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Abstract. – Environmental niche models (ENMs) are increasingly used in many scientific fields, with 
most studies requiring the application of the ENM to predict the likelihood of occurrence and/or 
environmental suitability in locations and time periods outside the range of the data set used to fit the 
model. Uncertainty in the quality of ENM predictions caused by errors of interpolation and 
extrapolation has been acknowledged for a long time, but the explicit consideration of the magnitude 
of such errors is, as yet, uncommon. Among other issues, the spatial variation in the colinearity of 
the environmental predictor variables used in the development of ENMs may cause misleading 
predictions when applying ENMs to novel locations and time periods. In this paper, we provide a 
framework for the spatially explicit identification of areas prone to errors caused by changes in the 
inter-correlation structure (i.e. their colinearity) of environmental predictors used for ENM 
development. The proposed method is compatible with all ENM algorithms currently employed, and 
expands the available toolbox for assessing the uncertainties rising from ENM predictions. We 
provide an implementation of the analysis as a script for the R statistical platform in an online 
appendix.  
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INTRODUCTION 

The development in computational 
resources during the last few decades, combined 
with an increasing availability of environmental 
data and information on species occurrences, has 
led to a boost in the application of environmental 
niche models (ENMs) in many biological fields 
(Kozak et al. 2008, Elith and Leathwick 2009). In 
correlative ENMs, an idealized environmental 
niche of the target species is derived from the 
environmental conditions found at the locations 
where the species is known to occur and/or 
absence or pseudo-absence data reflecting the 
general conditions within this area (Guisan and 
Zimmermann 2000, Peterson et al. 2011). 
Analyzing the environmental conditions at the 
species’ occurrence records, ENMs can be used to 
estimate the target species’ potential distribution 
based on its realized niche, which is commonly a 
subset of its fundamental niche (Soberón and 
Peterson 2005, Peterson et al. 2011). Based on 
the ENM, the derived habitat preferences can be 
subsequently projected into unsampled locations 
and time periods using a geographic information 
system (GIS).  

Various methods have been proposed for 
this purpose (Guisan and Zimmermann 2000, 
Elith and Leathwick 2009, Franklin 2009, 

Peterson et al. 2011). Early ENM approaches 
define the species’ niche as a multidimensional 
boxcar or convex hull envelope enclosing the 
environmental characteristics of the known 
occurrences of the species in environmental space 
(e.g., BIOCLIM, Busby 1991, DOMAIN, 
Carpenter et al. 1993). However, more recently 
developed methods, such as artificial neural 
networks (Olden et al. 2008), multivariate 
adaptive regression splines (Friedman 1991), 
random forest (Breiman 2001), and maximum 
entropy approaches (Phillips et al. 2006), allow 
for the incorporation of even more complex 
interactions between predictor variables. These 
techniques commonly require absence or pseudo-
absence data for model training. This extra 
flexibility has been shown to increase the 
accuracy of predictions computed with these 
methods, frequently outperforming more 
conventional approaches (Elith et al. 2006, 
Hernandez et al. 2006, Wisz et al. 2008). 
However, appropriate selection of absence or 
pseudo-absence data requires special attention 
here since the choice may strongly influence the 
reliability and interpretation of the results (Saupe 
et al. 2012). Various authors have suggested that 
the most appropriate background data should 
reflect the environmental space that is potentially 
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colonizable by the target species (e.g., Anderson 
and Raza 2010, Barve et al. 2011, Saupe et al. 
2012). Although this restriction of the training 
area of an ENM may result in a more specific 
model, it is at the same time commonly less 
generalizable across space and time.  

Applications of ENMs are manifold, 
ranging, for example, from simple visualizations 
of species’ potential distributions (e.g., Brown 
and Twomey 2009), assessments of the potential 
distribution of invasive species (e.g., Peterson and 
Vieglais 2001, Phillips et al. 2008), quantification 
of possible impacts of climate change (e.g., 
Araújo et al. 2004, Thomas et al. 2004), to 
analyses of niche evolution and speciation (e.g., 
Kozak and Wiens 2006, Peterson 2011). Many of 
these applications require some degree of model 
prediction to novel locations and time periods. 
However, with increasing model complexity, 
assessing the quality of the prediction resulting 
from such a transfer is becoming more difficult 
(Randin et al. 2006, Peterson 2007, Elith et al. 
2010, Rödder and Lötters 2010, Peterson et al. 
2011), and various possible error sources related 
to issues of methodology and the biological 
characteristics of the species have been identified 
(Heikkinen et al. 2006, Franklin 2009, Jiménez-
Valverde et al. 2009, Dobrowski et al. 2011, 
McInerny and Purves 2011, Rocchini et al. 2011). 
Among these, changes in the predictor colinearity 
through space and time may cause errors, not 
only when extrapolating, but also when 
interpolating ENMs within the area of interest 
(Elith and Leathwick 2009, Jiménez-Valverde et 
al. 2009, Elith et al. 2010, Rocchini et al. 2011). 
Moreover, it has been suggested that some of the 
more sophisticated methods that use both 
information found from areas where the species is 
present and from where it is absent 
(presence/absence models) may characterize a 
species’ realized niche, where others, which only 
use the information contained in the records 
where species are known to occur 
(presence/pseudo-absence or presence-only 
models) quantify its potential distribution 
(Rödder and Lötters 2010, Jiménez-Valverde et 
al. 2011, Peterson et al. 2011). These conceptual 
differences require additional attention when 
interpreting ENM predictions and different types 
of uncertainties may arise when applying one 
over the other method. 

As stated above, the selection of appropriate 
predictor variables is a critical task during ENM 
development and is one that is likely to 
dramatically influence the modeling results (e.g., 

Peterson and Nakazawa 2008, Rödder et al. 2009, 
Synes and Osborne 2011, Peterson et al. 2011, 
Varela et al. 2011). Generally, environmental 
predictors used in ENMs can be classified in a 
continuum spanning between proximal or distal 
predictors, depending on how they affect the 
fitness of the target species (Austin 2002). 
Proximal predictors are those actually affecting 
the physiology of the species, whereas distal 
variables do not directly affect the target species. 
Unfortunately, it is commonly not possible to use 
the most proximal variables due to limited 
availability. Hence, for most ENM approaches, 
predictors are used that are rather intermediate or 
even distal within the continuum. Nonetheless, 
within a complete set of imaginable 
environmental predictors, they may still be 
correlated with the most proximal predictors and 
therefore be informative. When assessing the 
correlation structure among all possible 
combinations of available predictors, this 
information can be used to estimate the 
correlation of the available predictors with those 
(unavailable) proximal predictors.  

Distal predictors should only be used for 
ENM development if a high degree of colinearity 
with proximal predictors exists – an assumption 
that is frequently fulfilled. Modern ENM 
algorithms search for a set of predictors or 
derived features thereof that best explain the 
variation in the dependent variable: the presence 
and/or absence of the target species across the 
different environments. As in a standard multiple 
regression model, these methods can supplement 
the supplied environmental predictors with extra 
predictor variables representing interactions 
between the predictors. Within the region an 
ENM is trained for, effects of proximal predictors 
can be estimated by distal predictors as long as 
both are correlated.  

These relationships and the implications for 
the transfer of the model to novel geographic 
regions are exemplified in Figure 1: consider the 
high degree of correlation between the minimum 
temperature of the coldest month (assumed 
proximal variable) and the maximum temperature 
of the warmest month (assumed distal variable) 
within the ‘training area’ and its deviance in other 
areas. When transferring an ENM onto 
environments differing from the training 
conditions, predictions may only be useful in 
those cases where the predictor colinearity 
between interacting variables in the ENM as well 
as between proximal and distal variables remain 
stable. In those areas where proximal



Figure 1: Illustration of the potential effects of local changes in the inter-correlation between two predictors 
across a longitudinal gradient in North America introduced by topographic factors as well as the underlying 
principles of PURV (Prediction Uncertainty Assessments using Residual Variation). Assume that an ENM is 
developed within one part of the study region (training area, black bar) and subsequently projected onto the rest 
of the gradient. The variability of the residuals within the training region can be used as reference to quantify the 
degree of inter-correlation between both predictors as incorporated in the ENM. When projecting the ENM 
through space or time, any change in the amplitude of residuals exceeding the variation present in the training 
area may indicate a change in the local inter-correlation, e.g. as present in projection area 1. Projections outside 
of the training area of an ENM may only be reliable when the amplitude of the residuals is not larger than in the 
training region (e.g. in projection area 2). The magnitude of the deviance can be quantified using the proportion 
of the residuals at a given grid cell exceeding the confidence limits within the training region. 
 
 physiological constraints affecting a species’ 
survival may not be well reflected in the distal 
variables, model projections may become 
unreliable. In Figure 1, we see that this is the case 
in ‘projection area 1’ where any prediction of an 

ENM developed in the ‘training area’ may be 
misleading. In contrast, the degree of inter-
correlation between both predictors is well within 
the training range in projection area 2 and, as a 
result, predictions may be much more reliable.  
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Aside from possible uncertainties arising 
from the inter-correlation structure between 
proximal and distal variables, the inclusion of 
highly correlated variables may violate model 
assumptions in many regression techniques. 
Therefore, a priori selection of a set of less 
correlated variables (e.g., R2 < 0.75) is often 
necessary, wherein the putatively biologically 
most relevant predictors should be selected (e.g., 
Saupe et al. 2012). As long as the inter-
correlation structure among selected and omitted 
predictors is stable, this information reduction is 
appropriate – but not when it changes, since in 
this case ENM projections may become 
unreliable. 

Although several authors mention likely 
problems caused by varying inter-correlation 
structures of predictors between training and 
projection conditions (e.g., Heikkinen et al. 2006, 
Peterson 2007, Jiménez-Valverde et al. 2009, 
Elith et al. 2010), no technique allowing for a 
spatially-explicit evaluation of this error source is 
available, although Elith et al. (2010) presented 
some general ideas. Here, we propose the use of 
Prediction Uncertainty Assessments using 
Residual Variation (PURV) plots based on 
comparisons between the residual ranges of each 
pair of predictors within the training area of an 
ENM and the projection areas to produce maps 
showing spatial explicit variations in correlation 
matrices. These plots can be used to identify areas 
where ENM predictions may be prone to errors, 
which may lead to erroneous conclusions when 
interpreting prediction maps. 

 
METHODS 

Species Distribution Models 
In order to illustrate the applicability of 

PURV plots to assess variations in correlation 
structures, we developed ENMs for two sister 
species of North American salamanders (i.e. 
Plethodon cylindraceus (Harlan, 1825) and P. 
teyahalee Hairston, 1950) as described in Kozak 
and Wiens (2006). A total of 180 georeferenced 
species records of P. cylindraceus and 761 
records of P. teyahalee were obtained through the 
Global Biodiversity Information Facility 
(accessed through GBIF data portal1; NMNH 
Vertebrate Zoology Herpetology Collections2; 
MVZ Herp Catalog3;  Herp Specimens4) and 
checked for possible georeferencing errors using 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  www.gbif.org	  
2	  http://data.gbif.org/datasets/resource/1838	  
3	  http://data.gbif.org/datasets/resource/8123	  
4	  http://data.gbif.org/datasets/resource/8956	  

DIVA-GIS 7.1.6 (Hijmans et al. 1999, Hijmans et 
al. 2005a).  

Information on current climate was 
extracted from the Worldclim database (Hijmans 
et al. 2005b5). The set of predictor variables used 
for ENM development consisted of those 
variables identified by Kozak and Wiens (2006) 
as being biologically relevant to the salamanders: 
‘mean annual temperature range’, ‘maximum 
temperature of the warmest month’, ‘minimum 
temperature of the coldest month’, ‘precipitation 
seasonality’, and ‘precipitation of the driest 
quarter’.  

Using Maxent 3.3.3e (Phillips et al. 2006, 
Phillips and Dudík 2008, Elith et al. 2010) we 
developed ENMs for both species. Maxent 
requires the designation of a set of pseudo-
absences for the calculation of species habitat 
preferences and, to this end, random background 
points were automatically sampled by Maxent in 
a circular buffer around each record of 0.16° (~ 
14 km radius), ensuring that each grid cell was 
considered only once to avoid pseudo-replication. 
This area reflects the geographic space potentially 
accessible for the species (Phillips et al. 2009, 
Anderson and Raza 2010, Barve et al. 2011, 
Saupe et al. 2012). To assess the performance of 
the model, 100 ENMs per species were developed 
using the default Maxent settings, but splitting the 
species records into 70 % used for training the 
model and 30 % to test model performances by 
calculating the Area Under the receiver operating 
Curve (AUC) (Hanley and McNeil 1982, Swets 
1988). Choosing the logistic output format with 
values ranging linearly from 0 (unsuitable) to 1 
(optimal) (Phillips and Dudík 2008) the averages 
and standard deviations of the potential 
distributions of the species suggested by the 100 
ENMs were projected onto a larger geographic 
area. The resulting maps show each species’ 
probability of occurrence per grid cell and its 
variation across all replicates.  

The degree of environmental novelty when 
extrapolating the ENMs into conditions outside 
those found in the training region was assessed 
using the application of multidimensional 
environmental similarity surfaces (MESS) as 
described by Elith et al. (2010) (i.e., using the 
relevant tool implemented in Maxent 3.3.3e). In 
MESS maps, values range from +100 to –∞, with 
positive values indicating grid cells with 
environmental conditions within the range of the

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  www.worldclim.org	  



 
Figure 2: Principles of Multivariate Environmental 
Similarity Surfaces (MESS; Elith et al. 2010): if the 
observed value pi at grid cell Pi lies within the range of 
Variable Vi in the training region, the similarity of this 
grid cell with respect to Vi is defined as percentage 
deviance from the median of the observed range 
(arrow 1). This creates a gradient across the 
environmental envelope within the training area 
ranging from 100 in the center to 0 at the margins 
indicated by the black box. In multivariate 
environmental space this approach is equal to the 
BIOCLIM approach (Busby 1991). In those cases 
where any p is outside of this environmental envelope 
spanned by V within the training region, the distance to 
its margin of the most divergent Variable Vi is 
measured (arrow 2), wherein the scores reflect the 
quotient of the absolute deviance of pi from the margin 
of the envelope’s range. A score of -100 would 
indicate a deviance of pi equaling the range of Vi 
within the training area. In multivariate space, the 
score of the most divergent Vi at Pi is assigned. In 
PURV plots, grids showing residuals are used instead 
of environmental variables themselves. 
 

 
variables in the training region (analogous to the 
cells predicted as suitable in the BIOCLIM 
algorithm; Busby 1991) and negative values 
denoting grid cells with environmental conditions 
that fall outside the range of environments present 
in the training area (as described by the boxcar 
environmental envelope – see Figure 2). Note that 
the training region of an ENM ideally comprises 
those areas that are potentially colonizable for the 
target species, wherein a number of different 
configurations are possible (Saupe et al. 2012). 
MESS maps were transformed into binary 

shapefiles, indicating those areas where at least 
one variable falls outside the range present in the 
training area of the ENM.  

 
Prediction Uncertainty Assessments using 

Residual Variation (PURV) 
For explicit spatial comparisons of 

correlation structures among predictors across 
geographic space, we developed a function for the 
R statistical platform for the construction of 
PURV plots (Supplementary material Appendix 
1). As reference for subsequent analyses, we 
assessed the inter-correlation structure of each 
pair of z-standardized predictor variables within 
the training area of the ENM. Z-standardization 
referred to the average and standard deviation of 
the respective variable within the training area. 
Therefore, we used simple linear regressions and 
determined the intercept and slope of the 
corresponding regression. We used linear instead 
of other, more complex, relationships as basic 
assumption for this analysis, as the true inter-
correlation structure for a given projection area is 
a priori not known and might change between 
different predictor variable comparisons. 
Therefore, assuming a linear relationship 
represents the most conservative approach for the 
construction of PURV plots. For each pair of 
predictor variables, we created a grid covering the 
previously-defined projection area showing the 
spatial distribution of residuals in R 2.12 (R 
Development Core Team 2011), which is 
parameterized based on the correlation structure 
in the training area only. These grids allow for a 
spatially-explicit quantification of the variation in 
the correlation structure within both the training 
and projection areas, where the magnitude of the 
variation within the residuals in the training area 
of the ENM can be used as reference. In those 
projection areas where the residuals exceed the 
range observed within the training area, it can be 
assumed that the two variables are less correlated 
locally.  

The number of possible pair-wise 
comparisons of predictors can quickly become 
large, making detailed analyses time consuming. 
Therefore, MESS analyses can be used to 
summarize the maximum possible effect of inter-
correlation changes as described by Elith et al. 
(2010). The novelty here is that the MESS plots 
are derived from the residual grids instead of the 
original environmental predictors. Wherein 
traditional MESS analyses ask whether the 
environmental conditions at a given site are 
within those conditions available within the 
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training area, our PURV approach asks whether 
the inter-correlation structure of the 
environmental variables at a given site are similar 
to those within the training area or not. PURV 
plots allow the quantification of errors in two 
different areas (compare Figure 2): (1) in regions 
characterized by the same inter-correlation 
structure present in the training region, the plots 
show the relative distance of each grid cell to the 
center of the multivariate boxcar residual 
envelope, and (2) in areas in which the inter-
correlation structure deviates from the inter-
correlation structure within the training area, the 
plots show the distance to the border of the 
boxcar envelope of the most distant residual. In 
the former case positive values ranging from 100 
(center of the boxcar envelope) to 0 (its margin) 
are assigned, while in the latter case, negative 
scores are assigned, identifying the maximum 
deviant change in the predictor correlation (for a 
more detailed description of the MESS procedure 
see Elith et al. 2010).  

ENM projections into areas where the range 
of residuals in at least one predictor-pair is greater 
than that found within the training area can be 
interpreted as being less reliable. This becomes 
reasonable when considering two different cases: 
(1) interactions between two variables fitted by an 
ENM refer to the correlation structure of the 
predictors within the training area. Unreasonable 
response curves might result when projecting 
these relationships onto deviating correlation 
structures in other areas or time slices. (2) In 
many cases it is necessary to select only the 
putatively biologically most important variable 
for ENM development if a set of variables is 
highly correlated. As long as the correlation 
structure remains stable this subjective selection 
may cause no negative effects, but in those cases 
where the correlation structure between a selected 
variable and one omitted variable changes, the 
selected variable cannot be used to estimate the 
omitted ones. The PURV plots indicate spatial 
changes in the correlation structure among 
predictor variables irrespective and unaffected 
from the ENM algorithm. For ease of 
interpretation, it may be helpful to transform the 
continuous scale of the residuals deviation into a 
binary classifier where a ‘1’ value is given to any 
cell with a residual deviation found within the 
confidence interval of the residual deviation of 
cells within the training region. All other cells 
would be given a value of ‘0’. 

RESULTS 
A summary of the model performances in 

terms of training and test AUCs, relative 
contributions of the environmental predictors to 
the final ENM, and presence/absence thresholds 
is given in Table 1. AUC scores on average 
indicate good model performance and ENMs 
developed for both Plethodon cylindraceus and P. 
teyahalee depict the known distributions of the 
species very well. However, they also project 
high probabilities of occurrence in some areas 
outside the known range of each salamander 
species (Figure 3a, b), many of which are situated 
in the known range of the other species. This is 
not unexpected since both are sister taxa and 
likely occupy similar environmental niches 
(Kozak and Wiens 2006), thus a mixture of 
dispersal limitation and biotic interaction most 
likely explains the lack of this species in areas 
deemed suitable. As indicated by the SD per grid 
cell, some of the projected potentially suitable 
areas for each species show a comparatively high 
variability (SDmax = 0.29 in both) (Figure 3, 
middle row) suggesting a higher degree of model 
uncertainty. Only MESS analyses based on the 
original predictor variables highlight parts of 
them as prone to potential errors (Figure 3, 
bottom). Moreover, the areas identified by PURV 
plots only partly overlap with them, indicating 
that the spatial distribution of both error sources 
is not necessarily coincident. This appears to be 
reasonable since the extrapolation situation 
identified by MESS refers to the range of the 
variables within the training region, but the 
PURV plots identify changes in the correlation 
structure among predictors. Even if the range of 
predictors exceeds the environmental conditions 
within the training area as indicated by MESS, 
the correlation structure might still be within the 
training range. Vice versa, this might also explain 
the spatial independence of MESS and PURV 
plots.  

 
 

DISCUSSION 
Our results highlight the importance of 

considering both the relative ranges of 
environmental parameters as well as their inter-
correlation structures in the training region when 
projecting ENMs into novel locations and time 
periods. 
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Figure 3: Occurrence probability maps of Plethodon cylindraceus (a) and P. teyahalee (b), corresponding maps 
of standard deviations of 100 Maxent models (c, d) and Prediction Uncertainty assessment using Residual 
Variation analysis (PURV) plots (e, f). Regions highlighted by PURV confidence limits are indicated as 
downward hatched, wherein areas requiring model extrapolation identified by Multidimensional Environmental 
Similarity Analyses (MESS) are upward hatched. Models were trained with species records (white dots) and 
random background points drawn within circular buffers (white outlines). 

 
Extrapolation errors 

In both species, multivariate environmental 
similarity surfaces (MESS) based on the original 
environmental predictors identified varying 

proportions of the studied areas in which at least 
one variable exceeded its range present in the 
training region (Figure 3, Appendix A). Here, 
assigning any occurrence probability requires 
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extrapolation by the model. In most cases, the 
ENMs did not predict the species in those novel 
environments, but where they did, SD of the 
corresponding occurrence probabilities became 
much higher compared to other regions, thus 
depicting extrapolation areas quite well (e.g. in 
central areas in P. cylindraceus and in the north-
eastern corner of P. teyahalee). Predictions in 
these areas are much more variable then 
interpolated predictions due the requirement of 
model extrapolation, and hence less reliable. 
Other portions of the study area where the species 
were not predicted to occur but requiring 
extrapolation such as the south-eastern areas were 
correctly identified as being too hot in the 
warmest month in P. cylindraceus or too cold in 
the coldest month in P. teyahalee. This was 
correctly incorporated in the ENMs by fading 
response curves at the corresponding tail of the 
temperature range (Appendix A). Note that both 
predictors, the maximum temperature of the 
warmest month and the minimum temperature of 
the coldest month, had the highest overall 
variable contribution in the respective ENMs 
(Table 1). Uncertainties due to extrapolation may 
therefore only arise when high response values 
for a given parameter are extrapolated but not 
when physiological limits are correctly captured 
by fading response curves. For further discussion 
how the shape of response curves may affect the 
reliability of ENMs, see Santika and Hutchinson 
(2009). 

Spatial changes in the inter-correlation 
structure 

PURV plots indicated that the correlation 
structure of the variables in the training area was 
only partly coincident with those in the projection 
area (Figure 3). A number of spots in the study 
areas were identified as showing substantial 
differences in their correlation structures. 
However, the species were only occasionally 
predicted to occur in the areas highlighted by 
PURV plots (e.g. northern and north-eastern parts 
of the study area in P. teyahalee). Unlike in areas 
requiring extrapolation of the ENM beyond the 
parameter range within the training region, no 
relationship between SD in the ENMs and inter-
correlation change was evident, suggesting that 
this kind of error source may frequently remain 
undetected in traditional analyses.  

Jiménez-Valverde et al. (2009) identified 
fairly-to-highly similar correlation structures on a 
continental scale in the most commonly used 
climate data sets using Mantel tests, where the 
correlation structures were most similar when 
comparing different time slices than when 
comparing different areas. Whilst these 
comparisons on a continental scale may indicate 
detectable but rather low variations, this may not 
necessarily be true on smaller scales. We 
obtained quite different PURV plots for both 
Plethodon species, suggesting that spatial 
position of the areas exhibiting the largest

 
Table 1. Performance and characteristics of Maxent models for Plethodon cylindraceus and Plethodon teyahalee. 
AUC = area under the receiver operating characteristic curve; Min train = minimum training presence; 10 % 
train = lowest 10 percentile training omission. 

 
Species P. cylindraceus P. teyahalee 
Model performance   
Training AUC 0.836 0.802 
Test AUC 0.807 0.790 
   
Variable contributions [%]   
mean annual temperature range 17.4 6.8 
maximum temperature warmest month 57.9 22.4 
minimum temperature coldest month 5.3 61.9 
precipitation seasonality 2.5 3.5 
precipitation driest quarter 16.9 5.3 
   
Presence/absence thresholds   
Min training 0.065 0.034 
10 % training 0.239 0.252 
 



changes in the correlation structure strongly 
depend on the position of the training area. On 
this small scale, the spatial variability of the 
residuals within the training areas can be much 
smaller than can be expected on a continental 
scale due to fine-scale topographic features. This 
increases the probability of locally-occurring high 
inter-correlations among variables resulting in a 
higher chance of deviations across space - even 
within a small area. As a consequence, although 
the negative impacts caused by changes in the 
inter-correlation structure of predictors may be 
rather small on large scales, they may bear 
heavily on ENM predictions for species 
occupying rather small ranges (e.g. the two 
Plethodontid salamanders).  

 
CONCLUSIONS 

As illustrated by our results, PURV plots are 
able to highlight formerly undetected areas of 
uncertainty in projection areas of ENMs, which 
are per se independent of the employed 
algorithm. However, the impact of the uncertainty 
caused by changes in the correlation structure of 
predictors may strongly depend on the algorithm 
used. It may be absent when using simple profile 
algorithms, which do not incorporate variable 
interactions at all such as BIOCLIM (Busby 
1991) or DOMAIN (Carpenter et al. 1993), where 
an appropriate choice of relevant proximal 
predictors may be more important. In contrast, the 
impact of changes in the correlation structure of 
predictors may become highest when interactions 
among predictors are incorporated in the model, 
as is commonly the case with state-of-the-art 
algorithms (Elith and Leathwick 2009, Franklin 
2009, Thuiller et al. 2009), such as artificial 
neural networks, boosted regression trees, 
generalized additive models, classification and 
regression trees, random forests or Maxent. 
Furthermore, projection areas identified using 
PURV plots might become unreliable when inter-
predictor relationships deviate from simple 
colinearity into more complex relationships, since 
residual deviation may be increased. There is a 
need for future extensions incorporating more 
complex relationships into this approach, and the 
authors welcome useful comments from the 
scientific community. Summarizing, PURV plots 
in its current stage may be very helpful to identify 
areas prone to misleading predictions, an area of 
research that requires more attention in the future 
use of ENMs. 
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