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Abstract 

The Hugoton and Stevens Members are new lithostratigraphic units of the St. Louis Limestone in the 
Hugoton embayment, southwestern Kansas. A core from the Mobil #1 Foster (sec. 5, T. 34 S., R. 36 W.) 
is proposed as the type section for both members. 

The Hugoton is the lower member and at the type section contains primarily dolomitic peloidal 
grains tone/packs tone, dolomite, and anhydrite. Breccia, algal boundstone, and dolomitic lime mudstone are 
common facies elsewhere in southwestern Kansas. The Hugoton Member is easily differentiated from 
skeletal and oolitic limestones of the uppermost Salem Limestone. Abundant peloids, anhydrite, and paucity 
of stenohaline marine organisms in the Hugoton Member indicate deposition in a restricted lagoon. 
Restricted conditions probably resulted from oolite-skeletal shoals in the underlying Salem. 

Strata of the Stevens Member contain dominantly skeletal packstone/wackestone. Periodic winnow­
ing, intercalated oolites, and a diverse and abundant assemblage of stenohaline echinoderms, brachiopods, 
and bryozoans indicate Stevens skeletal packstone/wackestone was deposited in a normal-marine shelf 
environment at or near fair-weather wave base. Stevens Member oolitic grainstone/packstone, the reservoir 
facies, accumulated in a highly agitated, marine-shoal environment, probably at depths less than 15 ft (5 m). 
A quartzose grainstone 3.8 ft (1.2 m) thick in the Stevens Member contains abundant rhizoliths and 
ubiquitous climbing trans latent strata with dips less than 7°, indicating deposition in a vegetated eolian sand 
sheet. 

Ste. Genevieve strata are recognized by the lowest prominent quartz-rich grainstone. In the Mobil #1 
Foster, the basal quartzose grainstone is 9.4 ft (2.9 m) thick, lacks rhizoliths, and consists of abundant 
climbing translatent, common grainfall, and minor grainflow stratification in crossbed sets up to 1.5 ft (0.5 
m) thick with dips as high as 24'. This cross bedding, climbing trans latent strata, and the apparent absence 
of vegetation indicate deposition by eolian dunes. The overlying Shore Airport Formation typically contains 
argillaceous limestone and intercalated calcareous shale. 

Introduction 

Ooid grainstones in the St. Louis and Ste. Genevieve 
Limestones are important hydrocarbon reservoirs. Despite 
the economic importance, the lithostratigraphy of these units 
in southwestern Kansas has not been updated since the work 
of Goebel ( 1968a) and Thompson and Goebel ( 1968). Mis­
sissippian strata in Kansas are confined to the subsurface, 
with the exception of outcrops of Burlington-Keokuk and 
Warsaw Limestones (Osagean to Meramecian) in two town­
ships of Cherokee County, in the extreme southeastern comer 
of the state (Thompson and Goebel, 1968; Kammer et al., 
1990; Maples, this volume). Upper Mississippian 
lithostratigraphic nomenclature of the Mississippi Valley 
region was originally extended to the subsurface of Kansas 
by Lee (1940) and Clair (1948, 1949). 

Most previous studies of Upper Mississippian strata in 
southwestern Kansas used insoluble residues and biostra­
tigraphy extensively to define lithostratigraphic units. It is 
more practical to base definitions on the more abundant 
carbonate fraction that is observable in cores and cuttings, or 

indicated with certain wireline logs. Formations are rock­
stratigraphic units (i.e. lithofacies); accordingly biostrati­
graphic data should serve to constrain lithostratigraphic 
correlations, but not to delineate formations. Recent ad­
vances in carbonate petrology, sequence stratigraphy, and 
subsurface data warrant an update of existing lithostratigraphic 
definitions and interpretations of depositional history of the 
Upper Mississippian in southwestern Kansas. Increased 
understanding of Upper Mississippian facies, 
lithostratigraphy, and depositional history should enhance 
hydrocarbon exploration and production from these strata. 

Ste. Genevieve and St. Louis strata of the Illinois basin 
and southwestern Kansas share many similarities; however, 
differences between the two areas exist. Lithologic similari­
ties and entrenched usage in the literature and in the petro­
leum industry warrant continued use of these formational 
names in Kansas. This paper aims to update facies descrip­
tions and standardize stratigraphic terminology, as well as 
increase our understanding of the depositional history for the 
St. Louis and Ste. Genevieve Limestones. 

1Present Address: Chevron USA Production Company, P.O. Box 1150, Midland, TX 79702 
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The core from the Mobil #1 Foster (fig. 1, sec. 5, T. 34 
S., R. 36 W., Stevens County, 6 mi (10 km) southeast of 
Hugoton, Kansas) is proposed as the type section for the 
Hugoton and Stevens Members of the St. Louis Limestone 
(fig. 2). In addition, this well will also serve as a reference 
section for the Ste. Genevieve Limestone in southwestern 
Kansas. A core is designated as the type and reference section 
because both the Ste. Genevieve and St. Louis do not crop out 
anywhere in the state. The Foster core contains facies that are 
representative of these lithostratigraphic units over much of 
the Hugoton embayment of southwestern Kansas. 

The Mobil #1 Foster core contains 285 ft (87 m) of the 
Hugoton and Stevens Members of the St. Louis and the Ste. 
Genevieve (6,625 to 6,910 ft [1,987-2,073 m]). The core is 
currently housed at the Kansas Geological Survey core 
facility in Lawrence, Kansas. The base of this core was 
incorrectly identified as Salem on the scout card and by 
Abegg (1991). Stratigraphic cross sections indicate the basal 

56 ft ( 17 m) of the core is the marine carbonate unit between 
the E 1 and E2 evaporite of the Hugoton Member (Abegg, 
1992). Log depths and core depths are approximately coin­
cident (fig. 3). Neither the Salem-St. Louis nor the Ste. 
Genevieve-Shore Airport boundaries were cored. In addi­
tion to length, this core was selected because it is available to 
the general public and contains facies representative of these 
lithostratigraphic units overmuch of the Hugoton embayment. 

The type section of the Hugoton Member does not 
contain the Salem-St. Louis boundary. Principal reference 
cores, therefore, are needed to facilitate recognition of this 
boundary. The lower boundary of the Hugoton Member is 
cored in the Atlantic #1 Mark A, sec. 28, T. 20 S. , R. 33 W., 
Scott County, Kansas (Thompson and Goebel, 1968), and is 
currently housed at the Kansas Geological core facility in 
Lawrence, Kansas. Amoco #1 Nordling and Amoco #3 
Wilson A (Abegg, 1992) cores also contain the Salem-St. 
Louis boundary and are currently housed at Amoco 's core 
facility in Denver, Colorado. 

Previous Investigations 

According to Lee ( 1940), upper Meramecian and 
Chesterian strata of southwestern Kansas were first pen­
etrated by the Watchorn Oil and Gas Company #2 Morrison 
in Clark County in 1931. Strata of "late Meramecian age" in 

southwestern Kansas were initially grouped into the Watchorn 
Formation "where subdivision of ... the Spergen [Salem], St. 
Louis, and possibly Ste. Genevieve limestones is impracti­
cable" (Lee, 1940, p. 84-85). Lee relied heavily on insoluble 
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residues to assist in recognition of Mississippian units. In the 
same report, Girty ( 1940) reported on the megafossils of the 
Watchorn and unnamed Chesterian strata. 
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1968) and Goebel ( 1968a) defined Mississippian strata using 
a combination of lithologic criteria, insoluble residues, and 
conodont biostratigraphy. 

Clair (1 948, 1949) subsequently divided the Watchorn 
into three formations using Mississippi Valley nomencla­
ture. Recognition of the Ste. Genevieve, St. Louis, and 
Spergen (Salem) Limestones was based primarily on litho­
logic criteria. Chesterian strata (above the Ste. Genevieve) 
were not named due to lithologic heterogeneity (Clair, 1948, 
1949; Beebe, 1959a, 1959b). Thompson and Goebel (1 963, 

The Ste. Genevieve Limestone was placed within the 
Meramecian Stage (e.g., Merriam, 1963; Thompson and 
Goebel, 1963, 1968; Goebel , 1968b). Recently, however, 
Maples and Waters ( 1987) redefined the Meramecian­
Chesterian boundary, placing the Ste. Genevieve at the base 
of the Chesterian Stage, a usage followed in this report (fig. 
2) . 

Regional Geology and Stratigraphy 

The St. Louis and Ste. Genevieve Limestones are most 
completely preserved in the Hugoton embayment of the 

Anadarko basin (figs. 4 and 5). Ste. Genevieve is also 
preserved in the Forest City basin in northeastern Kansas 
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Stevens and Hugoton Members of the St. Louis Limestone, Shore Airport Formation (Abegg, this volume) and the informal "Gray 
group" (Youle, 199 1) are new names. The sub-Pennsylvanian unconformity erodes the entire Mississippian section over structural 
highs (cf. fig. 5). Scale is approx imate as thicknesses are variable. 
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(Thompson and Goebel, 1968). The St. Louis is more 
widespread than the Ste. Genevieve and is also preserved in 
the Forest City, Cherokee, Salina, and Sedgwick basins 
(Thompson and Goebel, 1968). The nearest St. Louis out­
crops are in a downfaulted block along the Chesapeake fault 
in southwestern Dade and eastern Barton counties, south­
western Missouri (Clark, 1937; Thompson, 1986; personal 
observation). The nearest outcrops of Ste. Genevieve strata 
are in the Mississippi Valley, the type area in eastern Mis­
souri (Thompson, 1986). 

Ste. Genevieve and St. Louis strata in Kansas were 
deposited on a carbonate shelf that extended southward from 
the Transcontinental arch. The shift to argillaceous carbon­
ates and siliciclastics in the overlying Shore Airport Forma­
tion marks the termination of dominantly carbonate shelf 
deposition that continued throughout much of Mississippian 
time (Lane and De Keyser, 1980). Mississippian strata in 
Kansas were subaerially exposed and extensively eroded 
prior to deposition of Lower Pennsylvanian strata. 

The Ste. Genevieve (Shumard, 1859) and St. Louis 
(Engleman, 184 7) Limestones were named for exposures in 
eastern Missouri in the western Illinois basin. In the Missis­
sippi Valley type area, the St. Louis Limestone is primarily a 
mud-rich carbonate, generally interpreted to have been de­
posited in restricted lagoonal to tidal flat or sabkha settings 
(Jorgensen and Carr, 1973; Martorana, 1987). The overlying 
Ste. Genevieve is oolitic. Ste. Genevieve oolitic carbonates 
of the Illinois basin are a primary hydrocarbon target, whereas 
the St. Louis is generally unproductive. In the Hugoton 
embayment of southwestern Kansas, however, Stevens Mem­
ber oolites are a major hydrocarbon reservoir, whereas the 
Ste. Genevieve is less productive. 

Definitions of Lithostratigraphic Units 

As used in this report, the Salem Limestone is character­
ized by dolomitic skeletal and oolitic limestones. The over­
lying St. Louis Limestone is commonly divisible into the 
Hugoton and Stevens Members (fig. 2). The Hugoton is the 
lower member and contains primarily peloidal limestone, 
dolomite, anhydrite, breccia, and algal boundstone. Strata of 
the Stevens Member are dominantly skeletal limestone. 
Additionally, uppermost St. Louis strata contain oolitic lime­
stone. This usage differs from the type area where oolitic 
limestone is included in the Ste. Genevieve. Ste. Genevieve 
strata are recognized by the lowest prominent quartz-rich 
limestone, a boundary easily recognized on many neutron­
density logs. The overlying Shore Airport Formation (Abegg, 
this volume) consists primarily of argillaceous limestone and 
intercalated calcareous shale. 

Methods 

This report stems from a more comprehensive study 
(Abegg, 1992) that examines Upper Mississippian strata in 
the Hugoton embayment of the Anadarko basin (Fig. 1) in 

southwestern Kansas. The Mobil #1 Foster was originally 
described at a scale of 1: 12. Carbonate textures were de­
scribed following Dunham (1962). Anhydrite textures were 
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FIGURE3--GAMMARAY-SONICLOGFROMTHEMOBIL#l FosTER(sec. 
5, T. 34 S., R. 36 W.), Stevens County, Kansas. 
Lithostratigraphic boundaries are picked from a combination 
of core studies and cross section correlations (SG, Ste. 
Genevieve; STV, Stevens Member of the St. Louis Lime­
stone; HUG, Hugoton Member of the St. Louis Limestone). 
Shore Airport (Chesterian) overlies the Ste. Genevieve. Note 
the extremely clean gamma ray response of the El anhydrite 
(6,854-6,842 ft [2,056-2,053 m]). The St. Louis-Ste. 
Genevieve boundary is marked by an uphole increase in 
interval transit time corresponding to an increase in detrital 
quartz. Cored interval is indicated in depth track. Core and log 
depths are approximately equal. Depths in feet. 



described following Maiklem et al. ( 1969). A total of I 00 thin 
sections were examined from the Foster core. Stratigraphic 
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cross sections of Shore Airport, Ste. Genevieve, Stevens, 
Hugoton, and Salem strata will be presented separately 
(Abegg, 1992). 

Type and Ref ere nee Section Lithof acies and 

Depositional Environments 

Six lithofacies are recognized in the Mobil# 1 Foster core 
(fig. 6): 1) dolomitic peloid grainstone/packstone, 2) anhy­
drite, and 3) dolomite, 4) skeletal packstone/wackestone, 5) 
oolitic grainstone/packstone, 6) quartzose grainstone. Brec­
cia, algal boundstone, and dolomitic lime mudstone facies 

are not present in the type section, but are present elsewhere 
in the Hugoton embayment (Abegg, 1992). Sedimentology 
of the St. Louis and Ste. Genevieve Limestones is detailed in 
Abegg (1992). 

Dolomitic Peloid Grainstone/Packstone 

Peloids are abundant to common. Partially micritized 
allochems suggest that some peloids are micritized grains. 
Ellipsoidal shape of others suggest they are fecal pellets. 
Echinoderms are rare to common. Other allochems are rare 
and include brachiopods, bryozoans, ostracodes, calcispheres, 
sponge spicules, and intraclasts. Detrital quartz of very fine 

SHERMAN SHERIDAN 

sand size comprises 5 to 10% of this facies; feldspar, musco­
vite, glauconite, amphibole, and organic fragments are rare. 
Dolomite replaces up to 5 to 70% (most commonly 5-30%) 
of peloid grainstones and packstones. Dolomitization is 
typically fabric selective, preferentially replacing the micritic 
fraction. Bluish-gray chert is present in some horizons and is 
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FIGURE 4-SUBCROP MAP OF MISSISSIPPIAN STRATA BENEATH THE SUB-PENNSYLVANIAN UNCONFORMITY IN KANSAS (modified from Thompson 

and Goebel, 1968). 
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commonly associated with casts of sponge spicules. This 
suggests a local biogenic source for much of the silica. Cubic 
pyrite, typically 10 to 50 mm, is scattered throughout much 
of the facies. 

Many intervals are marked by parallel laminae. Some 
strata are ripple cross laminated (fig. 7). In the Ste. Genevieve 
at 6,637 to 6,638 ft (1,991.1-1,991.4 m), laminae rhythmi­
cally thicken and thin (fig. 8). Horizontal trace fossils are 
present in some horizons. Possible cryptalgal laminae, 
oncolites, microfenestral porosity, and autoclastic breccias 
are present where rocks of this facies occur underneath the 
anhydrite facies. 

In the Foster core, peloid grainstone/packstone is 
interstratified with ooid grainstone/packstone, anhydrite, 
skeletal packstone/wackestone, or quartzose grains tone (fig. 
6). 

Interpretation 

The abundance of peloids, paucity of stenohaline marine 
organisms, and association with anhydrite suggest peloid 
packstone and grainstone were deposited in a restricted-shelf 
setting. Subadjacent oolitic shoals are interpreted to have 
formed a barrier restricting connections with open-marine 
waters. Parallel lamination of packstones indicates low 
energy. Periods of increased agitation are indicated by ripple 
cross laminae. Alternating thick and thin laminae (fig. 8) 
appear similar to tidal rhythmites (A. W. Archer, pers. 
comm.). Possible cryptalgal laminae, oncolites, microfenestral 
porosity, and autoclastic breccia suggest shallow water or 
briefly emergent conditions. Diagnostic evidence for sub­
aerial exposure (cf. Esteban and Klappa, 1983), however, is 
absent. 

Anhydrite 

Anhydrite occurs at two horizons in the Stevens Member 
of the St. Louis in the reference core (fig. 6). Anhydrite 
textures in the reference section are predominantly mosaic 
(e.g. 6,843.5 to 6,844.0 and 6,853 ft) and massive (e.g. 
6,848.2 to 6,848.9 and 6,851 ft) (fig. 9, cf. Maiklem et al., 
1969). Nodular-mosaic (e.g. 6849.3 to 6,849.5 ft), bedded­
nodular (e.g. 6,826.85 to 6,827.0 ft), bedded-mosaic (e.g. 
6,826.55 to 6,826.85 ft), and crystallotopic (e.g. 6,849.5 to 
6,849.6 ft) textures also occur. In thin section, anhydrite 
textures are mostly felted, with lath-shaped texture occurring 
less frequently (cf. Maiklemetal., 1969). Blocky crystals are 
observed in anhydrite-filled fractures (6,839 to 6,840 ft). 
Much of the anhydrite contains little orno matrix. Anhydrite 
nodules are outlined by a matrix of thin, brown, dolomitic 
peloidal carbonates. Carbonates are typically interbedded 
with anhydrite intervals. Nodules are generally ellipsoidal 
and irregularly arranged, although vague upward-elongated 
nodules occur locally. Stratification or bedding were not 

Hugoton ----------1 
Embayment 

observed. The edges of anhydrite nodules are commonly 
partially replaced by light-blue, length-slow, spherulitic chal­
cedony (cf. Folk and Pittman, 1971) and rarely by euhedral 
authigenic quartz. Highly birefringent anhydrite relicts are 
uncommon in the chalcedony and quartz. 

Anhydrite in the Foster core is part of the El evaporite 
(fig. 10), the upper anhydrite interval in the Hugoton Member 
(Abegg, 1992). Interbedded lithologies include dolomitic 
peloid grainstone/packstone, dolomite, and skeletal packstone/ 
wackestone (fig. 6). 

Interpretation 

The majority of Hugoton Member anhydrite is inter­
preted to have been deposited in a widespread shallow­
subaqueous or saltern. Warren ( 1989) coined the term saltern 
to describe regions of evaporite deposition that are laterally 

N 

I 
FIG URE 5-LATE M1ss1ss1PPIAN-EARL Y PENNSYLVANIAN TECTONIC FEATURES IN KANSAS (modified from Merriam, 1963; Ebanks et al., 1979). 

Shaded areas represent regions where Mississippian strata are absent due to Late Mississippian-Early Pennsylvanian erosion. 



more extensive than salinas or evaporating pans. Salterns 
have no known modern analog. 

Mosaic, nodular-mosaic, and massive textures are abun­
dant in the St. Louis Limestone evaporites. Such textures are 
commonly genetically associated with sabkha environments 
(Kerr and Thomson, 1963). Numerous authors, however, 
have indicated such associations are not always warranted 

Abegg-Hugoton and Stevens Members 45 

(Dean et al., 1975; Warren and Kendall, 1985; Warren, 
1989, 1991). Many differences exist between sabkha and 
saltern evaporites (table 1 ). The thickness, lateral extent, 
and lack of significant carbonate matrix of the anhydrite, as 
well as interbedded, shallow-water carbonate, indicate most 
of the anhydrite was originally deposited as gypsum in a 
saltern (table 1). Diagnostic supratidal features (cf. Shinn, 
1983) are extremely rare. 

Dolomite 

Many carbonates in the Hugoton Member of the St. 
Louis are dolomitic (Abegg, 1992). However, only a few are 
extensively dolomitized. This facies is defined as rock 
contain ing greater than approximately 70% dolomite, which 
typically obscures the original depositional texture. Dolo­
mitization is highly fabric selective, preferentially replacing 
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FIGURE 6 (above and following page)-DESCR IPTION OF CORE FROM TH E MOBIL #l FOSTER. Wireline log and core depths are roughly 
equivalent. Right-hand track shows interpretations of shifts in depositional environments. Horizontal dashed lines represent shifts 
without deposition. Horizontal wavy lines are subaerial exposure surfaces or surfaces bracketing eoliap strata. Abbreviations used 
include the following: SE- subaerial exposure, typically marked by calcretes oreolianites; I- intertidal or tidally influenced, fenestral 
porosity and tidal rhythmites occur locally; L- restricted lagoon/shelf, evidence of evaporites or absence of stenohaline marine fossils; 
SH - oolitic or skeletal shoal, grainstone to mud-poor packstone; SM - shallow marine with evidence of at least intermittent agitation, 
above or near storm wave base (WB); M - marine with little winnowing, typically wackestone deposited below storm wave base; AD 
- separates dysaerobic and anaerobic facies from overlying aerobic facies, only present in the Kearny Formation (Morrowan). 
Depositional textures are also abbreviated: GR - grainstone, PK - packstone, WK - wackestone, LM - lime mudstone. Formations 

and members are li sted in the depth track. 
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cements are rare. Extensive dolomitization has obliterated 
most grains, but peloids, crinoids, brachiopods, and fenes­
trate bryozoans are preserved in a few beds. Interbedded less 
dolomitized carbonates contain peloids, crinoids, brachio­
pods, bryozoans, foraminifera, and intraclasts. 

Up to 10% detrital quartz sand and silt is present in some 
dolomite horizons. Parallel lamination is common in many 
horizons and is locally disrupted by horizontal burrows (fig. 
11 ). Sutured and unsutured stylolites, fractures, and chert 
nodules occur locally. 

The dolomite facies is interbedded with the anhydrite, 
peloid grainstone/packstone , and ske letal packstone/ 
wackestone facies (fig . 6). In addition, underlying Salem 
Limestone carbonates are also commonly dolomitic. 

Interpretation 

Rare stenohaline marine crinoids, brachiopods, and fe­
nestrate bryozoans preserved in dolomite indicate local ma-

rine deposition of the precursor. Common laminations and 
detrital quartz suggest some d0lomitized beds are altered 
peloid packstone. Because dolomitization is fabric selective 
for matrix, however, packstone and grainstone are likely to be 
less dolomitized. Therefore, extensively dolomitized facies 
probably had a micrite-rich precursor. The fine-grained 
nature of much of the dolomite supports such an interpreta­
tion. 

Dolomitic carbonate is intercalated or laterally correla­
tive to anhydrite and solution-collapse breccia in the Hugoton 
Member. Most strata in the overlying Stevens Member 
contain little or no dolomite, even though muddy facies are 
present. This relationship suggests evaporitic brines were 
responsible for much of the dolomitization, possibly due to 
refluxing lagoonal brines or connate brines expressed during 
compaction. Minor baroque dolomite indicates some deeper 
burial dolomitization. Additional investigation is needed to 
determine the genesis of dolomite in the Hugoton Member. 
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Lateral Variability 

Vertical successions of lithologies similar within the St. 
Louis and Ste. Genevieve Limestones occur over much of the 
Hugoton embayment. Log cross sections, calibrated by 
cores, permit characterization of lateral variability in facies 
and composition across southwestern Kansas. 

Anhydrite, characteristic of the Hugoton Member of the 
St. Louis Limestone, is preserved in portions of Morton, 
Stanton, Stevens, Grant, Seward, Haske 11, Hamilton, Kearny, 
and possibly Meade counties, southwestern Kansas (figs. 23 
and 24 ). Many anhydrite units are laterally correlative over 
several counties, but some are discontinuous (figs. 10 and 
24 ). Anhydrite is thin in southern Stevens County and is 
absent in southern Morton, southwestern Stevens, and south­
ern Seward counties (fig. 24). To the north and east, recog­
nition of characteristic anhydrite and slightly argillaceous 
dolomitic carbonate on wireline logs is difficult because of 
brecciation (figs. 10, 23, and 24). 

The Stevens Memberof the St. Louis Limestone consists 
largely of normal-marine skeletal packs tone and wackes tone 
in southwestern Kansas. Ooid grainstones are thickest near 
the top of the Stevens Member. A thin quartzose grains tone 
is interstratified with oolitic grainstone and packstone in the 
Stevens Member (fig. 6). This unit is very close to the base 
of the Ste. Genevieve Limestone in most cores, but in Stevens 
County it is separated by a thicker section of subtidal strata 
(Abegg, 1992). 

Porous oolitic grainstones occur in many areas, but no 
regional trend has been recognized. Based on the location of 
oolite reservoirs, Handford ( 1988) concluded that oolite 
bodies are oriented northwest-southeast. Because these 
fields roughly para11el the Central Kansas uplift, Handford 
reasoned oolites developed para] lei to depositional strike and 
are similar to Bahamian marine sand belts (Ba11, 1967). 
However, local structure and diagenesis may also contribute 
to oolite reservoir distribution. Moreover, Youle (1990, his 
fig. 1) indicates a northeast-southwest orientation of Stevens 
Member oolites in the Wendel Pool in Gray County, Kansas. 
Additional work is needed to determine the controls on 
distribution of porous ooid grains tones in the Stevens Mem­
ber of the St. Louis Limestone. 

Quartzose grains tones interbedded with peloidal , oolitic, 
or skeletal carbonates comprise the Ste. Genevieve Lime­
stone. As many as four quartzose grainstone units are 

recognized in the Ste. Genevieve in core. In some wells , 
quartzose grainstone is either poorly developed, absent, or 
simply not recognizable in the logs. This suggests that 
quartzose grainstone units are discontinuous or that quartz 
content is variable. Handford and Francka (1991, their fig. 
11) i11ustrate quartz-poor and quartzose grainstones. Minor 
detrital quartz occurs in many interbedded peloidal and 
skeletal carbonates; some contain as much as 40% quartz. 
The presence of quartz in other facies , combined with the 
absence of significant quartz in some Ste. Genevieve sec­
tions, makes tracing of individual quartzose grainstones 
extremely difficult. This emphasizes the need for core to 
facilitate correlation. No consistent regional trends in quartz 
concentration have been recognized. 

FIG URE 22-FEA TURES OF EOLIAN AND SUBAQUEOUS CLIMBI NG RIPPLES. 

Wind ripples (A) have low amplitudes and relatively long 
wavelengths with the coarser grains concentrated at the ripple 
crest. Low-angle foresets retard avalanching on lee sides of 
ripples. These features produce climbing trans latent strata that 
are characteristically thin , of uniform thickness, commonly 
inversely graded, and contain few visible ripple-foreset lami­
nae. In contrast, subaqueous ripples (B) have higher ampli­
tudes with the coarser grains relegated to the ripple troughs. 
Avalanching is common on the steep lee sides of the ripples. 
These features produce climbing translatent strata that are 
typically thicker, normally graded, and contain well-devel­
oped ripple-foreset laminae (modified from Kocurek and Dott, 
1981 , their fig. 3) 

Lithostratigraphic Boundaries 

In order to facilitate consistent identification of Upper 
Mississippian lithostratigraphic boundaries, criteria for such 
picks need to be standardized. Facies changes make identi­
fication of Upper Mississippian units difficult locally . Facies 
changes are hard to recognize unless core or cuttings are 
utilized. Abegg ( 1992) used 13 cores covering much of the 

southern Hugoton embayment to calibrate log response to 
facies. This section discusses lithostratigraphic boundaries 
for the following units: 1) Salem Limestone, 2) Hugoton 
Member of the St. Louis Limestone, 3) Stevens Member of 
the St. Louis Limestone, 4) Ste. Genevieve Limestone, and 5) 
Shore Airport Formation (fig. 2). 
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Salem-St. Louis Boundary 

This boundary is absent in the Mobil #1 Foster. In other 
cores, the Salem-St. Louis boundary is marked by a change 
from ooid-skeletal grainstones of the Salem Limestone to 
algal bounds tone and breccia of the Hugoton Member of the 
St. Louis (Abegg, 1992). On wireline logs, the exact place­
ment of the boundary is difficult as both units are typically 
dolomitic. It is commonly possible to recognize a change 
from clean, porous dolomitic limestone of the upper Salem to 
slightly more argillaceous, dolomitic carbonate intercalated 

with anhydrite in the Hugoton (fig. 25). Cored breccias in 
the Hugoton Member consist of dolomitic carbonates that are 
typically less porous than the underlying Salem. Breccias can 
also be differentiated from the Salem Limestone using the 
gamma-ray log; cross stratified upper Salem grainstones are 
typically clean, whereas low-energy, dolomitic carbonates 
and breccias of the Hugoton Member are typically somewhat 
shaly (fig. 26). 

Hugoton Member-Stevens Member Boundary 

In the Mobil #1 Foster and elsewhere in southwestern 
Kansas, the boundary of the Hugoton and Stevens Members 
of the St. Louis Limestone is placed at the change from 
dolomitic carbonate and anhydrite to skeletal packstone/ 
wackestone (figs. 25 and 26). This facies transition is 
commonly marked by a thin(::; 3 ft) skeletal-ooid grainstone 
to pack stone. Typical logs of the Hugoton Member indicate 
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lower neutron porosity than density porosity, indicating 
dolomitic carbonates (figs. 25 and 26). Interbedded anhy­
drites have very low gamma-ray values and negative density 
porosities (fig. 25). In the Stevens Member the density and 
neutron curves are nearly coincident, indicating relatively 
pure limestones (figs. 25 and 26). 
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FIGURE 24-LocATION OF PRESERVED ANHYDRITE IN SOUTHWESTERN KANSAS. To the north and east, evaporites were dissolved forming 
solution-collapse breccia. Anhydrite is thin to absent to the south in southern Morton and Stevens counties, suggesting increasing 
marine influence toward the Anadarko basin. Dashed lines indicate areas where well control is sparse or absent. Updip limit of St. 
Louis from Thompson and Goebel ( 1968, their fig. 3). 
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St. Louis-Ste. Genevieve Boundary 

In southwestern Kansas, previous authors place oolitic 
limestones in the St. Louis Limestone (e.g., Clair, 1948, 
1949; Thompson and Goebel, 1963, 1968). In the Illinois 
basin, however, the base of the Ste. Genevieve Limestone is 
generally placed at the stratigraphically lowest prominent 
oolitic (Atherton et al., 1975) and/or arenaceous limestone 
(Thompson, 1986). In order to be consistent with the original 
definition in the type area, a similar boundary could be 
adopted in the Hugoton embayment. However, several 
considerations argue against such a boundary. 

The base of the stratigraphically lowest prominent oolite 
is difficult to pick without core or cuttings. Although many 
of the ooid grainstones are porous, intergranular porosity is 
occluded in many others by a combination of compaction and 
cementation, as in the Mobil #1 Foster (fig. 3). In wells 
without porous carbonates, this formation boundary would 
not be easily determined from wireline logs. Additionally, 
including oolites in the St. Louis Limestone in the Hugoton 
embayment is so entrenched by usage in industry and the 
literature that it is best not to change unless a more practical 
boundary can be determined. 

In the Mobil #1 Foster and elsewhere in southwestern 
Kansas, the base of the Ste. Genevieve is herein placed at the 
stratigraphically lowest prominent quartzose grainstone. In 
order of decreasing reliability, the four most dependable 
ways to pick the St. Louis-Ste. Genevieve boundary in 
wireline logs include: 1) at the change from coincident 
neutron and density logs to a log crossover with lower 
neutron than density porosity, 2) at an uphole negative shift 
in the photoelectric (Pe) curve, 3) at an uphole positive shift 
in the interval transit time on sonic logs, and 4) at the top of 
the highest porous ooid grainstone. In many areas, the 
quartzose Ste. Genevieve Limestone is marked by a promi­
nent crossover of the neutron and density log patterns, both 
calibrated for limestone (figs. 25 and 26) and also by shifts in 
the Pe and sonic logs. Where quartzose facies are absent or 
poorly developed, the Ste. Genevieve-St. Louis boundary 
can be placed at the base of a small positive gamma-ray shift 
immediately above the uppermost porous, presumably oolitic, 

limestone. 

Ste. Genevieve-Shore Airport 
Boundary 

The boundary between the Ste. Genevieve Limestone 
and the Shore Airport is one of the most consistent picks in the 
Mississippian section because of the increased argillaceous 
component in the Shore Airport Formation. This boundary is 

not present in the Mobil #1 Foster core. This boundary should 
be placed where neutron porosity lower than density porosity 
in the quartzose Ste. Genevieve changes to neutron porosity 
greater than lower density porosity in the argillaceous car­
bonates of the Shore Airport (figs. 3, 25, and 26). This 
boundary typically corresponds to the base of a shale observ-
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UPPER MISSISSIPPIA STRATA FROM THE AMOCO #1 PUYEAR (sec . 
23, T. 28 S., R. 40 W.). Note the extremely low gamma ray 
values and negative density readings for anhydrite beds (EI 
and E2). See text for explanation. Compare with fig. 26. 



able on the gamma ray log. Locally, however, the basal Shore 
Airport is a sandstone and conglomerate (Clair, 1948, 1949; 
Veroda, 1959; Fugitt and Wilkinson, 1959). In this case, the 
Shore Airport neutron-density logs are similar to those of the 
Ste. Genevieve, but the sandstone typically has higher poros­
ity than the tight quartzose grainstone (e.g. , Southland #1-19 

FIGURE 26-GAMMA-RA Y AND NEUTRON-DENSITY LOGS FROM THE 
FLYNN#31-l SHAw(sec. 31 , T.31 S. , R.34W.). Note the fairly 
low gamma-ray values and numerous minor shale kicks of the 
breccia and the corresponding lower density readings relative 
to neutron readings. These log signatures are calibrated to the 
cored breccias in the Amoco #3 Wilson A (sec. 30, T. 30 S., R. 
33 W.) approximately 9 miles (14.4 km) to the northeast. 
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Hampton, sec. 19, T. 34 S. , R. 34 W.). In sonic logs, the top 
of the Ste. Genevieve is marked by low velocity of the first 
prominent shale bed (fig. 3). 

Mississippian-Pennsy I vanian 
Boundary 

The Mississippian-Pennsylvanian boundary in south­
western Kansas is a highly erosional disconformity (e.g., 
Thompson and Goebel, 1968). The Shore Airport in the 
Mobil #1 Foster is overlain by the Kearny Formation 
(Morrowan) (cf. Swanson, 1978, his fig. 5). To the north and 
east, however, the Upper Mississippian is overlain by the 
"Gray group" (cf. Youle, 1991) and the Cherokee Group 
(Desmoinesian) (Goebel and Stewart, 1979). 

The Kearny Formation consists of interbedded shales, 
sandstones, and carbonates (Mc Manus, 1959; Swanson, 1978). 
The lower Kearny consists of shales interbedded with dolo­
mitic calcareous sandstones and dolomitic arenaceous car­
bonates (McManus, 1959). Reworked Mississippian 
lithoclasts are common at the base of the Pennsylvanian. 
These conglomerates are interpreted as a transgressive lag 
that formed as the seas flooded the previously subaerially 
exposed shelf (cf. Youle, 1991). Log signatures of dolomitic 
sandstones and carbonates typically have low gamma-ray 
values and higher density porosity than neutron porosity 
(figs. 25 and 26). 

The contact of the Kearny and Shore Airport Formations 
is locally difficult to place. Character of this boundary is 
variable because of the highly erosional unconformity that 
separates Mississippian and Pennsylvanian strata. Addition­
ally, lower Kearny sandstones and carbonates are locally 
difficult to resolve from argillaceous limestones of the Shore 
Airport (McManus, 1959). The Kearny commonly contains 
significantly more shale and sandstone than the underlying 
Shore Airport. 

In the eastern and northern Hugoton embayment, the 
Shore Airport is directly overlain by carbonates and thin 
shales of the Atokan? "Gray group"(Youle, 1991) (e.g., 
Pendleton #1 Schauf, sec. 16, T. 27 S., R. 29 W., Gray 
County) or the siliciclastic-dominated Desmoinesian Chero­
kee Group (e.g., Alma #1 Watchorn, sec. 13, T. 15 S., R. 33 
W., Logan County). "Gray group" carbonates are commonly 
less argillaceous and the shales are more radioactive than are 
the limestones and shales of the underlying Shore Airport. 
This produces more contrast in "Gray group" gamma-ray log 
signatures relative to the Shore Airport. In cases where the 
Shore Airport has been eroded (fig. 4 ), the Ste. Genevieve or 
the St. Louis are directly overlain by Morrowan, Atokan, or 
Desmoinesian strata. The increased siliciclastic component 
of Pennsylvanian strata makes this a reliable log pick in many 
areas because Pennsylvanian strata typically have higher 
gamma-ray log values (figs. 25 and 26). 
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TABLE 3-CONODONTS RECOVERED AT VARIOUS INTERVALS FROM THE MOBIL #1 FosTER (sec. 5, T. 34 S., R. 36 W.). Formation and member 
boundaries determined independently of conodont biostratigraphy. Conodont identification by Richard Lane of Amoco. 

Interval (ft) 

6909---6910.0 

6906---6907 

6902---6903 

6888---6889 

6878 
6825 
6815 

6811.5---6812.5 
6806.5-6807 .5 

Identification Number of 
Specimens 

Cavusgnathus altus 1 
Taphragnathus 23360 3 
Spathognathodus eoscitulus 
Indeterminant conodonts 17 
Apatognathus n. sp. A. 5 
Cavusgnathus altus 1 
Taphrognathus 23360 2 
Taphrognathus varians 2 
Spathognathodus penescitulus 
Spathognathodus eoscitulus 
Indeterminant conodonts 21 
Taphragnathus 23360 5 
Cavusgnathus unicornis 2 
Apatognathus n. sp. a 2 
Spathognathodus penescitulus 1 
Indeterminant conodonts 12 
Taphragnathus 23360 
Apatognathus n. sp. a 
Indeterminant conodonts 10 
Indeterminant conodonts 2 
Indeterminant conodonts 3 
Apatognathus geminus 3 
Apathognathus porcatus 
Cavusgnathus unicornis 
Taphragnathus 23360 2 
Spat ho gnathodus penescitulus 
Indeterminant conodonts 26 
Barren of conodonts 
Taphrognathus 23360 
Indeterminant conodonts 7 

Top of the Hugoton Member of the St. Louis Limestone (6804 ft) 

6803-6804 

6790---6791 

6783-6784.5 

(continued next column) 

Apatognathus geminus 
Cavusgnathus unicornis 
Cavusgnathus altus 
Spathognathodus scitulus 
Spathognathodus cristulus 
Indeterminant conodonts 
Spathognathodus scitulus 
Apatognathus geminus 
Apathognathus porcatus 
Indeterminant conodonts 
Spathognathodus penescitulus 

3 
4 
3 
4 
2 

14 
4 
4 

11 

Interval (ft) 

6772 
6761-6762.5 
6752.5---6753.5 

6743.5---6744.5 
6740---6741 

6737.0 
6732-6733 
6729.0---6730 
6722.5---6723.5 

6713---6714 

6710---6711 

6699---6700 

6690 
6686.0 
6662.5---6663.5 

6661-6662 

Identification 

Taphrognathus 23360 
Cavusgnathus sp. 
Indeterminant conodonts 
Indeterminant conodonts 
Barren of conodonts 

Number of 
Specimens 

1 
5 
5 

Spathognathodus penescitulus 2 
Indeterminant conodonts 7 
Barren of conodonts 
Cavusgnathus altus 
Cavusgnathus sp. 1 
Spathognathodus cristulus 2 
Indeterminant conodonts 18 
Barren of conodonts 
Magnilateralla rohusta 
Ligonodina levis 
Spathognathodus scitulus 
Gnathoduscommutatus commutatus 1 
Cavusgnathus altus 1 
Magnilateralla rohusta 2 
Apathognathus porcatus 
Indeterminant conodonts 19 
Cavusgnathus altus 2 
Indeterminant conodonts 6 
Cavusgnathus unicornis 1 
Indeterminant conodonts 10 
Cavusgnathus unicornis I 
Indeterminant conodonts 3 
Barren of conodonts 
Barren of conodonts 
Cavusgnathus unicornis 
Cavusgnathus offset 
Indeterminant conodonts 
Cavusgnathus unicornis 
Cavusgnathus sp. 
Neopriontiodus sp. 
Ligonodina sp. 
Indeterminant conodonts 

4 
2 
2 

2 
18 

Top of the Stevens Member of the St. Louis Limestone (6660 ft) 

6649---6650 
6643 
6640---6641 
6632-6633 

Barren of conodonts 
Barren of conodonts 
Barren of conodonts 
Barren of conodonts 
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Biostratigraphy 

Conodont biostratigraphy has been extensively used in 
conjunction with lithostratigraphic studies of Mississippian 
strata in Kansas (e.g., Thompson and Goebel, 1963, 1968). 
Definition of lithostratigraphic boundaries should be inde­
pendent of biostratigraphic zones. Formations are rock­
stratigraphic units defined by lithofacies. Conodont data, 
however, are useful in several ways. Comparison of con­
odont fauna from a correlative lithofacies on different parts 
of the shelf can indicate diachroneity, if resolution is suffi­
cient. Conodont data are useful in comparison of lithofacies 
from different basins, for example to test whether St. Louis 
and Ste. Genevieve strata are roughly coeval in the Hugoton 
embayment and the Illinois basin. Thompson and Goebel 
(1968, p. 19) report that St. Louis and Ste. Genevieve strata 
in Kansas are "synchronous with the equivalent formations in 
the Mississippi River Valley" region based on conodonts. In 
addition, conodont biostratigraphy can help constrain 
lithostratigraphic correlations. Biostratigraphy combined 
with regional correlations indicates that the base of Mobil# 1 
Foster was not in the Salem Limestone as reported on the 
scout card (Abegg, 1991 ), but is instead the porous carbonate 
between the Hugoton Member El and E2 anhydrite. 

The influence of environmental factors on conodont 
distribution is a concern in biostratigraphy. This concern is 
minimized in correlating between similar depositional set­
tings. The general coincidence of Mississippian biostrati­
graphic and lithostratigraphic boundaries in Kansas (Thomp­
son and Goebel, 1968) suggests that facies dependency is a 
strong possibility or that diachroneity is lacking. 

Samples from the base of the Mobil #1 Foster core 
contain both Taphrognathus and Cavusgnathus (table 3). In 

the type area, the lower St. Louis Limestone corresponds to 
the upper part of the Taphrognathus varians-Apatognathus? 
(Warsaw Formation to lower St. Louis Limestone) zone 
(Collinson et al., 1971). The upper St. Louis Limestone 
corresponds to the Apatognathus scalenus-Cavusgnathus 
zone (Collinson et al., 1971). The boundary between these 
zones is distinguished by the earliest occurrence of common 
Cavusgnathus and Apatognathus, and the last occurrence of 
Taphrognathus (Collinson et al., 1971). The exact location 
of this biostratigraphic boundary in the Foster core is uncer­
tain. Judging by more reliable first occurrences, the lower­
upper St. Louis Limestone biostratigraphic boundary in the 
Mobil #1 Foster core is somewhere in the upper part of the 
Hugoton Member. In the type area, the St. Louis-Ste. 
Genevieve lithostratigraphic boundary corresponds to the 
base of the Gnathodus bilineatus-Cavusgnathus charactus 
zone (Ste. Genevieve Limestone to Cypress Sandstone) 
(Collinson et al., 1971 ). The lower boundary of this zone is 
marked by the last common occurrences of Apatognathus 
andSpathognathodus scitulus(Collinsonetal., 1971). Above 
the quartzose grainstone at the base of the Stevens Member, 
these conodonts are absent, suggesting the quartzose 
grainstone (6,710 ft [2,013 m] core depth) approximates the 
base of the Gnathodus bilineatus-Cavusgnathus charactus 
zone. No conodonts were recovered from the Ste. Genevieve 
Limestone of the Foster core because most samples were 
taken from restricted shelf facies that are generally barren of 
fossils. Conodonts from Mobil #1 Foster indicate that 
lithostratigraphic boundaries in southwestern Kansas are 
roughly synchronous with equivalent formations in the Illi­
nois basin. 

Summary 

1. Mobil #1 Foster (sec. 5, T. 34 S., R. 36 W.) contains 
six lithofacies representative of the St. Louis and Ste. 
Genevieve Limestones across much of the Hugoton 
embayment: 1) peloid grainstone/packstone, 2) anhydrite, 3) 
dolomite, 4) skeletal packstone/ wackestone, 5) oolitic 
grainstone/packstone, and 6) quartzose grainstone. 

2. The uppermost Salem Limestone is characterized by 
dolomitic skeletal and oolitic limestones. The overlying St. 
Louis Limestone is commonly divisible into the Hugoton and 
Stevens Members. The Hugoton is the lower member, and 
the type section contains primarily peloidal limestone, dolo­
mite, anhydrite. Breccia and algal boundstone are common 
facies elsewhere in southwestern Kansas. Strata of the 
Stevens Member are dominantly skeletal limestone. Addi­
tionally, uppermost St. Louis strata contain oolitic limestone. 
Ste. Genevieve Limestone strata are recognized by the lowest 
prominent quartz-rich limestone. The overlying Shore Air-

port Formation typically contains argillaceous limestone and 
intercalated calcareous shale. 

3. Abundant peloids, evaporites, and paucity of stenoha­
line marine organisms in the Hugoton Member of the St. 
Louis indicate that the peloid grainstone/packstone, anhy­
drite, and dolomite facies were deposited in a restricted 
lagoon. Subadjacent oolitic facies in the uppermost Salem 
suggests that shoals created barriers to circulation in a 
backshoal lagoonal environment. 

4. Periodic winnowing, intercalated oolites, and a di­
verse and abundant assemblage of echinoderms, brachio­
pods, and bryozoans indicate upper St. Louis skeletal 
packstone/wackestone in the Stevens Member of the St. 
Louis was deposited in a normal-marine shelf environment at 
or near fair-weather wave base. Stevens Member oolitic 
grainstone/packstone, the reservoir facies, accumulated in a 
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highly agitated, marine-shoal environment, probably at depths 
less than 15 ft (5 m). 

5. A quartzose grainstone 3.8 ft (1.2 m) thick in the 
Stevens Member contains abundantrhizoliths and ubiquitous 
climbing translatent strata with dips less than 7°, indicating 
deposition by a vegetated eolian sand sheet. 

6. A quartzose grainstone 9.4 ft (2.9 m) thick in the basal 
Ste. Genevieve lacks rhizoliths and consists of abundant 
climbing translatent, common grainfall, and minor grainflow 
stratification in crossbed sets up to 1.5 ft (0.5 m) thick with 
dips as high as 24'. This cross bedding and the apparent 
absence of vegetation indicate deposition by eolian dunes. 
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