
Biodiversity Informatics, 10, 2015, 35-44 

 

OMWS: A WEB SERVICE INTERFACE FOR ECOLOGICAL NICHE 
MODELLING 

 
RENATO DE GIOVANNI1, ERIK TORRES2, RAFAEL B. AMARAL3, IGNACIO BLANQUER2, VINOD 

REBELLO3, VANDERLEI P. CANHOS1 
1CRIA - Centro de Referência em Informação Ambiental, Av. Dr. Romeu Tórtima, 388, 

Campinas, SP, Brazil; 2Institute of Instrumentation for Molecular Imaging (I3M), Universitat 
Politècnica de València, Camino de Vera s/n, Valencia, Spain; 3Instituto de Computação, 

Universidade Federal Fluminense, Niterói, RJ, Brazil 
 
Abstract.—Ecological niche modelling (ENM) experiments often involve a high number of tasks to be 
performed. Such tasks may consume a significant amount of computing resources and take a long time to 
complete, especially when using personal computers. OMWS is a Web service interface that allows more 
powerful computing back-ends to be remotely exploited by other applications to carry out ENM tasks. Its 
latest version includes a new operation that can be used to specify complex workflows in a single request, 
adding the possibility of using workflow management systems on parallel computing back-end. In this paper 
we describe the OMWS protocol and compare its most recent version with the previous one by running the 
same ENM experiment using two functionally equivalent clients, each designed for one of the OMWS 
interface versions. Different back-end configurations were used to investigate how the performance scales for 
each protocol version when more processing power is made available. Results show that the new version 
outperforms (by a factor of two) the previous one when more computing resources are used.  
 
Key words.—workflow, high-throughput computing, openModeller 

 
Studies involving ecological niche modelling 

(ENM) sometimes require hundreds (see Segurado 
& Araújo 2004, Marmion et al. 2009, Feeley & 
Silman 2010, Lorena et al. 2011), thousands (see 
Farber & Kadmon 2003, Elith et al. 2006, Wisz et 
al. 2008) or even millions (see Diniz-Filho et al. 
2009) of models and related procedures to be 
carried out. The reason is that models can be 
created for multiple species using different 
algorithms with different sets of parameter values. 
There can also be many replicates for model tests, 
as well as many model projections based on 
different environmental scenarios. Depending on 
the experiment, performing such tasks on personal 
computers can be a troublesome experience, if not 
prohibitive. Even relatively simple experiments 
can take significant time to complete or, in some 
cases, exhaust machine resources when computing-
intensive algorithms and high-resolution 
environmental layers are used. For this reason, 
ENM is a typical field where software applications 
can greatly benefit from parallelization techniques 
and high-throughput computing by outsourcing the 

execution of tasks to more a powerful pool of 
computing resources. 

Over the Internet, different strategies can be 
used to remotely exploit such computational 
infrastructures (Kai et al. 2011). In all scenarios, 
an entry point, which can be an application directly 
accessible to end users or an intermediate Web 
service, is used to communicate with the larger 
system. Web services are web-based applications 
that support dynamic interactions with other 
software applications using open standards that 
include data formats like eXtensible Markup 
Language (XML) (World Wide Web Consortium, 
2006) to transmit data over a network via Internet-
based protocols. Web services provide a standard 
means of interoperating between different software 
applications running on a variety of platforms 
and/or frameworks (World Wide Web Consortium, 
2004a). For this reason, Web services currently 
permeate Web development, as can be seen by the 
fact that most major Web sites provide some 
mechanism for other programs to access their data 
or use their functionality. This allows all kinds of 

townpeterson
Typewritten Text
35



Biodiversity Informatics, 10, 2015, 35-44 

 

user interfaces and other applications to be 
developed on top of standard Application 
Programming Interfaces (APIs) created for remote 
calls, making Web services important components 
of complex cyberinfrastructures (see Stein 2008 
and Amaral et al. 2014 for examples). Moreover, 
service-based applications can free users from the 
burden of configuring more specific computing 
resources. 

Over the years, many tools were developed for 
ENM, mostly as Desktop applications. To our 
knowledge, the first Web application for ENM was 
released in 1994 (Boston & Stockwell 1995), while 
the first Web service for ENM appeared ten years 
later as part of openModeller (Muñoz et al. 2011), 
and it was recently named the openModeller Web 
Service (OMWS). The first OMWS prototype was 
created for the Biodiversity World project (Pahwa 
et al. 2006) so that scientific workflows for ENM 
could be built using the Triana workflow 
management system (Taylor et al. 2003). This 
prototype was improved and soon became 
officially part of the openModeller toolbox. More 
recently, other initiatives such as the LifeMapper 
project1 and eHabitat (Skøien et al. 2013) also 
created Web services for ENM. 

Although the first version of OMWS managed 
to cover the most important ENM tasks by means 
of individual operations, any complex experiment 
would require a client program to send a large 
number of requests and manage any dependencies 
between them. This could lead to inefficient 
bandwidth use, preventing back-end implement-
tations to fully exploit more sophisticated tools and 
parallelization techniques. In this paper we present 
the latest version of OMWS that includes new 
operations and additional changes, allowing 
complex ENM experiments to be fully specified in 
a single request without losing the possibility of 
using the previous individual calls that remained in 
the protocol. This paper presents an overview of 
the protocol and its general design, as more 
specific details of all operations and the 
corresponding input/output parameters can be 
found in the official documentation2. The 
capabilities of OMWS are then demonstrated with 
a typical ENM experiment implemented for both 
protocol versions. The experiment is performed 

                                                
1 http://lifemapper.org.  
2 http://openmodeller.sf.net/web_service_2.html.  2 http://openmodeller.sf.net/web_service_2.html.  

against the same server hosting both versions of 
the service. Different back-end configurations were 
used to measure speedup and saturation point 
(performance limit) when more processing power 
was made available. 
 

OMWS SCOPE AND GENERAL DESIGN 
OMWS was designed to cover essential ENM 

tasks, such as model creation, testing and 
projection, without including other pre or post 
processing operations like data cleaning, species 
occurrence data retrieval from other sources or 
raster aggregation. Although frequently used 
together with ENM procedures, such additional 
tasks would make the protocol significantly more 
complex and would produce overlaps with other 
more specific protocols. Due to the potentially long 
duration of the ENM tasks, OMWS was 
deliberately designed to be a processing protocol 
with asynchronous operations, generating outputs 
that are temporarily stored on the server side to be 
retrieved later by clients. There are no operations 
for explicitly storing or manipulating objects on 
the server, such as occurrence points, algorithms, 
models or environmental layers. OMWS should 
therefore only be seen as a remote niche modelling 
engine service, not a repository. Model 
repositories, such as the EUBrazilOpenBio niche 
modelling application (Amaral et al. 2014) or 
BioGeo3, can use OMWS behind the scenes, but 
they need to provide additional functionality 
related to authentication, storage and search 
capabilities not covered by OMWS. 

Technically, OMWS is currently built on top of 
the Simple Object Access Protocol (SOAP) (World 
Wide Web Consortium, 2007): a generic 
messaging framework created to facilitate 
communication between applications running on 
different platforms with different technologies. By 
using SOAP, the whole protocol is programmatic-
cally defined in a Web Service Definition 
Language (WSDL) (World Wide Web Consortium, 
2001) document specifying all operations, inputs 
and outputs. Through WSDL, existing SOAP 
frameworks for different programming languages 
can automatically generate proxy code to interact 
with the service. For maximum interoperability 
and better performance, OMWS follows the SOAP 
Document/Literal style, which means that 

                                                
3 http://biogeo.inct.florabrasil.net.  

townpeterson
Typewritten Text
36



Biodiversity Informatics, 10, 2015, 35-44 

 

messages are exchanged between client and server 
as plain XML documents fully encoded according 
to XML Schema (World Wide Web Consortium, 
2004b) serialization rules. 

Since OMWS was originally created as a web 
service for the openModeller toolbox, its main 
XML definitions are all based on the openModeller 
XML Schema4. Although this clearly facilitates 
using openModeller tools in the background, by no 
means it prevents other niche modelling tools to be 
used. New server implementations could be 
developed, or the existing standard server 
implementation could use a plugin approach, 
translating inputs and outputs of different ENM 
tools to the expected data structures. 
 

MAIN DATA TYPES 
Like openModeller, OMWS follows the ENM 

correlative approach (Soberón & Peterson 2005) 
by relating species occurrence points with spatially 
explicit environmental variables so that the 
corresponding environmental data can be used by 
an algorithm to generate a niche model. Therefore, 
environmental layers, occurrence points (presence, 
absence or background), algorithms, models and 
model projections are the fundamental data types 
used by the protocol. 

Since environmental layers can frequently be 
very large raster files, they are referenced in the 
protocol by an identifier. There are no restrictions 
or assumptions for such identifiers other than being 
unique and resolvable by the service. They can 
refer to files stored on the server side or even point 
to remote resources. Environmental scenarios are 
specified as a sequence of environmental layers 
followed by an optional mask also referenced by 
an identifier. With this approach, rasters that are 
frequently used can be previously stored on the 
server and advertised through the getLayers 
operation. This way, clients can browse the 
available options and use appropriate identifiers for 
each selected layer when building requests. 
Remote raster sources can also be used, either as 
files directly available through HTTP or FTP, or as 
more formal raster repositories exposed through 
services like the Web Coverage Service (WCS)5. 
Any of these options enables different mechanisms 
to be set up so that users can provide their own 

                                                
4 http://openmodeller.cria.org.br/xml/2.0/openModeller.xsd.  
5 http://www.opengeospatial.org/standards/wcs.  

layers if necessary (e.g., by granting upload access 
to a specific directory on the server, or by 
configuring the server to access a remote resource 
where users have full control over the available 
rasters). However, for flexibility and simplicity, 
such mechanisms are not covered by the protocol, 
which also does not put any constraints on the 
content of layer identifiers. This approach makes 
the protocol more generic, but at the same time 
requires any additional mechanisms, capabilities or 
restrictions to be documented and communicated 
by service providers. 

Occurrence points are often used in low 
numbers in ENM, although there can be situations 
where thousands of points are available for the 
species. Additionally, the same set of occurrence 
points is seldom reused by other ENM experi-
ments. For this reason, occurrence points are 
always completely included in requests. Each point 
contains two mandatory attributes for the 
coordinates and an optional attribute for the 
corresponding environmental values, in which case 
the service is relieved of the task of reading 
environmental data from the corresponding layers. 
Each point in a request must have its coordinates 
expressed in the same spatial reference system 
specified in Well-Known Text (Herring 2011) for 
the whole set of points. 

OMWS advertises available algorithms through 
the getAlgorithms operation. There is no fixed or 
standardised set of algorithms, so each service is 
free to decide which algorithms can be used. 
Algorithm metadata includes name, description, 
bibliography, authors, developers and parameter 
metadata (name, data type, domain and 
description), besides algorithm and parameter 
identifiers that are used by the other operations 
when specifying algorithm and parameter values. 

Each different algorithm in ENM produces a 
completely different kind of model. For instance, 
the result of Bioclim (Nix 1986) is a series of 
envelopes comprised by minimum, maximum, 
mean and standard deviation values for each 
variable, while Random Forests (Breiman 2001) 
produces a set of decision trees, and Artificial 
Neural Networks (Tarassenko 1998) produces a 
system of interconnected neurons with activation 
functions and weights for each interconnection. 
OMWS deals with such diversity by allowing each 
algorithm to have its own particular XML 
representation for models, without imposing any 

townpeterson
Typewritten Text
37



Biodiversity Informatics, 10, 2015, 35-44 

 

kind of validation. Regardless its representation, 
models can be reused in subsequent calls for 
testing or projection purposes. 

Model projections are rasters produced in a 
specific format (e.g., GeoTiff) based on a specific 
template raster that indicates the resolution and 

spatial reference system to be used. Each 
projection is based on a given environmental 
scenario. Projections can be retrieved from a URL 
obtained by calling the getLayerAsURL operation 
when the procedure is finished. 

 

Figure 1: Paired individual asynchronous operations with their main inputs and outputs. Each asynchronous 
operation generates a ticket that is used as input by its counterpart operation to retrieve results later. Note: the first 
column shows only the main types of input for each operation (additional parameters are available). 

OPERATIONS 
OMWS includes different kinds of operations, 

starting with a simple ping operation that can be 
used to monitor service status. Two other 
operations, getAlgorithms and getLayers are used 
to advertise algorithms and environmental layers 
available, respectively. The remaining operations 
can be divided into three groups. The first one is a 
set of individual  asynchronous operations related 
to the main ENM tasks (Figure 1): createModel, 
testModel, projectModel and, in the most recent 
version of the protocol, samplePoints and 
evaluateModel. All these operations return a ticket 
that can be used later to call the corresponding 
operation for retrieving results: getModel, 
getTestResult, getLayerAsURL, getSamplingResult 
and getModelEvaluation. For model projections, 
an additional operation called getProjection-
Metadata can be used to retrieve more information 
about a projection, such as the number of cells 
predicted present for a given threshold. Despite the 
similar names, model testing and model evaluation 
are different operations in OMWS. The former is 

used for typical threshold-dependent (confusion 
matrix) or threshold-independent (ROC curve) 
calculations, while the later is used to calculate raw 
model values for each given occurrence point in a 
given environmental scenario. 

The second group of operations was included in 
the latest version of the protocol, allowing complex 
experiments to be specified in a single call and 
then processed in an optimized way on the server. 
A runExperiment request may contain any number 
of ENM jobs with or without dependencies 
between them (Figure 2). Each job contains its 
own set of parameters where each parameter either 
points to a fixed value specified in the first section 
of the request or to the output of another job. 
Frequent situations such as generating models for 
multiple species using multiple algorithms and 
then testing or projecting results into different 
environmental scenarios can be expressed with this 
new kind of request.  

The runExperiment operation is also 
asynchronous, returning a set of individual tickets 
for each job. The corresponding operation 

townpeterson
Typewritten Text
38



Biodiversity Informatics, 10, 2015, 35-44 

 

getResults can be used to fetch sets of results given 
one or more tickets. 

Finally, the last group of operations is used for 
job management after any asynchronous call: 

getProgress returns the status of one or more jobs, 
getLog returns the job log and cancel can be used 
to abort one or more jobs. 

 

 
Figure 2: Types of jobs and their possible dependencies in a runExperiment call. 

 

ENM EXPERIMENT 
To illustrate how the service can be used in a 

real world situation, a typical ENM experiment 
involving multiple steps was created. The 
experiment was tested against two services hosted 
on the same server, each one compatible with one 
of the protocol versions (hereafter referred to as 
OMWS1 and OMWS2) for performance compari-
son. Additionally, different back-end configure-
tions were used, each time adding more processing 
power on the server side. Two equivalent client 
programs were developed in Python, one for 
OMWS1, where the client has to be responsible for 
managing the whole workflow sending individual 
requests for each task, and the other for OMWS2 
with all tasks specified in the new runExperiment 
operation where the server is responsible for 
managing the whole workflow. Client programs 
were executed at the Internet Data Center from the 
Brazilian National Research and Educational 
Network, while the server was located at the 
Universitat Politècnica de València in Spain. 
Average connection speed between client and 
server was measured as 9.7Mbits/s. On the server 

side, tests started with a single machine with 16GB 
of RAM and 4 cores running the service initially 
configured to process a maximum of 3 parallel 
jobs. Next, the use of HTCondor (Thain et al. 
2005) was enabled on the server side, with the 
Master node running on the same machine as the 
service. Working nodes had the same computing 
resources (16GB of RAM and 4 cores) and were 
gradually added to the pool until reaching a 
maximum of 8 nodes (128 GB of RAM and 32 
cores in total). The OMWS2 server 
implementation for HTCondor used DAGMan 
(Couvares et al. 2007) to handle complex 
experiment requests. 

The ENM experiment consisted of generating 
individual models for several species using 
different algorithms. There was no specific 
concern about comparing the relative performance 
of each algorithm or even assessing model quality 
for each species for any particular use, although 
these would be obvious follow ups in a real use 
case. Our sole interest was to demonstrate the 
service with a typical ENM experiment, compare 
the two protocol versions and show how different 

townpeterson
Typewritten Text
39



Biodiversity Informatics, 10, 2015, 35-44 

 

back-ends can be used and how they influence the 
overall processing time and computing resource 
usage efficiency. 

Five arbitrary species of Passifloraceae from 
the Brazilian Flora having a minimum set of 
twenty occurrence points were selected. All points 
were downloaded from BioGeo, where they were 
previously filtered and cleaned. Also five 
algorithms were used to generate models: ENFA 
(Hirzel et al. 2002), GARP Best Subsets 
(Anderson et al. 2003), Mahalanobis Distance 
(Farber & Kadmon 2003), Maxent (Phillips et al. 
2006) and one-class Support Vector Machines 
(Schölkopf et al. 2001). Since some of these 
algorithms rely on background or pseudo-absence 
points and it is known that the area from where 
such points are sampled can influence model 
results (Barve et al. 2011), individual masks were 
created for each species. The idea is that each mask 
approximates the area that has been historically 
accessible to the species, ensuring that background 
or pseudo-absence points are only sampled from 
environments where the species had the 
opportunity to colonize. Our approximation was 
done by buffering each set of presence points by 
500km and then merging the circles into a single 
polygon that was finally transformed into a raster. 
All masks were uploaded to a server where they 
became accessible to the service. Each mask was 
used to sample 10k geographically unique 
background points for algorithms that required 
them, and also to delimit model projections for 
each species. For simplicity, and since all species 
are plants with similar requirements, the same set 
of high-resolution environmental layers currently 
used in BioGeo was used for all species (seven 
bioclimatic variables and altitude). All layers, 
including masks, had the same resolution of 30 
arc-seconds and were locally available on the 
server (masks were previously cached by running a 
preparatory experiment just to force mask 
download). To match the environmental data 
precision and avoid redundancies, data cleaning 
filters in BioGeo selected points with a maximum 
location uncertainty of 500m and removed 
duplicate points for the same pixel. 

The actual experiment executed against the 
service included running extrinsic tests and 
generating final models for each pair species-
algorithm. Extrinsic tests used 5-fold cross-
validation, averaging the partial AUC (Peterson et 

al. 2008) for a maximum omission of 20%. Final 
models were created using all points and were 
followed by an internal test using the same 
measurement of the extrinsic test and by a native 
projection. Therefore, the whole experiment 
contained 125 model creations followed by 125 
model tests for the extrinsic tests (5 folds * 5 
algorithms * 5 species), and 25 model creations (5 
algorithms * 5 species) followed by 25 internal 
model tests and 25 model projections for the final 
models, totalizing 325 steps. The experiment was 
repeated 3 times for each protocol and back-end 
configuration, using the average as the final 
measurement. 

The service code is open source and part of the 
openModeller toolbox (we used revision #6045 
from the openModeller repository6). Both clients 
used on the tests and all input data (masks, points 
and layer references) are publicly available7. 
 

EXPERIMENT RESULTS 
The two protocols performed similarly from the 

initial single-machine configuration until an 
HTCondor set up with 3 working nodes (12 cores), 
from where OMWS2 started to perform 
increasingly better than OMWS1 (Figure 3). 

The initial duration for the experiment was 
2h44min for both protocols. OMWS1 reached 
saturation point with 4 working nodes (duration 
time of 40min) with a 4.0 speedup compared with 
the single-machine configuration, which means 
that adding more computing resources to the back-
end did not improve efficiency. Saturation point 
for OMWS2 could not be detected, as its 
performance continued to improve until the server 
infrastructure was saturated, reaching a speedup of 
8.6 (19min) with 8 working nodes (32 cores). 
 

DISCUSSION AND CONCLUSIONS 
Regardless the OMWS protocol version, when 

a service implementation is capable of exploiting 
more powerful computing resources there can be 
significant performance improvement in ENM 
experiments, as clearly demonstrated by the 
results. OMWS2 performed better than OMWS1 
when more computing resources became available. 
This can probably be explained by the fact that 
OMWS1 clients need to manage workflows on 
                                                
6 http://sourceforge.net/p/openmodeller/svn/HEAD/tree/trunk/ 
openmodeller/. 
7 http://dx.doi.org/10.6084/m9.figshare.1301521. 

townpeterson
Typewritten Text
40



Biodiversity Informatics, 10, 2015, 35-44 

 

complex experiments without any clue about or 
control over server resources, while OMWS2 
clients can completely delegate workflow 
management to the service, where more speciali-
zed tools can make use of additional information to 
optimize resources usage. 

Additionally, by being able to specify complex 
experiments with a single request, OMWS2 
requires fewer interactions between client and 
server, also simplifying client code. The task of 

developing new server software, however, gets 
more challenging with OMWS2 to handle 
workflows, although this also opens the possibility 
of using existing workflow management tools, 
such as HTCondor DAGMan in our case. Another 
example is a new OMWS server implementation 
under development using COMP Super Scalar with 
Cloud resources (Lezzi et al. 2013), which was 
used to test a prototype protocol that was later 
improved and became OMWS2. 

 

 
Figure 3: Average performance after three repetitions for the different back-end configurations using both versions 
of OMWS. Standard deviation was low for the graph scale (55s in average) so it is not being represented here.  

 
The example tested here also shows that a real 

world ENM experiment likely requires additional 
tasks not covered by OMWS, such as pre-
processing or post-processing data. This does not 
mean that such tasks can only be performed as 
unconnected individual steps, since there are many 
tools that can be used to integrate and orchestrate 
tasks performed by different services or software, 
such as Kepler (Altintas et al. 2004) and Taverna 
(Wolstencroft et al. 2013). 

OMWS was created before some of the existing 
geospatial standards, in particular those defined by 
the Open Geospatial Consortium8. Since OMWS is 
mostly based on geospatial data and operations, 
basic data types such as points could now be 
expressed according to OGC Geography Markup 

                                                
8 http://opengeospatial.org.  

Language (GML)9, or even according to the 
DarwinCore biodiversity data standard (Wieczorek 
et al. 2012). In fact, the whole OMWS protocol 
could be encapsulated as an OGC Web Processing 
Service (WPS)10. However, in the particular 
situation of OMWS, the benefits of adhering to 
such standards are still unclear or premature in 
terms of improving interoperability with other 
software. Similar ENM initiatives already started 
to explore the use of WPS with interesting results 
(Cavner et al. 2011, Skøien et al. 2013), although 
the incipient set of specific software libraries to 
interact with WPS services and the lack of standard 
strategies to facilitate WPS service chaining are 
still issues to be addressed. Nonetheless, future 

                                                
9 http://opengeospatial.org/standards/gml.  
10 http://opengeospatial.org/standards/wps.  

townpeterson
Typewritten Text
41



Biodiversity Informatics, 10, 2015, 35-44 

 

versions of OMWS could be adjusted or even 
wrapped to become compatible with other 
standards. Another possible future improvement 
for OMWS given the asynchronous nature of most 
of its operations is to become compatible with the 
WebSockets protocol11, which provides bi-
directional, full-duplex TCP connections. This 
could reduce network traffic currently associated 
with OMWS getProgress calls. 

The number of ENM applications interested in 
outsourcing most of the processing tasks to 
specialized Web Services is increasing over time. 
Besides other recently emerged protocol initiatives 
for ENM, the use of OMWS itself also increased 
over the years. Since its first prototype version 
used by the Biodiversity World project, OMWS 
was used for many years by the Global 
Biodiversity Information Facility12 data portal, and 
is still being used by openModeller Desktop users. 
More recently, BioGeo, through the Brazilian 
Virtual Herbarium, is using a separate OMWS 
server to process all ENM requests. The 
EUBrazilOpenBio project created a Web interface 
for ENM where users can create complex 
experiments involving multiple species, algorithms 
and environmental scenarios to be processed by an 
OMWS2 service through the new runExperiment 
operation (Amaral et al. 2014). All ENM 
workflows created as part of the BioVeL project13 
also interact with an OMWS2 service. By offering 
a standard interface for the most important ENM 
tasks with an open source server implementation 
that can be deployed on more powerful 
computational infrastructures, OMWS can be a 
relevant tool to address some of the challenges of 
ENM research. 
 

ACKNOWLEDGMENTS 
The latest version of OMWS contains 

improvements coming from different sets of 
requirements originated from two projects that 
funded their corresponding implementation: 
EUBrazilOpenBio14, with grants from the 
European Commission and the National Council 
for Scientific and Technological Development of 
Brazil (CNPq) of the Brazilian Ministry of Science 
and Technology (MCT), and BioVeL, with grants 
                                                
11 http://www.websocket.org.  
12 http://gbif.org.  
13 http://biovel.eu.  
14 http://eubrazilopenbio.eu 

from the European Commission. Server 
infrastructure was operated through a provisioning 
system developed in the frame of the Spanish 
project CLUVIEM (TIN2013-44390-R) funded by 
the "Ministerio de Economía y Competitividad". 
 

LITERATURE CITED 
Altintas, I., C. Berkley, E. Jaeger, M. Jones, B. 

Ludäscher, and S. Mock. 2004. Kepler: an 
extensible system for design and execution of 
scientific workflows, in: Proc 16th International 
Conference on Scientific and Statistical Database 
Management, pp.423-424. 

Amaral, R., R.M. Badia, I. Blanquer, R. Braga-Neto, L. 
Candela, D. Castelli, C. Flann, R. Giovanni, W.A. 
Gray, A. Jones, D. Lezzi, P. Pagano, V.P. Canhos, 
F. Quevedo, R. Rafanell, V. Rebello, M.S. Sousa-
Baena, and E. Torres. 2014. Supporting 
biodiversity studies with the EUBrazilOpenBio 
Hybrid Data Infrastructure. Concurr Comp-Pract E 
doi:10.1002/cpe.3238.  

Anderson R.P., D. Lew, and A.T. Peterson. 2003. 
Evaluating predictive models of species’ 
distributions: criteria for selecting optimal models. 
Ecol Model 162:211-232. 

Barve, N., V. Barve, A. Jimenez-Valverde, A. Lira-
Noriega, S.P. Maher, A.T. Peterson, J. Soberón, 
and F. Villalobos. 2011. The crucial role of the 
accessible area in ecological niche modeling and 
species distribution modeling. Ecol Model 
222:1810-1819. 

Boston, A.N., and D.R.B. Stockwell. 1995. Interactive 
species distribution reporting, mapping and 
modelling using the World Wide Web. Comput 
Networks ISDN 28(1-2):231-238. 

Breiman, L. 2001. Random Forests. Mach Learn 
45(1):5-32. 

Cavner, J.A., A.M. Stewart, C.J. Grady, and J.H. Beach. 
2011. An innovative Web Processing Services 
based GIS architecture for global biogeographic 
analyses of species distributions. in: FOSS4G 2011 
Proceedings, 10:15-25. 

Couvares, P., T. Kosar, A. Roy, J. Weber, and K. 
Wenger. 2007. Workflow in Condor. Workflows 
for e-science (Eds: I. Taylor, E. Deelman, D. 
Gannon, M. Shields). Springer Press. ISBN: 1-
84628-519-4. 

Diniz-Filho, J.A.F., L.M. Bini, T.F. Rangel, R.D. 
Loyola, C. Hof, D. Nogués-Bravo, and M.B. 
Araújo. 2009. Partitioning and Mapping 
Uncertainties in Ensembles of Forecasts of Species 
Turnover Under Climate Change. Ecography 
32:897-906. 

Elith, J., C.H. Graham, R.P. Anderson, M. Dudik, S. 
Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, 

townpeterson
Typewritten Text
42



Biodiversity Informatics, 10, 2015, 35-44 

 

J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, 
B.A. Loiselle, G. Manion, G. Moritz, M. 
Nakamura, Y. Nakazawa, J.McC. Overton, A.T. 
Peterson, S.J. Phillips, K. Richardson, R. Scachetti-
Pereira, R.E. Schapire, J. Soberón, S. Williams, 
M.S. Wisz, and N.E. Zimmermann. 2006. Novel 
methods improve prediction of species’ 
distributions from occurrence data. Ecography 
29:129-151. 

Farber, O., and R. Kadmon. 2003. Assessment of 
alternative approaches for bioclimatic modeling 
with special emphasis on the Mahalanobis distance. 
Ecol Model 160:115-130. 

Feeley, K.J., and M.R. Silman. 2010. Modelling the 
Responses of Andean and Amazonian Plant Species 
to Climate Change: The Effects of Georeferencing 
Errors and the Importance of Data Filtering. J 
Biogeogr 37:733-740. 

Herring, J.R., ed. OpenGIS Implementation Standard 
for Geographic information - Simple feature access 
- Part 1: Common architecture, version 1.2.1, 
section 9. Accessed September 2, 2014. 
http://portal.opengeospatial.org/files/?artifact_id=2
5355. 

Hirzel, A.H., J. Hausser, D. Chessel, and N. Perrin. 
2002. Ecological-niche factor analysis: How to 
compute habitat-suitability maps without absence 
data? Ecology 83(7):2027-2036. 

Kai, H., J. Dongarra, and G.C. Fox. 2011. Distributed 
and Cloud Computing: From Parallel Processing to 
the Internet of Things. Morgan Kaufmann 
Publishers Inc., San Francisco, CA, USA. 

Lezzi, D., R. Rafanell, E. Torres, R. Giovanni, I. 
Blanquer, and R.M. Badia. 2013. Programming 
Ecological Niche Modeling Workflows in the 
Cloud, in: 27th International Conference on 
Advanced Information Networking and 
Applications Workshops (WAINA), Barcelona. pp. 
1223-1228. 

Lorena, A.C., L.F.O. Jacintho, M.F. Siqueira, R. 
Giovanni, L.G. Lohmann, A.C.P.L.F. Carvalho, and 
M. Yamamoto. 2011. Comparing Machine 
Learning Classifiers in Potential Distribution 
Modelling. Expert Syst Appl 38(5):5268-5275. 

Nix, H.A. 1986. A biogeographic analysis of Australian 
elapid snakes. Atlas of Australian elapid snakes (ed. 
by R. Longmore), pp. 4-15. Australian Flora and 
Fauna Series 7, Australian Government Publishing 
Service, Canberra. 

Marmion, M., M. Parviainen, M. Luoto, R.K. 
Heikkinen, and W. Thuiller. 2009. Evaluation of 
Consensus Methods in Predictive Species 
Distribution Modelling. Divers Distrib 15(1):59-69. 

Muñoz, M.E.S., R. Giovanni, M.F. Siqueira, T. Sutton, 
P. Brewer, R.S. Pereira, D.A.L. Canhos, and V.P. 
Canhos. 2011. openModeller: a generic approach to 

species’ potential distribution modelling. 
Geoinformatica 15:111-135. 

Pahwa, J.S., P. Brewer, T. Sutton, C. Yesson, M. 
Burgess, X. Xu, A.C. Jones, R.J. White, W.A. 
Gray, N.J. Fiddian, F.A. Bisby, A. Culham, N. 
Caithness, M. Scoble, P. Williams, and S. Bhagwat. 
2006. Biodiversity World: A Problem-Solving 
Environment for Analysing Biodiversity Patterns, 
in: Proc. 6th IEEE International Symposium on 
Cluster Computing and the Grid (CCGRID 2006), 
Singapore. 

Peterson, A.T., M. Papeş, and J. Soberón. 2008. 
Rethinking receiver operating characteristic 
analysis applications in ecological niche modeling. 
Ecol Model 213(1):63-72. 

Phillips, S.J., R.P. Anderson, and R.E. Schapire. 2006. 
Maximum entropy modelling of species geographic 
distributions. Ecol Model 190:231-259. 

Schölkopf, B., J. Platt, J. Shawe-Taylor, A.J. Smola, and 
R.C. Williamson. 2001. Estimating the support of a 
high-dimensional distribution. Neural Comput 
13:1443-1471. 

Segurado, P. and M.B. Araújo. 2004. An Evaluation of 
Methods for Modelling Species Distributions. J 
Biogeogr 31:1555-1568. 

Skøien, J.O., M. Schulz, G. Dubois, I. Fisher, M. 
Balman, I. May, and É.Ó. Tuama. 2013. A Model 
Web approach to modelling climate change in 
biomes of Important Bird Areas. Ecol Inform 
14:38-43. 

Soberón, J. and A.T. Peterson. 2005. Interpretation of 
models of fundamental ecological niches and 
species’ distributional areas. Biodiversity 
Informatics 2:1-10. 

Stein, L.D. 2008. Towards a Cyberinfrastructure for the 
Biological Sciences: Progress, Visions and 
Challenges. Nat Rev Genet 9:678-688. 

Tarassenko, L. 1998. A Guide to Neural Computing 
Applications. Arnold, London, 139 pp. 

Taylor, I., M. Shields, I. Wang, and O. Rana. 2003. 
Triana Applications within Grid Computing and 
Peer to Peer Environments. J Grid Comput 
1(2):199-217. 

Thain, D., T. Tannenbaum and M. Livny. 2005. 
Distributed Computing in Practice: the Condor 
Experience. Concurr Comp-Pract E 17(2-4):323-
356. 

Wieczorek, J., D. Bloom, R. Guralnick, S. Blum, M. 
Döring, R. Giovanni, T. Robertson, and D. 
Vieglais. 2012. Darwin Core: An Evolving 
Community-Developed Biodiversity Data Standard. 
Plos One, 7:e29715. 

Wisz, M.S., R.J. Hijmans, J. Li, A.T. Peterson, C.H. 
Graham, and A. Guisan. 2008. Effects of Sample 
Size on the Performance of Species Distribution 
Models. Divers Distrib 14:763-773. 

townpeterson
Typewritten Text
43



Biodiversity Informatics, 10, 2015, 35-44 

 

Wolstencroft, K., R. Haines, D. Fellows, A. Williams, 
D. Withers, S. Owen, S. Soiland-Reyes, I. Dunlop, 
A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. 
Bacall, A. Hardisty, A.N. de la Hidalga, M.P.B. 
Vargas, S. Sufi, and C. Goble. 2013. The Taverna 
workflow suite: designing and executing workflows 
of Web Services on the desktop, web or in the 
cloud. Nucleic Acids Res 41(1):557-561. 

World Wide Web Consortium, 2001. Web Services 
Description Language (WSDL) 1.1. W3C Note 15 
March 2001. http://www.w3.org/TR/wsdl. 

World Wide Web Consortium, 2004a. Web Services 
Architecture, W3C Working Group Note 11 
February 2004. http://www.w3.org/TR/ws-arch/. 

World Wide Web Consortium, 2004b. XML Schema 
Part 0: Primer Second Edition. W3C 
Recommendation 28 October 2004. 
http://www.w3.org/TR/xmlschema-0/. 

World Wide Web Consortium, 2006. Extensible 
Markup Language (XML) 1.1 (Second Edition). 
W3C Recommendation 16 August 2006. 
http://www.w3.org/TR/2006/REC-xml11-
20060816/. 

World Wide Web Consortium, 2007. SOAP Version 1.2 
Part 0: Primer (Second Edition). W3C 
Recommendation 27 April 2007. 
http://www.w3.org/TR/2007/REC-soap12-part0-
20070427/.  

townpeterson
Typewritten Text
44

townpeterson
Typewritten Text




