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Abstract. Here, we present the new R package “enmpa,” which includes a range of tools for modeling ecological 
niches using presence-absence data via logistic generalized linear models. The package allows users to cali-
brate, select, project, and evaluate models using independent data. We have emphasized a comprehensive search 
for ideal predictor combinations, including linear, quadratic, and two-way interaction responses, to provide 
more detailed and robust model calibration processes. We demonstrate the use of the package with an example 
of a simulated pathogen and its niche. Since enmpa is designed specifically to work with presence-absence 
data, our tools are particularly useful for studies with data derived from a detection or non-detection sampling 
universe, such as pathogen testing results. enmpa can be downloaded from CRAN, and the source code is freely 
available on GitHub.
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Introduction
Ecological niche modeling (ENM), often also 

referred to as species distribution modeling (SDM), 
constitutes a range of analytical methods employed 
extensively in ecological research (Guisan and 
Zimmermann 2000; Franklin 2010; Peterson et al. 
2011). These methods have been proven particularly 
useful in characterizing and predicting Grinnellian 
(abiotic or non-interactive) ecological niches of 
species. Applications of these methods span various 
fields, including conservation planning (Franklin 
2013; Hannah et al. 2020), climate change impact 
assessment (Searcy and Shaffer 2016; Blowes et 
al. 2019), potential biological invasions (Jiménez-
Valverde et al. 2011; Park and Potter 2015; Cordier et 
al. 2020), and disease risk mapping (Peterson 2014). 

Several modeling methods are available within 
the ENM framework, which can be classified by the 
types of data that they use: presence-only, presence 

and background (or “pseudoabsence”), and presence-
absence data (Elith et al. 2006; Peterson et al. 2011). 
More generally, methods for ENM fall into three 
broad categories: ‘profile,’ ‘regression,’ or ‘machine-
learning.’ Profile methods consider presence data 
only. Regression and machine-learning methods use 
both presence-absence or presence-background data.

An essential consideration in ecological studies is 
understanding the meaning of the outputs generated 
by algorithms. A common objective of these studies 
is to model the probability of presence of a particular 
species of interest. However, it is crucial to note 
that estimating probabilities of occurrence requires 
rigorous comparisons of presence and absence data 
(Ward et al. 2009). Modeling applications that utilize 
presence-only data can, at best, estimate relative 
suitability (Ferrier et al. 2002). Although availability 
of occurrence data poses a significant challenge in 
ecological niche modeling, biodiversity data-portals 
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like the Global Biodiversity Information Facility 
(GBIF) can serve as valuable sources of occurrence 
data records, at least potentially including presences 
and absences. 

Among the different modeling methods that are 
used in ENM, generalized linear models (GLMs), 
an extension of classical multiple regression, have 
yielded reliable results in ecological research in 
estimating probability of occurrence of species  
(Guisan et al. 2002; Bolker et al. 2009; Rupprecht 
et al. 2011; Ghanbarian et al. 2019). Determination 
of species’ responses to environmental gradients is 
of particular interest for most biological questions 
in ENM, which is given by the shapes of response 
curves (Guisan et al. 2002; Oksanen and Minchin 
2002; Austin 2007; Santika and Hutchinson 
2009). Fitting GLMs via a logistic link function 
for presence-absence binomial data offers results 
approximating Gaussian curves according to the 
principles of ecological niche theory (Austin 2007; 
Santika and Hutchinson 2009). However, response 
curves in GLMs may be inappropriate or unrealistic 
when models are not tuned adequately (Austin et al. 
1990).

It is crucial to explore and determine appropriate 
parameter settings for models, instead of simply 
using default settings (Warren and Seifert 2011). 
This task can be accomplished through model 
calibration and selection processes (Radosavljevic 
and Anderson 2014; Hao et al. 2020). Models 
resulting from calibration exercises help to describe 
the phenomenon of interest better while achieving a 
robust fit to the data, high predictive performance, 
and generalizable model terms (Cobos et al. 2019a). 
To our knowledge, well-defined tuning routines 
have yet to be developed for GLMs in ENM, unlike 
methods like Maxent (Phillips et al. 2006; Muscarella 
et al. 2014; Phillips et al. 2017; Cobos et al. 2019a).

To bridge this methodological gap (GLM 
tuning routines for ENM), we introduce the enmpa 
R package (R Core Team 2022). This package is 
designed to refine the calibration and parameter 
tuning processes, offering a solution to the challenges 
in modeling robust ecological niches with presence-
absence data. Via enmpa, we explore the entire range 
of possible model configurations to identify the most 
suitable and practical parameterizations for ENMs. 

Package Descripton
The enmpa R package provides a set of tools to 

automate various ENM steps using logistic regressions 

via GLMs, focusing on fitting linear and quadratic 
relationships and multiplicative interactions between 
predictors. The response (dependent) variable is a set 
of presence and absence records, and the predictor 
(independent) variables can be defined according 
to the question (e.g., bioclimatic variables). Major 
steps enabled via enmpa include model calibration 
(candidate model fitting and evaluation), model 
selection, model transfers, and model evaluation 
with independent data. 

Data required
The input data required consist of presence-

absence records associated with values of the 
independent variables. The dependent variable is 
the set of presence-absence observations. The data 
must be structured as a data.frame in R to ensure the 
proper functioning of the package. Raster layers are 
required if model predictions need to be done for 
geographic areas of interest. 

Exploration of variables for models
We adapted methods developed by Cobos 

and Peterson (2022) to identify relevant variables 
for characterizing species’ ecological niches. 
These methods include two complementary 
statistical analyses: (1) a multivariate approach 
based on a permutational multivariate analysis of 
variance (PERMANOVA) (Anderson 2017) and 
(2) a univariate non-parametric method based on 
descriptive statistics and randomizations. These 
methods are designed to allow characterizations 
of signals of ecological niches while considering 
the sampling universe explicitly. As enmpa uses 
presence-absence data through logistic regression, 
we consider it appropriate to implement this 
method as a potential variable selection step prior 
to modeling. Together with proper considerations of 
variable biological relevance, this step can help to 
reduce initial numbers of predictors considered for 
ENM analysis (Cobos et al. 2019b).

Model calibration
The model calibration step aims to determine 

which combination of parameter settings best 
represents the phenomenon of interest via exploration 
of performance metrics that characterize how well 
models fit the data (Steele and Werndl 2013). The 
tools in enmpa automate a process that includes three 
main steps: (1) fitting candidate models with distinct 
parameter settings, (2) evaluating their performance,  
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and (3) selecting the most robust candidates based on 
predefined criteria.

Candidate model fitting
In this package, we propose exploring distinct 

parameter settings by producing multiple model 
formulas to fit models to the data. These formulas 
derive from combinations of predictors that can be 
obtained using the original independent variables and 
response types: linear (l), quadratic (q), and product 
(p). This approach allows exhaustive exploration 
of all possible combinations of predictors, enabling 
a detailed analysis of the entire predictor setting 
space (Cobos et al. 2019b). Users can produce all 
these formulas manually or use functions in enmpa 
designed to automate the process considering two 
main inputs: variable names and response types. 
Users can also define the permutation strategy to 
create formulas according to the desired level of 
intensiveness in exploring setting options (e.g., only 
increasing complexity of variable combinations, or 
all independent and combinatorial options).

Candidate model evaluation
To evaluate candidate models, we use three 

complementary approaches. The first tests 
predictive power using a k-fold cross-validation 
approach (Hastie et al. 2009). The original dataset 
is partitioned into k subsets (folds) aiming for equal 
size and maintaining the original prevalence (ratio of 
presences and absences). The algorithm performs k 
iterations of training, in which each iteration uses k 
- 1 folds for training and keeps one fold for testing. 
This process evaluates model discrimination and 
classification capacities. 

Discrimination is measured using the area under 
the receiver operating curve (ROC-AUC), a non-
threshold dependent metric used, in our case, solely 
to detect models that perform better than random 
expectations (Lobo et al. 2008). Classification ability 
is measured via several metrics deriving from an 
estimated confusion matrix, including sensitivity, 
specificity, accuracy, false positive rate, and true skill 
statistic (TSS), all of them according to three thresholds 
(i.e., equal sensitivity and specificity, sensitivity of 
90%, and maximum TSS) (Fielding and Bell 1997; 
Manel et al. 2001; Allouche et al. 2006; Liu et al. 
2011). Means and standard deviations of these metrics 
are calculated to summarize the model’s predictive 
performance and help to select the best models.

The second approach uses the Akaike 

Information Criterion (AIC) (Akaike 1998; Warren 
and Seifert 2011; Warren et al. 2014) to assess model 
goodness-of-fit, accounting for model complexity. 
This metric offers a relative quality measure to other 
candidate models based on the same dataset with 
different parameters. AIC increases with information 
loss, so the best model for a set of occurrence 
data is the one with the lowest AIC. To compare 
AIC values of multiple models directly, we also 
calculate ΔAIC (Wagenmakers and Farrell 2004) 
by subtracting the AIC of the best model (the one 
with the lowest AIC) from the AIC of each model 
being compared, as follows: ΔAICi = AICi − AICmin. 
A ΔAIC of 0 indicates that the model in question is 
the best model; models with ΔAIC values ≤2 have 
substantial support, and can be considered almost 
as good as those with the lowest AIC. Subsequently, 
Akaike weights are derived from ΔAIC for model 
averaging, representing a model’s relative likelihood: 
Akaike weight (Wi) is calculated as an exponent of 
the negative half of its ΔAIC value, and the relative 
likelihoods are normalized so that their sum across 
all models compared equals 1. This later step is 
achieved by dividing the relative likelihood of each 
model by the sum of the relative likelihoods for all 
models, producing the Akaike weight for each model. 
We note that the implementation of AIC calculations 
for GLM consider models goodness-of-fit, whereas 
that for maxent, which has seen considerable use, 
AIC is based on the model predictions (Warren and 
Seifert 2011).

Finally, enmpa incorporates an extra evaluation 
step involving analyzing the response curves of 
quadratic terms. Quadratic features are optimal in 
studies of responses of species to variable gradients, 
and fit well with ecological niche theory (Austin 2007; 
Santika and Hutchinson 2009). However, a limitation 
of quadratic features is that they can be concave 
upward, yielding a bimodal response, which does not 
fit well with theory (Austin 2007). By investigating 
the coefficients of a second-degree equation (y = β0 
+ β1x + β2x

2), we can infer the shape of the curve. A  
positive β2 suggests a U-shaped bimodal curve, while 
a negative β2 suggests a Gaussian-shaped unimodal 
curve. As such, we implemented a filter to retain 
only those candidate models in which any quadratic 
responses are β2-negative.

Model selection
To choose the best candidate models, we follow 

a set of criteria, which are prioritized as follows: (1) 
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we only consider models with ROC-AUC > 0.5; 
(2) from among such models, we only keep those 
that have an acceptable predictive ability (TSS ≥ 
0.4); and (3) from among all the models passing 
the first two filters, we chose those with good fitting 
and appropriate complexity, those with ΔAIC ≤ 2 
(Burnham and Anderson 1998).

In addition, enmpa includes an optional filter that 
takes into account the shape of quadratic response 
curves. Users have the option to consider only models 
with predictors that have unimodal responses. If 
this filter is used, it is applied before the first three 
filters. Even if the bimodal response of species could 
have interesting and meaningful interpretations, it is 
tricky to determine optima and understand species’ 
tolerances, which need to be evaluated individually 
for particular species. Therefore, we recommend 
considering only models with unimodal or monotonic 
responses.

Variable contribution and response curves
Variable contribution and analysis response 

curves are model outputs with practical relevance to 
researchers interested in interpreting model outputs. 
Two well-established methods for determining the 
importance of predictor variables in GLMs are used 
to evaluate the individual contributions of variables 
(Murray and Conner 2009) and visualize predicted 
responses of species to specific predictor variables 
(Elith et al. 2005).

A response curve represents the relationship 
between the probability of occurrence of a species 
(dependent variable) and environmental variables 
(independent variables) included in the model. This 
curve describes the predicted probabilities across a 
range of values for a given environmental variable. 
The enmpa package calculates the probabilities along 
a single environmental gradient to estimate response 
curves while holding all other gradients constant at 
their mean values  (Elith et al. 2005). 

To identify the most relevant predictors in our 
models, we use a variable contribution analysis 
based on the deviance explained by predictors 
relative to the complete model deviance (Guisan and 
Zimmermann 2000; Clouvel et al. 2023). Deviance is 
a measure of the model’s lack of fit, so a decrease in 
deviance indicates an improvement in model fit when 
a predictor variable is included. To assess predictor 
importance, then, we implemented the following 
procedure: (1) a GLM including all predictors is 

fitted; (2) the initial deviance is calculated; (3) each 
predictor is removed iteratively from the model, and 
a new deviance is calculated; (4) the decrease in 
deviance after adding each predictor is calculated; (5) 
the decrease in deviance is normalized and expressed 
as a ratio; and (6) predictors are ranked based on how 
they help to decrease model deviance: variables with 
higher ratios are considered more important for the 
model.

Model projections
The enmpa package facilitates transferring 

selected models to different areas or scenarios, 
with three options: free extrapolation, extrapolation 
with clamping, and no extrapolation. These options 
are available for all variables or for just selected 
variables. When using free extrapolation, predictions 
will follow the response patterns when variable 
values are outside the ranges of the environmental 
data under which models were calibrated. In contrast, 
extrapolation with clamping limits the response to 
the level manifested at the boundaries of calibration 
values.

Model consensus
One way of selecting a model is to choose the 

“best” one for the data based on one or a set of 
predictive performance metrics (Elith et al. 2006). 
However, an alternative method is to use a consensus 
of models (Thuiller 2003; Qiao et al. 2015). Consensus 
approaches may provide more robust predictions by 
leveraging the general agreement among models 
with similar performance. A consensus result can be 
calculated as the mean, median, or weighted average 
of any set of models. Mean and median results are 
calculated using the predictions of all selected 
models, whereas a weighted average is calculated 
using these predictions and the AIC weights for each 
model. Models with higher AIC weights contribute 
more to the consensus when the weighted average 
option is used.

Model evaluation with independent data 
Ideally, the final model should be evaluated using 

independent test data, although it is often challenging 
to find data independent from those used to create 
the models (Araújo and Guisan 2006; Peterson et 
al. 2011). In cases in which independent data are 
available, enmpa facilitates evaluation of final model 
predictions. Users can provide presence-absence or 
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Functions Group Description

niche_signal & plot_
niche_signal 

Analysis/ 
Visualization

This implementation determines the detectability of a niche signal by analyzing one or 
multiple variables. It is based on the methodologies introduced by Cobos & Peterson 
(2022), specifically tailored for discerning niche signals in presence-absence data. 
A niche signal is defined as the non-random pattern in species detection concerning 
environmental dimensions, taking sampling into account. The accompanying function 
generates plots to facilitate interpreting results obtained from niche_signal tests.

get_formulas Analysis Provides a simple and efficient way to create a comprehensive set of standardized 
GLM formulas for statistical models. With this function, users can explore the entire 
range of formula combinations. It considers the following feature classes: linear (l), 
quadratic (q), and product (p) responses.

model_validation Analysis Evaluates a GLM model using an entire data set or with a k-fold cross-validation 
procedure. Models are assessed based on discrimination ability  (ROC-AUC), 
classification capability (FPR, accuracy, sensitivity, specificity, and TSS), and the 
balance between goodness-of-fit and complexity (AICc).

optimize_metrics Analysis Finds threshold values to produce three optimal metrics. The metrics true skill statistic 
(TSS), sensitivity, and specificity are explored by comparing actual vs predicted 
values to find threshold values that produce sensitivity = specificity, maximum TSS, 
and a sensitivity value of 0.9.

calibration_glm Analysis Wrapped function that automates and simplifies the exploration, fitting, evaluation, 
and selection of robust models in the entire parameter space.

fit_selected & predict_
selected

Analysis The initial function streamlines the process of fitting numerous generalized linear 
models (GLMs), while the subsequent function aids in forecasting the chosen 
models across diverse time frames or geographic areas. Within the predict_selected 
function,two options, clamping and no extrapolation, are integrated to mitigate 
potential undesired extrapolation effects when fresh data extends beyond the calibrated 
range of the model. Furthermore, this tool can construct consensus models derived 
from the predicted models. This consensus is formed by employing statistical metrics 
such as mean, median, or weighted mean.

var_importance & plot_
importance

Analysis/ 
Visualization

The initial function computes the relevance of predictor variables based on explained 
deviance. The second function generates straightforward graphics demonstrating 
the outcomes for single or multiple models. These visuals represent the relative 
importance of each predictor variable within a model, facilitating a comparison of 
their contributions across various models.

response_curve Visualization Visualization of the response of a variable based on a single model or multiple models. 
It illustrates the probabilities of species presence across a diverse range of values for 
a specific environmental variable. This visualization enhances understanding of how 
species occur as a function of the environmental conditions captured by the variable.

independent_eval1 & 
independent_eval01

Analysis These functions evaluate models using independent datasets, generating tailored 
metrics for the specific occurrence data available. For presence-only data, the 
evaluation includes partial ROC and omission error metrics. For presence-absence 
data, it focuses on the AUC-ROC curve and classification capability, assessed through 
a confusion matrix and three threshold criteria: maxTSS, ESS, and SEN90.

Table 1. Description of the main functions included in the R package enmpa.
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presence-only records for this evaluation. Evaluation 
in cases involving presence-only data includes 
partial ROC and omission error (E) metrics (Cobos 
et al. 2019a). For presence-absence data, the metrics 
returned are the ROC AUC, sensitivity, specificity, 
accuracy, false positive rate, and true skill statistic 
(TSS), and for three thresholds (maximum TSS, 
equal sensitivity and selectivity, and a value that 
ensures a sensitivity of 90%).

Example Application
Here, we provide a guide on how to use enmpa, in the 
form of a worked example. This example includes the 
processes of variable exploration, model calibration 
and selection, transfers to specific areas and scenari-
os of interest, and post-modeling analyses. The code 
required to reproduce this example can be found in 
a GitHub repository (available at https://github.com/
Luisagi/enmpa_test). The presence-absence data, 
raster layers, and an independent test dataset used in 
these examples are included in the package (available 
at https://CRAN.R-project.org/package=enmpa).

Data
The example data include 500 presence records 

of a virtual pathogen detected in a total of 5627 virtu-
al host samples (i.e., 5127 absences), for a prevalence 
of 8.9%. The example data was generated based on 
ellipsoidal virtual niches for the host and the patho-
gen using the package evniche (https://github.com/
marlonecobos/evniche) in R v4.2.2 (R Core Team 
2022). The pathogen was designed to have a high-
er prevalence towards warm and dry environmental 
conditions. Example data to illustrate independent 
tests were generated the same way but during a pos-
terior set of analyses. The environmental data related 
to occurrence records were extracted from raster lay-
ers (resolution = 10 arc-minutes) that represent two 
Bioclimatic variables (annual mean temperature and 
annual precipitation, BIO-1 and BIO-12), from the 
WorldClim database v2.0 (Fick and Hijmans 2017). 
The two datasets associated with environmental val-
ues are included as part of example data in enmpa.

Analysis
Variable exploration for niche signal detection.-

-We started with exploratory analyses to detect 
whether the environmental variables can describe the 
niche of the virtual pathogen (Cobos and Peterson 
2022). We conducted the two tests (multivariate and 
univariate approaches) to assess whether the position 

and spread of the pathogen niche differed from 
those of the host, considering the two environmental 
variables in the example. 

Calibration and model selection.--In all 31 
candidate models were created using combinations 
of the two environmental variables, with linear, 
quadratic, and product responses. Each model was 
tested for model complexity (AIC) using the whole 
dataset and with a k-fold cross-validation (k = 5) to 
evaluate its performance in terms of discrimination 
(ROC-AUC) and classification capacity (false 
positive rate, accuracy, sensitivity, specificity, and 
TSS). The classification metrics were based on 
three relevant thresholds: equal sensitivity and 
specificity (ESS), the sensitivity of 90% (SEN90), 
and maximum TSS (maxTSS). The best models were 
selected according to enmpa criteria: only models 
with only convex quadratic responses were assessed, 
then, models with ROC-AUC > 0.5 were retained, 
and after that, only models with a good classification 
capacity (TSS > 0.4) were selected. Finally, only the 
models with ΔAICc values ≤ 2 were chosen as the 
final selected models. 

Post-modeling analyses.--We analyzed the 
contributions of predictors to the model and explored 
variable response curves for each model and the 
consensus results. Projections to the 48 contiguous 
United States were produced for all models selected 
using the aforementioned criteria. We produced 
model projections in conditions outside calibration 
ranges allowing for free extrapolation, extrapolation 
with clamping, and no extrapolation. We used three 
approaches to generate consensus results: mean, 
median, and weighted average. To represent model 
variability, we also calculated the variance among 
selected models. Finally, the independent data 
were used to evaluate the models selected and the 
consensus results. 

Example results
Both tests for environmental sensitivity 

consistently performed well for the two bioclimatic 
variables for the virtual pathogen case. Multivariate 
analysis based on PERMANOVA effectively detected 
niche dissimilarities between the pathogen and host, 
with the pathogen niche forming a subgroup nested 
within the host niche (Fig. A1 of Appendix). Using 
the mean as the comparison metric for the univariate 
non-parametric test, we found that the pathogen 
niche was shifted towards high temperature and 

https://github.com/Luisagi/enmpa_test
https://github.com/Luisagi/enmpa_test
https://cran.r-project.org/package=enmpa
https://github.com/marlonecobos/evniche
https://github.com/marlonecobos/evniche
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lower precipitation values. Comparisons using the 
standard deviation showed that the pathogen niche 
was narrower than the host niche in both variables 
(Fig. A2 of Appendix).

After model calibration, eight models were 
excluded because they presented concave quadratic 
responses. The remaining 23 models met the next 
criterion with a ROC-AUC larger than 0.5 (Table 

2). Of these models, 19 performed well, with a TSS 
larger than 0.4. Finally, only two models met all of 
the evaluation criteria regarding discrimination, 
prediction ability, and fitting considering complexity 
(ΔAIC ≤ 2). 

Response curves for the two climatic variables 
presented a well-defined Gaussian shape (Fig. 
1). The peak probability for BIO-1 occurs at 

ID Models Threshold ROC-AUC Sensitivity Specificity TSS AICc Δ AIC Wi Bimodality

1 B1 0.07 ± 0.01 0.87 ± 0.02 0.86 ± 0.02 0.73 ± 0.04 0.59 ± 0.03 2509.56 323.88 0.00

2 B12 0.09 ± 0.02 0.69 ± 0.03 0.76 ± 0.16 0.54 ± 0.18 0.30 ± 0.05 3164.57 978.89 0.00

3 I(B1^2) 0.06 ± 0.01 0.86 ± 0.02 0.86 ± 0.03 0.73 ± 0.03 0.58 ± 0.03 2599.64 413.96 0.00 I(B1^2)

4 I(B12^2) 0.10 ± 0.02 0.69 ± 0.03 0.76 ± 0.16 0.54 ± 0.18 0.30 ± 0.04 3191.21 1005.53 0.00

5 B1:B12 0.09 ± 0.00 0.65 ± 0.03 0.71 ± 0.09 0.58 ± 0.11 0.29 ± 0.04 3373.98 1188.30 0.00

6 B1 + B12 0.08 ± 0.01 0.90 ± 0.02 0.85 ± 0.03 0.82 ± 0.03 0.67 ± 0.04 2334.00 148.32 0.00

7 B1 + I(B1^2) 0.07 ± 0.02 0.87 ± 0.02 0.87 ± 0.03 0.73 ± 0.05 0.60 ± 0.03 2464.79 279.11 0.00

8 B1 + I(B12^2) 0.09 ± 0.01 0.90 ± 0.02 0.84 ± 0.03 0.83 ± 0.03 0.68 ± 0.04 2308.20 122.52 0.00

9 B1 + B1:B12 0.08 ± 0.01 0.90 ± 0.02 0.85 ± 0.03 0.82 ± 0.04 0.67 ± 0.04 2370.91 185.23 0.00

10 B12 + I(B1^2) 0.08 ± 0.00 0.90 ± 0.02 0.85 ± 0.04 0.82 ± 0.01 0.66 ± 0.05 2431.46 245.78 0.00 I(B1^2)

11 B12 + I(B12^2) 0.09 ± 0.03 0.69 ± 0.03 0.76 ± 0.16 0.54 ± 0.18 0.30 ± 0.05 3163.68 978.00 0.00 I(B12^2)

12 B12 + B1:B12 0.10 ± 0.02 0.89 ± 0.02 0.82 ± 0.03 0.82 ± 0.03 0.65 ± 0.06 2289.81 104.13 0.00

13 I(B1^2) + I(B12^2) 0.08 ± 0.01 0.90 ± 0.02 0.84 ± 0.04 0.83 ± 0.03 0.67 ± 0.05 2411.86 226.18 0.00 I(B1^2)

14 I(B1^2) + B1:B12 0.07 ± 0.01 0.90 ± 0.02 0.86 ± 0.04 0.80 ± 0.04 0.67 ± 0.04 2500.62 314.94 0.00 I(B1^2)

15 I(B12^2) + B1:B12 0.11 ± 0.01 0.90 ± 0.02 0.84 ± 0.03 0.84 ± 0.03 0.68 ± 0.04 2282.01 96.33 0.00

16 B1 + B12 + I(B1^2) 0.09 ± 0.02 0.90 ± 0.02 0.86 ± 0.04 0.81 ± 0.04 0.68 ± 0.04 2257.71 72.03 0.00

17 B1 + B12 + I(B12^2) 0.09 ± 0.01 0.90 ± 0.02 0.85 ± 0.04 0.83 ± 0.03 0.68 ± 0.04 2295.67 109.99 0.00

18 B1 + B12 + B1:B12 0.10 ± 0.01 0.89 ± 0.02 0.82 ± 0.03 0.83 ± 0.03 0.65 ± 0.05 2281.90 96.22 0.00

19 B1 + I(B1^2) + I(B12^2) 0.10 ± 0.02 0.90 ± 0.02 0.85 ± 0.05 0.83 ± 0.03 0.68 ± 0.04 2227.10 41.42 0.00

20 B1 + I(B1^2) + B1:B12 0.09 ± 0.02 0.89 ± 0.01 0.86 ± 0.04 0.81 ± 0.03 0.67 ± 0.03 2287.32 101.64 0.00

21 B1 + I(B12^2) + B1:B12 0.10 ± 0.01 0.90 ± 0.02 0.83 ± 0.04 0.85 ± 0.03 0.68 ± 0.04 2243.06 57.38 0.00

22 B12 + I(B1^2) + I(B12^2) 0.08 ± 0.00 0.90 ± 0.02 0.84 ± 0.04 0.84 ± 0.03 0.68 ± 0.04 2407.17 221.49 0.00 I(B1^2)

23 B12 + I(B1^2) + B1:B12 0.10 ± 0.02 0.89 ± 0.02 0.83 ± 0.03 0.82 ± 0.03 0.65 ± 0.06 2291.80 106.12 0.00 I(B1^2)

24 B12 + I(B12^2) + B1:B12 0.10 ± 0.00 0.89 ± 0.02 0.84 ± 0.04 0.82 ± 0.01 0.66 ± 0.05 2241.64 55.96 0.00

25 I(B1^2) + I(B12^2) + B1:B12 0.11 ± 0.01 0.90 ± 0.02 0.83 ± 0.03 0.84 ± 0.03 0.68 ± 0.04 2268.56 82.88 0.00 I(B1^2)

26 B1 + B12 + I(B1^2) + I(B12^2) 0.11 ± 0.02 0.90 ± 0.02 0.85 ± 0.04 0.83 ± 0.03 0.68 ± 0.04 2212.31 26.63 0.00

27 B1 + B12 + I(B1^2) + B1:B12 0.09 ± 0.01 0.90 ± 0.02 0.86 ± 0.02 0.80 ± 0.02 0.67 ± 0.04 2226.49 40.81 0.00

28 B1 + B12 + I(B12^2) + B1:B12 0.10 ± 0.01 0.90 ± 0.02 0.84 ± 0.04 0.82 ± 0.02 0.66 ± 0.05 2237.05 51.37 0.00

29* B1 + I(B1^2) + I(B12^2) + 
B1:B12 0.10 ± 0.02 0.90 ± 0.02 0.86 ± 0.04 0.82 ± 0.03 0.68 ± 0.04 2186.70 01.02 0.38

30 B12 + I(B1^2) + I(B12^2) + 
B1:B12 0.10 ± 0.01 0.89 ± 0.02 0.84 ± 0.05 0.82 ± 0.02 0.66 ± 0.05 2243.56 57.88 0.00

31* B1 + B12 + I(B1^2) + I(B12^2) 
+ B1:B12 0.10 ± 0.02 0.90 ± 0.02 0.86 ± 0.04 0.83 ± 0.02 0.68 ± 0.04 2185.68 0.00 0.62

Table 2. Model calibration summary. The table displays the evaluation of the main metrics for the 31 candidates evaluated 
using a cross-validated k-fold (k = 5) analysis. The most robust models selected using three criteria implemented in enmpa 
are indicated in bold. ROC-AUC, sensitivity, specificity, and TSS values are presented as mean ± SD. Threshold values 
were estimated based on the maximum TSS criteria. The bimodality column displays the predictors that demonstrate a 
concave response curve. The name of variables was shortened as follows B = BIO. * Best models based on the selection 
criteria.



Arias-Giraldo et al. – enmpa

35

Figure 1. Bioclimatic variable response and importance across models. The upper half illustrates the response curves of the species to 
variables BIO-1 (annual mean temperature ºC) and BIO-12 (Annual precipitation mm) across the two best models (ID 29 and ID 31), 
and the vertical dashed lines mark environmental limits of the calibration data. The lower half of the figure shows a boxplot detailing 
the distribution of variable importance values among selected models and highlighting the variability and median importance of pre-
dictors. The importance of variables, measured by explained deviance, incorporates linear, quadratic terms (denoted as I(var^2)) and 
two-way interaction. The y-axis represents the importance values, with boxplots delineating the interquartile range and median value. 
The frequency of predictor inclusion across models is also noted, providing insight into their relevance for models.
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around 20ºC, whereas for BIO-12, the maximum 
probability was observed for values below 500 
mm. Extrapolation of these curves to values outside 
calibration ranges showed decreasing probabilities, 
indicating safe model extrapolations rather than 
perpetual increments of probability towards extreme 
environmental conditions.

Variable importance analysis highlighted the 
linear term of BIO-1 and the quadratic terms of both 
variables as the most relevant predictors (Fig. 1). 
The interaction between variables, along with the 
linear component of BIO-12, were found to be less 
relevant. Despite their minor contribution, models 
incorporating these predictors were selected based 
on their superior goodness of fit compared to models 
excluding them.

The geographic predictions of the two selected 
models showed consistent patterns, with higher 
probability values in the southwestern parts of the 
United States (Fig. 2). However, some discrepancies 

were noted in Florida, where one model estimates 
higher probability values than the other (Fig. 3). The 
effects of distinct types of extrapolation were minor 
and mainly noticeable in Florida (Figs. 2, 3, Fig. A3 
of Appendix). Independent data validation confirmed 
the comparable performance of all projected models, 
although with slightly different threshold values 
estimated for each model (Tables 3 and Table A1 of 
Appendix).

Discussion
Understanding how species are distributed in dif-

ferent environments and predicting how species will 
respond to changes is crucial in research in ecology. 
Ecological niche modeling helps in this task, and this 
contribution introduces enmpa, an R package that 
facilitates calibration of ecological niche models via 
GLM. The package integrates a set of complex meth-
odological developments in the ENM field, using lo-
gistic GLMs to estimate the probability of a species 

Figure 2. Geographic depiction of estimated probability of occurrence for the pathogen virtual species deriving from the two final 
selected models allowing free extrapolation. Maps are shown at a spatial resolution of 10’ (~20 km at the Equator).
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Figure 3. Consensus geographic projection of probability of occurrence for the pathogen virtual species allowing free extrapolation. 
The figure displays the probability of occurrence derived from the two final selected models using averaging metrics: mean, 
median, and weighted average based on Akaike weights. In this example, since the averaging is calculated from two models, the 
median coincides with the mean. The figure displays the variance among the three consensus projections. The maps are shown at a 
spatial resolution of 10‘ (~20 km at the Equator).

Model Threshold 
criteria Threshold ROC-AUC False positive 

rate Accuracy Sensitivity Specificity TSS

ID 29 ESS 0.140 0.957 0.090 0.910 0.909 0.910 0.819
maxTSS 0.117 0.957 0.101 0.910 1.000 0.899 0.899
SEN90 0.131 0.957 0.101 0.900 0.909 0.899 0.808

ID 31
ESS 0.158 0.957 0.090 0.910 0.909 0.910 0.819
maxTSS 0.135 0.957 0.101 0.910 1.000 0.899 0.899
SEN90 0.144 0.957 0.101 0.900 0.909 0.899 0.808

Consensus 
(weighted 
average)

ESS 0.150 0.957 0.090 0.910 0.909 0.910 0.819
maxTSS 0.127 0.957 0.101 0.910 1.000 0.899 0.899
SEN90 0.139 0.957 0.101 0.900 0.909 0.899 0.810

Table 3. Evaluation of the two selected models and the consensus using an independent data set with presence and absence records. 
The classification capacities of the final prediction were calculated using the confusion matrix based on three threshold criteria.

occurring in a particular environment (Austin 2002, 
2007; Ward et al. 2009). The tools developed in this 
package are particularly interesting for studies that 
involve data derived from detection/non-detection 
sampling protocols, such as pathogen test results, 
detections of species on controlled-protocol surveys, 
etc. Absence of a species is difficult to demonstrate 
because there are multiple reasons and circumstanc-
es that can lead not to detect a species (Mackenzie 
2005; Feng and Papeş 2017). However, when the 
sampling protocol is controlled (e.g., sampling effort 
and methods are comparable) non-detections are a 

valuable source of information in characterizing en-
vironments that are favorable or not for the occur-
rence of a species (Cobos and Peterson 2022). These 
non-detections are precisely what enmpa can use as 
absence records, which together with presences can 
help to develop more robust models.

The package enmpa runs most analyses using 
data prepared by the users as a “data.frame” that con-
tains presence-absence records associated with val-
ues of environmental variables. The steps of model 
fitting, training, and testing do not require variables 
as raster layers, which are only needed if mode geo-
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graphic predictions are to be produced. Therefore, 
raster layer resolution has few implications in the 
functionality of enmpa, which makes it computa-
tionally efficient. One of the most notable features of 
enmpa is that it allows users to explore a wide range 
of predictor combinations in a GLM framework to 
find the set of combinations that better fit the data 
and explain the phenomenon of study. Focusing on 
exploring different predictor features, including lin-
ear, quadratic, and two-way interaction responses, 
enabling a detailed analysis of the entire parameter 
space (Cobos et al. 2019b).

Apart from the functionalities corresponding to 
the main steps in ENM, enmpa implements two nov-
el methods that allow users to select variables based 
on niche signal detection (Cobos and Peterson 2022) 
and filter those models with response shapes that do 
not align with ecological theory (Austin 2002, 2007; 
Peterson et al. 2011; Merow et al. 2014). The first 
method helps users to discard potentially non-rel-
evant variables before modeling, which prevents 
over-parameterization of models and makes the cal-
ibration step easier by avoiding exploring irrelevant 
predictor combinations that do not form part of the 
species’ niche (Cobos and Peterson 2022). Although 
forward, backward, or stepwise selection processes 
have been commonly used methods for selecting 
predictors in modeling (Efroymson 1960), they have 
been criticized for misapplication of a single-step sta-
tistical test in a multi-step procedure (Harrell 2001; 
Flom and Cassell 2007; Smith 2018). This problem 
may lead to the selection of nuisance variables or 
models that perform worse with independent data 
than in calibration (Smith 2018). 

The second method seeks to stay in line with 
the standard of niche theory, in which species’ 
fitness responds to environmental conditions with a 
unimodal response. Extreme environmental values 
lead to low fitness, while intermediate environmental 
values are optimal for the species (Jiménez-Valverde 
et al. 2011; Escobar 2020). However, the fitting of 
quadratic terms can be limited if insufficient sampling 
information is available and one extreme of the 
curve is not captured, which can lead to estimation 
of odd response shapes. Although bimodal responses 
of species to variables may have interesting and 
meaningful interpretations (e.g., indicating that a 
niche is incompletely represented by the data), they 
need to be evaluated in detail for particular species. 
Therefore, excluding quadratic predictors with 
bimodal behavior is crucial in most cases to avoid 

misleading conclusions. 
The example of a virtual pathogen species 

demonstrates the usefulness and effectiveness of 
enmpa. The meticulous steps involved in model 
calibration, selection, and evaluation, in combination 
with the consideration of response curves and 
variable contributions, collectively contributed to 
a refined understanding of the ecological niche of 
the virtual species. For example, the results suggest 
that the virtual pathogen would thrive in warmer 
climates with lower rainfall. The example also 
highlights the practicality and accuracy of enmpa in 
modeling species’ niches, when records derived from 
sampling protocols of detection and non-detection 
are available. 
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Appendix: Supplementary Figures and Tables

Figure A1. Results from niche comparison using PERMANOVA analysis. The figure on the left represents positive and neg-
ative records in the environmental space for BIO 1 and BIO 2. On the right, ellipsoids are derived from the data to explore 
and visualize the position and spread of host and pathogen niches. The p-value represents the statistical significance of the 
PERMANOVA test.

Figure A2: Visualization of the results obtained from the univariate non-parametric test for detecting signals of the virtual pathogen’s 
niche. The top-left and top-right panels depict the mean distribution of the niche position of the species about the null distribution 
for the BIO 1 and BIO 12 variables. Bottom-left and bottom-right panels depict the range of environmental conditions of the niche 
about the null distribution, as represented by the standard deviation (SD).  The vertical dotted blue lines signify the observed value 
associated with presences of the pathogen. The vertical dotted gray lines represent the lower and upper 95% confidence limits of the 
null distribution. The barplot histogram represents the null distribution.
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Figure A3: Geographic projections of the probability of occurrence for the virtual pathogen species, based on two final selected mod-
els and their weighted average consensus. The projections are displayed under two conditions: no extrapolation (NE) and extrapolation 
with clamping (EC). Each row represents different models (Model ID 29 and Model ID 31) and their weighted averages, with the left 
column showing NE conditions and the right column showing EC conditions. Maps are presented at a spatial resolution of 10' (~20 
km at the Equator).

Models Threshold criteria Threshold Omission 
error

Mean AUC ratio 
at 5% P-value pROC

ID 29

ESS 0.137 0.091 1.648 <0.0001

maxTSS 0.117 0.000 1.648 <0.0001

SEN90 0.131 0.091 1.648 <0.0001

ID 31

ESS 0.158 0.091 1.631 <0.0001

maxTSS 0.135 0.000 1.630 <0.0001

SEN90 0.144 0.091 1.636 <0.0001

Consensus 
(weighted average)

ESS 0.150 0.091 1.635 <0.0001

maxTSS 0.127 0.000 1.640 <0.0001

SEN90 0.139 0.091 1.640 <0.0001

Table A1. Evaluation of the two selected models and the consensus using an independent data set using presences-only data.


