
Biodiversity Informatics, 6, 2009, pp. 36-52 

 

36 

 

 

LOCALITY UNCERTAINTY AND THE DIFFERENTIAL PERFORMANCE 

OF FOUR COMMON NICHE-BASED MODELING TECHNIQUES 
 

MIGUEL A. FERNANDEZ
1,5

, STANLEY D. BLUM
2
, STEFFEN REICHLE

3
, QINGHUA 

GUO
1
, BARBARA HOLZMAN

4
, AND HEALY HAMILTON

5 

1 Sierra �evada Research Institute, University of California Merced 

2 Research Informatics, California Academy of Sciences 

3 The �ature Conservancy 

4 Department of Geography & Human Environmental Studies, San Francisco State University 

5 Center for Biodiversity Research, California Academy of Sciences 
 

Abstract. We address a poorly understood aspect of ecological niche modeling: its sensitivity to different 

levels of geographic uncertainty in organism occurrence data. Our primary interest was to assess how 

accuracy degrades under increasing uncertainty, with performance measured indirectly through model 

consistency. We used Monte Carlo simulations and a similarity measure to assess model sensitivity across 

three variables: locality accuracy, niche modeling method, and species. Randomly generated data sets with 

known levels of locality uncertainty were compared to an original prediction using Fuzzy Kappa. Data sets 

where locality uncertainty is low were expected to produce similar distribution maps to the original. In 

contrast, data sets where locality uncertainty is high were expected to produce less similar maps. BIOCLIM, 

DOMAIN, Maxent and GARP were used to predict the distributions for 1200 simulated datasets (3 species x 

4 buffer sizes x 100 randomized data sets). Thus, our experimental design produced a total of 4800 similarity 

measures, with each of the simulated distributions compared to the prediction of the original data set and 

corresponding modeling method. A general linear model (GLM) analysis was performed which enables us to 

simultaneously measure the effect of buffer size, modeling method, and species, as well as interactions 

among all variables. Our results show that modeling method has the largest effect on similarity scores and 

uniquely accounts for 40% of the total variance in the model. The second most important factor was buffer 

size, but it uniquely accounts for only 3% of the variation in the model. The newer and currently more 

popular methods, GARP and Maxent, were shown to produce more inconsistent predictions than the earlier 

and simpler methods, BIOCLIM and DOMAIN. Understanding the performance of different niche modeling 

methods under varying levels of geographic uncertainty is an important step toward more productive 

applications of historical biodiversity collections. 
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Our maps of species’ distributions ultimately 

derive from primary observations of their 

occurrence in nature. Because these data are 

typically sparse in comparison to the complete 

range of a species, biologists have devised a 

variety of methods to visualize and analyze species 

ranges based on field samples. These range from 

simply plotting occurrence points on maps, to 

drawing a free-form line around peripheral locality 

records. Recently, researchers interested in 

species’ distributions have been able to integrate 

spatial tools and environmental data to produce 

probability distribution maps that indicate variation 

in habitat suitability, maps which convey more 

_________________________ 
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information than either point locality maps or 

outline maps. Known also as ecological niche 

models (ENM; sensu Grinnell 1917), these maps 

are the result of integrative algorithms embedded 

in a GIS framework that use the taxonomic and 

geographic data associated with specimens and/or 

observations and fine scale environmental data to 

produce a set of rules that identify the 

environmental space where the species was 

collected or observed (Peterson and Vieglais 

2001). This environmental space can be projected 

onto geographic space to identify appropriate 

conditions where the species may occur, resulting 

in a modeled distribution.  

Despite the fact that these presence-only 

inferential maps are abstract representation of 

species ranges, they are still valuable summaries of 
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biogeographic information, and have been applied 

to a broad range of topics, from theoretical ecology 

and evolution (Leathwick and Whitehead 2001; 

Hugall et al. 2002; Graham et al. 2004), to 

practical uses in conservation (Bustamante 1997; 

Corsi et al. 1999; Anderson et al. 2002; Raxworthy 

et al. 2003; Araújo et al. 2004) agriculture, 

invasive species (Higgins et al. 2000; Welk et al. 

2002; Underwood et al. 2004), and human health 

(Mills and Childs 1998; Peterson and Shaw 2003). 

While tremendous progress has been achieved 

on many aspects of building and evaluating ENM 

(Guisan and Zimmermann 2000; Pearce and 

Ferrier 2000; Williams and Hero 2001; Hirzel et al. 

2002; Stockwell and Peterson 2002; Brotons et al. 

2004; Reese et al. 2005; Barry and Elith 2006; 

Pearson et al. 2006; Wisz et al. 2008), enhanced 

frameworks for assessing errors and uncertainties 

have not been fully developed. Specifically, 

uncertainty in the organism occurrence data (see 

Fig. 1) has not been fully explored (Graham et al. 

2004; Murphy et al. 2004; Soberon and Peterson 

2004; Wieczorek et al. 2004; Rowe 2005; Guo et 

al. 2008). Understanding the susceptibility of ENM 

methods to the positional error associated with a 

collection event becomes a critical factor in 

selecting a method to use in a particular case. 
 

Comparing E�M performance against uncertainty 

A predicted species distribution is generally 

determined by three elements: the algorithm or 

modeling method, the environmental layers upon 

which it is based, and the occurrence data. 

Although researchers have explored how each of 

these elements contributes separately or together to 

the overall performance of the technique, as yet, 

there is no agreement on the influence of 

uncertainties on ENM. Some studies show that 

different methods perform surprisingly similarly 

(Peterson et al. 2007; Peterson et al. 2008), while 

others studies show that alternative ENM produce 

highly distinct outputs when predicting species’ 

geographic ranges (Manel et al. 1999; Elith et al. 

2006; Pearson et al. 2006; Phillips et al. 2006; 

Kelly et al. 2007; Peterson et al. 2007; Tsoar et al. 

2007; Ortega-Huerta and Peterson 2008). Further 

research is required to address these discrepancies 

in model performance. Specifically, standardized 

and improved parameterization and enhanced 

evaluation tools are needed to tease apart these 

differences in modeling outputs (Araújo and 

Guisan 2006; Peterson et al. 2008). While few 

studies have measured the sensitivity of 

distribution models to grid cell size in the 

environmental layers (Guisan et al. 2007), others 

have addressed the effect of remote sensing 

derived products as alternative environmental 

layers in ENM (Parra et al. 2004; Roura-Pascual et 

al. 2004; Peterson et al. 2006; Zimmermann et al. 

2007; Bradley and Fleishman 2008; Buermann et 

al. 2008). Limited studies attempted to incorporate 

true absence and more meaningful pseudo-absence 

data in ENM (Manel et al. 2001; Brotons et al. 

2004; Engler et al. 2004; Chefaoui and Lobo 2007; 

Phillips 2008). Numerous tests have also addressed 

the effect of occurrence data quantity on ENM 

(Peterson and Cohoon 1999; Stockwell and 

Peterson 2002; Kadmon et al. 2003; Hernandez et 

al. 2006; Pearson et al. 2007; Wisz et al. 2008).  

However quality in species occurrence data can 

also have profound consequences in ENM. 

Localities may be geographically biased, for 

example, highly correlated with rivers and access 

roads (Reddy and Davalos 2003), or collected 

using different sampling intensity and sampling 

methods (Anderson 2003). Localities that have 

been retrospectively georeferenced have 

uncertainty associated with the lack of geographic 

details in the textual descriptions (Beaman et al. 

2004; Rowe 2005; Chapman and Wieczorek 2006). 

More standardized techniques have been 

developed that allow a better quantification of the 

positional error of occurrence data (Murphy et al. 

2004; Wieczorek et al. 2004; Guralnick et al. 2007; 

Guo et al. 2008). The effect of the positional error 

on resulting ENM output using different 

methodologies has been underexplored. Recently, 

Graham et al. (2008) evaluated how locality 

uncertainty affects the performance of ten common 

niche modeling techniques by comparing a control 

model calibrated using the original accurate data to 

an error treatment where the positional accuracy of 

the data was degraded randomly in a radius of 5 

km. Even though they demonstrated that model 

performance can change markedly with increased 

locality uncertainty. Their single randomization 

treatment is not sufficient to establish the 

relationship between the magnitude of locality 

uncertainty and ENM performance.  

Close to 2.5 billion specimens (Duckworth et al. 

1993) have been  collected  and  housed  in  natural  
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Figure 1. Differences in geographic uncertainty between two labels of specimens housed in natural 

history museum collections. Left, a vague description of the collection location; right, a much more 

precise description of the collecting location. 

 

 

history museums by different collectors, at 

different times, with different sampling techniques 

(see Fig. 1). As a consequence, the geographic 

information associated with specimen collections 

has very different levels of geographic uncertainty.  

Many historical localities were recorded only as 

textual descriptions, without geographic 

coordinates, which effectively makes them 

unavailable to GIS-based analyses. As discussed 

above, the subsequent interpretation of textual 

localities as geocoordinates, known as 

retrospective georeferencing can introduce still 

greater spatial uncertainty (Proctor 2004; 

Wieczorek et al. 2004; Rowe 2005). In order to 

make more effective use of the wealth of 

biodiversity information stored in natural history 

museums, it is critical to fully explore the 

sensitivity of ENM techniques to different levels 

of geographic uncertainty in the organism 

occurrence data. Only by quantifying how 

uncertainty interacts with modeling methods and 

landscape variability will we be able to understand 

the reliability of predicted distributions or their 

suitability to particular uses. 

 

METHODS 
Because distribution modeling outputs differ, 

no simple statistic is available to measure 

intermodel performance across all approaches 

(Phillips et al. 2006; Lobo et al. 2008; Peterson et 

al. 2008). Many commonly used methods give 

results as probability surfaces, rather than binary 

distributions, in which the species is predicted to 

occur or not occur in a particular grid cell. 

Evaluating these models directly requires selecting 

an arbitrary threshold value to create the binary 

prediction, which might then result in under and 

over prediction. Given that our primary interest was 

to assess how accuracy degrades under increasing 

uncertainty, we chose to measure model 

performance indirectly, through the consistency of 

repeated simulations.  

In this study we used Monte Carlo simulations 

and a similarity measure to assess the consistency 

of predictions across three variables: locality 

uncertainty, niche modeling method, and species. 

We created data sets with known levels of locality 

uncertainty and compared them to an original 

prediction using a similarity measure, Fuzzy Kappa 

(discussed further below). We expected data sets 

where locality uncertainty is low to produce 

distribution maps that are similar to the original. In 

contrast, we expected data sets where locality 

uncertainty is high to produce maps that are less 

similar or more inconsistent. In addition, we wanted 

to examine whether the response to uncertainty 

would differ across modeling methods and whether 

taxonomic or landscape variability would also 

influence this sensitivity. Ultimately, we would like 

to know what degree of data quality, estimated by 

maximum error distance we can tolerate to produce 

predictions that are sufficiently accurate. 
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Species selection criteria 

Three species of Bolivian frogs were selected 

for this analysis: Oreobates cruralis, 

Leptodactylus elenae, and Pleurodema 

marmoratum. These species were selected for the 

following reasons: (a) their geographic ranges are 

comparable in area; (b) none is narrowly endemic 

or broadly distributed; and (c) they represent each 

of the main geographic areas in Bolivia, regions 

that are expected to have very different landscape 

characteristics: O. cruralis is widely distributed in 

the Yungas region of Bolivia, L. elenae is 

distributed in the lowlands of Bolivia, commonly 

associated with savannas; and P. marmoratum is 

restricted to the highlands.  

 

Simulating locality uncertainty by random 

displacement 

In our experiments, an “original data set” is the 

group of non-repeated collecting localities for each 

species, expressed as latitude and longitude, either 

taken by one of us using a GPS (SR), or 

georeferenced by one of us (MF) (Table 1 and Fig. 

2). Even though we only use occurrences with 

positional uncertainty represented by maximum 

error estimates of less than 1 km, we note the goal 

of this exercise was not to evaluate how well the 

models fit the real distribution of the species, but 

to test what is the effect of degrading the localities 

across a broad range of positional accuracies.  

An “original ecological niche model” is the 

output produced by one of the modeling 

techniques using the original dataset and a set of 

19 standard bioclimatic variables derived from 

Worldclim 1.4 (Hijmans et al. 2005) at a spatial 

resolution of ~1 km2. From this “original dataset” 

we generated 100 different “new data sets” that 

simulate an increased level of locality uncertainty 

using the Random Point Generator ArcView 3.x 

extension (Jenness Enterprises, 2005), which 

produces a random selection of points approaching 

a uniform distribution (see Fig. 3). We used this 

tool to randomly displace every point in each of 

the original datasets to a new position within a 

selected buffer distance. Each of these new 100 

points per buffer size and per locality is combined 

randomly with other generated points for other 

localities to form a “new dataset”. This new 

dataset is composed of the same number of point 

localities as the “original dataset” but located at 

different distances within the selected buffer. 

Therefore, buffer size represents our experimental 

model of locality uncertainty. This simulation is 

similar to the point-radius method of retrospective 

georeferencing described by Wieczorek et al. 

(2004). This method encompasses a wide variety of 

processes that contribute to different degrees of 

uncertainty (see Guo et al. 2008).  

Although it is possible to derive a probability 

density function for each locality (Guo et al. 2008), 

something other than equi-probable or even, these 

functions entail prior knowledge of the processes 

that produced the data, such as assumptions on 

referenced objects that are used to georeference 

species localities, and assumptions on spatial 

relationships that describe the species localities.. 

While these may be reasonable assumptions, their 

purpose is to minimize the effect of uncertainty and 

extract better information from occurrence data. 

That is not our purpose here. In this study we are 

measuring the effect of uncertainty, so our goal is 

to incorporate uncertainty in a reasonable and easily 

understood way. We chose to represent uncertainty 

as a circle around the original point, where any 

point in that area has an equal probability of 

selection. This is currently a common practice in 

estimating locality uncertainty in occurrence data 

derived from retrospective georeferencing 

(Wieczorek et al. 2004; Guo et al. 2008).  

   
Modeling methods 

Four distribution modeling techniques were used 

to predict the distributions for 1200 simulated 

datasets (3 species x 4 buffer sizes x 100 

randomized data sets). Thus, our experimental 

design produced a total of 4800 similarity 

measures, as each of these predicted distributions 

was compared to the prediction produced from the 

original data set and corresponding modeling 

method. Two of the methods we used are based on 

a climatic envelope concept and presence only 

localities, BIOCLIM (Busby 1991) and DOMAIN 

(Carpenter et al. 1993). The other two methods use 

both presence and pseudo-absence localities, GARP 

(Stockwell and Peters 1999), which is based on a 

genetic algorithm, and Maxent (Phillips et al. 2006) 

which is based on the maximum entropy concept.
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Table 1. List of number of non-repeated localities for the original datasets per species  

Species Name Number of localities 

Oreobates cruralis 38 

Leptodactylus elenae 39 

Pleurodema marmoratum 29 

 

 

BIOCLIM relates occurrence localities to climatic 

conditions, and produces a single rule that 

identifies all areas with a similar climate to the 

locations of the species within a minimal 

rectilinear “climatic envelope”. In BIOCLIM, 

user-specified thresholds for each environmental 

predictor are identified to define the 

multidimensional environmental space. This can 

be projected onto landscapes producing a model of 

appropriate climactic conditions for the species. 

However, the assumption that species’ 

distributions are controlled by a defined climatic 

envelope is largely simplistic. Species ranges in 

nature are controlled by a complex combinations 

of factors and unlikely to be a box shape in the 

environmental space. DOMAIN is a tool based on 

a point-to-point similarity metric (Gower metric). 

Similarity between the site of interest and each of 

the recorded present occurrence locations is 

calculated by summing the standardized distance 

between the two points for each predictor variable. 

The standardization is achieved by dividing the 

distance by the predictor variable range for the 

presence sites, equalizing the contribution from 

each predictor variable. The standardized distance 

is subtracted from 1 to obtain the complementary 

similarity (Carpenter et al. 1993). Predictions are 

not to be interpreted as maps of probability of 

occurrence, but as a measure of classification 

confidence. Neither of these two methods provides 

explanatory power of the relevant factors 

controlling the species’ distributions, nor 

statistically quantifies the variance, thus, the 

accuracy of the predictions is unknown (Stockwell 

2006).  

GARP is a non-deterministic model that uses a 

machine learning approach to test several 

inferential algorithms (e.g. atomic, logistic 

regression, range rules, and negated range) in an 

iterative manner to develop multiple sets of rules 

that will provide multiple solutions given the same 

input. For each new iteration, GARP divides the 

occurrences in: (a) training data, which is used to 

produce the rules that will define the model, and (b) 

testing data, which is used to internally evaluate the 

model based on omission and commission errors. In 

the next iteration the data is resampled, a new 

training and testing data set is produced, and the 

process starts over again. This process is repeated 

until the program can not create an improved model 

(Stockwell and Peters, 1999). Since GARP doesn’t 

produce a single probabilistic output, to deal with 

this stochasticity, multiple runs can be performed 

within the same GARP session, producing a chosen 

number of output prediction maps. GARP reports 

measures of omission and commission errors for 

each generated model, and provides the option to 

select a ‘best subset’ based on these accuracy 

measures. The predictions for the ‘best subset’ 

models can be arithmetically combined to produce 

a final predicted distribution map (Anderson et al. 

2003).  

Maxent (Phillips et al. 2004), estimates a species 

niche by finding the probability distribution of 

maximum entropy, subject to the constraint that the 

expected value of each environmental variable 

under this estimated distribution matches its 

empirical average. Continuous environmental data 

can also be entered as both quadratic and product 

features, thereby adding further constraints to the 

estimation of the probability distribution by 

restricting it to be within the variance for each 

environmental predictor and covariance for each 

pair of environmental predictors. The program 

starts with a uniform probability distribution, and 

iteratively alters one weight at a time to maximize 

the likelihood of reaching an optimum probability 

distribution. The algorithm is guaranteed to 

converge, and therefore the outputs are 

deterministic. Since the traditional implementation 

of maximum entropy is prone to over-fitting the 

probability distribution, Maxent actually employs a 

relaxation method. It does not constrain the 

estimated  distribution  to the exact  empirical 
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Figure 2. Original species occurrence datasets for the three species included in this study. 

 

average, but to within the empirical error bounds 

of the average value for a given predictor, in a 

procedure called ‘regularization’ (Phillips et al. 

2004). 

 

Fuzzy Kappa 

Every predicted distribution was standardized 

(rescaled) into an Idrisi Andes compatible grid 

format in which cell values range from 0 to 100 

(see below): 

( )

( )

a
b

x min
x

max min

−
=

−  

where xb is the rescaled value of each cell in the 

raster layer, xa is the original value from the model 

output, and min and max are the minimum and 

maximum values from the model output, 

respectively.  

To compare the predicted distributions of 

simulated data sets against the original, we used the 

similarity measure called Fuzzy Kappa (Hagen 

2003), implemented in the Map Comparison Kit 3.0 

(Visser and de Nijs 2006). Fuzzy Kappa is based on 

the simple Kappa algorithm, however, it enables the 

comparison of two maps (both categorical and non-

categorical data), and produces a similarity statistic 

that represents the average similarity of the entire 

map. The principal benefit of using Fuzzy Kappa 

over Kappa is that Kappa is based on binary logic, 

where the result of comparing the values of two 

corresponding cells is either “equal” or “different.” 

In contrast, Fuzzy Kappa uses a fuzzy logic where 
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the measure of similarity is continuous and based 

on the values of corresponding cells, as well as the 

distance to similar cells within a buffer defined by 

the user. This is based on the notion that the fuzzy 

representation of a cell depends on the cell itself 

and its neighboring cells with correspondingly 

lesser weight.  This key distinction allows Fuzzy 

Kappa not only to evaluate differences but actual 

levels of difference, and models a human 

assessment of similarity more closely than simple 

Kappa (Visser and de Nijs 2006) (see Fig. 5).  

Fuzzy Kappa is calculated in a similar manner 

as the traditional Kappa: 
  

( )

(1 )
fuzzy

S E
K

E

−
=

−
 

where S is the average similarity over all cells 

based on fuzzy memberships, and E is the 

expected similarity. The fuzzy membership is used 

to account for the location error as shown in Fig. 

4. In this study, we used the Gaussian distance 

decay functions to define the fuzzy membership 

(Visser and de Nijs 2006). Detailed discussion 

regarding Fuzzy Kappa can be found in Pontius 

(2000) and Hagen-Zanker et al. (2005).  
 

 
Figure 3. Random localities selected from a buffer 

zone, emulating different degrees of uncertainty in 

locality description. 
 

As shown in Figure 4, the top A0 to A4 maps 

portray the ecological niche models based on the 

BIOCLIM algorithm and increasingly degraded 

localities from left (original localities) to right 

(localities degraded in a buffer of 50 km). The 

second row of maps portrays the Kappa map 

comparison based on consecutive comparison of 

the original ecological niche model (A0) to each 

map resulting from increasingly degraded localities 

(A1, A2, A3 and A4). The bottom row of maps 

represents the Numerical Fuzzy Kappa map 

comparison based on consecutive comparison of 

the original ecological niche model (A2) to each of 

the maps created with degraded localities. Even 

though both indexes show a decrease in similarity 

with increasing buffer size, the value of the Kappa 

is too sensitive to small differences, and misses 

some of the basic similarity between the two maps. 

On the other hand, Fuzzy Kappa is a more 

conservative index that varies less dramatically 

when the position of a multi-pixel “object” shifts 

slightly, which makes it a better tool for measuring 

the similarity between two maps. 

 

Experimental design 

We measured how the similarity of predicted 

distributions changes in response to buffer size, an 

experimentally controlled continuous variable, as 

well as two categorical variables, species and 

modeling method. The similarity measure, Fuzzy 

Kappa, varies between zero and one. Our intention 

was to perform a general linear model (GLM) 

analysis, which would enable us to measure 

simultaneously the effect of buffer size, modeling 

method, and species using a two-way analysis of 

variance with an ordinary least squares regression, 

as well as test for interactions among all variables. 

The full factorial model was specified as: 
 

Sp Mm Bfr Sp Mm Sp Bfr Mm Bfr Sp Mm Bfr+ + + × + × + × + × ×  
 

where Sp is the categorical effect for species, Mm is 

the categorical effect for modeling method, Bfr is 

the covariate, buffer, and interaction terms are 

specified with a multiplication symbol between the 

codes for the primary effects. The sample sizes 

were balanced, with every permutation of 

treatments evaluated with 100 simulated data sets. 

 

RESULTS 
The results of this study can be understood most 

directly through visualization. Figure 6 shows box 

plots of similarity measures for the series of buffer 

sizes within each modeling method and species 

combination.  Several things are evident from this 

figure. First, large differences exist among the 

modeling methods; BIOCLIM scores were highest, 

while Maxent scores were lowest. Second, very
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Figure 4. The top (A0 to A4) maps portray the ENM based on BIOCLIM. The second row portrays the 

Kappa comparison. The bottom row represents the numerical Fuzzy Kappa map comparison. 

 

large differences also exist among the variances 

across treatment combinations; the largest 

variance is more than 700 times larger than the 

smallest. Third, within most combinations of 

species and modeling method, the mean similarity 

score tends to decrease with increasing buffer size 

(i.e., locality uncertainty). Fourth, the variance in 

similarity tends to increase with buffer size. Fifth, 

the relationships between similarity and buffer size 

are not the same across combinations of species 

and modeling methods; i.e., there appear to be 

interaction effects between the categorical 

variables and the covariate. Among the BIOCLIM 

analyses for example, O. cruralis shows a strong 

relationship between similarity and buffer size, 

whereas the relationship is weaker in P. 

marmoratum. In contrast, this comparison is 

reversed in the DOMAIN analyses; O. cruralis 

shows a weaker relationship, while P. 

marmoratum shows a stronger one.  

The GLM analysis assumes that deviations 

from expected are effectively summarized by a 

normally distributed random variant with equal 

variance across all treatment levels. Because some 

cases show an increase in variance with a decrease 

in mean similarity, we tested for a correlation 

between mean similarity and its variance. The 

Pearson correlation coefficient (r) between mean 

similarity and variance was -0.278, which has a 

probability of 0.028 in a one-tailed test. (We used a 

one-tailed test because we expected the variance to 

increase as the mean decreased.) We applied an 

arcsin transformation in an attempt to reduce this 

correlation; this transformation is commonly used 

with measures that range between zero and one. In 

the transformed data, the correlation (r) was 

reduced to -0.096, which has a one-tailed 

probability of 0.26. Because the transformed data 

show a reduced and insignificant correlation, we 

used the transformed data in our primary analysis. 

The comparable box plots for the transformed data 

are shown in Figure 7. While the correlation is 

reduced, the variances are still strongly 

heterogeneous across treatment combinations. The 

largest variance is still more than 130 times larger 

than the smallest. Consequently, the probability 

values obtained in the primary analysis below can 

only be taken as broadly indicative. 
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The results of our GLM analysis are shown in 

Table 2. Every term in the model is significant 

well beyond the commonly used 0.05 level. The 

fact that the interaction terms are significant 

means that the primary terms are not additive; the 

effect of any particular value depends on the 

values of the other variables. In particular, the rate 

at which consistency declines with uncertainty (the 

slope) depends on both the modeling method and 

the species.  

A more detailed view of our results can be seen 

in Figure 8. These histograms show the 

distributions of similarity scores for each of the 48 

permutations of the primary parameters. We 

include these graphs because the assumptions of 

normally distributed error terms and homogenous 

variances within groups are violated. These 

histograms show how the distributions of 

similarity scores change across the experimental 

variables. 

In 9 of the 12 combinations of species by 

modeling-method (columns of histograms in fig. 

8A, B, and C) the distributions are close to normal 

and have similar variance across buffer-size. In the 

other three cases, the distributions change 

markedly with buffer size. The scores for L. elenae 

modeled with DOMAIN are skewed to the left at 5 

and 10 km, become flatter at 25 km, and become 

skewed to the left again at 50 km. At the smallest 

buffer size, the scores for P. marmoratum and 

DOMAIN cluster toward the upper range with a 

sparse tail to the left. The maximum and minimum 

scores, and hence the range, do not change much 

between 5 and 50 km, but the distribution goes 

from skewed to flat and the variance gets 100 

times larger from the smallest buffer size to the 

largest. In the P. marmoratum and Maxent 

analyses, similarity scores cluster tightly in the 5 

km simulations, while the distribution flattens and 

the mode decreases at the larger buffer sizes.  

 
DISCUSSION 

The range of uncertainty used in this study, 5 to 

50 km, is realistic and meaningful in comparison 

to both the degree of uncertainty that exists in real 

data and the resolution or scale of various gridded 

environmental surfaces that are routinely 

employed in distribution modeling: 1 km to 1/2° 

cell sizes (Hijmans et al. 2005; Mitchell and Jones 

2005). Furthermore, the variable specificity of 

historical localities introduces geographic 

uncertainty well within the range of the buffer sizes 

tested here. Thus these results should help inform 

users of retrospectively georeferenced data 

regarding the distribution modeling methods that 

are most and least sensitive to degree of specimen 

locality uncertainty. 

We expect the difference between environmental 

space at a given point A and B to be inversely 

proportional to the distance that separates these two 

points; in other words, the closer the points in 

geographic space, the more similar they should be 

in terms of environmental space (Tobler 1970). As 

a consequence, points selected from a 50 km buffer 

should be more different from the original point 

and from each other than points selected from the 5 

km buffer. This environmental space translated into 

geographic space can have profound consequences 

in the modeling outputs. One possible outcome is 

that the area of the predicted distribution will be 

proportional to the differences among the points 

used to train the models, in other words, the model 

will become more general (see Fig. 10). However, 

comparing predicted areas of suitability has one 

major difficulty that forms the basis of our choice 

to use Fuzzy Kappa: the issue of threshold 

selection. To measure the relationship between 

predicted area and buffer size, a threshold must be 

selected and binary outputs must be compared. The 

relationship between predicted area and buffer size 

and the issue of threshold selection are two very 

important elements deserving of further attention 

that we did not explicitly evaluate in this paper. 

In this study, we did not address the issue of 

spatial autocorrelation explicitly. There are two 

types of spatial autocorrelation that will influence 

the effective sample size of localities: 1) the spatial 

autocorrelation among species occurrence 

localities, and 2) the spatial autocorrelation within 

the buffer. Although Dormann et. al. (2007) suggest 

that differences in parameter estimates and 

inference between spatial and non-spatial models 

are small, i.e., (the spatial models accounted for 

spatial autocorrelation, while the non-spatial 

models did not), this problem may also depend on 

the degree of environmental heterogeneity across 

sampled environmental space.  
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Table 2. Summary of ecological niche modeling parameters under the four methods used in this study. 

 BIOCLIM DOMAIN GARP Maxent 

Software used DIVA GIS 5.4 

(Hijmans et al. 

2001). 

DIVA GIS 5.4 

(Hijmans et al. 

2001). 

Desktop GARP 

1.1.3 (Kansas 

University) 

Maxent 2.3 

(Phillips et al. 

2004) 

Removal of 

duplicated 

localities 

Yes Yes Yes Yes 

Outlier detection No No --- --- 

Parameters details Percentile used: 

0.025 

--- Atomic, range, 

negated range, and 

logit rules. 

Regularization 

multiplier = 1 

Random test % = 0 

Internal evaluation --- Training: 50% 

localities 

20 best-subset 

models 

Training: 50% 

localities 

20 best-subset 

models 

Yes 

Outputs rescaled 

from 0 to 100 

Yes Yes Yes Yes 

 

Table 3. ANOVA table for the general linear model analysis of transformed similarity scores. 
Source Partial SS df MS F Prob > F 

Model 306.346 23 13.31940 3188.9 <0.001 

Buffer 9.343 1 9.34283 2236.9 <0.001 

Species 1.364 2 0.68186 163.3 <0.001 

Modeling method 122.772 3 40.92412 9798.0 <0.001 

Buffer*Species 0.063 2 0.03171 7.6 <0.001 

Buffer* Modeling method 3.099 3 1.03310 247.3 <0.001 

Species* Modeling method 5.228 6 0.87128 208.6 <0.001 

Buffer*Species* Modeling 

method 
2.752 6 0.45871 109.8 <0.001 

Residual 
19.948 4776 0.00418 

  

Total 
326.295 4799 0.06799 

  

 

 

The GLM analysis shows that modeling 

method has the largest effect on similarity scores 

and uniquely accounts for 40% of the total 

variance in the model. The second most important 

factor was buffer size, but it uniquely accounts for 

only 3% of the model. This may seem like a small 

percentage, but buffer size interacts with the 

categorical variables, which obscures the effect of 

buffer size alone. Further interpretation of the 

proportion of variance is also ill-advised because 

buffer size is an experimenter-controlled variable, 

so the proportion of variance it explains is 

determined by the range of values we chose as 

inputs to the simulation.  

 

 

Among the modeling methods, BIOCLIM and 

DOMAIN produced distribution maps that were 

overall more similar to the original maps than either 

GARP or Maxent. Given the popularity of GARP 

and Maxent, we were surprised to see these 

methods produce maps that were significantly less 

consistent than the two older and simpler methods.  

BIOCLIM and DOMAIN behaved as expected in 

showing a decline in consistency with increasing 

locality uncertainty, but the other two methods 

were less sensitive to uncertainty, either 

consistently (GARP), or in two of three cases 

(Maxent). GARP showed the least sensitivity to 

locality uncertainty; distributions generated from 
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Figure 5. (A) Two sets of maps, the first set with a 

slight difference in the position of the red cells; the 

second set with a more perceivable difference in the 

position of the red cells, but identical results for the 

Kappa statistic. (B) The comparison of the same two 

sets of maps by a numerical Fuzzy Kappa algorithm. 

Grayscales in the comparison map indicate the level of 

similarity, darker gray indicates less similarity, and 

lighter gray indicates more similarity. Numerical Fuzzy 

Kappa is capable of discriminate differences between 

two maps based on distance decay function with 

constant value set by the user. 

 

points with up to 50 km of uncertainty were only 

moderately less similar to the originals than those 

generated from points with only a maximum of 5 

km uncertainty. Maxent distributions showed the 

lowest consistency and moderate sensitivity to 

locality uncertainty. Several reasons may 

contribute to the differences: 

1. The BIOCLIM model identifies locations where all 

environmental factors fall within certain percentiles 

(e.g., 95%) of the observation records (Busby 

1986). Therefore, unless a significant number of 

extreme large or small values are changed when 

increasing the buffer size, the locality uncertainty 

will have relatively little effect on the modeling 

results. 

2. The DOMAIN method assigns a classification value 

to an unknown site based on the distance of its 

closest similar site in environmental space. The 

effort on the locality variation is local, and even 

extreme values are found, they will only influence 

some nearby points in environmental space. 

3. GARP is based on genetic algorithms, which aim to 

find exact or approximate solutions to an 

optimization or search problem. GARP can be 

considered a non-parametric machine learning 

algorithm which normally makes few assumptions 

about the data distribution, and is more robust to data 

outliers. However, variation of the Fuzzy Kappa 

values is greater than that of BIOCLIM and 

DOMAIN methods. This is due to the fact that 

variation also comes from the stochastic generation 

of rule sets for the GARP method and the random 

sampling of the background area, which will generate 

slightly different results in each iteration of the 

GARP model.  

4. Maxent is a general-purpose machine learning 

method. Similar to generalized linear model (GLM) 

and generalized additive models (GAM), Maxent 

needs to make certain assumptions on the probability 

distributions. Exponential models are normally used 

(Phillips et al. 2006), which could be more sensitive 

to variation of the training data compared to non-

parametric approaches. 

Finally, we would like to emphasize that the 

variable we labeled “species” in these experiments 

is not actually a simple repetition of the experiment 

with another taxon, with all other factors equal. The 

three species selected in this study are all allopatric 

and come from regions where environmental 

parameters are expected to change very differently 

with comparable horizontal displacement or 

uncertainty. We expected similarity scores based on 

O. cruralis to decline sharply with increasing buffer 

size, because it is found in the Yungas or eastern 

Andes where the elevation gradients are steep. We 

expected P. marmoratum from the Andean 

highlands to exhibit intermediate sensitivity to 

buffer size, and L. elenae from the Amazonian 

lowlands to show the least sensitivity. Our 

expectations were never fully born out. In 

comparison to the other species, L. elenae produced 

the highest scores in the GARP and Maxent 

analyses, but P. mamorata produced the lowest 

scores in three out of four cases.  

 
CONCLUSIONS 

In several respects the results of our simulations 

were very different from what we expected. 

Modeling method produced the largest effect; more 

than the primary experimental treatment of 

displacing original localities by up to 50 km, more 

than species differences, and more than topographic 

heterogeneity.  
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Figure 6. Summary distributions of similarity scores from 48 experiments, each made of 100 simulated data sets. 

Standard Tukey’s box-plots represent the Fuzzy Kappa similarity scores for the series of buffer sizes within each 

modeling method and species combination. P. marmoratum (MAR); O. cruralis (CRU); and L. elenae (ELE).  

 

 
Figure 7. Summary distributions of similarity scores from 48 experiments, each made of 100 simulated data sets. 

Standard Tukey’s box-plots represent the transformed similarity score arcsin of Fuzzy Kappa for the series of 

buffer sizes within each modeling method and species combination. P. marmoratum (MAR); O. cruralis (CRU); 

and L. elenae (ELE).  

 

 

An inescapable observation is that the newer 

and currently more popular methods, GARP and 

Maxent, were shown to produce more inconsistent 

predictions than the earlier and simpler methods, 

BIOCLIM and DOMAIN. We do not necessarily 

interpret this to mean that BIOCLIM and 

DOMAIN predict distributions more accurately 

than GARP or Maxent. A method that predicts 

with higher consistency may not be closer to the 

true distribution because it could be biased. For 

example, it might consistently over-predict the 

true distribution. On the other hand, a single 

prediction may not be very close to the true 

distribution if the method is relatively inconsistent. 

It is worth investigating further why the GARP 

and Maxent analyses, as we performed them here, 

gave inconsistent predictions.  

Graham et al (2008) conclude similarly that not 

all modeling techniques are equally influenced by 

positional error. They suggested that some 

modeling techniques (Maxent and Boosted 

Regression Trees) are particularly “robust” to 

moderate levels of uncertainty in locality data. On  

 

the contrary, our research finds that GARP is the 

most robust technique to positional error and 

DOMAIN the most sensitive of the four techniques 

we evaluated. This contradictory finding may be 

explained in that Graham et al. (2008) addressed a 

slightly different but complementary problem. They 

evaluated the effect of degrading positional 

accuracy on the capacity of the model to predict 

accurately an independent dataset, using AUC as a 

metric. In contrast, our goal was to evaluate how 

different modeling methods respond to varying 

levels of degraded positional accuracy. Moreover, 

Graham et al. (2008) used a single error treatment 

(5 km), while our study addressed multiple levels of 

locality uncertainty. Our finding that DOMAIN is 

the most sensitive method and GARP is the more 

robust method of the four ENM tested here doesn’t 

imply that one method is better over others. We aim 

to provide information model performance relative 

to one additional source of uncertainty that will 

assist the user in model selection.  

Finally, we sampled only four points along the 

potentially larger domain of uncertainty values.
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Figure 8. Histograms of similarity scores for the 48 permutations of experimentally controlled primary variables, 

buffer-size, modeling-method, and species. Arcsin transformed similarity is along the x-axis, frequency is on the y-

axis, and the histograms are grouped by buffer-size (rows), modeling-method (columns) and species across pages (a. 

O. cruralis, b. L. elenae, and c. P. marmoratum). The scaling and range of the axes are the same across all 

histograms. 
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Consequently, we cannot evaluate whether the 

response of consistency to uncertainty is linear or 

curvilinear. It also remains to be determined what 

might happen beyond the limits we sampled.  

 

 

 

Figure 9. Hypothetical relationship between the buffer 

size and environmental space. Left figure: increasing 

uncertainty buffer size, and right figure: the possible 

change of its environmental space (using temperature 

and precipitation as example environmental features) 

due to the increasing uncertainty. Note that the actual 

shape in the feature space may not be the ellipse 

shape, and there are situations that don’t follow the 

same trend (e.g. environmental space may not be so 

homogeneous).  
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