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Abstract. The majority of taxonomic descriptions are currently in print format. The majority of 

digital descriptions are in a format, such as DOC, HTML, or PDF, for human readers. These 

formats do not convey rich semantics in taxonomic descriptions for computer-aided processing. 

Newer digital formats, such as XML and RDF, accommodate semantic annotations that allow a 

computer to process the rich semantics on human's behalf, opening up opportunities for a wide 

range of innovative usages of taxonomic descriptions, including searching in more precise and 

flexible ways, integrating morphological, genomic, georeference, or other information, 

automatically generating taxonomic keys, and knowledge mining and visualizing taxonomic data 

etc. This paper reports our experience with the development of an automated semantic markup 

system named MARTT and discusses challenging issues involved. To address these challenging 

issues, a number of utilities were implemented to make MARTT a more operable system. The 

utilities can be used to speed up the preparation of training examples for MARTT, to facilitate the 

creation of more comprehensive annotation schemas, and to predict system performance on a new 

collection of descriptions. MARTT has been tested on several plant and alga taxonomic 

publications including Flora of China, Flora of North America, and Flora of North Central Texas. 
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Taxonomic descriptions of living organisms are 

a major information resource used by systematists 

and evolutionary biologists. The majority of such 

information is in a print or digital format for 

human readers. On-going and planned 

digitalization projects such as those initiated by the 

Global Biodiversity Information Facility (GBIF, 

2007) and the Biodiversity Heritage Library (BHL, 

2007)  will likely increase the volumes of 

taxonomic descriptions in legacy formats (e.g., 

DOC, HTML, or PDF). These documents will have 

to be converted to a new digital format such as 

XML or RDF to allow for any innovative usages 

beyond keyword-based search. Due to the scale of 

the problem, automated means for the conversion 

must be sought.    

Large volumes of taxonomic descriptions, print 

or digital, have been produced over the past two 

hundred years. While descriptions created by 

trained taxonomists are of high quality and provide 

consistent information in general, there is not a 

well-defined and well-accepted standard to 

regulate the content of a description. A manual 

comparison among the descriptions of five plant 

species, found in six well-known floras, revealed 

surprisingly large variations in terms of description 

content and style (Lydon et al, 2003).  Lydon and 

colleagues found that only 9% of information was 

exactly the same in six sources, over 55% of 

information was from a single source, and around 

1% of information contradicted information from 

another source. Besides the large variation, these 

findings also suggest that descriptions from 

different collections are mostly complementary to 

one another.  

As Lydon et al. (2003) concluded, any automatic 

markup software program must take the variation 

into account to avoid an overly-tailored system that 

works only on one or a few description collections. 

In other words, it is highly desirable for a system 

to be easily portable to a different description 

collection.  Keeping this in mind, we designed and 

implemented a portable JAVA application called 

MARTT (MARkuper for  Taxonomic Treatments), 

which has marked-up  >15,000  descriptions from 

three floras (i.e. Flora of North America (FNA, 

1993 onwards),  Flora of China (FoC, 1994 

onwards), and Flora of North Central Texas 

(Diggs, Lipscomb,  & O’Kennon, 1999)) into a 
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predefined XML format quite successfully without 

reconfiguring the system. 

This paper reports our experience with the 

development and evaluation of MARTT and 

discusses a number of challenging issues identified 

alone the way. The paper is organized as the 

following: Starting with the design rationale of 

MARTT, we go on to report a series of 

experiments involving the aforementioned floras 

(readers not caring about technical details can 

safely skip this section without loss of continuity) 

and summarize the experimental results. The 

identified challenging issues are then discussed in 

detail and the utilities implemented as solutions are 

examined. After a review of relevant research, we 

conclude the paper with a plan for future research. 

 

SYSTEM DESIGN RATIONALE 
The design goal of MARTT was a highly 

portable system that would work with all 

professionally prepared taxonomic descriptions in 

English without having to re-adjust the system on a 

collection by collection basis. We also designed 

the system to learn from its experience with well-

prepared descriptions, with the hope that it would 

become capable of tagging less-well-prepared ones 

(e.g. those created by amateur taxonomists) in the 

future. More specifically, the system should be 

able to mark up a plain-text description into an 

XML document like the one shown in Figure 1. 

Note the design goal emphasizes more the 

system’s ability of making the semantics of 

descriptions explicit by inserting appropriate tags 

than the resultant documents’ compliance to an 

encoding standard. This is because once a 

description is in XML format, it is easy to convert 

it to a standard format such as RDF or SDD 

(Structure of Descriptive Data, an XML standard 

issued by the Biodiversity Information Standards
1
).  

The high portability may be achieved by 

employing an approach called “supervised 

machine learning”. In this approach, markup rules 

used to tag description sentences are not hard-

coded but learned from examples of descriptions 

themselves. These examples are called training 

examples, which are selected descriptions tagged 

in a desired XML format by human experts 

according to an XML schema/DTD. A supervised 

machine learning algorithm examines/learns from 

                                                 
1 http://www.tdwg.org/standards/.  

training examples to come up with rules that may 

be used to tag unseen descriptions. Learning from 

examples affords a flexible system that 

automatically adjusts its behavior according to the 

task on hand. For example, if a flora focuses 

entirely on flowering plants, then the system will 

not concern itself with tagging seed cones or pollen 

cones; on the other hand, if only main organ level 

annotations (i.e. flower, leaf, etc.) are desired and 

included in the training examples, then the 

algorithm will gracefully produce markup at that 

level and not try to insert bract or stamen tags.  

Since the machine learning approach automatically 

learns markup rules from training examples, it does 

not require users to supply any rules. To 

taxonomists, preparing training examples is much 

easier than providing markup rules. On the other 

hand, we do realize that preparing training 

examples is time-consuming. This is one of the 

issues we shall address in later sections.   

For markup rules to be reusable across 

collections, they should not be based on text 

format cues. For example, a rule “the first bold 

words represent an organ name” is unlikely 

reusable, as not all collections use bold face for 

organ names. Instead, the rules should be 

semantically rich and convey domain knowledge 

and/or convention, for example, “a berry is a type 

of fruit”.  This type of semantic association rules is 

likely reusable across collections.  

Based on all these considerations, MARTT was 

implemented with three main components. The 

first component is a machine learning component, 

which learns markup rules from training examples 

and applies the rules to tag new descriptions. The 

second component is a knowledge induction 

component, which takes a tagged collection to 

induce semantic association rules from it. The third 

component is a storage component for the 

association rules learned over time and is named 

“the markup rule bank”. When enabled, the 

markup rule bank answers queries initiated by the 

learning component. An example query may be 

“(according to the rule bank’s knowledge), what 

could be a good tag for ‘Berries fleshy to 

somewhat leathery’”, and the rule bank would 

likely respond “fruit”. 

The learning component grows a learning 

hierarchy on the fly from the given training 

examples so the hierarchy is always the best fit for 

the markup task on hand. To illustrate this process, 
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let us use the XML description shown in Figure 1 

as an example. Initially, the learning hierarchy has 

one root node “description”. When the XML 

description is read into the root node, the root node 

sees six elements (i.e. “taxon”, “plant-habit-and-

life-style”, “leaves”, “flowers”, “fruit”, and 

“seeds”) in the description element. The root node 

thus creates six child nodes, one for each element, 

and dispatches the content of each element to its 

corresponding child node. For example the newly 

created child node “taxon” gets the family and 

genus names. Each child node then reads the 

content received and if needed, creates its child 

nodes to accommodate any new elements, for 

example, the node “taxon” creates its two child 

nodes (“family” and “genus”), one for the family 

element and the other for the genus element. The 

process continues until a terminal element is 

reached in each branch. In the process each node 

saves the content of its corresponding element as 

part of its training data to be used later. By the end 

of reading the XML description into the learning 

hierarchy, a simple learning hierarchy is created 

and this hierarchy corresponds exactly to the XML 

structure of the description. Each node in the 

hierarchy has one piece of training data: the 

“description” node has the entire description, the 

“taxon” node has the family and genus names, and 

the “family” node has the family name, etc. When 

another training example is read in, the learning 

hierarchy expands itself to accommodate any new 

elements not previously seen. Suppose the second 

training example has a stems element in its 

description element. When the “description” node 

checks and sees that it does not have a child node 

for “stems”, it creates one to save the description 

of the stems there. If there are elements nested in 

the stems element, the newly created “stems” node 

creates its child nodes to accommodate those 

elements. By the time all training examples are 

read in the learning hierarchy, every element seen 

in the training examples will have a corresponding 

node in the hierarchy and the node will have its set 

of training data.  A portion of the learning 

hierarchy is illustrated in Figure 2. 

In addition to its training data, each node in the 

learning hierarchy is also equipped with a number 

of learning/markup algorithms. Each node learns 

how to tag its corresponding segments in a 

description. When a new description comes, the 

root node (“description”) tags it into segments, 

such as plant-habit-and-life-style, leaves and 

stems, and then sends the segments to their 

corresponding child nodes, where the segments are 

further tagged. For example, the “leaves” node 

further tags its segment into pedicel, petiole, 

stipule, etc. segments. To see if new descriptions 

are tagged correctly at each node, the hierarchy 

also reads in and holds answer keys. In other 

words, each node is capable of calculating its 

performance scores. Note the disadvantage of this 

top-down markup strategy is that if an error is 

made at an upper node, the error is passed down to 

lower levels. The current implementation of 

MARTT does not support back tracking of errors. 

 

 
<?xml version="1.0" encoding="ISO8859-1"?> 
<description> 
<taxon><family>BROMELIACEAE</family> 
       <genus>GUZMANIA</genus></taxon> 
<plant-habit-and-life-style><phls-general>Herbs, 

usually epiphytic, stemless to 
rarely caulescent.</phls-general></plant-
habit-and-life-style> 

<leaves><leaf-general>Leaves many-ranked, 
usually ligulate;</leaf-general> 
<leaf-blade>blade, margins entire.</leaf-
blade></leaves> 

<flowers><inflorescence-general>Inflorescences 5-
many-flowered, many-ranked, mostly  
 2-pinnate to less commonly single spike, 
flowers laxly to densely  
arranged;</inflorescence-general> 
<bract>floral bracts broad, conspicuous, 
mostly obscuring rachis.</bract> 
<flower-general>Flowers bisexual;</flower-
general> 
<sepal>sepals distinct to connate over 1/2 
length,usually symmetric;</sepal> 
<petal>petals with claws adherent to 
subconnate petal, forming short tube,   
 blade distinct;</petal> 
<stamen>stamens usually included, adherent 
to adnate with petal claws;</stamen> 

         <ovary>ovary superior.</ovary></flowers> 
<fruit><fruit-general>Capsules cylindric, 

dehiscent.</fruit-general></fruit> 
<seeds><seed-general>Seeds with basal, usually 

tan-brown plumose appendage.</seed- 
       general></seeds> 
</description> 

 
Figure 1. An example taxonomic description tagged in 

XML. 
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Figure 2. A portion of a learning hierarchy in the learning component. Illustration from Cui & Heidorn (2007) with 

permission. 

 

Several markup algorithms are available at each 

node, including a Naïve Bayesian (NB) classifier, 

Support Vector Machine (SVM) classifier, and a 

number of homemade algorithms, in order to 

compare their performance. Once descriptions are 

segmented into sentences, the task of semantic 

markup essentially becomes the task of text 

classification, hence NB and SVMs may be used to 

assign class labels (i.e. tags) to text segments. For 

SVMs, we used the implementation in the Bow 

Toolkit (McCallum, 1996). For NB, we 

implemented a version based on the algorithm 

described in Mitchell (1997). Experiments showed 

that NB and SVMs did not perform as well as 

some of our homemade algorithms, especially on 

elements with little training data. The lack of 

training data makes it difficult for NB to accurately 

estimate probabilities and for SVMs to identify 

good support vectors. Details of the learning 

algorithms and their performance comparison can 

be found in Cui (2005b) or Cui & Heidorn (2007). 

The following section describes the best 

homemade algorithm, SCCP (Semantic Classes 

and Character Patterns), and reports the 

performance of MARTT/SCCP on the three floras. 

Readers not caring about technical details can 

safely skip The Machine Learning Algorithm and 

The Experiments with MARTT System without loss 

of continuity.   

 

THE MACHINE LEARNING ALGORITHM 
SCCP markup algorithm first segments 

descriptions into sentences and then learns to tag 

the segments. SCCP segments descriptions by 

periods (.) and semicolons (;), which are the typical 

punctuation marks used in taxonomic descriptions 

to set off semantic units. SCCP uses a set of 

heuristics to avoid false segmentations at the 

periods used as a decimal point (e.g., 2.5) or in an 

abbreviation (such as var., subsp., H. L. James, 

diam. etc.) or at the semicolons that are part of 

HTML entities (e.g., &nbsp;). SCCP does not 

perform any text normalization procedures such as 

stemming or converting text to lower case. SCCP 

does not use a part of speech (POS) tagger to 

identify nouns or noun phrases because  available 

POS taggers are typically for the general domain 

and do not work well with taxonomic descriptions 

due to differences in grammar and lexicons. 

Instead, SCCP uses a frequent pattern and 

association rule learning method, originated from 

data mining research, to learn rules of the form: n-

gram → element (confidence, support), which 

reads “the n-gram is associated with the element 
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with confidence (a numerical value) and support (a 

numerical value)”. In association rule learning, 

confidence and support are a pair of scores 

measuring the strength of an association. Rules 

scored higher than a pair of user-defined thresholds 

areassumed to be good (Han & Kamber, 2000). 

Adapting from the standard definitions, we define 

confidence as the ratio of the occurrence of an n-

gram in an element and the total occurrence of the 

n-gram, and support as the ratio of the occurrence 

of the n-gram in the element and the number of 

segments (i.e. sentences) belonging to the element.  

SCCP learns the association rules from training 

examples by first generating sets of n-grams and 

then calculating the confidence and support scores 

for the candidate rules based on the occurrences of 

the n-grams in different elements. The leading l (a 

user defined variable) words in the sentences are 

used to generate ∑
≤≤

+−
mn

nl
1

1 n-grams, where m < l is 

another user defined variable that defines the 

length of the longest n-grams. For example, a word 

sequence “a b c d” with m = 4, l = 4 generates four 

unigrams: a, b, c, and d; three bigrams: a b, b c, 

and c d; two 3-grams: a b c and b c d; and one 4-

gram: a b c d; totally ten n-grams, 41 ≤≤ n .   We 

call the m-grams the “sub-grams” of an n-gram 

when they are generated from the same n-word 

sequence and m < n. The generation of n-grams of 

varied sizes creates a pool of noun phrase 

candidates. These noun phrases and all possible 

elements form candidate association rules. The 

strength of the association between an n-gram and 

an element is evaluated by the confidence and 

support scores, calculated from the occurrences of 

the n-gram in different elements in the training 

examples.  Note under this scheme, sub-grams 

inherit the occurrence counts of their n-grams.  

This causes undesirable consequences in some 

cases. Suppose the n-gram “Seed cones” occurs 

very frequently in the “seed cones” element and is 

recognized as a significant indicator of the 

element, the counting method automatically makes 

all its sub-grams (i.e.  “Seed” and “cones”) good 

indicators of the element as well, while in fact they 

are not (e.g. “Seed” should be an indicator of the 

“seeds” element). To avoid this problem, the sub-

grams are not allowed to inherit its n-gram’s 

occurrence count when the confidence and support 

scores of the n-gram are greater than a pair of pre-

set values (meaning the n-gram is likely a phrase 

and should be treated as one semantic unit). The 

pair of pre-set values should not be confused with 

the confidence/support thresholds for the 

association rules. The former values are set lower 

than the latter and they serve different purposes as 

described above. In the experiments reported 

below, we empirically set l = m = 3, the pre-set 

value pair was set to 0.7 for confidence and 0 for 

support, and the confidence threshold was set to 

0.8 and support threshold was set to 0.035. Settings 

close to these seemed to produce very similar 

performance.  

To mark up a new example, SCCP segments the 

text and takes the first l words of the segments to 

generate n-grams, 1 < n < l. For each segment, by 

looking up the n-grams in the list of association 

rules learned earlier, SCCP obtains a number of 

matching rules with confidence and support scores 

above the thresholds. The matching rules are 

ranked according to the following criteria applied 

in this order: the length of the n-gram (i.e., n), the 

location of the n-gram in the segment, the support 

score, and the confidence score.  Rules containing 

longer n-grams are ranked higher. Rules matching 

n-grams closer to the beginning of the segment are 

ranked higher. The support score takes priority 

over the confidence score to favor the rules with 

more frequent n-grams. The top ranked rule 

determines the tag for the segment. 

SCCP is also designed to recognize simple 

character patterns of the elements containing no 

words. The current version has only one such 

pattern for recognizing chromosome counts which 

take a form like “2n = 24” or “x = 12” in 

description text.  
 

EXPERIMENTS WITH MARTT 
The data sets for the experiments were taken 

from the published volumes of Flora of China 

(FoC), Flora of North America (FNA), and the 

monograph of Flora of North Central Texas 

(FNCT) with permission. Three sets of training 

examples were manually prepared, including 378 

examples selected from 12,000 FoC descriptions, 

310 from 1300 FNA descriptions, and 378 from 

1200 FNCT descriptions.The tags used in the 

training examples and the resultant XML 

documents, such as “plant habit and life style”, 

were defined in an XML schema (Cui, 2005a). The 

schema was a result of consulting a number of 

sources, including a plant systematics textbook 
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(Radford, 1986), the DELTA format (Dallwitz, 

1980), and a plant taxonomist.  

The standard 10-fold cross-validation protocol 

routinely used to evaluate performance of a 

machine learning system was used to obtain the 

performance scores of MARTT. According to this 

protocol, each set of training examples was divided 

into ten equal-sized subsets. In each run, MARTT 

used nine subsets to learn markup rules and then 

tested the markup rules on the tenth subset. The ten 

subsets allowed for ten such runs, each with a 

different test set. The average performance over 

the ten runs was recorded as the final performance 

score on a collection.    

The soundness and completeness of the markup 

produced by MARTT were measured element by 

element (i.e., node by node). The soundness was 

measured by precision (p), which was defined as 

the ratio of the text segments tagged as an element 

e correctly and the total segments tagged as e by 

the algorithm. The completeness was measured by 

recall (r), which was defined as the ratio of the text 

segments tagged as e by the algorithm correctly 

and the total e segments in the collection. The 

harmonic mean of recall and precision, F-measure 

= 2pr / (p + r), was then calculated. Precision, 

recall and F-measure are standard measures 

routinely used to evaluate performance of 

information retrieval systems. These measures 

were borrowed to measure the soundness and 

completeness of tag assignments.    

The performance of MARTT on the main organ 

level markup on each training set using SCCP  

learning and markup algorithm is shown in Table 

1. The performance on each flora is displayed 

element by element with four columns: the number 

of examples (N), precision (P), recall (R), and F-

measure (F). Note the “taxon” element shown in 

Figure 1 was a result of a straightforward parsing 

of the text and was not involved in the learning 

process.  Blanks (i.e. no data) in Table 1 were due 

to the variations in the descriptions, for example, 

FNCT descriptions include discussions about the 

taxa, while FNA and FoC do not. The overall 

performance across all elements is a weighted 

average of recalls on N, indicating the percentage 

of correctly tagged segments. Without any 

reconfiguration but relying solely on training 

examples, MARTT marked 94-98% of segments 

correctly on different collections (Table 1). 

MARTT then used SCCP and its learned rules to 

tag the entire collections of FNA and FoC to build 

the markup rule bank. Finally, MARTT 

performance on FNCT using the rule bank in 

different ways was compared with the performance 

without using the rule bank. These results are 

shown in Table 2. 

Table 2 shows the performance of MARTT on 

FNCT with three different settings: the first was 

the normal training and learning process done by 

SCCP, the second used the rule bank alone without 

SCCP learning from the training examples, and the 

third used both—MARTT first queried the rule 

bank, if no good rule was returned, it used the rules 

SCCP learned from the training examples. In other 

words, in this setting, the rule bank was used as the 

primary knowledge source while the training data 

was secondary. The results show higher precision 

scores when the rule bank alone is used, suggesting 

the rules learned from FNA and FoC are in general 

highly reliable and applicable on FNCT. One 

exception here is the discussion element. This is 

due to the fact that FNA and FOC do not include 

any discussions in descriptions (see Table 1, N 

column), so nothing about discussion can be 

learned from FNA or FOC. MARTT assumed that 

segments that did not belong to any other elements 

were discussion, resulting in a high recall (98%) 

yet a low precision (58%). The other exception is 

on phenology element. FNA contains little 

information on phenology. In FoC, all phenology 

elements start either with “Fl.” for flowering time 

or “Fr.” for fruiting time, while FNCT uses normal 

English to describe when a plant gives flowers or 

fruits. Thus the rules learned from FoC do not 

apply to FNCT. The lower recall scores (especially 

on flowers, only 0.34) are due to the limited 

coverage of the rules—which were learned from 

only two other floras (the published volumes only). 

Overall, the rule bank alone tagged 69% of all 

segments from FNCT correctly. The correct ratio 

of using training examples alone was 94%. When 

the rule bank and the training are combined, the 

overall performance is improved from 94% to 

95%—the rule bank helped to correct 1/6 of the 

errors made by SCCP. More interestingly, when 

MARTT used the training examples as the primary 

knowledge source and the rule bank secondary, the 

performance improvement was not that obvious, 

suggesting the rule bank was a more reliable 

source than the training examples, even though the 

rule bank was created from other collections.   
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 Table 1: MARTT Performance in Precision, Recall, and F-measure on FNA, FoC, and FNCT Using SCCP 

 FNA-

N 

P R F FoC-N P R F FNCT-

N 

P R F 

plant habit and life style 202 0.98 1.00 0.99 241 0.99 0.99 0.99 298 0.94 0 . 9 0 0.92 

Roots 28 1.00 0.94 0.97 30 0.95 0.90 0.92 6 0.83 0 . 7 2 0.77 

Buds 21 0.97 0.93 0.95 11 0.87 0.95 0.91 4 0.50 0 . 5 0 0.50 

Stems 230 0.92 0.98 0.95 278 0.92 0.97 0.94 111 0.92 0 . 9 1 0.91 

Leaves 296 0.99 0.98 0.98 343 0.97 0.98 0.98 270 0.93 0 . 9 4 0.93 

Flowers 198 1.00 0.99 0.99 345 0.99 0.99 0.99 307 0.94 0 . 9 4 0.94 

Fruit 192 0.98 0.96 0.97 233 0.98 0.96 0.97 178 0.94 0 . 8 8 0.91 

Cones 20 0.98 0.96 0.97 14 0.97 0.95 0.96 3 0.89 0 . 7 8 0.83 

Seeds 119 1.00 0.98 0.99 115 0.98 0.98 0.98 31 0.99 0 . 9 7 0.98 

spore-related structures 68 0.97 0.96 0.96       7 0.57 0 . 5 0 0.53 

gametophyte 19 1.00 0.96 0.98             

chromosomes 191 0.97 0.89 0.93 53 1.00 1.00 1.00 3 1.00 1 . 0 0 1.00 

phenology       269 1.00 1.00 1.00 234 0.97 0 . 9 8 0.97 

Discussion             638 0.95 0 . 9 7 0.96 

Total 1584    1932    2090    

Overall   0.97    0.98    0.94  

 

Further markup to the sub-organ level involves 

more than 240 elements. The element-by-element 

performance scores are shown in the appendix. In 

the appendix the hierarchical relations between 

elements are denoted by “/”.  “phls/leaves” may 

seem strange, but this was how some descriptions 

had been written.  MARTT made no attempt to 

rearrange original descriptions. The results suggest 

that at this markup granularity, there are more 

cases of other features element to accommodate 

sub-organs not covered by the XML schema. 

Further, variations in element distributions across 

collections and within collections are more 

evident. The data also show that many elements 

have only one training example, which inevitably 

results in zero performance, because in a 10-fold 

cross-validation, the training example is either 

placed in the training set, leaving no test data, or in 

the test set, leaving no training data. Excluding 

these elements, the overall markup performance at 

this level is 91% for FNA, 94% for FoC, and 89% 

for FNCT (this figure drops to 87% if discussion 

element is excluded). The overall performance is 

1% lower if these elements are counted. The 

calculation of the overall performance only 

involves the terminal elements and not their parent 

organ elements. 

We evaluated the reusability of the rule bank at 

sub-organ level markup as well, but limited the 

evaluation in stems, leaves, flowers, and fruit four 

elements since other main organ elements in FNCT 

either do not have enough examples (e.g., roots, 

buds, cones, spore-related structures, and 

chromosomes), or do not have a counterpart in 

FNA or FoC (e.g., discussion), or do not have a 

good number of sub-elements (e.g., plant habit and 

life style, seeds, and phenology) to make the 

evaluation interesting (see the appendix).  The 

results of the evaluation in stems, leaves, fruits, 

and flowers elements are shown in Table 3-6 

respectively.  Improved performance scores 

(compared to “training alone”) are highlighted in 

the tables.  

The results show that the sub-organ level markup 

in stems, leaves, and fruit elements benefits from 

the rule bank—using rule bank alone achieved 

about the same level of performance as that using 

hundreds of training examples. Combining the rule 

bank and the training, the performance was further 

improved.  
However, for flowers element, the rule bank 

alone only marked 29% of the segments correctly. 

This is not entirely supervising because 1) The 

flower is the most complex organ of a flowering 

plant. 2) FNCT contained descriptions of grass 

families and hence had specific sub-organs of grass  
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Table 2: MARTT Performance in Precision, Recall, and F-measure on FNCT W / W/O the Rule Bank 

FNCT  Training alone Rule bank alone Rule bank + training 

  N P R F P R F P R F 

plant habit and life style 298 0.94 0.90 0.92 0.96 0.63 0.76 0.93 0.91 0.92 

Roots 6 0.83 0.72 0.77 0.83 0.89 0.86 0.83 0.89 0.86 

Buds 4 0.50 0.50 0.50 0.75 0.75 0.75 0.75 0.75 0.75 

Stems 111 0.92 0.91 0.91 0.94 0.88 0.91 0.89 0.97 0.93 

Leaves 270 0.93 0.94 0.93 0.98 0.84 0.90 0.94 0.95 0.94 

flowers 307 0.94 0.94 0.94 0.99 0.34 0.51 0.96 0.92 0.94 

Fruit 178 0.94 0.88 0.91 0.98 0.83 0.90 0.93 0.90 0.92 

Cones 3 0.89 0.78 0.83 0.92 0.83 0.87 0.93 0.89 0.91 

Seeds 31 0.99 0.97 0.98 0.95 1.00 0.98 0.95 1.00 0.98 

spore-related structures 7 0.57 0.50 0.53 0.86 0.74 0.79 0.86 0.74 0.79 

chromosomes 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

phenology 234 0.97 0.98 0.97 0.00 0.00 0.00 0.97 0.98 0.98 

discussion 638 0.95 0.97 0.96 0.58 0.98 0.73 0.95 0.97 0.96 

Total 2090           

overall   0.94   0.69   0.95  

 
flowers, such as pappus, ligule, glume, lemma, and 

palea etc, while FNA and FoC collections did not. 

3) The recall on the flowers element was as low as 

34% (see Table 2). If a segment is not correctly 

identified as flowers, the further markup of its sub-

organs cannot be correct because of the 

hierarchical markup strategy.  Despite the overall 

low performance in flowers, the rule bank did help 

to improve the performance on some of its sub-

elements (Table 5). 

 

SUMMARY OF MARTT EXPERIMENTS 
The experiments with MARTT show that the 

machine learning approach is highly portable: on 

all three floras MARTT achieved very good 

performance (in the range of 87% to 98%, 

depending on the markup granularity and data 

collection). Biodiversity and other factors 

contribute to the rather skewed distributions of 

elements in description collections (see the 

appendix). MARTT fails at many elements with no 

or few training data. On the other hand, the results 

suggest that the induced knowledge (i.e. the rule 

bank) is reliable and reusable, in some 

circumstances, the rule bank provides more 

reliable rules than the training examples do. The 

rule bank is shown to help to improve the markup  

 

performance on elements with good coverage. 

Continuing to enrich the rule bank with the markup 

rules learned from other description collections is 

likely to improve its coverage and make the rule 

bank more powerful. Overall, the experiments 

showed that MARTT achieved its goal on 

portability and performance. 

Using the learned rules, MARTT tagged all the 

15,000 descriptions into XML format and turned 

them into three Greenstone collections which can 

be searched by element
2
 (Witten et. al. 2000) is an 

open source digital library software which supports 

search in specified elements, such as in leaves 

element. If the collections are tagged according to 

one schema, like what we have done with FoC, 

FNA, and FNCT, Greenstone also supports cross-

collection search. 

The experiments with MARTT and the three 

floras also identified a number of issues calling for 

further research, including the issues surrounding 

training examples, schema coverage, and 

performance variations. We shall discuss these 

issues and our current solutions in detail next. 

                                                 
2 http://research.sbs.arizona.edu/gs/cgi-bin/library.Greenstone.  
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Table 3: MARTT performance in precision, recall, and F-measure in stems with and without the rule bank. 

Stems  Training alone Rule bank alone Rule bank+Training 

 N P R F P R F P R F 

stem-general 97 0.88 0.89 0.89 0.96 0.94 0.95 0.90 0.94 0.92 

bark 3 0.67 0.67 0.67 0.33 0.33 0.33 0.33 0.33 0.33 

node 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

culm 7 0.80 0.80 0.80 0.20 0.20 0.20 1.00 1.00 1.00 

twig 2 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

branch 2 0.00 0.00 0.00 0.67 1.00 0.80 0.67 1.00 0.80 

branchlet 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

compound 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

overall 114 0.84   0.84   0.91  

 
Table 4: MARTT Performance in precision, recall, and F-measure in leaves with and without the rule 

bank. 

Leaves  Training alone Rule bank alone Rule bank+training 

 N P R F P R F P R F 

leaf-general 206 0.92 0.96 0.94 0.97 0.96 0.97 0.95 0.97 0.96 

petiole 18 0.72 0.72 0.72 0.89 0.83 0.86 0.83 0.83 0.83 

stipule 10 1.00 0.94 0.97 0.00 0.00 0.00 1.00 0.94 0.97 

sheath 9 0.79 0.71 0.75 0.00 0.00 0.00 0.79 0.79 0.79 

leaf-blade 77 0.95 0.75 0.83 0.95 0.73 0.83 0.90 0.73 0.81 

leaflet-general 32 0.91 0.80 0.85 1.00 0.93 0.96 0.97 0.94 0.95 

spine 9 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

tendril 3 1.00 1.00 1.00 0.33 0.33 0.33 1.00 1.00 1.00 

ligule 11 0.71 0.79 0.75 0.00 0.00 0.00 0.79 0.86 0.82 

gland 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

compound 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

overall 379  0.87   0.79   0.90  

 
THE TRAINING EXAMPLE ISSUE 

The training example problem has two aspects: 

one has to do with the effort required to prepare 

training examples and the second is about the 

skewed distribution of training data in different 

elements.  

Manually inserting tags in hundreds of 

documents is time-consuming and error-prone. To 

alleviate this problem, we developed a user-

friendly utility that makes use of the rule bank 

induced from the FoC, FNA, and FNCT 

collections to automate the training example 

preparation process. Some screenshots of the 

interface are shown in Figure 3. Figure 3a shows  
 

 

a text description in the editing area. A click on the 

“Mark up” button on the tool bar invokes MARTT 

to tag the description using the rule bank, which 

essentially tags every clause in the description as 

shown in Figure 3b. In Figure 3b, the hierarchy in 

the left pane displays the element structure of the 

tagged description. If a wrong tag is inserted by 

MARTT, the user can easily correct the error by 

bringing up the tag menu with a right-click on the 

mouse. The identified errors are saved 

automatically by the utility for further analyses. 

Because of the shared domain knowledge across 

plant taxonomic descriptions, the rule bank can 

mark a large portion of a description with good 

tags, saving a significant amount of manual effort. 
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Table 5: MARTT Performance in precision, recall, and F-measure in fruits with and without the rule bank. 

Fruits  Training alone Rule bank alone Rule bank+Training 

 N P R F P R F P R F 

fruit-general 176 0.94 0.94 0.94 0.98 0.94 0.96 0.97 0.97 0.97 

infructescence-general 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

pedicel 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

mericarp 2 0.50 0.50 0.50 0.00 0.00 0.00 1.00 1.00 1.00 

beak 4 0.00 0.00 0.00 0.33 0.33 0.33 1.00 1.00 1.00 

wing 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

pappus 12 0.22 0.28 0.25 0.00 0.00 0.00 0.00 0.00 0.00 

style 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

other-features 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

overall 202  0.84   0.82   0.87  
 
For taxonomic descriptions that do not have a 

corresponding rule bank in MARTT (e.g., ant 

descriptions or alga descriptions), the utility has 

another feature to help with the manual markup as 

shown in Figure 3c, where a selected text segment 

can be tagged with a tag chosen from the pop-up 

tag menu, which is populated from a specified 

XML schema (Cui, 2005a). This interface ensures 

a tagged example is valid or at least well-formed. 

The second issue related to training examples has 

to do with the unbalanced distribution of elements.  

In description collections, due to the diversities in 

living organisms, authorship, and editorial policies, 

the coverage of different organs are quite uneven, 

resulting in a very skewed distribution of training 

data for individual elements: for example, in the 

310 FNA training examples, there were more than 

two hundred examples for “leaf blade” but zero for 

“tendril”. The training data distribution (see the 

appendix, N column) shows many sub-organs with 

zero or one examples. There were 42 elements 

from FNA training examples, 34 from FoC, and 20 

from FNCT with only one example, making 

learning impossible for SCCP. This problem is 

somewhat alleviated by the induced knowledge 

from other collections (i.e. the rule bank), for 

example the markup rules learned from the several 

examples of “tendril” in FoC and FNCT training 

examples can be applied to FNA descriptions. But 

we also investigated an unsupervised approach that 

would address this issue in a more direct manner, 

since no training examples are required at all.  

 

 

Because this approach also helps to make rare 

organs more visible in the XML schema, we shall 

explain the unsupervised learning approach in 

detail in the next section.  
 

THE SCHEMA COVERAGE ISSUE 
Even though the XML schema (Cui, 2005a) 

we created for the MARTT experiments was quite 

comprehensive to start with, there were occasions 

when we had to edit the schema to include new 

(sub)organs discovered from the training examples. 

We also had to use the other-features elements to 

accommodate any uncovered organs remaining in 

the collections (see the appendix for the 

occurrences of other-features elements). Since a 

standard list covering all organs of living 

organisms does not exist, it is often difficult to 

enumerate in an XML schema all organs described 

in a sizeable collection. It is more difficult to create 

a comprehensive XML schema for multiple 

description collections. Although it is not always 

necessary to formalize organ names at the schema 

level (e.g., SDD does not), from the application’s 

perspective, the need to tag all organs described in 

a collection and the need to search across 

collections basing on a common schema call for 

explicit declaration of all organ names. In absence 

of a comprehensive dictionary covering all organs, 

a simple way to discover them from collections of 

descriptions is needed in order to build a complete 

schema incrementally. In addition, the method can 

be used by MARTT to address the lack of training 

examples problem, because it can identify organ 

names without any training examples.   



CUI – CONVERTING TAXONOMIC DESCRIPTIONS TO NEW DIGITAL FORMATS 

 

30 

 

Table 6: MARTT performance in precision, recall, and F-measure in flowers with and without the rule bank. 

Flowers  Training alone Rule bank alone Rule bank+Training 

 N P R F P R F P R F 

inflorescence-general 187 0.84 0.82 0.83 1.00 0.13 0.23 0.89 0.65 0.75 

bract 35 0.81 0.73 0.77 0.20 0.05 0.08 0.90 0.79 0.84 

peduncle 4 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

scape 3 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

pedicel 16 0.89 0.92 0.90 0.00 0.00 0.00 0.89 0.92 0.90 

rachis 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

rachilla 2 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

branch 5 0.75 0.63 0.68 0.00 0.00 0.00 0.00 0.00 0.00 

involucre 9 1.00 0.92 0.96 0.00 0.00 0.00 1.00 0.92 0.96 

flower-general 132 0.86 0.90 0.88 0.76 0.91 0.83 0.73 0.94 0.82 

perianth 24 0.81 0.82 0.81 0.10 0.05 0.07 0.90 0.88 0.89 

corolla 96 0.95 0.93 0.94 0.30 0.05 0.08 0.98 0.93 0.95 

corona 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

pappus 15 0.24 0.28 0.26 0.00 0.00 0.00 0.24 0.28 0.26 

ligule 7 0.70 0.60 0.65 0.00 0.00 0.00 0.80 0.60 0.69 

calyx 40 0.85 0.86 0.86 0.80 0.28 0.41 0.90 0.86 0.88 

glume 11 1.00 0.86 0.92 0.00 0.00 0.00 1.00 0.86 0.92 

lemma 24 0.88 0.93 0.91 0.00 0.00 0.00 0.88 0.93 0.91 

palea 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

sepal 19 0.80 0.77 0.78 0.70 0.43 0.54 0.93 1.00 0.96 

petal 59 0.94 0.93 0.94 0.90 0.46 0.61 0.97 0.94 0.96 

tepal 2 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

lip 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

hood 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

carpel 6 1.00 1.00 1.00 0.80 0.80 0.80 1.00 1.00 1.00 

anther 9 1.00 0.83 0.91 1.00 0.92 0.96 1.00 0.92 0.96 

style 15 0.96 1.00 0.98 0.14 0.14 0.14 0.96 1.00 0.98 

stamen 38 0.97 0.98 0.98 1.00 0.72 0.84 0.97 0.98 0.98 

pistil 6 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

stigma 10 0.94 0.92 0.93 0.00 0.00 0.00 0.94 0.92 0.93 

filament 6 0.60 0.50 0.55 0.40 0.40 0.40 0.40 0.40 0.40 

ovary 12 1.00 0.86 0.93 0.00 0.00 0.00 1.00 0.86 0.93 

placenta 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

receptacle 3 0.67 0.67 0.67 0.00 0.00 0.00 0.67 0.67 0.67 

gynostegium 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

hypanthium 3 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 

keel 2 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 

pollen 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

nectary 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

gland 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

compound 10 0.67 0.50 0.57 0.00 0.00 0.00 0.67 0.50 0.57 

other-features 10 0.29 0.19 0.23 0.00 0.00 0.00 0.29 0.19 0.23 

overall 835  0.83   0.29   0.81  
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To this end we developed a utility that simply 

take a collection of descriptions to generate a draft 

XML schema, which contains the names of the 

organs described in the collection. The utility 

employs an unsupervised machine learning 

algorithm that takes advantage of the formality in 

professionally prepared descriptions. In particular, 

we notice that. Collectively, subjects of sentences 

in descriptions likely represent the complete set of 

organs described. The algorithm tries to separate 

subjects from remaining parts of sentences, and 

then collects organ names from the subjects and 

organ characters from the remaining parts for 

future markup at a finer granularity. Being an 

unsupervised algorithm, this algorithm does not 

need any training examples. Making use the organ 

names and the regularity in punctuation usage in 

the descriptions, the utility generates a raw but 

rather comprehensive XML schema that can be 

easily refined by a domain expert. 

Here is how the unsupervised algorithm works 

on a collection: Plain-text descriptions in the 

collection are segmented into sentences at full 

stops or semicolons.  The algorithm makes the first 

three leading words of the sentences candidate 

subjects so no potential organ names is left out. 

Next it finds nouns from the description collection 

in question by using the following heuristic rule: a 

word w is noun, iff the collection contains singular 

and plural forms of w, but no past, past participle, 

or present participle forms. Seed nouns (nouns 

given to the algorithm are called seed nouns) may 

also be provided by the user directly or collected 

from a glossary. With the list of nouns, the 

algorithm marks the words in the candidate 

subjects as either noun or unknown. Then, all the 

sentences in the collection are sorted according to 

the number of known nouns in their candidate 

subjects. Next, the algorithm uses the following 

bootstrap procedure to infer the roles of the 

unknown words.   

The bootstrap procedure works in iterations and 

stops when no new discoveries are made in an 

iteration.  New discoveries are used immediately in 

the next iteration to make other discoveries.  A 

discovery is an identification of either a modifier – 

the word before a head noun (e.g. “basal” in “basal 

leaf”), a  boundary word – the word following a 

head noun (e.g 2 in “cells 2”), or a  noun. When 

the bootstrap procedure terminates, the algorithm 

uses the discovered modifiers, nouns, and 

boundary words to verify the candidate subjects: a 

verified subject is a noun with or without modifiers 

and is followed by a boundary word. If a subject 

can not be verified, the algorithm takes all the 

words up to the first known noun (inclusive) in the 

sentence as the subject.  

When the roles of the words in the subjects are 

known, it is straightforward to group different 

subjects to their head nouns, for example, 

“pistillate flowers” and “staminate flowers” are 

“flowers”. This in effect identifies an “is type of” 

relationship between the three concepts:  pistillate 

flowers and staminate flowers are types of flowers. 

The relationship “is part of” may also be 

discovered by looking at the punctuation marks. 

Many floras adopt the convention to “place each 

major structure in a separate sentence and separate 

subparts by semicolons” (FNA Editorial 

Committee, 2006).  This convention can be used to 

identify relationships such as sepals are a part of a 

flower. These relationships are integrated in the 

resultant raw schema, which is a good start for a 

domain expert to make refinements. The organ 

names and relationships will also be useful for a 

semantically richer ontology to be developed in the 

future.  

In addition, the subjects and their head nouns can 

be used as XML tags to tag the descriptions into 

well-formed XML documents. The well-formed 

XML documents may be imported to the training 

example preparation utility (Figure 3(c)) to 

generate training examples for MARTT at a much 

reduced cost. MARTT may also directly use the 

tags to mark up elements with few training 

examples. Hence the simple unsupervised learning 

algorithm addresses the schema coverage problem 

and the lack of training example problem at the 

same time.    

The bootstrap algorithm was tested, without 

being given any seed nouns, on three collections: 

one contained 120 algae descriptions extracted 

from Feist, et. al, (2005), another contained 200 

FNA descriptions, and the third contained 2367 

FNA descriptions.  Table 7 shows the evaluation 

results. From the 538 sentences of the algae 

descriptions, the algorithm learned 37 good 

singular nouns (correct rate = 95%) and 13 good 

plural nouns (correct rate = 87%), and tagged 476 

sentences correctly (correct rate = 88%). From the 

  



CUI – CONVERTING TAXONOMIC DESCRIPTIONS TO NEW DIGITAL FORMATS 

 

32 

 

(a) The Composition Area 

(b) OneClick Markup and Editing 

(c) Manual Markup 

Figure 3. Training example preparation and verification utility interface. 
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3195 sentences of the FNA descriptions (labeled as 

FNA-1 in the table), the algorithm learned 152 

good singular nouns (correct rate = 99%) and 90 

good plural nouns (correct rate = 100%), and 

tagged 3140 sentences correctly (correct rate = 

98%).  An example correct tag is “inner petals” 

while an incorrect one may be “petals generally” or 

“in some species base” (Figure 4a).  

Note the number of unique tags does not grow 

linearly with the size of description collections. 

This ensures that a visual display of the learned 

tags and their structure will not get overly crowded 

with larger collections. As Table 7 shows, while 

the number of sentences in FNA-1 is 6 times of 

that in algae collection, the number of tags learned 

from FNA-1 is only 2 times of that from algae. To 

confirm this observation, a larger FNA collection 

(labeled FNA-2 in Table 7) with 31387 sentences 

was processed and the result shows that, 

comparing FNA-2 with FNA-1, while the number 

of sentences increases 9-fold, the number of tags 

only increases 2-fold. The number of unique tags 

increases at a much lower rate than the number of 

sentences and is expected to reach a plateau.    

The diagram in Figure 4 visualizes the resultant 

XML schema, including the discovered tags and 

their structural relationships. Figure 4a and 4b 

shows the interactive diagrams generated from the 

algae and FNA-1 descriptions respectively. The “is 

part of” relationships are displayed in the diagrams 

by connecting sub-organs to their parent organs. 

The visualization readily shows the organs and 

how consistently periods and semicolons were 

used in the text. FNA descriptions often use 

periods and semicolons  to set off major structure 

descriptions and subpart descriptions respectively, 

hence we see rather clearly the main organ 

elements such as leaves, inflorescences, flowers, 

fruits, and seeds as the first level elements and 

their subparts as the second level elements (Figure 

4b). In contrast, the algae descriptions do not 

follow the same convention in using periods and 

semicolons; instead, they use mostly semicolons to 

separate different descriptive segments. Therefore 

in the diagram there is no clear-cut main organs 

level or subparts level (Figure 4a). The diagram 

may be further explored; for example, when a tag 

is selected, the interface displays the original 

descriptions on which the tag is applied.  A visual 

interface like this assists the human expert in 

refining the raw schema to make it fit the 

descriptions better. 

 

THE PERFORMANCE VARIATION ISSUE 

The results from the MARTT experiments 

show that the system performed better on the FNA 

and FoC collections than on the FNCT collection. 

Performance differences were also seen among 

different elements, for example flowers elements 

were more difficult than others. What 

characteristics of data sets cause the performance 

difference? Can these characteristics be measured 

and used to predict MARTT performance? A 

performance prediction model helps to answer 

questions such as “how well will this system work 

on this description collection?”  Instead of asking 

the user to prepare hundreds of training examples 

to test the system out, we developed a prototype 

utility that has the potential to predict the 

performance with just a few dozens of examples. 

At the center of the utility are two modules: one 

module measures characteristics of a set of 

examples, and the other uses the prediction model 

to make the prediction basing on the 

measurements.  

The prediction model was established and 

tested on FNA, FoC, and FNCT descriptions using 

the following procedure:  

 
1. A set of 11 corpus characteristic measures were 

derived. 

2. 177 collections of description segments (5-56 files 
per collection) were created from FNA, FoC, and 

FNCT training examples. 

3. The characteristics of each collection were 
measured.   

4. MARTT performance on these collections was 
evaluated. 

5. Statistical analyses were carried out to find 
correlations between the characteristic measures 

and system performance.  

 

Steps 1 and 3: characteristic measurements 

We derived the following 11 corpus 

characteristic measures that can potentially 

have an impact on system performance. The 

statistical analyses carried out in step 5 will 

reveal the ones with statistically significant 

impact. 
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Table 7: Performance of the unsupervised algorithm on alga and two FNA collections. 

 Alga FNA-1 FNA-2 

Descriptions 120 200 2367 

Sentences 538 3195 31387 

Sentences correctly tagged (%) 476(88) 3140(98) * 

Unique tags 61 143 444 

Singular nouns learned 39 154 504 

Correct singular nouns(%) 37(95) 152(99) 490 

Plural nouns learned 15 90 297 

Correct plural nouns(%) 13(87) 90(100) 295 

Boundary words learned 44 317 932 

Correct boundary words 44 317 931 

Process time 1 minute 1 minute 15 minute 

1. Instance Count is the number of examples 

(i.e. documents) in a collection.  

2. Class Count is the number of unique 

terminal elements in a collection.  

3-5. N-gram Count (N ∈ [1,2,3]) is the number 

of unique n-grams in a collection.  

6-8. N-gram Distribution Score (N ∈ [1,2,3]) 

gauges the distinctiveness of n-gram 

distributions in terminal elements in a 

collection. If an n-gram occurs m  (m>1) 

times in a collection and all occurrences 

are in one terminal element e, then we say 

the distribution of the n-gram is very 

distinctive in that the presence of the n-

gram itself suggests the element. If all n-

grams have such a distinctive distribution, 

the markup task would be trivial. At the 

other extreme, if the m occurrences are 

uniformly distributed in the elements, then 

the presence of the n-gram is of little value 

to the markup task. The final n-gram 

distribution score is the mean 

distinctiveness scores of all n-grams 

counted in a collection. The formula for 

the measure is  
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where G = (g1, …, gn). In the formula, an n-

gram gi’s maximum occurrence in all 

terminal elements is divided by gi’s total 

occurrence in the collection. This simple 

division roughly measures the 

distinctiveness of gi’s distribution. The 

factor 








 −
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1||

i

i

g

g
is used to discount the 

effect of rare n-grams. The final score is 

obtained by taking the average over all n-

grams to remove possible sample size 

effect. The score is a value between 0 and 

close to 1.  

9. Delimiter Score measures the consistency of 

delimiters. Here a delimiter is a textual 

pattern that separates a previous element 

from the current one and the current one 

from the next one. For example, a 

delimiter pattern “. /Fruit berry/. /” 

indicates that following a period, a fruit 

type description starts with the words 

“Fruit berry” and ends with another period. 

The delimiter score uses information 

entropy (IE) to measure the distribution of 

delimiting patterns in a collection. The 

lower the IE score, the more distinctive the 

distribution. If all examples in a collection 

shares one delimiting pattern, the markup 

task would be much easier than in a 

collection where each element has a 

unique pattern. The formula for this 

measure is 
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(a) Visualization of the Alga Collection 

 
(b) Visualization of the FNA-1 Collection 

 
Figure 4. Visualizations of learned tags and their structural relationships. 
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where D =(d1,…,dn).  To find the 

delimiter score for a collection, the 

delimiters d1,….,dn of terminal elements 

are gathered. The standard IE is 

calculated using the occurrences of 

different patterns in the collection. The 

IE reaches its maximum when each 

pattern occurs only once. The maximum 

IE is used to make the delimiter score a 

positive measure of the distinctiveness of 

a distribution (i.e. the higher the score, 

the more distinctive the distribution). 

The score is a value between 0 and 1.    

 10. Class Order Score and the next measure 

evaluate the consistency of the element 

sequences in a collection. Class order 

score deals with the order of the terminal 

elements. An example of an order may 

be “inflorescence, sepal, petal, style” in a 

flower description. Descriptions with 

some or all of these four terminal 

elements presented in that order are said 

to “fit” that sequence. Consistent 

sequences are useful for a markup 

algorithm to make sound decisions on 

some otherwise difficult cases. Similar 

to the delimiter score, the maximum IE 

is used here. This score is calculated as 

the following:     
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To get the score for a collection, the 

sequences of terminal elements are 

collected and the examples fitting a 

sequence are counted. The maximum IE 

is calculated based on the number of all 

possible sequences, which is either the 

number of the total examples in the 

collection, or the number of all 

permutations of terminal elements, 

whichever is smaller. Similar to the 

delimiter score, the class order score is a 

positive measure with a value between 0 

and 1.   

11. Class Presence Score considers the 

presence/absence patterns of terminal 

elements regardless of their order. The 

score is calculated in a rather similar 

way as the class order score. For 

maximum IE, the number of all possible 

patterns is either the number of the total 

examples in the collection, or the 

number of all combinations of terminal 

elements, whichever is smaller. The 

class presence score is a positive 

measure with a value between 0 and 1.  
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Step 2: Creation of 177 collections 

The 177 collections were created using the 

following procedure. First, 1500 descriptions from 

the three floras (633 from FNA, 492 from FoC, 

and 378 from FNCT) were manually marked-up in 

the XML format. The sample sizes were increased 

from those used in the MARTT experiments to 

generate enough collections for statistical analyses. 

These descriptions were then randomly divided 

into 30 sets of 50 descriptions. Then each 

description was split into several parts, each of 

which contained a text segment describing a main 

organ (e.g. flowers, fruit, etc). From this point on, 

each part was treated as an individual document. 

The documents that were in the same set and 

contained the same main organ element formed a 

collection. Of the resultant 200 collections, 23 

collections had fewer than 5 documents and were 

removed because they were too small to measure 

MARTT performance using a 5-fold cross-

validation routine. Each remaining collection 

consisted of 5 to 54 (mean = 23) documents.  

Among the 177 remaining collections, 135 random 

collections were used in the statistical analyses to 

derive the performance prediction model, and the 

remaining 42 collections were reserved to test the 

prediction model. The collections produced 

provide a reasonable representation of the 

taxonomic description population, as the 

documents were drawn from three different 

sources. They also preserve the element 

distribution variations seen in the original 

descriptions. In the end, each document contained 

a 2-level, flat XML structure. This simple model 
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allowed us to focus on the effect of characteristic 

measures on system performance.  The more 

involved multi-level hierarchical structures will be 

examined in the future. 
 
Step 4: Performance measurement 

Instead of precision/recall, we used a single-valued 

cosine similarity-like measure to evaluate markup 

accuracy, which is essentially a normalized value 

characterizing the proportion of the words tagged 

correctly in a description.  

          

Step 5: Statistical analyses 

The SPSS linear regression analysis on 135 of the 

177 collections between characteristic 

measurements (the independent variables) and 

system performance (the dependent variable) 

constructed the following model: 
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This model explained 64% of the original 

variance in performance and the residual of the 

model is normally distributed, as Figure 5 shown 

(the closer the plot of the residual to the diagonal 

line, the closer the distribution to the normal 

distribution), indicating the linear model is a good 

fit. The model shows that among the eleven 

characteristics measured, class presence, unigram 

distribution, and class count are the statistically 

significant factors for determining the performance 

score.  

The prediction model was tested on the 

reserved 42 of the 177 collections. The 

performances of MARTT on the 42 collections 

ranged from 60% to 100%. The differences 

between observed performance and predicted 

performance are plotted in Figure 6, which shows 

the residual distribution is quite close to normal. 

The residual of over 50% of the cases is in A0.03 

range (meaning the predicted value is 0.03 less or 

more than the observed value). This result seems 

very promising.  

The reader should keep in mind that the 

prediction model was derived basing on the data 

from the three floras. At this time, the coefficients 

should not be interpreted literally. We will 

continue to test and refine the prediction model 

with more data from other sources.  

 

LITERATURE REVIEW 

The majority of studies on structuring plain-

text taxonomic descriptions have relied on 

handcrafted rules which make heavy use of 

formatting and textual cues. Organism 

nomenclature, for example, conforms closely to 

prescribed rules and can be reliably extracted by 

software programs using a combination of 

contextual rules and a language lexicon (Kirkup 

et.al., 2005; Koning et al., 2005). Sautter et al. 

(2006) built on top of Koning et al.’s system a 

Named Entity Recognition system for taxonomic 

names, using both hand-crafted rules and some 

learning components. Fewer studies have focused 

on cue-poor yet semantic-rich sections (e.g. 

morphological descriptions) largely due to the lack 

of consistency in description contents. Lydon et al. 

(2003)’s manual comparison revealed surprisingly 

large inter-collection variations among descriptions 

of the same species. Earlier studies using syntactic 

parsing methods to extract information to populate 

relational databases or to mark up plant 

descriptions in XML have focused on a single 

collection (Taylor, 1995; Abascal et.al., 1999; 

Vanel, 2004). Recently, Wood et. al.(2004) 

extracted plant features from the descriptions of 

five species found in six floras, using a hand-made 

gazetteer as a lookup list to link extracted terms 

with their tags. They also showed that features 

extracted from different sources were 

complementary to each other. The research 

reported in this paper involves multiple description 

collections and multiple user-friendly approaches, 

minimizing manual work as much as possible.  

GoldenGATE (Sautter et al., 2007) is an XML 

editor that facilitates the markup of plain-text 

taxonomic descriptions in XML. It works with 

complete documents and the user can invoke 

different functions to paginate documents and to 

tag taxonomic names and taxon names, in other 

words, to tag a document to TaxonX level 1. 

TaxonX is an XML schema that defines five levels 

of markup. The sentence level markup described in 

this paper is between TaxonX level 2 and 3. 

GoldenGATE relies on regular expressions and 

pre-compiled dictionaries to tag description text. 

This approach can be sensitive to text variations  
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Figure 5. Normal distribution of the residual of the 

linear regression model. 

 

and is limited by the availability of the dictionaries 

and user skills in constructing regular expression 

patterns. GoldenGATE supports manual editing of 

tagged text in a similar way as MARTT's training 

example preparation utility. Others, such as Cui et. 

al (2002), used text classification algorithms such 

as SVMs to mark up description paragraphs as 

nomenclature, description, distribution, discussion, 

and reference, etc. with good accuracy.  

Few studies linked characteristic measures of 

text corpora to system performance statistically. 

An exception is Bagga & Biermann (1997) who 

proposed a measure called “fact level” to evaluate 

the complexity of a text corpus in the context of 

information extraction, basing on the observation 

that it is more difficult to extract a fact when its 

components are scattered around in the text. The 

study showed that higher fact levels are associated 

with lower performances in information extraction 

systems, indicating that fact level may be an 

appropriate measure for extraction difficulty. 

However, fact level is not applicable to the 

semantic markup scenario discussed here.  

 
CONCLUSIONS AND FUTURE WORK 

Our experience with taxonomic descriptions 

confirms Lydon et.al (2003)'s conclusion that large 

variations exist among collections of descriptions. 

Domain practices (e.g., use of punctuation marks) 

are not adopted uniformly across collections. 

These variations demand any automated semantic 

markup systems to enhance not only its accuracy 

but also its portability.  

The uniqueness of MARTT lies in its ability to 

store and reuse markup rules learned over time 

from different description collections. This makes 

it highly portable across collections as 

demonstrated in the experiments with FNA, FoC, 

and FNCT. Because the learned markup rules are 

collection-independent, we hope that these rules 

accumulated over time will be also useful for 

tagging more free-style text related to taxonomy.  

As a machine learning system, MARTT compares 

candidate markup rules learned from training 

examples to select the rule with the lowest 

expected error rate and the highest expected 

correct rate. This feature releases the user from the 

difficult and time consuming task of crafting 

markup rules.  To make the system more efficient 

and user-friendly, a number of utilities are also 

being developed. The training example preparation 

utility can significantly reduce the cost of training 

examples. The unsupervised learning utility 

identifies main concepts (organ names) from a 

description collection without any training 

example and helps the user to create a more 

comprehensive XML schema and training 

examples at low cost. Lastly, the performance 

prediction utility shows the potential of predicting 

MARTT performance on a collection with only a 

few dozens of tagged examples.  
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Figure 6. The difference between observed 

performance and predicted performance on 42 test 

collections. 

 



CUI – CONVERTING TAXONOMIC DESCRIPTIONS TO NEW DIGITAL FORMATS 

 

39 

 

In the course of developing the MARTT 

system and its utilities, we essentially have tested 

two machine learning approaches: the first is a 

supervised learning approach where an XML 

schema and a set of training examples guide the 

markup decisions of the algorithm; the second is an 

unsupervised learning approach where the 

algorithm exploits implicit regularities in the 

description text without any training examples or a 

schema.  Although both approaches are capable of 

producing well-formed XML documents from 

plain-text taxonomic descriptions, the latter is 

more efficient but the former integrates more 

domain knowledge. For example, “is part of” and 

“is type of” relationships are more accurately 

represented in the supervised approach. It is 

important to note, however, the two approaches are 

mutually beneficial in that the unsupervised 

approach helps to create a comprehensive XML 

schema and training examples that the supervised 

approach needs, while the schema and the rules 

learned by the supervised approach can help to 

improve the performance of unsupervised 

approach (e.g., by providing good seed nouns).   

While the markup at the sentence level can 

benefit information retrieval by supporting fielded 

searches, in the immediate future we will further 

develop MARTT to tag at an even finer 

granularity; that is, to tag characters and character 

states in descriptions. The character level markups 

will prove more useful and powerful: they can be 

used to support database-like queries, to merge 

descriptions from multiple collections, to generate 

taxonomic keys either in a semi-automated or 

automated manner, and to compare descriptions 

along multiple dimensions, to name just a few 

possibilities. We will format the tagged description 

in standard formats such as SDD to share them 

with the community. SDD does not prescribe a 

standard set of characters to be included, but leaves 

the decision to individual applications. To ensure 

our SDD documents interoperate with others, a 

conceptual model (i.e., ontoglogy) with broad 

coverage is indispensable. We will look into the 

issues on ontology construction and how to use the 

ontology to guide the markup practice.  

As well, we will conduct further evaluation of 

the entire system from a more user-centered 

perspective. We will examine in a systematic 

manner the effort required on the user’s side to 

mark up a sizeable collection using MARTT and 

its utilities. To provide a comprehensive and useful 

evaluation, the author is more than willing to 

collaborate with contributors and rights-holders of 

any taxonomic collection.  
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