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 Abstract. Ecological niches are increasingly appreciated as a long-term stable constraint on the geographic and 
temporal distributions of species, including species involved in disease transmission cycles (pathogens, vectors, 
hosts). Although considerable research effort has used correlative methodologies for characterizing niches, 
sampling effort (and the biases that this effort may or may not carry with it) considerations have generally not 
been incorporated explicitly into ecological niche modeling. In some cases, however, the sampling effort can 
be characterized explicitly, such as when hosts are tested for pathogens, as well as comparable situations such 
as when traps are deployed to capture particular species, etc. Here, we present simple methods for testing the 
hypothesis that non-randomness in occurrence or detection exists with respect to environmental dimensions  
(= a detectable signal of ecological niche); i.e., whether a pathogen occurs nonrandomly with respect to envi-
ronment, given the occurrence and sampling of its host. We have implemented a set of R functions that presents 
an overall test for nonrandom occurrence with respect to a set of environmental dimensions, and, a posteriori, a 
set of exploratory tests that identify in which dimension(s) and in which direction or form the nonrandom occur-
rence is manifested. Our tools correctly detected signals of niche in most of our example cases. Although such 
a signal may not be detectable in cases in which the niche of interest is broader than the universe sampled, such 
a possibility was correctly discarded in our analyses, preventing further interpretations. This kind of testing can 
constitute an initial step in a process that would conclude with development of a more typical ecological niche 
model. The particular advantage of the analyses proposed is that they consider the biases involved in sampling, 
testing, and reporting, in the context of nonrandom occurrence with respect to environment before proceeding 
to inferential and predictive steps.
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The ideas, tools, and methods used under 
the rubrics of “ecological niche modeling” and 
“species distribution modeling” (here referred to 
as ENM/SDM), have seen extensive application to 
understanding the geographic and environmental 
distributions of species (Franklin 2010; Peterson 
et al. 2011). Most popular have been correlative 
approaches, in which environmental characteristics 
of places of known occurrences of species are 
subjected to a variety of model-fitting approaches, 
to create a classification of different parts of 
environmental space into suitable and unsuitable sets 
of conditions (Peterson et al. 2011; Enriquez-Urzelai 

et al. 2019). A major challenge for these methods, 
however, has been the pervasive biases and gaps that 
characterize the sampling that produced the primary 
occurrence data, and how to avoid propagation of 
those biases through the analytical sequence to the 
results (Anderson and Gonzalez 2011; Acevedo et al. 
2012; Araújo et al. 2019).

Some primary biodiversity occurrence data, 
however, may be connected to information that 
can characterize the sampling universe integrally. 
Such data may take the form of occurrences of 
pathogens detected by testing hosts (e.g., Eisen 
and Paddock 2021), disease case data that come 
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from active surveillance (e.g., M’ikanatha et al. 
2008), biodiversity data that are accumulated by 
trapping where trap data are recorded (Meek et al. 
2015), and biodiversity data that are accumulated 
by standardized sampling protocols (Manley et al. 
2005). In each case, the geographic and temporal 
distribution of sampling can be characterized 
precisely, and all positive records of the species 
of interest must necessarily derive from one of the 
sampling events. This additional information offers 
considerable promise in informing the modeling 
process precisely about the sampling universe, rather 
than relying on assumptions of random sampling 
(Phillips et al. 2009) or an interpolated sampling bias 
surface (Warren et al. 2014).

To our knowledge, exploring signals of 
ecological niche differentiation in data for which 
the sampling universe is known has not been done 
before. Most studies use traditional approaches 
to characterize ecological niches of species and 
compare such niches without explicit consideration 
of the sampling universe. In this contribution, we 
present a logic for a suite of analyses designed to 
take advantage of this additional information (the 
sampling universe) available for occurrence data that 
come from such controlled sampling schemes. We 
provide a methodological protocol that first tests for 
any overall niche difference, and then characterizes 
these differences in terms of a spectrum of possible 
changes in niches in each environmental dimension. 
We present the protocol in the form of a set of R 
functions, to facilitate wide use and incorporation in 
many other analyses.

Protocol Description
We offer two complementary approaches to 

detect signals of niche: (1) a multivariate analysis 
based on a permutational multivariate analysis of 
variance (PERMANOVA; (Anderson 2017), and 
(2) a univariate non-parametric method based on 
descriptive statistics. To illustrate the utility of this 
approach, we use a suite of virtual species. For each, 
we created a sample of records that represent the 
universe of sampling (e.g., a host species that is to 
be tested for a particular pathogen), and then identify 
a subgroup of those records that may or may not be 
positive for the pathogen (see Example application). 

That is, the data required to perform these 
analyses consist of a set of records representing 
the sampling universe, to which a test is applied 

that determines presence or absence of the species 
of interest (0 = negative and 1 = positive). Each 
of these records carries with it a vector of relevant 
environmental conditions (see example in Table S1). 
A typical such situation would be sampling a host 
species and testing for presence of a pathogen in each 
host, but many parallel applications exist. Each host 
record has a geographic reference and potentially also 
information about collection time—this place and 
time information can be used to extract environmental 
data that is place-specific or place-and-time-specific 
from diverse raster data layers (e.g., data on climate, 
remote-sensing information, etc.) that are relevant in 
niche characterization (Ingenloff and Peterson 2021).

Multivariate test 
As a multivariate test to detect overall 

signals of niche, we propose an approach using a 
PERMANOVA. PERMANOVA is a non-parametric 
multivariate test that allows comparison of samples 
by testing a null hypothesis (H0) that the position and 
dispersion of the sample are equivalent to those of 
the sampling universe. Rejecting H0 indicates that 
either the centroid (position) or spread (dispersion) 
is different, which would be indicative of a niche in 
the pathogen distinct from that of the host. Similarity 
among groups is tested based on distances (e.g., 
Euclidean or Mahalanobis distances).

In this application, the groups to be compared 
are records of the host of which a few are infected 
(i.e., all host records vs records of infected hosts). 
We chose to base our PERMANOVA analyses 
on Mahalanobis distances, but other methods to 
calculate dissimilarities can be used to perform these 
processes (e.g., Euclidean distances, Bray-Curtis, 
and Jaccard indices; see code documentation). The 
PERMANOVA yields a result of significant or 
not, indicating rejection or acceptance of the null 
hypothesis of equivalency, but does not characterize 
the form of those differences. For this reason, the 
univariate tests described below are used to provide 
additional information about the form of these 
differences.

Univariate test 
To characterize niches in individual 

environmental dimensions, we use a comparison of 
observed values of descriptive statistics summarizing 
characteristics of distributions of environmental 
conditions associated with known-infected hosts 
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against a null distribution of those statistics derived 
from many similar-sized random samples drawn from 
the set of all host records. The descriptive statistics 
explored and used in this approach are the mean, 
median, standard deviation (SD), and range. The 
mean and median of the environmental values are 
used as estimators of niche position; the SD and the 
range are descriptors of the spread of environmental 
conditions comprising the niche.

A null distribution of statistics is derived from 
many random samples (of size matching the number 
of positive tests) drawn from the set of all host records; 
this distribution informs about how common certain 
values of the descriptive statistics would be if the 
pathogen had no particular preference or bias from 
among the set of environmental conditions used by 
the host. Therefore, the null hypothesis (H0) for this 
test is that the descriptive statistic calculated for the 
samples in which the pathogen was detected cannot 
be distinguished from the comparable statistic for 
the host (or the sampling universe). This H0 is tested 
for the mean, median, SD, and range, as different 
measures of characteristics of the distribution. 

The following is a sequential description of steps 
involved in running this analysis:

1. The number of infected host records is calculated 
(ni). 

2. The mean, median, SD, and range of environmental 
conditions for the infected hosts are calculated.

3. A random sample of ni records is drawn from the 
entire set of host records.

4. The statistics of interest of environmental conditions 
are calculated for the sample in step 3.

5. Steps 3 and 4 are repeated nt times (iterations; 
generally nt = 1000). 

6. The full distributions of the statistics of interest are 
compiled and characterized, particularly as regards 
the 2.5% and 97.5% levels of the distribution.

7. The observed value of the statistic of interest for 
infected hosts (step 2) is compared against the null 
distribution of values (step 6) to establish whether 
it falls in the central 95% of the null distribution.

8. Depending on the results from step 7, the statistic of 
interest for the niche of the pathogen is categorized 
as different or not from null expectations.

9. The direction of the difference is characterized by 
direct inspection to establish whether the patho-
gen’s niche is shifted upward or downward in the 
values of the particular environmental dimension 
(mean or median), or whether it has broadened or 
narrowed (SD or range).   

The results obtained from these steps allow us 
to accept or reject H0 (Fig. 1). To reject H0, the value 
of the statistic observed for the positive records must 
be as extreme or more extreme than the 2.5% or 
97.5% of the null distribution. We conclude that the 
pathogen niche (in terms of the statistic under test) 
is not distinct if H0 cannot be rejected. When H0 is 
rejected, the statistic under test can be lower or higher 
depending on in which tail of the null distribution the 
observed value falls. 

Software 
We created a set of R functions to run the analyses 

described above. To aid interpretation, we also 
created functions to plot results from analyses. These 
functions are open-source tools that can be accessed 
following indications in Software Availability. 
Proper documentation describing the data required 
to run analyses and how parameter values can be 
established is provided with the R scripts. 

Example Application
Example data

To explore and test the performance of the 
protocols described above, we generated virtual 
niches for a host and seven simulated pathogens 
(Figs. 2, S1) representing a distinct scenario of 
similarity of host and pathogen niches (Table 1). One 
case (Scenario 1) was designed to have a pathogen 

Figure 1. Representation of outcome and suggested interpretation 
of results from the univariate non-parametric test to detect signals 
of niche dissimilarity. In this case, we present mean temperature 
responses for Scenario 5; the null hypothesis would be rejected, 
in favor of an alternative hypothesis of higher-than-null mean 
temperature.
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with exactly the same niche as the host, in the other 
scenarios, the host and pathogen niches overlap in 
different ways (see Figs. 2, S1). Virtual niches were 
generated in R 4.1.1 (R Core Team 2021) using the 
package “evniche”1, which uses ellipsoids to create 
niches based on user-defined limits (variable ranges) 
and covariance values.

We considered annual mean temperature and 
annual precipitation as the dimensions of our 
virtual niches. To make our simulations more 
realistic, when generating data from virtual niches, 
we considered suitability values derived from 
Mahalanobis distances (based on multivariate 
normal distributions) to the centroids of the ellipsoid-
shaped niches, measured from points present in 
available environmental conditions in a region (for 
details see Etherington 2019; Nuñez-Penichet et 
al. 2021). Using ellipsoids and the multivariate 
normal transformations generates responses that are 
simple, symmetrical, and convex, which we consider 
appropriate to represent virtual fundamental niches; 
however, we emphasize that our methods are general, 
and do not depend on assumptions of normality, 
regardless of whether our example application makes 
such assumptions. As a result, the density of records 
generated from virtual niches increases towards the 
centroid of the ellipsoids, but it will also depend 
on the density of points representing available 
conditions across the area of analysis. Available 
environmental conditions were represented by values 
of annual mean temperature and annual precipitation 
present across South America. We used two of the so-
called “bioclimatic” data layers from the WorldClim 
1https://github.com/marlonecobos/evniche.

Host / pathogen Scenario description Temperature range 
(°C)

Precipitation 
range (mm) Covariance Pathogen 

prevalence

Host - 12–26 700–2800 T: 5.44
P: 122,500 -

Pathogen 1 Pathogen niche is equal to host niche 12–26 700–2800 T: 5.44
P: 122,500 0.52

Pathogen 2 Pathogen niche has the same size as host niche but 
with changed position 14–28 800–2900 T: 5.44

P: 122,500 0.38

Pathogen 3 Pathogen niche changed in position and size (smaller) 
compared to host niche 13–22 900–2600 T: 2.25

P: 8,277 0.61

Pathogen 4 Pathogen niche smaller than host niche 15–23 1000–2500 T: 1.78
P: 62,500 0.68

Pathogen 5 Pathogen niche smaller and changed in position 18–25 1000–4000 T: 1.36
P: 250,000 0.47

Pathogen 6 Pathogen niche larger than host niche, but overlaps 
most of it 14–29 600–4500 T: 6.25

P: 422,500 0.29

Pathogen 7 Pathogen niche larger than host niche but contains it 
completely 8–30 200–3200 T: 13.44

P: 250,000 0.30

Table 1. General description of parameters that define the host and pathogen virtual niches according to distinct scenarios 
of niche similarity. Values of resulting pathogen prevalence in the host are also shown in the table. T = temperature; P = 
precipitation.

Figure 2. Virtual niches (ellipses) of a host and 7 pathogen 
scenarios used in the example application. Points in 
black and red represent records of host and pathogen, 
respectively, as if they were obtained from geographic 
records. Host and pathogen records were derived from 
ellipses, and are overlaid on environmental conditions 
across South America (gray points). 

https://github.com/marlonecobos/evniche
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database v1.4 (Hijmans et al. 2005) and masked them 
to South America to perform the analyses described 
above. Raster processing was done using the package 
“raster” (Hijmans 2019).

We generated populations of points via sampling 
from the centrality-weighted ellipsoids for the host 
and the pathogen niches separately, and then used as 
“pathogen-positive” records those host-niche points 
that coincided exactly with pathogen-niche points; 
for this purpose, we generated 200 host-niche points 
and 400 pathogen-niche points. Because in Scenario 
1, host and pathogen niches were exactly the same, 
we simply subsampled 200 points from among the 
pathogen 400 points to exclude some of the host 
records from being considered as infected. Because 
records derived from ellipsoids with distinct sizes 
and positions in the cloud of available environmental 
conditions for host and pathogens, we were not able 
to control pathogen prevalences (see Table 1).

Niche comparisons
We compared host and pathogen ecological 

niches considering the 7 pathogen-niche scenarios 
using both the multivariate and univariate approaches. 
Multivariate comparisons were made using 
PERMANOVA analyses with 1000 iterations for 
calculation of statistical significance. For univariate 
comparisons, the mean, standard deviation, and 
range of values corresponding to infected hosts were 
compared to the distribution of the same statistics for 
1000 random samples from the host records.  

To aid with interpretation, we created ellipsoids 
for the environmental distributions of the host and 
all pathogens. For pathogens, we considered the 
data used in analyses (i.e, not all records generated 
using virtual niches of pathogens, but rather only 
those of pathogens that match the host). We plotted 
all ellipsoids derived from the data to explore and 
visualize the position and spread of host and pathogen 
niches.

 
Results

Final datasets prepared for analysis consisted of 
200 records of the host, of which 57-136 matched 
virtual pathogen records, and thus were considered as 
infected hosts (see Table 1 for pathogen prevalences; 
see example dataset in Table S1). Environmental 
representations of datasets showed distinct levels of 
overlap between host records and infected ones, which 
helped us to understand the actual configurations of 
host and pathogen records that can be observed in 

real applications (Fig. 3).
No signal of a distinct pathogen niche 

was detected in 3 of the 7 scenarios using the 
PERMANOVA (scenarios 1, 6, and 7; Fig. 4). That 
is, based on the multivariate analysis, the centroid 
and dispersion of infected hosts can be considered 
as non-distinguishable from those of all hosts for 
scenarios 1, 6, and 7. Univariate analyses further 
indicated that host and pathogen in scenarios 1 and 
7 were not distinct in any individual dimension. For 
all other scenarios, some signal of dissimilarity was 
detected (Table 2). For these cases, the observed 
mean, median, standard deviation, or range derived 
from individual variable values of infected hosts fell 
outside of the central 95% of the null distribution 
of values derived from 1000 random samples of all 
hosts for one or both of the environmental dimensions 
(Figs. S2-S5). Considering the qualities of the 7 
scenarios, both methods could not reject H0 when 
niches were exactly equal (Scenario 1), or when the 
pathogen niche contained completely that of the host 
(Scenario 7). However, the PERMANOVA did not 
detect niche dissimilarity for Scenario 6, even though 
the original host and pathogen niches were different. 
Both methods identified a signal of dissimilarity for 
scenario 2, yet the niche of the pathogen had only a 
slight change in position from that of the host.  

Discussion
Both multivariate and univariate approaches 

performed well in detecting signals of niche 
dissimilarity in cases in which the pathogen niche 
represented a subgroup of that of the host (or the 
sampling universe). The two tests are complementary 
in the sense that they are based on different procedures 
and ideas, but both help to detect signals and interpret 
the type of signal detected. The PERMANOVA-
based test seeks an overall signal of niche difference, 
and also considers covariation among variables, 
although a direct understanding of the sort of 
difference manifested does not derive directly from 
this test. The univariate analyses, in contrast, allow 
one to understand changes in niche position and 
breadth when an overall signal is detected, although 
it does not consider covariation among multiple 
environmental variables. Graphical representations 
of results help considerably with interpretation and 
complement further the understanding of the signals 
detected.

Apart from the obvious differences between 
the univariate and multivariate analyses, another 
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Figure 4. Results from niche comparisons using PERMANOVA analyses. Ellipses were reconstructed from the data 
created from virtual niches and the available background. Values of statistical significance are shown for each comparison. 

Figure 3. Visualization of data derived from virtual niches representing hosts infected under 7 pathogen-niche scenarios. 
This view shows how data would look if derived from sampling the host and testing for pathogens, with no previous 
knowledge of host or pathogen niches. Niche differences between host and pathogen can be noted as conditions under 
which hosts are not marked as infected, such as above 22°C in Scenario 3.
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important difference should be noticed. In the 
univariate analyses, as summary statistics from 
pathogen testing data are compared against a null 
distribution derived from sampling host data, 
conditions analogous to accessible environments 
(Soberón and Peterson 2005) are considered in the 
univariate non-parametric approach. That is, the 
univariate approaches are considering the set of 
environmental conditions for all hosts as those to 
which the pathogen could have had access. If some 
conditions used by the host have no pathogen records, 
it may be because of niche-based limitations, and these 
methods assess how nonrandom environmentally 
those gaps in pathogen records are. These limitations 
may be related to pathogen tolerance of or preference 
for certain environments, or environmental conditions 
limiting pathogen transmission from one host to 
another. They could also relate to inappropriate 
delimitation of relevant hosts for analysis, such as if 
a pathogen were recently introduced in a region, and 
has not yet reached all areas inhabited by the host. 
This last detail is important because critical biases 
can be introduced in analyses if the data have not been 
filtered carefully based on ecological and biological 
considerations (Barve et al. 2011; Machado-Stredel 
et al. 2021).

Our protocols did not detect clear signals of 
dissimilarity in Scenarios 6 and 7, in which the 

pathogen niche was larger than and overlapped 
with or included the host niche. This outcome 
derives from the type of information available for 
analysis—a set of host records of which some are 
infected—which makes it difficult to detect signals 
of dissimilarity because pathogen niches will be 
characterized incompletely. A more comprehensive 
characterization of pathogen niches may require 
consideration of a larger group of host species, which 
could inform about the type of conditions that are 
suitable or unsuitable for a pathogen. However, the 
fact that this latter set of information will be scarce 
in real applications highlights the utility of our 
protocols in exploring signals of niche in pathogens. 
We note that a topic of current interest is that of co-
infections of multiple pathogen species (Collinge and 
Ray 2006)—although the current implementation of 
our methods is in terms of single pathogen species, 
a clear potential extension is that of simultaneous 
evaluation of environmental bias in distributions of 
multiple pathogen species.

Although we have presented these protocols in 
the context of tests for pathogen infections in host 
organisms, as mentioned in the Introduction, these 
methods can be useful in any situation in which (1) 
the entire universe of sampling can be characterized, 
and (2) the set of positive records will be a strict 
subset of that universe of sampling. This situation 

Comparison Variable
Pathogen niche 

mean vs null 
distribution

Pathogen niche median 
vs null distribution

Pathogen niche SD 
vs null distribution

Pathogen niche range 
vs null distribution

Scenario 1
Temperature – – – –
Precipitation – – – –

Scenario 2
Temperature – – lower lower
Precipitation higher higher – –

Scenario 3
Temperature lower lower lower lower
Precipitation – – lower lower

Scenario 4
Temperature lower lower lower lower
Precipitation – – lower lower

Scenario 5
Temperature higher higher lower lower
Precipitation higher higher – –

Scenario 6
Temperature – – lower –
Precipitation higher – – lower

Scenario 7
Temperature – – – –
Precipitation – – – –

Table 2. Summary of results derived from univariate niche comparisons. Comparisons identified as higher or lower were 
statistically significant (i.e., observed values from the pathogen were as extreme or more extreme than the central 95% 
of the null distribution).         
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would be manifested in cases such as an analysis 
based on a single sampling protocol (e.g., data from 
the U.S. Breeding Bird Survey; Sauer et al. 2013), 
or deriving from a single-investigator sampling 
protocol (e.g., regional trapping of insects, such that 
trap positions are known completely; Sciarretta and 
Trematerra 2014). As such, this set of approaches 
can be considered as a precursor to formal ecological 
niche modeling, testing at the outset whether any 
nonrandom environmental use (= ecological niche) 
is manifested by that species, at that extent, at that 
resolution, and in those environmental dimensions.
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