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Abstract. The characterisation and quantification of ecological interactions, and the construction of species 

distributions and their associated ecological niches, is of fundamental theoretical and practical importance. In 
this paper we give an overview of a Bayesian inference framework, developed over the last 10 years, which, 
using spatial data, offers a general formalism within which ecological interactions may be characterised and 
quantified. Interactions are identified through deviations of the spatial distribution of co-occurrences of spatial 
variables relative to a benchmark for the non-interacting system and based on a statistical ensemble of spatial 
cells. The formalism allows for the integration of both biotic and abiotic factors of arbitrary resolution. We 
concentrate on the conceptual and mathematical underpinnings of the formalism, showing how, using the 
Naive Bayes approximation, it can be used to not only compare and contrast the relative contribution from 
each variable, but also to construct species distributions and niches based on arbitrary variable type. We 
show how the formalism can be used to quantify confounding and therefore help disentangle the complex 
causal chains that are present in ecosystems. We also show species distributions and their associated niches 
can be used to infer standard “micro” ecological interactions, such as predation and parasitism. We present 
several representative use cases that validate our framework, both in terms of being consistent with present 
knowledge of a set of known interactions, as well as making and validating predictions about new, previously 
unknown interactions in the case of zoonoses.

Keywords— Ecology, Naive Bayes, Spatial data mining, Inference, Interaction, Biotic interactions, 
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 Introduction
Darwin’s entangled bank analogy is an adequate 

pictorial representation of the complexity of interac-
tions that occur in ecological systems. Their inference 
and characterization have been a recurrent theme and 
a vexing problem in ecology, and one where theory 
has usually been ahead of empiricism. The seminal 
work of Alfred Lotka and Vito Volterra provided a 
theory for competition and predation that has been 
experimentally tested (Gause, 1934), refined (Ar-
diti and Ginzburg, 1989; Gilpin and Ayala, 1973; 

Holling, 1959) and expanded in many directions, in-
cluding multi-species communities (Case, 1990; Gil-
pin, 1975; Wilson et al., 2003). Empirical analyses of 
species interactions have progressed at a slower pace. 
Earlier work tried to estimate interaction strengths 
using simple measures of resource overlap as a proxy 
for competition coefficients (MacArthur and Levins, 
1967), or estimate them using simple regression of 
the abundance of pairs of species across space or 
time (Crowell and Pimm, 1976; Schoener, 1974). 
These methods, however, have been largely aban-
doned as they make strong assumptions (Abramsky 
et al., 1986; Dayton, 1973; Rosenzweig et al., 1985). *stephens@nucleares.unam.mx
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Another method, inferring interactions from species 
co-occurrence data, which is the focus of this contri-
bution, has survived the test of history and provides, 
as we aim to show, a valid alternative. The question 
of whether or not, or to what degree, ecological in-
teractions can be identified and characterised using 
spatial data and, in particular, co-occurrence data, 
has had a controversial history (Connor and Simber-
loff, 1979; Connor et al., 2013; Freilich et al. 2018; 
Morales-Castilla, 2015; Pollock et al., 2014; Royan 
et al., 2016). There have been multiple perspectives 
and opinions with respect to the hypothesis and mul-
tiple methodologies used to investigate it (Araújo et 
al., 2011; Araújo and Rozenfeld, 2014; Borthagaray 
et al., 2014; Cazelles et al., 2016; Clark et al. 2017; 
González-Salazar et al., 2013; Mohd et al. 2017; Pol-
lock et al., 2014; Stephens et al., 2009)1. However, 
after more than 40 years there is still no consensus. 
Over the last ten years a methodology has been de-
veloped, both related to and distinct from others, that 
has been used to identify, characterise and quanti-
fy ecological interactions (González-Salazar et al., 
2013; Stephens et al., 2009; Stephens et al., 2019), 
both in terms of being consistent with known interac-
tions as well as predicting previously unknown ones 
(Berzunza-Cruz et al., 2015; Rengifo-Correa et al., 
2017; Stephens et al., 2016). In this paper we will 
present an overview of the conceptual and theoretical 
underpinnings of this methodology and illustrate its 
utility using several representative use cases.

That the framework has not been more widely 
seen or adopted in the ecology community is per-
haps linked to the belief that point collection data, 
in particular, is not capable of identifying, character-
ising and quantifying ecological interactions (Mo-
rales-Castilla, 2015). However, it has been widely 
accepted that such data are sufficient to characterise 
the spatial distributions and corresponding niches of 
taxa when the niche variables are restricted to abiotic 
variables, linked to the fundamental niche (Peterson 
et al., 2011). It has not been generally accepted, how-
ever, that such data can be used to model the effects 
of biotic factors as niche variables (Peterson et al., 
2018). From a modelling point of view this is, of 
course, somewhat jarring—that it is fine to represent 
a class variable (the species you want to model) using 
a certain data type, but not to represent the predictors 

1Some, such as Pollock et al., (2014) and Clark et al., (2017), use an ap-
proach whereby biotic factors are modeled jointly using abiotic factors as 
niche variables rather than as predictors themselves as in our approach.

(the species that are potential niche variables) with 
that data type. Specially so when we know that no 
species exists in isolation of others, and that the oc-
currence of a species in a given place is the result 
of the interaction between physiological tolerances, 
interactions with other species, historical effects and 
dispersal limitation (Soberón and Peterson, 2005). 
Thus, it is questionable that niche models are real-
ly able to obtain a representation of the fundamental 
niche of a species without having a way of assessing 
the relative importance of biotic and abiotic factors 
in accounting for the presence of species across sites 
(Soberón and Nakamura, 2009).

Historically, species co-occurrence analysis has 
been central to community ecology theory (Dia-
mond, 1975; Ovaskainen et al., 2010), where it was 
used to test whether a set of species co-occur more 
or less than would be expected at “random”, where 
the question of what is random has also had a contro-
versial history (Colwell and Winkler 1984; Gotelli, 
2000). Thus, if co-occurrence patterns over the whole 
set deviate from the random benchmark, it has been 
interpreted as evidence that a structural aspect of the 
community is driven by biotic interactions (Brown et 
al., 2002; Diamond, 1975). Although this conclusion 
has been challenged (Connor and Simberloff, 1979; 
Gotelli and McCabe, 2002), a generally accepted 
idea is that signals of species interactions can be 
inferred from survey data at local scales (Gotelli et 
al., 2010). However, currently, an emerging issue in 
ecology and biogeography is to understand the inter-
play between the geographic distribution of species 
and their interactions at macro-scale levels (Aragón 
and Sánchez-Fernández., 2013; Gotelli et al., 2010). 
A commonly accepted idea is that climatic variables 
(Grinellian niche) are the main determinant of the 
geographical distribution of species, whereas biotic 
variables (Eltonian niches) operate at local scales, 
and their influence at large scales can be disregarded 
(Eltonian Noise Hypothesis) (Soberón and Nakamu-
ra, 2009). Consequently, biotic interactions are often 
neglected in spatial modelling.

Despite growing evidence that biotic interac-
tions may determine the distribution of species (Al-
varez-Martínez et al., 2015; Godsoe and Harmon, 
2012; González-Salazar et al., 2013; Heikkinen et al., 
2007), the debate remains open as to whether they 
should be considered in ecological niche modelling, 
and, if so, how should they be quantified? Of course, 
including biotic variables in spatial modelling opens 
up several important theoretical and methodological 
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issues. For instance, which biotic variables should be 
included? In general, the number of potential interac-
tions for a single species will be much more than the 
known ones. Therefore, we need a framework that 
allows one to include different types of data (e.g., 
collection points, environmental layers) in order to 
infer, compare and contrast potential interactions.

We believe that an important barrier to making 
further progress is that of developing and agreeing 
on a deeper and more quantitative understanding of 
what an “interaction” is, at least in the context of pat-
terns of co-occurrence, and how interactions can be 
manifested at different spatio-temporal scales. In our 
methodology, an interaction is defined by quantify-
ing the degree of co-occurrence of variables—biotic 
or abiotic—relative to that expected in the absence 
of the interaction. In these simple terms the underly-
ing modus operandi is no different than the original 
motivations of Diamond (1975), where it was hoped 
that co-occurrence data could be used to reflect in-
ter-specific competition. However, the logic is quite 
universal across all areas of science—physics, chem-
istry, linguistics, genetics, epidemiology—interac-
tions always affect the positions of the objects that 
interact. The chief difference between the different 
disciplines is what objects are interacting and how 
should co-occurrences be defined so as to character-
ise the interactions?

In the case of ecology, the use of point collec-
tion data for determining co-occurrence, and the in-
terpretation of the associated analysis to infer biotic 
interactions, has been controversial and, especially 
recently, has generated many papers—see, for in-
stance, (Wisz et al., 2013) for a recent discussion. 
Although our characterisation of interaction is defi-
nitional, it is important to determine to what degree 
such a characterisation captures the intuition associ-
ated with the standard classification of ecological in-
teractions—such as predation, mutualism, commen-
salism etc. The latter are associated with the relative 
impact of the interaction on each participant—pos-
itive for the predator, negative for the prey for ex-
ample—and are linked to a specific set of “labels” 
that mark each participant, such as predator = yes/no, 
prey = yes/no, with each interaction being associated
with a particular label. These ecological interactions 
are “micro” interactions, in that they are most man-
ifest at the level of individuals, such as predation 
events, where a bobcat kills and eats a rabbit for ex-
ample. As all of these interactions are local and di-

rect, they should all be amenable to an analysis in 
terms of a statistical ensemble of suitably defined 
co-occurrences. However, they offer a rather poor 
representation in terms of predicting the “macro” 
distributions that are an emergent property of the mi-
cro interactions, where by macro we mean how the 
relation between the spatio-temporal distributions of 
the bobcat and the rabbit as species are affected by 
these micro interactions. One reason why they offer 
a poor representation is because the macro distribu-
tion of a species depends on many labels, the ma-
jority of which are unknown. For instance, just how 
many species are hosts of a given zoonosis but are 
unknown as such? Is the label of “prey” sufficient to 
characterise a predator-prey interaction at the macro 
level? What about the potential relevance of other la-
bels, such as adult/young, male/female, large/small, 
strong/weak, fast/slow? All of which may be relevant 
to quantifying the relative success of the predator and 
therefore its spatio-temporal distribution.

Effectively, as in many other areas of science, we 
are pointed in the direction of attempting to deduce 
and relate interactions at a micro scale to those at a 
macro scale, in the knowledge that the macro scale 
emerges at the collective level from the combined ef-
fect of very many micro events. A vital link between 
the two scales is the concept of a niche. If a species 
is an important niche variable for another, then, by 
definition, it favours the presence of the species and 
thereby affects its spatial distribution (Giannini et 
al., 2013). However, a niche dimension also captures 
an intuition as to why at the micro level it is a niche 
dimension. Thus, we can accept that a predator-prey 
interaction is the underlying cause of the fact that 
presence of the prey species is a niche dimension for 
the predator and affects its distribution. However, it 
does not have to be so. Individual predation events 
may, in fact, be due to completely random encounters 
between predator and prey. This, in turn, would then 
leave no imprint at the macro level. We could not then 
speak of the prey as being an important niche variable 
of the predator, in spite of the fact that there existed 
micro-level interactions between the two. We have 
natural selection to thank for the fact that this type of 
situation would be the exception rather than the rule. 
A predator that captures prey randomly would soon 
be out-competed by a predator that is better adapted.

Although micro-scale interactions are potential-
ly easier to measure than macro-scale ones, there 
are just too many to measure. For n species we may 
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imagine that there are n(n−1) inter-specific interac-
tions. However, it is much worse than that, as for any 
pair of taxa there are potentially as many interactions 
as they have relevant labels. It is because of this that 
macro-level interactions are potentially more amena-
ble to analysis as, using a proxy such as point collec-
tion data, we can compute the deviations from a giv-
en null hypothesis for any pair of taxa from among 
a vast number. The relevant question then goes in 
reverse: instead of trying to characterise macro-lev-
el interactions as emerging from underlying micro 
interactions we can try to deduce properties of the 
micro interactions from the macro level data. Once 
again, it is the concept of a niche that gives hope to 
this endeavour as it links the two levels.

Of course, a macro-level interaction may be a re-
sult of many different types of micro interaction, thus 
leading to confounding. This is no different than in 
many other areas of science. The spatial distribution 
of disease is, epidemiologically speaking, a result of 
many underlying micro interactions. However, many 
of these micro interactions may not be manifest and 
our understanding is first pointed to relate the spatial 
distribution of disease with the spatial distribution of 
risk factors (niche variables). Subsequently, one may 
then attempt to give a micro explanation to the mac-
ro relations or vice versa. Confounding potentially 
plays an important role in ecology, where it has been 
suggested that apparent biotic interactions may be 
confounded by abiotic factors (Purse and Golding, 
2015), which can lead to the right prediction for the 
wrong reason (Dayton, 1973). The Bayesian formal-
ism we have developed allows for a detailed investi-
gation of this phenomenon.

Of course, there is a fundamental question as to 
whether a set of spatial data gives explicit informa-
tion about an interaction versus information from 
which an interaction is to be inferred and potentially 
characterised. The vast majority of spatial data that is 
available has not been generated with the specific in-
tention of analysing a particular interaction. Rather, 
the data is used to infer the existence and nature of an 
interaction using a suitable mathematical framework 
for making statistical inferences. Bayesian inference 
(Berger, 1985) provides an appropriate framework 
for this task, where Bayes’ theorem is used to update 
the probability of a hypothesis, such as the existence 
and nature of an interaction, as more evidence or 
information becomes available. This is particularly 
appropriate in our cases of interest where we can de-

duce more information about the interaction by in-
cluding in more spatial information.

Although we will try to couch much of our dis-
cussion in general terms, our main concern is to apply 
these ideas to ecological interactions and, particular-
ly, in the context of niche descriptions. Of course, the 
use of co-occurrence data in ecology has a long his-
tory, with the particulars depending on whether we 
are talking about abiotic or biotic interactions. In the 
case of climatic data, species distribution modelling 
has used the co-occurrence between a point collec-
tion of a target species and the specific environmen-
tal conditions at that point, the latter being modelled 
as environmental layers at the pixel level (Elith and 
Leathwick, 2019; Peterson et al., 2011). Many differ-
ent algorithms have been used to model the relation 
(Qiao et al., 2015).

This paper is based  on a  methodological frame-
work (González-Salazar and Stephens, 2012; 
González-Salazar et al., 2013; Sánchez-Cordero et 
al., 2008, Sierra and Stephens, 2012; Stephens et al., 
2009) that has been developed to determine, char-
acterise and quantify ecological interactions of any 
type, abiotic or biotic, using data of arbitrary spa-
tial resolution. It allows one to characterise the full 
ecological niche of a taxon, data permitting, while 
comparing and contrasting the contribution of each 
niche variable. The formalism has been applied suc-
cessfully, chiefly in the area of zoonoses, where it has 
led to the prediction and confirmation of many pre-
viously unknown vector-host interactions in several 
emerging or re-emerging diseases (González-Salazar 
et al., 2017; Rengifo-Correa et al., 2017; Stephens et 
al., 2016). In spite of its success in this important ap-
plication area, it is not well known in a wider context 
and, importantly, its conceptual underpinnings and 
its general applicability to the general area of identi-
fying and characterising ecological interactions have 
not been exploited. As a complement to these pa-
pers, we will here concentrate on its conceptual and 
mathematical basis and, in particular, how it can be 
used to infer causal chains and identify confounding 
factors in any given ecological setting and to predict 
micro ecological interactions.

The format of the paper is as follows: In the 
second section, we discuss interactions in a wider 
context, as it is important to see that relating micro 
interactions to macro interactions permeates all of 
science. Fundamentally, there is nothing different be-
tween doing so in physics versus in ecology, other 
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than ecology is much more complex in terms of the 
number of different types of interaction and the large 
array of factors that characterise them. What links 
them all is that interactions lead to a different spatial 
distribution of the objects that are interacting than 
would be the case in the absence of the interaction. 
Then, we present the empirical definition of an inter-
action that has been at the root of our efforts—that an 
interaction can be identified using statistical ensem-
bles of spatio-temporal data to show that in the pres-
ence of the interaction the spatial distribution of the 
members of the ensemble is different to that in the ab-
sence of the interaction. Such a notion is universal in 
science, the most fundamental formulation being as-
sociated with Newton’s laws of motion, where forces 
(interactions) can be identified from the spatio-tem-
poral trajectory of an object relative to the null hy-
pothesis that all objects not subject to an interaction 
are at rest or in inertial motion. In order to not distract 
the reader, we include discussion of co-occurrence 
and interaction in several text boxes that can be read 
separately and independently of the main text. Next, 
we discuss how the notion of a co-occurrence can 
be used as a fundamental variable for distinguishing 
between interacting and non-interacting systems. We 
also show how co-occurrences can be compared and 
contrasted between variables that have radically dif-
ferent spatial resolutions and also different data types 
by making all variables, abiotic and biotic, binomial 
and bringing them all to the same spatial resolution. 
Next, we discuss the Bayesian modelling framework 
that is the heart of our methodology. We show how, 
based on the fact that we can bring all variables to the 
same type and resolution, we may compute the rela-
tive weight of any variable to the probability to find 
a given taxon, thereby determining its importance as 
a niche variable and simultaneously as a determinant 
of the spatial distribution of the species. Moreover, 
we show how the formalism can be used to compare 
and contrast the relative degree of confounding of 
one variable and another, showing how this permits 
us to begin to disentangle the complex causal chains 
that exist in ecological systems. In particular, we will 
be able to show that, generally, biotic factors are con-
founders for abiotic factors, not vice versa. Further, 
we discuss the relation between micro and macro 
interactions, showing how, and under what circum-
stances, micro interactions may be inferred from 
macro data. In addition, we present several use cases 
to give ample support to all the assertions previously 

made. Finally, in the last section we draw some con-
clusions.

What are interactions and should we be
able to characterise them through

spatio-temporal data?
The most general notion of interaction across the 

sciences is simply that one thing affects another—
mutually—with the main differences being what we 
mean by “thing” and what we mean by “affect”. In 
physics, for example, the presence of one electrical-
ly charged particle affects the presence of another, 
and vice versa. In ecology, the presence of a predator 
affects the presence of a prey, and vice versa. At a 
fundamental level all interactions are local, i.e., the 
interacting entities are located at the “same” place 
at the “same” time2 and therefore co-occur. Interac-
tions, if they can be characterised, are given names: 
Electromagnetism, gravity, predation, parasitism 
etc. What they have in common is that the presence 
of one element in the system affects the state of the 
other and, again, vice versa. However, in each case 
the state variables that are affected by the interaction 
may be quite different. For example, in the case of 
predation the most important state change of the prey 
is living to dead, while a state change of the predator 
is, for example, a transition from hunger to satiation. 
We believe there is value in understanding in more 
detail how co-occurrence and interaction are related 
in sciences other than ecology. However, so as to not 
distract from the main text we have separated this 
discussion into boxes.

An individual interaction may, in principle, be 
directly observable, as is often the case in ecology. 
This requires that the interaction is directly character-
izable in terms of measurable variables. For instance, 
predation is an interaction that may be observed di-
rectly given the abrupt change in state variable of the 
prey: live → dead. Often, however, the interaction 
must be inferred using data and reasoning, as the 
change in state variable that best characterises the in-
teraction may not be directly observable or difficult 
to observe. For instance, although one may actually 
be present at the act of predation, in other circum-
stances it may well have to be inferred indirectly, 
by, say, an examination of the faeces of the predator. 
Similarly, the feeding of an hematophagic insect on 

2There are, of course, subtleties involved in defining what we mean by 
“same”, such as the question of simultaneity in relativity or what looks 
like action at a distance.
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a mammal may not be directly observed, but a blood 
analysis of the insect may reveal which species it was 
feeding from and allow for an inference of the cor-
responding interaction. In these cases, the interaction 
per se is known, but due to data considerations its 
characterisation must be inferred. However, there are 
many cases where the interaction is not previously 
known, where it is inferred first and then character-
ised and understood later. This is what happened with 
the fundamental interactions of physics. They were 
inferred from data first.

In the absence of data on the state variable chang-
es that characterise an interaction, a state variable 
that is almost inevitably affected as a consequence 
of an interaction, especially in mobile organisms, is 
the position in space and time of the interacting enti-
ties relative to what they would have been in the ab-
sence of the interaction. Indeed, it may well be that, 
to a very good approximation, position is the only 
observable state variable that changes, or is readily 
observable due to the interaction. This absence of in-
teraction then represents a “null hypothesis,” with re-
spect to which the interaction may be benchmarked.

As discussed in Box 1, in many sciences other 
than ecology, co-occurrence, though oftentimes not 
defined explicitly as such, has been used successfully 
to characterise interactions. So why is it that in ecol-

ogy, as discussed above, the use of position data and, 
in particular, point collection data to deduce the na-
ture of ecological interactions has been so controver-
sial and, apparently, not sufficiently successful to be 
accepted by the wider community? We will provide 
an answer to this question in the following sections.

We believe that one problem with the notion of 
interaction in ecology is that there has been no ad-
equate characterisation of how standardly accepted 
ecological interactions, such as predation, mutualism 
and parasitism, can be applied at the collective lev-
el. In other words, how do we characterise the “in-
teraction” between two species, predator-prey, from 
knowing that there is an interaction at the level of 
each individual—a specific predation event? First, 
we need a notion of interaction that is applicable at 
all observation scales. Given the incontrovertible ev-
idence from myriad disciplines that interactions lead 
to changes of state in the objects that are interacting 
and, in particular, the state variables associated with 
the objects’ positions, which are distinct relative to 
the case—null hypothesis—where the interaction 
is absent, we will define an interaction to be pres-
ent if the spatial distribution of the objects of study 
is different to this null hypothesis. This represents a 
purely empirical characterisation, dependent on the 
null hypothesis chosen, but which makes no a prio-

Box 1: Interactions and co-occurrence outside Ecology

Seen from the perspective of other sciences, the answer to the question as to whether interactions are character-
izable through spatio-temporal data, is an unequivocal yes; the reason being that we have been doing it successfully 
in many scientific disciplines for centuries. In physics, where the notion of interaction has been most precisely 
quantified, all the principal fundamental interactions—gravity, electromagnetism, strong and weak nuclear forces—
have been identified and characterised by observations of the relative positions, as a function of space and time, of 
objects, such as planets, electric charges, nucleons etc. The enormous success of this endeavour has been due, in 
large part, to the fact that each interaction is characterizable in terms of a very small number of parameters. Among 
these are “labels” for the objects, such as mass and electric charge, as well as universal constants which are measures 
of the strength of the interactions.

The characterisation of interactions through the observation of the positions in space and time of the interacting 
objects is not restricted to the fundamental interactions. In atomic and molecular physics and chemistry, for exam-
ple, effective interactions that emerge from the underlying fundamental interactions can also be characterised by the 
positions in space and time of different types of object—atom, molecule, macromolecule, planets etc. In comparison 
with the fundamental interactions, which are all direct and local, all interactions in physics and chemistry are, by 
definition, indirect. Thus, chemical interactions, such as hydrogen bonding, covalent bonding, Van der Waals forces 
etc. are all emergent, indirect interactions. However, they are generally considered to be “direct”. Firstly, because 
the first principles derivation of this indirect interaction from the underlying fundamental direct interactions is too 
complicated to carry out and, secondly and importantly, a better understanding of how the interaction was medi-
ated would not necessarily help us to better understand atomic physics, molecular physics or chemistry. Thus, the 
question of to what degree it is convenient to characterise an interaction as indirect versus direct is to a large extent 
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a question of convenience. For instance, is it important to understand the nature of any intermediation, or are the 
intermediating states readily observable?

An important requisite for identifying the presence of an interaction using observations of the positions of the 
involved objects is that one must have, a priori, a notion of what those positions should be in the case of a non-inter-
acting system. In the case of physics this is enshrined in Newton’s first law—that an object will remain at rest or in 
uniform motion in a straight line unless acted upon by an external force. Thus, deviations from this null hypothesis 
serve as a definition of the presence of a force, i.e., an interaction. With this null hypothesis goes the idea that in the 
non-interacting state the degree of co-occurrence of two objects should be different to the case when they interact. 
Thus, the fact that electrons in a given atom co-occur in space and time with the nucleus of that atom, relative to 
the null hypothesis that they are independent of the nucleus, is an indication of the existence of an interaction—the 
electromagnetic attraction between negatively charged electrons and positively charged nucleus. The fact that the 
planets in the solar system co-occur in space and time with the sun, relative to the null hypothesis that they are in-
dependent of the sun, is also an indication of the existence of an interaction—the gravitational attraction between 
sun and planets.

Note that any comparison between the observations of a system and the null hypothesis must be done at the 
statistical level, where an appropriate statistical ensemble of observations must be formed. One single observation is 
not sufficient. For example, Tycho Brahe’s observations of the regularities in the dynamics of the planets led to Ke-
pler’s phenomenological laws. Kepler could not have deduced those laws from just one entry in Brahe’s notebooks. 
An ensemble of entries as a function of time was required. Later, Newton, using the null hypothesis of Galileo that 
bodies not subject to an interaction (force) stay at rest or in uniform motion, deduced that planets are subject to an 
interaction as they do not follow that null hypothesis. Newton’s laws of motion, along with Kepler’s observations, 
allowed that interaction to be characterised, deducing that it depends on the masses of the interacting bodies and is 
weaker (1/r2) as a function of their separation. This is probably the clearest example of the logic of identifying and 
deducing the nature of interactions through observations of object positions. The statistical ensemble of observa-
tions in this case was the set of positions on the celestial sphere across time of the interacting objects.

Of course, understanding interactions through examination of the relative positions of objects is not restricted 
to physics and chemistry. As discussed in Stephens et al., (2017a), in standard population genetics, where genes are 
viewed as beads on a string, the concept of interaction is associated with the notion of epistasis (Phillips, 2008), 
where, in this setting, the degree to which two genes are linked, i.e., they co-occur, can be used as a measure of such 
epistasis. In other words, we measure interaction by to what degree two genes actually co-occur relative to their 
expected distribution if they were independent—the no-interaction null hypothesis. These genetic interactions may 
also have differing degrees of directedness. For example, it may occur that two genes are linked, where the linkage 
is not direct but through the intermediation of a third gene with which the two are directly linked. Similarly, in text 
mining, syntactic and semantic interactions can be deduced from the co-occurrence of textual elements, such as 
words or phrases or other linguistic objects. It has also long been used in epidemiology. Indeed, perhaps the found-
ing event of modern epidemiology, the analysis of John Snow of the Broad Street Cholera outbreak of 1854 (Snow, 
1855) was based on a co-occurrence analysis, where the positions of disease cases and potential disease sources 
were mapped and an interaction—that the events were clustered around a certain water pump as opposed to being 
randomly distributed—was identified.

Although the concept of interaction, especially in physics, is naturally tied to an ensemble of observations in 
space and time this is not a prerequisite. In the absence of temporal data, we can and must infer interactions using 
only a spatial ensemble. In the case of genetics or language, for example, the ensemble is a specification of the po-
sitions of genetic objects—genes, exons, nucleotides etc.—or syntactic objects—nouns, articles, verbs etc.—in an 
ensemble of such objects, such as genomes or texts. The logic, however, is identical to that of Brahe-Kepler-New-
ton: that relative to a suitable null hypothesis, the spatial distribution of these objects is significantly different. 
Thus, articles precede nouns in English and not vice versa and an analysis of texts will identify this grammatical 
“interaction” relative to the null hypothesis that articles and nouns are randomly distributed. Thus, in all cases, the 
question of whether a given spatio-temporal distribution of objects is distinct to our null hypothesis is a question of 
statistical inference. What we may infer about an interaction is then very much related to the precise nature of the 
ensemble we use.
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ri reference as to the nature of the interaction or its 
properties. We will usually think of the interaction 
as binary, in that it relates to two types of object. 
However, as we will see, we may readily extend the 
notion to multiple types of object and thus capture 
the idea of the interaction between an object and its 
“niche” or environment.

We might believe that we can observe an inter-
action using only a single observation. As discussed 
in Box 1, however, this is not true. The comparison 
between the observations of a system and the null 
hypothesis must be done at the statistical level, where 
an appropriate statistical ensemble of observations 
must be formed. For example, in the case of, say, 
predation, the actual act, observationally, requires an 
ensemble in time. Before the actual predation, both 
the predator and prey would be described by position 
coordinates changing as a function of time. However, 
after the act of predation, the position coordinates of 
only the predator would change. Thus, a character-
isation of the event requires a history (an ensemble 
in time)—a before and after. As emphasised, this 
definition of interaction is scale independent, in that 
we can apply it to objects at multiple resolutions. In 

the absence of temporal data however, we must in-
fer interactions using only a spatial ensemble. This 
situation also frequently occurs in other sciences, as 
discussed in Box 1. In all cases, however, the ques-
tion of whether a given spatio-temporal distribution 
of objects is distinct to our null hypothesis is a ques-
tion of statistical inference. What we may infer about 
an interaction is then very much related to the precise 
nature of the ensemble we use.

 Classifying interactions
Given our empirical definition of interaction, all 

we may deduce is that a set of spatiotemporal data 
is consistent with the presence or absence of an in-
teraction; but this tells us nothing about the nature 
or properties of that interaction and therefore does 
not necessarily help us to understand it. To charac-
terise the interaction we must seek parameters, or 
state variables, on which the interaction depends and 
determine if there are changes in the interaction as 
those state variables or labels change.

Unlike physics, as discussed in Box 2, in ecol-
ogy, there are many labels that are relevant for po-
tentially characterising a given empirical interaction, 

Box 2: Classifying interactions

An important element in understanding interactions is to characterise the properties of an object that give rise 
to an interaction in the first place. Each such property can be associated with a “label”. For instance, in physics each 
fundamental interaction—gravity, electromagnetism etc.—is characterised by one and only one label—mass, elec-
tric charge etc. However, the nature of those labels goes a long way towards allowing us to characterise and under-
stand the phenomenology of the interaction. Thus, although gravity is much weaker than electromagnetism, it can 
manifest itself at large scales because mass—the gravitational “charge”—is always positive, whereas electric charge 
is positive or negative and macroscopic matter is neutral. A consequence of this is that the fundamental interactions 
manifest themselves at very different spatial scales, a fact which lends itself to an enormous simplification when try-
ing to disentangle their relative effects. However, the effect of a fundamental interaction, such as electromagnetism, 
can become much more subtle and complicated at the collective level. For example, two atoms can repel at a small 
scale while attracting at a larger, molecular, scale. As the complexity of the interacting objects increases so does 
the potential number of labels that characterise the objects involved in the interaction. So, in molecular physics we 
must not only specify the atomic components but must understand the three-dimensional structure of the atoms and 
molecules in order to understand their interactions. In the end though, physics and chemistry are relatively simple, in 
that, at any given scale, there is usually one dominant interaction and correspondingly, one, or a few, most relevant 
labels. However, which labels are relevant can change radically from one observational scale to another.

An important property of an interaction with respect to these labels is its degree of universality. Thus, the fun-
damental forces are fundamental because they are completely universal, depending only on one label, in all places 
and at all times. They are not contextual. The gravitational force between the earth and the sun depends only on 
their masses and is independent of any other parameter. We can deduce this fact by observing properties that are 
consequences of the interaction—position in space and time for instance—and noting that predictions based on our 
characterisation of this interaction are independent of other labels. Thus, the force of gravity is independent of the 
state of the gravitationally interacting body—so that labels, such as gas giant, rock, hot, cold etc. are unimportant 
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such as prey/predator, male/female, parent/offspring, 
carnivore/herbivore, mammal/reptile, old/young, 
fast/slow, etc. as well as the taxonomic names of the 
involved species, all of which may affect the spa-
tio-temporal distribution of the organisms. Indeed, 
the deviation of the spatio-temporal distribution of 
objects from a null hypothesis, that is at the heart 
of our empirical characterisation of an interaction, 
could be the result of potentially many distinct in-
teraction types. Furthermore, in ecology, we do not 
even have a complete, accepted set of labels to use. 
The existence of a large number of relevant labels for 
a given organism, that encompass the set of possible 
interactions with other organisms, makes the full em-
pirical characterisation of all its interactions by direct 
observation completely impossible.

An important property of an interaction with re-
spect to these labels is its degree of universality. Thus, 
the fundamental forces in physics are fundamental 
because they are completely universal, depending 
only on one label, in all places and at all times. They 
are not contextual. In ecology, however, the degree 
of universality is much less. For example, for a giv-
en predator there will be a label “prey = YES/NO” 
associated with prey species of the predator. This la-
bel characterises the interaction and would be con-
sistent with the classification of predation as having 
a positive effect on the predator and a negative one 
on the prey. However, the label “prey = YES/NO” is 
only one of many that may be relevant for charac-
terising the interaction. For example, for one prey it 
may be that 70% of attempted predation events are 
successful, while for another it is only 10%. Also, at 
the collective level, such as at the species level, two 
different prey species may form substantially differ-
ent parts of the diet of the predator. Thus, at the scale 
of an individual predator and an individual prey, the 
interaction may well be “repulsive”, when viewed in 
terms of the trajectories of the individuals, reflect-
ing the fact that a prey may try to avoid the predator, 

while at the species level, the interaction can be at-
tractive, meaning that the predators at the collective 
level are attracted to where the prey species are lo-
cated.

Although the taxonomy of the fundamental inter-
actions in physics is clear and well established, where 
at the most gross, phenomenological level, we may 
speak of an interaction in terms of whether it is pos-
itive or negative (attraction/repulsion), the “charges” 
(labels) on which it depends, its strength and its rel-
ative importance, in ecology interactions have been 
classified in a somewhat different way (Lidicker, 
1979; Wisz et al., 2013), based on earlier work in the 
social sciences (Haskell, 1949), where the character-
isation of the interaction is principally based on the 
impact it has on the interacting taxa, where the im-
pact is considered in terms of whether it has a “posi-
tive” (benefit) or “negative” (cost) effect (Araújo and 
Rozenfeld, 2014; Belmaker et al., 2015). This cost/
benefit, in turn, must be evaluated in terms of some 
measurable function, such as reproductive success. 
However, this classification in no way exhausts the 
set of labels or other parameters that are potential-
ly relevant for classifying the interaction. There has 
also been work on trying to quantify the notion of 
interaction strength (see for example Paine, 1992; 
Wootton and Emmerson, 2005), where the measures 
are mainly linked to experimental procedures, such 
as removing a species from an environment, or on 
mathematical models, but not as measured directly 
from spatial distributions.

Niches and interactions: from micro to macro
We have defined interactions as being identifi-

able from deviations in the spatiotemporal distribu-
tions of objects from a suitable null hypothesis. We 
have also emphasised that a statistical ensemble of 
observations is necessary. Clearly, what we may de-
duce about an interaction depends on the nature of 
those observations and what data represents them. In 

for this interaction. Hence, the gravitational attraction of one single 10 kg mass is the same as that of ten 1 kg mass-
es combined, while the electrostatic force exerted by one charge of 10 Coulomb is the same as that of ten charges 
together of 1 Coulomb.

The taxonomy of the fundamental interactions in physics is clear and well established. At higher levels of or-
ganisation there are also established taxonomic classifications of interactions, e.g., covalent versus ionic bonding, 
and labels, such as from the periodic table, that allow us to characterise and quantify the interactions. At the most 
gross, phenomenological level, we may speak of an interaction in terms of whether it is positive or negative (attrac-
tion/repulsion), the “charges” (labels) on which it depends, its strength and its relative importance.
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particular, it depends on the scale or spatio-temporal 
resolution of those observations. We may consider 
two distinct scales—the “micro” and the “macro”, 
though we use these as relative not absolute terms. 
We know, particularly in physics, as discussed in Box 
3, that the nature of interactions at one scale can radi-
cally change when passing to a different scale.

In ecology, in the case of a predator-prey interac-
tion, for example, the “micro” level would naturally 
correspond to observations of two individuals—one 
predator and one prey. Following their trajectories 
in space and time would allow us to determine that 
there is an interaction present. Moreover, labels such 
as “predator” and “prey” would allow us to deter-

mine its biological plausibility and characterise it. 
However, this ensemble of observations tells us noth-
ing about the nature of the interaction at the collec-
tive level, at another spatial resolution—the “macro” 
level. In general, there is no fundamental reason why 
an interaction at one scale should manifest itself in an 
obvious and analogous way at another scale. In this 
sense the interaction is context (environment) depen-
dent. Similarly, as mentioned, predator and prey may 
“repel” at the micro-level, in that the prey tries to 
avoid the predator, but may be attracted at the macro 
level, in that the spatio-temporal distribution of the 
predator species is attracted to that of the prey spe-
cies. In this case, the attraction between predator and 

Box 3: From the micro to the macro

Physics is the discipline where the quantitative and qualitative relations between micro and macro variables is 
best understood, with micro and macro being relative terms. For instance, we may consider the intra-atomic scale as 
being micro and the inter-atomic scale as macro. Thus, as an example, at the intra-atomic scale, there is the strong 
interaction between electrons and nucleus in a Helium atom, while at the inter-atomic scale there are no significant 
interactions between the Helium atoms themselves. A relevant label for the interaction is that of electric charge. At 
the micro level the electrons have a label corresponding to one unit of negative charge while the nucleus has a label 
corresponding to two units of positive charge. On the other hand, the Helium atoms have a label corresponding to 
zero charge. Of course, we fully understand how the zero electromagnetic interaction at the atomic “macro” level 
emerges from the underlying strong interaction at the “micro” level. Similarly, electrons repel as free particles, but 
they can “attract” in the case of a covalent bond. Thus, the nature of interactions at one scale can radically change 
when passing to a different scale, with the interactions at a more macro scale being an emergent phenomenon rela-
tive to the interactions present at the micro level.

Additionally, in physics instead of talking about the interaction between two objects we may speak of the 
interaction between an object and its environment when, for instance, the environment consists of an ensemble of 
objects, such as atoms, where in a solid say we may consider the interaction between an atom and its environment 
as represented by the ensemble of other atoms in the system. A particular atom or other structure in a solid has its 
“niche” in the same way as a species has its niche. The environment in both cases is the net, emergent effect of a 
large set of individual niche variables. Thus, in principle, we may consider interactions along a spectrum, from be-
tween two individual objects of definite types, to between an object and any conglomeration of objects that represent 
its niche/environment.

In physics, the fundamental interactions are direct. For example, the interaction between an electron and a pro-
ton in a hydrogen atom can be thought of as being direct, being describable directly in terms of the fundamental elec-
trostatic attraction between the positively charged proton and the negatively charged electron. Two hydrogen atoms, 
though, may form a hydrogen molecule where, unlike the direct electrostatic interaction, the interaction between 
these atoms is “indirect” and is a consequence of the presence of other intermediating elements—the electrons. In a 
potential abusive use of ecological terminology, we could say that the repulsive “competitive” interaction between 
individuals of the proton species were turned into an attractive interaction by the “facilitation” of individuals of the 
electron species.

An effective, phenomenological model of a chemical bond between atoms as a “direct” interaction may well be 
much more useful than trying to simultaneously model the multiple, underlying, more fundamental, direct interac-
tions between the atomic constituents. However, if we examine the molecule exhibiting the chemical bond at higher 
energies then these more fundamental interactions will become apparent. The important point to make is that how 
an interaction in a system is characterised in physics and chemistry, and the degree to which we describe it as direct 
or indirect, is very much a function of the scale at which we make observations of that system.
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prey at the species level is an emergent phenomenon 
relative to the discrete predation events observed at 
the individual level.

In ecology, it is the concept of a niche that pro-
vides a powerful and intuitive framework for under-
standing emergence. That a biotic variable, Xα, is 
considered and observed to be an important niche 
component of a species, C, will have the conse-
quence that the presence of Xα favours the presence 
of C. The conditional probability P(C|Xα) is a suit-
able mathematical representation of this relation-
ship, where we will specify below what ensemble of 
observations is suitable for calculating P(C|Xα) and, 
in particular, the dependence on the spatio-temporal 
scale of the observations. However, the intuition is 
that micro-level interactions between C and Xα can 
manifest themselves at a larger scale by Xα being a 
niche variable for C. This concept of niche is rele-
vant for understanding the relations between objects 
in any area of study.

Built into the concept of both the Eltonian (El-
ton, 1927) and Hutchinsonian (Hutchinson, 1957) 
niches is the notion that biotic interactions between 
a target species and other species in its niche affect 
the spatial distribution of the target species and vice 
versa. Thus, to what degree a species persists in a 
given geographical area is affected by its interac-
tions with other species. Here, at the niche level, in 
distinction to the notion of interaction between two 
discrete objects, we consider the interaction between 
an object and its environment. Thus, the concept of 
a niche links in a profound way the notion of micro 
interactions to macro interactions, as defined by our 
concept of deviations of the spatial distribution of a 
taxon from a null hypothesis, with the micro interac-
tions being the supposed drivers of the spatial distri-
bution as explained by its niche.

Direct versus indirect interactions
The concept of direct versus indirect interaction 

occurs in all the examples we have mentioned. As 
stated, labelling an interaction as direct or indirect is 
to some degree a question of convenience and a ques-
tion of observational scale. In ecology, determining 
whether an interaction is direct or indirect is difficult. 
This can be perfectly illustrated in the context of a 
simple food chain, such as: carnivore ← herbivore 
← plant ← sun. One would be tempted to argue that 
the interaction between carnivore and herbivore was 
more direct than between carnivore and plant. How-

ever, a perfectly acceptable predictive model for the 
carnivore distribution might be built using plants as 
niche variables. Moreover, the principle effect of cli-
mate on the carnivore distribution will be an indirect 
interaction, intermediated by the plant and herbivore 
distributions, rather than a direct one (see for exam-
ple (Rebolledo et al., 2019). We must then determine 
how from data we may disentangle these interactions 
and characterise their degree of indirectedness.

As a prelude to a later discussion (“A Bayesian 
framework for causal inference”), we may intuit the 
degree of indirectedness of an interaction between 
two taxa, C and Xα, by trying to determine if there 
exists one of more other variables, Xβ, that are more 
directly linked to C or Xα and therefore act as con-
founders. Thus, if C is a carnivore, with an important 
prey species, Xα, and Xβ is the principal plant food 
source of Xα then the interaction between C and Xβ 
will be intermediated by Xα.

Co-occurrence as a measure of interaction
Having defined an interaction as being associ-

ated with a spatial distribution of two or more sets 
of objects that differs from a null hypothesis where 
the interaction is absent, we must define observable, 
measurable parameters that allow for a comparison 
between an observed distribution and the correspond-
ing null hypothesis. An extremely useful measure is 
that of a co-occurrence.

In ecology, as elsewhere, co-occurrences are a 
necessary condition for an interaction. For a predation 
event to occur, the predator and the prey must be in the 
same place at the same time. Similarly, for pollination, 
or any other type of ecological micro interaction. Of 
course, this does not deny the possibility of non-local, 
action-at-a-distance type interactions that are interme-
diated by other variables such as climate teleconnec-
tions or nutrient transports across continents or global 
scale phenomena such as climate change and commer-
cial trade. (Bradley et al., 2012; Bristow et al., 2010; 
Wang et al. 2000). For instance, two species may in-
teract through an abiotic intermediary, where the in-
teraction between the species and the intermediary is 
direct and local but the effective interaction between 
the species is non-local and indirect. However, the fact 
remains that any direct interaction is local.

Defining co-occurrence
Co-occurrence is a notion about discrete events 

happening in space and time, either at the same place, 



Christopher R. Stephens et al. – Can Ecological Interactions be Inferred from Spatial Data?

22

or same time, or both. Here we will consider only a 
two-dimensional space. To define same place in 
space and time we first specify some partition of a 
space, A, and time interval, T, into cells. A natural, 
though not obligatory, partition of A is that of an 
array of squares of a fixed linear dimension, while 
that of T would be into fixed intervals of time. A 
cell i thus defines an area, ∆A and a time interval ∆t. 
To the question of what is co-occurring we may 
consider variables (X1(x1,t1),X2(x2,t2),...,Xm(xm,tm)), 
which, in principle, may be discrete or continuous 
and where xi = (xi,yi) are the two-dimensional coor-
dinates for geo-referencing. 

A  co-occurrence  of  any subset,  V = 
{X•(x•,t•),Xβ (xβ,tβ),...}, of these variables can then be 
defined by an indicator function as I = 1 ⇐⇒ all 
(xj,tj) ∈ V are observed in the cell i and is zero oth-
erwise. Thus, I is a Boolean function. For example, 
for two variables, C(x,t) and Xα(x´,t´), a co-occur-
rence in a cell i is such that I = 1 ⇐⇒ C and Xα are 
observed in the cell i, with x,x  ́∈ i, and is zero oth-
erwise. For a single variable, Xα(x,t), we can also use 
the indicator function, where now I = 1 ⇐⇒ all (x,t) 
∈ V are observed in a cell i. 

The set, S, of N cells represents a statistical en-
semble. We may then count events on this ensem-
ble. For any single observable Xα, such as the pres-
ence of a species, we may count the occurrences of 
Xα on A × T as 

 
𝑁𝑁𝑥𝑥∝ = ∑ ∑I(𝑋𝑋∝(𝑥𝑥, 𝑡𝑡))

𝑡𝑡∈T𝒙𝒙∈A 
 

(1) 
 

Similarly, the number of co-occurrences of two var-
iables Xα and Xβ is given by 
 

𝑁𝑁𝑥𝑥∝𝑥𝑥𝛽𝛽 = 1
2 ∑ ∑ ∑ ∑ I(𝑋𝑋∝(𝑥𝑥, 𝑡𝑡), 𝑋𝑋𝛽𝛽(𝑥𝑥′, 𝑡𝑡′)

𝑡𝑡′∈T𝒙𝒙′∈A𝑡𝑡∈T𝒙𝒙∈A 
 

(2) 
 

In this way, we could count multiple variable pairs 
within the same spatio-temporal cell. We can also 
count by simply counting in each cell occurrences of 
a given type, independently of how many examples 

____________ 
1 This null hypothesis is one that leads to lower rates of Type I errors. 

of the type there are in the cell. In this case, the num-
ber of co-occurrences is given by 
 

𝑁𝑁𝑥𝑥∝𝑥𝑥𝛽𝛽 = ∑I(𝑋𝑋∝(𝑖𝑖), 𝑋𝑋𝛽𝛽(𝑖𝑖))
𝑖𝑖 

 

(3) 
and the number of occurrences NXα by 
 

𝑁𝑁𝑥𝑥∝ = ∑I(𝑋𝑋∝(𝑖𝑖), )
𝑖𝑖 

 

(4) 
 
In the case of a purely spatial ensemble, S represents 
a set of N spatial cells and (3) and (4) are calculated 
over this set. Note that I, as a Boolean function, may 
represent any composition of variables. For instance, 
we may consider I(Xα(x,t),Xβ(x´,t´),Xγ(x´´,t´´)) = 1 
⇐⇒ ((x,t) AND (x´,t´) ∈ V) OR ((x,t) AND (x´´,t´´) 
∈ V). For example, α could represent a species while 
β and γ represented two species in the same genus and 
we were counting co-occurrences of α with that ge-
nus. In fact, we may consider the co-occurrence NXαX, 
where X = (Xβ1, Xβ1,...,Xβm) can represent, for exam-
ple, any set of potential niche variables. X in this 
sense can be seen as one single, composite variable. 
With NXα and NXαXβ in hand we may also calculate any 
associated probability distribution over our ensem-
ble, such as P(Xα) = NXα/N, P(XαXβ) = NXαXβ/N or 
P(Xα|Xβ) = NXαXβ/NXβ. 
 

The null hypothesis 
So, how do we infer that a given observed value 

of NXαXβ or P(Xα|Xβ) indicates the presence of an in-
teraction? To do so we need a no-interaction null 
hypothesis. The relative merits of different null hy-
potheses have been the subject of much study 
(Gotelli, 2000). In our methodology, we take it to be 
that, in the absence of any interaction, we expect the 
distribution of Xα to be governed by the probability 
distribution P(Xα). This is equivalent to the null hy-
pothesis of type SIM2 in the classification of Gotelli 
(2000)1 and corresponds in the framework of pres-
ence-absence matrices to keeping the number of ob-
servations fixed but randomising their location. 
Thus, in an ensemble of size NXβ we would expect to 
see NXβP(Xα) events of type Xα. Put another way, our 
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null hypothesis is that P(XαXβ) = P(Xα)P(Xβ), i.e., the 
events Xα and Xβ are independent. In the Bayesian 
sense, as we will see below, the null hypothesis is 
associated with P(Xα) being identified as a prior dis-
tribution, while P(Xα|Xβ) represents a posterior dis-
tribution after the addition of the information Xβ. 

 
Making the world binary 

In the above we have implicitly had in mind that 
a set of variables of special interest in ecology are 
the binomial variables that represent presence/ab-
sence or presence/no presence of a taxon. Thus, we 
will count co-occurrences of presence or absence/no 
presence of different taxa. However, there are many 
variables that could be relevant labels for character-
ising and quantifying an interaction that are not in-
trinsically binomial. For instance, a phenotypic var-
iable, such as size, may be continuous, or abun-
dances, or abiotic variables such as temperature, 
where we could potentially speak of interactions, as 
defined by deviations in spatial distributions rela-
tive to a null hypothesis. Thus, we may speak of the 
interaction between the presence of a species and a 
given climatic condition—temperature or precipita-
tion—or, indeed, any abiotic variable, noting that by 
so doing we are emphasising the pragmatic, empir-
ical nature of our characterisation of interaction ra-
ther than forcing it to accord with the standard tax-
onomy of ecological interactions. The problem with 
a continuous variable, Xβ, relative to that of a bino-
mial variable, Xα, such as presence, is that the num-
ber of co-occurrences NXαXβ will be very small, its 
magnitude depending on the resolution of the meas-
urement of the continuous variable. Indeed, with ar-
bitrary resolution, there will be no repetitions of the 
same value and NXαXβ = 0, 1. In this case, direct sta-
tistical inference by counting is impossible, alt-
hough by assuming a particular functional form of 
the distribution of the continuous variable as a func-
tion of position, it may be possible to proceed. 

An alternative approach is to coarse grain any 
continuous variable into a set of discrete values and 
consider each discrete range as a new binomial 
dummy variable. Thus, for example, we can divide 
temperature into 10 bins with intervals Tmin + n(Tmax 

− Tmin)/10, n = [1,10]. Temperature in a given range 
is representable by a variable Xβn(x) = 0, 1, as in cell 
we may ask if there is a “presence” of a temperature 
____________ 
2 In this case we can truly say absence as we may identify those cells 
where the temperature definitely isn’t in a chosen range. 

in any given range. Thus, the abiotic variable can 
now be treated as 10 presence/absence variables2. 
By doing this we avoid any model bias associated  
with an  assumption  about the  relationship between 
independent and dependent variable, as would be 
the case in a regression analysis. There is, of course, 
a question of how many bins to choose and what 
should be their ranges? Too few bins risks missing 
potentially relevant information about variation of 
the variable within the bin, while too many bins 
risks losing statistical significance by having too 
few data points in a bin. The number of bins should 
also be motivated by underlying biological or eco-
logical factors. For instance, we may ask if the spa-
tial distribution of a biota is sensitive to variations 
in average annual temperature of 0.1°C? If not, then 
there is no need to use such resolution. 

By making every variable binary we may repre-
sent any state of a given cell by a vector of binary var-
iables X = (X1,X2,...,Xm), where Xi = 0, 1. An equivalent 
coding is to consider a single, composite variable of 
cardinality 2m. Either can be used to represent any set 
of niche variables—abiotic and/or biotic. 
 

Cell size and the problem of variables 
of different resolutions 

We have defined co-occurrences with respect to 
a spatial cell of a given size. Besides the problem of 
the dependence of our results on this cell size3 we 
must also ask how variables of quite different reso-
lutions can be compared given a fixed cell size? The 
natural resolution of an environmental raster is at 
the pixel level, where there may be hundreds of 
thousands or even millions of pixels associated with 
a geographic area of interest. However, if we are to 
proxy biotic data by, say, point collection data, then 
for a given species we may have only tens or hun-
dreds or data points. If we choose a pixel level res-
olution, then the interactions associated with this 
variable will be calculated from a sample size which 
is enormously greater than that for the biotic varia-
ble. More importantly, in any predictive model the 
contribution of the low-resolution variable will be 
very small relative to that of the high resolution var-
iable in terms of its coverage, i.e., how many pixels 
are affected by the biotic variable. We may then be 
led to conclude that the abiotic interaction was much 
more important than the biotic one. This is a pure 

3 A problem (Gehlke and Biehl, 1934) in spatial data mining known as 
the “modifiable areal unit problem” (MAUP) (Openshaw, 1983). 
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effect of sample size associated with the resolution 
of the data however, without reflecting any under-
lying real difference. It is not the same as comparing 
the effect of a geographically  restricted prey species 
versus a geographically disperse one. In this case, 
the disperse prey species would be associated with 
more cells than the restricted one. However, this re-
flects an underlying reality. The fact that reflects a  

                                    difference in the im-
portance of their interactions for a predator. 

Thus, an environmental raster is equivalent to 
having corresponding presence/absence variables at 
every pixel. There are two alternatives to bringing 
variables to the same scale: i) extrapolate variables at 
a lower resolution to a higher one, or; ii) coarse grain 
variables of a higher resolution to a lower one. In the 
former, we must make assumptions associated with 
how this interpolation is done. For instance, one may 
use the proposed distributions for mammals of Hall 
(1981). A more convoluted way is to convert a dis-
crete distribution into a raster by using a species dis-
tribution model that was built using abiotic rasters 
(Araújo et al., 2014; Atauchi et al., 2018). In option 
ii), however, there is no interpolation or assumption. 
The coarse graining is done using the dummy varia-
bles defined elsewhere (“Making the world binary”). 
Thus, at a given cell resolution, for any pixel-level 
raster we ask in that cell how many presence-absence 
dummy variables are represented. For instance, if in 
the cell there are pixels that lie in two of the ten tem-
perature ranges then those two ranges are present in 
the cell and the other eight are absent. 

The more general effect of cell size can be ap-
preciated if we consider the limits of very large or 
very small cells. There are two general considera-
tions: one is the effect of cell size on the effective 
size of the statistical sample to be analysed, and the 
other relates to its effect on the number of co-occur-
rences. For the former, as we are carrying out a sta-
tistical analysis and a corresponding hypothesis 
testing, it is natural to take advantage of the samples 
at our disposal as much as possible. If we have N 
events, then the maximum size of the sample of cells 
is also N. However, if the cell size is such that mul-
tiple, assuming they are independent, events occur 
in a given cell then the effective sample size is re-
duced. For instance, for a random distribution of 
events, if the cell size is such that, on average, the 
number of events per cell is 4, then a reduction in 
the cell size by a factor of 2 will probably lead to 
cells where the expected number of events per cell 

is closer to one. In other words, all else being equal, 
the number of cells should naturally scale as the 
number of events. For the case of co-occurrences, 
for a finite set of events, if we go to the limit of very 
small cells, it is clear that eventually we will end up 
with zero co-occurrences. On the other hand, in the 
limit of very large cells we will end up with only 
one co-occurrence, as all the events will be in one 
cell. The choice of cell size has been investigated 
empirically (Sierra and Stephens, 2012), where it 
has been determined that although an optimal reso-
lution exists that maximises the number of co-oc-
currences, our results are robust to the precise cell 
size. 
 

Testing the null hypothesis 
We now have a means to quantify the difference 

between the spatial distribution of two taxa, C and 
Xα, and the distribution of either one of them in the 
absence of the interaction using either I1(CXα) = 
(P(C|Xα) − P(C)) or, equivalently, I2(CXα) = (P(CXα) 
− P(C)P(Xα)), with I2 = P(Xα)I1. As I1 and I2 repre-
sent deviations from the null hypothesis of no inter-
action, any non-zero value might be interpreted as 
evidence of an interaction. However, as this ques-
tion is being answered with respect to a statistical 
ensemble, we must determine its degree of statisti-
cal validity. Various diagnostics may in principle 
we used. However, here, given our emphasis on 
converting everything to binomial variables, we will 
use a simple binomial test based on our null hypoth-
esis. Specifically, we will use 
 

 (5) 
 
In the case where the binomial distribution may be 
approximated by a normal distribution, then 
|ε(C|Xα)| > 1.96 corresponds to the 95% confidence 
interval for consistency with the null hypothesis. 
When a normal approximation is inadequate then a 
more sophisticated approximation may be used, 
such as the Wilson intervals (Wilson, 1927). Note 
that ε(C|Xα) ≠ ε(Xα|C), i.e., it is asymmetric in its ar-
guments, thus modelling the fact that the effect of 
Xα on C may not be the same as that of C on Xα. 

If we had used I2 instead of I1 to quantify devia-
tions from the null hypothesis then the correspond-
ing diagnostic is 



Christopher R. Stephens et al. – Can Ecological Interactions be Inferred from Spatial Data?

25

 

 (6) 
 

which is a measure of the deviations from the null 
hypothesis that P(CXα) = P(C)P(Xα). Of course, 
when there are sufficiently many Xα, then some 
ε(C|Xα) will be statistically significant for any cho-
sen p-value. This is nothing new and there are many 
methods that may be used to ameliorate this effect, 
such as applying a Bonferroni correction, or an 
ANOVA analysis. Importantly, one should also 
have some intuitive notion of why it should be sig-
nificant in the first place. Note that the principal role 
of ε(C|Xα) is to inform us that the spatial distribu-
tions of C and Xα are such that they are not consistent 
with the null hypothesis that the distribution of C is 
independent of the distribution of Xα and that, there-
fore, by our definition, there is an interaction be-
tween them. 

What else can it tell us? Note that it has both an 
intensive and an extensive character. I1, or equiva-
lently I2, can be used to begin to characterise the in-
trinsic strength of the interaction in that the larger is 
I1 the more the presence of species α is correlated 
with the presence of species C. On the other hand, 
by virtue of taking into account the sample size, NXα, 
it allows us to infer a greater importance for the in-
teraction as the sample size increases, if the sample 
size is representative of the underlying relative geo-
graphic distribution of the taxon. As an example, 
consider the relation between a vector, C, and a po-
tential host species, α. The greater is I1, the more 
likely it is that the vector occurs when the host spe-
cies is present relative to a random benchmark. On 
the other hand, for a fixed I1, the greater the value 
of NXα, the higher the expected number of observed 
instances of C relative to the null hypothesis. 

So, ε(C|Xα) captures two different facets of the 
interaction, the first associated with the strength of 
the interaction via I1 and the second with the coverage 
of the interaction via NXα. It can be used to compare 
and contrast multiple interactions. For example, we 
may have three distributions C, Xα(x) and Xβ(x), such 
that                                          but that ε(C|Xα) ≈ ε(C|Xβ), 
due to the fact that                    .   In this case, we 
would conclude that the interaction between C and α 
is stronger than that between C and β. 

Note that (5) and (6) generalise to the case 
where Xα represents a composite variable, equiva-
lent to a set of variables. Thus, 

  

𝜀𝜀(𝐶𝐶|𝑿𝑿) = 𝑁𝑁𝒙𝒙(𝑃𝑃(𝐶𝐶|𝑿𝑿) − 𝑃𝑃(𝐶𝐶))
√𝑁𝑁𝒙𝒙𝑃𝑃(𝐶𝐶)(1 − 𝑃𝑃(𝐶𝐶)))

 

 (7) 
 

represents a measure of the interaction between a 
taxon C and its niche variables X. Indeed, we may 
use equation (7) to quantify the niche. The greater is 
the difference I1 = (P(C|X) − P(C)), for a given con-
figuration of the niche variables X, the more that 
configuration represents more favourable niche 
conditions for the presence of C. Similarly, if I1 < 0, 
the more negative it is, the more the corresponding 
configuration of variables represents “anti-niche” 
conditions, i.e., conditions that are unfavourable for 
the presence of C. However, the problem with con-
sidering multiple niche variables within this simple 
diagnostic directly is that NX = 0, 1 when many 
niche variables are included. 

Note that as a measure of non-random co-occur-
rence relative to the null hypothesis, ε(C|Xα) is quite 
different to the checkerboard matrix elements (Rob-
erts, 1990) CCXα = (NC − NCXα)(NXα − NCXα), as the 
latter is independent of the size of the statistical en-
semble chosen. Additionally, in the case of the 
checkerboard, the null hypothesis is applied to the 
entire matrix and a single index—the checkerboard 
score—is evaluated relative to that null hypothesis. 
 

What can we infer from co-occurrences? 
The interpretation of co-occurrences is very 

much related to the characterisation of our cells and 
our objects. To fix intuition: in the case of a space-
time ensemble, a predation event could be charac-
terised by the dynamics of an individual of a preda-
tor species, represented by a presence variable, 
Xα(x,t) = 0, 1, and an individual of a prey species 
represented by a presence variable, Xβ(x´,t´) = 0, 1, 
which represent the trajectories of predator and prey 
in space and time. In this case, predation would be 
associated with the fact that NXαXβ = 1, where Xα(x,t) 
= Xβ(x,t) = 1 and after the predation event Xβ(x´,t´) 
= 0 for any t´ > t. In other words, the predator and 
prey have trajectories that intersect, such that after 
the co-occurrence the prey species individual disap-
pears. The statistical ensemble of events here is as-
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sociated with the positions, x(t), of the two individ-
uals. This ensemble, however, would tell us nothing 
about how typical this particular interaction was 
nor, indeed, whether or not it was just a chance en-
counter. In other words, it would tell us nothing be-
yond the interaction of those two individuals. At the 
population level, we must account for the fact that a 
prey species may be easy to catch but be relatively 
rare, or difficult to catch and widely distributed, or 
any combination of these and other characteristics. 
Thus, an ensemble of co-occurrences of predator-
prey would potentially yield much more infor-
mation about their interaction beyond the individual 
level. From such ensembles we may deduce the 
likelihood of success of an attempted predation for 
instance, or the importance in the overall diet of the 
predator of a given prey species, all of which are 
relevant for characterising the interaction and for 
considering the prey species as a niche variable of 
the predator. 

There is also the possibility that an interaction 
is more, or less, manifest at the level of one spatial 
resolution/ensemble versus another. For instance, it 
may be that the predator-prey interaction is manifest 
at the level of the trajectories of the individuals, but 
that there is no correlation between these events. In 
other words, that the distributions of predator and 
prey are random, and that any predation event is the 
result of a chance encounter. This is a common oc-
currence in physics. For instance, a gas of Helium 
atoms will exhibit a strong interaction between the 
positively charged nucleus and the two electrons 
that make up the atom but there will be no resultant 
interaction between the neutral atoms themselves. 

As well as depending on the ensemble chosen, 
the inference that may be drawn from any event, or 
set thereof, depends on the spatio-temporal resolu-
tion of the cells. If ∆A is 1 m2 and ∆T = 1 second 
then we might infer, knowing that one individual 
was a predator species and one was a prey species, 
that disappeared after the co-occurrence, that a pre-
dation event had occurred. The trajectories before 
the co-occurrence might also give extra information 
that supported the hypothesis. Was the prey species 
trying to avoid the predator species for example? 
There are multiple null hypotheses that could be 
used for comparison associated with the expectation 
of the trajectories of the individuals in the absence 
of the interaction. For instance, that the degree of 
correlation between the trajectories is zero. We 
could also construct an ensemble of co-occurrences 

of the two species with the same spatial resolution 
and just count the number of cells in which predator 
and prey co-occurred where subsequently the prey 
disappeared. However, if the spatial resolution were 
1 km2 and the temporal resolution were 1 year then 
the co-occurrence only tells us that the predator and 
prey were in the same 1 km2 area at some point in 
the last year. This, of course, is not sufficient to infer 
a particular predation event. 

How might the relation between predator and 
prey be inferred now? In this case, we must infer 
any relation from a different statistical ensemble. If 
we consider a spatial ensemble of N cells, we have 
stated that ε can be used to determine the existence 
of an empirically defined interaction between two 
taxa. What else can it tell us? As noted, it has both 
an intensive and an extensive character. First, I1 can 
be used to begin to characterise both the sign and 
the intrinsic strength of the interaction, in that the 
larger is I1 the more the presence of species C is pre-
dictive of the presence of species α. If I1 > 0 we will 
say that the interaction is attractive, in that the prob-
ability to find C and α co-occurring is higher than 
our null hypothesis, and repulsive in the contrary 
case. Furthermore, the larger the magnitude of I1, 
the stronger the interaction. Finally, considering NXα 

allows us to infer a greater importance for the inter-
action as NXα increases. These interpretations natu-
rally depend on the fact that the underlying data of 
the ensemble is representative of the underlying rel-
ative geographic distribution of the species. 

As an example, consider the relation between a 
predator, C, and two potential prey species, α and β. 
The greater is I1, the more likely it is that the predator 
occurs when the prey species is present relative to the 
null hypothesis. Thus, if I1(C|Xα) = I1(C|Xβ) we say 
that the two interactions have the same strength. This 
is a measure of the interaction between any given in-
dividual predator and any individual prey taken from 
the ensemble. However, if NXα > NXβ we will say that 
the interaction between C and α is more important 
than that between C and β. This is a measure of the 
interaction at the population level. 

So, the process by which we may infer an inter-
action is the following: i) construct a statistical en-
semble of cells associated with a given spatial 
and/or temporal resolution; ii) compute co-occur-
rences of presence variables on that ensemble, 
where the presence variables may have an associ-
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ated set of labels—taxonomic, phenotypic, behav-
ioural etc.; iii) compute one or more statistics based 
on the distribution of co-occurrences; iv) compare 
that statistic with a suitable null hypothesis; v) if the 
statistic and the null hypothesis are statistically sig-
nificantly different conclude that there is a macro 
interaction; vi) use the labels and other data to de-
duce the nature of the interaction and relate it to mi-
cro interactions. 

 
What spatial data? 

Essentially, we have highlighted the predation 
example to emphasise that, as in physics, spatio-
temporal data can be used to identify and character-
ise ecological interactions. The real question is: 
what spatio-temporal data is necessary or sufficient? 
Must we have micro-data associated with each, in-
dividual event across space and time? How are in-
teractions manifest at different resolutions? Clearly, 
we are not in the position of being able to track in 
space and time the positions of representative sets 
of all taxa. There are just too many potential inter-
actions to be identified and quantified individually. 
Thus, in the absence of true, detailed observational 
data on biotic interactions at a macro-scale, as de-
rived aggregated micro data, one must resort to 
proxy data. This is similar to the dilemma faced 
when contrasting epidemiological considerations 
against clinical or physiological variables, where 
the causal distance between a disease, say, and its 
symptoms, may be much less than that between the 
same disease and its risk factors. 

An important consideration then is what data 
will represent the spatio-temporal distributions of 
biota? In standard niche modelling, where the out-
put variable is the spatial distribution of a taxon, the 
proxy of choice has been a database of point collec-
tion data. Such data may be bespoke, in that it rep-
resents a dedicated, controlled study that tries to be 
as unbiased as possible, versus museum collection 
data, where the data, although ample and wide-
spread, is potentially biased and unrepresentative. 
However, in spite of all its shortcomings, which 
have been amply discussed (Hortal et al., 2008; So-
berón and Peterson, 2004), such data has been used 
ubiquitously to calculate species distributions (Pe-
terson et al., 2011). Moreover, as mentioned, other 
sets of potentially biased biotic data have then been 
used as dependent variables to produce models us-
ing abiotic independent variables that are then input 

as independent variables as potential proxies of bi-
otic interactions in the calculation of the distribution 
of a species of interest (Araújo et al., 2014; Atauchi 
et al., 2018). 

The ultimate test has to be to validate point-col-
lection data by the predictions of models that use it 
as input. There are two possibilities: i) use it to cal-
culate species distributions, using abiotic and/or bi-
otic data, and infer interactions as defined herein, 
and then determine to what extent those distribu-
tions and interactions are consistent with known 
ecological interactions and, furthermore, if they lead 
to more precise species distribution models and a 
better ecological understanding of the niche in such 
models; ii) use it to predict unknown ecological in-
teractions and use experimental protocols incorpo-
rating field work and potentially laboratory work to 
validate those predictions. 
 

A BAYESIAN FRAMEWORK FOR ANALYSING 
ECOLOGICAL INTERACTIONS 

Our definition of an interaction is probabilistic, 
based on analysing the difference between 
P(C|X(t)) and a null hypothesis P(C) for a taxon C. 
This is equally applicable in the case that X repre-
sents just one niche variable, Xα, versus many. In ei-
ther case, with a statistically significant deviation 
between them we infer the existence of an interac-
tion between C and X that we must then further un-
derstand. 

We take it as an axiom that the spatial distribu-
tion of a taxon is a result of all the interactions, both 
abiotic and biotic, that impact on that distribution 
and that there exists an underlying, potentially dy-
namic, probability distribution that predicts and ex-
plains the distribution of the species. Of course, 
there are many reasons why a predicted distribution 
may not be a good representation of the real distri-
bution. First, it may be that the underlying distribu-
tion is dynamic and approximating it by a static 
(“equilibrium”) distribution is inadequate. Sec-
ondly, it may be that important variables have been 
omitted from the model, such as biotic variables. 
Thirdly, it may be that the data representation of the 
variables is inadequate, because of data bias, and, 
finally, it may be that the mathematical relation be-
tween those variables is not being modelled cor-
rectly. Thus, any model and hypothesis about inter-
actions must be validated both through its predic-
tions and how it increases our understanding. In this 
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context we would like to know how different varia-
bles Xα ∈ X contribute to P(C|X). In other words, 
from overall information about the interaction be-
tween a taxon and its niche, how may we deduce 
and characterise the relative effects of interactions 
with individual niche factors? In other words, how 
does an overall interaction taxon-niche, as proxied 
by P(C|X), emerge from its component interactions 
P(C|Xα)? 

The theoretical framework we use to answer 
these questions is probabilistic and Bayesian based. 
The Bayesian formulation of probability theory and 
statistical inference has had an enormous impact 
(Berger, 1985). One of its most important ad-
vantages is the natural way in which qualitative in- 

formation about beliefs can be incorporated as 
Bayesian priors, as well as the way in which quan-
titative information may then be naturally incorpo-
rated into a posterior probability using Bayes’ theo-
rem. A second advantage is how it can naturally in-
corporate new information and beliefs and update 
posterior probabilities in the light of this new infor-
mation. A third important advantage is that it gives 
a very natural setting for considering issues of cau-
sality (Pearl, 2000). 

The fundamental basis for the Bayesian formu-
lation of probability is Bayes Theorem 
 

 (8) 
 
where P(C) is the prior probability for the event C 
in the absence of the information X, which can be 
represented by a vector of variables X = 
(X1,X2,...,Xm). P(X|C) represents the likelihood of 
observing the information X given the event C, and 
P(C|X) is the posterior probability that takes into ac-
count how the data X allows one to adjust the ex-
pectation of C relative to its prior. The evidence, 
P(X), is a normalisation factor independent of C. 
From a frequentist viewpoint all these probabilities 
may, in principal, be calculated directly from data. 
For example, P(C) = NC/N, where NC is the number 
of events of type C and N is the total number of 
events, i.e., the size of the statistical ensemble. 
However, P(C) may also represent our belief about 
the probability of the event C. This is relevant when 
the concept of an ensemble, measurable in fre-
quentist terms, is not readily available. 

Our diagnostic, equation (5), for characterising 
the presence of an interaction has a very natural 
Bayesian interpretation, as I1 measures the deviation 
of the posterior probability P(C|Xα) in the presence 
of the information Xα from the prior distribution 
P(C). This is equally true if Xα represents a single or 
a composite variable. From a hypothesis testing per-
spective, equation (5) provides us with an estimate 
of the degree of confidence we may have as to 
whether the information Xα leads to an improvement 
in our estimation of the probability of C. 

Often, to get rid of the C-independent evidence 
function, P(X), the following “score” function is 
used 

 

𝑆𝑆(𝐶𝐶|𝑿𝑿) = 𝑙𝑙𝑙𝑙 (𝑃𝑃(𝐶𝐶|𝑿𝑿)𝑃𝑃(𝐶𝐶̅|𝑿𝑿)) = 𝑙𝑙𝑙𝑙 (𝑃𝑃(𝑿𝑿|𝐶𝐶)𝑃𝑃(𝑿𝑿|𝐶𝐶̅))

+ 𝑙𝑙𝑙𝑙 (𝑃𝑃(𝐶𝐶)𝑃𝑃(𝐶𝐶̅)) 

 (9) 
 

where 𝐶𝐶̅ is the set complement of C (absences or no 
presences of C) and hence P(𝐶𝐶̅ ) = 1 − P(C). If 
S(C|X) > 0 it is more likely that the information in-
dicates the presence of the event C, and vice versa 
for S(C|X) < 0. The X independent constant term on 
the right-hand side just accounts for the different 
class weightings. So, if the class is a small percent-
age then S naturally leans towards classifying in-
stances into 𝐶𝐶̅ rather than C. 

Seen as a rigid classifier, S(C|X) > 0 indicates 
that the instance X should be assigned to the class 
C. In the context of ecological interactions, S(C|X) 
> 0 indicates that the conditions X are favourable 
for the presence of C, with the higher the value of S 
the more favourable the conditions and vice versa 
for S(C|X) < 0. In the context of species distribution 
modelling, the estimation of P(C|X) or S(C|X), or an 
equivalent, such as P(C,X), can be done using dif-
ferent algorithms. The well-known Maxent proce-
dure (Phillips et al., 2004, Phillips et al., 2006) is 
one. Even a more “black-box” procedure, such as 
GARP (Stockwell, 1999), is effectively doing the 
same thing. Of course, S(C|X), as representing the 
niche in the Hutchinsonian sense, can be used to 
map back into geographic space and thus provides a 
species distribution model whose performance can 
then be measured using any one of many metrics, 
such as the area under the Receiver Operating Curve 



Christopher R. Stephens et al. – Can Ecological Interactions be Inferred from Spatial Data?

29

(AUC), or confusion matrix statistics, such as sen-
sitivity and specificity etc. Each has its pros and 
cons. 

Unfortunately, when X is of high dimension 
then neither P(C|X) nor P(X|C) may be estimated 
reliably from data as NCX is either 0 or 1. In other 
words, if we define an environment with sufficient 
precision then there is either no co-occurrence with 
C or only 1 due to the fact that we will not find ex-
actly the same environment in two different places. 
So, how to proceed? A general approximation, that 
maintains the Bayesian philosophy is to approxi-
mate the likelihood function by assuming that the 
variables  (X1,X2,...,Xm)   are   independent.   Hence, 

                                        ). In this case equation 
(9) becomes 

 

𝑆𝑆(𝐶𝐶|𝑿𝑿) = ∑ 𝑠𝑠(𝑋𝑋∝)
𝑚𝑚

∝=1
+ 𝑙𝑙𝑙𝑙 (𝑃𝑃(𝐶𝐶)𝑃𝑃(𝐶𝐶̅)) 

 (10) 
 
where is                                                ) the contribution (“score”) 
to the overall S(C|X) from the variable Xα. If s(Xα) > 0, 
< 0 then the factor Xα contributes positively/negatively 
to the occurrence of the event C. This is just the well-
known Naive Bayes approximation (NBA) that is still 
extensively used in many, many applications as it is 
easy to implement, computationally very efficient and 
very transparent (Broos et al., 2011; Burak and Ayse, 
2009; Wang et al., 2007; Wei et al., 2011). The maxi-
mum entropy algorithm and the NBA are closely re-
lated (Alfonso and Vilar., 2007), as the latter can be 
written in maximum entropy form, but with a Gibbs 
distribution that is factorizable. 

Within this approximation we determine pre-
cisely how a measure of the overall interaction be-
tween taxon and niche variables, S(C|X), is com-
posed of measures, s(Xα), of the individual interac-
tions between C and any given variable Xα. Thus, 
the higher/lower the value s(Xα) the more it deter-
mines favourable/unfavourable conditions for the 
presence of C. If S(C|X) = 0 then the taxon C is ef-
fectively distributed randomly, the variables X hav-
ing no overall effect. However, it does not follow 
that each s(Xα) = 0. The composition of a set of po-
tential niche variables can be such that their net ef-
fect is neutral by cancellation between positive and 
negative contributions. Note that both   S(C|X),  are  
s(Xα) are measures of interaction strength, in that 
they make no reference to how widely distributed 

are X or Xα. In Machine Learning terms the latter is 
more related to the coverage of the features X or Xα, 
meaning how many data instances, in this case cells, 
are represented by them. Thus, s(Xα) may be very 
positive for a given Xα but, if this represents a rare 
species, NXα may be very small relative to N. In other 
words, although it is an important variable, it is not 
widespread. Similarly, one may have a widespread 
variable that has only a weak interaction. Our inter-
action diagnostic (5) considers both aspects of the 
interaction: strength and coverage. 

The chief criticism of the NBA is its strong as-
sumption of feature independence, where in the case 
of ecology one certainly knows that many niche var-
iables will be highly correlated. In spite of this it 
works, almost unreasonably, well. As has been 
pointed out and quantified (Stephens et al., 2017b), 
one reason the NBA works better than expected is 
that the correlations between features can be both 
positive or negative across different feature combi-
nations. In fact, it can be generalised, so that differ-
ent features may be combined. This leads to an im-
proved approximation, both in terms of predictive 
accuracy as well as enhanced understanding of 
which variables are correlated (Stephens et al., 
2017b). We will present some basic elements of this 
below (“Beyond the Naive Bayes approximation”), 
as it is very relevant for the important question of 
confounding and causality. 

In practice, we must decide what data to use to 
estimate ε(C|Xα), s(Xα) or their niche counterparts 
with Xα → X. The fundamental components are 
counts: NCXα, NXα and NC, that are taken from a sta-
tistical ensemble. The ensemble of most interest is 
that of N cells within which we count presence or no 
presence/absence. In the case of small samples, we 
may have that NCXα = NXα or that NCXα = 0. In these 
cases, s(Xα) = ∞ or −∞ respectively. To avoid this 
the probabilities may be smoothed using a correc-
tion factor, such as the Laplace correction (Chen, 
1996), whereupon NCXα → NCXα + A and NC → NC + 
B, where A and B are constants. A common choice 
is A = 1 and B = 2. 
 

Model Selection 
Prior probabilities and model selection.—An 

important question is: which variables should be in-
cluded in the model? A niche model that only ac-
counts for climatic data, using a feature vector Xa to 
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describe the distribution of a species C, would, rel-
ative to a uniform prior P(C), calculate the posterior 
probability to be 
 

𝑃𝑃(𝐶𝐶|𝑿𝑿𝑎𝑎) = 𝑃𝑃(𝑿𝑿𝒂𝒂|𝐶𝐶)𝑃𝑃(𝐶𝐶)
𝑃𝑃(𝑿𝑿𝑎𝑎)  

 (11) 
 

We may then ask how biotic factors, Xb, may be 
added. In the Bayesian formulation, we may take the 
posterior probability, P(C|Xa), after including in 
abiotic variables and use it as a new prior probabil-
ity for which we then compute the likelihood asso-
ciated with the new biotic information, Xb, and sub-
sequently calculate the new posterior distribution, 
P(C|XbXa), that includes both biotic and abiotic fac-
tors. Thus, 
  

𝑃𝑃(𝐶𝐶|𝑿𝑿𝑎𝑎𝑿𝑿𝑏𝑏) = 𝑃𝑃(𝑿𝑿𝒃𝒃|𝐶𝐶, 𝑿𝑿𝒂𝒂)𝑃𝑃(𝐶𝐶|𝑿𝑿𝒂𝒂)
𝑃𝑃(𝑿𝑿𝑎𝑎|𝑿𝑿𝑏𝑏)

 

(12) 
Similarly, for the score function we have 
  

𝑆𝑆(𝐶𝐶|𝑿𝑿𝑎𝑎𝑿𝑿𝑏𝑏) = 𝑙𝑙𝑙𝑙 (𝑃𝑃(𝐶𝐶|𝑿𝑿𝑏𝑏𝑿𝑿𝑎𝑎)
𝑃𝑃(𝐶𝐶̅|𝑿𝑿𝑏𝑏𝑿𝑿𝑎𝑎))

= 𝑙𝑙𝑙𝑙 (𝑃𝑃(𝑿𝑿𝑏𝑏|𝐶𝐶, 𝑿𝑿𝑎𝑎)
𝑃𝑃(𝑿𝑿𝑏𝑏|𝐶𝐶̅, 𝑿𝑿𝑎𝑎))

+ 𝑙𝑙𝑙𝑙 (𝑃𝑃(𝐶𝐶|𝑿𝑿𝑎𝑎)
𝑃𝑃(𝐶𝐶̅|𝑿𝑿𝑎𝑎)) 

(13) 
 

In                                the                                  NBA, 
                                                                                ), 
where the first equality uses the fact that in this ap-
proximation the abiotic and biotic factors act inde-
pendently. Hence, 
 

𝑆𝑆(𝐶𝐶|𝑿𝑿𝑎𝑎𝑿𝑿𝑏𝑏)

=  ∑ 𝑠𝑠(𝑋𝑋∝
𝑏𝑏) +

𝑁𝑁𝑏𝑏

∝=1
∑ 𝑠𝑠(𝑋𝑋∝

𝑎𝑎) +
𝑁𝑁𝑎𝑎

∝=1
𝑙𝑙𝑙𝑙 (𝑃𝑃(𝐶𝐶)

𝑃𝑃(𝐶𝐶̅)) 

 (14) 
 
where Na and Nb are the numbers of abiotic and bio-
tic variables respectively. We may now better un-
derstand what an approximation where only abiotic 
variables are used implies. Essentially, it is equiva-
lent to P(C|XaXb) = P(C|Xa) and hence P(C|Xb) = 

P(C). In the NBA, we hence have ∑ 𝑠𝑠(𝑋𝑋∝
𝑏𝑏) = 0𝑁𝑁𝑏𝑏

∝=1 , 
which is most naturally interpreted as 𝑠𝑠(𝑋𝑋∝

𝑏𝑏) = 0 
for each 𝑋𝑋∝

𝑏𝑏. If this is not true, then the approxima-
tion of omitting biotic variables will not be a good 
one. The same would be true if we omitted abiotic 
variables and considered only biotic ones. Our 
methodology of bringing everything to the same 
spatial resolution and making every variable bino-
mial allows us to make a direct comparison of the 
contributions from every single variable. Further-
more, as we will see, we may use the predictions of 
the model to validate the inclusion or exclusion of 
certain variables using the pragmatic criterion of 
whether or not they improve model performance. A 
further subtlety is that although we leave out a cer-
tain set of variables that does not mean their influ-
ence is absent, due to the fact that there may be cor-
relations between omitted and included variables 
such that the latter include effects from the former. 
This is just the effect of confounding. 
 

Evaluating predictability = ranking interac-
tions.—Independently of the approximation used to 
calculate the likelihood, an important task is to com-
pare and contrast the contributions of the different 
features, and/or feature combinations, in order to 
obtain a better understanding of their relative im-
portance. Different criteria may be used, both data 
based and “belief” based. The belief-based compo-
nent is as discussed above—selection is based on 
supposed knowledge of what are important varia-
bles to include. Thus, a modeller of the niche and 
species distribution of a predator may decide to in-
clude in as biotic factors only its two “known” prin-
ciple preys. Of course, this biased model should be 
compared with others to determine if it leads to bet-
ter model performance and better understanding. 
For instance, if, in fact, the predator has several 
other preys that are unknown then their inclusion 
would be expected to improve model performance. 

To choose variables for inclusion in an overall 
model, an appropriate measure of the relative im-
portance and associated statistical significance of a 
niche variable Xα is just the binomial test (5). Simi-
larly, for a combination of features X we may use 
(7). We may use the same statistical criteria on ε, 
such as |ε| > 1.96, to decide whether or not to in-
clude the variable in our prediction model. Thus, we 
link a machine learning-based concept—feature se-
lection—with our definition of interaction, so that 
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features (niche variables) are included only if they 
represent significant interactions. 

 
Beyond the Naive Bayes approximation.—In 

spite of the robust nature of the NBA, it is important 
to try and determine which niche variables are cor-
related and whether a prediction model may be im-
proved by considering them together. Even more 
importantly, such correlations will help us study as-
pects of causality in order to help distinguish be-
tween causation and correlation. We consider first 
the impact of a pair of features, Xα and Xβ, following 
the same procedure as for one variable. In this case, 
for the joint probability distribution, P(C, Xα,Xβ) = 
P(XαXβ|C)P(C), we define (Stephens et al., 2017b) 
  
∆(XαXβ|C) = (P(XαXβ|C) − P(Xα|C)P(Xβ|C)) (15) 
 
as a measure of correlation between niche variables. 
Significant deviations from the null hypothesis 
∆(XαXβ|C) = 0 indicate the presence of significant 
correlations which we interpret as the fact that the 
niche variables Xα and Xβ are not independent with 
respect to the taxon C. In this case the interaction is 
ternary from the point of view of Xα, Xβ and C, 
though one can also consider it to be binary if we 
consider XαXβ as a combination variable. In analogy 
with ε(C|Xα), we can use a binomial test to deter-
mine the degree of consistency with the null hypoth-
esis, considering (Stephens et al., 2017b) 
 

  
(16) 

 
Equation (16) determines when there is a statisti-
cally significant correlation between the features Xα 

and Xβ. Instead of considering the likelihoods, we 
may also consider the posterior probability 
P(C|XαXβ) directly. To determine the impact of a 
pair of features, Xα and Xβ, we may follow the same 
procedure as for one variable, considering 
 

 (17) 
 

Once again, in the case where the binomial distribu-
tion may be approximated by a normal distribution, 
then |ε(C|XαXβ)| > 1.96, which corresponds to the 
95% confidence interval for testing consistency 

with the null hypothesis. In this case however, (17) 
cannot distinguish between the relative contribu-
tions of Xα versus Xβ. This can be done, though, by 
considering alternative null hypotheses. Consider-
ing as null hypothesis P(C|Xα) and P(C|Xβ) in turn, 
we have 
 

 (18) 
 
and, similarly, 
 

 (19) 
 
Equations (18) and (19) can be used as measures of 
the relative impact of one variable versus another. 
For instance, (18) expresses the contribution of the 
variable Xβ to the posterior probability P(C|XαXβ), 
i.e., in the presence of the feature Xα, but relative to 
the contribution marginalised over Xα. These equa-
tions, in principle, allow us to determine which, of 
a combination of two variables, is the most im-
portant in terms of prediction of the class variable. 
Moreover, they facilitate the determination and 
analysis of confounding variables. As an example, 
imagine we determine that ε(C|Xα) is significant, but 
hypothesise that there exists a confounding variable 
Xβ. In this case, we may consider ε(C|XαXβ;Xα) and 
ε(C|XαXβ;Xβ). If Xβ is, indeed, a confounding varia-
ble, then we should find that ε(C|XαXβ;Xα) > 
ε(C|XαXβ;Xβ) as the real influence on C is from Xβ 

and so, if we take P(C|Xβ) as null hypothesis, we 
should find little residual predictability. Note that 
(16) can be used to identify those feature combina-
tions that should be considered together, and this in-
formation used to generate a Generalized Bayes ap-
proximation (Stephens et al., 2017b), where the fac-
torization of the likelihoods is not maximal, and 
which leads to an improved predictive model. 
 

Inferring causality 
A criticism that has been levelled against our 

methodology is that it does not allow one to infer 
causality, in that an apparently important contribu-
tion from a biotic niche variable may, for example, 
just be reflecting the existence of an underlying abi-
otic factor that acts as a confounder (Purse and 
Golding, 2015). Of course, the question of distin-
guishing correlation from causation is a topic of 
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great import across many branches of science and 
has a large literature (Pearl, 2000), especially in the 
social and medical sciences, where there is a “clas-
sical” approach (Hill, 1965) and a “modern” ap-
proach (Rosenbaum and Rubin, 1983; Rubin, 1974; 
Rubin, 1978). In the classical approach (Hill, 1965), 
a set of criteria were introduced for judging epide-
miological evidence of a causal relationship be-
tween a presumed cause and an observed effect. 
They are: 

1. Strength (effect size): A small association does 
not mean that there is not a causal effect, 
though the larger the association, the more 
likely that it is causal. We will use this in the 
context of comparing Bayesian score contribu-
tions from different variable types. 

2. Consistency (reproducibility): Consistent find-
ings observed by different persons in different 
places with different samples strengthens the 
likelihood of an effect. This could be checked by 
considering different sample populations for a 
given hypothesis. 

3. Specificity: Causation is likely if there is a very 
specific population at a specific site and disease 
with no other likely explanation. The more spe-
cific an association between a factor and an ef-
fect is, the bigger the probability of a causal re-
lationship. We will consider this in the context 
of the “modern” approach by inserting sets of 
potential confounders. 

4. Temporality: The effect has to occur after the 
cause (and if there is an expected delay between 
the cause and expected effect, then the effect 
must occur after that delay). This requires time 
ordered data and is, in principle, possible with 
ecological data if it has such time ordering. 

5. Biological gradient: Greater exposure should 
generally lead to greater incidence of the effect. 
However, in some cases, the mere presence of 
the factor can trigger the effect. In other cases, 
an inverse proportion is observed: greater ex-
posure leads to lower incidence. 

6. Plausibility: A plausible mechanism between 
cause and effect is helpful. That there is some 
sound ecological/biological underpinning. 

7. Coherence: Coherence between epidemiologi-
cal and laboratory findings increases the likeli-
hood of an effect. In other words, that a labora-
tory experiment, such as a determination of the 
positivity of a species with respect to infection 

by a pathogen is consistent with an inference of 
a relation between host and vector from point 
collection data. 

8. Experiment: “Occasionally it is possible to ap-
peal to experimental evidence”. 

9. Analogy: The effect of similar factors may be 
considered. 

For the purposes of illustration, an example where we 
will apply the above framework is that of the relations 
between climate, vegetation, herbivore and carnivore. 
In particular, below (“Some representative results”), 
we will consider as a specific example of a causal 
chain: Lynx rufus as a carnivore; Sylvilagus floridanus 
as a known, important prey of the L. rufus; Microchloa 
kunthii as a known, important food source of Syl-
vilagus floridanus (Hudson, 2005); and, finally, cli-
mate as a known, important factor in the presence and 
abundance of the plant species. By the nature of this 
causal chain, we are led to hypothesise that the pres-
ence/no presence of Sylvilagus floridanus is more im-
portant to the presence of Lynx rufus than the pres-
ence/no presence of Microchloa kunthii, which in turn 
is more important than the presence/no presence of a 
particular climatic configuration. The question will be 
if the nature of this causal chain may be deduced from 
spatial data and to what degree we can characterise 
confounding? 
 

A Bayesian framework for causal inference 
With the Bradford-Hill criteria in mind, we may 

use the formalism presented elsewhere (“Beyond the 
Naive Bayes approximation”), to see how to infer cau-
sality. Consider two factors, biotic or abiotic, Xα and 
Xβ, and their impact on the distribution of taxon C, as 
modelled by the conditional probability P(C|XαXβ). 
We would like to determine the combined impact of 
Xα and Xβ relative to some null hypothesis and use this 
analysis to determine the relative importance of Xα and 
Xβ in predicting the presence of C. The most natural 
starting point is to consider Xα and Xβ together as one 
composite variable and calculate 
 

 (20) 
 

This can be compared with ε(C|Xα) or ε(C|Xβ) sepa-
rately. What conclusions could we draw? If 
I1(C|XαXβ) > I1(C|Xα) or I1(C|Xβ) we would infer that 
the interaction of species C with α and β together is 
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stronger than that with either α or β separately. 
Moreover, we may consider different combinations 
of Xα = 0, 1 and Xβ = 0, 1. Thus, I1(C|Xα = 1 Xβ = 1) 
is the strength of the interaction in the presence of 
both factors, while I1(C|Xα = 1 Xβ = 0) and I1(C|Xα = 
0 Xβ = 1) are the strengths in the presence/absence 
of α and absence/presence of β. Finally, I2(C|Xα = 0 
Xβ = 0) is the strength of the interaction in the ab-
sence of either factor. If I1(C|Xα = 1 Xβ = 0) > I1(C|Xα 

= 0 Xβ = 1) this tells us that the interaction between 
C and α is stronger than that between C and β. Using 
Bradford-Hill criterion number 1 (Hill, 1965] in the 
section entitled “Inferring causality and identifying 
cofounders,” we will take that as an indication that 
α is causally closer to C than β is. We will provide 
some specific examples of this in the section entitled 
“Some representative results.” 

Note that it is not appropriate to compare the val-
ues of ε(C|XαXβ) itself directly with those of ε(C|Xα) or 
ε(C|Xβ), as, all else being equal, ε(C|XαXβ) will be less 
than ε(C|Xα) or ε(C|Xβ) simply because NXαXβ < NXα or 
NXβ. Thus, ε(C|XαXβ) is naturally commensurate with 
ε(C|XαXγ) but not with ε(C|Xα) or ε(C|Xβ). 

 
PREDICTING INTERACTIONS 

We have defined an interaction as a deviation 
from an appropriate null hypothesis of the spatial 
distribution of a taxon conditioned on one or more 
abiotic and/or biotic variables. We have argued that 
the statistical diagnostic ε allows us to intuit a meas-
ure of the strength of this interaction as well as its 
importance (coverage), while s(xα) is more a direct 
measure of its strength. We have also argued that its 
interpretation depends on the statistical ensemble of 
data used to compute it, emphasising that point col-
lection data is a set of special interest given its wide 
availability. Although this definition of interaction 
is not scale dependent when we speak of using point 
collection data and corresponding species data to 
compute ε then we are naturally speaking of 
“macro” level interactions. 

As noted, we may view interactions between in-
dividual taxa or between a taxon and its niche. The 
score functions s(Xα) provide a means for determin-
ing the relative contribution of Xα to S(C|X) and we 
may consider ranking all included potential niche 
variables Xα, α = [1,n], from highest, smax, to lowest, 
smin, as a means of comparing their relative 
strengths, with smax being the strongest positive in-
teraction—most favourable niche variable—and 

smin the strongest negative interaction—most unfa-
vourable niche variable. We may do the same using 
ε(C|Xα), ranking them in descending order, from εmax 

to εmin, with the most positive values of ε(C|Xα) rep-
resenting the strongest and most important attrac-
tive interactions and the most negative values repre-
senting the strongest and most important repulsive 
interactions. The extra component in ε(C|Xα) rela-
tive to s(Xα), as has been amply discussed above, is 
its dependence on NXα which is a measure of the ge-
ographic coverage of the niche variable. 

Our characterisation of interaction is such that 
if there is a deviation in the spatial distribution of a 
taxon relative to one or more niche variables at a 
given spatial resolution then we define that as rep-
resenting an interaction. We must now ask—do 
these interactions represent ecological interactions 
in the standard sense? By ecological interaction here 
we refer to the standard micro interactions, such as 
predation, mutualism, commensalism etc. The first 
task is to determine if this empirical interaction has 
a natural biological interpretation. This is related to 
criterion 6 of Bradford-Hill. The naturalness of the 
interpretation  depends on the  labels associated with 
C and the Xα. With a hypothesis in hand as to the 
potential ecological interaction we may then deter-
mine the degree to which the ranked list based on 
macro data represents known results about micro in-
teractions, and also to what degree it offers new pre-
dictions that may subsequently be checked with a 
suitable experimental protocol. 

An illustrative example, that has been used fre-
quently in applications of the methodology (Stephens et 
al., 2009, Stephens et al., 2016), is that of predicting 
hosts of a zoonosis, host range being an important pa-
rameter in understanding its biology, its transmission 
cycle and what are appropriate potential public health 
interventions. Although the interaction of interest here 
is that of host-vector, there are multiple facets to this 
complex interaction which can be validated in different 
ways, depending on which part of the transmission cy-
cle is used. Thus, the micro interaction where the poten-
tial host is a blood meal for the vector is a necessary co-
occurrence condition that there is an interaction patho-
gen-host/pathogen-vector. Similarly, if a potential host 
is positive for a pathogen then it must have co-occurred 
at some point with the vector of that pathogen. Co-oc-
currence is then a necessary condition for the pathogen 
to be passed from vector to host and vice versa. Infec-
tion events are the analogues here of predation events—
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a “micro” interaction. The question is then: what im-
print, if any, do these micro interactions leave on the 
macro distributions of the involved species? 

We hypothesise that the host-vector micro inter-
action will result in any host being a relevant, fa-
vourable niche dimension for the vector. This im-
plies that, as a niche dimension, there will be more 
“attraction” between hosts and the vector versus 
nonhosts and the vector, with the intuition that more 
co-occurrence will, all else being equal, lead to 
more potential micro interactions and, as a conse-
quence, a systematic sampling of different potential 
hosts will yield the result that the probability of 
finding an infected individual of one potential host 
versus another is higher for a species with a higher 
value of ε(C|Xα) or of s(Xα). This presumes that sam-
pling can be sufficiently intensive so that a suffi-
cient number of individuals of each potential host 
species are collected. However, to increase our sta-
tistical power, we may go further and consider col-
lections of species. Thus, with the same logic, if we 
divide the ranked list into groups, we would expect 
more species to be found to be positive in the group 
with the highest values of ε versus the lowest. This 
just accounts for the fact that a species that co-oc-
curs significantly with the vector and is widely dis-
tributed should lead to more positives than a species 
that does not co-occur significantly and is restricted 
in its range. Note that this analysis is not concerned 
with whether or not a potential host could be physi-
ologically able to be a host. Potential hosts may be 
infected by a vector in the laboratory even though 
they never encounter one another in nature. Note 
also that this does not simply imply that the most 
widespread species will be most likely to be the 
most highly ranked. This has been checked explic-
itly in several examples where the ranked list by ε 
and the ranked list in terms of pure geographic cov-
erage are radically different, with the former leading 
to a much more precise prediction model. 

Note, at this level, we are considering only two 
labels: vector and potential host = YES/NO. How-
ever, there are many other potentially relevant la-
bels, such as the competence of the potential hosts, 
or if certain potential hosts are blood meals only at 
a certain time of the year etc. that would be relevant 
for determining their role in the transmission cycle. 
It is for these reasons that we added the caveat “all 
else being equal” above. 

We can think analogously about the question of 
predation. If we take a predator, C, we can rank all 

potential prey species, Xα, by ε(C|Xα) or s(Xα). Co-
occurrence is a necessary condition for predation, 
and we hypothesise that prey species will be an im-
portant niche dimension for the predator in that 
there will be more “attraction” between prey species 
and the predator versus non-prey species and the 
predator. Again, we apply the intuition that more co-
occurrence will, all else being equal, lead to more 
potential micro interactions and, as a consequence, 
a systematic sampling of different potential preys 
will yield the result that the probability of finding a 
confirmed prey from one potential prey versus an-
other is higher for a species with a higher value of 
ε(C|Xα) or of s(Xα). 

In the case of both vector-host and predator-
prey, the hypothesis is that species, Xα, that repre-
sent important niche dimensions for the target spe-
cies C should be correlated with more micro inter-
action events. In other words, that the micro inter-
actions leave an imprint at the macro level due to 
the fact that they are associated with important niche 
dimensions. Of course, it is not required that in all 
circumstances micro interactions should leave an 
imprint at the macro level. 

An important element to emphasise here is that 
the macro level characterisation of micro level in-
teractions is a statistical inference. This occurs ubiq-
uitously in epidemiology, where we may infer a 
link, for instance, between diabetes and obesity, or, 
with an even more indirect link, between diabetes 
and socio-economic status. The macro link between 
these is an imprint of an underlying set of micro 
physiological events. However, being a statistical 
inference, the correlation is not 100%. Not all dia-
betics are obese and not all obese are diabetics. Not 
all poor people are diabetics and not all diabetics are 
poor. Similarly, not all species, Xα, that have a large 
value of ε(C|Xα) or s(Xα) with a predator are by def-
inition prey species. A principle reason for this is 
the existence in ecology of multiple micro interac-
tions, and hence multiple labels, that influence their 
spatial distributions and therefore contribute to the 
overall macro interaction. Thus, a predator distribu-
tion may also be affected by potential competitors, 
or climate, or many other factors. Both considera-
tions of the ecological significance of the labels for 
the species involved, as well as the inclusion of 
other potentially correlated niche variables, can help 
us further refine a list of micro interaction candi-
dates, as we will see below. 
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One last point concerns how we would identify 
micro interactions in the first place. From what 
data? Are the micro interactions to be exhaustively 
tested? If so, how are we sure we have identified all 
interactions both direct and indirect? For any given 
micro interaction between a taxon C and a set of 
other taxa Xα, α ∈ [1, m], all m potential interactions 
must be checked observationally. If we consider n 
taxa, C, then we might think that the number of po-
tential micro interactions is nm. However, this too is 
potentially a grave underestimate, as any given 
taxon has multiple labels and each label can repre-
sent a different micro interaction. If we cannot ex-
haustively check all interactions how may we pre-
dict them using a model? Independently of the type 
of model used its performance must be evaluated. 
To do so we must always start with some bench-
mark. What should that benchmark be and how do 
we make a precise specification of it? A natural 
benchmark is to make a hypothesis that the micro 
interaction only manifests itself uniformly within a 
particular set of candidate taxa, as identified using 
one or more labels that we believe to be important 
for the presence of the interaction. Such a restriction 
is equivalent to a Bayesian prior. For instance, for 
prey species of the bobcat, one may restrict to mam-
mals, or lagomorphs. In the first case we would miss 
prey species that are not mammals, such as some 
birds. In the second, we would also miss mammal 
preys other than lagomorphs, such as rodents. In 
modelling terms, such a strategy introduces, by def-
inition, false negatives. The safest bet of course is to 
consider all species, as then all possible candidates 
are included and there is no underlying bias from a 
chosen prior. By uniformly, we mean that the prior 
probability that the micro interaction exists is equal 
for every candidate taxon. For this probability we 
may have pre-existing information about the species 
that interact, such as a set of known preys of the 
bobcat or known hosts of a zoonosis. However, the 
quality of this benchmark depends on how well the 
set of observed interactions represents the full set of 
underlying interactions. 

 
Supervised versus unsupervised learning models 

In statistical modelling terms, the above meth-
odology using ε to predict interactions is a form of 
unsupervised learning, as no information whatso-
ever about the class we wish to predict—those with 
a particular micro interaction, such as parasitism or 
predation—enters into the model creation. The 

model is based only on the logic: micro interactions 
between taxa lead to a niche association between 
them which in its turn leaves an imprint in the spa-
tial distributions of the taxa. 

If we are to use a supervised learning model 
however, then we must have some data that the 
model can learn from. In this case any list of poten-
tial candidates for a given micro interaction that en-
ter into the model have to be labelled as such if they 
are already known cases. Thus, for a predator-prey 
interaction, we use the label PREY = YES for the 
known prey species on our list of candidates. We 
then need other data to be used as predictors. Natu-
rally, we can use the already defined parameters, 
ε(C|Xα) and s(Xα), but we may also appeal to other 
labels than PREY if they are available. These labels 
could indeed already have been used in terms of a 
model selection, where sets of labels were omitted, 
as discussed in the section entitled “Prior probabili-
ties and model selection.” Which labels to use de-
pends on several factors—first and foremost, are 
they available? Potentially relevant labels, such as 
those associated with phenotypic characteristics, or 
trophic guild, are not widely available, at least not 
at the level of covering large numbers of species. 
However, a set of labels that is always available is 
that corresponding to Linneaean taxonomy. A spe-
cies name, or indeed any higher order taxon, is a 
shorthand notation for a host of characteristics that 
make that species, or higher taxon, distinguishable 
from other species, or higher taxa. We would argue 
that implicit in these taxonomic names are associ-
ated labels that are relevant for many micro interac-
tions, as well as identifiers as niche dimensions. 

With a set of labels in hand we may take a list of 
N species, already labelled with respect to the micro 
interaction of interest, I, and create a supervised learn-
ing model. The predictors are labels, Xi, other than the 
label, CI, associated with the micro interaction. We 
may then use the Bayesian framework of the section 
entitled “A Bayesian framework for analysing ecolog-
ical interactions,” and, in particular, the NBA. Now, 
however, we are using no spatial information whatso-
ever, just the labels of the species. For a set of predictor 
labels X, we  may determine  the overall score  where 

 

𝑆𝑆(𝐶𝐶I|𝑿𝑿) =∑𝑠𝑠(𝑋𝑋𝑖𝑖) +
𝑚𝑚

𝑖𝑖=1
𝑙𝑙𝑙𝑙 (𝑃𝑃(𝐶𝐶I)𝑃𝑃(𝐶𝐶I̅̅ ̅)

) 

 (21) 
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                                         ) is the contribution (“score”) 
to the overall S(CI|X) from the label Xi. If s(Xi) > 0, 
< 0 then the label Xi contributes positively/nega-
tively to the class CI. P(CI) = NCI/N, with NCI being 
the number of species in the list labelled with the 
micro interaction label. P(𝐶𝐶I̅̅ ̅ )= 1−P(CI) is the frac-
tion of species on the list that do not have the micro 
interaction label. P(Xi|CI) = NCIXi/NCI, where NCIXi is 
the number on the list that have the micro interac-
tion label and the label Xi. The model may be trained 
on a subset of data and then performance measured 
on a test set. However, the true out-of-sample test 
would be to use the model to predict from among 
non-identified species which are most likely to have 
micro interactions with the target and then make a 
systematic and representative geographic sampling 
to determine which species are correctly identified. 

An example, that we will consider in more de-
tail in the section entitled “Identifying specific eco-
logical micro interactions,” is where the label CI 

represents the class of known prey species of a 
given predator, such as the bobcat, the specific in-
teraction being predation of the bobcat on other spe-
cies. What about the labels Xi for the candidate 
preys? As mentioned, there are myriad labels of 
possible relevance. The set we will use in our exam-
ples are Linneaean classifications at the level of 
kingdom, phylum, class, order, family and genus. 
Thus, Sylvilagus, Lutzomyia and Macadamia are 
potential labels at the genus level, while Mammalia 
and Aves would be two labels at the class level. 
Thus, the total score for a given candidate prey rep-
resented by a classification X = (Xkingdom, Xphylum, 
Xclass, Xorder, Xfamily, Xgenus), where Xclass denotes in 
which taxonomic group is the candidate prey spe-
cies, would be 

 

 (22) 
 

The N species may be ranked with respect to this 
score function and a suitable performance measure, 
such as a confusion matrix or a ROC curve calcu-
lated. 

In using supervised learning, we are subject to 
biases that are not necessarily present in the unsu-
pervised models. For instance, the representativity 
of the set of species labelled with CI could be a cause 
for concern. If observations of the micro interaction 

I have been biased towards a certain subset of the N 
species, say mammalian preys of the bobcat have 
been much more studied than non-mammalian 
preys, then the model results will be subject to this 
bias. However, as this bias would potentially be pre-
sent in both training and test sets model perfor-
mance might not be affected. For this reason, we 
emphasised using the model in a completely out-of-
sample set wherein the most likely preys that have 
not been observed as such are studied. 

Naturally, the performance of the supervised 
model may be compared and contrasted with the un-
supervised model that uses only spatial information. 
However, we may also adopt a meta-model view-
point, constructing a model that is a mix of super-
vised and unsupervised Bayesian models, using la-
bels, such as the taxonomic labels mentioned above, 
as well as spatial information through s(Xα) or 
ε(C|Xα) and compare its performance to either the 
supervised or unsupervised model. We will do this 
explicitly in the section entitled “Identifying spe-
cific ecological micro interactions.” The advantage 
of this is that the unsupervised model, considering 
only single species as niche variables and without 
further information on their labels, identifies only an 
overall interaction that may be due to the superposi-
tion of several micro interactions. On the other 
hand, the supervised model identifies relevant labels 
but does not account for the fact that a micro inter-
action can only take place if there is a co-occur-
rence. A mixed model can compensate for the indi-
vidual defects of each separate model type. 
 

Interpretation issues 
Our proposal is that biotic interactions between 

organisms may be statistically inferred from their 
relative positions in space and time, where by statis-
tical inference we mean to reach a conclusion based 
on evidence (a statistical ensemble of observations) 
and reasoning. A possible objection to this thesis is 
that: there are many other factors that affect the rel-
ative positions of biota in space and time, other than 
biotic interactions, which can act as confounders. A 
second objection, in the case where we use point 
collection data to model the positions and distribu-
tions of species, is that such data is biased and there-
fore not reliable. Our answer to this objection is 
two-fold: first, and most importantly, does the 
model make predictions that can be tested and what 
is  the  model   performance?   Secondly,  the  same 
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of the distributions show no interaction across time, 
the snapshot shows a state that gives the appearance 
of an interaction. Without time dependent data this 
cannot be analysed. In that sense, by using point col-
lection data without a time dependence, we are as-
suming that species are in “equilibrium.” Of course, 
in the case of multiple niche variables it is very, very 
unlikely that all snapshots of all species pairs exhibit 
interactions by accident.

 A Niche versus a network perspective
Up to now, we have emphasised macro interac-

tions as being fundamentally related to the concept 
of a niche. In other words, if two taxa C and Xα ex-
hibit an interaction in terms of their co-occurrences it 
is because Xα is an important niche dimension for C. 
We have thus framed everything in terms of “binary” 
interactions—between one taxon and one or more 
taxa, i.e., between C and Xα, or C and X. However, 
our methodology has also been extensively applied 
at the community level, where we consider multiple 
target taxa, C, such that we have a set of target taxa 
and a set of niche taxa X. Each C and Xα can be rep-
resented as nodes of a network and ε(C|Xα) used to 
weight links between these nodes. The resultant net-
work we term a Complex Inference Network (CIN) 
(González-Salazar and Stephens, 2012; Stephens et 
al., 2009). The term “inference” is used as it does 
not represent specific, previously identified micro in-
teractions between taxa, such as in a food web, but, 
rather, represents the set of inferred interactions be-
tween the taxa as defined by our ε diagnostic in equa-
tion (5). To what degree any given interaction rep-
resents an underlying micro interaction is discussed 
amply in previous sections. The advantage of CINs 
is that they allow for an analysis of interactions at the 
community level. For instance, in Figure 1 we see 
the network that results from using the Ecological 
Community functionality of the SPECIES platform3 
to analyse the relation between two predators—the 
bobcat and the coyote—as target species, and species 
of the order Lagomorpha, Artiodactyla and Rodentia 
as potential prey species. This example will be of rel-
evance for the section “Some representative results.” 
For the network links, only links corresponding to 
values of ε > 8 are considered thus representing the 
most important possible positive interactions.

3http://species.conabio.gob.mx

biased data is already being used ubiquitously in 
fundamental niche modelling. In other words, if the 
data bias is sufficient so as to  invalidate its use for 
modelling a biotic niche variable Xα then it is also 
inadequate to model a target taxon C.

In reference to the first objection, we believe 
our methodology in the sections entitled “A Bayes-
ian framework for analysing ecological interactions” 
and “A Bayesian framework for casual inference” 
provides a framework for iteratively adding the pres-
ence/no presence or absence of different variables 
in order to test which is playing the dominant role, 
the intuition being that the more causal is a factor, 
the more important it is likely to be as a predictor. 
Of course, confounding is an element that may be 
mentioned in the context of the analysis of any com-
plex adaptive system, be it ecological, social, phys-
iological etc. It is impossible to even list the full set 
of factors that may influence the presence of a given 
species. It is also impossible to determine unambig-
uously, from a statistical inference, that there does 
not exist a factor that has not been accounted for that 
is relevant or a confounder. To do so we would first 
have to have a consensus on the full set of potential 
confounders. We would then have to have a data rep-
resentation of them in order to include them in the 
models. We would then have to check them one by 
one using our Bayesian inference framework, or oth-
er, to determine their relative importance and to see if 
one variable con-founds another. An alternative and 
more sensible approach is to make a hypothesis about 
a specific, potential confounder for the appear-ance 
of a biotic interaction in macro distribu-tions, such as 
“shared history, geography, mi-gratory patterns, cli-
mate preferences...,” pro-vide the data that allows us 
to include that fac-tor in our model, and then test the 
hypothesis. To show the feasibility of this approach, 
we explicitly show in the section entitled “Inferring 
causality and identifying confounders” an example 
where we can prove that rather than climatic factors 
being a confounder for apparent biotic interactions, 
on the contrary, it is biotic factors that are confound-
ers for abiotic effects.

One factor that can cause problems however, is 
the restriction to time independent data. Not only 
because micro interactions themselves may be time 
dependent, but because we are taking the distribu-
tions of biota as “snapshots.” Thus, two taxa might 
interact according to our definition, but this may be 
a result of the fact that, although the time trajectories 

http://species.conabio.gob.mx
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Some representative results
The success of any scientific theory must be 

judged on its ability to explain and predict phenome-
na. Theory can be used to explain and further under-
standing of already existing data or may be used to 
propose hypotheses and associated predictions that 
require new data to be collected. Here, we will pres-
ent a small, representative sample of the results that 
have been obtained using the present formalism that 
comply with all these requirements. We will show 
that: i) biotic factors can be generally and successful-
ly introduced into species distribution and niche mod-
elling; ii) confounding can be analysed by comparing 
the simultaneous presence/absence of multiple niche 
factors; iii) specific ecological micro interactions 
can be inferred from macro (point collection) data. 
We could exhibit the advantages of our approach in 
myriad examples, several of which are already in the 
literature, trying in each example type to show what 
links it to other examples and what makes it different. 
Here, we can only try to show a pair of representative 
examples that show the power of our methodology 
hoping that they show the applicability to any other 
possible use case. We also hope that the reader will 
test these ideas in their own use case of interest us-
ing the powerful SPECIES platform (Stephens et al., 

2019) that implements our methodology in an open, 
easy-to-use, on-line environment that uses data from 
the Sistema Nacional de Información de la Biodiver-
sidad (SNIB4) and, more recently, North American 
data from GBIF.5

Including biotic factors into niche
and species distribution predictions

Perhaps the least controversial application of 
our methodology is to include biotic factors into the 
characterisation of species’ niches and their associat-
ed geographic distributions, without discussing any 
subsequent interpretation in terms of micro ecolog-
ical interactions. In this case we use the Bayesian 
models of 4 to determine P(C|X), where X can be any 
combination of abiotic or biotic variables. To create 
models, we use the SPECIES platform,6 which incor-
porates North American point collection data from 
both the SNIB and GBIF databases. The SNIB itself 
contains data on over 57,000 species.

As a first example, we will consider the construc-
tion of the niche of the bobcat Lynx rufus and use it 
to illustrate many of the points we have discussed 

4http://www.snib.mx/  
5https://www.gbif.org/
6http://species.conabio.gob.mx

Figure 1. Complex Inference Network between the bobcat (blue circle to the left) and the coyote (blue circle to the right) 
and the set of potential prey species (orange circles) from the orders Lagomorpha, Artiodactyla and Rodentia. Only the 
most important interactions corresponding to ε> 8 are shown.

http://www.snib.mx/
https://www.gbif.org/
http://species.conabio.gob.mx/
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above. The data used for this example are from the 
SNIB and consider data for Mexico only. The first 
question that arises is: which niche dimensions 
should be included in X? In principal, in SPECIES 
we may include in as covariates/niche variables for 
the bobcat all species other than the bobcat, as well 
as WorldClim as a set of abiotic variables, and other 
environmental layers. As discussed above, by bring-
ing all variables to the same spatial resolution and 
making all variables binomial, all potential niche 
dimensions can be fairly compared and contrasted. 
In Figure 2 we see the relative performance of three 
models: one including only mammal species as bi-
otic niche variables, one including only abiotic vari-

ables (WorldClim) and another including both. What 
is shown there, for the two groups of variables cho-
sen, is the total score from equation (10) in subsets 
(deciles) of spatial cells. All cells are ranked by their 
total score and then divided into deciles. Thus, decile 
10 represents the 10% of spatial cells, wherein the 
total score is highest by category, corresponding to 
those conditions that are most favourable to the pres-
ence of the bobcat. Decile 9 is the next 10% of high-
est score cells—more favourable than decile 8 but 
less favourable than decile 10. Decile 1 is the 10% of 
cells with lowest scores, the least favourable cells, or 
most “anti”-niche.

The relative performance of the models is eval-
uated using: Recall = True positive/(true positives + 
false negatives). In SPECIES, model performance is 
gleaned from a 70%-30% training-test split which is 
repeated five times. Thus, any performance metric is 
an average over five such iterations. Clearly the per-
formance of the biotic model is far superior to that 
of the abiotic model, with the combination of the two 
being even better. Simply put, mammals as niche vari-
ables are much more predictive than climatic data for 
presence of the bobcat. We should emphasise here that 

this exercise, as implemented in the SPECIES plat-
form can, quickly and efficiently, be used to validate 
or invalidate the Eltonian Noise Hypothesis (Soberón 
and Nakamura, 2009) for any of the many thousands of 
species present as target taxa. Indeed, one will quickly 
convince oneself that the Eltonian Noise Hypothesis 
is rarely valid when all potential biotic interactions are 
considered and that biotic factors in general are more 
important niche dimensions than climatic factors, with 
the latter characterising the anti-niche more than the 
niche, i.e., they affect much more the unfavourability 
of a place than its favourability.

Of course, WorldClim data is only a representa-
tive subset of all abiotic factors, not an exhaustive 

set. Similarly, mammals only represent a subset of 
biotic variables. However, using our methodology, 
in the SPECIES platform we may consider any ar-
bitrary subset of potential niche variables and in any 
combination. Thus, we may compare a particular abi-
otic factor with a particular biotic one, or any group 
thereof, or compare all 57,000 biotic variables with 
all abiotic variables. Even the mere form of the dis-
tribution of scores as a function of decile is informa-
tive. Note that the relative contribution of climate is 
much more significant in the first deciles than in the 
tenth. This confirms that climate affects only weakly 
the niche of the bobcat but is much more influential 
in determining the anti-niche. A subsequent analysis 
of the highest ranked versus lowest ranked mammals 
shows that known prey species of the bobcat appear 
with high values of ε (González-Salazar et al., 2013).

Besides comparing biotic and abiotic contribu-
tions, we can also compare different types of biotic 
variable. For instance, in Figure 3 we see the perfor-
mance of a model that includes mammals as biotic 
factors with another that includes the order Magno-
liales—a class of flowering plant—as biotic factors. 
These are chosen as an example of a group of biotic 

Figure 2. Performance of predicted distribution models for the bobcat based on abiotic variables only (WorldClim), 
biotic variables only (mammals) and a combination.
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factors where there is no a priori reason to expect 
any relevant direct micro interaction with the bobcat. 
As we can see, the performance of the model using 
mammals is much superior to that using Magnolia-
les, as might be expected for flowering plants as pre-
dictors of the bobcat distribution. From the form of 
the curves we may see that the plants play no role as 
niche variables for the bobcat, although their effect as 
anti-niche variables is apparent. Of the 120 species of 
Magnoliales as potential niche factors, only two have 
a positive score and have ε > 1.96. How should we 
interpret the fact that the presence of Magnoliales is 
negatively correlated with the presence of the bob-
cat? That there is a repulsive interaction between the 
bobcat and these flowering plants? That they are, for 
some reason, in competition? Of course not. First, we 
must interpret the apparent macro interaction from 
the point of view of biological plausibility. Second, 
we must check for confounding and causality to de-
termine the extent to which climate confounds the 
negative interaction of these flowering plants with 
the bobcat. This can be done using the methodology 
presented in the section “A Bayesian framework for 
causal inference.”

Inferring causality and identifying confounders
We will show that our methodology is capable 

of untangling the underlying causal relationships 
between niche variables in the context of a specific 
example: the characterisation of the niche of the bob-
cat; considering particularly the relations between a 
known prey species of the bobcat—Sylvilagus flori-
danus, Microchloa kunthii a known food source of S. 
floridanus and, finally, climate, as proxied by World-
Clim. An important reason for doing this arises from 
the criticism that a particular biotic niche factor may 
be confounded by climatic or other variables. In oth-
er words, that the reason why two species co-occur 

is because they share the same habitat preferences 
rather than that there is a particular biotic interaction 
between them (Ovaskainen et al., 2010; Royal et al., 
2016).

In this case we consider P(C|XαXβXγ) and anal-
ogously for ε(C|XαXβXγ), where Xα = 0, 1 represents 
presence/no presence of Sylvilagus floridanus, Xβ = 
0, 1 represents presence/no presence of Microchloa 
kunthii and Xγ = 0, 1 will range over the decile rang-
es for two significant climatic variables from World-
Clim: Mean Annual Temperature (Tmp R) and Mean 
Annual Precipitation (prec R), with decile 10 rep-
resenting the highest temperature/precipitation and 
decile 1 the lowest. Thus, for a given cell, Xγ = 1, if 
the temperature range denoted by Xγ is present in the 
cell and zero otherwise. For each of the ten tempera-
ture and precipitation variables there is one presence/
absence variable.

In Table 1 we analyse the combined effects of the 
presence/no presence/absence of the two biotic fac-
tors and two abiotic factors in terms of heatmaps. The 
colour with the corresponding scales corresponds to 
P(C|XαXβXγ), the probability of a cell having a pres-
ence of the bobcat given the corresponding configu-
ration of niche variables. Remember that this is not an 
absolute probability to detect a bobcat in a given cell, 
but a relative measure based on point collection data. 
The numbers in each cell of the graph are the corre-
sponding ε(C|XαXβXγ) values, which allow us to de-
termine if a given value of P(C|XαXβXγ) is statistically 
significant or not. They also allow us to infer the cov-
erage of the corresponding niche variable combina-
tion. The sign of ε also allows us to infer if the inter-
action is positive or negative with a positive/negative 
value indicating that P(C|XαXβXγ) >, < P(C)—the null 
hypothesis. By reading vertically from top to bottom 
we can see the effect of decreasing temperature or 
precipitation, concentrating on the presence variables 

Figure 3. Performance of predicted distribution models for the bobcat based on two classes of biotic variables: Group Bio 
1 = Mammalia and Group Bio 2 = Magnoliales, and their combination.
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sociated with favourable conditions. However, when 
the prey is present and the plant not, we see that the 
bobcat is present at a frequency statistically signifi-
cantly greater than the null hypothesis for almost all 
temperature ranges. Only the highest temperature 
ranges, R10=1 and R9=1, correspond to conditions 
such that, despite the presence of the prey, the bobcat 
is present less than would be expected by the null 
hypothesis. The same is true when both biotic factors 
are present. We can also note that the presence of the 
plant in the absence of the prey is less significant in 
indicating the presence of the bobcat than when the 
prey is present and the plant not. So, we may note 
that lower/higher temperatures are associated with 
more niche/anti-niche conditions, while presence of 
a food source of the prey of the bobcat is a positive 
niche factor but less significant than the presence of 
the prey itself. However, the presence of both togeth-
er leads to even more favourable niche conditions. 
The same considerations apply for precipitation. The 
presence of the prey is more important than the pres-
ence of the plant, which in turn is more important 
than precipitation. We can see that both high precip-
itation (R10=1, R9=1) and very low precipitation 
(R1=1) are anti-niche conditions. 

That we can isolate the effects of confounding 
in this case can be even more plainly seen in Table 
2, where we compare P(C|XαXβXγ) for Xα = 0 (rabbit 
not present) and Xβ = 0 (plant not present) against
P(C|XαXβXγ) for Xα = 0 or 1 (rabbit present or not pres-
ent) and Xβ = 0 or 1 (plant present or not present). In 
this latter case P(C|XαXβXγ) represents the marginal-
ised probability P(C|Xγ), where Xγ is a purely climat-
ic factor. Similarly, for ε(C|XαXβXγ) and ε(C|Xγ). By 

for temperature or precipitation as denoted by Ri = 1. 
The values Ri = 0 correspond to the absence of the 
corresponding climatic range. Similarly, by reading 
horizontally from left to right, we may see the effect 
of increasing the overall presence of the biotic factors 
from both not present to both present.

What is immediately clear is that the biotic fac-
tors play a much more important role than climate 
in determining what are favourable conditions, i.e., 
they play a preponderant role in determining the 
niche of the bobcat. This is fully consistent with our 
findings in the previous section, where we found that 
biotic factors were more generally associated with 
determining the niche, while abiotic factors were 
more relevant for the anti-niche. This is equally true 
here. The gradient in the probabilities left to right is 
much greater than the gradient top to bottom. In the 
absence of both biotic factors, corresponding to cells 
without a presence of either species, there is no tem-
perature range that corresponds to a statistically sig-
nificant positive niche factor, where the probability 
to find the bobcat is greater than the null hypothesis. 
On the other hand, the temperature ranges R10-R6 
are associated with probabilities to find the bobcat 
that are less than the null hypothesis and correspond 
to a statistically significant negative interaction be-
tween the bobcat and these higher temperatures. In 
fact, in ranges R10 and R9 there is very little proba-
bility of finding the bobcat, independent of whether 
the biotic factors are present or not.

Turning to conditions where the plant is pres-
ent, but the prey is not, we see that once again the 
probabilities to find the bobcat are consistent with 
the null hypothesis, as no temperature range is as-

Table 1. Probability P(C|XαXβXγ) and ε(C|XαXβXγ) for the bobcat with respect to a prey species, a food source of that prey 
species and climate.
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marginalising we are omitting the direct influence of 
the biotic factors. This is equivalent, in the Bayesian 
sense, of a model selection where only abiotic vari-
ables are chosen, as is done in standard niche and spe-
cies distribution modelling. Far from it being the case 
that abiotic factors are confounders for biotic ones, 
here we see that, on the contrary, the abiotic factors 
are confounded by the biotic factors in terms of deter-
mining the niche. As can be seen comparing the two 
cases, the same tendency is observed in the case of 
conditioning on the no presence of rabbit and plant 
versus with no conditioning, in that colder tempera-
tures and moderate precipitation are more favourable 
for the presence of the bobcat. However, the strength 
of the interaction is very different. If we consider only 
abiotic variables, the apparent probabilities for pres-
ence of the bobcat and their corresponding statistical 
significance are greatly enhanced, due to the fact that 
climate is correlated with the biotic niche factors. In 
summary, we can characterise the niche of the bob-
cat, quantify the contribution of each niche factor 
and deduce their correlations. Presence of the prey 
species and/or the presence of one of the prey spe-
cies food sources are positive niche factors, as well 
as non-extreme temperatures and precipitation. We 

can deduce the causal chain of factors, noting that the 
factor closest causally to the bobcat—its prey—plays 
a much more important role than the factor which is 
indirectly linked—the prey’s food source, which, in 
turn, is more important in determining the niche than 
the climate. This ranking of the relative importance of 
the niche factors: prey > prey food source > climate, 
is as you would expect for a vagile mammal such as 
the bobcat. Thus, the direct interaction between bob-
cat and prey, is stronger than the indirect interaction 
between bobcat and food source of the prey which, 
in its turn, is stronger than the even more indirect in-
teraction between bobcat and climate. Moreover, we 
can see that climate is confounded by the underlying 
presence of relevant biotic factors. This is prima facie 
evidence that standard fundamental niche modelling, 
based only on abiotic variables, does not represent 
the true statistical relationship between climate and 
species distributions. Rather, the relationship between 
climate and bobcat reflects the presence of important 
biotic confounders such as the bobcat’s prey species. 
Thus, fundamental niche models need to include bi-
otic factors with subsequent analysis of the potential 
confounding between one type of factor and another.

Table 2: Probability P(C|XαXβXγ) and ε(C|XαXβXγ) for the bobcat in the absence of biotic factors, and P(C|Xγ) and ε(C|Xγ), 
where Xγ represents just climate.
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of labels that is universally available are the standard 
Linneaean taxonomic labels. Indeed, these were used 
implicitly in the choice of the three proposed models 
with class = mammalia being used in one case and 
family = lagomorpha in the other. We will use those 
taxonomic labels here.

Our examples used georeferenced point col-
lection data from the SNIB with corresponding 
taxonomic labels. A bibliographic search was con-
ducted to determine the set of known (identified) 
prey species of the bobcat in Mexico. Sixty-seven 
prey species were identified. The data was divided 
into 70%/30% training/test and for each training set 
scores for each taxonomic label calculated using 
equation (22). These scores were applied to the test 
set and model performance was then calculated using 
the area under the ROC curve (AUC). One hundred 
iterations of this process were carried out and an av-
erage performance calculated along with its standard 
error. Finally, combined models were created—one 
that used the score from the taxonomic labels as well 
as ε(C|Xα) and s(Xα) and another that used the score 
from the taxonomic labels and ε(C|Xα) only. The re-
sults can be seen in Table 3, where the correct class 
is Prey = 1.

What these results clearly show is that a statis-
tical inference of this particular micro interaction, 
using only ε as a measure of interaction, is very ac-
curate, with AUCs of 0.98, 0.91 and 0.95 for the all, 
mammal and lagomorph groups. As can be seen, it is 
actually much better than the supervised model in the 
case of mammals and lagomorphs. Of the 67 iden-
tified prey species, which corresponds to 0.12% of 
the total number of all species, 22.4% can be found 
in the top 0.1% (54 species) of the ranked list by ε, 
while 70% are found in the top 1% and 95.5% in the 
top 10%. Similarly, for the mammals only model that 
incorporates 496 mammals: 40% of known prey spe-
cies can be found in the top 10% by ε. In Table 4 we 
see the list of the top 0.1% of species from the all list. 
The statistical ensemble here is composed of 26,944 
cells of dimension 16 × 16 km. ni = 238 is the total 
number of cells with presence of the bobcat, nj is the 
total number of cells with a presence of the potential 
prey species, j, and nij is the number of cells with a 
co-occurrence.

This list gives good insight into why it is perhaps 
difficult to accept that ecological interactions can 
be identified using point collection data. In terms of 
statistical inference, the model performance is out-

Identifying specific ecological micro interactions
As we have used throughout an empirical char-

acterisation of an interaction, defined via a devia-
tion in the spatial distribution of a taxon from some 
“non-interaction” null hypothesis, it is not clear to 
what degree this definition of an interaction accords 
with the ecological definition in those cases where an 
ecological micro interaction has been identified and 
characterised. We will consider a test case where a 
verified ecological interaction is known7 and show 
that our empirical characterisation accords with 
the ecological one, using the unsupervised learning 
technique presented in the section “Predicting inter-
actions.” Specifically, we consider the prediction of 
prey species of the bobcat8

We have emphasised the importance, from a 
Bayesian perspective, of model selection: which 
variables are to be included in as possible prey spe-
cies in the first place? We will consider three sets, in 
order of increasing bias: all species (53,722 species), 
mammals (496 species) and lagomorphs (14 spe-
cies). By bias here, we mean that in the second and 
third groups we include the assumption (Bayesian 
prior) that preys of the bobcat are only to be found 
among mammals, or among lagomorphs, respective-
ly. Thus, for each group we rank the included species 
by ε, with the hypothesis that those species most like-
ly to have been identified as preys of the bobcat will 
have higher values of ε, as they have a higher rate of 
co-occurrence and are more disperse.

There is no information that enters in this unsu-
pervised model other than the distribution of biota, 
as proxied by point collection data. In particular, we 
use no information about any labels that might be at 
hand. As discussed in the “Clarifying interactions,” 
potentially relevant labels could be big/small, slow/
fast, nocturnal/diurnal, terrestrial/aerial etc. Such la-
bels are not widely available in point collection data-
bases for large numbers of species. However, one set 

7By “known” here we mean that we know it exists with respect to a given 
label and have a set of examples. This does not imply, however, that those 
examples necessarily form a complete set, or we have a complete set of 
relevant labels.
8We have also carried out a similar analysis for other examples: i) polli-
nation—Leptonycteris curasoae, a bat species that pollinates agaves; ii) 
pollination—Dalechampia scandens, a twining vine that rewards insect 
pollinators; iii) mutualism—Aechmea bracteacta, a tank bromeliad that 
provides an ideal habitat for the development and refuge of aquatic and 
terrestrial organisms; iv) facilitation—Neobuxbaumia mezcalaensis, a 
plant that depends on nurse plants to have a favourable microhabitat and 
avoid humidity loss due to direct contact with the sun. Detailed results 
will be presented in another publication. Note that the SPECIES platform 
can be used to consider and validate any other example where appropri-
ate date exists.
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Table 3: Model performance for 4 model types: i) ε (unsupervised); ii) taxonomic labels (supervised); iii) ε, s and taxo-
nomic labels (meta-model); and iv) ε and taxonomic labels (meta-model).

Species nij nj ni n Epsilon Score Class Order Prey

Canis latrans 106 400 238 26944 54.75 3.7 Mammalia Carnivora 0

Urocyon cinereoargenteus 85 535 238 26944 37.09 3.05 Mammalia Carnivora 0

Taxidea taxus 32 87 238 26944 35.79 4.18 Mammalia Carnivora 0

Lepus californicus 64 383 238 26944 33.1 3.11 Mammalia Lagomorpha 1

Peromyscus maniculatus 99 871 238 26944 33.06 2.67 Mammalia Rodentia 1

Otospermophilus variegatus 54 339 238 26944 29.61 3.06 Mammalia Rodentia 1

Procyon lotor 56 371 238 26944 29.25 2.99 Mammalia Carnivora 1

Tadarida brasiliensis 66 520 238 26944 28.78 2.79 Mammalia Chiroptera 0

Sylvilagus audubonii 58 417 238 26944 28.43 2.9 Mammalia Lagomorpha 1

Puma concolor 33 143 238 26944 28.36 3.52 Mammalia Carnivora 0

Mephitis macroura 46 279 238 26944 27.86 3.1 Mammalia Carnivora 1

Odocoileus virginianus 71 633 238 26944 27.78 2.65 Mammalia Artiodactyla 0

Bassariscus astutus 45 270 238 26944 27.72 3.11 Mammalia Carnivora 0

Sayornis saya 92 1045 238 26944 27.36 2.38 Aves Passeri-
formes

0

Thomomys bottae 51 351 238 26944 27.32 2.95 Mammalia Rodentia 0

Haemorhous mexicanus 118 1648 238 26944 27.23 2.16 Aves Passeri-
formes

0

Conepatus leuconotus 41 236 238 26944 27.07 3.16 Mammalia Carnivora 1

Bubo virginianus 62 519 238 26944 26.93 2.72 Aves Strigiformes 0

Dipodomys merriami 79 814 238 26944 26.9 2.49 Mammalia Rodentia 1

Corvus corax 110 1504 238 26944 26.65 2.18 Aves Passeri-
formes

0

Spizella passerina 96 1197 238 26944 26.39 2.28 Aves Passeri-
formes

0

Regulus calendula 89 1044 238 26944 26.39 2.35 Aves Passeri-
formes

0

Icterus parisorum 65 590 238 26944 26.31 2.63 Aves Passeri-
formes

0

Reithrodontomys megalotis 58 488 238 26944 25.97 2.72 Mammalia Rodentia 1

Sylvilagus floridanus 62 564 238 26944 25.66 2.63 Mammalia Lagomorpha 1

Ursus americanus 16 43 238 26944 25.46 4.2 Mammalia Carnivora 0

Lanius ludovicianus 108 1573 238 26944 25.36 2.11 Aves Passeri-
formes

0

Accipiter cooperii 81 939 238 26944 25.36 2.36 Aves Accipitri-
formes

0

Table 4: The top 57 highest ranked species by ε corresponding to those species with the most important interaction with 
the bobcat. The true positive rate in this group is 22.4% compared to the null (random) benchmark of 0.1%.
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standing. However, let us examine what, apparently, 
are false positives on the list. First and foremost, we 
must be careful about judging that a false positive 
is just that—that the corresponding species is not a 
prey species, versus it has not yet been identified as 
such. For instance, Taxidea taxus may well be a prey 
species (Skinner, 1990) that has not been so identi-
fied in Mexico. There are also several bird species 
that are very highly ranked and therefore posited to 
be potential prey species but that have not been iden-
tified as such. In this case, our list represents a set 
of predictions for new potential preys that have not 
been previously discovered.

Secondly, our methodology is based on the fact 
that there is an interaction by virtue of the “attrac-
tion” between these species as niche dimensions and 
the bobcat. This does not mean, however, that the 
interaction has perforce to represent a predator-prey 
interaction with the bobcat as predator. It does not 
even mean that the interaction has to be direct. For 
instance, the strong interaction between the coyote 
(Canis latrans) and the bobcat may principally be 
through shared preys. This hypothesis is fully con-
sistent with the CIN shown in Figure 1, where we 

see that there are many more strong interactions (po-
tential preys) of both the coyote and the bobcat (or-
ange nodes connecting the blue nodes of the bobcat 
(left) and coyote (right)) than are available to only 
one or the other. So, the bobcat and coyote have a 
substantial niche overlap in terms of their prey spe-
cies. However, there are studies that show that, de-
spite this overlap, there is little competition between 
them (Major, 1987), except in conditions where food 
resources are scarce. In principle, the nature of the 
interaction between the bobcat and the coyote can 
be analysed further using the formalism of the “A 
Bayesian framework for causal inference.” In other 
words, we may consider P(bobcat = present|coyote 
= present,prey = present) versus P(bobcat = present|-
coyote = present,prey = absent), just as was done for 
the case of the bobcat in “A Bayesian framework for 
causal inference.”

The above considered only spatial information. 
We can also adjoin labels and potentially improve 
the prediction model based only on ε. In Table 5 we 
see the top five species of the all group as ranked by 
ε. The ranking, using the score function as deduced 
by a supervised learning model, is quite different, 

Euphagus cyanocephalus 59 532 238 26944 25.16 2.64 Aves Passeri-
formes

0

Peromyscus eremicus 63 604 238 26944 25.08 2.57 Mammalia Rodentia 0

Buteo jamaicensis 119 1922 238 26944 24.87 2 Aves Accipitri-
formes

0

Colaptes auratus 81 971 238 26944 24.84 2.32 Aves Piciformes 1

Pipilo maculatus 61 594 238 26944 24.45 2.55 Aves Passeri-
formes

0

Phainopepla nitens 67 709 238 26944 24.38 2.46 Aves Passeri-
formes

0

Tyrannus vociferans 91 1237 238 26944 24.33 2.19 Aves Passeri-
formes

0

Sayornis nigricans 92 1279 238 26944 24.12 2.16 Aves Passeri-
formes

0

Passer domesticus 107 1684 238 26944 23.99 2.03 Aves Passeri-
formes

0

Tyto alba 54 490 238 26944 23.98 2.63 Aves Strigiformes 0

Myotis californicus 37 242 238 26944 23.95 3.01 Mammalia Chiroptera 0

Zonotrichia leucophrys 65 692 238 26944 23.92 2.45 Aves Passeri-
formes

0

Neotoma mexicana 49 411 238 26944 23.92 2.72 Mammalia Rodentia 1

Turdus migratorius 70 799 238 26944 23.8 2.38 Aves Passeri-
formes

0

Geococcyx californianus 73 865 238 26944 23.75 2.34 Aves Cuculi-
formes

0

Perognathus flavus 41 299 238 26944 23.71 2.88 Mammalia Rodentia 0

Setophaga coronata 108 1751 238 26944 23.63 2 Aves Passeri-
formes

1

Auriparus flaviceps 70 809 238 26944 23.62 2.36 Aves Passeri-
formes

0

Aegolius acadicus 17 56 238 26944 23.57 3.89 Aves Strigiformes 0

Table 4: (continued from previous page)
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with the coyote and the grey fox in particular being 
substantially downgraded in the list. Although these 
species have an important macro interaction with 
the bobcat, principally indirect through shared prey 
species, as is consistent with Table 5, they do not 
have taxonomic labels that are as highly correlated to 
known prey species, such as Lagomorpha. However, 
from Table 3 we see that the supervised model with 
taxonomic labels is much inferior to the unsuper-
vised model for the mammal and lagomorph groups. 
So why does this supervised learning model perfor-
mance decay so significantly? When all species are 
considered, there are taxonomic labels that are very 
predictive. For example, as the bobcat is a carnivore, 
any plant species will clearly receive a very negative 
score. However, when we get to the mammal group, 
the taxonomic labels within this set lose predictive 
power, as the bobcat has preys in multiple mammal 
genera, families and orders and, obviously, when we 
get to the lagomorph group the taxonomic labels lose 
relevance even further.

Interestingly, the spatial models alone using ε 
contain implicit information about the diet of the 
bobcat’s diet! The highest ranked plants in the list of 
all species are Muhlenbergia wrightii (rank 61) and 
Bromus carinatus (rank 99). As both are grass species 
that are potential food sources for many of the main 
prey species of the bobcat, we see that the interaction 
in terms of these plants as niche dimensions of the 
bobcat is indirect, with the bobcat’s interaction be-
ing intermediated by its prey species as confounders. 
Once again, using the methods of the section entitled 
“A Bayesian framework for causal inference,” this 
confounding can be analysed to better understand the 
true causal nature of the interactions.

Note also the extremely non-random nature of 
the ranking of different taxonomic groups in the all 
list. As plants represent about 50% of the overall set 

of species the odds of not hitting a plant until the 
61st place in the list if the species were distributed 
randomly would be astronomically small. So, an un-
supervised model based only on macro interactions, 
as measured by ε, and without reference to any char-
acteristics of the potential prey species, yields an ex-
tremely predictive model for identifying the micro 
interaction between the bobcat and its preys. This 
is because an important prey species will be an im-
portant niche dimension, and this will manifest itself 
in the species’ distributions. However, ε alone is not 
equipped to distinguish between the different poten-
tial micro interactions that give rise to the observed 
macro interactions. On the other hand, suitable la-
bels, such as the taxonomic labels used here, can 
identify characteristics of the known prey species, 
but then cannot distinguish between those that are 
niche dimensions that affect the distribution of the 
bobcat and those that do not. In other words, a lago-
morph, such as Sylvilagus brasiliensis, has the right 
characteristics to be a prey but does not share niche 
with the bobcat, as can be seen in Table 6, where 
there are zero co-occurrences with the bobcat. A 
combination of unsupervised and supervised models 
is a way of including both macro level interactions 
and useful labels for distinguishing between different 
micro level interactions as contributors to the macro 
distributions. So, in Table 5 we see that a model that 
uses both ε and the scores from the taxonomic labels 
enhances the rank of those species—Lepus californi-
cus and Peromyscus maniculatus—that have both an 
important micro interaction with the bobcat and tax-
onomic characteristics that are identified with known 
prey species, while, at the same time, suppressing 
those species—Canis latrans and Urocyon cinereo-
argenteus—that have an important macro interaction 
with the bobcat but do not have taxonomic labels that 
are consistent with that interaction having the micro 
interaction predator-prey as an important contribut-
ing source. Finally, considering only lagomorphs as 
potential prey, we see the list of all Mexican lago-
morphs ranked by ε in Table 6. Note that once again 
the model is extremely good, with a sensitivity of 
83.3% and a specificity of 87.5%.

Identifying disease hosts
We presented the case of predation above as a 

test case as it is distinct to what has been, up to now, 
the main area of application of the methodology—
zoonoses. As mentioned, the transmission cycle of 

LYNX/PREY

Rank 
by 

(ε)

Rank by 
taxo-
nomic 
labels

Rank by 
Epsilon, 
score 
and tax-
onomic 
labels

Rank by 
Epsilon 
and tax-
onomic 
labels

Canis latrans 1 174 170 172

Urocyon cinereoargenteus 2 145 80 81

Taxidea taxus 3 76 102 102

Lepus californicus (prey) 4 2 2 2

Peromyscus maniculatus 
(prey)

5 34 39 3

Table 5: Impact of taxonomic labels on ranking by ε for 
most important macro interactions with the bobcat.
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a zoonosis involves several local and direct micro 
interactions: host-vector, pathogen-host and patho-
gen-vector, that are related in a complex way. Both 
the host range (the number and type of hosts) and the 
vector range (the number and type of vectors) are im-
portant factors in the transmission cycle and highly 
relevant for indicating how to combat a zoonosis. It 
is prohibitively costly to try and test every possible 
host and every possible vector to determine if and 
how it enters in the transmission cycle of a pathogen 
and even more costly to determine its relative impor-
tance. We hypothesise that the micro interactions be-
tween pathogen-vector-host are such that each biotic 
element enters as a potential niche dimension for the 
others and that will leave an imprint of the interaction 
at the macro level when considering the relative spa-
tial distributions of vector and host.

Although we have considered multiple zoono-
ses—leishmaniasis (Berzunza-Cruz et al., 2015; 
Stephens et al., 2009; Stephens et al., 2016), Chagas 
disease (Ibarra-Cerdeña et al., 2017; Rengifo-Cor-
rea et al., 2017), Zika virus (González-Salazar et al., 
2017), Yellow fever, St. Louis encephalitis, Dengue 
and West Nile virus, we will consider here, as a rep-
resentative example, only leishmaniasis. In the case 
of leishmaniasis, the vector-host relation is accepted 
to be between a hematophagous insect vector—of the 
genus Lutzomyia—and a mammalian host. In Mex-
ico, until recently, the number of confirmed hosts 
was only nine, of more than 430 possible candidate 
mammal species (Stephens et al., 2009). Following 
the logic that a necessary condition for the presence 

of the pathogen is the presence of the host and that 
the disease hosts will be favourable niche dimensions 
for the vectors we created a list, ranked by ε, of all 
mammals in Mexico (Stephens et al., 2009). The list 
was then checked against current knowledge in terms 
of the nine confirmed hosts, all of which correspond-
ed to high values of ε, indicating a strong positive 
interaction in terms of our empirical definition. As 
with the example bobcat-prey, the predictive value 
of this unsupervised model is very high. However, 
as with the predation example, we must ask whether 
the set of confirmed hosts is representative and if it 
is complete, and if so, what is the nature of the false 
positives or false negatives in the model? In Table 7 
we see the 150 most highly ranked (most important) 
interactions by ε between the genus Lutzomyia and 
potential mammal hosts. The previously confirmed 
hosts are denoted by “Yes” in the column “Conf.” 
Taking as an example classification criterion that 
any mammal in the top 5% (corresponding to rank 
21 in the list) is predicted to be a host then, if we ac-
cept that the only mammal hosts are the nine already 
confirmed hosts, the sensitivity (recall) of the model 
is 3/21 = 14.3%, which may be compared with the 
null hypothesis that there is no interaction between 
the distributions of vectors and hosts, wherein the 
probability to find confirmed hosts in any group 
would be 9/419 = 2.1%. Thus, this simple model as 
a classification model for identifying known disease 
hosts of leishmaniasis is almost 681% better than that 
of a random model benchmark. If we take a larger 
group, the top 20%, then the sensitivity drops off, as 

Species nij nj ni n Epsilon Genus Prey

Lepus californicus 64 383 238 26944 33.1 Lepus 1

Sylvilagus audubonii 58 417 238 26944 28.43 Sylvilagus 1

Sylvilagus floridanus 62 564 238 26944 25.66 Sylvilagus 1

Romerolagus diazi 9 19 238 26944 21.66 Romerola-
gus

1

Sylvilagus cunicularius 17 147 238 26944 13.84 Sylvilagus 1

Sylvilagus bachmani 9 53 238 26944 12.52 Sylvilagus 0

Lepus callotis 11 100 238 26944 10.81 Lepus 1

Lepus alleni 6 67 238 26944 7.06 Lepus 0

Sylvilagus graysoni 1 5 238 26944 4.57 Sylvilagus 0

Lepus flavigularis 1 13 238 26944 2.62 Lepus 0

Sylvilagus insonus 0 3 238 26944 -0.16 Sylvilagus 0

Sylvilagus mansuetus 0 2 238 26944 -0.13 Sylvilagus 0

Sylvilagus gabbi 0 1 238 26944 -0.09 Sylvilagus 0

Sylvilagus brasiliensis 0 61 238 26944 -0.74 Sylvilagus 0

Table 6: Ranking by ε of all lagomorphs.
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it should, with a sensitivity of 7/84 = 8.3%. Thus, 
this model does a good job at predicting previously 
identified hosts. This analysis presupposes however, 
that no other mammal is a host beyond those already 
identified. If we take the list as a prediction model 
and a geographically systematic and random sam-
pling is made, then from a given number of samples 
we would expect the highest ranked species to lead 
to more positives than the lower ranked species. This 
sampling was, indeed, carried out (Stephens et al., 
2016), with the result that 922 individuals from 70 
species were collected and tested for the presence of 
the Leishmania pathogen.

Of the 70 species tested, 22 that tested positive 
were previously unknown hosts of Leishmania in 
Mexico (shown in blue in the Table 7). Our unsu-
pervised model now yields a sensitivity of 12/21 = 
57.1%, compared to 2.1% for the random bench-
mark, and 14.3% if we assume that only previously 
confirmed species were positive. In the top 20% of 
the list, the corresponding sensitivity is 26.5%.

One may argue that the percentage, 42.9%, of 
“false” positives associated with the 5% of highest 
ranked candidate hosts is very high, but this would be 
very misleading. Take, for example, the bat species 
Molossus rufus that was collected without presenting 
any positive individuals. This species is very highly 
ranked and therefore considered to be an important 
niche dimension for the Lutzomyia genus. Is this to 
be considered a false positive? To do so we must 
have a hypothesis about the expected infection rate. 
The infection rate over the whole sample of 922 in-
dividuals was 6.7%. Taking this as the null hypothe-
sis, given that only one individual of this species was 
collected, the probability that it represented a true 
negative was only 6.7%, far from a 95% confidence 
interval. Indeed, of the 70 collected species, none 
could be discarded as a potential host at this level 
of confidence. In other words, no species of the top 
5% or top 20% can be considered as a false positive, 
either because it has not been collected and tested or 
because it has not been collected in sufficient quanti-

Table 7: List of top 150 most highly ranked potential mammal hosts of Leishmania.
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ty. Independently of this, from a statistical inference 
viewpoint, the model works extremely well.

Conclusion
We have here tried to summarise both the essen-

tial conceptual and theoretical elements that enter in 
our formalism for defining, characterising, quantify-
ing and predicting ecological interactions, in the hope 
that it will stimulate researchers to test the methodol-
ogy on their own problems of interest and judge for 
themselves its merits. We believe that the representa-
tive use cases we have discussed, along with others 
in the literature, prove its worth. As many basic ele-
ments of the methodology are now available in an on-
line platform—SPECIES—literally thousands of test 
cases, each with hundreds or thousands of covariates, 
can be produced, each in a matter of minutes. As a 
concrete example, the Eltonian noise hypothesis may 
be validated or rejected for any species that exists 
in the SNIB (Mexico) or GBIF (North America) da-
tabases using any combination of biotic and abiotic 
variables. One can further compare and contrast the 
accuracy of any corresponding species distribution 
model associated with these combinations. This is 
equivalent to determining which variables are more 
niche-like—positively correlated with the species of 
interest—and which are anti-niche-like—negatively 
correlated with the species of interest.

We can compare and contrast the role of every 
niche variable from a statistically level playing field 
by bringing every variable to the same spatial reso-
lution and making every variable binomial. We can 
compare and contrast abiotic with biotic variables, or 
use different groups of biotic variables, grouped by 
any criterion we choose (given the data is to hand), 
such as by taxonomic label, or phenotype or geno-
type or, by ecological interaction labels or, indeed, 
whatever we choose. We can go further and use the 
methodology to analyse correlations between niche 
variables and thereby begin to study confounding be-
tween different variable types and answer questions 
about who confounds who? All of this can be done, 
which is a benefit to species distribution and niche 
modelling, without ever mentioning the word “inter-
action”.

However, without understanding the role of in-
teraction in ecology, all of this is just building a better 
mousetrap. The concept of interaction is fundamen-
tal to understanding how ecology at the micro level 
emerges into the macro level and manifests itself in 

the relative distributions of species or other taxa as a 
function of position and time. Neutral theory (Hubell, 
2001) has provided us with a null hypothesis, based 
on the first principles of stochasticity, that allows 
us to have access to how the world would be if all 
species were similar in their per capita rates of birth 
and death, and hence provided a benchmark against 
which to compare empirical patterns in the abun-
dance and diversity of species (e.g. Marquet et al., 
2014) and infer the relative importance of niche-re-
lated processes. Our approach makes use of a similar 
philosophy by comparing observed patterns to the 
appropriate benchmark and then making inferences 
about the significance of their deviation in order to 
understand and assess to what extent micro interac-
tions may leave an imprint upon macro distributions 
of taxa.

The tension between neutral and niche also ex-
ists in physics. Some systems, such as helium atoms, 
have strong (intra-atomic) micro interactions and 
very weak (interatomic) macro interactions. On the 
other hand, sodium and chlorine atoms have strong 
(intra-atomic) micro interactions and also have 
strong (but less strong) inter-atomic interactions. 
That’s how we get salt. So, is ecology more like heli-
um or more like salt? Clearly, the answer is that some 
ecological systems are more like helium and some 
are more like salt. How can we distinguish one from 
the other? First, by defining, as in many other areas 
of science, interactions with respect to the effect they 
have on the constituents of the system that is inter-
acting. In particular, on their positions in time and/
or space. This is our path to defining interactions at 
the macro level when we cannot directly derive the 
macro interaction from the micro.

Thus, we defined interactions as being present 
when the spatio-temporal distributions of the things 
that are interacting is different to that in the absence 
of the interaction—the null hypothesis. Without data 
on the macro distributions however, we can go no 
further. Luckily, large point collection databases, not-
withstanding questions about data biases, are a won-
derful potential source of information about what is 
where and when. With this data we can determine 
the effect of one or any number of (niche) variables 
on a taxon of interest, be they abiotic or biotic. The 
problem is that the spatio-temporal distribution of 
one species is an emergent result of the micro level 
interactions with all potential niche variables. Thus, 
there is no chance of isolating the effect of abiotic 
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variables (the fundamental niche) on a species dis-
tribution, as the latter is a result of those variables 
and all the biotic ones too. This is a problem of all 
Complex Adaptive Systems, not just ecology. There 
are just too many variables involved to be able to iso-
late the effects of one variable by “controlling” for 
the rest. However, point collection data does allow 
us to set up a potentially infinite set of hypotheses 
by considering combinations of niche variables. For 
instance, we can determine the effect of the presence 
of a species of prey on the bobcat distribution by 
“controlling” for the effect of temperature, or precip-
itation, as was done in the section entitled “Inferring 
causality and identifying confounders.” To link this 
to micro interactions however, we need labels for the 
niche variables that are ecologically relevant, and 
which can be used to interpret the macro interac-
tions in micro terms. Thus, Sylvilagus floridanus has 
an important macro interaction with Lynx rufus and 
therefore is a relevant niche variable in the pragmatic 
sense that where the rabbit is present so is the bobcat. 
However, it is our understanding of its role as a prey 
species of the bobcat that provides the micro proper-
ty that allows us to understand why it is an important 
niche dimension.

So, a macro interaction may be absent even 
though there is an underlying micro interaction—the 
helium scenario. However, there can be no macro in-
teraction if there is no micro interaction. Macro inter-
actions can only emerge from the collective effects of 
multiple micro interactions. It is this fact that allows 
us to attempt to infer the existence and nature of mi-
cro interactions from the macro data. We gave sev-
eral concrete examples of this. The base model there 
(our unsupervised learning ε model) is just based 
on the logic that things can’t interact if they don’t 
co-occur, neither at the micro nor the macro level. 
This led to very predictive statistical inference mod-
els for the considered interaction. By considering the 
various ecological labels of the involved species we 
could improve those models by determining which 
labels are associated with false positives versus false 
negatives. This can be done by hand—deciding for 
instance that the coyote cannot be a prey of the bob-
cat and removing it from the model or, in a more 
principled way, by using a supervised learning model 
trained on these labels.

We believe that our methodology, and its imple-
mentation, available to all in the SPECIES platform, 
open up new horizons for a large set of analyses that 

simply were not possible before. What is more, the 
methodology is equally applicable to any spatio-tem-
poral data of any resolution and of any data type, in-
cluding public health data, census data, commercial 
data etc. The data just needs to be incorporated into 
the SPECIES platform. Thus, we may ask not just 
what the niche of a vector of a disease is, but also what 
is the niche of the disease itself by using geo-refer-
enced cases and their associated labels. Given that it 
works in predicting new, unknown interactions it can 
be used to rank candidates for furthermore detailed 
analysis from large numbers of such candidates.
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