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NESTED AND ISLAND MODELS FOR DETERMINING THE 
SPECIES-AREA RELATIONSHIP OF SOUTHERN 

APPALACHIAN AMPHIBIANS

INTRODUCTION
Amphibians (Class Lissamphibia) are widespread in 

the temperate and tropical regions of the world, compris-
ing more than 7,000 extant species in three taxonom-
ic orders: Gymnophiona (caecilians), Anura (frogs and 
toads), and Urodela (salamanders and newts) (Vitt and 
Caldwell 2009). They are found in terrestrial and aquatic 
environs on every continent except Antarctica (Pough et 
al. 2004). Ecologically, they are all carnivorous as adults 
and can make up most of the vertebrate biomass in some 
ecosystems (Gibbons et al. 2006). Most undergo a gilled 
larval stage and exhibit a diphasic life history, metamor-
phosing into air-breathing, terrestrial (or semi-terrestri-
al) adults (Pough et al. 2004).

The southern Appalachian ecoregion is made up of the 
Appalachian Plateau, Ridge and Valley, and Blue Ridge 
physiographic provinces and represents the global bio-
diversity hotspot for salamander genera (Stein et al. 
2000). More than 20 species of anurans and 75 species 
of salamanders are known from the region (Duellman 
and Sweet 1999), with new species being described 
regularly due to the illumination of cryptic diversity by 
modern molecular methods (e.g. Highton 2004, Felix et 
al. 2019). A single salamander family (Plethodontidae) 
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encompasses most of the region’s amphibian diversity 
(Kiester 1971). Most of its members likely originated as a 
result of fragmenting habitat associated with global cool-
ing and drying phases beginning in the Pliocene Epoch, 5 
million years before present (Highton 1995). At least two 
extant genera and one subfamily of plethodontids were 
present within the study area at that time (Boardman 
and Schubert 2011).

Regional diversity among southern Appalachian am-
phibians is correlated along elevational gradients and 
based upon available moisture (Kiester 1971).  Many 
species are sympatric across their overall distribution, 
but often mutually exclusive at specific sites (Ford et al. 
2002). High rates of endemism among amphibians are 
found in the southern Appalachians and the taxonomic 
diversity is unlike that found in lowland areas to the east 
and west (Duellman and Sweet 1999)

Amphibian populations have experienced global de-
clines as a result of habitat loss, invasive species intro-
ductions, pollution, and disease (Green et al. 2020), all of 
which are exacerbated by large-scale patterns of climate 
change (Rollins-Smith 2020). Though the decline has 
been reported since the late 20th century, its exact caus-
es are still poorly understood (Green et al. 2020). The 
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limited dispersal ability paired with relative high diversi-
ty of amphibians in the southern Appalachian ecoregion 
make them especially important sentinels for regional 
and global conservation concerns and prospective miti-
gation efforts (Zhu et al. 2022).  

Despite the ecological importance and biodiversity of 
the group and the rich history of naturalists’ investiga-
tions in the region, no quantitative effort has been made 
to establish a baseline species-area relationship (SAR) 
of southern Appalachian amphibians until the current 
study. A cursory examination of total herpetofaunal spe-
cies richness in eastern Tennessee suggested that Appa-
lachian amphibians fit a predictable species-area curve 
remarkably well (adjusted R2 = 0.98, Jessee et al. 2022). 
Here, we expand the amphibian SAR nested model to the 
broader geographic scope of the southern Appalachians 
and compare that to another SAR model using data sets 
sampled from individual sites within the study area (is-
land model). The creation and comparison of these mod-
els is an early effort to establish a realistic SAR for use 
in ecological, conservation, and land management appli-
cations.

MATERIALS AND METHODS
We define the southern Appalachian ecoregion here as 

the entire state of West Virginia, western Virginia east 
to the Blue Ridge physiographic boundary illustrated in 
Mitchell and Reay (1999), eastern Tennessee as defined 
in Jessee et al. (2022), western North Carolina high and 
low mountains illustrated in the Amphibians of North 
Carolina (Petranka et al. 2024), and the Blue Ridge, 
Ridge and Valley, and Appalachian Plateau of Georgia as 
illustrated in Jensen et al. 2008 (Figure 1). Portions of 
eastern Kentucky, northern Alabama, and northeastern 
South Carolina should be included in this analysis, but 
were omitted due to a lack of readily accessible species 
occurrence data for these regions. 

Preliminary results from our earlier work (Jessee et al. 
2022) suggested a strong correlation between amphibi-
an species richness and land area in eastern Tennessee. 
Here, we increased the scope and reworked the model 
(nested model, Appendix 1), then compared that with a 
separate model based upon compiled species occurrence 
data from published (or otherwise vetted) sources within 
the study area (island model, Appendix 2). The nested 
model represents a single instantiation of a nearly in-
finite number of possible nests, but was chosen due to its 
centralized location within the study area and the quality 
of its included data sources.

Land area was calculated using county or state land 
areas (eastern Tennessee and West Virginia) and by dig-
itizing polygons in Google Earth Pro for western Virgin-
ia, western North Carolina, and northern Georgia. Our 
nested model is the result of a sample of seven increas-
ingly larger land areas ranging from a single 0.0018 
km2 wetland pond to the entirety of southern Appala-
chia at 178,757 km2 as defined in this study (Figure 1). 
The smallest site is a wetland pond at Steele Creek Park 
in Bristol, Tennessee, USA (Area 1) followed by all of 
Steele Creek Park (Area 2). Encompassing Areas 1 and 
2 is Sullivan County, Tennessee (Area 3). Area 4 is the 
five-county area of northeastern Tennessee followed by 
eastern Tennessee (Area 5), both defined in Jessee et al. 
(2022). Area 6 adds western North Carolina high and low 
mountains (Petranka et al. 2024) and the Blue Ridge, 
Ridge and Valley, and Appalachian Plateau of western 
Virginia (Mitchell and Reay 1999). Area 7 adds West Vir-
ginia (West Virginia Division of Natural Resources 2023) 

and the Blue Ridge, Ridge and Valley, and Appalachian 
Plateau of Georgia (Jensen et al. 2008) (Figure 1). Our 
island model includes published amphibian species oc-
currence data from 26 (mostly public land) sites within 
the study area that include data collection from exhaus-
tive sampling efforts and/or spanning multiple collecting 
events over the course of years or decades (Appendix 2). 

For both the nested and island SAR models, we created 
species richness samples by class, order, and increas-
ing geographical area (see Appendices). Species rich-
ness (independent variable) and geographical area (de-
pendent variable) samples were logarithmically (log10) 
transformed, and a regression analysis was performed to 
determine the statistical relationship between the vari-
ables. Regression modeling provided theoretical slope 
(z) and intercept (C) values for the formula S = CAz, or 
in log-log form as log(S) = log(C) + zlog(A) (Arrhenius 
1921). Using the same regression model, z and C values 
were fitted for the island data to compare with the nested 
model. We then compared the predictive model outputs. 

RESULTS
The following z and C constants were fitted from the 

nested data: frogs z = 0.0598, C = 9.34; salamanders z 
= 0.1734, C = 8.36; amphibians z = 0.1222, C = 18.87. 

Figure 1. Areas used in the models: (a) Area 7, the southern 
Appalachian ecoregion as utilized herein and the geographic 

envelope of all island sites; (b) Area 6; (c) Areas 1 (black dot 
inside red star), 2 (red star), 3 (Sullivan County, darkest gray), 

4 (five-counties in northeastern Tennessee), and 5 (all of eastern 
Tennessee). Descriptions of each nested area are found in the 

text. Dotted lines represent divisions of physiographic boundar-
ies. Note: Appalachian portions of Kentucky, South Carolina, and 
Alabama were not included due to lack of adequate amphibian 

occurrence data.
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For each group, the linear regressions reflect a significant 
positive correlation between geographical area and spe-
cies richness in frogs (R2 = 0.9279, p = 5.0 x 10-4), sala-
manders (R2 = 0.9924, p = 1.73 x 10-6), and amphibians 
(R2 = 0.9667, p = 6.94 x 10-5). 

For the island model: frogs z = 0.134, C = 4.28; sala-
manders z = 0.104, C = 8.95; amphibians z = 0.108, C 
= 13.92. For each group, the linear regressions reflect a 
predictably lower (but still positive) correlation between 
land area and species richness: frogs (R2 = 0.658, p = 
4.96 x 10-7), salamanders (R2 = 0.564, p = 9.818 x 10-6), 
and amphibians (R2 = 0.757, p = 7.699 x 10-9).

DISCUSSION
While the nested model over-predicts reported am-

phibian species richness when compared with the island 
model, we suspect that this is at least partially an arti-
fact of underreported diversity at sample sites and that 
increased sampling of all sites within the study area will 
approach the nested predicted value. The lines from both 
the nested model and island model follow similar trajec-
tories (Figure 2), which suggests that these species-ar-
ea curves are reflective of a natural phenomenon. The 
island model slope for frogs is greater than the nested 
(by 0.073) and smaller for salamanders (-0.069) (Figure 
2.b and 2.c), but this could be due to the type of area 
used for the smallest nested site (a single wetland pond 
with high anuran but low salamander richness). It is also 
possible the nested model approaches an environmental 
carrying capacity of probable diversity. 

The nested model is probably strongest at small (<1 
km2) and large (>1,000 km2) scales but less so with in-
termediate land areas based on current data. Smaller 
units of well-sampled areas (such as parklands) offer 
the best adherence to the models and likely reflect fuller 
data sets and thus, more accurate species counts. Larger 
land areas, likewise, encompass multiple data sets from 
diverse habitats within the overall geographic envelope 
that, when taken together, approach the predicted nest-
ed species count for the area. Greater sampling at all 
scales will refine both models. The island model is proba-
bly best at small to medium scales (< 2200 km2) as that 
is where all of its data originate. 

The island model predictably underreported diversity 
based upon land area, as “areas are measured accurate-
ly, while species are often grossly underdocumented” 
(Gould 1979). This model is probably an effective cursory 
approach to identifying readily reportable observational 
data. Whether conservative (island data) or expansive 
(nested data), these models show that overall amphibian 
diversity is correlated with land area across physiograph-
ic provinces within the southern Appalachians.

An average of the two predictive models should be a 
reasonable estimate of amphibian diversity at most lo-
calities within the study area (in the absence of direct 
data). One site reported (University of Tennessee Arbo-
retum) has a land area which approximates 1 km2 (1.01 
km2). Its reported amphibian species richness (16 am-
phibian species, 9 frogs, 7 salamanders) falls between 
the C values of the two models (Nested C = 18.9 am-
phibian species, 9.3 frogs, 8.4 salamanders; Island C = 
13.9 amphibian species, 4.3 frogs, 9.0 salamanders), 
providing a compelling datum that C is indicative of a 
“real” value and not simply an artifact of data extrapola-
tion (Gould 1979). A species richness calculator based on 
these models is available as supplementary information 
or from the authors. 

Figure 2. Nested and island predictive models as linear regres-
sions. (a) amphibians (total), (b) frogs, (c) salamanders.
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Areas higher than 515 m above sea level (which makes 
up most of the southern Appalachian region) are expect-
ed to lose significant portions of their habitat suitable 
for amphibians (Alves-Ferreira et al. 2022). While topo-
graphical diversity may aid in amphibian conservation by 
buffering against some effects of climate change (An-
derson et al. 2014), many species already exist at their 
thermal maxima and have limited dispersal ability (Mila-
novich et al. 2010). Some of the highly diverse southern 
Appalachian plethodontids are already restricted to their 
current realized climatic zones and every species in the 
Appalachians could experience habitat loss as a result 
of climate change (Milanovich et al. 2010). Additionally, 
amphibians exhibit the highest rate of endemism among 
North American vertebrates, but are inadequately pro-
tected across their range (Jenkins et al. 2015).

Our models offer a rapid parametric assessment of am-
phibian diversity within sites of potential interest across 
the southern Appalachians. The fit of amphibian species 
to the lines combined with the limited dispersal abilities 
and high rates of endemism of the group means that 
these methods could be adapted to identify and evalu-
ate the SAR for other areas of conservation concern, and 
could be an important tool for amphibian conservation. 
Identifying baseline biodiversity trends is vital both for 
current conservation concerns and land use efforts, but 
also for forecasting species distributions into an uncer-
tain future. 
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Appendix 1: Data and calculations used in the nested model. Seven concentric land areas of increasing size are 
defined and correlated with published amphibian data (defined in text and shown in Figure 1).

Taxon Species Log10Species Land area (km2) Log10Area

Amphibians
Area 1 10 1.000 0.0018 -2.745
Area 2 22 1.342 9.3 0.968
Area 3 38 1.580 1,114 3.047
Area 4 44 1.643 4,137 3.617
Area 5 69 1.839 37,438 4.573
Area 6 88 1.944 101,271 5.005
Area 7 98 1.991 178,758 5.252

Frogs
Area 1 7 0.845 0.0018 -2.745
Area 2 10 1.000 9.3 0.968
Area 3 13 1.114 1,114 3.047
Area 4 13 1.114 4,137 3.617
Area 5 18 1.255 37,438 4.573
Area 6 20 1.301 101,271 5.005
Area 7 22 1.342 178,758 5.252

Salamanders
Area 1 3 0.477 0.0018 -2.745
Area 2 12 1.079 9.3 0.968
Area 3 25 1.398 1,114 3.047
Area 4 31 1.491 4,137 3.617
Area 5 52 1.716 37,438 4.573
Area 6 68 1.833 101,271 5.005
Area 7 76 1.881 178,758 5.252

Area 1 = wetland pond at Steele Creek Park, Bristol, Tennessee, USA; Area 2 = Steele Creek Park, Bris-
tol, Tennessee; Area 3 = Sullivan County, Tennessee; Area 4 = northeastern Tennessee (Jessee et al. 
2022); Area 5 = eastern Tennessee (Jessee et al. 2022); Area 6 = Area 5 plus western North Carolina 
high and low mountains (Petranka et al. 2024) and the Blue Ridge, Ridge and Valley, and Appalachian 
Plateau of western Virginia (Mitchell and Reay 1999); Area 7 = Area 6 plus West Virginia (West Virginia 
Division of Natural Resources 2023) and the Blue Ridge, Ridge and Valley, and Appalachian Plateau of 
Georgia (Jensen et al. 2008).

https://auth1.dpr.ncparks.gov/amphibians/index.php
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