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VISUALIZING SPECIES RICHNESS AND SITE SIMILARITY FROM 
PRESENCE-ABSENCE MATRICES
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Abstract. Species richness and similarity of biotas among distinct sites are important quantities in biogeography. 
Indices derived from presence-absence matrices are used to represent these quantities in so-called range-diver-
sity plots. The most commonly used range-diversity plot, however, has multiple special cases and its interpreta-
tion is cumbersome. Here we present an equivalent formulation that is geometrically simpler and has no special 
cases. In addition, we introduce a method to identify the statistical significance of the dispersion field, an index 
that represents how similar species composition is in a cell with respect to the whole area. The new range-diver-
sity plot is a promising tool to explore biodiversity and endemism in a region as the values shown in this plot 
and their statistical significance can also be represented in geography.
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Introduction
Representing biodiversity is a complex challenge, 

mainly because the concept itself is poorly defined 
(Sarkar 2002). Most often, “biodiversity” is used to 
mean the list of species in a region. One way of orga-
nizing biodiversity data is by using presence-absence 
matrices (PAMs), where a one represents presence of 
species j in cell i, and a zero, absence (Fig. 1). PAMs 
could be regarded as mathematical representations 
of lists of species per spatial unit. Originally, PAMs 
were developed for dozens of species in a handful 
of islands in archipelagos (Connor and Simberloff 
1979), which means that, originally, PAMs had a few 
hundreds of cells. However, it is possible and desir-
able to expand the concept of a PAM to arbitrary grid 
partitions of large regions, with extents of 106 km2 or 
larger, and grids of resolutions in the order of 1 to a 
few thousand km2. Using these grid partitions allows 
obtaining more detailed information on the incidence 
of species in a region, but also helps in visualizing 
biodiversity patterns via distinct plots of the indices 
that can be calculated from a PAM (Soberón and 
Cavner 2015).

PAMs have been analyzed with a variety of tech-
niques (Arita et al. 2008; Christen and Soberón 2009; 
Ulrich and Gotelli 2012; Soberón and Cavner 2015). 
One of the methods is the range-diversity plot (Arita 
et al. 2008; Borregaard and Rahbek 2010; Soberón 
and Ceballos 2011). This plot displays jointly two in-
dices describing the community composition of every 
cell in the grid: (1) the number of species, in absolute 
or relative numbers, and (2) the mean dispersion field 
(Graves and Rahbek 2005). The dispersion field is 
simply total range size of all the species occupying a 
cell. This can be proven to be equivalent to the total 
amount of overlap of the community of species in 
a cell, with all the other cells (Soberón & Ceballos, 
2011). Instead of total values, in the range-diversity 
plot, the mean value of the dispersion field is used. 
The mean is taken with respect of the species existing 
in each cell. The mean can be taken also with respect 
to all species in the region, as we shall see later.

The range-diversity plot displays a large amount 
of data in a compact way that allows interpretations. 
The mathematical limits of the range-diversity plot 
are well-defined (Arita et al. 2008; Soberón and Ce-
ballos 2011) and constrains the scatterplot in a very 
strict way. We refer the reader to these articles for all 
mathematical details. Moreover, these limits have a 
straightforward geographic interpretation (Soberón 
and Ceballos 2011). However, the geometric proper-
ties of a range-diversity plot are somewhat cumber-
some and subject to many particular cases (i.e., plots 
are not linear and their shape depends on the specifics 
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of the parameters), making them more difficult to in-
terpret. For instance, the sign of the minimum cova-
riance determines the slope of the lines defining the 
limits, leading to rather contrasting shapes (Fig. 2); 
and the relationship between minimum relative rich-
ness and minimum covariance determines whether 
the limits will be truncated or not (not illustrated).

In this contribution, we introduce a formulation 
of the range-diversity plot, which is equivalent to, but 
geometrically much simpler than the previous one, 
and does not have particular cases, facilitating inter-
pretations and further explorations. We also present 
a way to detect whether observed values of the index 
related to species ranges (the dispersion field) are 
statistically significant, allowing for further interpre-
tations in regards to how species are distributed in a 
region, based on a PAM.

Methods
Data

To illustrate the application of the new method to 
produce range-diversity plots, we use a PAM origi-
nally composed of S = 1595 species of terrestrial ver-
tebrates, on a grid of N = 711 cells (resolution of 0.5°, 
or ~55 km at the equator) subdividing Mexico. The 
original data used to produce the PAM comes from 
the International Union for the Conservation of Na-
ture (IUCN), which maintains a database of down-
loadable, machine-readable maps (in shapefile for-
mat) for the non-avian terrestrial (increasingly also 
aquatic) vertebrates of the world (IUCN 20201). In 
this PAM, each cell is represented by the geograph-
ic coordinates of its centroid and can be download-
ed using the code provided to replicate analysis and 
plots (data and code are available2). After excluding 
cells with no species, or species with values of 0 (ab-
sence) for all cells, the final number of species and 
cells was 1573 and 711, respectively (Fig. 1).

Calculations for new plotting method 
The basic idea for the range-diversity plot fol-

lows from an identity proven in Soberón and Cavner 
(2015) and based on the variance-covariance matrix 
of species in cells. This is the covariance in species 
composition among all cells in the grid. By forming 
the vector τ  of the average covariance of every cell 
to all other cells, the following identity is proven: 

 
1 https://www.iucnredlist.org/resources/spatial-data-download.
2 https://github.com/jsoberon/PAMs-Mexico. 

Where S is the number of species, φ* is the vec-
tor of normalized (divided by N) dispersion field 
values, α is the vector of numbers of species, and 
β is Whittaker’s (1960) beta “diversity”. A division 
by N creates a proportion with respect to the size of 
the region in question. Whittaker’s first equation for 
beta diversity is simply /S α  , which, by a simple 
replacement is / /S NS fβ α= = where f is the 
“fill” of the PAM, or the total number of ones. From 
the above Arita et al. (2008) obtained the following 
equation, which is the base of their range-diversity 
plot:

The range-diversity plot represents every cell in 
the grid, using as y-axis the quantity αi* (the aster-
isk represents that α has been normalized by dividing 
it by S) and as x-axis the mean dispersion field per 
cell, or *

iϕ  (with the asterisk representing division 
by N and to get the mean dispersion field per cell 

iϕ  is divided by αi. As we shall exemplify below, 
the above equation implies that the data points in the 
scatterplot are enclosed within a tent-like “envelope” 
determined by the minimum and maximum mean 
covariances, and by the beta diversity (Fig. 2). This 
envelope is non-linear in shape and has many special 
cases and one potential discontinuity. 

However, a much simpler and direct graph comes 
directly from equation (1). Indeed, element-by-ele-
ment equation (1) means:

Figure 1. Graphical representation of a presence-absence matrix 
(top panel, presence = 1 in brown, absence = 0 in yellow), for the 
PAM (representing 711 cells and 1573 species) of the terrestrial 
vertebrates of Mexico; and geographic representation of indices 
of richness and dispersion field derived from it.

https://www.iucnredlist.org/resources/spatial-data-download
https://github.com/jsoberon/PAMs-Mexico
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Or, by an immediate rearrangement:

This suggests that * /i Sϕ  vs. *
iα  creates a sim-

pler graph, as it is indeed the case. Moreover, the 
theoretical limits of this new range-diversity plot 
are straightforward. The limits form a parallelepiped 
with vertical lines at αmin and αmax, and straight lines 
with a slope of 1/β and intercepts at the minimum 
and maximum values for τ (Fig. 2). Notice the main 
difference is that instead of plotting the mean nor-
malized dispersion field, with the mean taken by di-
viding by the local number of species ( *

iα ), the mean 
is taken over all the species in the region. In the dis-
cussion, we further expand this point.

Statistical significance of dispersion field
Indices derived from a PAM can be tested for 

significance. For instance, Schluter (1984) provides a 
test for the similarity of the distributions of a number 
of species, using a variance ratio. However, a PAM 
permits the calculation of a large variety of indices. 
A more general approach to the problem of statisti-
cal significance relies on the randomization of PAMs. 
PAMs can be randomized under a number of assump-
tions (Miklós and Podani 2004) and this allows cal-
culation of the distributions of values of the disper-
sion field, the mean dispersion field, the distribution 
of richness, overlaps, or many other quantities, from 

those that cannot be distinguished from random ex-
pectations and others that differ significantly from 
such a distribution. Randomizing PAMs requires 
making important decisions (Strona et al. 2018), spe-
cifically how the marginal sums of the PAM will be 
treated. These marginals represent the total number 
of species per site (richness, the vector α), when sum-
ming over columns, or the total number of sites each 
species uses (incidence, the vector ω) when summing 
over rows. The question then is whether to leave 
richnesses, or incidences, or both, constant at the 
time of randomizing. This is a problem well beyond 
the purpose of this contribution (see discussion), but 
we used the approach of randomizing subject to fixed 
richness and incidence. We used this approach be-
cause we assume that both incidence and richness are 
observed data, deriving from reliable sources of in-
formation. To perform the randomization process, we 
used the function “randomizeMatrix” from the pack-
age picante (Kembel et al. 2010) in R 4.0.2 (R Core 
Team 2020). For the process of randomization, we 
used the null model “independentswap” which ran-
domizes the matrix with the independent swap algo-
rithm from Gotelli (2000). Considering how the ran-
domization is done, before starting the process, we 
broke any potential geographic structure remaining 
in the PAM (where closer rows are also closer cells 
in the geography) by rearranging randomly the rows 
(which represent geographic cells) but maintaining 
the identity of these cells in the results.

After each randomization, the dispersion field is 
calculated from the resulting PAM and it is normal-
ized. The result of repeating this process a number 
of iterations (500 in our case) generates a distribu-
tion of values of the dispersion field under random 
expectations. Then, the actual values of any index, 
for each cell, are compared to the random distribu-
tion of values, and the observed values that are as ex-
treme or more extreme than the confidence limits of 
the null distribution (by default 5%: the 2.5% lower 
and 97.5% upper limits) are considered statistically 
significant. Significance is treated differently when 
the actual value is below the lower limit or when it 
is above the upper limit as this has implications for 
interpretation (see discussion).

Calculations of biodiversity indices derived from 
the PAM, and its randomization, were done using the 
function “prepare_PAM_CS” from the package bio-
survey (Nuñez-Penichet et al. 2020; available3) in R. 
Geographic representations of the results obtained 
3 https://github.com/claununez/biosurvey. 

Figure 2. Two special cases of the range-diversity plot. Notice 
that in the old diagram the change of sign in the minimum co-
variance produces a very different-looking envelope. In the new 
diagram, it is the size that changes.

https://github.com/claununez/biosurvey
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with the new method were done using the package 
maps (Brownrigg et al. 2018) and other base func-
tions in R.

Exploring the new range-diversity plot
To illustrate the differences between the previous 

range-diversity plot and the new diagram proposed 
here, we exemplify two theoretical special cases of 
these plots. The two cases are: 1) a positive mini-
mum covariance when comparing communities per 
site (grid cells in our case); and 2) the case with a 
negative minimum covariance. 

Using the PAM based on the terrestrial vertebrate 
species of Mexico, we produced the original and the 
new range-diversity plots. Based on the same PAM, 
we also detected statistically significant values of 
the dispersion field and identified them in the new 
range-diversity plot and in a geographic representa-
tion for Mexico. As the relationship between points 
in the range-diversity plot and areas in the geograph-
ic region of interest is of high importance, we cre-
ated visualizations of block-like chunks of points in 
the diagram and their geographic projections. Blocks 
in the range-diversity plot were divided using a grid 
(equal-size cells) of 4 rows and 4 columns using bio-
survey in R. Four of the resultant blocks were select-
ed randomly to be used for plots.

Results
In Figure 2 we display the old and the new 

range-diversity plots. The plots in the top row in Fig-
ure 2 are examples of the original range-diversity di-
agram proposed by Arita et al. (2008). In this version, 
the data points are constrained to occur under a tent-
like curved region determined by quantities derived 
from the PAM. The shape and position of the tent-
like permitted zone are determined by the beta diver-
sity (Whittaker), the minimum and maximum mean 
covariance of the community of species in a cell, rel-
ative to every other; and indirectly, by the minimum 
and the maximum number of species in the cells of 
the grid (Fig 2, upper row). There are several possi-
ble particular cases of this diagram, as illustrated in      
Figure 2 for two possibilities only.

In the bottom row of Figure 2, we present the 
new range-diversity plot, where the order of the axes 
is reverted, and the normalizations are not exactly the 
same. There is still a permitted region, determined 
by the same values, but the permitted region is now 
a simple parallelogram, always of the same shape. 
The area of the parallelogram, though, may change 
with the values of the parameters (minimum and 
maximum alpha, beta, and minimum and maximum 
mean covariances), but the general aspect of the plot 
is always the same.

The range-diversity plot of the IUCN PAM for 
1573 species of terrestrial vertebrates of Mexico is 
displayed in Figure 3 using the old and the new dia-
grams. Notice that the points form clusters. As shown 
below, these clusters have a geographic meaning. 

Figure 3. Comparison between previous range-diversity plot and the new plot proposed created with IUCN species ranges for 
Mexico (summarized in a PAM). 

https://www.zotero.org/google-docs/?broken=DtRmCF
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The differences between the old and the new dia-
grams are: (i) the variables used in the old are the 
normalized mean (with respect to local richness) dis-
persion field and the normalized species richness (of 
every cell), or αi* vs. φi*/αi. In the new one, the vari-
ables are the normalized dispersion field divided by 
the total number of species, which can be interpreted 
as a mean with respect to the number of species in 
the entire region, and the normalized (with respect 
to S) species richness. In symbols, we plot φi*/S vs. 
αi*. (ii) The limits of the permitted regions are deter-
mined by the minimum and maximum mean covari-
ance in both diagrams, in the old one these are hyper-
bolic lines, whereas in the new plot they are straight 
lines of slope 1/β.

In Figure 4 we show the new range-diversity plot 
for the IUCN PAM, as well as a geographic represen-
tation of the results obtained. The top-left panel is the 
new diagram. The top-right panel shows the values 
of the dispersion field resulted from the randomiza-
tions of the PAM. We randomized the PAM, subject 
to fixed marginals. This randomization changes the 
values of the dispersion field, but not those of the 
richness (by construction: richness per cell is kept 
constant during randomizations). Values above and 
below the 97.5% and the 2.5% percentiles of the 
random distribution are illustrated in the bottom-left 
panel, with the corresponding geographic represen-
tation in the bottom-right part of Figure 4. Circles in 
black are above the 97.5% percentile of the random-

izations, and those closed circles in gray are below 
the 2.5%. Open circles in gray are inside the 2.5% to 
97.5% range of randomizations. Notice that the map 
shows three clearly differentiated regions: in black 
are cells with dispersion-fields (remember that the 
mean dispersion field is identical to mean similari-
ty) significantly larger than random, dark gray cells 
are those with dispersal fields smaller than random, 
and light gray cells are those indistinguishable from 
random. In general, our results show regions of high-
er than randomly expected similarity in the Nearctic 
part of Mexico, and lower than randomly expected 
similarities in the Neotropical part. A transition re-
gion where similarities are as expected under a ran-
dom model is also observed in the transition between 
Neotropics and Nearctic.

Finally, the range-diversity plot displays clus-
ters or groups of points, which correspond to cells 
in geography with distinct patterns (some of them 
clustered but others disjoint; Fig. 5). Exploring this 
duality helps to understand how richness and simi-
larity of species’ composition are distributed in the 
geography, since recognizing where points in the 
range-diversity plot are located geographically is not 
necessarily intuitive.

Discussion
Since its introduction by Arita et al. (2008) the 

range-diversity plot has been used in a number of 
analyses (for instance, Borregaard and Rahbek 2010; 
Villalobos et al. 2013a and b; 2017; Zwiener et al. 
2018), but it is a bit cumbersome to read. It has many 
special cases, contains discontinuities around the 
value of 1/β, and its “envelope” is non-linear. In this 
work, we propose a much simpler variant that dis-
plays the same information. It can be used, for in-
stance, to obtain richness-rarity quartiles (Villalobos 
et al. 2013a and b), and has the same properties of 
relation with maps in geographic space, but it is sim-
pler to interpret and has no differently-shaped spe-
cial cases (Figs. 2-3). For instance, in the new plot, 
having negative covariances among-communities 
composition does not create, as in the previous plot, 
positive and negative clouds of points; now the entire 
cloud has a positive slope.

The mean dispersion field is simply the sum of 
Jaccard similarities among regions (Soberón and Ce-
ballos 2011). When taking the mean relative to the S 
species in the region, rather than to iα , the local spe-
cies number, one gets a smaller measure of similarity, 

Figure 4. Plotting options for the new range-diversity plot and 
representation of results in the geography. The non-statistically 
significant cells map into a region of Mexico that represents the 
transition between tropical and temperate conditions.
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since S > any local α. This idea needs to be kept in 
mind when interpreting the new plot.

We also propose an application of randomiza-
tion of a PAM to obtain intervals of confidence for 
one statistic derived from the PAM, the normalized 
dispersion field. Because our randomization process 
starts by reordering arbitrarily the rows in the ma-
trix (cells or sites), spatial autocorrelation is, in some 
sense, broken, preventing artifacts due to it. Although 
we do not prove it here, several metrics of a PAM 
are invariant to randomization with fixed marginals 
(obviously the mean richness and Whittaker’s beta, 
but also the mean dispersion field, the mean diversity 
field, and others). Fortunately, the dispersion field is 
sensitive to such type of randomization, and since, as 
it has been proven in Soberón and Ceballos (2011), 
the dispersion field of a cell is mathematically equiv-
alent to the total number of shared species with all 
the others cells, identifying those cells that are statis-
tically significant is a useful result (Figs. 4-5).

The randomization of the entire PAM allows 
testing the significance of any of the parameters de-
rived from it. In this sense, our approach is more 
general than those that rely on the significance of 
specific indices. As said before, Schluter (1984) pre-
sented a variance test to compare the composition of 
two regions. This has been applied, for instance, by 
Villalobos et al. (2014). Our approach would permit 
to test directly whether composition, or nestedness, 
or any parameter sensitive to the randomization of a 
PAM has an extreme value, with respect to the null 
model of fixed marginals.

The null models obtained by fixing either of the 
marginals of a PAM have biological interpretations. 
In an interesting paper, Gibert and Escarguel (2019) 
suggest that fixing the species numbers marginal is 
equivalent to hypothesizing that the dominant com-
munity assembly processes are “niche” based, and 
fixing the species ranges marginal is a hypothesis 
about the dominance of dispersal factors. Although 
we do not explore these ideas here, we notice that 
the range-diversity plots are ideally suited to do this 
exploration.

Statistically significant values of the dispersion 
field may have a geographic meaning (Table 1). In-
deed, cells with observed values below the lower 
confidence limits of random expectations are those 
with smaller similarity to others, or in other words, 
inhabited with species of more restricted ranges. This 
can be regarded as cells with a species’ composition 
“more endemic.” Those above the upper limits of 

random expectations indicate cells that share more 
species with others than expected randomly. This 
is, cells with a species’ composition shared widely 
with others, or less “endemic.” That the region indis-
tinguishable from random appears to separate geo-
graphical regions of higher than random similarity 
from those of lower than random similarity is quite 
interesting. In other explorations (not presented), we 
also found that geographic regions with dispersion 
field values above or below random expectations are 
bordered or separated by the areas with values indis-
tinguishable from random. We believe that our meth-
od would be useful to suggest transitional zones in 
terms of levels of endemism, but this requires further 
empirical exploration.

For a given cell, the value of its dispersion field 
is positively correlated with the number of species in 
the cell, since it is calculated as the sum of the rang-
es of all the species in the cell (thus more species, 
more terms in the sum). Therefore for a given matrix, 

Figure 5. Regions in the new range-diversity plot and their rep-
resentations in the geography. There is a consistent relationship 
between clusters of cells in the diagram and geographic regions. 
Blocks of points highlighted in the diagram were selected ran-
domly.
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it is possible to have a large value of the dispersion 
field (relative to all in the matrix) that nevertheless is 
significantly low, for cells (rows in the matrix) with 
many species; and the opposite, relatively low values 
of the dispersion field can be significantly high, in 
cells with a small number of species. In other words, 
high values of the dispersion field can be identified to 
be below random expectations (therefore highly en-
demic) because the high value of this index is direct-
ly related to a high species richness in that particular 
cell, and vice versa (Table 1, Fig. 4). This last point is 
of special interest as it suggests that interpretations of 
low or high values of the dispersion should be more 
appropriate if accompanied by considerations of spe-
cies richness patterns. We anticipate that the plot we 
proposed here, and the geographic projection of its 
results can aid in promoting better interpretations of 
patterns of endemism in a region.

We showed that, for our data, the partition of dis-
persion fields in the upper, middle, and lower quan-
tile ranges has a clear geographic interpretation. This 
is a fact first noticed by Soberón & Ceballos (2011) 
and used by Villalobos et al. (2013a). The geograph-
ic pattern of significant values is dependent on the 
region of interest, as species composition changes 
and such changes have different patterns in distinct 
areas of the planet. Further explorations using the 
range-diversity plot and its projections will provide 
more information on how the patterns of endemism 
are rescued from PAMs in distinct regions of the 
world (Soberón and Ceballos 2011), or in different 
parts of a phylogeny (Villalobos et al. 2017). For in-
stance, the geographic projection of points with high 
values of both indices in the range-diversity plot (Fig. 
5) corresponds with areas that have been described to 
harbor a large number of species, which ranges are 
among the most restricted of Mexican avifauna (Vil-
lalobos et al. 2013b).

With the formulation of the new range-diversity 
plots, we also introduce software to prepare such fig-

ures and to randomize PAMs. This implementation 
is parallelized, and depending on the features of the 
computer allows randomization of large matrices, 
with millions of elements (i.e., thousands of cells and 
species). We anticipate that the software provided 
will help in the exploration of the effects of random-
izing PAMs and the implications of the results that 
can be obtained for different regions of the planet. As 
in any other analysis, the quality of input data is one 
of the most important factors to consider. Research-
ers should acknowledge limitations deriving from 
data quality and determine appropriate features of the 
PAMs to be created. Selecting appropriate cell sizes 
in the PAM, for instance, can help to avoid over-in-
terpretations of resulting range-diversity plots.

Acknowledgments
The authors would like to thank the Comisión 

Nacional para el Conocimiento y Uso de la Biodi-
versidad (CONABIO), especially Raul Sierra, for 
facilitating access to data. Fabricio Villalobos and an 
anonymous reviewer gave useful suggestions. The 
authors declare that no competing interests exist.

Data Accessibility Statement
All data and code used in this research are openly 

available at https://github.com/jsoberon/PAMs-Mex-
ico

References
Arita, H. T., J. A. Christen, P. Rodríguez, and J. Soberón. 

2008. Species diversity and distribution in presence‐
absence matrices: mathematical relationships and bi-
ological implications. American Naturalist 172:519–
532.

Borregaard, M. K., and C. Rahbek. 2010. Dispersion 
fields, diversity fields and null models: uniting range 
sizes and species richness. Ecography 33:402–407.

Brownrigg, R., T. P. Minka, A. Deckmyn, R. A. Becker, 
and A. R. Wilks. 2018. maps: Draw geographical 

Place in the null distribution Low Intermediate High

Below 2.5% CI of random expectations
High endemism 

Low richness

High endemism

Intermediate richness

High endemism 

High richness

Within 95% of random expectations Cannot say much 
about endemism 

Cannot say much about 
endemism 

Cannot say much 
about endemism

Above 97.5% CI of random expectations
Low endemism

Low richness

Low endemism

Intermediate richness

Low endemism

High richness

Table 1. Interpretation of dispersion field and significance values in the range-diversity plot.

https://github.com/jsoberon/PAMs-Mexico
https://github.com/jsoberon/PAMs-Mexico


Biodiversity Informatics, 16, 2021, pp. 20-27

27

maps. R package. https://cran.r-project.org/web/pack-
ages/maps/index.html

Christen, J. A., and J. Soberón. 2009. Anidamiento y los 
ananálisis Rq y Qr en PAM’s. Micelánea Matemática 
49:51–61.

Connor, E. F., and D. Simberloff. 1979. The assembly of 
species communities: chance or competition? Ecolo-
gy 60:1132–1140. 

Gibert, C., and G. Escarguel. 2019. PER-SIMPER—A 
new tool for inferring community assembly processes 
from taxon occurrences. Global Ecology and Bioge-
ography 28:374–385.

Gotelli, N. J. 2000. Null model analysis of species co-oc-
currence patterns. Ecology 81:2606–2621.

Graves, G. R., and C. Rahbek. 2005. Source pool geome-
try and the assembly of continental avifaunas. PNAS 
102:7871–7876.

IUCN. 2020. The IUCN Red List of Threatened Species. 
Version 2020-6.2.

Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Corn-
well, H. Morlon, D. D. Ackerly, S. P. Blomberg, and 
C. O. Webb. 2010. Picante: R tools for integrating 
phylogenies and ecology. Bioinformatics 26:1463–
1464.

Miklós, I., and J. Podani. 2004. Randomization of pres-
ence-absence matrices: comments and new algo-
rithms. Ecology 85:86–92.

Nuñez-Penichet, C., M. E. Cobos, A. T. Peterson, J. So-
berón, N. Barve, V. Barve, and T. Gueta. 2020. biosur-
vey: tools for biological survey planning. R package. 
https://github.com/claununez/biosurvey.

R Core Team. 2020. R: A language and environment for 
statistical computing. R Foundation for  Statistical 
Computing, Vienna, Austria.

Sarkar, S. 2002. Defining “biodiversity”; assessing biodi-
versity. Monist 85:131–155.

Schluter, D. 1984. A variance test for detecting species as-
sociations, with some example applications. Ecology 
65:998–1005.

Soberón, J., and J. Cavner. 2015. Indices of biodiversity 
pattern based on presence-absence matrices: a GIS 
implementation. Biodiversity Informatics 10:22–34.

Soberón, J., and G. Ceballos. 2011. Species richness and 
range size of the terrestrial mammals of the world: bi-

ological signal within mathematical constraints. PLoS 
ONE 6:e19359.

Strona, G., W. Ulrich, and N. J. Gotelli. 2018. Bi-dimen-
sional null model analysis of presence-absence binary 
matrices. Ecology 99:103–115.

Ulrich, W., and N. J. Gotelli. 2012. A null model algorithm 
for presence-absence matrices based on proportional 
resampling. Ecological Modelling 244:20–27.

Villalobos, F., R. Dobrovolski, D. B. Provete, and S. F. 
Gouveia. 2013a. Is rich and rare the common share? 
Describing biodiversity patterns to inform conser-
vation practices for South American anurans. PLoS 
ONE 8:e56073.

Villalobos, F., A. Lira-Noriega, J. Soberón, and H. T. Ar-
ita. 2013b. Range-diversity plots for conservation 
assessments: using richness and rarity in priority set-
ting. Biological Conservation 158:313–320.

Villalobos, F., A. Lira-Noriega, J. Soberón, and H. T. Ar-
ita. 2014. Co-diversity and co-distribution in phyl-
lostomid bats: evaluating the relative roles of climate 
and niche conservatism. Basic and Applied Ecology 
15:85–91.

Villalobos, F., M. Á. Olalla‐Tárraga, M. V. Cianciaruso, 
T. F. Rangel, and J. A. F. Diniz‐Filho. 2017. Global 
patterns of mammalian co-occurrence: phylogenetic 
and body size structure within species ranges. Journal 
of Biogeography 44:136–146.

Whittaker, R. H. 1960. Vegetation of the Siskiyou Moun-
tains, Oregon and California. Ecological Monographs 
30:279–338.

Zwiener, V. P., A. Lira‐Noriega, C. J. Grady, A. A. Padial, 
and J. R. S. Vitule. 2018. Climate change as a driv-
er of biotic homogenization of woody plants in the 
Atlantic Forest. Global Ecology and Biogeography 
27:298–309.

https://cran.r-project.org/web/packages/maps/index.html
https://cran.r-project.org/web/packages/maps/index.html

