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Abstract An algorithm has been developed to simulate sediment dispersal on shallow marine 
siliciclastic, carbonate, and mixed siliciclastic-carbonate shelves. The algorithm is based on a diffusion 
scheme in which the diffusion coefficient decays exponentially with water depth. The rationale for 
using a varying diffusion coefficient lies in the observation that on marine shelves wave energy and 
therefore bed shear stress decay exponentially with water depth. Thus sediment flux cannot be modeled 
by a diffusive process based on a linear dependence on slope alone. This approach is probably most 
appropriate for wave-dominated shelves. The model simulates deposition in two dimensions. Siliciclastic 
shelf sedimentation occurs solely by lateral transport in the plane of section by diffusion; carbonate 
sedimentation occurs by depth-dependent in situ sediment production with subsequent lateral dispersal 
of sediment by diffusion. The effects of early cementation can be modeled by varying the transport 
coefficient that governs the efficiency of diffusion. 

A variety of forward models of basin-scale stratigraphy 
recently have been published. Many are two-dimensional, 
and several incorporate sophisticated algorithms that ad­
equately treat basin subsidence and compound sea-level 
functions. Algorithms to simulate tectonic subsidence range 
from simple rotating hinge models to theoretically compre­
hensive unifonnandnonuniform extension models (Lawrence 
et al., 1990) and flexural models (Flemings and Jordan, 
1989b ). Isostatic compensation of sediment loads by lithos­
pheric flexure has also been implemented (Aigner et al., 
1989; Read et al., this volume) along with routines for 
estimating effects of sediment compaction (Strobel et al., 
1990; Read et al., this volume). Such models have signifi­
cantly advanced the understanding of several variables that 
influence the stratigraphic architecture of sedimentary basins 
and are useful in extending incomplete data sets for explora­
tion-scale operations. 

At the basin or exploration scale the current generation of 
two-dimensional models vastly improves on previous ones 
[e.g., Harbaugh (1966)and Read et al. (1986)]. However, the 
models are still limited in their simulation of sub-basin-scale 
stratigraphic architecture and therefore are ineffective pre­
dictors of reservoir geometry or heterogeneity. The principal 
shortcomings of current numerical models are their lack of 
treatment of sedimentation in three dimensions and 
overgeneralization of sedimentation processes. The imple­
mentation of three-dimensional models is restricted prima­
rily by the enormous increase in computationaJ resources 
necessary for an additional spatiaJ dimension. On the other 
hand, the lack of rigorous treatment of sedimentation stems 
from the lack of adequate theory explaining the complex 
process of sedimentation from first principles. Consequently, 
all sedimentation schemes represent compromise situations 
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that are justified by using empirical observations of time­
averaged sedimentation rates or depositional geometries. 
Because most models run with time steps of a hundred years 
or more, the physics of sediment transport is neglected and 
averaged sedimentation rates or depositional geometries are 
commonly used as proxies for physical sedimentation. 

In carbonate simulations sedimentation rates are com­
monly defined as a function of water depth [e.g., Grotzinger 
(1986), Read et al. (1986), Goldhammer et al. (1987), and 
Gildner and Cisne (1989) J. In siliciclastic models sediment is 
transported by defining a flux from a point source and then 
distributing the sediment as a function of time by either 
geometric rules (Jervey, 1988; Strobel et al., 1990) or the 
process of diffusion (Kenyon and Turcotte, 1985; Flemings 
and Jordan, 1989b ). Another approach assigns exponentially 
decreasing sedimentation rates relative to a migrating point 
source (Lawrence et al., 1990). In all these models a deposi­
tional facies is assigned according to the water depth com­
puted to exist at the end of each time step for each point across 
the basin. 

An entirely different approach is to make sedimentation 
and the deposited grain size functions of current velocity, 
where velocity decreases away from a point source as water 
depth increases; facies are then a function of grain size (Bitzer 
and Harbaugh, 1987). Other models have attempted to adapt 
simplified versions of the Na vier-Stokes equations to recon­
struct oceanic or tidal circulation in basins of known geom­
etry (Ericksen et al., 1989; Ericksen and Slingerland, 1990) 
or to model transport of elastic sediment in hypotheticaJ 
basins (Tetzlaff and Harbaugh, 1989). The main difference 
between carbonate and elastic models is that elastic models 
invoke a flux of sediment from a point source, whereas 
carbonate models utilize in situ sediment production with a 
depth-dependent sedimentation rate. Furthermore, most pub­
lished carbonate models do not allow for lateral transport of 
sediment. An exception to this is Lawrence et al.'s (1990) 
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model, which treats carbonate transport exactly the same as 
siliciclastic sediment. 

Here we show that the diffusion scheme, given some 
modification, can be applied to shallow marine depositional 
systems in which wave processes dominate. In addition to 
siliciclastic settings, our approach applies to carbonate envi­
ronments in which sediments are produced in situ but subse­
quently are transported laterally to sites where shoals or tidal 
flats can develop. Furthermore, the effects of early cementa­
tion can be simulated by varying the transport coefficient that 
governs the efficiency of diffusion. The algorithm developed 
here is generally applicable and can be incorporated within 
any two-dimensional model. 

Methodology 

The classical diffusion equation relates the time rate of 
change of some property, such as temperature or momentum, 
to differences in gradients of that property across some 
spatial dimension. Geologists have recast the diffusion equa­
tion to describe the time-dependent evolution of landforms: 

(1) 

where h is height above a horizontal datum, t is time, x is 
horizontal distance, and D is the diffusion coefficient that 
relates slope to discharge. The diffusion equation is derived 
by combining the continuity equation ( conservation of mass) 
with a sediment transport function in which sediment dis­
charge is related to slope by a constant of proportionality D. 
For a constant diffusion coefficient D, Eq. (1) simplifies to 

(2) 

The diffusion model has been applied effectively to model 
a variety of time-dependent geomorphic processes, including 
hillslope creep (Culling, 1965), transport in alluvial channels 
(Begin et al., 1981 ), deltaic deposition (Kenyon and Turcotte, 
1985), and erosion of mountain belts and evolution of foreland 
basins (Flemings and Jordan, 1989b). In addition, diffusion 
has been used to describe the transport of sediment on the 
eastern North American shelf (Swift et al., 1986), which 
Clarke et al. (1983) incorporated into a numerical model 
simulating the evolution of this shelf area. 

Of the various approaches that have been used so far to 
describe the lateral transport of sediment as a time-averaged 
process on time scales of> 100 years, diffusion is preferable 
to purely geometric approaches because it does not specify in 
advance the final state of important features, such as the 
geometry of stratigraphic bounding surfaces, the limitations 
of accommodation space, the volume of sediments that must 
be deposited, or final depositional slopes. Rather, the diffu-

sion scheme is based on the premise that the rate of transport 
is linearly proportional to gradients in material or energy. 
Consequently, for problems dealing with the transport of 
sediment in which gradients (e.g., energy, slope, light, nutri­
ents) determine sediment movement or production, the diffu­
sion scheme is a good approximation of the time-averaged 
sediment dispersal process. For our model depositional slope 
is assumed to be the gradient that drives the diffusive process. 

Our model differs from previous ones that have used 
diffusion for marine environments [e.g., Flemings and Jor­
dan (1989b) and Kenyon and Turcotte (1985)] in that we 
employ an exponentially decaying water-depth-dependent 
diffusion coefficient. Diffusion models with constant diffu­
sion parameters (Begin et al., 1981; Culling, 1965; Kenyon 
and Turcotte, 1985) have been used for simulating subaerial 
landform evolution because of the reasonable simplification 
that runoff and sediment flux are linearly proportional to 
slope [although see Paola (1990)]. Our rationale for using a 
varying diffusion coefficient lies in the observation that the 
wave energy available to mobilize sediment on a marine shelf 
decays exponentially with water depth, as shown by Airy 
wave theory (Allen, 1985; Clarke et al., 1983), and thus 
sediment flux probably is not well modeled by a linear 
dependence on slope alone. We combine the depth-depen­
dent effect of wave energy available for mobilization of 
sediment with the slope-dependent effect of gravity, which 
on average would tend to redistribute entrained sediment 
downslope. Geologic support for this approach is provided 
by Leckie and Krystinik (1989, 1991), who show that trans­
port of sediment on many ancient wave-dominated shelves 
occurred in a predominantly offshore, downslope direction. 

The model simulates deposition in two spatial dimen­
sions. Siliciclastic shelf sedimentation occurs solely by lat­
eral transport in the plane of section by diffusion; carbonate 
sedimentation occurs by depth-dependent in situ sediment 
production with subsequent lateral sediment diffusion. Ele­
ments common to both types of sedimentation are the way in 
which sea level, initial water depth, tectonic subsidence, and 
transport of elastic particles are treated. The model runs with 
a free boundary on the seaward end; any sediment that 
reaches the free boundary will be flushed out of the section. 
Because it is only the effect of variable sediment diffusion 
that we wish to examine here, the model does not contain 
second-order features, such as sediment compaction, sedi­
ment-induced loading, isostatic compensation and flexure, or 
sedimentation lag times. However, these features can be 
easily appended to the fundamental algorithm presented 
here. 

An analytical solution to the diffusion equation for con­
stantD, as constrained by the boundary conditions used here, 
is developed in appendix A. It is a more completely devel­
oped solution than the one presented by Kenyon and Turcotte 
(1985), which does not account for subsidence or initial water 
depths and which also assumes a constant geometry for 
depositional slope. Furthermore, Kenyon and Turcotte used 



a moving boundary that is maintained at a constant elevation, 
in contrast to our model, which maintains constant flux at the 
landward boundary. The analytical solution for diffusion 
with a nonlinear dependence of Don water depth is currently 
not possible without the aid of numerical integration (Crank, 
1975, p. 112). Thus we solve the problem numerically using 
an implicit finite-difference approach (see appendix B), 
which is the subject of this article. 

The diffusion equation is solved implicitly by the Crank­
Nicholson method because it is more stable than explicit 
schemes for all sizes of spatial and time steps (lncropera and 
DeWitt, 1985; Press et al., 1986). Greater stability implies 
less sensitivity to small numerical perturbations caused by 
computational round-off errors. This is not to say that pertur­
bations do not occur, but the implicit Crank-Nicholson 
scheme prevents them from growing catastrophically, as 
occurs in explicit finite-difference methods. The irregulari­
ties of time lines in some of the plots are numerical artifacts 
and should not be interpreted as sedimentologic features. 
These small irregularities would be suppressed by using 
smaller time and spatial steps in the computational grid. 
Because we are using an implicit method to solve a nonlinear 
diffusion equation, we must solve for the diffusion coeffi­
cient iteratively as a series of coupled nonlinear equations by 
Newton's method for each time step, as outlined by Press et 
al. (1986) and Strang (1986). 

Variation of input parameters 

Several processes influence the facies and geometry of strati­
graphic sequences. The effects of subsidence and sea level 
have been discussed at length and are most important in 
controlling the distribution of accommodation space through 
time across the platform. In our model sedimentation is 
simulated as a diffusive process and the transport coefficient 
D controls the efficiency of this process. In contrast to 
previous diffusion models, we modify this term to include an 
exponential dependence of D on water depth. This leads to 
the relation 

D = Co exp( -cl W), (3) 

where Dis the transport (diffusion) coefficient, Wis water 
depth, C0 is the diffusion constant at sea level (W = 0), and C 1 

is a decay constant that controls how steeply D decays with 
increasing water depth. Thus C0 and C1 can be varied sys­
tematically to produce different transport parameters that 
affect the rate of diffusion and its depth dependence. The 
relationships between D and W for different values of C0 and 
C 1 are shown in figs. I and 11. 

Other important variables are the rate at which sediment 
enters the basin (flux) and the locations where sediment 
enters the basin. Siliciclastic sediment is modeled by intro­
ducing material from a single point source on one side of the 
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basin, whereas carbonates are generated by adding material 
at every point in the basin, with a production rate dependent 
on water depth. We use two carbonate production functions, 
a ramp model and a rimmed shelf function, similar to those 
used by Gildner and Cisne (1989). In addition, the sedimen­
tation rate for the carbonate model can be enhanced at 
specific positions on the shelf relative to surrounding regions 
by multiplying the production rate by some constant factor, 
simulating reef or shoal development. 

The following examples illustrate the effect that varying 
the diffusion parameters individually has on stratigraphic 
geometry; other parameters (e.g., sea level and subsidence) 
are set to the standard model values ( table I) unless otherwise 
specified. Runs are shown for both siliciclastic and carbonate 
shelves. 

Experiments in siliciclastic sedimentation 

Standard siliciclastic model A standard model is shown 
in fig. 2 and is used for the purpose of comparison; model 
parameters are shown in table 1. Figure 3 shows the form of 
the sea-level curves used in the simulations. Each run starts 
at the maximum rate of rise, and time lines are printed every 
12.5 k.y., thus corresponding to the maximum rate of rise, 
highstand, maximum rate of fall, and lowstand for each 50-
k.y. period. Note that the maximum progradation occurs 
during each lowstand(e.g., 87.5-k.y. time line in fig. 2)rather 
than at the time of maximum rate of fall (e.g., 75 k.y.). A 
similar result was obtained by Angevine (1989) and Flemings 
and Jordan (1989a). The maximum amount of erosion also 
occurs during the lowstand. During the subsequent sea-level 
rise, a condensed sequence and the maximum backstepping 
of facies onto the shelf occur at the time of sea-level highstand 
(e.g., 112.5 k.y.), not at the time of maximum rate of rise. 
Aggradation of the shelf is most pronounced between the 
maximum rate of rise and the maximum rate off all ( e.g., I 00-
125 k.y.). Note that the depositional slope steepens into the 
deepest part of the basin where sediment transport is lower. 
This is because the calculated diffusion constant is lower for 
greater water depths, in accordance with Eq. (1). 

Constant value for diffusion coefficient As C 1 ap­
proaches 0, the exponential term diminishes and the relation­
ship between W and D becomes increasingly linear and 
eventually constant (i.e., D C0; see fig. I). Figure 4 
illustrates the case when C 1 = 0. The spacing of the time lines 
shows that the accumulation of sediment does not depend on 
water depth. There is no variation in amount of erosion across 
the platform, as shown by the lack of truncation of time lines. 
Sediments pass with equal efficiency between different water 
depths; however, the facies belts migrate laterally in phase 
with sea-level changes. As in fig. 2, maximum progradation 
of facies corresponds to sea-level lowstand (e.g., 37.5 k.y.), 
and maximum retrogradation corresponds to sea-level 
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Figure 1. Relationship between water depth and diffusion coefficientD for D = Coe-c I w, as discussed 
in text. These curves apply to the siliciclastic model runs. Because of the exponential fonn of the curves, 
D is sensitive to small changes in water depth in shallow regions, tapering off sharply at deeper water 
depth. Increasing C0 effectively increases the efficiency of the diffusion process and, by implication, 
lateral transport of sediment. Increasing C 1 causes D to decay more sharply with water depth; this 
decreases the efficiency of the diffusion process at greater depths. As C 1 is decreased, the disparity 
between sediment transport efficiency at different depths is significantly decreased. When C 1 = 0, D 
is a constant and independent of water depth. 

Table 1. Explanation of parameters used in siliciclastic model 

Model Method Standard Ranges 
Parameter Used Model in Trials 

Initial water depth (m) Linearly increasing 10 (left) No change from standard 
30 (right) 

Tectonic subsidence Linearly increasing 10 (left) No change from standard 
(cm/k.y.) 20 (right) 

Sea level Sinusoidal 5 m amplitude 5 or 10 m amplitude 
50 k.y. period Single period of 50 k.y. or 

compound periods of 20, 40, 
and 80k.y. 

Diffusion coefficient Depth-dependent and Co = 50,000 Co= 10,000-75,000 
[Eq. (3)] exponentially decaying C 1 =0.05 C 1 =0-0.1 

Sediment flux (m2/yr) Constant input on 10 5-20 
landward (left) side 
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Figure 2. Standard run showing effects of depth dependency on sediment transport. All parameters 
of the standard model are shown in table I. Lines within the plots are time lines spaced at intervals of 
12.5 k.y. Time lines in all subsequent plots except fig. 14 are spaced at identical intervals. Numbers 
along time lines within plots indicate the age in kiloyears since beginning of model run. The time line 
to which the date belongs corresponds to the time line that forms the diameter of the white circle. Note 
truncation of time lines on the landward end of the profile, indicating erosion during lowstands when 
Dis highest. An example of a surface of maximum truncation occurs along the 87.5-k.y. time line at 
the lowstand in the sea-level curve, not at the inflection point {time of maximum rate of fall), which 
occurs at 75 k.y. 

highstand (e.g, 62.5 k.y.). The result is a concave-up slope, 
unlike most modem shelves. On modern shelves there is a 
nearly linear increase in water depth to the outer part of the 
shelf, and a concave-down slope is associated with an in­
crease in slope declivity into greater water depths. 

In fig. 4 a value of 25,000 was used for C0• This value is 
consistent with empirical detenninations of D for deltaic 
systems, as tabulated by Flemings and Jordan (1989b). In 
contrast, this value is changed to C0 = 10,000 in fig. 5 for 
comparison. Note that the higher C0 (fig. 4) results in more 
efficient transport of sediment into the basin and less aggra­
dation on the landward end of the profile; the profile reaches 
a steady-state unifonn slope within the duration of the model 
run. Note also that with higher D (fig. 4), the steady-state 
unifonn slope is lower than the steady-state slope toward 
which fig. 5 evolves. 

In both figs.4 and 5 the apparent pinchout of the sediments 
just before the boundary of the plot at I 00 km is a numerical 
artifact of the right-hand boundary condition of this finite­
difference model. The boundary condition stipulates that all 
sediment entering the last column leaves that column at the 
same rate. This condition is obtained by forcing the slope at 
the right-hand boundary to be constant over the last three 
columns. Therefore the spatial derivative of the slope, crhli)i1-, 
equals O and the height of that column does not change. As a 
result, any sediment entering the second to last column passes 
through the right-hand boundary and no aggradation occurs, 
causing the convergence of all time lines at the second to last 
column. The smaller area occupied by the stratigraphic cross 
section in fig. 4, compared to fig. 5, reflects the fact that a 
greater amount of sediment bypassing occurs because more 
sediment reaches the right-hand boundary. Because the sedi-
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compound sea-level curve, used exclusively for fig. 14, that consists of 3 sinusoids, each with an 
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in fig. 14 at intervals of 10 k.y. 
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Figure 4. The effect on sediment dispersal patterns when C1 = 0 and C0 = 25,000. In this case D has 
no dependence on water depth. Sedimentary facies belt migrates in phase with sea-level variations. 
Compare with fig. 2, where all other parameters are the same except for C 1 and a 10-m-amplitude sea­
level curve. 
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Figure 5. Model run with C 1 = 0 and C0 decreased to 10,000. This results in less efficient dispersal 
of sediment and an increase in depositional slope and shallowing to persistent alluvial sedimentation. 
Compare with fig. 4, where slopes are less steep and sediments are deposited in deeperwateron average. 
A 10-m-amplitude sea-level curve is used. 

ment diffuses more efficiently across the profile for a higher 
value of D (fig. 4), it aggrades less, greater lateral dispersal 
takes place, more bypassing at the right-hand boundary 
occurs,andconsequentlydeeper-waterconditionsresultmore 
frequently. 

Variation in C0 for fixed value of C1 Figures 6 and 7 
show the effects of increasing and decreasing C0 for a fixed 
value of C1 (0.05 = standard model). Changing the value of 
Co alters the efficiency of sediment diffusion by the same 
factor at all water depths. Because of the exponential depen­
dence on water depth, the diffusion of sediment is far less 
effective at deeper water depths than for constant diffusion 
coefficient (compare curves in fig. l). Consequently, shelf 
slopes are concave down rather than concave up, as in the 
case of constant D (figs. 4 and 5). 

As C0 decreases from 75,000 (fig. 6) to 25,000 (fig. 7), 
diffusion of sediment becomes less efficient at all water 
depths, resulting in aggradation of coastal plain facies and 
steepening of the shelf profile. The decreased value of C0 

results in an overall long-term progradation in contrast to the 
long-term aggradation that develops for a higher value of C0 
(fig. 6). In both cases, short-term progradation and retrogra­
dation correspond to the lowstand and highstand of sea level, 
respectively (e.g., 87.5 k.y. and 112.5 k.y.). Furthermore, 
incision and development of sequence boundaries occurs 
during the lowstand (87.5 k.y.). 

Figures 6 and 7 illustrate how the model can be used to 
simulate the difference in sediment transport on high-energy 
versus low-energy coastlines. The increased current activity 
(wave-induced, tidal, or oceanic) associated with high-en­
ergy settings often results in more effective transport of 
sediment to deeper water positions. This could be simulated 
by increasing C0, thereby improving the efficiency of sedi­
ment transport at all water depths. 

Figures 6 and 7 illustrate how the model can also be used 
to simulate the difference in sediment transport on muddy 
versus sandy shelves. Low values of C0mimic low erodability 
of the substrate, which would correspond to muddy, cohesive 
shelves with vegetated subaerial areas. High values of C0 
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Figure 6. Model run in which C0 is increased to 75,000 and all other parameters are as in the standard 
model, including a value of 0.05 for C 1• Because C I is now greater than 0, D depends on water depth. 
Note how the high value of C0 results in highly aggradational, tabular deposits. 

mimic more easily eroded material, such as that associated 
with sandy, noncohesive shelves with non vegetated sub­
aerial regions. 

Variation in CI for fixed value of C0 Variations in C 1 
have a profound effect on sediment transport and shelf 
morphology. As C 1 approaches 0, the diffusion coefficientD 
depends less on water depth until, when C 1 = 0, Dis constant. 
Consequently, for small values of D the model more closely 
approximates the constantD situation (e.g., fig. 4). Figure 8 
shows an experiment in which C1 is reduced to 0.025, 
compared to 0.05 for the standard model. As a result, the 
stratigraphy in fig. 8 is closer to that in fig. 4 than to that in fig. 
2, particularly with regard to the depositional slope. Larger 
values of C 1 favor increasingly concave-down depositional 
slopes, as shown in fig. 9. In particular, note that, because of 
the exponential decay (see fig. l, curve that shows C 1 = 0.1 ), 
the inner shelf slopes stay relatively gentle but the outer shelf 
slopes increase sharply as water depth increases. More sedi­
ment is stored in the shallow-water part of the shelf. 

Slope steepening results because, as water depth increases, 
the efficiency of the diffusion process decreases exponen­
tially and less sediment is transported laterally per unit of 
time. For higher values of C 1, the efficiency of the diffusion 
decreases more rapidly at greater water depths. The shelf 
aggrades, but the basin is left behind. Eventually, however, 
the slope becomes so steep that the topographic gradient 
causes increased flux into the basin despite the fact that D is 
very low for the water depths represented by the slope and 
basin. This is shown by the sediment distribution for the last 
two time lines in fig. 9, in which there is an abrupt increase 
in thickness per unit time in the deepest parts of the basin 
compared to previous time intervals. 

The effect that CI has on D and on the geometry of 
stratigraphic units, contrasted in figs. 8 and 9, is our principal 
point here. Depth-dependent diffusion generates a geologi­
cally meaningful approximation of depositional transects 
associated with shallow marine and shelf to basin transects. 
Slopes simulated by this model result from a model of a 
physical process rather than from an arbitrary construct based 
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Figure 7. Model run with conditions the same as in fig. 6, except thatC0 is decreased to 25,000. Note 
the enhanced wedge shape of the deposits, concave-down slopes, and progradational fades patterns. 

on empirical rules about depositional geometry. The C1 

parameter can be changed to simulate the difference in 
sediment transport on high- versus low-energy shelves. Re­
duced shelf sediment transport, associated with low-energy 
settings, can be simulated by increasing C1 and decreasing 
the efficiency of sediment transport at moderate to deep water 
depths. More sediment introduced at the landward end is 
stored in the shallow marine portion of the shelf. This has the 
qualitative effect of simulating a shallow wave base. 

Experiments in carbonate sedimentation 

Ramp model Figure 10 illustrates the stratigraphy of a 
carbonate ramp. The input parameters for this trial and the 
succeeding carbonate and mixed elastic-carbonate trials are 
shown in table 2. In this case all sediment influx is from 
below, unlike the siliciclastic model in which all influx was 
from the landward side. Sediment aggradation occurs in situ 
and is associated with lateral downslope transport of sedi-

ment, which causes progradation. As in the siliciclastic 
model, the limits of maximum progradation and retrograda­
tion occur with sea-level lowstands and highstands, respec­
tively (e.g., 87.5 k.y. and 112.5 k.y.). 

Sedimentation rates are water depth dependent, and sedi­
ment production occurs over the entire shelf in contrast to the 
point source of the siliciclastic model. Lower values of C0 (by 
an order of magnitude; see fig. 11) were chosen arbitrarily to 
simulate lower erodability of carbonate sediment as a result 
of a variety of processes. For lower values of C0 less sedi­
ment is removed after it is produced, thereby simulating 
decreasing erodability. In a future version of this model 
variable diffusion coefficients for different sediment types 
will be implemented. This will allow us to simulate highly 
mobile substrates, such as ooid shoals. In that case the value 
of C0 will be increased relative to surrounding regions to 
simulate rapid lateral spreading of the shoal. 

The diffusion coefficient D is also depth dependent, as in 
the siliciclastic model, and CI can be varied to simulate 
reduced sediment dispersal at depth. By increasing the value 
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Figure 8. Model run showing effect of decreasing C 1 to 0.025. See text for discussion. 

of C 1, sediments will be less efficiently transported at greater 
depths, resulting in slope steepening. This can be used to 
simulate distally steepened ramps, such as that shown in fig. 
10. If the value of C 1 is reduced, the ramp geometry will 
become more homoclinal with lower curvature of the profile 
because of the increased efficiency of sediment transport at 
depth. 

Rimmed shelf model Figure 12 shows the results of a 
run in which a zone of high sediment production is located in 
an outer shelf position to form a reef barrier. Reef sediment 
production rates are 4 times higher between 60 km and 64 km 
(37-40 mi) than those in the landward area. No carbonate 
production occurs seaward of the reef, illustrating the effects 
of downslope transport of reef material by diffusion. All other 
parameters are identical with the ramp model shown in fig. 
10. 

It is interesting to note the first-order similarity between 
this shelf geometry and the Permian platform of West Texas 
[ cf. Dunham ( 1969) ], where the reef is several meters deeper 
than the backreef facies belts. This topography can be re­
versed if the sediment production rates are increased for the 

reef and/or the sediment production rates for the landward 
zone are reduced. The steepness of the slope on the seaward 
side of the barrier reef can be controlled to mimic greater or 
lesser amounts of early cementation by changing the value of 
C 1; if C 1 is higher, then the efficiency of lateral transport at 
depth is decreased and the slope steepens. 

Finally, well-developed cyclic carbonate facies interfinger 
with the reef complex, similar to many modem and ancient 
rimmed carbonate platforms. The shallowest water facies of 
the cycles are symmetrically distributed about the time line 
representing the lowstand in sea level for each sea-level 
oscillation (e.g., 87.5 k.y.). 

Mixed siliciclastic-carbonate model Although super­
ficially similar to the carbonate model in fig. 12, the mixed 
model in fig. 13 is substantially different. In this model run 
there are 3 different modes of sedimentation: siliciclastic 
influx from the landward side, reduced carbonate sedimenta­
tion between 20 km and 59 km (12-37 mi), and enhanced 
carbonate production between 60 km and 64 km (37-40 mi). 
As the result indicates, a reefbarrier develops at an outer shelf 
position and supplies sediment to either side of it. At the same 
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Figure 9. Model run with C I increased to 0.1. Note the pronounced increase of shelf gradients into 
deeper water resulting from the dependence of D on water depth. Compare with fig. 8. See text for 
further discussion. 

time, siliciclastic sediment enters from the landward side, 
resulting in progradation toward the reef. The intervening 
area is a zone of suppressed carbonate production and re­
ceives only small amounts of sediment from the reef and 
siliciclastic source areas; consequently, it evolves into an 
intrashelf basin characterized by starved sedimentation. It is 
interesting to note that layers of siliciclastic and carbonate 
peritidal sediment [patterned for water depths of 0-10 m (0-
32 ft)] extend into the intrashelf basin from their point 
sources. Significantly, these layers are temporally equivalent 
to each other and, once again, are distributed symmetrically 
about the lowstand time lines (e.g., 87.5 k.y.). Note also the 
erosion of reef units and of the upslope portions of both the 
siliciclastic and carbonate peritidal layers during the cycle 
lowstands. 

Another important difference between figs. 12 and 13 is 
the change to a higher value of C1 (0.1) in fig. 13. As 
discussed previously, this has the effect of increasing the 
slope on the seaward (right) side of the reef because of the 
sharp decay of the diffusion coefficient and resulting de-

crease in efficiency of sediment transport at depth. A com­
parison of the profiles in figs. 12 and 13 reveals that the slope 
attained in fig. 13 is steeper. 

Complex geometries and sediment bypassing 

An important aspect of the model is its capability to resolve 
stratigraphic relationships with a vertical scale of the order of 
meters to tens of meters. This is useful in understanding the 
controls that govern the distribution offacies in many cyclic 
sequences and is relevant to evaluating the geometry of 
hydrocarbon reservoirs. Although all runs are shown with a 
horizontal length of 100 km (62 mi), the model can be easily 
rescaled to illustrate features on the scale of a few kilometers. 

Most runs of siliciclastic, carbonate, and mixed systems 
show stratigraphic units that alternate on a vertical scale of 
meters to tens of meters and interfinger on a scale of many 
tens of kilometers. In most examples these stratigraphic units 
form sheets or gently tapering wedges. Although this may be 
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Figure 10. Distally steepened carbonate ramp formed by in situ depth-dependent sediment produc­
tion and simultaneous restricted lateral sediment transport. A 10-m-amplitude sea-level curve is used. 
See text for discussion. 

appropriate for some sequences, other sequences exhibit 
more lateral heterogeneity by forming irregular wedges and 
lenses. An example of a run designed to produce more 
complex stratigraphy by introducing multiple sea-level curves 
is shown in fig. 14. The results are interesting because they 
clearly illustrate the effect of constructively and destructively 
interfering sea-level curves on stratigraphy (compare figs. 3 
and 14). 

The model shown in fig. 14 contains many of the features 
associated with lowstand shoreface deposits in ancient set­
tings. Lenticular shallow-water to alluvial deposits are asso­
ciated with erosional surfaces (note truncation of time lines, 
e.g., between 110 k.y. and 120 k.y.) that pass downdip into 
correlative conformities. Such a downward shift in shoreface 
stratigraphy has been documented in the Cretaceous Cardi um 
formation by Plint (1988). The Cardium is known to contain 
important reservoirs developed in shoreface sandstones with 
complex geometries, emplaced during changes in relative sea 
level. As in the Cardium, our model shows that erosion, 
sediment bypassing, and juxtaposition of shoreface against 

deeper shelf facies is possible on a vertical scale of meters. 
Note that complete bypassing of shallow-water to alluvial 
facies occurs approximately one-quarter of the way across 
the model profile. Erosion occurs along parasequence bound­
aries (0, 80,160,240 k.y.) in response to a decrease in water 
depth, which increases the diffusivity of sediments, simulat­
ing higher energy conditions. The greatest erosion and by­
passing occur during the maximum lowstands in sea level 
(e.g., 80 k.y.) and not during the maxima in rates of change 
( e.g., 50 or 68 k.y. ). Another result is that the greatest erosion 
and bypassing coincide with the lowstands of the 40-k.y. and 
80-k.y. sea-level cycles, whereas there is only a negligible 
effect associated with the 20-k.y. cycle despite the ampli­
tudes all being set to 10 m. This result reinforces the notion 
that erosion and bypassing associated with high-frequency 
sea-level oscillations are controlled by the magnitude of sea­
level lowstands rather than by rates of sea-level change [cf. 
Angevine (1989)]. 

It is interesting to note that our modeling results support 
the interpretation of Plint ( 1988) that the offshore bars in the 
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Table 2. Explanation of parameters used in carbonate models 

Model Method Ramp Rimmed Shelf Mixed Clastic-
Parameter Used Model Model Carbonate Model 

Initial water depth (m) Linearly increasing 10 (left) No change from ramp No change from ramp 
30 (right) 

Tectonic subsidence Linearly increasing 10 (left) No change from ramp No change from ramp 
(cm/k.y.) 20 (right) 

Sea level Sinusoidal IO m amplitude No change from ramp No change from ramp 
50 k. y. period 

Diffusion coefficient Depth dependent and Co=5,000 Co= 5,000 Co= 5,000 
[Eq. (3)] exponentially decaying C1 =0.05 C1 0.05 C1 =0.1 

Sedimentation rate Carbonate: in situ from Carbonate = step Regular No regular used 
(regular) seafloor (bottom) and function 

depth dependent so m = 0 (cm/k.y.) 
>0-5 = 20 
5-10 = 75 
10-25 = 50 
25-50 = 20 
>50=0 

Sedimentation rate Carbonate: in situ from No suppression No suppression Carbonate step 
(suppressed) seafloor (bottom) and used used function 

depth dependent sO m = 0 (cm/k.y.) 
>0-5 = 10 
5-10 = 37.5 
10-25 = 25 
25-50= 10 
>50=0 

Sedimentation rate for Multiply regular or No enhancement 4x regular for reef 4x regular for reef 
reefs (enhanced) suppressed sedimentation 

rates by factor of 1-10 
Width of carbonate factory Assign position(s) any- Production occurs Reef for x = 60--64 Reef for x = 60-64 

where between x = 1 and between x = l and 96 Regular for x = I-59 Suppressed for x 20-59 
96 in computational grid at regular sedimenta-

tion rates 
Sediment flux of silici- Siliciclastic: constant None 

elastics (for mixed input on landward (left) 
elastic-carbonate model) side 

Cretaceous western interior seaway formed as a result of 
sediment bypassing during sea-level lowering. During the 
subsequent transgression, sediment bodies formed during 
bypassing are further modified, with the result being a high­
energy deposit enclosed within offshore deposits. 

Discussion 

The results illustrate the application of a nonlinear water­
depth-dependent diffusion model to the simulation of 
siliciclastic, carbonate, and mixed shallow marine deposi­
tional systems. 

Models using a constant diffusion coefficient D can have 
only concave-up to linear slopes at equilibrium. The model 
developed here can generate concave-up and concave-down 

None 1 m2/yr 

shelf profiles, both of which are found in real shelf cross 
sections (Bally, 1987; Driver and Pardo, 1974; Grow et al., 
1988). 

Jordan and Flemings ( 1991) address this problem by using 
two constant values for D such that more efficient diffusion 
(higher D) occurs in the alluvial part of the profile, whereas 
less efficient marine diffusion (lower D) occurs in the marine 
section. Their model essentially produces two coupled con­
cave-upward profiles. The advantage of our approach is that 
it recognizes that sediment dispersal in the marine environ­
ment does not depend solely on slope of the shelf but is also 
a product of storm, ocean wave, and tidal processes whose 
influence decays with water depth. This depth-dependent 
scheme is accomplished by taking an initial diffusion coeffi­
cient (C0) and multiplying it by a function that decays 
exponentially with water depth. In this manner profiles are 
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Figure 13. Mixed siliciclastic-carbonate shelf illustrating the combined effects of three zones of 
sediment production and lateral dispersal. There is a sediment flux from the left-hand side simulating 
siliciclastic input, flux from below between 20 km and 50 km to simulate lagoonal production, and 
enhanced flux between 60 km and 64 km to simulate reef growth. A 10-m-amplitude sea-level curve 
is used. See text for discussion. 

generated that mimic shallow marine shelf morphology, 
particularly with regard to the transition from shelf to slope 
settings. 

Carbonates and mixed siliciclastic-carbonate settings can 
also be effectively modeled by using the diffusion approach. 
In these settings the high level of substrate heterogeneity, 
including early-cemented reefs and hardgrounds, highly 
mobile ooid shoals, and siliciclastic sands, demands an 
approach that can simultaneously account for varying de­
grees of erodability and lateral sediment dispersal. The flex­
ibility of the diffusion algorithm makes it an effective proxy 
for sediment transport in models where transport results from 
gradients in energy or material. This method is particularly 
useful when material from several sources mix, such as in the 
runs that simulate combined siliciclastic and carbonate sedi­
mentation. 

An interesting result produced for all cases for the range 
of sediment fluxes and sea-level curves shown here is that the 
times of maximum transgression and regression correspond 
to the timing of the sea-level highstand and lowstand, respec-

tively, for each oscillation in sea level. This is consistent with 
recent findings that show that for short periods the maximum 
extent of pro gradation of the shoreline will tend to coincide 
with the sea-level lowstand (Angevine, 1989; Flemings and 
Jordan, 1989a; Jordan and Flemings, 1991). 

The depth-dependent diffusion approach does have sev­
eral drawbacks. Of these, an important one intrinsic to the 
methodology is that, by using the exponential diffusion 
coefficient above sea level, values of D grow too large for 
elevations in excess of20 m (64 ft) above sea level. When this 
value is exceeded, unrealistically high erosion and sediment 
transport rates will result. The actual value of D varies 
depending on what values of C0 and C1 are chosen (see fig. 
1), but at values of C0 ~ 50,000 [consistent with values used 
by Flemings and Jordan (1989a) and Kenyon and Turcotte 
(1985)), elevation of the sediment surface <20 m above sea 
level will not produce excessively high values of D. For this 
reason the model was run with sea-level amplitudes of 5 m 
and 10 m to ensure that elevations > 20 m above sea level did 
not occur. A future version of this model will address this 
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Figure 14. Sediment bypassing associated with complex sea-level oscillation history. Times lines are 
drawn every 10 k.y. Note development of discrete lenses and complex wedges of shallow-water 
sediments enclosed in deeper-water sediments. Also, bypassing is maximized during times of sea-level 
lowstand and not at times of maximum rate of fall. 

shortcoming by introducing an algorithm that uses a depth­
dependent relationship for submarine values of D but a 
separate, probably constant value of D for subaerial sedimen­
tation. 

A more basic shortcoming of this approach is that the 
simulations were conducted entirely in two dimensions, 
whereas shelf sedimentation commonly involves significant 
amounts of out-of-the-plane or longshore transport of sedi­
ment. In principle, this methodology could be implemented 
in three dimensions but would require several orders of 
magnitude increase in computational time and power. 

The most fundamental criticism of our approach is that 
longshore transport does not result from diffusive processes 
based on slope. The tractional transport is more realistically 
understood as a nonlinear function of bed shear stress 
(Middleton and Southard, 1984 ); the relation between bed 
shear stress and slope is not well understood for alluvial, let 
alone marine, environments. This suggests that our model 
may be more appropriate for the limiting case of siliciclastic 
or carbonate wave-dominated shelves where depth-depen-

dent, exponentially decreasing wave energy mobilizes sedi­
ment. Once mobilized, sediment can be redistributed by 
gravity-driven flow near the sea bed directed largely by local 
slope. 

Appendix A: Analytical solution to the diffusion 
equation with constant D 

The diffusion equation for landform evolution is derived by 
combining the continuity equation with a rate of sediment 
transport that is linearly proportional to slope. The diffusion 
equation becomes 

(A.I) 

where his elevation above or below a horizontal datum (here 
taken to be mean sea level), xis lateral distance, tis time, and 
D is the diffusion coefficient (Jordan and Flemings, 1990; 



Kenyon and Turcotte, 1985). The diffusion coefficient is 
constant. For a basin modeled with subsidence increasing 
linearly in space across the basin, additional subsidence 
terms must be added to Eq. (A.I), creating 

cJh 
ar 

o2h 
D-2 +Y0 +fix. 

clx 
(A.2) 

The sum (Y0 + Y1x) determines the rate at which the sediment 
surface is tectonically lowered or uplifted with respect to the 
datum. For (Y0 + Y1x) < 0, subsidence occurs; for (Y0 + Y1x) 
> 0, uplift occurs. 

Given the initial conditions 
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that can be solved by the sum of a general solution, 

(A.9a) 

and a particular solution, 

(A.9b) 

Taking the part of the general solution that remains bounded 
(A.3) as x goes to infinity yields 

and boundary conditions of constant flux at x = 0 into a semi­
infinite half-space 

(-D dh) = So, 
OX x=O 

(A.4) 

Eq. (A.2) can be solved by using Laplace transforms in a 
manner analogous to that of Crank ( 197 5). 

By multiplying by e-ri, in which F(p) is the Laplace 
transform of/(t), and integrating with respect tot from Oto 00, 

we obtain 

(A.5) 

Changing the order of differentiation and integration yields 

The left-hand side of Eq. (A.6) is solved by integrating by 
parts: 

[ e-r' iJh dt =(he-pt)=+ p f'ize-r1dt 
o iJt o Jo' 

= -(H0 +Hix)+ ph. (A.7a) 

Similarly, the right-hand side yields 

(A.7b) 

where his the Laplace transform of h. This leaves an ordinary 
differential equation for h, 

Using the Laplace transform on the boundary condition 
yields 

_!_g_ 
Dp 

[ IP ( Ip ) Yi HI l 
-~DBexp -V Dx + p2 +p x=O· 

(A.10) 

The unknown constant Bis determined by algebraic manipu­
lation: 

(A.11) 

The entire solution for Eq. (A.8) with the given boundary 
conditions is 

(A.12) 

The inverse Laplace transform for ii is (Crank, 1975, pp. 376-
379) 

h(x,t) = H0 +Hix+ (Y0 + t;x)t 

+( Ji5 +H1D )Ktierfc(
2
{jji) 

+r;ffi✓(4t)3 
i
3
erfc(

2
{jji} (A.13) 

where 
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(A.14) 

and 

2ninerfcu = 2n J]n-1erfc~~ 

= in-2erfcu-2uin-lerfcu. (A.15) 

This in tum simplifies to 

+-Y: --erfc -- + I+ 4 { xt ( x ) ( x
2 

3 1 4 2-fiji 4Dt 

[ fm3 (-x
2 

) xt x ]} x ,,-exp - --erfc-- . 
v n 4Dt 2 2-fiji 

(A.16) 

The variables in Eq. (A.16) have the following dimensions: 

H0 length 
H I no dimension 
Y0 length/time 
Y1 I/time 
S0 length2/time 
D0 length2/time 

The function for h(x, t) can be used alone to find time lines for 
various combinations of H0, Hi, Y0, Y1, S0, andD. It can also 
be combined with a sea-level function to determine total 
water depth at a given time and position, from which a facies 
can be assigned. 

Appendix B: Numerical method for solving nonlinear 
diffusion 

The diffusion equation with differential subsidence and aggra­
dation is 

iJh a ( iJh) - - D-a +Y0 +fix+A(h,t). 
at dx X 

(B.1) 

A Crank-Nicholson implicit finite-difference scheme cen­
tered at time step (n + 1/2) and space step j has second-order 
accuracy in time and space and is inherently more numeri­
cally stable than explicit schemes. Following the example of 
Press et al. (1986), we can write Eq. (B.l) in the form 

4(~)2 [(DJ+I +D;)(hJ+I -h;) 

-( DJ + DJ-·t )( hi hJ-t)] +-· -[(Dn+I +D~+l)(hn+I hn+l) 4(£lx)2 J+I J J+I J 

-(Dn+I + Dn+I )(hn+I hn+I )] 
J 1-l J 1-I 

+Y0 + }';jllx 

+ t{ A( hi, nAt) + A[ h't, (n + l)At ]}. (B.2) 

The variables Llx and At are the incremental space and time 
steps, respectively. The diffusion coefficientD in this model 
is defined as 

(B.3) 

where SL(t) is sea level and (SL h) is the water depth. 
Values of D't for the implicit finite-difference scheme 
shown in Eq. (B.2) are found using the chain rule: 

dD aDiJh + aDaSL - -C D(asL - ah). (B.4) 
dt ahat asLar I a, ar 

Changing the time derivatives into their finite-difference 
approximations, except for sea level, which can be analyti­
cally determined from the input function, yields 

1 1 = C D~ 1 1 
- -- • 

Dn+I - D" [ hn+I - h" asL) 

At I J At dt 
(B.5) 

Finally, 

(B.6) 

Equation (B.6), substituted into Eq. (B.2), yields a set of 
nonlinear algebraic equations, one for each interior node in 
the finite-difference grid. Two additional equations come 
from analysis of the boundary conditions. The boundary 
condition at x = 0 is that of constant flux S0: 

(B.7) 

By using the center difference approximation atx !::.X,/2 and 
time step n + 1/2, we obtain 

(B.8) 



The boundary condition on the right-hand side is mainte­
nance of constant slope between the three end nodes. Form 
nodes, 

hn+I hn+I hn+I -hn+I 
(B.9a) m-1 m m-2 m-1 

L\x L\x 

hn+I = 2hn+I 
m m-1 

hn+I 
m-2• (B.9b) 

This set of m nonlinear equations must be solved simulta­
neously in an iterative fashion to the degree of accuracy 
desired for all hn+t values. A numerical root-finding scheme, 
such as Newton's method (Strang, 1986), solves for the 
unknown values of hn+ 1• 
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