STATE GEOLOGICAL SURVEY OF KANSAS

RAYMOND C. Moore, Ph.D., Sc.D. State Geologist and Director of Research

JOHN C. FRYE, Ph.D. Executive Director

BULLETIN 70

1947 REPORTS OF STUDIES

Printed by Authority of the State of Kansas

Distributed from Lawrence

University of Kansas Publications 1947

STATE OF KANSAS

FRANK CARLSON, Governor

STATE BOARD OF REGENTS

LA VERNE B. SPAKE, Chairman

JERRY E. DRISCOLL FRED M. HARRIS MRS. ELIZABETH HAUGHEY WILLIS N. KELLY LESTER McCoy DREW McLauglin GROVER POOLE OSCAR STAUFFER

MINERAL INDUSTRIES COUNCIL

JOHN ALLISON, Chairman M. L. BREIDENTHAL HOWARD CAREY LESTER MCCOY J. E. MISSIMER JOHN GARLOUGH BRIAN O'BRIAN, Vice-Chairman J. A. Schowalter Chester Scott K. A. Spencer W. L. Stryker B. O. Weaver

STATE GEOLOGICAL SURVEY OF KANSAS

DEANE W. MALOTT, M.B.A., LL.D., Chancellor of the University of Kansas, and ex officio Director of the Survey

RAYMOND C. MOORE, Ph.D., ScD. State Geologist and Director of Research

JOHN C. FRYE, Ph.D. Executive Director

BASIC GEOLOGY
STRATIGRAPHY, AREAL GEOLOGY, AND
PALEONTOLOGY
John M. Jewett, Ph.D., Geologist
Lowell R. Laudon, Ph.D., Geologist*
A. B. Leonard, Ph.D., Zoologist*
Marjorie Bradley, Stenographer
Virginia C. Perkins, B.A., Assistant

PUBLICATIONS AND RECORDS
Betty J. Hagerman, Secretary
Grace Muilenburg, B.S., Draftsman
Dorothy M. Jindra, B.F.A., Draftsman
Bernice C. McClintock, Typist

MINERAL RESOURCES
SOUTHEAST KANSAS FIELD OFFICE
George E. Abernathy, E.M., Ph.D.,
Geologist
Christine Notari, Stenographer
COAL AND MINERAL STATISTICS
Walter H. Schoewe, Ph.D., Geologist

MINERAL RESOURCES

OIL AND GAS GEOLOGY
EAR! K. Nixon, A.B., Geologist
Vivian Barnes, Stenographer
Walter A. Ver Wiebe, Ph.D., Geologist*
Arden D. Brown, Well Sample Curator
WICHITA WELL SAMPLE LIBRARY
Ethelyn McDonald, M.A., Well Sample

Ethelyn McDonald, M.A., Well Sample Curator
Permelia Henderson, Clerk

Permelia Henderson, Cierk
Industrial Minerals and Ceramics
Norman Plummer, A.B., Ceramist
Ada Swineford, M.S., Geologist
Robert M. Dreyer, Ph.D., Geologist*
Russell Runnels, B.S., Chemist
Marjorie Utter, B.S., Chemist
E. D. Kinney, M.E., Metallurgist*
William B. Hladik, Laboratory Tech.
W. P. Ames, A.B., Laboratory Assistant
Ethel W. Owen, Laboratory Assistant
Carrie B. Thurber, Laboratory Assistant

COOPERATIVE PROJECTS WITH UNITED STATES GEOLOGICAL SURVEY

GROUND-WATER RESOURCES
V. C. Fishel, B.S., Engineer in Charge
Alvin R. Leonard, A.B., Geologist
Howard G. O'Connor, B.S., Geologist
Glenn C. Prescott, M.S., Geologist
Delmar W. Berry, A.B., Geologist
Charles K. Bayne, A.B., Instrumentman
W. W. Wilson, Scientific Aide
Wilma Howard, Stenographer
Janet Stevens, Stenographer

MINERAL FUELS RESOURCES Wallace Lee, E.M., Geologist in charge

TOPOGRAPHIC SURVEYS
C. L. Sadler, Division Engineer
Max J. Gleissner, Section Chief
J. P. Rydeen, Topographer

Special Consultants: Ray Q. Brewster, Ph.D., Chemistry; Eugene A. Stephenson, Ph.D., Petroleum Engineering.

COOPERATING STATE AGENCIES: State Board of Agriculture, Division of Water Resources, George S. Knapp, Chief Engineer; Robert Smrha, Assistant Chief Engineer; State Board of Health, Division of Sanitation, Ben Williamson. Chief Engineer and Director, Ogden S. Jones, Geologist.

* Intermittent employment only.

1947 REPORTS OF STUDIES

CONTENTS

PA	RT	PAGE
1.	COAL RESERVES IN KANSAS, by G. E. Abernathy, J. M. Jewett, and W. H. Schoewe (March 15, 1947)	. 1
2.	Magnetic Survey of the Bala Intrusive, Riley County, Kansas, by Robert M. Dreyer (June 15, 1947)	. 21
3.	THE LATE PLEISTOCENE LOESSES OF CENTRAL KANSAS, by John C. Frye and O. S. Fent (September 15, 1947)	. 29
4.	CEMENTED SANDSTONES OF THE DAKOTA AND KIOWA FORMATIONS IN KANSAS, by Ada Swineford (November 15, 1947)	. 53
5.	Magnetic Survey of Southeastern Crawford County, Kansas, by Robert M. Dreyer (December 15, 1947)	.105

STATE GEOLOGICAL SURVEY OF KANSAS BULLETIN 70 1947 REPORTS OF STUDIES, PART 1, PAGES 1-20, FIGURES 1, 2 MARCH, 1947

COAL RESERVES IN KANSAS

By G. E. ABERNATHY, J. M. JEWETT, and W. H. SCHOEWE

CONTENTS

	PAGE
Abstract	3
Introduction	3
OCCURENCE AND NATURE OF THE COALS	5
OCCURRENCE AND NATURE OF THE COALS	5
Pennsylvanian coals	5
Coals of the Cherokee group	5
Coals of the Marmaton group	10
Coal of the Kansas City group	10
Coals of the Douglas group	
Coals of the Wabaunsee group	
Permian coal	
Cretaceous coal (lignite)	
Coal Reserves	12
Methods of computing coal reserves	13
SELECTED REFERENCES ON KANSAS COAL	

ILLUSTRATIONS

FI	GURE	PAGE
1.	Map of eastern Kansas showing distribution of coal-bearing group of strata	в 4
2.	Generalized geologic column of coal-bearing rocks of Kansas	8-9
	TABLES	
1.	Minimum thickness and maximum depths of shaft-mined coal	13
2.	Proved coal reserves by counties	14
3.	Proved coal reserves by beds	15
4.	Potential coal reserves by counties	17
5.	Potential coal reserves by beds	18

1

ABSTRACT

This report gives results of a detailed study of the coal reserves in Kansas; it includes data on the proved and potential reserves by beds and by counties of all bituminous coal beds in the state. Brief descriptions of coal-bearing groups of rocks with their interbedded coals are given as well as a short description of methods used in calculating the reserves. The proved coal reserves in Kansas are about 949,323,000 tons. The state's potential coal reserves are about 17,574,000,000 tons.

INTRODUCTION

Coal ranks fourth among the mineral resources of Kansas. The cumulative production in the state compiled from records of the U. S. Bureau of Mines and the State Mine Inspection Department to the end of 1945 is 251,596,368 tons. The proved coal reserves in Kansas are calculated to be about 949,323,000 tons and are sufficient to last 250 years if mined at the average rate of production for the 5-year period 1940-1944. The proved coal reserves in Kansas include 60,000,000 tons which can be produced by strip-mining methods under present conditions. The coal produced in 1945 by strip-mining methods was 2,904,990 tons; therefore, the present rate of strip-coal production can be maintained under the present mining conditions for a period of about 30 years. The coal produced in 1945 by shaft or underground mining methods was 303,504 tons. The state's potential coal reserves are about 17,574,000,000 tons.

Present coal mining is restricted to the eastern part of the state (Fig. 1) where the coal beds occur at the surface or at comparatively shallow depths. Production of coal comes mainly from the following three areas: (1) the Southeastern Kansas field, which includes Labette, Cherokee, Crawford, Bourbon, and Linn Counties; (2) the Osage field, in Osage and Coffey Counties; and (3) the Leavenworth field, in Leavenworth County. The greatest amount of coal—88 percent—is obtained by stripping methods, whereas only 12 percent is shaft or deep mine coal. All commercial coal mined at present in Kansas is Pennsylvanian in age. Many of the coal beds that occur at the surface or at comparatively shallow depths are too thin to be of commercial importance at the present time; therefore, the actual mining areas or coal fields comprise only a relatively small part of the outcrop area of the coal-bearing rocks. A small amount of Permian coal was formerly mined in Wabaunsee County and about 200,000 tons of Cretaceous lignite have been ob-

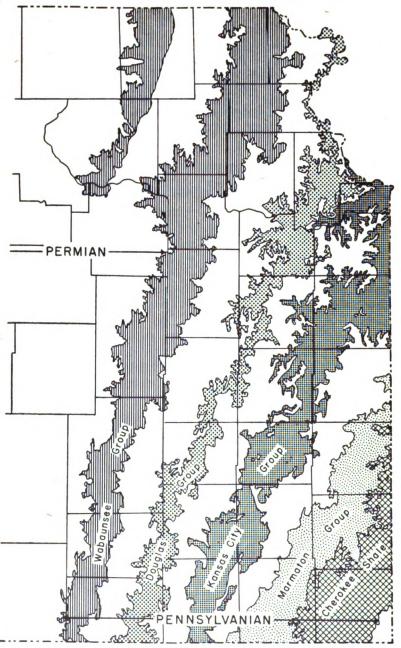


Fig. 1. Map of eastern Kansas showing distribution of coal-bearing groups of strata.

tained from the north-central part of the state. The lignite deposits of central Kansas are now being studied by the Geological Survey.

This report presents data on the proved and potential coal reserves of Kansas by beds and by counties. All bituminous coal beds in the state are treated. Brief descriptions of coal-bearing groups of rocks with their interbedded coals are given, as well as a short description of methods used in calculating the reserves.

OCCURRENCE AND NATURE OF THE COALS

Pennsylvanian Coals

All bituminous coal reserves in Kansas, with the exception of 40,000 tons of proved reserves in Permian rocks, occur in five of the 10 groups of rocks assigned to the Pennsylvanian System (Fig. 2). The groups, named in the order of their proved coal reserves, are Cherokee, Wabaunsee, Marmaton, Kansas City, and Douglas. These strata contain at least 53 beds of coal, of which 14 are being mined at present. In former years some other Pennsylvanian coal beds were mined also.

Coals of the Cherokee group.—The Cherokee shale is the oldest group of coal-bearing rocks in Kansas and includes the Pennsylvanian rocks between the base of the Fort Scott limestone and the upper unconformable surface of the Mississippian rocks. It consist of light- and dark-colored shale, sandy shales, sandstones, at least 14 beds of coal, and a few thin beds of limestone. The thickness of the Cherokee shale in areas of the coal reserves of southeastern Kansas ranges from 280 to 500 feet.

Rocks of the Cherokee shale crop out in a broad band in southeastern Kansas extending from eastern Labette County to southeastern Bourbon County. Of the coals in the Cherokee shale, 12 have been mined and 9 are commercially important. The most economically important beds are the Weir-Pittsburg, Mineral, Bevier, and Mulky. The coal beds of the Cherokee, named in ascending order, are Riverton, Neutral, Columbus, Rowe, Knifeton, Weir-Pittsburg, "Pilot," Scammon, Mineral, Fleming, Coalvale, Croweburg, Bevier, and Mulky. These beds range in thickness from very thin beds to the thick Weir-Pittsburg bed, which locally attains a thickness of 60 inches. The coal beds of the Cherokee group have been discussed by Pierce and Courtier (1937) and by Abernathy (1946).

The Riverton coal lies below the Little Cabin sandstone member and is normally 5 to 20 feet above the base of the Cherokee shale in the area of its outcrop. It ranges from 3 to 14 inches in thickness and has been mined locally in the area of its outcrop in Cherokee County.

The Neutral coal consists of two beds, each about 10 inches thick, separated by about 3 feet of clay. The coal is known to occur only in its outcrop area in southern Crawford and northern Cherokee Counties where it has been mined for local use.

The Columbus coal ranges in thickness from 6 to 14 inches. It underlies the Bluejacket sandstone and lies about 200 feet above the base of the Cherokee shale. It is mined locally by strip mines in Cherokee County.

The Rowe coal consists of an upper 14-inch bed, which is separated from the lower 4-inch bed by about 2 inches of clay-shale parting. This coal crops out east and south of Pittsburg in Crawford and Cherokee Counties. It has been mined locally on a small scale for many years; however, recent exploration has proved a large area of commercial coal.

The Knifeton coal, about 7 inches thick, occurs about 14 feet above the Rowe coal. It has been mined locally in Crawford County but is not commercially important.

The Weir-Pittsburg bed ranges in thickness from 34 to 60 inches. It is the thickest and has supplied more coal than any other coal bed in the state. The interval from the Weir-Pittsburg coal to the base of the Cherokee shale ranges from 175 to 250 feet, and the interval to the top of the Cherokee shale ranges from 200 to 275 feet. This coal, which has also been called the "Cherokee bed" and the "Lower bed," crops out from the state line east of Arcadia in Crawford County to 2 miles north of Columbus in Cherokee County, a distance of about 50 miles. The coal bed dips northwest about 20 feet to the mile. In Montgomery County the coal lies at a depth of about 600 feet and in Leavenworth County it is more than 1,100 feet deep. The bed has large reserves in Leavenworth, Crawford, Cherokee, Labette, and Montgomery Counties. The reserves of this bed of coal were estimated to be 233,383,000 tons in 1925 from an original total reserve of 295,622,000 tons (Young, 1925, p. 21). Recent work indicates the present proved reserves of this bed of coal to be 362,660,000 tons, and the potential reserves to be 4,128,000,000 tons. At the present time most of the coal produced

from this bed is by stripping methods. In 1945, a total of 538,645 tons of coal was produced from the Weir-Pittsburg bed.

The Mineral coal bed has been called the "Upper Weir-Pittsburg," "Twenty-two Inch," and "Upper Cherokee" and has been erroneously known as the "Lightning Creek." The bed lies about 65 or 80 feet above the Weir-Pittsburg coal. In the outcrop area and near-by areas in Crawford, Cherokee, Labette, and Montgomery Counties, the coal bed ranges in thickness from 18 to 24 inches and has an average thickness of 22 inches. More coal is currently being produced from this bed than from any other bed in the state. A few shallow shaft mines have produced coal from this bed; however, practically all of the production is obtained by stripmining methods. The annual production of coal from this bed is more than 1,000,000 tons.

The Fleming coal bed is extremely variable in thickness and occurrence. Where present, the bed commonly lies 10 to 20 feet above the Mineral coal and has an average thickness of about 12 inches in its outcrop area in Crawford and Cherokee Counties.

The Croweburg coal, which lies about 25 feet above the Mineral coal, has an average thickness of about 12 inches. The coal has been called "Fireclay," "Huntsinger," and "Mud Seam." The coal bed is commonly overlain and underlain by beds of typical underclay commonly called "fireclay." The coal bed is also commonly associated with a band of large black siliceous limestone concretions, 18 inches to 36 inches in diameter, which lie only a few feet above the coal bed.

The Bevier coal bed is known locally as the "Drywood Seam," "Pioneer Seam," "Limestone Bed," and "Lightning Creek Bed." The Bevier coal has an average thickness of about 18 inches and lies just above the Ardmore limestone, which is commonly about 100 feet below the top of the Cherokee shale. In Kansas, the Bevier coal now ranks second in importance in anual production. Its outcrop area is in Crawford and Cherokee Counties. The Bevier coal has been mined by deep-mining methods in Leavenworth County, where it lies at a depth of about 750 feet and ranges in thickness from 19 to 22 inches.

The Mulky coal bed lies 3 to 5 feet below the top of the Cherokee shale. Its average thickness in the outcrop area ranges from 8 to 12 inches. It is variable in thickness and occurrence. The coal is locally called "Bunker Hill," "Fort Scott," and "Red" coal. It has

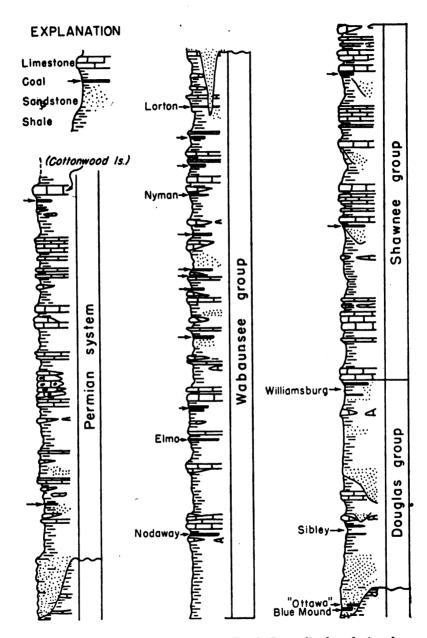
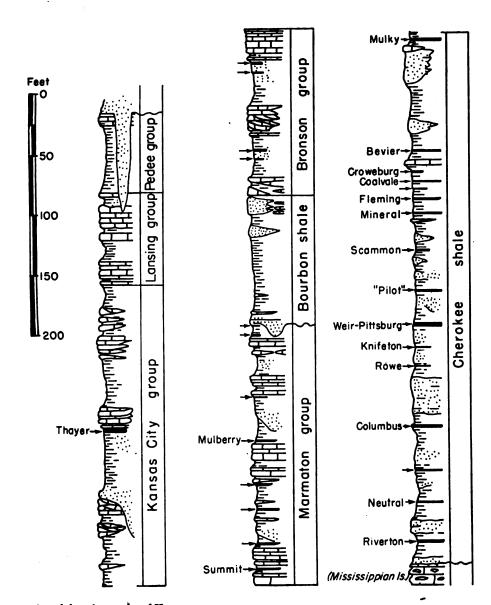



Fig. 2. Generalized geologic column

of coal-bearing rocks of Kansas.

been extensively mined by stripping in southern Bourbon and northern Crawford Counties.

Coals of the Marmaton group.—The Marmaton group of rocks consists of approximately 250 feet of shale, limestone, sandstone, and several beds of coal.

The Summit coal, where present, lies in the Little Osage shale member of the Fort Scott limestone. It is persistent from northern Crawford County northeastward into Missouri, but it is not commercially important in Kansas. There are several thin non-commercial coal beds in the Labette shale.

The Mulberry coal bed occurs in the lower part of the Bandera shale, only a few feet above the Pawnee limestone. The coal ranges in thickness from 5 inches in the southern part of Bourbon County to 40 inches in northern Linn County. The bed commonly contains a seam of pyrite or a layer of flat pyrite nodules or concretions which lies about 15 inches above the base of the coal. It is mined in Linn County.

Coal of the Kansas City group.—The Kansas City group consists of approximately 275 feet of strata, of which about 70 percent is shale and sandstone and 30 percent is limestone (Fig. 2). The only coal of commercial importance occurring in the group is the Thayer coal in the Chanute shale. This bed ranges in thickness from a thin streak to about 29 inches. One to three clay or shale partings separate the coal into distinct layers, although where mined the coal most commonly consists of two beds. The coal is overlain everywhere by sandstone or shale and is underlain by shale. Mining activities of the Thayer bed are in the vicinity of Thayer in Neosho and Wilson Counties. The Thayer coal bed has been discussed by Schoewe (1944).

Coals of the Douglas group.—Rocks of the Douglas group crop out from Atchison and Leavenworth on the Missouri River to Chautauqua County. Several relatively thin beds of coal are included in these rocks and at least six have been mined. The proved reserves, 15,886,000 tons, occur in the Blue Mound, Lower and Upper Sibley, and Lower and Upper Williamsburg beds (Tables 2 and 3). Potential reserves, amounting to 41,000,000 tons (Tables 4 and 5), are included in the same beds and in the "Ottawa" bed. The coal resources of the Douglas group have been discussed by Bowsher and Jewett (1943).

The **Blue Mound** coal crops out in Douglas County 6 to 8 miles southeast of Lawrence near Blue Mound and Sibley. The maximum

known thickness of the bed is about 14 inches. The coal has been used as locomotive fuel and is of fair quality.

The "Ottawa" coal is at about the same stratigraphic positions as the Blue Mound coal (Fig. 2), and occurs southwest of Ottawa, Franklin County. The maximum thickness is probably not more than 10 inches.

The Sibley coals are regarded as minable in Leavenworth County where the lower seam has a maximum known thickness of 13 inches and the upper bed 20 inches.

The Williamsburg coal beds are minable in Franklin, Osage, Coffey, Anderson, Greenwood, and Woodson Counties. The Upper Williamsburg coal has been mined more extensively than have the other coals in Douglas rocks. Most of the operations have been near Williamsburg and Ransomville, Franklin County. The maximum known thickness of the upper bed is about 26 inches.

Coals of the Wabaunsee group.—The Wabaunsee group, the youngest or uppermost group of Pennsylvanian strata in Kansas, includes about 500 feet of shale, sandstone, and limestone. There are at least 12 coal beds in this group (Fig. 2), of which the lowermost or Nodaway coal is at the present time the only one of commercial importance. At least five coals — the Nodaway, Cedar Creek coal in the Willard shale, an unnamed coal in the Wamego shale, Nyman, and Lorton—are known to have been mined. The other coals are thin and unminable.

The Nodaway coal occurs in the basal part of the Howard limestone formation and has been traced almost continuously across the entire north-south width of the state along the strike of the Howard limestone formation from Doniphan and Nemaha Counties to the Kansas-Oklahoma state line in Chautauqua County. The Nodaway coal has been mined in Atchison, Doniphan, Nemaha, Jefferson, Shawnee, Osage, Coffey, Elk, and Greenwood Counties. The coal consists of a single bed and ranges in thickness from a streak to 36 inches, averaging 18 inches. Although formerly mined extensively in 10 counties in eastern Kansas, the Nodaway coal today is mined commercially only in Osage and Coffey Counties.

The Elmo coal is next in importance. This coal occurs in the upper part of the Cedar Vale shale and can be traced from northeastern Brown County to the Kansas-Oklahoma state boundary in Chautauqua County. The Elmo coal ranges from less than 1 inch to about 30 inches in thickness, averaging 16 inches in Brown

and Shawnee Counties, 17 inches in Atchison County, and 18 inches in Chautauqua County. The coal does not occur everywhere as a single bed but in all other respects is similar to the Nodaway coal.

Other Wabaunsee group coals formerly mined include the Cedar Creek coal in the Willard shale, Cowley County; "Blacksmith Creek" coal in the Wamego shale, Shawnee County; Nyman coal in the Langdon shale, Lyon County; and Lorton coal in the French Creek shale in Lyon, Greenwood, Pottawatomie, and Wabaunsee Counties. Wabaunsee group coals have been discussed by Schoewe (1946).

Proved reserves of the Wabaunsee group coals total 186,750,000 tons, and potential coal reserves amount to 3,685,000,000 tons.

PERMIAN COAL

Permian coal has been mined in the NE¼ sec. 8, T. 14 S., R. 13 E., Wabaunsee County. The coal occurs in the Hawxby shale formation, Admire group, Wolfcampian Series (Fig. 2). The coal is 17 to 34 inches thick, has a high ash content, burns sootless, and has no block seams.

A 6-inch coal bed occurs about 9 feet below the top of the Eskridge shale in the NW cor. sec. 30, T. 1 S., R. 15 E., Brown County. This coal, however, is too thin to be mined. Another 12-inch bed of coal occurs in somewhat higher Permian rocks in sec. 17, T. 12 S., R. 7 E., Geary County.

CRETACEOUS COAL (LIGNITE)

Lignite occurs in the upper 35 feet of the Dakota formation and is known to be present in 14 central Kansas counties. It was formerly mined in Cloud, Ellsworth, Jewell, Lincoln, Mitchell, Republic, and Russell Counties. The lignite ranges from 10 to 40 inches in thickness. Reserves are at present being studied by the State Geological Survey.

COAL RESERVES

This report was compiled in December, 1945, and revised in 1946 from data collected by the State Geological Survey over a period of several years and from drilling records made freely available to the Geological Survey by most of the major coal mining companies operating in Kansas, and especially the Pittsburg

and Midway and the Mackie Clemmens Coal Mining Companies. Records of the Mine Inspection Division of the State Department of Labor were made available to the Survey for use in this study.

The coal reserves of Kansas are divided into proved and potential reserves. The proved coal reserves are shown by counties in Table 2 and by beds in Table 3. The potential coal reserves are shown by counties in Table 4 and by beds in Table 5.

METHODS OF COMPUTING COAL RESERVES

Since no procedure for calculating proved coal reserves has been generally accepted by the various operating companies and scientific agencies, a definite procedure was established by the State Geological Survey of Kansas for determining both the proved and potential coal reserves of the state. As used in this report, the proved coal reserve is coal that lies within arbitrary limits of thickness and distance from a known occurrence. These limits are based on the past experience of the industry and geological observations in Kansas. The potential reserve is determined by regional stratigraphic projection. The methods of computing coal reserves are briefly described below:

- (a) Minimum thickness of coal bed considered for proved strippable coal and all potential coal is 10 inches.
- (b) Reserve coal is considered to amount to 125 tons per acreinch of coal.
- (c) Preparation and mining losses were not considered; the calculated reserves are tons of coal in place.
- (d) Maximum depth of strippable coal included in the calculations is 60 feet or the ratio of overburden to be stripped to coal is not more than 35 cubic yards to 1 ton of coal.
- (e) Minimum thickness of reserve coal considered minable at various depths by underground methods is shown in Table I.

Table 1.—Maximum depth to coal per minimum thickness of coal beds considered minable by underground methods in Kansas

Maximum depth to coal, feet	Minimum thickness of coal, inches
100	16
150	18
200	22
600	32
1,200	36

(f) The method of computing an area of proved coal reserves is based on the following. A known thickness of coal at an outcrop, at a drill hole, or in a mine is regarded as proving the presence of coal having the same thickness under 1 square mile. Two or more known occurrences of the same coal bed 4 miles or less apart and lying in the general direction of the strike are regarded as proving the coal bed to be continuous between these points. In the calculation of potential reserves, known thickness of coal at an outcrop, at at drill hole, or in a mine is regarded as indicating the presence of coal of the same thickness under 400 square miles. The areas of both potential and proved coal reserves calculated by these methods were in most cases greatly reduced from their maximum size by the location of drill holes or outcrops which indicated poor coal, thin coal, or no coal; by areas where the coal has been removed by erosion; or areas that extend across the state line.

TABLE 2.—Proved coal reserves by counties

County	Geological rock division	Coal bed	Coal reserves, in thousands of tons	
-			Bed	County total
Atchison	Wabaunsee do Douglas Cherokee	Elmo Nodaway Williamsburg ¹ Miscellaneous	9,906 1,410 1,920 8,030	21,266
Bourbon	Marmaton Cherokee do	Mulberry Mulky Bevier	8,320 5,760 7,920	22,000
Brown	Wabaunsee	Elmo Miscellaneous	23,167 280	23,447
Chautauqua	Wabaunsee	Elmo	5,725	5,725
Cherokee	Cherokee do do do do do do	Bevier Fleming Mineral Weir-Pittsburg Rowe Columbus Miscellaneous	14,080 500 47,620 86,400 4,800 5,760 1,000	160,160
Coffey	Wabaunsee	Nodaway	11,324	11,324
Cowley	Wabaunsee	Miscellaneous	6,790	6,790
Crawford	Cherokee do do	Mulky Bevier Croweburg	2,400 21,120 1,000	

	0
	0
	5
	SI
-	=
m	-
0	ā
_	#
	46
	Ü
\cup	S
\equiv	3
_	
_	S
N	(0)
N	S
	Ü
2	Ō
_	Ō
ŦĨ.	Œ
D	
ĕ	6
-	
	_
0	
0	
	S
a	~1
Œ	Ë
	+
0	2
\simeq	$\dot{=}$
	O
\	
	-
S	\rightarrow
ď	<
	2
+	-
\vdash	_
	_
	0
	1
_	+-
\	Ħ
\	Ħ
\	+-
\ _	Ħ
MT	Ħ
GMT /	Ħ
/ LW5	Ħ
	Ħ
2	/ htt
	d / htt
: 02	ed / htt
1:02	zed / htt
1:02	ized / htt
1:02	zed / htt
21:02	tized / htt
0 21:02	itized / htt
20 21:02	gitized / htt
-20 21:02	itized / htt
9-20 21:02	digitized / htt
-20 21:02	-digitized / htt
9-20 21:02	e-digitized / htt
-09-20 21:02	e-digitized / htt
3-09-20 21:02	le-digitized / htt
23-09-20 21:02	gle-digitized / htt
023-09-20 21:02	ogle-digitized / htt
023-09-20 21:02	oogle-digitized / htt
2023-09-20 21:02	ogle-digitized / htt
2023-09-20 21:02	oogle-digitized / htt
2023-09-20 21:02	oogle-digitized / htt
023-09-20 21:02	, Google-digitized / htt
on 2023-09-20 21:02	s, Google-digitized / htt
s on 2023-09-20 21:02	es, Google-digitized / htt
s on 2023-09-20 21:02	s, Google-digitized / htt
as on 2023-09-20 21:02	tes, Google-digitized / htt
sas on 2023-09-20 21:02	ates, Google-digitized / htt
nsas on 2023-09-20 21:02	tates, Google-digitized / htt
sas on 2023-09-20 21:02	ates, Google-digitized / htt
nsas on 2023-09-20 21:02	States, Google-digitized / htt
nsas on 2023-09-20 21:02	d States, Google-digitized / htt
Kansas on 2023-09-20 21:02	d States, Google-digitized / htt
f Kansas on 2023-09-20 21:02	ed States, Google-digitized / htt
Kansas on 2023-09-20 21:02	ted States, Google-digitized / htt
f Kansas on 2023-09-20 21:02	ited States, Google-digitized / htt
f Kansas on 2023-09-20 21:02	ited States, Google-digitized / htt
y of Kansas on 2023-09-20 21:02	ted States, Google-digitized / htt
ty of Kansas on 2023-09-20 21:02	nited States, Google-digitized / htt
ity of Kansas on 2023-09-20 21:02	United States, Google-digitized / htt
sity of Kansas on 2023-09-20 21:02	e United States, Google-digitized / htt
rsity of Kansas on 2023-09-20 21:02	he United States, Google-digitized / htt
sity of Kansas on 2023-09-20 21:02	e United States, Google-digitized / htt
ersity of Kansas on 2023-09-20 21:02	he United States, Google-digitized / htt
versity of Kansas on 2023-09-20 21:02	the United States, Google-digitized / htt
iversity of Kansas on 2023-09-20 21:02	n the United States, Google-digitized / htt
iversity of Kansas on 2023-09-20 21:02	the United States, Google-digitized / htt
versity of Kansas on 2023-09-20 21:02	in the United States, Google-digitized / htt
iversity of Kansas on 2023-09-20 21:02	in the United States, Google-digitized / htt
University of Kansas on 2023-09-20 21:02	n in the United States, Google-digitized / htt
t University of Kansas on 2023-09-20 21:02	in in the United States, Google-digitized / htt
University of Kansas on 2023-09-20 21:02	ain in the United States, Google-digitized / htt
t University of Kansas on 2023-09-20 21:02	in in the United States, Google-digitized / htt

	5	771 t	0.500	
	do do	Fleming Mineral	2,500 126,590	
	do	Weir-Pittsburg	100,580	
	do	Rowe	9,600	263,790
Doniphan	Wabaunsee	Nodaway	3,984	3,984
Douglas	Douglas	Blue Mound	450	450
Elk	Wabaunsee do	Elmo Nodaway	2,016 1,224	3,240
Franklin	Douglas	Williamsburg	8,000	8,000
Jackson	Wabaunsee	Elmo	2,800	2,800
Jefferson	Wabaunsee	Nodaway	13,600	13,600
Labette	Cherokee	Weir-Pittsburg	146,880	146,880
Leavenworth	Douglas	Sibley Miscellaneous	1,416	00 510
	Cherokee		27,096	28,512
Linn	Kansas City Marmaton	Thayer Mulberry	300 54.391	54.691
Lyon	Wabaunsee	Nodaway	2.800	0 3,002
Lyon	wabaunsee	Miscellaneous	2,722	5,522
Montgomery	Kansas City	Thayer	9,800	
	Cherokee	Weir-Pittsburg	28,800	38,600
Nemaha	Wabaunsee	Nodaway	5,760	5,760
Neosho	Kansas City	Thayer	12,700	12,700
Osage	Wabaunsee	Nodaway	77,720	
	Douglas	Williamsburg	3,100	80,820
Shawnee	Wabaunsee	Elmo	3,953	
	do do	Nodaway Miscellaneous	10,289 1,280	15,522
			1,200	10,022
Wabaunsee	Permian	Unnamed bed in Hawxby shale	40	40
Wilson	Kansas City	Thayer	12,700	12,700
Woodson	Douglas	Williamsburg	1,000	1,000

¹ Bed tentatively identified as Williamsburg.

TABLE 3.-Proved coal reserves by beds

Coal bed	Geological rock oal bed division		Coal reserves, in thousands of tons	
			County total	Bed total
Bevier	Cherokee do do	Bourbon Cherokee Crawford	7,920 14,080 21,120	43,120
"Blue Mound"	Douglas	Douglas	450	450

TABLE 3.—Proved coal reserves by beds (continued)

Coal bed	Geological rock division	County	Coal reserves, in thousands of tons		
			County total	Bed total	
Columbus	Cherokee	Cherokee	5,760	5,760	
Croweburg	Cherokee	Crawford	1,000	1,000	
Elmo	Wabaunsee	Atchison	9,906		
	do	Brown	23,167		
	do	Chautauqua	5,725		
	do do	Elk Jackson	2,016		
	do	Shawnee	2,800 3,953	47,567	
Fleming ·	Cherokee	Cherokee	500		
· ·	do	Crawford	2,500	3,000	
Mineral	Cherokee	Cherokee	47.620		
	do	Crawford	126,590	174,210	
Mulberry	Marmaton	Bourbon	8,320		
	do	Linn	54,391	62,711	
Mulky	Cherokee	Bourbon	5,760		
	do	Crawford	2,400	8,160	
Nodaway	Wabaunsee	Atchison	1,410		
	do	Coffey	11,324		
	do	Doniphan	3,984		
	do	Elk	1,224		
	do do	Jefferson Lyon	13,600 2,800		
	do do	Nemaha	5,760		
	do	Osage	77,720		
	do	Shawnee	10,289	128,111	
Rowe	Cherokee	Cherokee	4,800		
	do	Crawford	9,600	14,400	
Sibley	Douglas	Leavenworth	1,416	1,416	
Thayer	Kansas City	Linn	300		
	do	Montgomery	9,800		
	do	Neosho	12,700	25 500	
	do	Wilson	12,700	35,500	
Weir-Pittsburg	Cherokee	Cherokee	86,400		
	do	Crawford	100,580		
	do do	Labette	146,880	202.000	
	ao	Montgomery	28,800	362,660	
Williamsburg ¹	Douglas	Atchison	1,920		
	do	Franklin	8,000		
	do	Osage	3,100	14.000	
	do	Woodson	1,000	14,020	
Miscellaneous	Cherokee	Atchison	8,030		
	do	Cherokee	1,000		
	, do	Leavenworth	27,096	36,126	

Miscellaneous	Wabaunsee do do do	Brown Cowley Lyon Shawnee	280 6,790 2,722 1,280	11,072
Unnamed bed in Hawxby shale	Permian	Wabaunsee	40	40

¹ Bed tentatively identified as Williamsburg.

TABLE 4.—Potential coal reserves by counties

County	Geological rock division	Coal bed	Coal reserves, in millions of tons		
			Bed	County total	
Atchison	Wabaunsee do Douglas Cherokee	Elmo Nodaway Williamsburg¹ Miscellaneous	137 115 3 1,616	1,871	
Bourbon	Marmaton Cherokee do do	Mulberry Mulky Bevier Croweburg	317 216 216 15	764	
Brown	Wabaunsee	Elmo Miscellaneous	456 224	680	
Chautauqua	Wabaunsee	Elmo	216	216	
Cherokee	Cherokee do do do do do do	Bevier Fleming Mineral Weir-Pittsburg Rowe Columbus Miscellaneous	58 50 141 461 130 77 32	949	
Coffey	Wabaunsee '	Nodaway	15	15	
Cowley	Wabaunsee	Miscellaneous	192	192	
Crawford	Cherokee do do do do do do	Mulky Bevier Croweburg Fleming Mineral Weir-Pittsburg Rowe	8 331 77 30 751 979 21	2,197	
Doniphan	Wabaunsee	Nodaway	47	47	
Douglas	Douglas	Blue Mound	1	1	
Elk	Wabaunsee do	Elmo Nodaway	259 72	331	
Franklin	Douglas do	Williamsburg "Ottawa"	22 1	23	
Greenwood	Wabaunsee	Miscellaneous	62	62	

TABLE 4.—Potential coal reserves by counties (concluded)

County	Geological rock division	Coal bed	Coal reserves, in millions of tons	
			Bed	County total
Jackson	Wabaunsee	Elmo	191	191
Jefferson	Wabaunsee	Nodaway	132	132
Labette	Cherokee do	Mineral Weir-Pittsburg	461 1,920	2,381
Leavenworth	Douglas Cherokee	Sibley Miscellaneous	3,708	3,711
Linn	Marmaton Cherokee	Mulberry Mulky	729 8	737
Lyon	Wabaunsee do	Nodaway Miscellaneous	121 182	303
Miami	Marmaton	Mulberry	123	123
Montgomery .	Kansas City Cherokee do	Thayer Mineral Weir-Pittsburg	170 23 768	961
Nemaha	Wabaunsee	Nodaway	269	269
Neosho	Kansas City	Thayer	25	25
Osage	Wabaunsee Douglas	Nodaway Williamsburg	270 6	276
Pottawatomie	Wabaunsee	Miscellaneous	160	160
Shawnee	Wabaunsee do do	Elmo Nodaway Miscellaneous	256 245 64	565
Wabaunsee	Permian	Unnamed bed in Hawxby shale	156	156
Wilson	Kansas City	Thayer	231	231
Woodson	Douglas	Williamsburg	5	5

¹ Bed tentatively identified as Williamsburg.

TABLE 5.—Potential coal reserves by beds

Coal bed	Geological rock division	County	Coal reserves, in millions of tons	
			County total	Bed total
Bevier	Cherokee do do	Bourbon Cherokee Crawford	216 58 331	605
Blue Mound	Douglas	Douglas	1	1
Columbus	Cherokee	Cherokee	77	77

Coal Reserves in Nansas					
Croweburg	Cherokee	Bourbon	15		
.	do	Crawford	77	92	
Elmo	Wabaunsee	Atchison	137 456		
	ďο	Brown	216		
	do	Chautauqua Elk	259		
	do do	Jackson	191		
	do	Shawnee	256	1,515	
Fleming	Cherokee do	· Cherokee Crawford	50 30	80	
Mineral	Cherokee	Cherokee	141		
112110101	do	Crawford	751		
	do	Labette	461		
	do	Montgomery	23	1,376	
Mulberry	Marmaton	Bourbon	317		
•	do	Linn	729	1 100	
	do	Miami	123	1,169	
Mulky	Cherokee	Bourbon	216		
	do	Crawford	8	000	
,	do	Linn	8	232	
Nodaway	Wabaunsee	Atchison	115		
·	do	Coffey	15		
	do	Doniphan	47		
	do	Elk	72		
	do	Jefferson	132		
	do	Lyon	121		
	do	Nemaha	269		
	do	Osage	270	1 200	
	do	Shawnee	245	1,286	
"Ottawa"	Douglas	Franklin	1	1	
Rowe	Cherokee	Cherokee	130		
1.0 WE	do	Crawford	21	151	
Sibley	Douglas	Leavenworth	_ 3	3	
Thayer	Kansas City	Montgomery	170		
Inayer	do	Neosho	25		
	do	Wilson	231	426	
Weir-Pittsburg	Cherokee	Cherokee	461		
Well-Littsburg	do	Crawford	979		
	do	Labette	1,920		
	do	Montgomery	768	4,128	
Williamsburg ¹	Douglas	Atchison	3 -		
	do	Franklin	22		
	do	Osage	6	36	
	do	Woodson	5	30	
Miscellaneous	Cherokee	Atchison	1,616		
	do	Cherokee	32 2 709	5,356	
	do	Leavenworth	3,708	3,330	
Miscellaneous	Wabaunsee	Brown	224		
	do	Cowley	192		

TABLE 5.—Potential coal reserves by beds (concluded)

Coal bed	Geological rock division	County	Coal reserves, in millions of tons	
			County total	Bed total
Miscellaneous	do	Greenwood	62	
	do	Lyon	182	
	do	Pottawatomie	160	
Unnamed bed in	do	Shawnee	64	884
Hawxby shale	Permian	Wabaunsee	156	156

¹ Bed tentatively identified as Williamsburg.

SELECTED REFERENCES ON KANSAS COAL

- ABERNATHY, G. E., 1944, Mined areas of the Weir-Pittsburg coal bed; Kansas Geol. Survey, Bull. 52, pt. 5, pp. 213-228, fig. 1, pl. 1.
- -----, 1946, Strip-mined areas in the southeastern Kansas coal field: Kansas Geol. Survey, Bull. 64, pt. 4, pp. 125-144, fig. 1, pls. 1-3.
- ALLEN, H. C., 1925, The chemistry of Kansas coal: Kansas Univ. Bull., vol. 26, no. 5, Div. Chem. Research, Bull. 4, pp. 127-202, pls. 1-3.
- Bowsher, A. L., and Jewett, J. M., 1943, Coal resources of the Douglas group in east-central Kansas: Kansas Geol. Survey, Bull. 46, pp. 1-94, figs. 1-12, pls. 1-6.
- Haworth, Erasmus, 1895, The coal fields of Kansas: Kansas Univ. Quart., vol. 3, no. 4, pp. 297-309.
- ———, 1896, The coal fields of Kansas: Kansas Univ. Geol. Survey, vol. 1, pp. 218-231. (Abstract, Jour. Geology, 1896, pp. 645-646.)
- Haworth, Erasmus, and Crane, W. R., 1898, Special report on coals: Kansas Univ. Geol. Survey, vol. 3, pp. 1-347, figs. 1-54, pls. 1-70.
- HAY, ROBERT, 1889, Horizon of the Dacotah lignite: Kansas Acad. Sci. Trans., vol. 11, pp. 5-8.
- JEWETT, J. M., and Schoewe, W. H., 1942, Kansas mineral resources for wartime industries: Kansas Geol. Survey, Bull. 41, pt. 3, pp. 69-180, figs. 1-13.
- Pierce, W. G., and Courtier, W. H., 1937, Geology and coal resources of the southeastern Kansas coal field in Crawford, Cherokee, and Labette Counties: Kansas Geol. Survey, Bull. 24, pp. 1-122, figs. 1-13, pls. 1-12.
- Schoewe, Walter H., 1944, Coal resources of the Kansas City group, Thayer bed, in eastern Kansas: Kansas Geol. Survey, Bull. 52, pt. 3, pp. 81-136, figs. 1-8, pls. 1-5.
- -----, 1946, Coal resources of the Wabaunsee group in eastern Kansas: Kansas Geol. Survey, Bull. 63, pp. 1-144, figs 1-34, pls. 1-5.
- U. S. Bureau of Mines, 1929, Analyses of Kansas coals: U. S. Bur. Mines, Tech. Paper 455, pp. 1-52, figs. 1-2.
- WHITLA, R. E., 1940, Coal resources of Kansas: Post-Cherokee deposits: Kansas Geol. Survey, Bull. 32, pp. 1-64, figs. 1-28, pls. 1-5.
- Young, C. M., 1925, Kansas coal: occurrence and production: Kansas Univ. Bull., vol. 26, no. 5, Eng. Bull. 13, pp 13-123, figs. 1-29.

