
Biodiversity Informatics, 18, 2024, pp. 43-55

43

SPECIES DISTRIBUTION MODEL ACCURACY IS STRONGLY INFLUENCED 
BY THE CHOICE OF CALIBRATION AREA

Sergio Luna1, Alexander Peña-Peniche2,3 & Roberto Mendoza-Alfaro1*

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Ecofisiología, 
Nuevo León, México

2Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Biología de la 
Conservación y Desarrollo Sustentable, Nuevo León, México

3Centro de Investigación Científica de Yucatán, A. C., Unidad de Recursos Naturales, Mérida, Yucatán, 
México

*Corresponding author: Roberto Mendoza-Alfaro,
Email: roberto.mendoza@yahoo.com

Abstract. Species distribution models (SDM) are widely used tools in ecology and conservation aimed at pre-
dicting the potential distribution of a species based on its environmental requirements and occurrence data. 
SDM face many challenges and uncertainties that influence their accuracy. Selecting the ideal calibration area 
is one of these difficulties. This study analyzes the influence of the extent of the calibration area on the 
accuracy of SDM through simulations with virtual species. Using bioclimatic variables, 100 virtual species 
were gener-ated. Occurrence probabilities were determined based on environmental suitability, spatial 
sampling bias, and accessible areas. SDM were built using MaxEnt, varying size of calibration area, spatial 
filtering of occurrence records, predictor collinearity treatment, and regularization parameter. Model 
performance was assessed in terms of functional accuracy (true model accuracy) and discrimination 
accuracy (model ability to separate oc-currence from random sites). Results show that the extent of the 
calibration area was the most influential factor (explaining 50% of the variance in functional accuracy), while 
regularization multiplier, predictor collinearity, and spatial thinning had minimal impact (about 4% of 
explained variance combined). Overall, larger calibration areas generally led to higher functional accuracy, 
although it varies across species. The correlation between functional and discrimination accuracy was 
relatively low, indicating that models performing well in one metric may not excel in the other. In conclusion, 
this research advances the discussion on calibration area selection, providing insights on its substantial 
effects on model accuracy. Our findings demonstrate that the size of the calibration area is one of the most 
critical factors affecting the accuracy of models, surpassing the influence of other factors. These insights 
highlight the importance of select appropriate calibration areas to improve model predictions and ensure more 
reliable applications of the models.
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Introduction
Species distribution models (SDM) are widely 

used tools in ecology and conservation aimed at pre-
dicting the potential distribution of a species based 
on its environmental requirements and occurrence 
data (Peterson and Soberón 2012). SDM provide 
valuable information for assessing biodiversity pat-
terns (Weaver et al. 2006), identifying conservation 
priorities (Srinivasulu et al. 2021), evaluating cli-
mate change impacts (Brodie et al. 2022), and fore-

casting species invasions (Duque-Lazo et al. 2016). 
However, SDM also face many challenges and un-
certainties that may impair their reliability (see Sil-
lero et al. (2021) and Sillero and Barbosa (2021) for 
details). One significant challenge is the occurrence 
thinning process, which aims to reduce artificial clus-
tering in species occurrence records. While thinning 
is necessary to mitigate biases introduced by un-
even sampling efforts, it can also reduce the num-
ber of data points available for modeling, potential-
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ly affecting the model’s performance and accuracy 
(Veloz, 2009; Boria et al. 2014; Varela et al. 2014). 
Another critical challenge that significantly impacts 
model performance is managing multicollinearity 
among predictor variables. High levels of correlation 
between variables can lead to overfitting, where the 
model becomes excessively tailored to the training 
data, reducing its ability to generalize to new data. 
Additionally, multicollinearity can result in unreli-
able response curves, where the effect of one variable 
is confounded by its correlation with others, making 
it difficult to discern the true influence of each pre-
dictor (Dormann et al. 2013; De Marco and Nóbrega, 
2018; Feng et al. 2019). 

Furthermore, the challenge of selecting the ide-
al calibration area adds another layer of complexity, 
as it directly influences the geographic region where 
the model is calibrated using observed data (Macha-
do-Stredel et al. 2021). This is particularly important 
for some presence-background algorithms, such as 
Ecological Niche Factor Analysis (ENFA; Hirzel et 
al. 2002), Genetic Algorithm for Rule-set Production 
(GARP; Stockwell and Noble, 1992), and Maximum 
Entropy (MaxEnt; Phillips et al. 2006; Merow et al. 
2013), which are influenced by the selection of the 
calibration area. It is important to emphasize that 
while the selection of the calibration area is a critical 
challenge for some algorithms, not all methods face 
this problem (Sillero et al. 2021). For instance, Ma-
halanobis distance (Clark et al. 1993) and BIOCLIM 
(Booth et al. 2014) do not require a calibration area 
due to their focus on occurrence data.

Presence-background methods evaluate the en-
vironmental conditions across the study area (back-
ground) and compare them with the conditions where 
the species is found, as indicated by its occurrence 
records (Phillips et al. 2006; Merow et al. 2013). The 
choice of calibration area can significantly influence 
model accuracy, as different areas may have differ-
ent environmental conditions and sampling biases 
(Acevedo et al. 2012; Owens et al. 2013). The ideal 
calibration area is where the species is in equilibri-
um with its environment (Guisan and Zimmermann, 
2000). This means that the species has adapted to 
the current environmental conditions and as a re-
sult its distribution reflects these conditions (Araú-
jo and Pearson 2005; Barve et al. 2011). Under the 
Biotic-Abiotic-Mobility framework (BAM), the M 
fulfills this assumption (Soberon and Peterson 2005; 
Barve et al. 2011); however, for most species, its es-
timation is complicated (Acevedo et al. 2012). 

Despite its significance, there has yet to be a con-
sensus on how to select an appropriate calibration 
area, and different criteria and methods have been 
used in the literature (Machado-Stredel et al. 2021; 
Rotllan-Puig and Traveset 2021). Some approach-
es include selecting political regions, polygons, or 
rectangles around occurrence records (Shcheglovi-
tova and Anderson 2013), selecting bioclimatic or 
hydrogeographical regions occupied by the species 
(Espindola et al. 2019; Sillero et al. 2021), or gener-
ating buffers around occurrence records (Zhu et al. 
2014). In many studies, the calibration area used is 
not explicitly stated (e.g., Masin et al. 2014). These 
different methods can result in regions of varying siz-
es, which can significantly impact subsequent model 
characteristics.

According to several studies, either too con-
strained or overly expansive calibration areas may 
compromise the accuracy of model predictions 
(VanDerWal et al. 2009, Acevedo et al. 2012). Other 
studies have found that smaller calibration areas may 
yield superior model accuracy, as they mitigate the 
risk of overfitting to conditions near occupied local-
ities or exclude regions with suitable conditions that 
remain unoccupied due to dispersal limitations and 
biotic interactions (Anderson and Raza 2010). Fur-
thermore, selecting a background from larger areas 
leads to changes in variable importance, resulting in 
models becoming increasingly simplified and domi-
nated primarily by just a few variables (VanDerWal 
et al. 2009).

Considering this context, there is a strong need 
for a more systematic evaluation of the effect of cal-
ibration area on SDM performance. Throughout this 
study, we refer to “model performance” in terms of 
functional accuracy (the model’s ability to infer the 
true occurrence probability) and discrimination ac-
curacy (the model’s ability to correctly differentiate 
between presences and background in geographic 
space) (Warren et al. 2020). In this research, we ad-
dress this through a simulation approach. Virtual spe-
cies simulation allows us to create artificial species 
with known occurrence probabilities and environ-
mental responses, allowing the accurate isolation of 
the effects of targeted factors (Meynard et al. 2019). 
Our objectives were 1) to compare models calibrated 
over areas of various sizes in terms of functional and 
discrimination accuracy (Warren et al. 2020); 2) to 
test whether knowing the accessible area to a species 
leads to improved models; and 3) to compare the rel-
ative contribution of calibration area size to model 
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performance against other factors such as occurrence 
thinning and collinearity. By using virtual species 
with known environmental responses and probabil-
ities of occurrence, this study provides insights into 
how several factors influence SDM accuracy and 
highlights the importance of careful calibration area 
selection.

Methods
Virtual species simulations

We simulated 100 virtual species using the vir-
tualspecies R package (Leroy et al. 2016) and the 19 
bioclimatic variables from WorldClim 2.0 (Fick and 
Hijmans 2017). These variables encompass critical 
climatic factors influencing species distributions and 
are widely utilized in SDM studies. We used a resolu-
tion of 2.5 arc-minutes to simulate the species’ nich-
es, as this resolution provides a balance between spa-
tial detail and computational efficiency. The region 
considered was restricted to the American continent 
due to its broad range of habitats and climatic con-
ditions. We chose to include variables that combine 
precipitation and temperature, despite a recent trend 
of excluding them from SDM studies (Booth 2022). 
These variables have been demonstrated to signifi-
cantly influence species distributions. For instance, 
precipitation during the wettest and driest months are 
key factors shaping global plant distributions (Huang 
et al. 2021), while the mean temperature of the dri-
est quarter has been identified as the most influential 
variable in explaining continental fish distributions 
(Castillo-Torres et al. 2017).

The ecological niche concept is based on the 
principle that each species has an optimal set of en-
vironmental conditions where it can survive, grow, 
and reproduce (Peterson and Soberon, 2012). To de-
fine each species’ environmental preferences, two to 
five of the 19 bioclimatic variables were randomly 
selected and then subjected to a principal component 
analysis (PCA) using singular value decomposition, 
and the two principal components derived were used 
to define the species niche. Different species are in-
fluenced by different environmental factors (Huang 
et al. 2021), and the primary drivers of their distribu-
tions can differ significantly. Randomly selecting 2 
to 5 variables helps simulate this variability. For the 
first two principal components, a Gaussian response 
curve was defined, with randomly selected values for 
the mean (representing the most suitable values for 
the species) and the standard deviation (indicating 

the niche breadth, or physiological tolerance of the 
species).

The initial suitability function, which describes 
the species–environment relationship and can have 
any range of values, was converted to an occurrence 
probability with a logistic function. After this trans-
formation, the probability of occurrence is bounded 
between 0 and 1 (i.e., the likelihood that the species 
is present at a site given the specific set of environ-
mental conditions on that site). Specifically, we used 
a logistic transformation with β (inflexion point) 
fixed at 0.5 and α (steepness of the slope) random-
ly selected. This method serves as an equivalent to 
applying thresholds but offers a more ecologically 
realistic representation by smoothing the transition 
between suitable and unsuitable conditions and sim-
ulating stochastic processes acting on species occur-
rences (Leroy et al. 2016; Meynard et al. 2019). 

The magnitude of the spatial sampling bias was 
simulated using the Human Influence Index dataset 
(WCS and CIESIN, 2005), representing the likeli-
hood of selection per cell. These values were divided 
by the maximum value, resulting in a sampling bias 
range between 0 and 1.

An essential aspect, according to niche theory, 
is the distinction between the fundamental, poten-
tial, and realized niches. The fundamental niche rep-
resents the full range of environmental conditions 
under which a species can survive and reproduce, 
while the potential niche corresponds to the subset of 
those conditions that actually exists at a given time 
(Jackson and Overpeck, 2000). The potential niche 
includes areas that are environmentally suitable but 
may not be occupied by the species due to additional 
factors such as dispersal constraints and/or the influ-
ence of biological interactions (Barve et al. 2011; So-
berón and Nakamura, 2009). The realized niche is a 
subset of the potential niche after considering these 
factors (Jiménez and Soberón 2022; Soberón and 
Arroyo-Peña 2017). Dispersal capability, in particu-
lar, can limit a species’ ability to explore favorable 
regions. To account for this, we defined the acces-
sible area of each species by programming a cellu-
lar automaton (CA) to find potential areas where the 
species would be at environmental equilibrium. To 
achieve this, each species was assigned a random dis-
persal capability within the range of 50 to 250 km. 
This dispersal capability is fixed for each species and 
represents the maximum distance it can disperse in 
each iteration. Using this information, the accessible 
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area was simulated by selecting cells through a Ber-
noulli trial based on their occurrence probability. The 
point with the highest occurrence probability across 
the landscape served as the initial selection point, and 
a buffer was generated around it with a radius equiv-
alent to the assigned dispersal capability. Subsequent 
cells were selected within this buffer through addi-
tional Bernoulli trials, generating a new buffer. This 
process was repeated until no additional cells could 
be added (environmental equilibrium). The resulting 
buffer was considered the accessible area for the spe-
cies, representing the sites it has potentially explored. 
The CA function is based on the presence of cells 
with sufficiently high probabilities of occurrence. In 
regions with high occurrence probabilities, the buf-
fer will continue to expand, allowing the species to 
explore more adjacent areas. Conversely, in regions 
where occurrence probabilities are lower, fewer cells 
are added, and the buffer’s growth tends to diminish. 
This process is analogous to real ecological dynam-
ics, where species are more likely to colonize and es-
tablish in regions that provide optimal conditions for 
survival and reproduction.

For each species, 100 occurrence records were 
obtained by randomly selecting cells (with replace-
ment) with a Bernoulli trial with a probability of suc-
cess equal to:

p(x) = s(x)b(x)r(x) 

where p(x) is the sampling probability of the cell, s(x) 
is the occurrence probability of the species in that 
cell, b(x) is the relative strength of spatial sampling 
bias, and r(x) is a binary variable with values 1 in-
side the accessible area of the species and 0 outside 
(Warren et al. 2020). This process was repeated five 
times for each species to account for stochasticity in 
the sampling process.

SDM
The simulation of each virtual species aimed to 

represent realistic aspects affecting real species oc-
currences. When testing the models, our goal was to 
reflect real-world modeling scenarios, acknowledg-
ing that the exact parameters influencing species dis-
tributions are often unknown (Meynard et al. 2019). 
For example, including spatial bias in the simulation 
of each virtual species occurrence was intention-
al to mimic real-world uneven sampling conditions 
due to factors like accessibility and observer effort. 

The thinning process applied during modeling (see 
below) is one of the existing methods intended to re-
duce this bias (Aiello‐Lammens et al. 2015). Simi-
larly, variable selection is a critical step in species 
distribution modeling (SDM), yet the true explana-
tory variables driving species distributions are rarely 
known (Inman et al. 2021). By excluding variables 
based on collinearity rather than relying on using the 
true influencing factors, we aimed to reflect the in-
herent uncertainty that exists in real-world variable 
selection scenarios. While simulating all aspects that 
influence species distributions is conceptually and 
computationally challenging, we aimed to include 
some essential aspects to provide a more realistic 
evaluation framework.

SDM were built for each of the occurrence data-
sets using MaxEnt v3.4.4 (Phillips et al. 2006) in the 
dismo R package (Hijmans et al. 2017). The different 
levels of the four factors set out below involved the 
evaluation of 2000 models per species (400 models 
x 5 occurrence replicates). The remaining configura-
tions were set to their default settings.

Calibration area.—Given that Maxent works 
with a maximum entropy principle, it is necessary 
to provide random data from the environment for its 
characterization (Merow et al. 2013). As the extent 
of the calibration area directly influences the range of 
environmental conditions available for model train-
ing, it is of great importance to carefully consider the 
geographic space in model calibration. Given that the 
accessible area for a species is usually unknown, the 
effect of the calibration area extent was evaluated by 
randomly sampling 10,000 background cells (default 
value) within a radius of 25, 50, 100, 200, 300, 500, 
700, and 1000 km around the occurrence records. All 
available cells were used for calibration areas with 
less than 10,000 background points.

Spatial filtering of occurrence records.—Spa-
tial filtering of occurrence records is one of the main 
methods used to reduce the sampling bias in data-
sets derived from biological collections (Taylor et 
al. 2020). Occurrence records were filtered using the 
spThin package (Aiello‐Lammens et al. 2015) with 
the following filtering distances: 0 (no filtering), 5, 
10, 15, and 20 km.

Predictor collinearity.—There is still a lack 
of consensus regarding how predictor collinearity 
should be treated in SDM, given that using highly 
correlated variables may influence model perfor-
mance (Feng et al. 2019). We compared the effect 
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of dealing with predictor collinearity by calibrating 
models using all available variables or selecting vari-
ables with Pearson correlation coefficients below 0.7 
using the vifcor function of the usdm package (Naimi 
et al. 2014).

Regularization parameter (RM).—Maxent uses 
Lasso regularization to constrain the modeled dis-
tributions to lie within a specific interval around the 
empirical mean instead of matching it exactly. This 
overfitting can be reduced by specifying a RM value 
that penalizes the use of additional parameters (Phil-
lips et al. 2006; Warren and Seifert 2011). The effect 
of this factor was evaluated by using RM values of 
0.5, 1 (default), 2, 3, and 5.

In addition to assessing the relative contributions 
of the previously mentioned factors, we examined 
the accuracy of a model for each species constructed 
under a scenario where the ecological characteristics 
of the species are well understood (hereafter termed 
unbiased model). The considerations for building this 
model included utilizing 1000 occurrence data points 
(instead of 100) sampled without spatial sampling 
bias, using the accessible area of the species as the 
calibration area, employing only the environmental 
variables that precisely define a species’ niche as pre-
dictors, and evaluating the regularization parameter 
with the same 5 previously defined values.

Model performance
Model performance was evaluated using both 

functional and discrimination accuracy (Warren et 
al. 2020). Functional accuracy (true model accura-
cy) was calculated as the Spearman rank correlation 
between the true occurrence probability and the oc-
currence probability inferred from MaxEnt (with the 
complementary log-log (cloglog) transformation) 
across the accessible area. For large areas, 25,000 
cells were selected at random due to computation-
al constraints. Preliminary trials showed that using 
25,000 randomly selected cells produced results very 
close to those obtained using the entire area, with a 
Pearson correlation of 0.997 between values from the 
whole area and those from the 25,000 randomly se-
lected cells.

Discrimination accuracy was calculated using 
cross-validation, where the data were divided into 
four groups according to two criteria: randomly and 
by geographic blocks, using the ENMeval R package 
(Kass et al. 2021). The Boyce index was used as the 
evaluation metric (Hirzel et al. 2006), calculated for 
each of the four groups. The average Boyce index 

across these groups was used as the overall measure 
of discrimination accuracy.

The Boyce index was selected as an additional 
metric to assess whether it is possible to identify the 
best models based on discrimination accuracy, par-
ticularly when considering variations in the datasets 
that might not be perfectly aligned with the “known” 
truth. While we have a ‘true’ model, the use of the 
Boyce index allows us to evaluate how models per-
form in a comparative context, offering an additional 
perspective on model performance in scenarios that 
simulate real-world conditions.

Data analysis
We chose not to rely on p-values to evaluate the 

significance of our findings due to well-documented 
criticisms of their use (Hurlbert et al. 2019) and their 
inappropriateness in the context of simulation studies 
(White et al. 2014). Instead, we adopted an approach 
that focuses on the relative contributions and rela-
tionships among the examined factors through linear 
models, utilizing the LMG method implemented in 
the relaimpo R package. This method is based on 
sequential R2 and addresses the dependency of re-
gressor orderings by averaging over these orderings 
using simple unweighted averages (Grömping 2006). 
The response variable was the functional accuracy of 
SDM models, and the explanatory variables were the 
extension of the calibration area, the spatial filtering 
of occurrence records, the predictor collinearity, and 
the regularization parameter β treated as categorical 
variables. This approach allowed us to analyze the 
variability and contributions of different factors in-
fluencing model performance more robustly, rather 
than relying on traditional hypothesis testing with 
p-values.

Additionally, we evaluated the correlation be-
tween functional and discrimination accuracy using 
Pearson correlation to assess the capacity of discrim-
ination metrics to select the best-performing models 
using withheld data. These analyses were performed 
individually for each species, given that we do not 
expect all species to be affected by the evaluated 
factors in the same way; some may experience more 
pronounced sampling bias, others may have smaller 
accessible areas, etc.

Results
Overall, the unbiased models exhibited high ac-

curacy within the species accessible area, with 80% 
of these models showing functional accuracy values 



Luna et al. – Species Distribution Model Accuracy Influenced by Calibration Area

48

exceeding 0.9. The median functional accuracy of 
these models was high, with a Spearman correlation 
of 0.968, and the range of accuracy scores varied 
from 0.560 to 0.999 (Fig. 1). In contrast, the rest of 
the models demonstrated more variable performance 
within and across species. The maximum functional 
accuracy across species ranged from 0.178 to 0.996, 
with a median of 0.902. The minimum functional ac-
curacy across species ranged from -0.959 to 0.699, 
with a median of -0.256. This considerable variabil-
ity in accuracy was also reflected in the range of 
functional accuracy values within species (i.e. the 
difference between the maximum and minimum val-
ue for each species), showing values from 0.291 to 
1.87, with a median of 1.045. Overall, these findings 
highlight the considerable range in model accuracy 
between species.

Among the analyzed species, 30 consistently 
exhibited models with positive functional accuracy, 
characterized by Spearman correlation coefficients 
greater than 0. The other 70 species showed at least 
one model with negative functional accuracy. Fur-
thermore, 13 species were particularly notable, as 
most of their models yielded negative functional ac-
curacy values. This disparity in model accuracy un-
derscores the diverse responses of species to the cal-

ibration area and other factors, leading to variations 
in the accuracy of the generated models.

Explained variance 
The extent of the calibration area turned out to 

be the most important factor in terms of true model 
accuracy, with a substantial median of 50.46% ex-
plained variance (range: 2.49% to 92.99%). Follow-
ing this, the Regularization parameter (RM) played 
a less prominent role, with a median explained vari-
ance of 3.65% (range: 0.01% to 48.05%). Predictor 
collinearity and spatial thinning exhibited a negligi-
ble impact on true model accuracy, each contribut-
ing with a median explained variance of 0.41% and 
0.04%, respectively (Fig. 2).

Functional and discrimination accuracy
We explored the correlation between function-

al and discrimination accuracy for the 100 species 
under two different data partitioning scenarios (Fig. 
3). When considering random data partitioning, a 
wide range of correlations was observed. The min-
imum and maximum values were -0.58 and 0.82. 
The median correlation between these two metrics 
was 0.46. Remarkably, 19 species exhibited negative 
correlations. When data partitioning was based on 

Figure 1. Functional accuracy of the models per species (400 models × 5 replicates). The Y-axis represents functional accuracy (mea-
sured as the Spearman rank correlation between true and predicted suitability) and the X-axis represents different species (without 
specific names as they are virtual). Data points are represented with five different colors (one for each replicate). Species are ordered 
from highest to lowest based on their best-performing model. The accuracy of the unbiased model is denoted for each species with a 
"+" symbol. The red dashed line represents the expected value by chance.



Luna et al. – Species Distribution Model Accuracy Influenced by Calibration Area

49

Figure 2. Percentage of variance explained by the four factors analyzed and the residual (unexplained) variance. The 
X-axis represents the percentage of variance explained, and the Y-axis shows the factors analyzed. The boxplots sum-
marize the distribution of these percentages for all species. Area: Calibration area; RM: regularization multiplier; Cor: 
Predictor collinearity; Thin: Occurrence thinning.

Figure 3. Relationship between model functional and discrimination accuracy for the 100 species under varying 
calibration area extents and partitioning methods. The x-axis represents the functional accuracy, divided by the extent 
of the calibration area, the y-axis represents discrimination accuracy, divided by the partitioning method (random and 
geographical blocks). The blue lines, obtained through Ordinary Least Squares (OLS) regression, provide a visual 
representation of the correlation between the two accuracy metrics for each subset of points.
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geographical blocks, the correlations also displayed 
variability, ranging from -0.73 to 0.69, with a median 
correlation of 0.32. Here, 25 species showed nega-
tive correlations between functional and discrimina-
tion accuracy.

However, a noteworthy finding emerged despite 
the relatively low correlation between functional 
and discrimination accuracy. For 76 species, the best 
models based on the random data partitioning eval-
uation showed functional accuracies exceeding 0.5. 
In parallel, for 71 species, the best models selected 
with the geographical block data partitioning strate-
gy achieved functional accuracies exceeding 0.5. 

Discussion
Our research advances a more systematic evalua-

tion of how varying extents of calibration area affect 
SDM accuracy. Indeed, the observed variability in 
model performance within and across species under-
scores the need for tailored approaches, considering 
species-specific characteristics. In this context, the 
most critical factor influencing the accuracy of spe-
cies distribution models turned out to be the size of 
the calibration area. Overall, models calibrated with 
larger areas tend to show higher functional accuracy 
than models calibrated with smaller areas.

Although it is not straightforward to compare 
different algorithms, due to their reliance on different 
types of data (e.g., presence-only vs. presence-ab-
sence), statistical methodologies (e.g., classification 
vs. regression), or evaluation strategies (e.g., ROC-
AUC vs Boyce Index), results are often compared in 
the literature (Bucklin et al. 2015; Valavi et al. 2022) 
and our major findings are in line with other previous 
research. VanDerWal et al. (2009), for instance, used 
buffers with increasing distances ranging from 10 
to 500 km around the species’ occurrences to study 
the impact of various calibration areas working with 
rainforest vertebrate from the Australian Wet Trop-
ics (AWT). They found a rapid increase in accuracy 
as the background size expanded from 10 to 100 km 
(ROC-AUC > 0.93), with subsequent expansions be-
yond this threshold showing only marginal improve-
ments (ROC-AUC > 0.99). However, an important 
drawback, acknowledged by the authors, was the 
potential overestimation of model accuracy when 
assessed over a large geographical extent (Lobo et 
al. 2008). VanDerWal et al. (2009) recognized this 
phenomenon and used a fixed evaluation area to cal-
culate AUC values across all species. Their findings 
showed that the “fixed-area” accuracy was maximum 

at a background size around 200 km, and it gradually 
decreased as points were generated from larger re-
gions. It is important to note that the use of simulated 
data with known occurrence probabilities allows us 
to directly assess the accuracy of the models without 
relying solely on the discrimination metrics, thereby 
ensuring that our findings are not artifacts of these 
metrics.

In a similar way, Acevedo et al. (2012) conduct-
ed a study using data from four ungulate species in 
Spain to evaluate the predictive accuracy of SDM 
calibrated over varying extents of calibration areas. 
Their results showed that while calibration accuracy 
(Miller’s statistic) declined with the expansion of the 
calibration region, discrimination accuracy (ROC-
AUC) increased. This approach allowed for the gen-
eration of purely environmental models that, when 
projected onto a new scenario, depicted the potential 
distribution of the species.

More recently Feng (2023), working with 87 
hummingbird species, evaluated the effect of a series 
of buffers created around occurrences (from 5 to 5000 
km) as calibration areas. The models calibrated with 
spatial buffers were compared with models calibrat-
ed with regions considered areas accessible to spe-
cies. As a result, discrimination accuracy increased 
when the size of the calibration area was larger, but 
it reached a species-specific saturation threshold. 
Although the evaluation method affected this crite-
rion, it was typically estimated to be less than 200 
km. Surprisingly, model accuracy based on areas ac-
cessible to species was comparable to the saturation 
accuracy of models when spatial buffers were used.

In the present study, the comparison between 
unbiased models within each species’ accessible ar-
eas and the rest of the models highlights a signifi-
cant challenge: determining the accessible area of a 
species. Unbiased models consistently demonstrated 
excellent performance, achieving high functional 
accuracy across all species. In contrast, the rest of 
the models exhibited more variable accuracy, with 
some species displaying even negative functional 
accuracies. This discrepancy underscores the impor-
tance of considering species-specific characteristics 
and selecting appropriate calibration areas to ensure 
accurate model predictions. The findings suggest 
that modeling within species’ accessible areas can 
mitigate biases and improve model reliability, high-
lighting the potential benefits of adopting unbiased 
approaches in SDM studies.
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In contrast to our findings, Lobo and Tognelli 
(2011) reported different results. They investigated 
the impacts of spatial sampling bias, and the number 
and location of pseudo-absences on model accura-
cy using virtual species. Their results indicated that 
the number of pseudo-absences and the presence of 
spatial bias in sampling localities, along with their 
interaction, exerted a substantial influence on model 
accuracy (interpreted here with ROC-AUC, but they 
also evaluated sensitivity and specificity). As expect-
ed, higher number of pseudo-absences coupled with 
an absence of spatial bias yielded superior models. 
The location of pseudo-absences, whether distribut-
ed across the entire study area or restricted to regions 
outside the environmental envelope of the species, 
had a relatively smaller effect on model accuracy. 
They acknowledged that this might be attributed to 
the low relative occurrence area (only 3.5% of the 
total study area inhabited by the species). When con-
trasting our work with theirs, some differences stand 
out. They did not account explicitly for the dispersal 
capabilities of the species, potentially resulting in 
an overestimation of the realized distribution (Araú-
jo and Pearson 2005). In addition, they employed 
thresholded maps instead of considering the more 
accurate occurrence probability (Leroy et al. 2016; 
Meynard et al. 2019). Also, the SDM was calibrat-
ed using the same bioclimatic variables that were 
used to create the virtual species niche. They used a 
threshold once more for model evaluation, restricting 
the use of data pertaining to the actual probability of 
occurrence. Finally, they simulated a single virtual 
species, while our study encompassed the results of 
100 virtual species (in our work the lower relative 
contribution for the calibration area was 2.5% and 
the highest accounted for 93%). These distinctions 
highlight the complexities involved in modeling spe-
cies distributions and the importance of considering 
multiple factors to enhance the robustness and eco-
logical relevance of such models.

Increasing the extent of the calibration area in-
volves incorporating data that are environmentally 
more distant (on average) from the occurrences. Con-
sequently, the discrimination accuracy of the model 
may increase due to the ease to parameterize models 
with good discrimination capacity but that are low in 
useful information (Barve et al. 2011; Acevedo et al. 
2012). This could be the result of larger calibration 
areas covering places with appropriate environmen-
tal conditions that are unoccupied because of biotic 
interactions and/or dispersal constrains, which could 

induce overfitting to conditions close to the occupied 
localities (Anderson and Raza 2010). On the other 
hand, the importance of coarse-scale factors such as 
climate may be underestimated at small calibration 
areas (Barve et al. 2011; Acevedo et al. 2012).

Our results confirm previous research high-
lighting the impact of the calibration area on mod-
el accuracy and show the complexity involved in 
its selection (VanDerWal et al. 2009). The environ-
mental equilibrium assumption, wherein the species 
is adapted to its current environmental conditions, 
emphasizes the importance of choosing a calibration 
area that accurately reflects these conditions (Araújo 
and Pearson 2005). Nonetheless, our findings, along 
with earlier research, indicate that there is no agree-
ment on the ideal calibration area (Rotllan-Puig and 
Traveset 2021; Machado-Stredel et al. 2021).

As some correlative methods for estimating eco-
logical niches rely on contrasting the environmental 
characteristics of known occurrence sites with those 
from the available conditions across the study area, it 
becomes imperative to delineate and comprehend the 
potential range the species might have explored. This 
is crucial because the absence of a species outside 
its accessible area is not necessarily due to abiotic or 
biotic factors. Instead, a species may be absent from 
suitable regions simply due to its inability to disperse 
and reach those areas (Anderson and Raza 2010; 
Barve et al. 2011).

The way in which SDM handle collinearity be-
tween the predictor variables (Feng et al. 2019), sam-
ple bias (Ranc et al. 2017; Inman et al. 2021), and 
model complexity are additional aspects that could 
impact the model accuracy (Merow et al. 2014). 
However, when viewed in a multifactorial way, our 
results demonstrate that these factors have a signifi-
cantly smaller impact than the selection of the cali-
bration area. Concerning this, Barbet‐Massin et al. 
(2012) observed that the impact of different method-
ological decisions in model quality varied depending 
on the specific SDM employed. For machine learn-
ing techniques (boosted regression trees and random 
forest), the number of pseudoabsences explained a 
greater amount of deviance (between 20 and 85%) 
than the weighting scheme and the method for select-
ing pseudo-absences (less than 15%). Thus, explor-
ing a range of modeling techniques beyond Maxent 
is needed to further understand their differential re-
sponses and implications for SDM techniques.

Regarding the correlation between functional 
and discrimination accuracy, our results show that 
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this correlation is relatively low. Discrimination ac-
curacy based on both data partition schemes were a 
misleading measure of functional accuracy. How-
ever, contrary to our expectations, models selected 
with random partitioning demonstrated a better cor-
relation between functional and discrimination accu-
racy. This is surprising because we expected lower 
correlation in this scenario due to the lower degree of 
independence between data used for evaluation and 
calibration. These findings suggest that random par-
titioning might be more effective in selecting mod-
els that accurately predict the true suitability values 
across the landscape, despite the theoretical advan-
tages of block partitioning in creating geographical-
ly independent evaluation sets. One possible reason 
is that certain ranges of environmental values may 
be geographically clustered and so are not utilized 
during calibration in block partitioning, unlike ran-
dom partitioning, which avoids this stratification 
(Kass et al. 2021). This contrasts with the findings of 
Warren et al. (2020), who observed a better correla-
tion using geographical block partitioning.

Despite the relatively low correlation between 
functional and discrimination accuracy. The fact 
that the best models selected based on random and 
block data partitioning exhibited functional accura-
cies exceeding 0.5 highlights that, in certain cases, 
the choice of data partitioning strategy can lead to the 
selection of models with reasonably high functional 
accuracy, even when their overall discrimination ac-
curacy showed limited alignment with the functional 
accuracy metric.

The inappropriate selection of the calibration 
area has significant implications for modeling appli-
cations (Barve et al. 2011). The consequences extend 
to critical aspects such as the inaccurate estimation 
of the extent of occurrence and area of occupancy, 
which may lead to misguided conservation priorities 
(VanDerWal et al. 2009), failure to generate appro-
priate mechanistic hypotheses about the parameters 
governing species distributions (VanDerWal et al. 
2009), and distorted response curves (Thuiller et 
al. 2004). Therefore, it is essential to give careful 
thought and choose the calibration area to guarantee 
the validity and robustness of SDM.

Constructing spatial buffers around known oc-
currences, reflecting the potential spatial range a spe-
cies could explore, offers a straightforward method 
for delineating a calibration area (Feng 2023). This 
approach aligns more closely with the theoretical 
considerations of species’ mobility (Holloway and 

Miller 2017), providing a more realistic foundation 
for SDM exercises. In line with other authors (Van-
DerWal et al. 2009; Barve et al. 2011; Feng 2023), 
we recommend that species distribution modeling 
exercises should initiate with exploratory analyses 
of the calibration area, assessing the extent that can 
yield both the most accurate results and a biologi-
cally meaningful fit between species occurrence and 
predictor variables.

To sum up, this research advances the discus-
sion of calibration areas, shedding light on their nu-
anced impacts on SDM accuracy. Acknowledging 
the complexity of these considerations, our findings 
contribute to the ongoing refinement of SDM practic-
es, emphasizing the need for tailored approaches in 
different ecological contexts. The present study has 
demonstrated that the area of calibration is one of the 
most important factors affecting the functional ac-
curacy of species distribution models using Maxent. 
Other factors, such as the value of the regularization 
parameter and the presence of collinearity between 
the predictor variables, have a much smaller impact.
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