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Abstract Geophysical phenomena are often characterized by complex, random-looking devia­
tions of the relevant variables from their average values. Typical examples of such aperiodicity are the 
intermittent succession of Quaternary glaciations as revealed by the oxygen isotope record of deep-sea 
cores of the last 106 years or the pronounced spatial disorder characterizing geologic materials. A major 
task of the geoscientist is to reconstitute from this type of record the principal mechanisms responsible 
for the observed behavior. Traditional approaches attribute the complexity encountered in the record 
of a natural variable to external uncontrollable factors and to poorly known parameters whose presence 
tends to blur fundamental underlying regularities. Here, we consider that complexity might be an 
intrinsic property generated by the nonlinear character of the system's dynamics. We review bifurca­
tions, chaos, and fractals, three important mechanisms leading to complex behavior in nonlinear 
dynamic systems, and stress the role of the theory of nonlinear dynamic systems as a major tool of 
interdisciplinary research in the geosciences. The general ideas are illustrated on the dynamics of 
Quaternary glaciations and the dynamics of tracer transport in a sediment. 

Much of our understanding of the earth's past environmental 
and climatic conditions rests on the ability to decipher geo­
logic data. This involves in tum a numberofhighly nontrivial 
intermediate steps. To begin with, the time sequence of 
events must be reconstructed from the spatial distribution of, 
say, a representative tracer within a sediment, or, put differ­
ently, the space axis along the geologic material has to be 
converted into a time axis along which past history begins to 
unfold. Furthermore, a typical time series obtained in this 
manner displays considerable complexity reflected by the 
lack of any obvious periodicity and by the occurrence of 
random-looking excursions of the relevant variables from 
their average levels. Two questions of obvious concern are 
therefore how to decipher the message of such a time series 
and how to determine the roles that systematic effects and 
randomness play. 

When confronted with a complicated or even at first sight 
erratic succession of events, the first explanation that comes 
to mind is that the phenomenon of interest is blurred by the 
presence of a great number of parasitic variables and poorly 
known parameters that hide some fundamentally simple 
underlying regularities. Traditional statistical methods pro­
vide useful algorithms for extracting the relevant signal from 
what is believed to be random background noise. Our princi­
pal aim here is to draw attention to the fact that in addition to 
such considerations it is important to adopt complementary 
approaches based on a more dynamic view of the underlying 
phenomena (Nicolis and Nicolis, 1987). 

The need for a dynamic approach stems from recent 
developments in the physical and mathematical sciences that 
indicate that the stable and reproducible motions which 
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dominated science for centuries no longer symbolize our 
physical world (Nicolis and Prigogine, 1989). Experiments 
on quite ordinary physicochemical systems on the laboratory 
scale and the study of mathematical models reveal the exist­
ence of instabilities that amplify small effects and drive the 
systems to alternative states. These nonlinear phenomena are 
sources of intrinsically generated complexity and 
unpredictability. Furthermore, some of the states arising 
through this mechanism present the characteristics of deter­
ministic chaos: Despite their generation by a well-defined set 
of laws, they give rise to aperiodic, random-looking behav­
ior. Finally, coming back to geology, geologic materials are 
complex media characterized by a pronounced disorder en­
tailing that a phenomenon embedded in such a material 
becomes a complex process whose instantaneous rate is 
likely to vary continuously, depending on the locally prevail­
ing conditions. Clearly, in light of these observations, in large 
classes of natural phenomena it may be meaningless to 
eliminate the variability and to keep only the mean as the most 
representative part of the behavior. 

In the next section we summarize the principal mecha­
nisms leading to complex behavior in nonlinear dynamic 
systems. As an illustration of these ideas, we first consider the 
dynamics of Quaternary glaciation in connection with the 
oxygen isotope record of deep-sea cores. Then we analyze 
from a similar point of view the role of the complexity of the 
geologic material in the dynamics of tracer transport in a 
sediment. Finally, we close with comments on the potential 
interest of the approach developed in this article. 

Nonlinear dynamic systems: Bifurcation, chaos, and 
fractals 

The evolution of a natural system over the course of time is 
conditioned by two major factors: (I) a set oflaws governing 
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Figure L Typical bifurcation diagram of a nonlinear dynamic system. 

the individual elements constituting the system and their 
interactions and (2) a set of constraints acting from the 
external world that are usually manifested by means of 
control parameters. Typical examples are temperature gradi­
ent, stress, or the structural characteristics of the underlying 
material, affecting, in turn, such properties as transport coef­
ficients or chemical rate constants. 

LetX;, i 1, ... , n, be the relevant variables. We write the 
rate of change in time in the form 

i = 1, ... ,n, (I) 

where v; are the evolution laws and A, µ, ... are the control 
parameters. An illustration ofEqs. (1) in the field of geology 
is provided by the reaction-transport equations governing the 
dynamics of a set of tracers in a sediment. Closer to our 
preoccupations here, we can consider Eqs. (1) to represent 
processes related to global environmental change, such as 
coupled energy and mass transfer between the hydrosphere, 
cryosphere, and atmosphere, which leaves a permanent record 
on geologic material through a passive quantity acting as an 
indicator. A typical example of this interpretation is provided 
by the 6180 isotope record in connection with Quaternary 
glaciations. 

Whatever the detailed interpretation of Eqs. (I) might be, 
a common feature shared by large classes of systems is that 
the v; are nonlinear functions of the state variables. This 
ubiquity of nonlinearity in nature stems primarily from the 
numerous feedbacks exerted between the different compo­
nents of the system (e.g., surface-albedo feedback). Addi­
tional sources of nonlinearity can arise from the non­
Newtonian character of a material (state-dependent transport 
coefficients) or from hydrodynamic flow. 

Nonlinearity is a source of intrinsically generated com­
plex behavior and unpredictability, in the sense that more 
than one outcome of the evolution is possible (Guckenheimer 
and Holmes, 1983; Nicolis and Prigogine, 1989). Figure I 
depicts a typical scenario of the way the solutions X of a 
nonlinear dynamic system behave when a parameter A built 
into the system is varied. At the values A1, A2, A3, ••• of the 

parameter, usually referred to as b(furcation points, new 
branches of solution are generated. In general, these bifurca­
tion cascades produce several simultaneously available states, 
whi~h we refer to as attractors (branches a to d for the value 
A A in fig. I). Which of these states will actually be chosen 
depends on the initial conditions. This property confers to the 
system a high sensitivity and a markedly random character, 
because the initial conditions are history dependent and can 
be modified by fluctuations or by external perturbations. 
Therefore the dynamics of a multistable system actually is an 
aperiodic succession of intermittent jumps between coexist­
ing attractors. This view, which will be taken up in more 
detail in the next section, is reminiscent of a great number of 
natural processes involving abrupt transitions. 

A convenient representation of the states that can be 
reached by a system beyond a bifurcation is provided by the 
phase space, the space spanned by the full set of variables 
Xi, ... , Xn participating in the dynamics (Nicolis and Prigo­
gine, 1989; Guckenheimer and Holmes, 1983). The nature of 
the phase space portrait depends on whether the system is 
conservative or dissipative. Experiment shows that most 
systems encountered in nature are dissipative, a property that 
shows up through an irreversible evolution to a preferred set 
in phase space, which we call an attractor. Attractors enjoy 
the important property of asymptotic stability, that is, the 
ability to damp perturbations. This in turn ensures a certain 
degree of reproducibility of the behavior. 

Whatever its detailed nature, an attractor has a measure in 
phase space that is equal to 0. In other words, in a phase space 
of n dimensions the dimensionality d of the attractor will 
satisfy the strict inequality d < n. Actually, in many cases dis 
much less than n, indicating that a drastic reduction of the 
description of the system is possible. The simplest attractors 
are zero-dimensional (point) and one-dimensional (limit­
cycle) manifolds, as depicted in fig. 2. However, in many 
instances bifurcation cascades lead the system to the regime 
of deterministic chaos (Baker and Gollub, 1990; Berge et al., 
1986). Figure 3 depicts a typical attractor describing chaotic 
dynamics obtained by numerical integration of a three­
variable model system (Rossler, 1979): 
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Figure 2. Evolution toward a point attractor (a) or limit cycle 
attractor (b) in a dissipative dynamic system. 

dx 
-=-y z, 
dt 

= x+av, 
dt . 

dz = bx-cz+xz. 
dt 

(2) 

Figure 4 illustrates two ubiquitous features shared by all 
chaotic attractors. First, contrary to what happens in a peri­
odic limit-cycle attractor (fig. 2b ), the trajectory never closes 
back onto itself (fig. 4a); second, in addition to certain well­
defined characteristic frequencies, a chaotic attractor gener­
ates a broadband spectrum reminiscent of random noise (fig. 
4b). Chaotic attractors thus show that irregular, aperiodic 
behavior sharing some features of a random process can be 
generated by a dynamic system governed by perfectly deter­
ministic laws of evolution. 

Let us have a closer look at the structure of the attractor 
(fig. 3). We observe two opposing trends: an instability of 
motion tending to remove the phase space trajectory away 
from the reference state x = y z = 0 (horizontal arrow) and 
the bending of the outgoing trajectories followed by their 
reinjection into the vicinity of this state (vertical arrow). 

The unstable motion on the attractor (as opposed to the 
stability in the directions transverse to the attractor) is re­
flected in the sensitivity of the trajectories on the attractor to 
minute changes in the initial conditions, as a result of which 
two initially nearby states diverge, on average, in an expo­
nential fashion. The characteristic rate of divergence <Ji is 
referred to as the (largest) positive Lyapounov exponent of 
the system. For the model ofEqs. (2) it turns out thatcrL z0.15 
bit per unit of time. 

What makes the geometric object in fig. 3, which is 
generated by a one-dimensional curve, the phase space tra­
jectory, capable of accommodating all this complexity? A 
detailed study shows that during the different reinjection 
cycles the attractor undergoes successive foldings. Stated 
differently, a section of the attractortransverse to these folded 
sheets looks like a line from which an increasing number of 
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Figure 3. Chaotic attractor obtained from numerical integration 
of the system ofEqs. (2). Parameter values: a =0.38,b=0.3, c=4.5. 

segments of decreasing size are removed (fig. 5). Present-day 
mathematics provides us with models of this kind of object, 
which is referred to as a fractal; the particular fractal in fig. 
5 is known as a Cantor set (Mandelbrot, 1977). A key 
mathematical concept characterizing fractal objects is the 
correlation dimension v, expressing essentially the way the 
number of points Ne on the attractor at a distance r from a 
given point varies on average with r as r goes to 0 (Grass berger 
and Procaccia, 1983; Berge et al., 1986; Baker and Gollub, 
1990): 

(3) 

Fractals can be distinguished from traditional objects de­
scribed by Euclidean geometry because v is strictly larger 
than the Euclidean dimension. For instance, in the limit of an 
infinite number of foldings, a Cantor set (fig. 5) is composed 
of an infinity of disconnected points and thus has a Euclidean 
dimension equal to 0. Yet its fractal dimension turns out to be 
between 0 and I . This entails that in the full phase space the 
attractor of fig. 3 is a fractal object of dimension between 2 
and 3. 

A number of alternative definitions of dimension of fractal 
objects have been proposed to be able to distinguish between 
uniform attractors, in which all regions are visited with 
practically the same probability, and highly nonuniform 
attractors. In general, all these dimensions and the Lyapounov 
exponents crL cannot be computed analytically. Algorithms 
are currently available that allow the determination of v and 
crL from the knowledge of a time series pertaining to the 
evolution of a single variable. We sketch this procedure in the 
next section in connection with paleoclimatic data. We close 
the present discussion by pointing out that the coexistence of 
the two antagonistic trends of overall stability and reproduc-
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Figure 4. (a) Typical aperiodic time evolution of a variable in the regime of deterministic chaos. (b) 
Power spectrum associated with this variable, displaying the broadband character usually attributed to 
random noise. 

ibility of the attractor on the one side and of instability of 
motion on the attractor itself on the other side makes deter­
ministic chaos the natural model for understanding objects 
whose complexity stems from the coexistence of randomness 
and order. As pointed out in the introduction, such objects 
should be important in the geosciences. The situation is 
different in the presence of random noise, because in this case 
there is no mechanism capable of keeping the system con­
fined to a privileged part of its state space. 

Climatic variability and dynamic systems 

The quantitative study of a natural system is based on the 
measurement of a set of relevant variables during a suffi­
ciently long period of time. An important example of such a 
time series is given in fig. 6, in which the oxygen isotope 
record of a deep-sea core during the past 106 years is depicted 
(Shackleton and Opdyke, 1973). Such records are thought to 
provide a reliable estimate of the global ice volume present on 
Earth against time. We observe a number of excursions 
associated with the glaciation periods, the most dramatic 
climatic episodes of the Quaternary era. Both the position and 
strength of these excursions are rather irregular, although on 
average a time scale of 105 years is clearly emerging. In this 
section we comment on the origin of this variability in the 
light of the ideas developed in the previous section. 

The traditional approach in modeling complex dynamics 
is to consider a linear equation for the relevant variable (here 
the global temperature or the ice volume) subjected to ran­
dom forcing. This type of approach is inadequate for the data 
depicted in fig. 6. Indeed, the strength of the noise needed to 
reproduce the large-scale glacial-interglacial excursions would 
be exceedingly large. 

A second approach consists in introducing in the model a 
periodic component that takes into account the variation of 
the eccentricity of the earth's orbit, whose amplitude and 
periodicity are of the order of 10-3 and 100,000 years, 
respectively (Berger, 1981 ). It can be verified, however, that 
the response of such a system is of the order of the amplitude 
of the forcing itself, that is, much smaller than the observed 
response. It seems, therefore, that simple linear response­
type models cannot provide us with a plausible mechanism 
for the Quaternary glaciations. In the language of the previ­
ous section, this means that the situation in which only one 
point attractor is available is not representative of the glacia­
tion cycles. We are therefore forced to look for an alternative 
scenario. 

A second typical possibility is that a dynamic system 
displaying the behavior depicted in fig. 6 possesses two 
coexisting attractors and performs intermittent jumps be­
tween them (Nicolis and Nicolis, 1981). This automatically 
implies that nonlinear effects are essential in the sense that the 
dynamics can no longer be expanded around a well-defined 
reference state and subsequently linearized to a good ap­
proximation. 

A simple model corresponding to such a scenario is the 
globally averaged (also referred to as zero-dimensional) 
energy balance model for Earth: 

dT 

dt 
v(T,A) I . . 1 ) - [ ( mcommg so ar energy 

C 
-( outgoing infrared energy)] 

(4) 

where Tis the space-averaged surface temperature, C is the 
heat capacity, Q is the solar constant, a is the albedo, cr is the 
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Figure 5. Successive steps leading to the Cantor set. 

Stefan constant, and t 8 is the emissivity factor representing 
the deviation from blackbody radiation. The surface-albedo 
feedback can be readily incorporated into this picture by 
modeling the albedo as a stepwise linear function. The 
resulting energy balance is represented in fig. 7. 

For plausible parameter values Eq. ( 4) can give rise to two 
stable steady states, Ta and T1,, representing a glacial and a 
more favorable climate, respectively, separated by an inter­
mediate unstable climate, T0. If (as suggested by the record) 
the difference Ta - Tb is small, the system can be assumed to 
operate near a bifurcation point. 

Climatic change necessitates a transition between states a 
and b. In the model elaborated so far no mechanism allowing 
for such a transition is present except for the trivial one, 
whereby the system initially at Tb (say) is perturbed and 
brought close to Ta. Such massive perturbations are hard to 
imagine. Therefore we enlarge our description by incorporat­
ing the effect of random fluctuations F(t), which are always 
present in a complex physical system because of the imbal­
ances that inevitably exist between transport and radiative 
mechanisms. We model these fluctuations as Gaussian white 
noise: 

(F(t)) = 0, 

(F(t)F(t')) = q2o(t-t'), (5) 

where q2 is the variance of fluctuations. We write the aug­
mented energy balance equation as 

UJ 
:i:; 

3 
0 
> 
UJ 
u 
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Figure 6. Global ice volume on earth inferred from oxygen 
isotope record of core V28238 (Shackleton and Opdyke, 1973 ). 

this attractor. But sooner or later there is bound to be a 
fluctuation capable of overcoming the barrier separating this 
state from the other ones available, in which case over a short 
time interval the system will find itself on another attractor. 
Subsequently, it will again undergo small-scale motion around 
this new level until a new fluctuation drives it back to the 
previous state (or to a third one, if available), and so forth. 
This intermittent evolution looks like the record in fig. 6. 
Generally, it provides us with an archetype for understanding 
a large class of abrupt transition phenomena beyond our 
specific problem, for example, recurrent precipitation re­
gimes in some areas or river or lake levels (Demaree and 
Nicolis, 1990). 

A more quantitative study shows that the transition be­
tween attractors occurs on a time scale given by Gardiner 
(1983) and Nicolis and Nicolis (1981): 

(7) 

The quantity AU a or t!.Ub is known as a potential barrier. It 
is defined by 

(8a) 

a[ 

dt 
v(T, 11.) + g(T)F(t), (6) where U0, Ua,b is the integral of the right-hand side ofEq. (4): 

where g(T) represents the coupling of the internal dynamics U(T,11.) -f ~'(x,A)dx 
to F(t). 

(8b) 

This stochastic differential equation (also referred to in 
the literature as the Langevin equation) can be studied by the 
methods of the theory of stochastic processes. The principal 
features of the evolution predicted can be summarized as 
follows. Suppose that the system is started on one of its stable 
attractors. If the strength of the stochastic forcing F(t) is 
small, during a long period of time the system will perform a 
small-scale jittery motion around a level corresponding to 

evaluated on states T0, Ta, or Tb. By analogy to mechanics, U 
can be referred to as the kinetic potential, because its deriva­
tive dU/dT represents the force v responsible for the evolu­
tion. If, as expected, the variance of the fluctuations q2 is 
small and the barrier AU is finite, 'ta or 'tb will be much larger 
than the local relaxation time and could be in the range of 
glaciation time scales. In contrast, the local evolution in the 
vicinity of each attractor is given by the inverse of the first 
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Figure 7. Incoming and outgoing radiative energy curves as 
functions ofT (global average temperature). Their intersections T0 , 

Th, and T0 are the steady states predicted by Eq. (4). 

derivative of v evaluated on Ta or Tb. For an energy balance 
model it should be of the order of a year. 

Despite the developed arguments, Eq. (6) cannot yet be 
considered a satisfactory model of Quaternary glaciations: 
The transitions between T0 and Tb occur at randomly distrib­
uted times, whereas the climatic record suggests that Quater­
nary glaciations have a cyclic character bearing some corre­
lation with the mean periodicities of the earth's orbital 
variations. Let us therefore study the response of our 
multistable model to both stochastic and periodic perturba­
tions. Taking the simplest case of a sinusoidal orbital forcing, 
one is led to 

dI 

dt 
v(T,A)+ g(T)[esinrot+ F(t)], (9) 

where e and ID are the amplitude and the frequency of the 
forcing, respectively. It should be pointed out that e is very 
small, of the order of a fraction of a percent. 

The most striking result pertaining to Eq. (9) is undoubt­
edly the possibility of stochastic resonance (Nicolis, 1982; 
Benzi et al., 1982). When liUa ""AUb and the forcing period 
21t/w is of the orderof the characteristic passage times 'ta,b, the 
response of the system is dramatically amplified. Specifi­
cally, the probability of crossing the barrier is substantially 
increased, and the passage occurs with a mean periodicity 
equal to the periodicity of the forcing. This allows us to 
understand, at least qualitatively, how, despite its weakness, 
periodic forcing may leave a lasting signature in the climatic 
record. 

As we saw earlier, chaotic dynamics provides a second 
universal mechanism of evolution in the form of intermittent 
jumps between different levels. Let us explore this scenario 
for the paleoclimatic record of fig. 6. The question we raise 
is whether (I) on the sole basis of the time-series data one can 
identify some intrinsic properties of the dynamics of climate, 
independent of any modeling, and (2) whether the 
intermittency and the aperiodicity displayed in fig. 6 are the 

consequence of deterministic dynamics or of a random, 
impossible to control course of events. 

The first step to be carried out in answering this question 
is to embed the dynamics of the system under study in phase 
space. This means, in particular, that one should go beyond 
the one-dimensional view afforded by a time series of a single 
variable X0(t). It can be shown that a phase space satisfying 
all requirements of dynamic systems theory is the phase 
space generated by X0(t) and its successive lagsX0(t+ 1"), ... , 

X0[t + (n - 1 )t]. It suffices to choose tin such a way that these 
different functions are linearly independent. 

Next, in each of the defined phase spaces (i.e., for each 
value of n). one tries to identify the nature of the set of data 
points, viewed as a geometric object in an n-dimensional 
space. Again, dynamic systems theory provides algorithms 
for accomplishing this. One particular quantity that can be 
identified in this way is the dimensionality v(n) ofour data set 
[cf. Eq. (3)]. Once v(n) is determined, one can also obtain 
information on dynamic properties, such as the largest posi­
tive Lyapounov exponent crL(n), if any. 

Finally, v and <JL are plotted against n for increasing values 
of the embedding dimensionality. If these dependencies are 
saturated beyond some relatively small n, the system repre­
sented by the time series should be a deterministic dynamic 
system possessing an attractor. The saturation values ofv and 
crL are the dimensionality and the largest Lyapounov expo­
nent of the attractor. The value of n beyond which saturation 
is observed provides the minimum number of variables 
necessary to model the behavior represented by the attractor. 
On the other hand, if there is no saturation trend, the conclu­
sion will be either that the system described by the time series 
evolved in a random way or that the dimensionality is too high 
to be revealed by the available data. 

This procedure, applied to the climatic data in fig. 6, gives 
a fractal dimensionality of v"" 3.1, a positive Lyapounov 
exponent corresponding to a characteristic predictability 
time of approximately 30.000 years and a minimum value of 
n 4 (Nicolis and Nicolis, 1984, 1986). We thus conclude, on 
the basis of the data, that long-term climatic change can be 
viewed as deterministic unstable dynamics possessing a 
chaotic attractor. This provides us with a natural way to 
understand the well-known variability of the climatic system 
on this long scale. It also allows us to calculate quantitatively 
the limits beyond which predictions about the future become 
meaningless. 

We close with the remark that, far from being contradic­
tory, the last two scenarios of long-term climatic change 
present interesting complementarities. Specifically, the pic­
ture of a bistable system performing fluctuation-driven inter­
mittent jumps between two states can be viewed as a short­
hand description of a chaotic attractor, which, as stressed 
earlier, shares in many respects the features of a random 
process. In other words, the deterministic part and the random 
force v(T, A) and F(t) in Eq. (6) represent, respectively, the 
large-scale structure of the underlying chaotic attractor and 



the effective noise that is intrinsically generated by the 
dynamics. In this perspective a more satisfactory approach 
would be to model F(t) as a highly correlated process rather 
than as a white noise process. The theory developed in this 
section can be amended to take this refinement into account 
without any substantial change in the overall philosophy 
underlying the dynamic systems approach to global environ­
mental change. 

From time series to space patterning: Some thoughts 
on tracer dynamics in complex media 

We now tum to the mechanisms presiding in the conversion 
of a temporal signal witnessing a certain environmental 
change into a space record imprinted on a geologic material. 
We consider a tracer moving in a medium that, depending on 
the circumstances, may be a chemical substance dissolved in 
water, a macroscopic particle (e.g., debris of a certain bio­
logic species) containing a radioactive isotope, etc. 

As stressed already, geologic media are complex materi­
als. They present a pronounced irregularity and fragmenta­
tion, which can hardly be viewed as a small, quantitative 
modification of some regular reference lattice. To capture the 
essence of this irregularity, we assimilate the material to a 
fractal (Wong, 1988). The specific choice of fractal is a major 
question whose answer depends on the nature of the material 
in a given problem. Here, we consider as a case study the 
abstract but typical model in which the medium can be 
regarded as the triadic Cantor set introduced earlier ( cf. 
fig. 5). 

Our objective is to evaluate the spatial variability of a 
relevant quantity affecting the dynamics in such a medium. 
Consider, as an example, porosity (j), a typical property 
affecting transport. In comparing, for instance, the pore space 
to the bars of the Cantor set, we want to estimate the relative 
importance of the mean square deviation of <iJ with respect to 
its mean. Because a pore of size r contributes to porosity (in 
a one-dimensional medium), a term of order r/L (Lis the total 
length of the medium), the total porosity is 

(10) 

where C is a proportionality factor and v is the fractal 
dimension (V = In 2/ln 3 0.63 for the Cantor bar). To 
estimate the variability of (j), we need to know the pore size 
distribution P(r). To this end we notice that in the nth iteration 
leading to the Cantor set the length rand the number N of the 
bars are given by 

I 
r = r 3" o, (I la) 

(l lb) 
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where N0 and r0 are the initial number and the length of the 
segments, respectively. From Eqs. ( 11) we then have 

(12) 

or finally, 

(13) 

where the normalization factor Z depends on the range of 
variation of r. By combining Eqs. (10) and (13), we can 
compute the mean porosity (<l>) and its variance (&p2) through 

C J'ma. l-2v -- r dr. 
ZLl-v 'mm , 

(14a) 

(14b) 

with 

C 2 J""" 1-3,, --- ,.- dr 
ZL2(l-v) rmrn • 

(14c) 

By performing the integrals and setting r min 0, r max = L = l, 
we obtain: 

C 

2 
and (of)=--¾. 

(12) 
(15) 

In other words, the variability of porosity is comparable to the 
mean. 

We now stipulate that in view of the statistical character of 
the medium the movement of the tracer is regarded as a 
random walk. Denoting by r the instantaneous position, we 
therefore write the Langevin-type equation 

dr 
- = v(r) + qg(r)F(t). 
dt 

(16) 

Here vis the drift velocity, Fis a random force accounting 
for the action of the medium on the particle, g is a coupling 
term, and q is the strength of the coupling between the system 
and the random force. In view ofEq. (15), a typical value of 
q should be in the macroscopic range. As in the previous 
section, we make about F(t) the simplest possible assumption 
of a (normalized) Gaussian white noise [Eq. (5)): 

(F1(t)) = 0, 

( Fi ( t >Fm (t')) = of~o(t-t'), (17) 

Under these conditions Eq. (16) is equivalent to a Fokker­
Planck equation for the probability density P(r, t) of finding 
the tracer around point rat time t (Gardiner, 1983): 
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Because fundamentally the tracer dynamics is a random 
process described by Eq. (16) or Eq. (18), the following 
questions may naturally be raised (Feller, I 968; Gardiner, 
1983): 

I. Starting at t = 0 on some horizontal suiface r = R0 what is 
the distribution of arrival times t of the tracers at a lower 
lying suiface r = R? Clearly, the dispersion of these first 
passage times will tell us whether or not the natural 
association between time and a given depth along a 
sediment, which is at the basis of the interpretation of the 
geologic record, is a legitimate one. 

2. Starting at t = 0 on the suiface r R0, what is the 
distribution of the position r of the tracers at a later time 
t? Obviously, the properties of this front will give us a 
complementary view of whether the space and time courses 
follow a one-to-one correspondence or a more subtle 
relationship. 

Let us sketch the answer to these questions on a one­
dimensional version of Eq. (18), considering v = v010 (l: is 
directed along the vertical), v0 = constant, and g l. If we 
denote q2/2 by D, the Fokker-Planck equation [Eq. (18)] 
becomes 

<JP(z,t) 

iJt 

a a2p 
-v -P+D--

o dz dz 2 • 
(19) 

Consider a column of vertical depth I. It is assumed that 
particles reaching the top z = 0 are trapped within the system, 
whereas particles reaching the bottom z = l are absorbed by 
the lower inactive part of the sediment. This implies that Eq. 
( 19) is to be solved with the following boundary conditions: 

( dP )_=o -- 0, reflecting: ' 

absorbing: (P),=1 = 0. (20) 

To discuss the first passage time problem raised earlier in 
this section, we need instead of P(z, t) the probability density 
g(z, t) that, starting at z (z ~ 0), the particle reaches the 
boundary z lat time t. [Note that P(z, t) is associated with 
the stochastic variable z, whereas in g(z, t) the role of the 
stochastic variable is played by t.] By using standard methods 
of probability theory, one can show that 

g(z,t) 

= ~ [exp(~;;)+ exp(~v;) }xp[-t(z + ½ v0t) ~] 

xtnexp[-D(;;)\}in[mt(~/ z)] (21) 

To estimate the parameters v0 and D, we make use of the 
analogy between the Fokker-Planck equation [Eq. (19)] and 
the advection-diffusion equations describing transport of 
material in sediments. On this basis we regard v0 as the 
analogue of sedimentation velocity (considered a constant 
here) andD as the analogue of an effective diffusion coefficient 
accounting for dispersion and mixing. A dimensionless 
quantity frequently used to compare the relative roles of these 
two types of phenomena is the Peclet number Pe = lvofD, 
where l is the system size. Ordinarily, this parameter varies 
considerably depending on the type of the natural environment 
[see for instance, Boudreau (1986, table 2)]. For abyssal 
sediments we choose for illustrative purposes v0 = l cm/k.y., 
yielding values of Pe from I to 4. 

Figure 8a depicts the probability density g(z, t) forreaching 
the boundary starting at z = 0 for three different values of D. 
We observe a dispersion of passage times measured by the 
variance (St2), which is comparable to the mean and gets 
increasingly large as D (or q2) gets small. However, the 
normalized dispersion (St2) 112/(t) is less sensitive to the 
variations of D. An interesting manifestation of the role of 
stochastic effects is that the probability density attains its 
maximum at a value of time that is less than the detenninistic 
time l/v0• This result suggests that one should be extremely 
careful before adopting the usual (linear) correspondence 
between the elapsed time and the depth of a sediment. Notice 
that for fixed values of D and v0 the shift of the maximum 
relative tot becomes less pronounced as the size of the system 
increases. 

Figure 8b depicts the probability density g(z, t) when the 
drift velocity is negligible. We observe that for large values 
of D the difference with the preceding case is rather small. 

Let us now tum to the distribution of arrival depths at a 
given time. Figure 9 depicts the results of a numerical 
simulation of the stochastic dynamics involving N = 1,000 
realizations, each starting on the surface z O and running 
over 10 k.y. We again obtain an appreciable dispersion 
because, for one thing, in the absence of fluctuations and for 
v0 I cm/k.y. all realizations should be at depth z IO cm. 

We have extended these studies to a two-dimensional 
medium and have found that the presence of a second 
(horizontal) direction adds completely new features. 
Specifically, as shown in fig. 10, a fractal diffusion front 
separating a region of densely occupied sites from a region of 
sparse occupation appears (Feder, 1988). The front has a 
complex irregular form in space and broadens as time 
advances. It thus becomes increasingly difficult to predict in 
an unambiguous manner which characteristic depth will be 
reached in a given lapse of time. As a corollary, trace deposits 
on two horizontal layers at different depths could correspond 
to a chronologic order that is different from or even opposite 
to the one suggested by sheer inspection of the depths. 
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Figure 8. Probability density g(z. t) computed from Eq. (19) for reaching a given depth of the 
sediment z == l starting at z O for three different values of Din cm2/k.y. Parameters used l = 10 cm. (a) 
v0 I cm/k.y.; (b) v0 0. 
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Figure 9. Distribution of arrival depths at t = 10 k. y. deduced from 
numerical simulation of Eq. ( 16) involving 1,000 particles starting 
at z == 0. Parameter values as in fig. 8a with D 5 cm2/k.y. 

Concluding remarks 

We have seen that dynamic systems theory provides us with 
interesting insights into the variability of our natural 
environment. We have pointed out that the unstable character 
of the dynamics of the principal atmospheric and climatic 
variables entails the existence of an intrinsically generated, 
irreducible complexity that can in no way be attributed to 
incomplete knowledge or to the large nwnber of variables 
and parameters involved. Furthermore, we suggest that, in 
view of the structural complexity of geologic materials, the 
correspondence between sediment depth and time history 
may be far more intricate than a simple one-to-one relationship. 

It is our hope that the ideas set forth here will contribute 
to the awareness of geoscientists about the usefulness of non­
linear dynamic systems both as a source of inspiration for 
new ways of looking at sometimes long-standing problems 
and as a quantitative tool of primary importance in the art of 
modeling and forecasting. 
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