

Early Childhood Classroom Design: Integrating Montessori Principles with Neuroeducational Research

Laura K. Foster, Johns Hopkins University

Keywords: allostatic load, attention, biophilic design, classroom design, content retention, early childhood education, embodied cognition, encoding, Montessori, neuroeducation, regulation

Abstract: This critical literature review examines how classroom design influences attention, regulation, and learning in early childhood education (ECE). Combining Montessori pedagogy with Bronfenbrenner's theories as a conceptual framework, this review considers biopsychosocial impacts of physical classroom spaces. Experimental classroom research indicates the crucial first step of learning—encoding—may be disrupted in early classrooms cluttered with excessive visual stimuli that overwhelm children's attention. Drawing on neuroeducational concepts such as embodied cognition and allostatic load, this review highlights how intentionally prepared environments support attentional allocation, regulation, and encoding for content retention by emphasizing cognition's body-based and environmentally responsive nature. These findings challenge older models that view attention and regulation as fixed, child-based traits rather than capacities influenced through interaction with the environment. Additionally, decades of design research demonstrate exposure to nature in intentionally created spaces can reduce stress and improve cognitive functioning; yet this potential to enhance attention and learning in classrooms remains underexplored. By viewing classrooms dually as physical and cognitive spaces, this synthesis underscores the role of intentional design in promoting attentional allocation, regulation, and learning. These insights bridge the gap between Montessori practice and research, and offer a compelling rationale for optimizing ECE environments through a neurodevelopmental lens, with implications for educational policy, teacher preparation, and future empirical studies.

Although traditional measures of school readiness focus on literacy, numeracy, and physical development (Ghandour et al., 2024), educators often identify students' difficulties with self-regulation and attention as primary obstacles to children's readiness for school (Blair & Diamond, 2008; Eristi & Avci, 2021; Rimm-Kaufman et al., 2000). Attention-deficit/hyperactivity disorder (ADHD) has become one of the most common diagnosed conditions in young children (Danielson et al., 2024; Centers for Disease Control and Prevention, 2023; Mahone & Schneider, 2012). Research shows attention-related issues, such as distractibility and difficulty sustaining focus, are significant barriers to academic success in early childhood education (ECE), which encompasses birth through age 8 (Curby et al., 2018; Degol & Bachman, 2023).

Additionally, a growing body of cross-disciplinary research suggests physical classroom design plays a critical role in influencing children's attention and cognition. Studies show factors such as lighting, sound, color, visual displays, movement, and biophilic (nature-centered) elements can significantly impact attentional focus, well-being, and learning (Barrett et al., 2013; Brooks, 2010; Gaekwad et al., 2022; Godwin et al., 2022; Jeannin & Barthélémy, 2020; Kilbourne et al., 2017; Llorens-Gámez et al., 2021). Moreover, neurodivergent students experience additional sensitivity to overwhelming sensory input, demonstrating increasing externalized aggressive behavior (Baird et al., 2023), restricted participation (Cheryan et al., 2014), and greater distractibility and visual processing difficulties in autistic children and those with attentional differences (Hanley et al., 2017; Mallory & Keehn, 2021; Martin & Wilkins, 2021; Zazzi & Faragher, 2018).

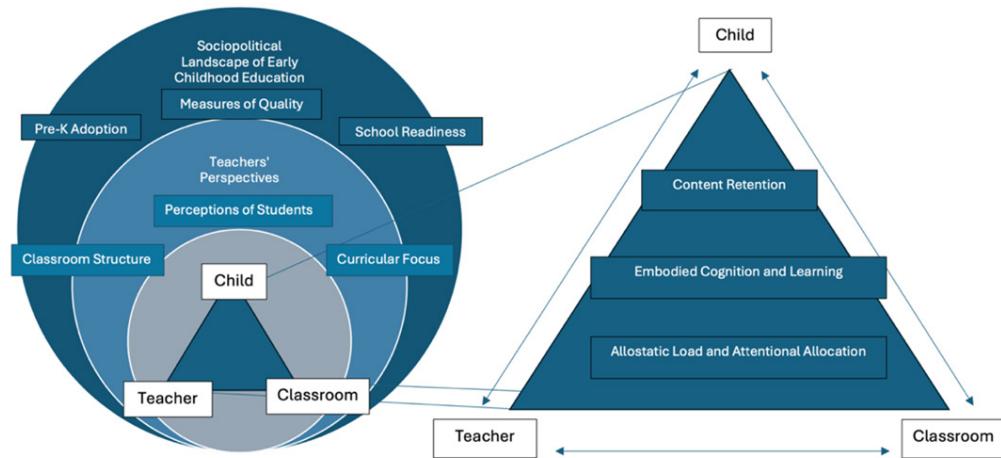
Problem of Practice

Cumulatively, this body of research underscores the complexity of challenges early learning educators face, revealing a multidisciplinary and multifaceted problem of practice. Although the benefits of investing in ECE are well documented, empirical evidence indicates many early learning environments remain suboptimal for fostering effective learning. Specifically, visually dense settings, which are common in early childhood and elementary classrooms, deter children's attentional focus, reduce time spent on task, and negatively influence learning outcomes.

Figure 1

First-Grade Classroom at a Conventional Charter School

Note. Photo by Allison Shelley/Verbatim Agency for EDUImages (2017), licensed under CC BY-NC 2.0, <https://www.flickr.com/photos/all4ed/36456780086>


Rationale and Identified Gap in Literature

Despite robust findings in the science of learning that highlight the effectiveness of strategies such as interleaving, retrieval practice, and spaced learning for enhancing retention and understanding (Brown et al., 2014), these methods presuppose students have already successfully encoded the material. Cognitive scientists have long characterized the learning process as one of encoding, storage, and retrieval (Craik & Lockhart, 1972; McDermott & Roediger, 2018); however, the foundational process of initial encoding is often undermined in early learning environments due to excessive visual clutter (Fisher et al., 2014; Godwin et al., 2022). Many classrooms, particularly those designed for young children, are saturated with prefabricated displays and dense visual stimuli (see Figure 1).

This proliferation of visual density may stem from a misapplication of Mayer's (2005) cognitive theory of multimedia learning, which supports dual-channel processing of visual and auditory information. Yet, there is limited empirical support for the effectiveness of these visually dense environments as inclusion of visual displays do not guarantee a learning effect (Guo et al., 2020). Instead, a growing body of evidence suggests they interfere with attentional allocation, stress regulation, and encoding, thereby undermining development and learning (Browning & Determan, 2024; Degol & Bachman, 2023; Dixon & Salley, 2007; Fisher et al., 2014).

Figure 2

Conceptual Framework of Early Learning Classroom Environments

The gap in current literature is twofold. First, although there is growing recognition of the importance of principles of the learning sciences, research has yet to fully explore how environmental design of early childhood classrooms impacts the initial encoding stage critical to content retention. Teachers are expected to design classrooms that promote learning, regulation, and sustained attention. However, interviews with teachers reveal they often lack empirical guidance on how to effectively design classroom environments and displays, and this leads them to depend on intuition, tradition, and social media rather than evidence-based strategies (Almeda et al., 2014; Lopez, 2020; Milo-Shussman, 2017).

Second, although adolescent students express preferences for calm, comfortable learning environments (Costa 2024; Students Speak, 2025), research rarely includes voices from children younger than 7 (de Leeuw et al., 2004). This lack of first-person accounts from young learners leaves a critical void in understanding how the physical classroom environment affects their cognitive and emotional engagement with learning.

To address this gap, this critical synthesis integrates insights from cognitive science, developmental psychology, architecture, and education to argue for a paradigm shift in early classroom design—one that is evidence-informed and child-centered. As Lillard (2023) suggests, reimagining the classroom through the lens of children's cognitive development, rather than institutional traditions, may be transformative.

Conceptual Framework

This review defines and examines how key factors—embodied cognition, allostatic load, and attentional allocation—affect encoding and content retention in visually dense early childhood settings. These factors are situated in the conceptual framework presented in Figure 2, which uses a novel approach to integrate two distinct theoretical perspectives.

The first framework is Bronfenbrenner's bioecological theory of child development (Bronfenbrenner & Ceci, 1994), which places the child at the center of multiple, nested systems of biopsychosocial influence. These systems include the microsystem representing the child's immediate environments such as family, school, and peers; the mesosystem, which reflects the interconnections among these settings; the exosystem encompassing external and virtual (Navarro & Tudge, 2023) contexts that indirectly affect the child; the macrosystem, which consists of cultural values, beliefs, and societal norms; and the chronosystem, which captures the influence of time and change. Together, these interconnected systems illustrate the multilayered, ongoing biopsychosocial interaction between child and contexts.

The second framework is Montessori's model of education (Montessori, 1912), which emphasizes the dynamic, triangular relationship between the child, the teacher, and the prepared environment (Cossentino & Brown, 2017). Within this model, the child is viewed

as an active learner who constructs knowledge through exploration and interaction with carefully tested prepared materials, which are designed to dually satisfy the child's natural inclination for play and academic curiosity (Lillard, 2021). In concert, the teacher as a guide, with the prepared environment, provides structure, order, and freedom within limits, allowing children to engage in purposeful activities that support autonomy, concentration, and intrinsic motivation (Tebano Ahlquist, 2023). When considered alongside Bronfenbrenner's bioecological theory, the Montessori framework offers a complementary perspective that highlights how environmental design, pedagogy, and developmental processes interact to shape children's learning experiences and outcomes in ECE settings.

Whereby many factors are acknowledged within this framework as part of a broader doctoral "scholarship of integration" (Boyer's [1990] academic model), the current literature synthesis focuses specifically on the elements within the triangle, which represent the neuroeducational experience of young children. Thus, this review underscores the critical connection between physical features of learning environments and learning outcomes. Advances in understanding the concepts of embodied cognition, allostatic load, and attentional allocation provide a robust framework for identifying the foundational factors that drive effective learning. By strategically optimizing educational environments to align with these principles, it becomes possible to create conditions that actively enhance students' content retention.

Embodied Cognition and Learning

Embodied cognition describes the inseparable connection between the environment, body, and brain (Kosmas et al., 2018). As Foglia and Wilson (2013) note, "there is no fracture between cognition, the agent's body, and real-life contexts ... the body intrinsically constrains, regulates, and shapes the nature of mental activity" (p. 319). Gallagher's (2023) 4E model—embodied, embedded, extended, and enactive cognition—offers a powerful framework for understanding how young children learn through full-body engagement with their surroundings, particularly as they transition from home to school and begin forming identities as learners.

Central to this perspective is the concept of the "bodymind," a term with philosophical roots in the work of Husserl, Sartre, and Merleau-Ponty (Agostini & Francesconi, 2020), and extended into fields such as neuropharmacology (Pert, 1999), therapy (Rothschild,

2000), neuroscience (Damasio & Damasio, 2006), and dis/ability advocacy (Price, 2015; Nusbaum & Lester, 2021; Walker, 2021). This term also aligns with biopsychosocial theory (Engel, 1977) and bioecological systems theory (Bronfenbrenner, 1994), all of which reinforce the view that cognition is a dynamic process influenced by physical and social environmental factors. In classroom contexts, this means sensory inputs, such as color, density, and noise, directly influence children's regulation, attention, and learning capacity (Diamond, 2013; Fay-Stambach et al., 2014; Gaekwad et al., 2022). Thus, if attention is understood through a biopsychosocial lens, it encompasses neurobiological mechanisms as well as the social and environmental contexts in which children develop. This dynamic process illustrates how biological systems such as the autonomic nervous system and hypothalamic-pituitary-adrenal axis interact with interpersonal relationships, social expectations, and educational environments, thereby shaping not only the child's well-being but also their ability to attend, regulate, and engage in learning (Christensen et al., 2020; Lucente & Guidi, 2023).

Embedded cognition builds on this understanding by highlighting how the environment supports cognitive processing through affordances—objects like blocks, pencils, and digital tools—that enable children to externalize thinking through drawing, writing, and interactive media (Gallagher, 2023). *Enactive cognition* further emphasizes how physical expression, including gestures and body movements, supports meaning-making and communication (Schenck et al., 2022). In early childhood, intersubjectivity—children's tendency to perceive and respond through interaction with others—is a key enactive feature, exemplified in moments of physical attunement with caregivers (Gallagher, 2023). When classrooms become visually overstimulating, they may disrupt these foundational cognitive processes by overloading attention or suppressing natural sensory engagement.

This embodied perspective highlights how external stressors can lead to internal disruptions in both motor and emotional functioning (Gallagher, 2023; Immordino-Yang & Gotlieb, 2017). Conditions such as stress, sleep deprivation, or limited physical movement can impair executive functions. "Executive function" refers to the emergent ability to exert control in pursuit of specific goals (Doebel, 2020). As a result of disrupted executive functions, children may exhibit behaviors that could be misinterpreted as learning or attention disorders (Diamond, 2013). Internal states, influenced by learning

environment, play a critical role in influencing children's well-being and cognitive engagement (Fugate & Wilson-Mendenhall, 2022; Immordino-Yang, 2015).

Embodied learning, which applies these cognitive principles to educational settings, emphasizes the importance of sensorimotor experiences in memory and concept formation (Agostini & Francesconi, 2020; Shapiro & Stoltz, 2019). In a review of literature, Fugate et al. (2018) found embodied learning strategies to be meaningful in a wide variety of educational domains, including writing, physics, and math. Additionally, Lozada & Carro (2016) found children who actively manipulate materials in Piagetian conservation tasks demonstrate a better understanding of quantity invariance than those who only observe. However, Western education systems often restrict such experiences, favoring conventional models of instruction that marginalize sensory exploration (Macedonia, 2019). As Macedonia explains, "children cannot be prevented from touching, dropping, smelling the objects and putting them in their mouths. Therefore, in the brain's language, a word must be represented as a sensorimotor network that mirrors all experiences collected to the concept" (p. 3). When early learning environments are structured to suppress movement and sensory engagement, often under the pressure of "schoolification," they undermine the natural learning processes of young children (Schunk et al., 2022; Shepard, 1997).

Additional research confirms sensory processing influences participation and engagement in learning activities (Sleeman & Brown, 2021), and that difficulties in sensory regulation, particularly among preterm preschoolers, are linked to deficits in executive function (Adams et al., 2015). Taken together, these findings reinforce the need to critically evaluate and redesign classroom environments. Visually dense, overstimulating settings not only fail to support the body-based nature of cognition but directly interfere with children's ability to attend, engage, and learn effectively.

Allostatic Load and Attentional Allocation

The learning sciences have long explored conditions that best support learning (Sawyer, 2014). Yerkes and Dodson (1908) first described an inverted U-shaped relationship between arousal and performance, suggesting low and high levels of arousal both hinder learning. This principle has been repeatedly confirmed and applied to areas such as executive function (Blair & Ursache, 2011; Neuenschwander et al., 2014). A helpful framework for understanding children's tolerance to sensory input

is allostatic load, the cumulative burden of everyday stressors and significant life events (Lucente & Guidi, 2023). Conkbayir (2021) describes this as it relates to young children as, "alteration of stress hormones in response to experience, with consequent effects on emotions, attention, and executive function" (p.129). Thus, when environmental demands exceed a child's capacity to adapt, allostatic overload can occur, resulting in elevated cortisol, emotional dysregulation, attention difficulties, and memory impairment (Christensen et al., 2020; D'Amico et al., 2020; Lucente & Guidi, 2023).

The stress response is further intensified by systemic inequities; chronic exposure to poverty and racism increases cortisol levels in mothers as well as young children, with measurable negative effects on cognitive development and executive functioning (Blair et al., 2011). These findings challenge older cognitive models that frame attention and self-regulation as purely top-down skills to be trained (Diamond & Ling, 2019). In contrast, Tang et al. (2022) propose that nature exposure, flow states, and effortless engagement support cognitive outcomes through autonomic pathways.

For decades, architects and designers have studied how built environments influence human well-being. Foundational theories such as Ulrich's (1983) stress reduction theory and Kaplan's attention restoration theory (Kaplan & Kaplan, 1989; Kaplan, 1995) propose that exposure to nature can reduce stress and restore depleted attention. Building on these ideas, Albright (2015) suggests physical spaces meet bodily and psychological needs, highlighting a dynamic relationship between architecture and neuroscience. Empirical studies across various settings support these theories, confirming effects on cognitive, emotional, social, and behavioral well-being (Gaekwad et al., 2022; Gifford, 2013; Moll et al., 2022). Consequently, biophilic design elements such as natural light, open spaces, neutral color palettes, indoor plants, natural materials, and access to outdoor environments are intentionally incorporated into hospitality, medical, and commercial spaces to improve health and well-being.

Despite such applications, biophilic design in schools remains underexplored, particularly through the lens of allostatic load, thereby highlighting a key area for future research (Albright, 2015; Browning & Determan, 2024; Gaekwad et al., 2022). These insights reveal that classroom environments, if visually overwhelming or misaligned with children's stress regulation needs, can contribute to allostatic overload, ultimately impairing attention, executive function, and learning, particularly

for children affected by systemic inequities.

To build on this, understanding how specific classroom sensory demands compete for children's limited cognitive resources requires examining how attention is allocated, a process researchers have explored through eye-tracking and behavioral observation both in laboratory and real-world settings (Mahone & Schneider, 2012; Posner & Rothbart, 2018; Caldani et al., 2020; Dixon & Salley, 2007; Henderson & Ferreira, 2004; Keller et al., 2020; Turoman et al., 2021). Turoman et al. (2021) found that attention is shaped by goals, sensory salience, meaning, and predictability, emphasizing the need for holistic models that consider multisensory and contextual factors. Given children's still-developing attentional systems, external influences are especially significant (Posner & Rothbart, 2018).

Researchers Godwin and Fisher (2011; Fisher et al., 2013, 2014; Godwin & Fisher, 2011; Godwin et al., 2018, 2021, 2022) have collaboratively investigated for a decade the impact of visual density on learning. To operationalize attentional allocation in classrooms, their studies have manipulated the density of visual environments and tracked resulting eye movements, on-task behavior, and content retention. Each of their studies has demonstrated improved attentional allocation, on-task behavior, and stronger content retention in settings that are less dense. In their latest work, Godwin et al. (2022) contrasted laboratory classrooms with authentic classrooms to study habituation to density over time. They found only partial habituation to classroom visuals in a lab setting and no habituation in real classrooms. Despite consistent off-task behavior, attentional allocation varied, and real classrooms grew more visually dense as weeks passed. This finding aligns with the larger, paradoxical question raised by Fisher et al. (2014): Why are our youngest learners, with the least developed attentional control, placed in learning environments rich with potential sources of distraction?

Encoding for Content Retention

The persistent impact of visual density on attention and behavior also impacts initial encoding conditions, which directly affect content retention, a key metric increasingly prioritized in education policy and assessment (Willingham, 2015, 2021). In efforts to evaluate school effectiveness, economists and education researchers often focus on measurable outcomes, such as test performance (Brennan, 2023). Although there are various metrics to evaluate schooling, effectiveness

Figure 3

Early Childhood Classroom Utilizing Biophilic and Montessori Design

Note. Photograph from Montessori Māja, used with permission

is commonly operationalized in terms of content retention, typically measured through standardized tests (Hanushek, 2005; William, 2010). In 2024, the National Center for Education Statistics reported a decline of 7 points in reading and 14 points in mathematics on assessments administered to 13-year-olds during the past decade (Irwin et al., 2024). As a result, significant national pressure remains on schools to boost test scores and demonstrate academic improvement.

Disparities in test scores are already evident at the point of school entry (Burchinal et al., 2020; Ghandour et al., 2024) and can have lasting effects on students' educational trajectories and accumulated opportunities (Dearing et al., 2024). As a result, content retention has become a central focus in efforts to improve educational outcomes. The learning sciences have established that encoding and retaining content are possible only when children are fully able to attend to and process information (Craik et al., 1996; Posner & Rothbart, 2007). Brown et al. (2014) define encoding as "the process of converting sensory perceptions into meaningful representations in the brain" (p. 72). However, when the sensory environment is flooded with nonessential stimuli, encoding is impaired (Craik et al., 1996). Maximalist classroom designs, which often create visually dense, sensory-overloading environments, hinder effective encoding (Dixon & Salley, 2007; Keller et al., 2020; Rodrigues & Pandeirada, 2018).

This underscores the critical need for classroom environments that not only reduce visual and sensory overload but also promote the encoding process by

centering children's attentional focus. Maria Montessori's purposefully constructed classroom environment—the prepared environment—exemplifies how intentional design can positively influence student outcomes. Montessori spaces are grounded in principles that prioritize concentration, support sustained engagement, and promote sensory clarity (Haines, 2017). Carefully prepared to reduce distraction, Montessori environments feature natural light, open space, neutral color palettes, natural materials, and minimal visual clutter. A growing body of research confirms that students in Montessori environments experience positive outcomes, including improved academic performance, emotional regulation, and focused attention (Denervaud et al., 2019; Randolph et al., 2023; Phillips-Silver & Daza, 2018). Additionally, biophilic elements commonly used in Montessori and similar pedagogies have been associated with lower stress levels and enhanced cognitive functioning (Browning & Determan, 2024; Cha, 2023; Dadvand et al., 2015; O'Connor & O'Connor, 2024; Vella-Brodrick & Gilowska, 2022; Yang et al., 2019).

Discussion

The impact of classroom environments on attention, regulation, and learning is well documented but often overlooked in conventional preservice teacher training (Almeda et al., 2014; Godwin et al., 2018; Godwin & Fisher, 2011; Milo-Shussman, 2017). Teacher preparation programs frequently neglect the sensory and environmental aspects of classroom design, leaving educators ill-equipped to optimize learning spaces (Lopez, 2020). Consequently, teachers often default to familiar or trend-driven designs lacking a foundation in research-based practices (Almeda et al., 2014; Lopez, 2020). Lopez emphasizes this issue, noting that "the majority of teachers relied on the current culture that promotes the same types of displays that have continued to pervade classrooms for generations" (p. 85). As a result, many classrooms become visually cluttered and overstimulating, which disrupts students' abilities to focus, impairs regulation, and decreases learning by hindering encoding and content retention.

Montessori's approach offers a compelling alternative by centering attention and regulation through intentional classroom design. Based on her scientific observations, Montessori (1946) emphasized the "awakening of mental concentration" as essential to learning, achievable through prepared environments and materials (p. 78).

She found that children's natural sense of order fosters responsibility and discipline when classrooms support independent engagement (Montessori, 1966, 1979). As the Montessori approach includes many layered aspects, such as specialized teacher training, a full complement of materials, uninterrupted work cycles, and other elements beyond the scope of this review, the research presented here supports this fundamental principle of physical classroom design. Importantly, this principle can be readily incorporated into more conventional classrooms through small-scale, practical adaptations (Debs et al., 2024), demonstrating that intentional environmental features can enhance attention, regulation, and learning outcomes even outside full-fledged Montessori settings.

Ultimately, classroom design is not simply aesthetic; the learning environment is a critical pedagogical tool that influences children's cognitive development. This approach moves beyond viewing attention and regulation as fixed traits or solely child-based challenges, instead framing these capacities as emergent through dynamic interaction with the learning environment. By grounding classroom environments in research and theory, educators and policymakers can transform everyday learning spaces into settings that foster attentional focus, regulation, and academic growth, making evidence-based improvements accessible even in traditional educational contexts.

Author Information

Laura K. Foster is a doctoral student at Johns Hopkins University. She can be reached at lfoste31@jh.edu.
<https://orcid.org/0009-0000-9427-0754>

References

Adams, J. N., Feldman, H. M., Huffman, L. C., & Loe, I. M. (2015). Sensory processing in preterm preschoolers and its association with executive function. *Early Human Development*, 91(3), 227–233. <https://doi.org/10.1016/j.earlhumdev.2015.01.013>

Agostini, E., & Francesconi, D. (2020). Introduction to the special issue "embodied cognition and education." *Phenomenology and the Cognitive Sciences*, 20(3). <https://doi.org/10.1007/s11097-020-09714-x>

Albright, T. (2015). Neuroscience for architecture. In S. Robinson & J. Pallasmaa (Eds.), *Mind in architecture: Neuroscience, embodiment, and the future of design* (pp. 197–217). The MIT Press. <https://doi.org/10.7551/mitpress/10318.001.0001>

Almeda, M. V., Scupelli, P., Baker, R. S., Weber, M., & Fisher, A. (2014). Clustering of design decisions in classroom visual displays. *Proceedings of the Fourth International Conference on Learning Analytics and Knowledge*. Association for Computing Machinery. <https://doi.org/10.1145/2567574.2567605>

Baird, A., Candy, B., Flouri, E., Tyler, N., & Hassiotis, A. (2023). The association between physical environment and externalising problems in typically developing and neurodiverse children and young people: A narrative review. *International Journal of Environmental Research and Public Health*, 20(3), 2549. <https://doi.org/10.3390/ijerph20032549>

Barrett, P., Zhang, Y., Moffat, J., & Kobbacy, K. (2013). A holistic, multi-level analysis identifying the impact of classroom design on pupils' learning. *Building and Environment*, 59, 678–689. <https://doi.org/10.1016/j.buildenv.2012.09.016>

Blair, C., & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. *Development and Psychopathology*, 20(3), 899–911. <https://doi.org/10.1017/s0954579408000436>

Blair, C., Granger, D. A., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., Kivlighan, K. T., & Fortunato, C. K. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. *Child Development*, 82(6), 1970–1984. <https://doi.org/10.1111/j.1467-8624.2011.01643.x>

Blair, C., & Ursache, A. (2011). A bidirectional model of executive functions and self-regulation. In K. D. Vohs & R. F. Baumeister (Eds.), *Handbook of self-regulation: Research, theory, and applications* (2nd ed., pp. 300–320). The Guilford Press.

Boyer, E. L. (1990). *Scholarship reconsidered: Priorities of the professoriate*. [Special Report]. Jossey-Bass.

Brennan, R. L. (Ed.) (2006). *Educational measurement*. Rowman & Littlefield.

Bronfenbrenner, U. (1994). Ecological models of human development. *International encyclopedia of education*, 3(2), 37–43. <https://www.ncj.nl/wp-content/uploads/media-import/docs/6a45c1a4-82ad-4f69-957e-1c76966678e2.pdf>

Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. *Psychological Review*, 101(4), 568–586. <https://doi.org/10.1037/0033-295x.101.4.568>

Brooks, D. C. (2010). Space matters: The impact of formal learning environments on student learning. *British Journal of Educational Technology*, 42(5), 719–726. <https://doi.org/10.1111/j.1467-8535.2010.01098.x>

Brown, P. C., Roediger III, H. L., & McDaniel, M. A. (2014). *Make it stick: The science of successful learning*. Belknap Press.

Browning, W., & Determan, J. (2024). Outcomes of biophilic design for schools. *Architecture*, 4(3), 479–492. <https://doi.org/10.3390/architecture4030026>

Burchinal, M., Foster, T. J., Bezdek, K. G., Bratsch-Hines, M., Blair, C., & Vernon-Feagans, L. (2020). School-entry skills predicting school-age academic and social-emotional trajectories. *Early Childhood Research Quarterly*, 51, 67–80. <https://doi.org/10.1016/j.ecresq.2019.08.004>

Caldani, S., Isel, F., Septier, M., Acquaviva, E., Delorme, R., & Bucci, M. P. (2020). Impairment in attention focus during the Posner cognitive task in children with ADHD: An eye tracker study. *Frontiers in Pediatrics*, 8. <https://doi.org/10.3389/fped.2020.00484>

Centers for Disease Control and Prevention. (2023, March 8). *Anxiety and depression in children: Get the facts*. CDC. https://www.cdc.gov/children-mental-health/about/about-anxiety-and-depression-in-children.html#cdc_disease_basics_res-resources

Cha, K. (2023). The moderating role of cortisol and negative emotionality in the effects of classroom size and window view on young children's executive functions. *Behavioral Sciences*, 14(1), 18. <https://doi.org/10.3390/bs14010018>

Cheryan, S., Ziegler, S. A., Plaut, V. C., & Meltzoff, A. N. (2014). Designing classrooms to maximize student achievement. *Policy Insights from the Behavioral and Brain Sciences*, 1(1), 4–12. <https://doi.org/10.1177/2372732214548677>

Christensen, J. S., Wild, H., Kenzie, E. S., Wakeland, W., Budding, D., & Lillas, C. (2020). Diverse autonomic nervous system stress response patterns in childhood sensory modulation. *Frontiers in Integrative Neuroscience*, 14. <https://doi.org/10.3389/fnint.2020.00006>

Conkbayir, M. (2021). *Early childhood and neuroscience: Theory, research and implications for practice*. Bloomsbury Academic.

Cossentino, J., & Brown, K. (2017). *What's going on in this (developmental) classroom: DERS working paper #1*. National Center for Montessori in the Public Sector. <https://static1.squarespace.com>.

<https://com/static/S7aa72bf59cc6881bc28d9e2/t/66a3bf11c6d70168aac29dfa/1722007314665/DERS+Working+Paper+%231.pdf>

Costa, A. R. (2024). Homing into school to create the ideal classroom: Young people want to combine the best of home and school learning environments. *CoDesign*, 21(1), 74–94. <https://doi.org/10.1080/15710882.2024.2363925>

Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. *Journal of Experimental Psychology: General*, 125(2), 159–180. <https://doi.org/10.1037/0096-3445.125.2.159>

Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. *Journal of Verbal Learning and Verbal Behavior*, 11, 671–684. [https://doi.org/10.1016/S0022-5371\(72\)80001-X](https://doi.org/10.1016/S0022-5371(72)80001-X)

Curby, T. W., Berke, E. B., Blake, J. J., DeMarie, D., DuPaul, G. J., Flores, R. L., Hess, R. S., Howard, K. A., Lepore, J. C., & Subotnik, R. F. (2018). Kindergarten teacher perceptions of kindergarten readiness: The importance of social-emotional skills. *Perspectives on Early Childhood Psychology and Education*, 2(2), 115–137. <https://hdl.handle.net/2144/37852>

D'Amico, D., Amestoy, M. E., & Fiocco, A. J. (2020). The association between allostatic load and cognitive function: A systematic and meta-analytic review. *Psychoneuroendocrinology*, 121, Article 104849. <https://doi.org/10.1016/j.psyneuen.2020.104849>

Dadvand, P., Nieuwenhuijsen, M. J., Esnaola, M., Forns, J., Basagana, X., Alvarez-Pedrerol, M., Rivas, I., López-Vicente, M., De Castro Pascual, M., Su, J., Jerrett, M., Querol, X., & Sunyer, J. (2015). Green spaces and cognitive development in primary schoolchildren. *Proceedings of the National Academy of Sciences*, 112(26), 7937–7942. <https://doi.org/10.1073/pnas.1503402112>

Damasio, A., & Damasio, H. (2006). Minding the body. *Daedalus*, 135(3), 15–22. JSTOR. <https://www.amacad.org/publication/daedalus/minding-body>

Danielson, M. L., Claussen, A. H., Bitsko, R. H., Katz, S. M., Newsome, K., Blumberg, S. J., Kogan, M. D., & Ghandour, R. (2024). ADHD prevalence among U.S. children and adolescents in 2022: Diagnosis, severity, co-occurring disorders, and treatment. *Journal of Clinical Child and Adolescent Psychology*, 53(3), 1–18. <https://doi.org/10.1080/15374416.2024.2335625>

Debs, M., Murray, A., & Kuh, L. (2024). *Montessori adaptations: Case studies of application and access*. American Education Research Association. <https://doi.org/10.3102/2104881>

de Leeuw, E., Borgers, N., & Smits, A. (2004). Pretesting questionnaires for children and adolescents. In S. Presser, J. M. Rothgeb, M. P. Couper, J. T. Lessler, E. Martin, J. Martin, & E. Singer (Eds.), *Methods for testing and evaluating survey questionnaires* (pp. 409–429). John Wiley & Sons. <https://doi.org/10.1002/0471654728.ch20>

Dearing, E., Bustamante, A. S., Zachrisson, H. D., & Vandell, D. L. (2024). Accumulation of opportunities predicts the educational attainment and adulthood earnings of children born into low-versus higher-income households. *Educational Researcher*, 53(9), 496–507. <https://doi.org/10.3102/0013189x241283456>

Degol, J. L., & Bachman, H. J. (2023). Early self-control and sustained attention problems: Associations with youth achievement, motivation, and engagement. *Cognitive Development*, 65, Article 101290. <https://doi.org/10.1016/j.cogdev.2022.101290>

Denervaud, S., Knebel, J. F., Hagmann, P., & Gentaz, E. (2019). Beyond executive functions, creativity skills benefit academic outcomes: Insights from Montessori education. *PLOS ONE*, 14(11), Article e0225319. <https://doi.org/10.1371/journal.pone.0225319>

Diamond, A. (2013). Executive functions. *Annual Review of Psychology*, 64(1), 135–168. <https://doi.org/10.1146/annurev-psych-113011-143750>

Diamond, A., & Ling, D. S. (2019). Review of the evidence on, and fundamental questions about, efforts to improve executive functions, including working memory. In J. M. Novick, M. F. Bunting, M. R. Dougherty, & R. W. Engle (Eds.), *Cognitive and working memory training: Perspectives from psychology, neuroscience, and human development* (pp. 143–431). Oxford University Press. <https://doi.org/10.1093/oso/9780199974467.003.0008>

Dixon Jr., W. E., & Salley, B. J. (2007). “Shhh! We’re tryin’ to concentrate”: Attention and environmental distractors in novel word learning. *The Journal of Genetic Psychology*, 167(4), 393–414. <https://doi.org/10.3200/gntp.167.4.393-414>

Doebel, S. (2020). Rethinking executive function and its development. *Perspectives on Psychological Science*, 15(4), 942–956. <https://doi.org/10.1177/1745691620904771>

Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. *Science*, 196(4286), 129–136. <https://doi.org/10.1126/science.847460>

Eristi, B. & Avci, F. (2021). Preschool education teachers' evaluations about the problems experienced in the education process and their sources. *Psycho-Educational Research Reviews*. 10(3), 1–22. https://doi.org/10.52963/PERR_Biruni_V10.N3.01

Fay-Stammbach, T., Hawes, D. J., & Meredith, P. (2014). Parenting influences on executive function in early childhood: A review. *Child Development Perspectives*, 8(4), 258–264. <https://doi.org/10.1111/cdep.12095>

Fisher, A. V., Godwin, K. E., & Seltman, H. (2014). Visual environment, attention allocation, and learning in young children: When too much of a good thing may be bad. *Psychological Science*, 25(7), 1362–1370. <https://journals.sagepub.com/doi/abs/10.1177/0956797614533801>

Fisher, A., & Kloos, H. (2016). Development of selective sustained attention: The role of executive functions. In J. A. Griffin, P. McCardle, & L. S. Freund (Eds.), *Executive function in preschool-age children: Integrating measurement, neurodevelopment, and translational research* (pp. 215–237). American Psychological Association. <https://doi.org/10.1037/14797-010>

Fisher, A., Thiessen, E., Godwin, K., Kloos, H., & Dickerson, J. (2013). Assessing selective sustained attention in 3- to 5-year-old children: Evidence from a new paradigm. *Journal of Experimental Child Psychology*, 114(2), 275–294. <https://doi.org/10.1016/j.jecp.2012.07.006>

Foglia, L., & Wilson, R. A. (2013). Embodied cognition. *Wiley Interdisciplinary Reviews: Cognitive Science*, 4(3), 319–325. <https://doi.org/10.1002/wcs.1226>

Fugate, J. M. B., Macrine, S. L., & Cipriano, C. (2018). The role of embodied cognition for transforming learning. *International Journal of School & Educational Psychology*, 7(4), 274–288. <https://doi.org/10.1080/21683603.2018.1443856>

Fugate, J. M. B., & Wilson-Mendenhall, C. D. (2022). Embodied emotion, emotional granularity, and mindfulness: Improved learning in the classroom. In S. L. Macrine & J. M. B. Fugate (Eds.), *Movement Matters* (pp. 291–306). The MIT Press. <https://doi.org/10.7551/mitpress/13593.003.0027>

Gaekwad, J. S., Sal Moslehian, A., Roös, P. B., & Walker, A. (2022). A meta-analysis of emotional evidence for the biophilia hypothesis and implications for biophilic design. *Frontiers in Psychology*, 13. <https://doi.org/10.3389/fpsyg.2022.750245>

Gallagher, S. (2023). *Embodied and enactive approaches to cognition*. Cambridge University Press.

Ghandour, R. M., Hirai, A. H., Moore, K. A., Paschall, K., LaForet, D. R., Reddington, E., & Kogan, M. D. (2024). School readiness among United States children: Results from the 2022 National Survey of Children's Health. *Academic Pediatrics*, 24(7), 1049–1061. <https://doi.org/10.1016/j.acap.2024.02.013>

Gifford, R. (2013). Environmental psychology matters. *Annual Review of Psychology*, 65(1), 541–579. <https://doi.org/10.1146/annurev-psych-010213-115048>

Godwin, K. E., Erickson, L. C., & Newman, R. S. (2018). Insights from crossing research silos on visual and auditory attention. *Current Directions in Psychological Science*, 28(1), 47–52. <https://doi.org/10.1177/0963721418807725>

Godwin, K., & Fisher, A. (2011). Allocation of attention in classroom environments: Consequences for learning. *Proceedings of the Annual Meeting of the Cognitive Science Society*, 33. <https://escholarship.org/uc/item/15c4w7zg>

Godwin, K. E., Leroux, A. J., Scupelli, P., & Fisher, A. V. (2022). Classroom design and children's attention allocation: Beyond the laboratory and into the classroom. *Mind, Brain, and Education*, 16(3), 239–251. <https://doi.org/10.1111/mbe.12319>

Godwin, K. E., Seltman, H., Almeda, M., Davis Skerbetz, M., Kai, S., Baker, R. S., & Fisher, A. V. (2021). The elusive relationship between time on-task and learning: Not simply an issue of measurement. *Educational Psychology*, 41(4), 502–519. <https://doi.org/10.1080/01443410.2021.1894324>

Guo, D., McTigue, E. M., Matthews, S. D., & Zimmer, W. (2020). The impact of visual displays on learning across the disciplines: A systematic review. *Educational Psychology Review*, 32(3), 627–656. <https://doi.org/10.1007/s10648-020-09523-3>

Haines, A. (2017). Strategies to support concentration. *NAMTA Journal*, 42(2), 45–60. <https://eric.ed.gov/?id=EJ1144489>

Hanley, M., Khairat, M., Taylor, K., Wilson, R., Cole-Fletcher, R., & Riby, D. (2017). Classroom displays—Attraction or distraction? Evidence of impact on attention and learning from children with and without autism. *Developmental Psychology*, 53(7), 1265–1275. <https://doi.org/10.1037/dev0000271>

Hanushek, E. A. (2005). Our school performance matters. *Journal of Education*, 185(3), 1–6. <https://doi.org/10.1177/002205740518500303>

Henderson, J. M., & Ferreira, F. (2004). *The interface of language, vision, and action: Eye movements and the visual world*. Psychology Press.

Immordino-Yang, M. H. (2015). *Emotions, learning, and the brain: Exploring the educational implications of affective neuroscience*. W.W. Norton & Company.

Immordino-Yang, M. H., & Gotlib, R. (2017). Embodied brains, social minds, cultural meaning: Integrating neuroscientific and educational research on social-affective development. *American Educational Research Journal*, 54(1), 344S–367S. [Supplement]. <https://doi.org/10.3102/0002831216669780>

Irwin, V., Wang, K., Jung, J., Kessler, E., Tezil, T., Alhassani, S., Filbey, A., Dilig, R., & Bullock Mann, F. (2024). *Report on the condition of education 2024 (NCES 2024-144)*. U.S. Department of Education, National Center for Education Statistics. <https://nces.ed.gov/pubs2024/2024144.pdf>

Jeannin, L., & Barthelemy, S. (2020). Learning spaces and well-being: What is happening in France. *Journal of Learning Spaces*, 9(1). <https://files.eric.ed.gov/fulltext/EJ1253901.pdf>

Kaplan, R., & Kaplan, S. (1989). *The Experience of nature: A psychological perspective*. Cambridge University Press.

Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. *Journal of Environmental Psychology*, 15(3), 169–182. [https://doi.org/10.1016/0272-4944\(95\)90001-2](https://doi.org/10.1016/0272-4944(95)90001-2)

Keller, A. S., Davidesco, I., & Tanner, K. D. (2020). Attention matters: How orchestrating attention may relate to classroom learning. *CBE—Life Sciences Education*, 19(3). [Special issue]. <https://doi.org/10.1187/cbe.20-05-0106>

Kilbourne, J. R., Scott-Webber, L., & Kapitula, L. R. (2017). An activity-permissible classroom: Impacts of an evidence-based design solution on student engagement and movement in an elementary school classroom. *Children, Youth and Environments*, 27(1), 112–134. <https://doi.org/10.7721/chlyoutenvi.27.1.0112>

Kosmas, P., Ioannou, A., & Zaphiris, P. (2018). Implementing embodied learning in the classroom: Effects on children's memory and language skills. *Educational Media International*, 56(1), 59–74. <https://doi.org/10.1080/09523987.2018.1547948>

Lillard, A. S. (2021). Montessori as an alternative early childhood education. *Early Child Development and Care*, 191(7-8), 1196–1206. <https://doi.org/10.1080/03004430.2020.1832998>

Lillard, A. S. (2023). Why the time is ripe for an education revolution. *Frontiers in Developmental Psychology*, 1, Article 1177576. <https://doi.org/10.3389/fdpsy.2023.1177576>

Llorens-Gámez, M., Higuera-Trujillo, J. L., Omarrementeria, C. S., & Llinares, C. (2021). The impact of the design of learning spaces on attention and memory from a neuroarchitectural approach: A systematic review. *Frontiers of Architectural Research*, 11(3), 542–560. <https://doi.org/10.1016/j foar.2021.12.002>

Lopez, R. T. (2020). *Creating meaningful classroom environments: How do teachers' pedagogical beliefs affect the implementation of their visual displays in elementary classrooms?* [Dissertation]. <https://www.proquest.com/openview/e48a42f609394af5a8d232c99005321/f/1?pq-origsite=gscholar&cbl=18750&diss=y>

Lozada, M., & Carro, N. (2016). Embodied action improves cognition in children: Evidence from a study based on Piagetian conservation tasks. *Frontiers in Psychology*, 7(393). <https://doi.org/10.3389/fpsyg.2016.00393>

Lucente, M., & Guidi, J. (2023). Allostatic load in children and adolescents: A systematic review. *Psychotherapy and Psychosomatics*, 92(5), 295–303. <https://doi.org/10.1159/000533424>

Macedonia, M. (2019). Embodied learning: Why at school the mind needs the body. *Frontiers in Psychology*, 10. <https://doi.org/10.3389/fpsyg.2019.02098>

Mahone, E. M., & Schneider, H. E. (2012). Assessment of attention in preschoolers. *Neuropsychology Review*, 22, 361–383. <https://doi.org/10.1007/s11065-012-9217-y>

Mallory, C., & Keehn, B. (2021). Implications of sensory processing and attentional differences associated with autism in academic settings: An integrative review. *Frontiers in Psychiatry*, 12. <https://doi.org/10.3389/fpsy.2021.695825>

Martin, R., & Wilkins, J. (2021). Creating visually appropriate classroom environments for students with autism spectrum disorder. *Intervention in School and Clinic*, 57(3), 176–181. <https://doi.org/10.1177/10534512211014882>

Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), *The Cambridge*

handbook of multimedia learning (pp. 31–48). Cambridge University Press. <https://doi.org/10.1017/CBO9780511816819.004>

McDermott, K. B., & Roediger, H. L. (2018). *Memory (encoding, storage, retrieval)*. In R. Biswas-Diener & E. Diener (Eds.), Noba textbook series: Psychology. DEF Publishers. <https://peachf.org/images/Science/MemEncodingStorageRetrievalMcDermott.pdf>

Milo-Shussman, Y. (2017). “A little bit of this and not too much of that...”: Is there a recipe for class display load level in elementary schools? *Journal of Learning Spaces*, 6(2), 22–27. <https://eric.ed.gov/?id=EJ1152575>

Moll, A., Collado, S., Staats, H., & Corraliza, J. A. (2022). Restorative effects of exposure to nature on children and adolescents: A systematic review. *Journal of Environmental Psychology*, 84, Article 101884. <https://doi.org/10.1016/j.jenvp.2022.101884>

Montessori, M. (1912). *The Montessori Method*. Heinemann.

Montessori, M. (1946). *Education for a new world*. Kalakshetra Publications.

Montessori, M. (1966). *Maria Montessori speaks to parents*. Schocken Books.

Montessori, M. (1979). *The child in the family*. Ballantine Books.

Navarro, J. L., & Tudge, J. R. H. (2023). Technologizing Bronfenbrenner: Neo-ecological theory. *Current Psychology*, 42, 19338–19354. <https://doi.org/10.1007/s12144-022-02738-3>

Neuenschwander, R., Roebers, C. M., & Blair, C. (2014). Being optimally aroused matters: Effects of a weak stress manipulation on children’s executive functions are moderated by temperament and age. *Journal of Educational and Developmental Psychology*, 4(1). <https://doi.org/10.5539/jedp.v4n1p194>

Nusbaum, E. A., & Lester, J. N. (2021). Bodymind legibility and possibilities for qualitative research. In J. N. Lester & E. A. Nusbaum (Eds.), *Centering diverse bodyminds in critical qualitative inquiry* (pp. 10–21). Routledge. <https://doi.org/10.4324/9781003033264-2>

O’Connor, J. W., & O’Connor, C. B. (2024). *Elevating learning environments through biophilic and student-centered designs: A case study of Bethel-Hanberry Elementary School*. [Preprint]. https://cgdarch.com/wp-content/uploads/2024/04/BHE-Assessment_3.14.pdf

Pert, C. B. (1997). *Molecules of emotion*. Scribner.

Phillips-Silver, J., & Daza, M. T. (2018). Cognitive control at age 3: Evaluating executive functions in an equitable Montessori preschool. *Frontiers in Education*, 3, Article 335663. <https://doi.org/10.3389/feduc.2018.00106>

Posner, M. I., & Rothbart, M. K. (2007). *Educating the human brain*. American Psychological Association. <https://doi.org/10.1037/11519-000>

Posner, M. I., & Rothbart, M. K. (2018). Temperament and brain networks of attention. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 373(1744), Article 20170254. <https://doi.org/10.1098/rstb.2017.0254>

Price, M. (2014). The bodymind problem and the possibilities of pain. *Hypatia*, 30(1), 268–284. <https://doi.org/10.1111/hypa.12127>

Randolph, J., Bryson, A., Menon, L., Henderson, D. K., Manuel, A. K., Michaels, S., Leigh, D., McPherson, W., O’Grady, R., & Lillard, A. S. (2023). Montessori education’s impact on academic and nonacademic outcomes: A systematic review. *Campbell Systematic Reviews*, 19(3), Article e1330. <https://doi.org/10.1002/cl2.1330>

Rimm-Kaufman, S. E., Pianta, R. C., & Cox, M. J. (2000). Teachers’ judgments of problems in the transition to kindergarten. *Early Childhood Research Quarterly*, 15(2), 147–166. [https://doi.org/10.1016/s0885-2006\(00\)00049-1](https://doi.org/10.1016/s0885-2006(00)00049-1)

Rodrigues, P. F. S., & Pandeirada, J. N. S. (2018). When visual stimulation of the surrounding environment affects children’s cognitive performance. *Journal of Experimental Child Psychology*, 176, 140–149. <https://doi.org/10.1016/j.jecp.2018.07.014>

Rothschild, B. (2000). *The body remembers: The psychophysiology of trauma and trauma treatment*. W. W. Norton & Company.

Sawyer, R. K. (Ed.) (2014). *The Cambridge handbook of the learning sciences*. Cambridge University Press.

Schenck, K. E., Walkington, C., and Nathan, M. J. (2022). Groups that move together, prove together: Collaborative gestures and gesture attitudes among teachers performing embodied geometry. In S. L. Macrine, & J. M. B. Fugate (Eds.), *Movement matters: how embodied cognition informs teaching and learning*. The MIT Press.

Schunk, D., Berger, E. M., Hermes, H., Winkel, K., & Fehr, E. (2022). Teaching self-regulation. *Nature Human Behaviour*, 6, 1680–1690. <https://doi.org/10.1038/s41562-022-01449-w>

Shapiro, L., & Stoltz, S. A. (2018). Embodied cognition and its significance for education. *Theory and*

Research in Education, 17(1), 19–39. <https://doi.org/10.1177/1477878518822149>

Shepard, L. A. (1997). Children not ready to learn? The invalidity of school readiness testing. *Psychology in the Schools*, 34(2), 85–97. [https://doi.org/10.1002/\(sici\)1520-6807\(199704\)34:2%3C85::aid-pits2%3E3.0.co;2-r](https://doi.org/10.1002/(sici)1520-6807(199704)34:2%3C85::aid-pits2%3E3.0.co;2-r)

Sleeman, H. R., & Brown, T. (2021). An exploratory study of the relationship between typically-developing school-age children's sensory processing and their activity participation. *British Journal of Occupational Therapy*, 85(4), 251–261. <https://doi.org/10.1177/03080226211020651>

Students Speak. (n.d.). *Students speak about learning environment*. A collaboration of the Trauma and Learning Policy Initiative, Harvard Law School, and Massachusetts Advocates for Children. Retrieved November 8, 2025, from <https://students-speak.org/priorities/environment/#classroom>

Tang, Y. Y., Tang, R., Posner, M. I., & Gross, J. J. (2022). Effortless training of attention and self-control: Mechanisms and applications. *Trends in Cognitive Sciences*, 26(7), 567–577. <https://doi.org/10.1016/j.tics.2022.04.006>

Tebano Ahlquist, E.-M. (2023). Learning in the Montessori school environment. In A. K. Murray, E.-M. Tebano Ahlquist, M. K. McKenna, & M. Debs (Eds.), *The Bloomsbury Handbook of Montessori Education* (pp. 117–128). Bloomsbury Academic. <https://doi.org/10.5040/9781350275638.ch-12>

Turoman, N., Tivadar, R. I., Retsa, C., Maillard, A. M., Scerif, G., & Matusz, P. J. (2021). The development of attentional control mechanisms in multisensory environments. *Developmental Cognitive Neuroscience*, 48, Article 100930. <https://doi.org/10.1016/j.dcn.2021.100930>

Ulrich, R. S. (1983). Aesthetic and affective response to natural environment. In I. Altman, & J. F. Wohlwill (Eds.), *Behavior and the Natural Environment*. Human Behavior and Environment (Vol. 6, pp. 85–125). Springer. https://doi.org/10.1007/978-1-4613-3539-9_4

Vella-Brodrick, D. A., & Gilowska, K. (2022). Effects of nature (greenspace) on cognitive functioning in school children and adolescents: A systematic review. *Educational Psychology Review*, 34(3), 1217–1254. <https://doi.org/10.1007/s10648-022-09658-5>

Walker, N. (2021). *Neuroqueer heresies: Notes on the neurodiversity paradigm, autistic empowerment, and postnormal possibilities*. Autonomous Press.

William, D. (2010). Standardized testing and school accountability. *Educational Psychologist*, 45(2), 107–122. <https://doi.org/10.1080/00461521003703060>

Willingham, D. T. (2015). Do students remember what they learn in school? Ask the cognitive scientist. *American Educator*, 39(3), 33–38. <https://eric.ed.gov/?id=EJ1076383>

Willingham, D. T. (2021). *Why don't students like school? A cognitive scientist answers questions about how the mind works and what it means for the classroom*. Jossey-Bass.

Yang, B. Y., Zeng, X. W., Markevych, I., Bloom, M. S., Heinrich, J., Knibbs, L. D., Dharmage, S. C., Lin, S., Jalava, P., Guo, Y., Jalaludin, B., Morawska, L., Zhou, Y., Hu, L.W., Yu, H. Y., Yu, Y., & Dong, G. H. (2019). Association between greenness surrounding schools and kindergartens and attention-deficit/hyperactivity disorder in children in China. *JAMA Network Open*, 2(12), Article e1917862. <https://doi.org/10.1001/jamanetworkopen.2019.17862>

Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. *Journal of Comparative Neurology and Psychology*, 18(5), 459–482. <https://doi.org/10.1002/cne.920180503>

Zazzi, H., & Faragher, R. (2018). 'Visual clutter' in the classroom: Voices of students with autism spectrum disorder. *International Journal of Developmental Disabilities*, 64(3), 212–224. <https://doi.org/10.1080/20473869.2018.1468619>