgAegQIARAw
http://hdl.handle.net/11122/10930
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national wildlife refuge, military, National Forest 
Service, and state and native together. We also 
derived raster maps from vector files of coastline, 
lakes and rivers, drainage network, towns, main 
roads, and infrastructures, using Euclidean distance 
toolbox in ArcMap. The drainage network represents 
more ephemeral water channels, whereas lakes and 
rivers encompass more permanently standing or 
flowing water. The most dominant infrastructures 
in the state, based on the measured length, were 
pipelines, gas lines, winter trail, transmission line, 
highway, tractor trail, old railroad, and summer trail, 
respectively. We used NAD 1983 Alaska Albers 
geographic projection for all vector and raster layers; 
raster maps were prepared at spatial resolutions of 
60-m and 100-m; open-access sources are provided 
for all datasets (Table 2).

Model development and assessment
We used a TreeNet gradient boosting model 

(SalfordSystems, San Diego, CA; Ohse et al. 
2009) to infer relationships between environmental 
variables and presence of the multi-species bark 
beetle. Bark-beetle presence and random points were 
set as 1 and 0, respectively, as the binary categorical 
response variable of the model. TreeNet uses a 
boosting classification and regression tree approach 
(Ohse et al. 2009; Baltensperger and Huettmann 
2015a; Young et al. 2018; Humphries et al. 2018) to 
model relationships between model predictors and a 
response variable. We developed three models based 
on different sets of predictors. 

TreeNet settings were the same for all three 
models: the well-tested ‘default setting’ in the 
Salford Predictive Modeler (SPM) software suite 
in which the number of trees and maximum nodes 
per tree was set 200 and 6, respectively, with10-fold 
cross-validation. This setting is known to perform 
very well as a standard on most data (Salford Systems, 
San Diego, CA; Ohse et al. 2009; Baltensperger 
and Huettmann 2015a; Humphries et al. 2018). In 
Model 1, we included all environmental variables 
as predictors (termed the ‘full model’). In Model 2 
(‘ecological model’), we excluded distance-based 
variables and included only predictors expressing 
local conditions: soil map unit, land status, land 
cover type, mean annual precipitation, mean annual 
temperature, elevation, slope, and aspect. Finally, 
in Model 3, we excluded roads (Euclidean distance 
to roads) to minimize impact of any sampling bias 

(Kadmon et al. 2004; Ohse et al. 2009; Baltensperger 
and Huettmann 2015a). In our dataset, almost half 
of the recorded bark beetle presences were <20 km 
from roads (Appendix II). 

Each model was applied to the 1-km spaced 
grid points across Alaska. Every point on the grid 
was assigned a relative index of occurrence (RIO) 
ranging 0–1. For better visualization of the study area 
overall, we used inverse distance weighting (IDW) 
algorithm in ArcMap 10.4 to interpolate the value 
of RIO across the state. Performance of the three 
models were assessed by comparing the area under 
the receiver operating characteristic curve (AUC), 
and percent of correctly predicted presences (% 
corr.) derived from the confusion matrix (Fielding 
and Bell 1997). Variable importance (ranking) in 
each model was assessed using computed relative 
importances in SPM; partial dependency plots were 
used to illustrate relationship between the response 
and predictor when all other variables were held to 
average values. However, the variable importance 
(ranking) score should not be used to conclude the 
absolute informative value of a variable; rather, the 
scores indicate the amount of contribution that each 
variable (either via a primary role in splitting tree 
branches or in a substitute role to any of the primary 
splitters) makes in classifying or predicting the target 
variable (D. Steinberg; Salford Systems, San Diego, 
CA). As such, the variable rankings are highly 
related to the performance metric and a chosen tree 
structure (D. Steinberg; Salford Systems, San Diego, 
CA). Our focus, rather, is on deriving inference from 
the predictions (Breiman 2001; Salford Systems, San 
Diego, CA). 

Conventionally, models have been tested using 
part of the primarily records of the species presence 
used to build the model; however, this approach 
may overestimate a model accuracy, especially if 
the collection of datasets was systematically biased 
(Newbold et al. 2010). Therefore, it is better to assess 
a model using an independent dataset (Newbold et 
al. 2010). We used an independent dataset of 68 
locations of 3 bark beetle species surveyed by the 
U.S. Department of Forest Service during 2016–2017 
(USFS 2019) to additionally assess the three models. 
The model-predicted occurrences of bark beetle 
species underlying these 68 widely-spaced locations 
in the study area were compared using descriptive 
statistics and box plots in R (R Core Team 2018; 
Humphries et al. 2018).
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Results
Predicted distribution map

Most occurrence data were in evergreen forest, 
mixed forest, shrub/scrub, low intensity developed 
area, and deciduous forest, in decreasing order (Table 
1). Our results comprise three maps summarize the 
RIO of bark beetle suitability patterns across Alaska 
(Figure 3, Appendices III and IV). After comparing 
the distribution maps resulting from the full model 
and the ecological model, the core predicted bark 
beetle occurrence falls in three hotspot regions: 
south-central Alaska, southeastern Alaska, and 
interior Alaska. Model 3 showed a pattern similar to 
models 1 and 2: hotspots of occurrence corresponded 
to the vicinity of human settlements and human-
built infrastructure such as towns, highways, and 
railroads (Figure 3, Appendices III and IV). The core 
hotspots on all three maps (areas close to the urban 
centers of Fairbanks, Anchorage, and Juneau) likely 
contributed to the emergence of multi-species bark 
beetles. In addition to urban areas, other hotspots 
were along linear features, such as rivers, of central 
and western Alaska. The overall similarity in the 
prediction patterns using different combinations 
of predictors for the three models may signal the 
generic prediction strength gained from machine-
learning algorithms. 

Model Performance and Inferences
The AUC values for the three models were very 

close, all at ~0.99. The percent correctly predicted 
presences for the three models were 91.9%, 93.2%, 
and 94.4%, respectively. Relative importances of 
predictor variables were computed for the three models 
(Table 3). In Model 1, distance to infrastructure, soil, 
land status, distance to roads, distance to towns, and 

land cover type were the most explanatory variables. 
Model 3 (in which roads were excluded) showed a 
similar pattern to that observed in model 1. Model 
2 revealed variable importance patterns similar to 
those in the full and ecological models even though 
the spatially-dependent predictors were excluded 
from model development. In the ecological model, 
soil, land status, and land cover type became top-
contributing variables. In all three models, land status 
of “state and native” and “private or municipal” 
explained the most presence locations whereas 
“national wildlife refuge” explained pseudo-absence 
locations. Land cover categories of low and medium 
development intensities appeared to favor bark 
beetle presence most. Developed areas with a low 
or medium intensity most commonly include single-
family houses with a mixture of constructed materials 
and vegetation, and the impervious surfaces from 
the total cover ranged from 20-49% and 50-79%, 
respectively. 

In models 1 and 3, distances below 5-6 kilometers 
from infrastructures explained the most bark beetle 
presences. A similar pattern was revealed for 
distance-to-roads in model 1 and distance-to-towns 
in models 1 and 3, so that distances below 20-25 km 
from roads and towns favored bark beetle presences. 
Soil types that with a texture of silt loam, Schrock 
(usually found on stream terraces with a slope of 
0-2%), and typic haplocryands (typically found on 
1-8% slopes) (USDA 1998, 2005), were the most 
important soil types in providing suitable habitats 
for bark beetle host tree species. In all three models, 

Figure 3. Predicted distribution map of bark beetles in Alaska us-
ing model 2 (ecological model). Predicted maps of model 1 (full 
model) and model 3 (model with excluded roads) are included as 
appendices III and IV, respectively. 

Variable Model 1 Model 2 Model 3
Distance to infrastructure 100.00 - 100.00
Map unit soil 82.50 100.00 76.94
Land status 44.19 63.52 47.73
Distance to main roads 36.40 - -
Distance to towns 34.75 - 37.95
Land cover 2011 30.89 54.17 31.56
Mean annual temperature 16.03 51.25 14.60
Distance to drainage network 14.22 - 14.39
Elevation (DEM) 12.70 19.72 11.92
Distance to lakes and rivers 10.25 - 12.37
Distance to coastline 9.30 - 13.99
Mean annual precipitation 8.13 25.26 17.47
Aspect 5.69 14.69 4.81
Slope 4.49 15.42 4.07

Table 3. Relative importance of predictor variables 
included in model 1 (full model), model 2 (ecological 
model), and model 3 (model with roads excluded). Top 
three predictors are shown in bold, and dash indicates non-
included predictors
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regions with mean annual temperatures >-3.0ºC and 
mean annual precipitation <350 mm were those that 
favored the distribution of bark beetles. In addition, 
areas with slope range <40º and aspect of 100–300º 
correspond to most bark beetle presences. Elevation 
showed a different pattern from other predictors: in 
all three models, areas at elevations <2000 m and 
>4000 m favored bark beetle presence, whereas 
elevations of 2000-4000 m was not occupied by 
bark beetle species. In models 1 and 3, proximity at 
4 km from rivers and lakes with standing water, 500 
m from the drainage network, and 10 km from the 
coastline, favored bark beetle presences.

Model assessment 
Although the AUC and percent correct prediction 

statistics revealed that all three models performed 
well in predicting bark beetle presence and pseu-
do-absence locations, testing with newly surveyed 
independent data (2016-2017 records of 68 presence 
points) revealed differences in their performance. 
Model 2 was most successful in predicting the in-
dependent test points (Figure 4). The median RIOs 
received by test points using models 1, 2, and 3 were 
0.018, 0.021, 0.033, respectively. It should be stat-
ed that those RIOs are an index and not probabilities 
and thus, it includes a range of values that are neither 
symmetrical nor always reaching 1. That is due to the 
tree nature of the algorithm used. The model assess-
ment with the alternative test data shows the validity 
of those concepts (Figure 4; Kandel et al. 2015).

Given that the ecological model predicted the 
bark beetle occurrences marginally better than two 
other models, we additionally included the frequency 
distribution of the predicted RIO for the 68 surveyed 
points using the ecological model (Figure 5). The 
frequency plot revealed that about 60% of surveyed 
bark beetles (assessment/test points) received a 
predicted index greater than 0.1. Predicted values 
less than a 0.0049 threshold excluded 5% of the test 
points within the 95% confidence interval (95% of 
predicted presence were >0.0049; Figure 5). We 
followed Pearson et al. (2004) and Newbold et al. 
(2010) to present the prediction map in a binary format 
but using the 95% confidence interval of the newly 
surveyed independent presence points, aiming to 
incorporate current variations in species distribution 
across the landscape due to temporal-scale changes 
in the environment (Figure 6). The omission rate was 

Figure 4. Box plots of models 1-3 used to describe the statistics 
of the RIO gained by 68 assessment/test points of 3 bark beetle 
species. The dots in model 1 shows the outliers. The dark thick 
line within the boxes represents median value within the range of 
predicted index. 25% of dataset are below the median (1st quan-
tile between the two straight dark lines), and 75% of the dataset 
are above the median (3rd quantile ends by the upper edge of 
boxes). The whisker on top of the boxes and the lower triangular 
shapes below the second dark straight line represent the maxi-
mum and minimum values. Note that machine learning models 
produce a RIO which is not a probability nor symmetrical.

Figure 5. Frequency distribution of gained predicted RIOs for 
68 locations of bark beetle presence surveyed by the USFS 
(assessment/test points) using the ecological model (model 2). 

Figure 6. Classified prediction map of multi-species bark bee-
tle occurrence using 95% confidence interval of assessment/
test points to differentiate predicted index of relative occurrence 
(RIO) of the ecological model. Value 1 (presence) represents the 
favorable habitats and value 0 (absence) represents regions that 
may not be occupied by scolytines community based on the cur-
rent climatic conditions and biophysical attributes of the land-
scape. 
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zero after overlaying the 838 presence points on the 
binary map.

About 60.3% of the surface area of Alaska 
received a value of ‘presence’ and is expected to 
provide favorable habitats for scolytines. Those 
habitats are not solely forested landscapes but include 
shrublands as well (Figure 6). We additionally 
overlaid the mixed and evergreen forest types, 
extracted from the NLCD 2011 map, on the binary 
map (Figure 7): ~16% of the mixed forests and 59% 
of evergreen forests are expected to be suitable for 
bark beetles, based on current climatic conditions 
and biophysical attributes of the landscape (Figure 
7). 

Discussion
Our approach of studying several species of 

bark beetles, considered as a community organism 
was new. It should be emphasized that bark beetles 
live not only on trees but also on shrubs and similar 
species that together may create poorly studied land-
scape reservoirs for bark beetles (McDermott et al., 
2021). For instance, the Arctic tundra shrubs would 
allow bark beetle species to live beyond the tree line 
in northern areas of Alaska. These landscape reser-
voirs are apparent in our final classified prediction 
maps (Figures 6 and 7). This finding would be criti-
cal for a better understanding of the ecology of bark 

beetle communities, in addition to designing a better 
forest pest management strategy.

The forest and non-forested landscapes (e.g., 
Arctic shrublands) that are predicted to favor bark 
beetle communities represent potential habitats that 
may support intra- and inter-specific competition 
within and among bark beetle species. From a bio-
diversity standpoint, these various favorable habitats 
for multi-species bark beetles may help to preserve 
or even promote biodiversity, as well as co-evolution 
within the bark beetle community. On the other hand, 
forested areas that are supposed not to be occupied 
by bark-beetle species (green shading, Figure 7) 
would also be important from a forest management 
perspective to be protected against future anthropo-
genic disturbances that may promote the infestations. 

We were able to assemble open-access data for 
understanding the ecology of bark beetle communi-
ties on a broad scale within the immense geographic 
area of Alaska. This dataset, together with the ma-
chine-learning modeling approach that we used, can 
provide a foundation for future research use. The 
methodology applies not only to scolytines, but also 
to other multi-species questions of concern, such as 
forest defoliators and small and big game wildlife 
species worldwide (see, e.g., Huettmann and Schmid 
2014, Humphries et al. 2018). The boosted classifi-

Figure 7. Classified prediction map of multi-species bark beetle occurrences in different forest types: Mixed and evergreen forests that 
predicted not to favor bark beetle occurrences (green color), mixed forests that expected to favor bark beetle occurrences (red color), 
and evergreen forests that predicted to be occupied by different bark beetle species (blue color). The 2011 NLCD was the reference 
map to extract forest type and area across the state of Alaska. 
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cation and regression tree approaches that we used 
are particularly useful in dealing with such ecolog-
ical and environmental datasets, with the common 
characteristics of being big, complex, and spatial-
ly autocorrelated (Breiman 2001; Elith et al. 2006; 
Humphries et al. 2018). Furthermore, our results will 
allow us, in the future, to focus on predictions based 
on climate change scenarios for future time periods 
(see Baltensperger and Huettmann 2015b).

The higher predictive power of model 3, relative 
to the full model (model 1), may highlight poten-
tial effects of sampling bias in collecting bark bee-
tle occurrence data that results from opportunistic 
sampling along roads or inconsistent sampling ef-
fort over time and space (Yost et al. 2008; Zabihi et 
al. 2017). Often, species occurrence data have such 
characteristics owing to lack of awareness or sam-
pling bias in the geographic space (Stockwell and 
Peterson 2002; Graham et al. 2004; Elith et al. 2006; 
Yost et al. 2008; Ohse et al. 2009; Baltensperger and 
Huettmann 2015a; Zabihi et al. 2017). However, the 
predictive performance of the three models, using 
the machine-learning algorithm, is sufficiently high 
that it likely reveals signals in the environmental 
landscape that can be captured even with sampling 
bias of species presence. This strength of algorithmic 
models in finding associations between environmen-
tal variables and species occurrences are evident in 
all three models. 

For example, even though we lowered the num-
ber of predictors from 14 to 13 to 8 in models 1, 2, 
and 3, respectively, the relative importance of pre-
dictor variables did not change (Table 3). In addition, 
the predictive strength of the three models is evident 
in the three resulting species distribution maps, in 
which the hotspots of bark beetle suitability are in 
the southeast, south, and interior of Alaska (Figure 3, 
Appendices III and IV). In contrast to the algorithmic 
model that we used, more traditional parametric mod-
els can become unstable by removing less important 
predictor variables from the model and consequently 
lead to wrong conclusions (Breiman 2001).

Although one advantage of algorithmic models is 
in including more predictors to make more informa-
tion available for prediction (Breiman 2001), we se-
lected Model 2 for producing a binary predictive map 
in view of its slightly higher predictive ability using 
additional independent test points. This model may 
have had higher predictive ability, thanks to removal 
of multicollinearity effects between distance-based 

predictors (e.g., roads, drainage networks, towns, 
infrastructures, and coastlines) and those predictors 
considered in the model. For example, drainage net-
work is a function of elevation, slope, and aspect 
(Ohse et al. 2009), which were included in all three 
models. Also, soils and landcover can be a function 
of drainage networks; for example, rich soils are usu-
ally found in well-drained locations such as valleys, 
whereas mountaintops and alpine zones usually do 
not have fertile soils, and vegetation classes reflect 
those correlations and interactions indeed.

As is evident from the top predictor variables and 
visually from the maps in all three models, human 
settlements and infrastructures are important factors 
in shaping the distribution of bark beetle species. 
The hotspot of bark beetle occurrences in the north 
corresponds well with the periphery of established 
pipelines; those in the south and southeast are around 
the cities of Anchorage and Juneau, respectively. 
For example, Tongass National Forest has one of the 
highest densities of road networks in southeastern 
Alaska, where roads have been used for logging and 
deer hunting since the mid-1950s (Brinkman 2009). 
The interior hotspots correspond to the vicinity of 
Fairbanks and along highways. 

We further found that land ownership and man-
agement, such as state lands, native lands, and pri-
vate lands, are closely associated with bark beetle 
occurrence, likely as a consequence of land use prac-
tices that may disturb forest landscapes. For exam-
ple, state lands, managed primarily by various divi-
sions of the Alaska Department of Natural Resources 
(AKDNR), have been influenced by designated land 
use in the form of sale or lease to the public; lease for 
commercial, industrial, and recreational use; selling 
minerals; and temporary permits for use and access 
(Alaska Department of Transportation and Public 
Facilities, Northern Region, 2018). Native lands are 
aboriginal lands that are owned by individual village 
corporations having regional rights of exploiting 
minerals. Private lands are owned by individual enti-
ties, municipalities, and boroughs, and are generally 
concentrated close to cities, villages, and populated 
regions along highways and roads (Alaska Depart-
ment of Transportation and Public Facilities, North-
ern Region, 2018). The emergence and spreads of 
bark beetle attacks in the vicinity of human settle-
ments and recreation sites, with public use and infra-
structure developments such as pipelines, roads, and 
hiking trails, could be related to the associated dis-
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turbances and compaction damages in soil structure. 
These soil disturbances consequently compromise 
tree roots and may eventually lead to higher chance 
of infections (FS-R10-FHP 2019). Urbanization in 
Arctic and sub-Arctic regions increases impervious 
surfaces, creating urban heat islands (Chandler 1960; 
Oke 1988) that may impact the climate and associat-
ed ecosystem components, such as the spread of bark 
beetle infestations. 

In sum, anthropogenic factors seem to be closely 
associated with, and perhaps accelerate, beetle out-
breaks in different ways. For example, human-in-
duced climate change results in warmer and dryer 
summers that reduce tree resiliency, and milder win-
ters that decrease beetle mortality (Müller et al. 2008; 
Müller 2011). In addition, untreated spruce slash-
and-debris, due to, for instance, highway and power-
line constructions, can elevate spruce beetle popula-
tions (Schmid 1977; Werner et al. 2006). Logs, slash, 
or dead and dying trees favor several bark beetle 
species, such as Ips spp., because of little or no host 
resistance against beetle attacks (Fettig et al. 2007).

The soil texture of silt loam was closely associat-
ed with bark beetle presences, likely due to providing 
suitable habitats for host trees. For example, Schrock 
and Haplocryands soils provide habitats for white 
spruce (USDA 1998, 2005). Across the study area, 
regions with a higher mean annual temperature and 
lower annual precipitation, relative to other areas in 
Alaska, were more closely associated with bark bee-
tle occurrence. This finding mirrors that of Økland et 
al. (2019), in which high summer temperatures and 
low precipitation favored the flight period and repro-
duction rate of most bark beetle species, even those at 
high latitudes with cooler climates. The aspect range 
(100–300º), including south- and west-facing slopes, 
is likely to provide a warmer and more favorable 
microclimate for bark beetle activities in addition to 
providing favorable habitats for host tree species. For 
example, white spruce occurrence was concentrated 
on south-facing slopes in previous studies (Viereck 
and Little 2007; Ohse et al. 2009). 

Our community-based modeling approach could 
be debated based on variations in species’ interac-
tions with local environments at fine scales of in-
dividual host trees or stands, mostly considered as 
issues of spatial autocorrelation. However, our mod-
eling approach of using a non-parametric model of 
boosted classification and regression tree that uses 
many algorithms, ensembles, and responses (Hum-
phries et al. 2018) aimed to learn and model these 

complex, nonlinear relationships in the data without 
prior assumptions such as being free of spatial au-
tocorrelation (Huettmann 2018c). In addition, dif-
ferent species within a community may have similar 
responses to changes in the environment at regional 
scales (Golicher et al. 2008; Azeria et al. 2009; Chap-
man and Purse 2011), so community-level analyses 
of spatial patterns of biodiversity may be beneficial 
(Chapman and Purse 2011) for biodiversity conser-
vations and natural resource management purposes.

We used a historical collection of bark beetle 
specimens from UAM without consideration of sam-
pling design strategies or assumptions such as bal-
anced sample sizes for different species. Although 
unbalanced samples may represent true populations 
of species across landscapes, future work might test 
these ideas by removing different species from the 
model. However, our approach treating the species 
presences across all bark beetles represents a way of 
dealing with numerous small sample-size species in 
our dataset. A model with high sensitivity, even if it 
results in some overpredictions, will minimize omis-
sion of sites that are actually suitable, which is partic-
ularly meaningful for rare species (Engler et al. 2004; 
Barbet-Massin et al. 2012). The 2011 NLCD map 
that we used does not provide detailed information 
about different types of conifer species; preparing 
and using such a map in our models could provide 
additional detail as regards host tree communities 
and their effects on bark beetle assemblages.
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Species Host tree Species 
sample 

size

Genus Genus 
sample 

size
Scierus annectans White spruce (Picea glauca) 1 Scierus 1
Alniphagus aspericollis N/A 1 Alniphagus 1
Carphoborus andersoni Black spruce (Picea mariana) and white spruce 5 Carphoborus 12
Carphoborus carri Black spruce and white spruce 5
Carphoborus intermedius White spruce 1
Carphoborus sp. White spruce 1
Cryphalus ruficollis White spruce 7 Cryphalus 7
Crypturgus borealis Black spruce and white spruce 18 Crypturgus 18
Dendroctonus punctatus White spruce 11 Dendroctonus 83
Dendroctonus rufipennis White spruce 66
Dendroctonus simplex Tamarack (Larix laricina) 4
Dendroctonus sp. White spruce 2
Dolurgus pumilus Sitka spruce (Picea sitchensis) 22 Dolurgus 23
Dolurgus sp. N/A 1
Dryocoetes affaber Black spruce, white spruce, 

Sitka spruce, western hemlock  
(Tsuga heterophylla), 
and lodgepole pine (Pinus contorta)

69 Dryocoetes 133

Dryocoetes autographus Black spruce, white spruce, Sitka spruce, 
western hemlock,
 mountain Hemlock (Tsuga mertensiana) 

51

Dryocoetes caryi Lutz spruce (Picea x lutzii) 10
Dryocoetes sp. N/A 3
Gnathotrichus retusus N/A 2 Gnathotrichus 3
Gnathotrichus sp. N/A 1
Hylastes nigrinus N/A 2 Hylastes 2
Hylurgops rugipennis White spruce, Sitka spruce, lodgepole pine, and western 

hemlock
36 Hylurgops 52

Hylurgops sp. Western hemlock 14
Hylurgops subcostulatus N/A 2
Ips borealis White spruce 9 Ips 104
Ips perroti Black spruce and white spruce 2
Ips perturbatus White spruce 52
Ips pini Lodgepole pine 7
Ips sp. White spruce 3
Ips perturbatus White spruce 3
Ips tridens Sitka spruce, white spruce, and Lutz spruce 28
Lymantor alaskanus N/A 1 Lymantor 1
Orthotomicus caelatus White spruce, Sitka spruce, and lodgepole pine 13 Orthotomicus 14
Orthotomicus sp. White spruce 1
Phloeosinus cupressi Yellow cedar (Cupressus nootkatensis) 3 Phloeosinus 17
Phloeosinus pini White spruce 7
Phloeosinus punctatus Western redcedar (Thuja plicata) 3
Phloeosinus sequoiae Yellow cedar and western redcedar 2
Phloeosinus sp. Yellow cedar and western redcedar 2
Phloeotribus lecontei Black spruce and white spruce 3 Phloeotribus 12
Phloeotribus piceae Black spruce and white spruce 9
Pityophthorus bassetti White spruce 2 Pityophthorus 74
Pityophthorus murrayanae White spruce 2
Pityophthorus nitidulus Balck spruce, white spruce, Lutz spruce, Sitka spruce, and 

lodgepole pine
21

Pityophthorus nitidus Black spruce and white spruce 5
Pityophthorus opaculus White spruce 4
Pityophthorus pulchellus Lodgepole pine 1
Pityophthorus recens Lutz spruce 1
Pityophthorus sp. White spruce, black spruce, Sitka spruce, and Lodgepole 

pine
34

Pityophthorus tuberculatus Lodgepole pine 2
Pityophthorus Borealis White spruce 1
Pityophthorus venustus White spruce 1
Polygraphus convexifrons White spruce and Lutz spruce 6 Polygraphus 59
Polygraphus rufipennis White spruce, black spruce, and Sitka spruce 52
Polygraphus sp. N/A 1
Procryphalus mucronatus N/A 1 Procryphalus 3
Procryphalus utahensis N/A 2
Pseudips concinnus Sitka spruce and Lutz spruce 16 Pseudips 21
Pseudips mexicanus Lodgepole pine 3
Pseudips sp. N/A 2
Pseudohylesinus granulatus N/A 1 Pseudohylesi-

nus
52

Pseudohylesinus sericeus Lodgepole pine 5
Pseudohylesinus sitchensis Sitka spruce 2
Pseudohylesinus sp. Western hemlock  27
Pseudohylesinus tsugae Western hemlock and mountain hemlock 17
Scierus annectans N/A 10 Scierus 14
Scierus pubescens White spruce 4
Scolytinae sp. White spruce and black spruce 8 Scolytinae 8
Scolytus piceae White spruce, black spruce, and tamarack 12 Scolytus 12
Trypodendron betulae White spruce and black spruce 4 Trypodendron 107
Trypodendron lineatum White spruce, black spruce, Sika spruce, and western 

hemlock
74

Trypodendron retusum White spruce 9
Trypodendron rufitarsis Mountain hemlock and white spruce 5
Trypodendron sp. White spruce and Sitka spruce 15
Trypophloeus populi White spruce 1
Trypophloeus striatulus N/A 2 Trypophloeus 3
Xylechinus montanus White spruce 2

Total Sample Size 838 Xylechinus 2838

Appendix I. Bark beetle species, host trees species, and beetle sample size used as presence points to extract model inputs/predictors. 
N/A represents collected bark beetle specimens with no host tree species included.

https://en.wikipedia.org/wiki/Picea_mariana


Biodiversity Informatics, 16, 2021, pp. 1-19

18

Appendix II. Frequency distribution of Euclidean distance to roads (km) for 838 bark beetle presence locations. The peak distance 
close to the roads could indicate an ecological corridor for the spread of bark beetles. 

Appendix III. Predicted distribution map of bark beetle using model 1 (full model) 
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Appendix IV. Predicted distribution map of bark beetle using model 3 (model with excluded roads) 


