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Abstract.—Despite efforts by researchers worldwide to assess the biodiversity of plant groups, many 
locations on Earth remain poorly surveyed, resulting in inadequate or biased knowledge. Robust estimates of 
inventory completeness could help alleviate the problem. This study aimed to identify areas representing 
gaps in current knowledge of African palms, with a focus on Benin (West Africa). We assessed the 
completeness of knowledge of African palms, targeting geographic distance and climatic difference from 
well-known sites. Data derived from intensive fieldwork were combined with independent data available 
online. Inventory completeness indices were calculated and coupled with other criteria. Results showed a 
high overall value for inventory completeness, as well as an even distribution of well-known areas across the 
country. However, poorly-known areas were identified, which were in remote locations with low 
accessibility. This study illustrates how biodiversity survey and inventory efforts can be guided by existing 
knowledge. We strongly recommend the combination of digital accessible knowledge and fieldwork, coupled 
with expert knowledge, to obtain a better picture of inventory completeness in tropical ecosystems.  
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One of the greatest challenges that tropical 

biologists are facing now is how to conserve 
biological diversity in the current context of 
demographic pressure, increase of needs, 
overexploitation, climate change, and economic 
crisis (FAO 2010). Under these threats, without 
effective protection, much of tropical biodiversity 
is unlikely to survive, so strategies to promote its 
conservation are needed (Bruner et al. 2001). 
Measurements of biological diversity can provide 
baseline information on distribution, richness, and 
relative abundance of taxa that is required for 
taking appropriate conservation decisions 
(Humphries et al. 1995; May 1988; Magurran 
1988; Raven and Wilson 1992). 

The national flora of Benin is estimated at 
2807 species (Akoègninou et al. 2006). Some of 
those species are of high socioeconomic 
importance and have been studied in depth. 
However, others remain not well assessed, such as 
wild palm species. Wild palms are amongst the 
most diverse plant groups in the world (Tomlinson 
1990) and are species with significant cultural, 
social, economic, and ecological uses (Monteiro et 
al. 2006). They serve as bio-indicators in many 

Latin-American countries (Kjaeret al. 2004; 
Vormisto et al. 2004), and their occurrences could 
be used as climate trend proxies. In sub-Saharan 
Africa, and especially in Benin, wild palms are not 
well documented. The species diversity is not well 
known, and ecological studies are rare. These data, 
together with a complete richness inventory, are 
nonetheless critical to planning informed conserva-
tion actions. 

Many studies now exist on the use of primary 
biodiversity data that are both digital and 
accessible in standard formats (Graham et al. 2004; 
Guralnick et al. 2007; Sousa-Baena et al. 2014) 
providing access to more than 6 x108 data records. 
The magnitude of digital accessible knowledge 
(DAK) is large though perhaps not sufficient when 
measured against global biodiversity (Sousa-Baena 
et al. 2014). In contrast, cases of use of extensive 
fieldwork data not obtained from online data 
portals (i.e., requiring time-consuming, expensive 
field surveys) are less frequent. In addition, 
assessing sampling effort across geographic space 
requires an understanding of how species 
assemblages differ among different environments, 
across biogeographic barriers, and as a result of 
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dispersal limitation. Species accumulation curves, 
species richness estimates, and diversity 
accumulation curves have been used to determine 
the level of survey completeness (Thompson et al. 
2007; Ariño et al. 2008; de Thoisy et al. 2008; 
Aranda et al. 2010; Lovell et al. 2010). The 
measured level of completeness can be compared 
to the desired level of completeness for the same 
locality, and some authors have defined particular 
targets that may be broadly appropriate (Cardoso et 
al. 2009). Several statistics are available for 
calculating species richness estimates, including 
non-parametric methods and extrapolations of 
species accumulation curves, that vary in their 
accuracy under different conditions, often having 
drawbacks that may prevent their use in common 
circumstances (e.g. low species density). Other less 
well-known methods have been proposed to try to 
overcome some of these challenges, such as the 
generalization by Ariño (2010) of the probability 
theory developed by Seber (1982).These novel 
methods may help determining the completeness of 
the inventory and bring out gaps in sampled areas 
for further documentation (Chao and Jost 2012). 

We carried out this study on both available 
DAK and extensive fieldwork inventory of wild 
palms (i) to describe the national species richness 
of this group, and (ii) to estimate the completeness 
of the inventory within the group. We assessed 
knowledge gaps across Benin through estimation 
of geographic and environmental distances to well-
known localities. 

 
METHODS 
Study Area 

Benin is a West African country located 
between 6°20’ and 12°25’N and 1° and 3°40’E. 
Biogeographically, Benin is subdivided into three 
contrasting phytochorological zones: the Guineo-
Congolean zone, the Sudano-Guinean transition 
zone and the Sudanian zone (Akoègninou et al. 
2006; White 1983). Rainfall is bimodal in the 
Guineo-Congolean zone. North of this zone, 
rainfall distribution becomes unimodal. Human 
activities have resulted in a high level of 
degradation of the vegetation (Figure 1).  
 

Data Sources 
Our analyses are based on data from both 

extensive fieldwork carried out from May 2013 to 
April 2014, during which a megatransect covering 

the whole country was executed, comprised of 
daily transects, and data downloaded from the 
Global Biodiversity Information Facility1,	
   com-
prising data on 11 wild palm species (8 observed 
during our fieldwork, and 3 additional species 
appearing in the GBIF dataset). The GBIF search 
was done in January 2015 through the use of key 
fields such as palms, Arecaceae, African palms, 
African native palms, Borassus, Eremo-spatha, 
Hyphaene, Laccosperma, Phoenix, Raphia, rattan, 
raffia, Wild palms, etc. The initial dataset 
contained 1847 records from the two sources. 

The dataset was then cleaned via a series of 
inspections and visualizations designed to detect 
and document inconsistency, as follows. (1) We 
created lists of unique names in each dataset in 
Microsoft Excel, and manually inspected them for 
repeated versions of the same taxonomic concepts: 
misspellings, name variants, different versions of 
authority information, etc. Such repeated name 
variants were flagged, checked via independent 
sources, and corrected to produce unique scientific 
names that we believed correctly referred to single 
taxa. (2) We checked for geographic coordinates 
that fell outside of the country, but which were 
referred to Benin. (3) Within the country, we 
checked for consistency between descriptions of 
district and position of geographic coordinates. In 
each case, where possible, we created a corrected 
version of the data record; where no clear 
correction was possible, we discarded data, 
recording data losses at each step in the cleaning 
process. In all, 1375 records were finally 
considered (1154 fieldwork + 221 GBIF records; 
Figure 2) which were constrained also to include 
only those with consistent coordinates.  
 

Data Analysis and Interpretation 
We aggregated point-based occurrence data to 

½° spatial resolution across the country, which 
near the Equator corresponds to a square ~56 km 
on a side (Figure 2). This spatial resolution was the 
product of a detailed analysis of balancing the 
benefits of aggregating data (i.e., larger sample 
sizes), versus the loss of spatial resolution that 
accompanies broader aggregation areas that can 
make imperceptible important geographic features. 
The procedure consists on examining the relative 
change in area-adjusted variance of the data versus 
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  http://www.gbif.org.	
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Figure 1. Geographic pattern of Benin’s biogeographic zones (Sudanian, Sudano-Guinean, and 
Guineo-Congolean) and soil types. 
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Figure 2. Elevation map of Benin, with the geographic locations of records of palms collected in 
the field and downloaded through GBIF. Grid squares delimit the ½° cells used to calculate 
completeness. 
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increasing plot size, and selecting the smallest plot 
size at which the trend of the slope of the overall 
variance vs. area curve changed most. The concept 
is similar to selecting the largest sample size 
beyond which no significant increase in diversity is 
expected (Ariño et al. 2008), and the resulting 
quadrat size was consistent with the spatial 
resolution used by Sousa-Baena et al. (2014) in 
their analysis of Brazilian plant diversity and 
presentation of the idea of DAK.  

We produced the ½° grid shapefiles in the 
Vector Grid module of QGIS, version 2.62. Next, 
we attributed each data record to the corresponding 
grid cell, and used a set of criteria on the 
aggregated number of records per cell, per taxon, 
to consider whether each cell was well-sampled. 
We calculated (1) the total number of records 
available from each grid square (termed N); (2) the 
number of distinct species recorded from each grid 
square (Sobs) for species appearing exclusively 
within field data, exclusively as GBIF records, and 
species recorded both as field data and GBIF data 
records; and (3) the number of species whose 
occurrence was recorded exactly once (a) and 
exactly twice (b) at each grid cell. With that 
information we were able to use Chao’s (Chao et 
al. 2000) formula to calculate the corresponding 
expected number of species (Sexp in Chao’s work, 
which we will denote Sc here) for all three cases: 

 

𝑆! = 𝑆!"# +
𝑎!

2𝑏
 

 
then defined inventory completeness (C) according 
to Chao as CC = Sobs / Sc. 

In addition, the probability theory developed 
by Seber (1982) originally applied to the problem 
of recognizing how many tagged animals had lost 
their marks in a recapture experiment, and later 
generalized by Ariño (2010) for estimating the 
number of missing data records from any number 
of overlapping datasets, was applied here. As the 
fieldwork data had not been already shared with 
available data from GBIF, the total number of 
species existing in the study area would be: 
 

𝑆! = 𝑆!"#$% + 𝑆!"#$ + 𝑆!"#$%∗!"#$ + 𝑆! 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  http://www.qgis.org.	
  	
  

where SFIELD*GBIF is the number of recorded species 
shared in both datasets, SFIELD is the number of 
species recorded in field data  but not in GBIF, 
SGBIF the number of species recorded in GBIF data 
but not in field data, and S0 the unknown number 
of species that weren’t recorded in either 
collection. Sp cannot thus be known but it can be 
estimated (Seber 1982) by probability theory on 
the intersection of the corresponding independent 
datasets (Ariño 2010). In our case, with two 
datasets, the estimate is  
 

𝑆! =
!

!!!
(𝑆!"#$% + 𝑆!"#$ + 𝑆!"#$%∗!"#$), 

 
where 
 

𝑘 = !!"#$∗!!"#$%
!!"#$!!!"#$%∗!"#$ (!!"#$%!!!"#$%∗!"#$)

. 
 
Completeness could then be calculated as CP = 
Sobs/INTEGER(Sp) for samples not so small as to 
introduce large bias in k due to the estimates of the 
multinomial function used to derive it (Seber and 
Felton, 1981; “INTEGER” indicates the whole 
number part of a real number). 

We then explored plots of Cx versus N to assess 
appropriate and adequate definitions of relatively 
completely versus incompletely inventoried grid 
squares. As many cells either were not amenable to 
estimating Sp for want of at least one parameter 
(commonalities or exclusivities), or would not 
yield Sc for want of singletons (a) or doubletons 
(b), we decided to combine both approaches to 
derive completeness rather than rely solely on 
either Chao’s or Ariño’s approaches whenever 
possible. We decided to use a highly conservative 
criterion by estimating completeness on the highest 
available value for expected species (either Sc or 
Sp), when both could be calculated. Thus, we 
obtained a lower limit for our completeness 
estimate as: 
 

𝐶! = 𝑆!"#/𝑀𝐴𝑋 𝑆! , 𝑆! . 
 
We then classified each of the squares according to 
the completeness criteria. We deemed a square to 
be well-sampled if any of these was true: (1) Cc > 
0.5 and singletons/doubletons available, (2) Cp > 
0.5 and k available, or (3) expert judgment, based 
on the known sampling density. 
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Next, in QGIS, we linked the table with the 
grid square statistics (i.e., Sobs, Sc, Sp, CM, Cc, Cp) to 
the aggregation grid, and saved this file as a 
shapefile. The shapefile of well-sampled grid 
squares was further converted to raster (geotiff) 
format using custom scripts in R (R Development 
Core Team 2013). This raster coverage was the 
basis for our identification of gaps, as follows. 

We used the Proximity (Raster Distance) 
function in QGIS to summarize geographic dis-
tance to any well-sampled area. To create a parallel 
view of environmental difference from well-
sampled areas, we plotted 5000 random points 
across the country, and used the Point Sampling 
Tool in QGIS to link each point to the geographic 
distance raster, and to raster coverages (2.5’ reso-
lution) summarizing annual mean temperature and 
annual precipitation drawn from the WorldClim 
climate data archive (Hijmans et al. 2005).  

We exported the attributes table associated 
with the random points, and analyzed it further in 
Excel. We standardized values of each environ-
menttal variable to the overall range of the variable 
as (xi – xmin) / (xmax - xmin), where xi is the particular 
observed value in question. We then calculated the 
environmental distance matrix by obtaining the 
Euclidean distances for the climate variables 
between points falling in well-sampled cells (by 
definition, points having a geo-graphic distance of 
zero) and the points falling in the remaining cells 
(those points with non-zero geographic distances). 
Hence, each random point in incomplete cells was 
defined by its distance in environmental space to 
the points in well-sampled cells. Finally, the 
environmental distances were imported into QGIS, 
and linked to the random points. The shapefile 
containing the random points was thus given a z-
value that is the environmental distance associated 
with that point. This vector file was then rasterized 
to provide continuous coverage across the region. 

 

RESULTS 
Preliminary 

The raw data show a greater concentration of 
wild palms records in the northwestern and 
southernmost part of Benin. However, data 
covered the whole country and did not appear to be 
particularly concentrated along points of access 
such as roads or rivers. 

Inspecting the relationship between Sobs and 
various C values, we observed a variation of 
outputs. For Cc, completeness greater than 0.8 was 
observed for more than 10 expected species and a 
number of individuals between 0-50; for other 
completeness indices, more variation was observed 
in C values (Figure 3). By definition, cells for 
which Cm could not be calculated were declared as 
under-sampled. Well-sampled areas according to 
the criteria defined in the Methods could in turn be 
segregated into complete, with all species observed 
(either valid CM =1 or by expert judgment), and 
incomplete (0.5<CM <1) (Table 1) sites. 
 

Inventory Completeness 
There were 49 ½° cells in the entire country, of 

which 86% held data. Globally, Benin showed a 
high value for inventory completeness (0.58<CM 
≤1). Most ecosystems hosting palm species in the 
country appear to be well sampled, except some 
sections in the northern and western fringes, as 
well as remote areas with potentially difficult 
accessibility as seen in low road density (Figure 3), 
which do not seem to lack records but show low 
completeness. Based on the consensus for 
inventory completeness, two-thirds of well-known 
sites were recognized to be complete, whereas 18% 
had CM > 0.8 and 21% had 0.5 < CM < 0.8 (Figure 
3). One-third of all cells covering the country were 
finally declared as under-sampled. 

 
Table 1. Decision table for levels of knowledge of palm species across Benin. 
 

Code  Frequency  Percent Decisions 
0 18 37 under-sampled: CM  either <0.5 or cannot be calculated, and expert judgment not 

available  
1 18 37 complete (CM = 1) 
2 2 4 complete (based on expert judgment) 
3 11 22 incomplete (Sp or Sc >Sobs and CM valid) 
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Figure 3. Completeness of inventories of palm trees in Benin at ½°spatial resolution and 
environmental and geographic distances from well-sampled cells. Bar diagrams in each cell 
represent the number of observed species (Sobs), and upper limit for expected species (Sexp), 
classified by completeness criteria. The density of shades represent the combination of the 
environmental distance (reds) and geographic distance (blues) between the shaded area and the 
well-sampled cells. 
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We analysed completeness values for the ½° 
resolution which showed completeness evenly dis-
tributed across biogeographic zones in Benin based 
on the geographic distance map. The environ-
mental distance was higher in lowlands beyond the 
Atacora Mountains (northwestern part of the 
country), in remote areas, and in border regions. 

Comparison of soil types in the country 
revealed variability across biogeographic zones 
(Figure 1). Ferralitic soils are found mostly in the 
southern part (and in the northeast corner) whereas 
more ferruginous soils are found northwards. Well-
known areas covered much of these soil types, 
suggesting completeness of inventory of palm 
communities on soil types. 

Homogenous, relatively stable climatic condi-
tions were encountered across most ecosystems in 
the country. Annual mean temperature was 
between 25-29oC and annual precipitation between 
700-1300 mm. Regions with higher temperature 
generally had lower precipi-tation and vice versa 
(Figure 4). However, some areas were environ-
mentally different, especially above 10o N. We 
calculated distances to well-known cells in climate 
space, which turned out to be roughly comparable 
to geographic distances to well-known sites 
(Figure 3). Combining both distances, we produced 
a view of areas that seem both poorly known and 
are both geographically remote and environmen-

tally different from well-known sites (Figure 3).  
 

DISCUSSION 
This study represents a first attempt in charac-

terizing completeness of knowledge of palm com-
munity composition across Benin through the use 
of data from our fieldwork and data available to 
the broader scientific community. Inventory com-
pleteness was high across the country and most of 
the country’s ecosystems hosting palm species are 
thus well sampled. As such, the current state of the 
inventory of wild palms across ecosystems in 
Benin is considered reasonably complete. This 
result comes from the concordance of the findings 
from different estimates. Although palm records 
were more concentrated in some areas, these 
higher concentrations were not linked to accessi-
bility features (e.g., roads), as has often been 
described in whole-region biodiversity studies 
(e.g., Escala et al. 1997). However, the opposite 
was not true: the few sections where low 
completeness existed did not lack records, but 
often coincided with remote areas having a low 
density of roads or other access points, or being 
otherwise harder to reach. Some of these in-
complete sectors had also high environmental 
distances to well-sampled areas, and constituted 
gaps in sampling and knowledge. 

 
 
 
 
 
Figure 4. Scatterplot of 
precipitation vs. 
temperature at 5000 
random points across 
Benin, classified 
according to the relative 
geographic distance to 
well-sampled cells.  
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Gap areas are places that have not been well 
sampled (Kier et al. 2005; Stehmann 2009). Gap 
analyses mostly focus on a particular taxon and its 
distribution and diversity across regions, eco-
regions, or biomes (Mora et al. 2008). Meanwhile, 
it is important to know how complete areas of 
inventories are, in order to apply appropriate levels 
of confidence (Colwell and Coddington 1994). For 
Benin, gaps resulting from wild palm inventory 
assessment are located in remote areas, such as in 
mountainous regions. These areas have not been 
previously mentioned as hosting palm biodiversity 
(Akoègninou et al. 2006). The dryness of the 
climate could also explain the rarity of palm 
species in these areas. Contrary to the findings of 
Soria-Auza and Kessler (2008), palm diversity 
assessment in Benin was not influenced by uneven 
collecting effort. The current study was based on 
intensive fieldwork through different seasons with 
the help of knowledgeable local people in the field. 
In addition, wild palms are recognizably distinct 
species, with little room for identification error: the 
species have long been described and few taxo-
nomic misidentifications have been reported. As 
such, taxonomic bias is not likely to have affected 
the inventory, contrary to situations for other taxa 
(Soberón et al. 2000; Pyke and Ehrlich 2010). 

The value of sharing data has been recognized 
for some time (Nelson 2009). Earlier, data were 
often safely and jealously kept by their owner (be 
it an individual, laboratory, or museum) and could 
only be accessed through remuneration of some 
sort, e.g. authorship (Scoble 2000; Ponder et al. 
2001; Wang et al. 2007). However, recent advan-
ces in information technology and an increased 
willingness to share primary biodiversity data are 
enabling unprecedented access (Soberón and 
Peterson 2004), as in case of GBIF. This sea-
change makes the research more interesting and 
easy; as more data are available, more predictions 
and analyses can be developed. As the bioinfor-
matics community pointed out, only by looking at 
vast databases that describe the whole of the 
system will we be able to understand the big 
picture, and find correlations and patterns (Hardis-
ty et al. 2013). However, more efforts should be 
made by data providers to assure the quality of the 
data that they are sharing, as most of these data 
require thorough cleaning (Otegui et al. 2013).  

This study revealed insightful information that 
will potentially impact scientific knowledge and 

conservation efforts. Even if exhaustive inventories 
of African palms are somehow feasible objectives 
for short-term fieldwork, our results demonstrate 
that, with the addition of digital accessible 
knowledge on top of existing survey data, a 
relatively complete picture about the group of 
interest could be obtained. This observation has 
important implications for sampling, as combi-
nation of available data source reduces the time, 
effort, and money required for new field surveys, 
which are nevertheless necessary to gather new 
data. Further, re-visitation of the already studied 
areas would provide information to understand and 
appreciate the level of changes in the landscape 
where these palms are found. 
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