THE UNIVERSITY OF KANSAS STATE GEOLOGICAL SURVEY OF KANSAS

DEANE W. MALOTT, M. B. A., LL. D.,

Chancellor of the University, and ex officio Director of the Survey

RAYMOND C. MOORE, Ph. D., Sc. D.,

State Geologist and

Executive Director

Director of Research

Division of Ground Water

V. C. FISHEL, B. S., Engineer in Charge

BULLETIN 81

GEOLOGY AND GROUND-WATER RESOURCES OF NORTON COUNTY AND NORTHWESTERN PHILLIPS COUNTY, KANSAS

By JOHN C. FRYE AND A. R. LEONARD

Prepared by the State Geological Survey of Kansas and the United States Geological Survey, with the cooperation of the Division of Sanitation of the Kansas State Board of Health, the Division of Water Resources of the Kansas State Board of Agriculture, and the Burcau of Reclamation of the United States Department of the Interior.

Printed by authority of the State of Kansas
Distributed from Lawrence

University of Kansas Publications
December, 1949

PRINTED BY
FERD VOILAND, JR., STATE PRINTER
TOPEKA, KANSAS
1949
22-7915

STATE OF KANSAS

FRANK CARLSON, Governor

STATE BOARD OF REGENTS

FRED M. HARRIS, Chairman

JERRY E. DRISCOLL Mrs. Leo Haughey Willis N. Kelly LESTER McCoy

Drew McLaughlin LAVERNE B. SPAKE GROVER POOLE OSCAR STAUFFER

MINERAL INDUSTRIES COUNCIL

B. O. Weaver ('49), Chairman K. A. Spencer ('49) W. L. STRYKER ('49) M. L. Breidenthal ('50) Howard Carey ('50) JOHN L. GARLOUGH ('50)

BRIAN O'BRIAN ('51) Vice-Chairman O. W. BILHARZ ('51) JOHN B. ALLISON ('51) LESTER McCoy ('52) J. E. Missimer ('52) CHARLES COOK ('52)

STATE GEOLOGICAL SURVEY OF KANSAS

DEANE W. MALOTT, M. B. A., LL. D., Chancellor of the University of Kansas, and ex officio Director of the Survey

RAYMOND C. MOORE, Ph. D., Sc D. State Geologist and Director of Research

BASIC GEOLOGY DASIC GEDUCGY AND PALEONTOLOGY John M. Jewett, Ph. D., Geologist A. B. Leonard, Ph. D., Paleontologist Minnie Lou Howard, Stenographer

PUBLICATIONS AND RECORDS
Betty J. Hagerman, Secretary
Grace Muilenburg, B. S., Draftsman
Alice M. White, B. F. A., Draftsman
Maxine McClintock, Clerk Typist

MINERAL RESOURCES MINERAL RESOURCES
OLL AND GAS
Earl K. Nixon, A. B., Geologist
Vivian Barnes, Stenographer
R. Kenneth Smith, M. S., Geologist
Jo W. Batchelor, B. S., Geologist
Walter A. Ver Wiebe, Ph. D., Geologist
Arden D. Brown, Well Sample Curator
Bernice C. McClintock, Clerk Typist

John C. FRYE, Ph. D. Executive Director

MINERAL RESOURCES
INDUSTRIAL MINERALS AND CERAMICS
Norman Plummer, A. B., Ceramist
Ada Swineford, M. S., Geologist
Robert Kulstad, M. S., Geologist
W. H. Schoewe, Ph. D., Geologist
W. H. Schoewe, Ph. D., Geologist
William B. Hladik, Laboratory Tech.
W. P. Ames, A. B., Laboratory Assistant
Ethel W. Owen, Laboratory Assistant
Carrie B. Thurber, Laboratory Assistant

GEOCHEMISTRY
Russell T. Runnels, B. S., Chemist
John Schleicher, A. B., Chemist
Nancy S. Hambleton, B. S. Chemist
Albert C. Reed, B. S., Chemist

SOUTHEAST KANSAS FIELD OFFICE Allison Hornbaker, M. S., Geologist Christine Notari, Stenographer

WICHITA WELL SAMPLE LIBRARY
Ethelyn McDonald, M. A., Well Sample
Curator
Della B. Cummings, Clerk

COOPERATIVE PROJECTS WITH UNITED STATES GEOLOGICAL SURVEY

GROUND-WATER RESOURCES
V. C. Fishel, B. S., Engineer in Charge
Alvin R. Leonard, A. B., Geologist
Howard G. O'Connor, B. S., Geologist
Glenn C. Prescott, M. S., Geologist
Delmar W. Berry, A. B., Geologist
Kenneth Walters, B. S., Geologist
Charles K. Bayne, A. B., Instrumentman
William Connor, Core Driller
W. W. Wilson, Scientific Aide

Janet Olson, Stenographer Wanda Hanson, Typist

MINERAL FUELS RESOURCES Wallace Lee, E. M., Geologist in charge

TOPOGRAPHIC SURVEYS D. L. Kennedy, Division Engineer Max J. Gleissner, Section Chief J. P. Rydeen, Topographer

Special Consultants: Ray Q. Brewster, Ph. D., Chemistry; Eugene A. Stephenson, Ph. D., Petroleum Engineering; E. D. Kinney, M. E., Metallurgy.

Cooperative State Agencies: State Board of Agriculture, Division of Water Resources, George S. Knapp, Chief Engineer; Robert Smrha, Assistant Chief Engineer; State Board of Health, Division of Sanitation, Dwight Metzler, Chief Engineer and Director, and Ogden S. Jones, Geologist.

^{*} Intermittent employment only.

CONTENTS

·	PAGE
ABSTRACT	7
Introduction	8
Purpose and scope of the investigation	8
Location and extent of the area	9
Previous investigations	10
Methods of investigation	10
Well-numbering system	11
Acknowledgments	12
GEOGRAPHY	12
Topography and drainage	12
Climate	15
Population	16
Transportation	17
Agriculture	17
Mineral resources	17
Oil and gas	18
Volcanic ash	18
Construction materials	19
Ceramic materials	21
GEOLOGY IN RELATION TO GROUND WATER	23
Geologic setting	23
Summary of stratigraphy	24
Cretaceous System (Gulfian Series)	27
Formations of pre-Niobrara age	27
Niobrara formation	2 8
Pierre shale	32
Tertiary System (Pliocene Series)	33
Ogallala formation	33
Character and subdivisions	36
Distribution and thickness	39
Age and correlation	40
Water supply	41
Quaternary System	41
Meade(?) formation (Pleistocene Series)	41
Sanborn formation (Pleistocene Series)	42
Character and subdivisions	42
Distribution and thickness	47
Age and correlation	47
Water supply	48
Terrace deposits in major valleys (Pleistocene and Recent Series)	49
Character and extent	49
Age and correlation	49
Water supply	53
Alluvium (Recent Series)	53
In major valleys	53

	PAGE
In tributary valleys	54
Geomorphology	54
Ground water	56
Source	56
Occurrence	57
The water table and movement of ground water	58
Shape and slope	58
Relation to topogrpahy	60
Fluctuations of the water table	61
Recharge	
Recharge from local precipitation	
Recharge from streams and ponds	
Recharge from subsurface inflow	
Discharge	
Natural discharge at the surface	
Discharge from wells	
Recovery	
Principles of recovery	
Types of wells	
Methods of lift and types of pumps	
Utilization	
Domestic and stock supplies	
Public supplies	
Almena	
Clayton	
Lenora	
Long Island	
Norton	
Irrigation supplies	
Quality	
Chemical constituents in relation to use	
Dissolved solids	
Hardness	
Iron	
Fluoride	
Nitrate	
Sanitary considerations	. 83
Quality in relation to stratigraphy	
SUMMARY OF GROUND-WATER CONDITIONS IN THE BUREAU OF RECLAMATION	
ALMENA PROJECT AREA	
RECORDS OF TYPICAL WELLS LOGS OF TEST HOLES AND MEASURED STRATIGRAPHIC SECTIONS	
References	
INDEX	. 143

	ILLUSTRATIONS	
PLAT		AGE
1.	Geologic map of Norton County and northwestern Phillips County,	
	Kansas(In Pocket)	
2.	Map of Norton County and northwestern Phillips County, Kansas,	
	showing location of and depth to water level in wells for which rec-	
	ords are given, and generalized contours on the water	
	table	
3	Geologic cross sections in Norton County and northwestern Phillips	
U.	County, Kansas(In pocket)	
4	A, Surface of prominent terrace in Prairie Dog Creek Valley at	
4.		
	Woodruff, Phillips County; B, Lake Lenora, southwestern Norton	00
_	County; C, Prairie Dog Creek Valley, Phillips County	20
	Cretaceous rocks in northwestern Phillips County	31
	Ogallala formation, south of Almena, Norton County	34
	Volcanic ash of the Ogallala formation in Norton County	35
	Buried soils in the Sanborn formation	45
9.	Rocks of central Norton County	50
10.	A, Loess topography showing small slump features or "cat steps,"	
	northwestern Norton County; B, terrace and alluvium of tributary	
	valley, Norton County; C, irrigation pumping plant on terrace	
	level in Prairie Dog Creek Valley in Phillips County	51
Fig	ITR D	PAGE
F1G		PAGE
	Index map of Kansas showing area covered by this report and areas	PAGE
	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or	
1.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation	PAGE 9
1.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation	9
1. 2.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation	
1. 2.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation	9
1. 2. 3.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation	9
1. 2. 3.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation	9 13 16
1. 2. 3. 4.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation	9 13 16 58
1. 2. 3. 4.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity. Diagrammatic sections showing influent and effluent streams	9 13 16
1. 2. 3. 4.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation	9 13 16 58 60
1. 2. 3. 4. 5. 6.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton	9 13 16 58
1. 2. 3. 4. 5. 6.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation	9 13 16 58 60 62
1. 2. 3. 4. 5. 6.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island	9 13 16 58 60
1. 2. 3. 4. 5. 6.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation	9 13 16 58 60 62
1. 2. 3. 4. 5. 6. 7. 8.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island Diagrammatic section of a well that is being pumped showing drawdown, cone of influence, and area of influence.	9 13 16 58 60 62
1. 2. 3. 4. 5. 6. 7. 8.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation	9 13 16 58 60 62 63
1. 2. 3. 4. 5. 6. 7. 8.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island Diagrammatic section of a well that is being pumped showing drawdown, cone of influence, and area of influence.	9 13 16 58 60 62 63
1. 2. 3. 4. 5. 6. 7. 8. 9.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island Diagrammatic section of a well that is being pumped showing drawdown, cone of influence, and area of influence. Drawdown curve of municipal well at Lenora and recovery curve of a	9 13 16 58 60 62 63 66
1. 2. 3. 4. 5. 6. 7. 8. 9.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity. Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island Diagrammatic section of a well that is being pumped showing drawdown, cone of influence, and area of influence. Drawdown curve of municipal well at Lenora and recovery curve of a municipal well at Norton	9 13 16 58 60 62 63 66
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation	9 13 16 58 60 62 63 66 67
1. 2. 3. 4. 5. 6. 7. 8. 9.	Index map of Kansas showing area covered by this report and areas for which cooperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity. Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island Diagrammatic section of a well that is being pumped showing drawdown, cone of influence, and area of influence. Drawdown curve of municipal well at Lenora and recovery curve of a municipal well at Norton	9 13 16 58 60 62 63 66
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation Map of Norton County illustrating the well-numbering system used in this report Graph showing annual precipitation near Norton for period of record and normal precipitation at the station. Diagram showing several types of rock interstices and the relation of rock texture to porosity. Diagrammatic sections showing influent and effluent streams. Hydrographs of two observation wells and monthly precipitation (1945-47) near Norton Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island Diagrammatic section of a well that is being pumped showing drawdown, cone of influence, and area of influence. Drawdown curve of municipal well at Lenora and recovery curve of a municipal well at Norton Analyses of water from the principal water-bearing formations in Norton County	9 13 16 58 60 62 63 66 67

TABLES

		PAGE
1.	Acreage of principal crops in Norton County in 1941 and 1945	18
2.	Ceramic properties of the Sanborn formation in Norton County	22
3.	Generalized section of geologic formations of Norton County and	
	northwestern Phillips County	25
4.	Annual pumpage of water by the City of Norton (1930-1947)	72
5.	Analyses of water from typical wells in Norton County	76
6.	Analyses of water from typical wells in the Almena unit area Norton	
	and Phillips Counties, Kansas	78
7.	Range in concentration of dissolved constituents in water from several	
	stratigraphic units in Norton and northwestern Phillips Counties	82
8.	Records of typical wells in Norton County and northwestern Phillips	
	County	92

(6)

GEOLOGY AND GROUND-WATER RESOURCES OF NORTON COUNTY AND NORTH-WESTERN PHILLIPS COUNTY, KANSAS

By John C. Frye and A. R. Leonard

ABSTRACT

This report describes the geography, geology, and ground-water resources of Norton County and northwestern Phillips County in north-central Kansas. The hydrologic and geologic information was obtained in the field during the years 1945-48 inclusive. Records for 241 wells in Norton County and 44 wells in northwestern Phillips County were collected, and 64 test holes were drilled to determine the thickness and character of the water-bearing materials. These data were utilized to plot a water-table map of the area. The outcropping rock formations were studied in the field and by aid of test-hole samples, and a geologic map and cross sections were prepared.

The area covered by this report lies in the Plains Border section of the Great Plains physiographic province. It is drained by North Fork Solomon River, a tributary to Smoky Hill River, and Sappa and Prairie Dog Creeks, tributaries to Republican River. For the most part the topography is moderately fine-textured and maturely dissected, with extensive flat areas occurring along the terraces of the major valleys, and at a few places on the upland divides. The climate is subhumid, the average annual precipitation being a little more than 20 inches. In addition to a generally deep fertile soil and the ground-water supplies, the principal mineral resources of the area are oil and gas, volcanic ash, stone, and ceramic raw materials.

The oldest outcropping rock unit is the Smoky Hill chalk member of the Niobrara formation (Cretaceous), which underlies the entire area. Pierre shale (Cretaceous) overlies the Niobrara formation in northwestern Phillips County, where it has been protected from erosion by a structural downwarp. The Ogallala formation (Pliocene) overlies the Cretaceous rocks and, except along the major valleys, underlies nearly the entire area. The Ogallala formation constitutes the most widespread source of adequate well-water supplies in the area. The Sanborn formation (Pleistocene) overlies the Ogallala formation and constitutes the near-surface deposits of most of the area. The basal (Crete) member of the Sanborn occurs adjacent to major valleys and in restricted areas is an adequate source of potable ground water. The deposits underlying the prominent terrace surfaces in the three major valleys yield abundant supplies of water to wells, and alluvium is a source of ground water in many tributary valleys.

North Fork Solomon River and Sappa and Prairie Dog Creeks are permanent streams in this area; nevertheless, wells supply nearly all the water for domestic, irrigation, and municipal uses. Four cities in Norton County (Almena, Clayton, Lenora, and Norton) and one in northwestern Phillips County

(Long Island) obtain their water supplies from the terrace deposits and alluvium of the major valleys. Adequate supplies of ground water are available for additional irrigation wells at many places in the terrace deposits of the major valleys, at some places in the Crete sand and gravel member of the Sanborn formation along the north side of Prairie Dog Creck, and at a few places in the Ogallala formation under the Prairie Dog-Sappa Creck divide area in western Norton County. Most other places in the area do not have adequate ground-water supplies for extensive well-water irrigation.

Analyses of 45 samples of ground water are included in this report, together with a discussion of the principal chemical constituents in relation to the use and geologic occurrence of the water. Most of the ground water in the area is satisfactory for ordinary purposes, but some is sufficiently hard to require softening for special uses.

INTRODUCTION

Purpose and Scope of the Investigation

A program of investigation of the ground-water resources of Kansas was initiated in 1937 by the State Geological Survey at the University of Kansas and the United States Geological Survey, in coöperation with the Division of Sanitation of the Kansas State Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture. It is the purpose of this program to make detailed surveys of county areas and major stream valleys or irrigation districts where ground-water supply problems are acute. The present status of investigations resulting from this program is shown in Figure 1.

As a part of these investigations, a study of the geology and ground-water resources of Norton County was initiated during the summer of 1945. Test drilling to determine the character and thickness of the water-bearing formations and the measurement of water levels in many existing private wells were carried out during 1946. In 1947 the Federal Geological Survey undertook, at the request of the United States Bureau of Reclamation, a detailed investigation of the ground-water supplies in the Prairie Dog Creek Valley of eastern Norton County and northwestern Phillips County. This area comprises the Bureau of Reclamation's Almena project area. As this investigation overlapped a part of Norton County, the two studies are combined in this report.

In Norton County and adjacent northwestern Phillips County, as in much of the western half of Kansas, ground water constitutes one of the most important mineral resources. Although this area is crossed by three perennial streams—the North Fork of Solomon

River, Prairie Dog Creek, and Sappa Creek—nearly all public, rail-road, irrigation, and domestic water supplies are obtained from wells. There is therefore, a definite need for an adequate understanding of the quantity and quality of the available supply, where and how additional supplies can be obtained, and what measures may be necessary to safeguard their continuance.

This investigation was made under the general supervision of A. N. Sayre, Geologist in Charge of the Ground-Water Branch of the Federal Geological Survey. That part of the investigation relating to the Almena area was also under the general supervision of George H. Taylor, Regional Engineer, Ground-Water Branch.

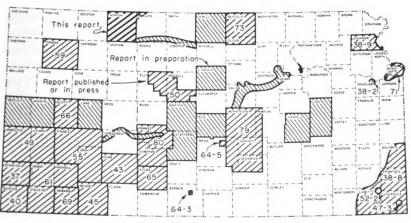


Fig. 1.—Index map of Kansas showing area covered by this report and areas for which coöperative ground-water reports have been published or are in preparation

LOCATION AND EXTENT OF THE AREA

The area covered by this report is located in the Plains Border section of the Great Plains physiographic province (Fenneman, 1931). It is in the northern tier of Kansas counties adjacent to the Nebraska State line, and is bounded on the west by Decatur County, on the south by Graham County, and on the east by adjacent parts of Phillips County. Most of the area lies between 39° 28′ and 40° 00′ north latitude and 99° 21′ and 100° 12′ west longitude. It contains more than 27 townships, from T. 1 S. to T. 5 S., and from R. 18 W. to R. 25 W. It has an area of approximately 1,000 square miles.

Previous Investigations

In the northwestern part of Kansas only Thomas County has been covered by a cooperative county ground-water report (Frye, 1945) published as Bulletin 59 of the State Geological Survey. A comparable report has been published on Scott County, which lies in the fourth tier of counties south from the Nebraska line (Waite, 1947), and a specialized report on the occurrence of ground water in the oil-field areas of Ellis and Russell Counties, which lie to the southeast of Norton County (Frye and Brazil, 1943). A reconnaissance of ground-water resources in Rawlins and Decatur Counties was published as Mineral Resources Circular 7 of the State Geological Survey (Elias, 1937), and a detailed report on the geology of Wallace County, which contains some data on ground-water supplies, was published as Bulletin 18 of the Geological Survey (Elias, 1931). Field investigations of the ground-water resources in the North Solomon Valley across Phillips, Smith, and Osborne Counties have been completed by A. R. Leonard, and a report on the geology and ground-water resources of Jewell County is in preparation. In addition, several regional studies (Haworth, 1897; Johnson, 1901; Darton, 1905) touch upon the geology and undergroundwater supplies of this area.

The earliest report on the geology of Norton County was prepared by Robert Hay and was published in 1885 in the Transactions of the Kansas Academy of Science (pp. 16-24). The paper was read before the Academy at its Topeka meeting in 1883 and the clarity with which Hay presented the essential features of the geology of Norton County is striking for such an early date. It should be noted that the deposits referred by him to the Miocene are here classed as Pliocene and referred to the Ogallala formation, and the deposits he classed as Pliocene are here classed as the Pleistocene and referred to the Sanborn formation.

METHODS OF INVESTIGATION

The geology of the area was studied and mapped (Pl. 1) during two months of field work in 1945, three weeks each in 1946 and 1947, and a week during the spring of 1948. A partial inventory of existing water wells was made in Norton County during 1946 by John Sears and Milton Sears. Delmar Berry measured the water level in additional wells in the Prairie Dog Valley area of Norton and Phillips Counties during 1947 and has made measurements of observation wells since that time.

The character of the material below the land surface was determined by the drilling of 64 test holes through the entire thickness of water-bearing sand and gravel and into the underlying Cretaceous shales and chalks. These test holes were drilled with the hydraulic rotary drilling machine owned by the State Geological Survey of Kansas and operated by James Cooper and William T. Connor during the season of 1946 and by Connor and Glenn Prescott during the season of 1947. Logs of the test holes were prepared in the field by Cooper and Prescott; these were later supplemented by microscopic examination of the well cuttings. By using a plane table and alidade, level parties headed by Charles K. Bayne and Delmar Berry determined the altitude of the measuring point of wells in which water levels were measured and the altitude of the surface at the test-hole locations.

Wells shown on Plate 2 were located within the sections by use of the odometer. The two figures shown adjacent to well locations on Plate 2 refer to the altitude of the water table and the depth to water below the land surface, the figure above the line being altitude and that below the depth to water. Brackets placed around the bottom figures indicate that a chemical analysis of water from the well is given in the report (Tables 5 and 6).

Samples of water from 45 wells in the county were collected and chemical analyses of them were made by Howard Stoltenberg, chemist in the Water and Sewage laboratory of the Kansas State Board of Health, or by chemists of the Quality of Water Branch of the Federal Geological Survey at Lincoln, Nebraska.

The base map of the county used in Plates 1 and 2 was compiled by Bernita Mansfield and Grace Muilenburg from aerial photographs and county maps of the Soil Conservation Service, and aerial photographs from the Agricultural Adjustment Administration, United States Department of Agriculture, and from county maps prepared by the State Highway Commission of Kansas. Geologic mapping in the field was done on a base map at a scale of one inch to the mile. This field mapping was supplemented by stereoscopic study of aerial photographs along all the major valley areas.

Well-Numbering System

The well and test-hole numbers used in this report give the location of wells according to General Land Office surveys and according to the following formula: township, range, section, 160-acre tract within that section, and the 40-acre tract within that quarter section.

If two or more wells are located within a 40-acre tract, the wells are numbered serially according to the order in which they were inventoried. The 160-acre and 40-acre tracts are designated a, b, c, or d in a counter-clockwise direction beginning in the northeast quarter. For example, well 2-24-5da (Fig. 2) is located in the NE½ SE½ sec. 5, T. 2 S., R. 24W.

ACKNOWLEDGMENTS

Appreciation is expressed to the many residents of Norton County and northwestern Phillips County who supplied information and aided in the collection of field data. Special thanks are extended to the owners of several irrigation wells, who furnished us with information concerning their well-pumping plants; to the city officials of Long Island, Almena, Norton, Lenora, and Clayton for data on municipal water supplies; and to the several water-well drillers operating in the area, who have furnished logs and other pertinent data concerning the installation of water wells. M. K. Elias of the Nebraska Geological Survey spent several days in the field and kindly identified the fossil seeds collected from the Ogallala formation. A. Byron Leonard identified the fossil snails from the Pleistocene deposits of the area, and C. W. Hibbard identified several fragmentary fossil vertebrates.

Frank Byrne and assistants in the section of Engineering Geology, U. S. Geological Survey, spent several days in the field with us and furnished a copy of their geologic map of Phillips County.

The manuscript of this report has been reviewed critically by several members of the Federal and State Geological Surveys; by Dwight Metzler, Director and Chief Engineer, and Ogden S. Jones, Geologist, Division of Sanitation, Kansas State Board of Health; and by George S. Knapp, Chief Engineer, and R. V. Smrha, Assistant Chief Engineer, Division of Water Resources, Kansas State Board of Agriculture.

GEOGRAPHY

Topography and Drainage

Norton and Phillips Counties lie entirely within the area designated by Fenneman (1931) as the Plains Border section of the Great Plains physiographic province. The area consists predominantly of moderately fine textured topography having a local relief of 200 feet or less. Flat upland divide areas are present in western Norton County between North Fork Solomon Valley and Prairie Dog Val-

ley and across central Norton County between Prairie Dog Valley and Sappa Valley. The most extensive areas of flat land occur on the prominent terrace surfaces which are well developed along each of the three major valleys.

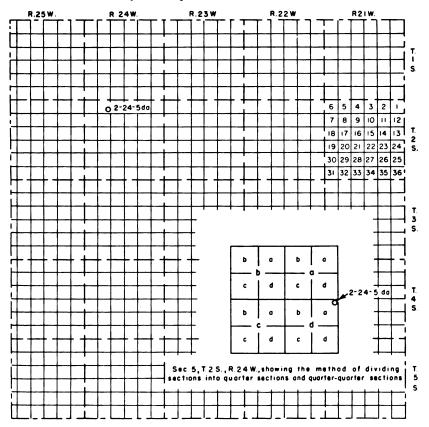


Fig. 2.—Map of Norton County illustrating the well-numbering system used in this report.

On the whole, the area is well drained and sloping ground predominates. The lowest points in the area occur along the Norton-Phillips county line on the flood plain of the North Fork Solomon River, and on the flood plain of Prairie Dog Creek where it crosses into Nebraska in north-central Phillips County. At these localities surface altitudes range from 2,000 to 2,020 feet. The highest points in the area are on the major stream divides along the Norton-Decatur county line, where the surface altitude exceeds 2,550 feet.

The Plains Border section grades westward imperceptibly into the High Plains section and in many respects the topography of the Norton-Phillips County area is more comparable to the High Plains topography farther west than it is to the eastern part of the Plains Border section typically displayed in Jewell, Smith, Mitchell, and Osborne Counties.

One of the most striking topographic features of this part of Kansas is the pronounced asymmetry of the major eastward-trending valleys. In this area, the valleys of both Prairie Dog Creek and North Fork Solomon River have gently sloping north walls and precipitous south walls. In Norton County the asymmetry of the valleys is so well developed that the drainage basin is also asymmetrical. The north-flowing tributaries are shorter and more numerous, and have steeper gradients than those flowing southward (Pl. 1). This particular characteristic seems to be peculiar to valleys in Kansas and it has been noted elsewhere in the state (Frye, 1945, p. 29; Bass, 1926, pp. 17-23). This feature is illustrated on the two north-south geologic cross sections shown in Plate 3.

Prairie Dog Creek and Sappa Creek, which constitute the major drainageways for central and northern Norton County, flow in a general east-northeasterly direction and join Republican River in southern Nebraska. North Fork Solomon River, however, flows in an easterly direction across Norton and western Phillips Counties but trends in a general southeasterly direction from south-central Phillips County to its confluence with Smoky Hill River at the Saline-Dickinson County line. All three of these major streams head on the surface of the High Plains in Thomas and Sherman Counties, Kansas.

Although North Fork Solomon River flows in a slightly different direction from Prairie Dog and Sappa Creeks, the principal tributaries to the three streams exhibit a remarkable parallelism (Pl. 1). Most of the tributaries to the major streams flow either in a south-southeast or north-northwest direction. This alignment causes the north-flowing tributaries to Solomon River and the south-flowing tributaries to Prairie Dog Creek to join the main streams with an acute angle downstream and gives them a somewhat barbed appearance. Another feature that is particularly striking is the difference in texture of the drainage on opposite sides of Prairie Dog Creek. On the south side, where a thin mantle of silt overlies the Ogallala formation, tributary streams are short and closely spaced. This part of the area is well dissected and is used primarily for rangeland. On

the north side of Prairie Dog Creek a considerable thickness of silt underlain by the Crete sand and gravel occurs and the drainage pattern is coarse-textured. Slopes are gentle and much of the area is cultivated.

In spite of the well-developed drainage net in Norton and northwestern Phillips Counties the area is not well supplied with surface water. The three major streams are the only perennial streams in the territory, the others carrying water only during and after rains.

CLIMATE

Norton County lies in a region only moderately supplied with rainfall but well supplied with sunshine. The climate is of subhumid type, involving moderate precipitation, moderately high average wind velocity, and rapid evaporation. During the summer the days are hot, but the nights are generally cool. The summer heat is alleviated by good wind movement and low relative humidity. As a rule the winters are moderate, with severe, cold periods of short duration and relatively light snowfall.

According to data presented by the United States Weather Bureau, the normal annual mean temperature for central Norton County is 52.8° F. In general, the hottest month is July, with a normal mean temperature of 78.5° F., and the coldest month is January, with a normal mean of 27.5° F. The average growing season—that is, the interval between the last killing frost in the spring and the first killing frost in the fall—is approximately 160 The normal annual precipitation in central Norton County is 20.81 inches and the normal annual precipitation at Long Island in northwestern Phillips County is 21.41 inches. The range in amount of annual precipitation since 1888 in central Norton County is 29.15 inches—from 9.64 inches in 1910 to 38.79 inches in 1891. The bulk of the precipitation occurs during the growing season, when the average precipitation for the 6-month period in this part of Kansas is approximately the same as that in the Dakotas and three-fourths of the average for Illinois, Indiana, and Ohio.

The annual precipitation for the period of record for the station in central Norton County is shown in Figure 3. Charts showing monthly precipitation for the period 1945 through 1947 and the relationship to normal for each month at Norton and at Long Island are presented in Figures 6 and 7.

POPULATION

According to the 1940 Federal census, the population of Norton County was 9,831, and for 1945 the Kansas State Board of Agriculture reports a population of 8,578. Since the census of 1890 the population of Norton County has shown an increase followed by a decline. In 1890 the population of the county was 10,617. By 1900 it had reached 11,325, and in 1910 it had climbed to 11,614. The 1920 census showed a slight decline to 11,423, but the 1930 census showed the maximum of 11,701. The decrease in population be-

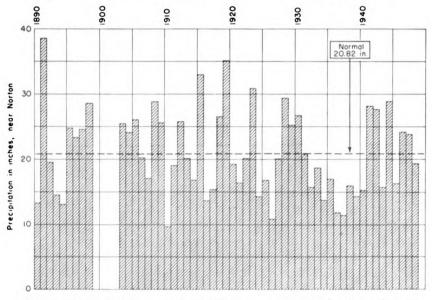


Fig. 3.—Graph showing annual precipitation near Norton for the period of record and normal precipitation at the station. (Records from the U. S. Weather Bureau.)

tween 1930 and 1940 was 16 percent for the county as a whole, but the rural population declined 22 percent. The 1940 Federal census lists population figures for five cities in Norton County. At that time Almena had a population of 543; Clayton, 153; Edmond, 180; Lenora, 537; and Norton, 2,762. Long Island is the only city in the part of Phillips County covered by this report listed in the 1940 census; at that time it had a population of 257. The 1945 Kansas State Board of Agriculture census lists the following population figures for the same cities: Almena, 526; Clayton, 124; Edmond, 119; Lenora, 492; Norton, 2,635; and Long Island, 212.

TRANSPORTATION

Norton County is crossed by the main line of the Chicago, Rock Island, and Pacific Railroad from Omaha, Neb., to Denver, Colo., which traverses the county east-west along the Prairie Dog Valley, passing through Almena, Norton, and Clayton. A branch line of the Chicago, Burlington, and Quincy from Alma, Neb., to Oberlin, Kan., also traverses the county east-west, along the Prairie Dog Creek Valley through Long Island, Almena, and Norton, and thence northwestward to Norcatur in west-central Decatur County. A branch line of the Missouri Pacific Railroad extends up the North Fork Solomon Valley from Downs to its terminus at Lenora in southwestern Norton County.

Several hard-surfaced Federal and State highways pass through Norton County and northwestern Phillips County. U. S. Highway 36 passes east-west through Norton County through the City of Norton. U. S. Highway 283 traverses Norton County from north to south through the City of Norton, and U. S. Highway 383 traverses the county diagonally from southwest to northeast, extending from Norton northeast along Prairie Dog Valley through Calvert, Almena, Long Island, and Woodruff. State Highway 9 passes east-west through southern Norton County along North Fork Solomon River Valley through New Almelo, Lenora, Edmond, and Densmore. The remainder of the area is served by numerous improved county and township roads (Pl. 1).

AGRICULTURE

Agriculture is the chief occupation in Norton County and north-western Phillips County. Virtually all the land in this area is in farms. According to the Kansas State Board of Agriculture, 230,240 acres of major crops were harvested in Norton County in 1945. The distribution of major crops for the years 1941 and 1945 are shown in Table 1. Winter wheat, corn, sorghums, barley, and hay were the predominating crops and a sizable percentage of land was used for grazing purposes.

Mineral Resources

Norton County and northwestern Phillips County are endowed with a diversity of mineral raw materials. The more important mineral resources, aside from ground water, are oil and gas, volcanic ash, and construction materials.

2-7915

Oil and gas.—The first commercial production of petroleum in Norton County was developed by the Phillips Petroleum Company in 1941 when they discovered the Hewitt pool in sec. 11, T. 4 S., R. 21 W. Since that time exploration for petroleum has been active, particularly in the southeastern part of Norton County. It has resulted in the extension of the Ray pool from Phillips County into the extreme southeastern corner of Norton County, and the discovery in 1945 of the Ray West pool in Norton County in sec. 26, T. 5 S., R. 21 W. At the end of 1946 (Ver Wiebe, 1947, p. 58) the

Table 1.—Acreage of principal crops in Norton County in 1941 and 1945
(Data from Kansas State Board of Agriculture biennial reports)

	19+1			1945
Стор	Acres	Percentage	Acres	Percentage
Winter wheat	74.800	31.8	95,000	41.3
Corn	70.460	30.0	81,800	35.5
Oats	3 260	1.4	3,050	1.3
Barley	32,880	14.0	6,500	2.8
Sorghum				
For grain	16.560	7.1	13,850	6.0
For forage		13.7	22,110	9.6
All hay	4,610	2.0	7.930	3.4
Total	234,670		230,240	

cumulative production of the Hewitt pool was 32,050 barrels and that of the Ray West pool was 23,180 barrels. Production is from the Kansas City-Lansing limestone and the Arbuckle dolomite, respectively. Data concerning oil and gas developments and production in the county are listed in the annual reports of the State Geological Survey published as Bulletin 42, covering 1941, and Bulletins 48, 54, 56, 62, 68, and 75 for the succeeding years. All producing oil wells, abandoned oil wells, and dry wildcat test holes drilled to the end of 1947 are shown on Plate 1.

Volcanic ash.—Volcanic ash is another important mineral resource of Norton County. Active mining of volcanic ash was started in the vicinity of Calvert in 1908 and since that time one or more ash mines have been in almost continuous operation. At the present time one large mine is operated at Calvert by the Wyandotte Chemical Co. of Wyandotte, Mich. (Pl. 7A). The ash is mined by the open-cut method, rough-screened in the pit, and hauled by truck less than a quarter of a mile to a screening and storage plant along the rail siding at Calvert. Volcanic ash deposits occur at scattered points throughout the county, and have been mined in several other places. In addition, deposits of commercial thickness were observed

at localities where no mining has been undertaken. The location of existing ash mines and unmined deposits of volcanic ash of commercial thickness are shown by symbols on Plate 1. Data on the occurrence and commercial usefulness of volcanic ash are given by Landes (1928) and Jewett and Schoewe (1942). The results of a petrographic and chemical study of the various ash deposits of western Kansas with special emphasis on the Norton County area are given by Swineford and Frye (1946).

Construction materials.—Several varieties of durable stone uncommon in central and western Kansas occur abundantly in Norton County and northwestern Phillips County (Byrne and others, 1948; 1949.)

The silicified sand and gravel zones or "quartzite" that occur in the Ogallala formation represent, perhaps, the most unusual rock type of the region. This "quartzite" was produced by the cementation of sand and gravel by opaline silica into a very hard and durable rock. It occurs in lenticular deposits and crops out at several localities in southeastern Norton County and northwestern Phillips County. Frye and Swineford (1946) made a detailed petrographic study of this rock and evaluated its usefulness for various purposes. In their conclusions they state (pp. 62-64):

The data presented in this report, supplemented by meager information from local users, indicate that the Ogallala quartzite is far superior to any other deposit in the northwestern part of Kansas and in most cases will probably be suitable for railroad ballast and riprap, and possibly also for a local source of road metal. The unusual coloration and mottled appearance of some deposits should make them desirable for monuments and ornamental stone, and, if economical methods of quarrying and finishing are developed, the quartzite may be useful as a durable building stone. The rock is harder than many others used for such purposes; it is closely comparable in resistance and weathering properties to a good grade of granite. Although it has been reported that Ogallala quartzite has been used locally with success as concrete aggregate, it contains a large amount of opal and caution should be exercised when it is used in concrete or terrazzo, particularly if it is used in conjunction with high-alkali cement, until its suitability for such purposes has been more thoroughly investigated.

Additional data on the occurrence of silicified rocks of the Ogallala formation in Phillips County have been presented by Landes and Keroher (1942, pp. 305-308), and the location of all active and abandoned quarries in the area covered by this report is shown by symbols on Plate 1. The rock has been utilized in the construction of several buildings in Norton and other communities.

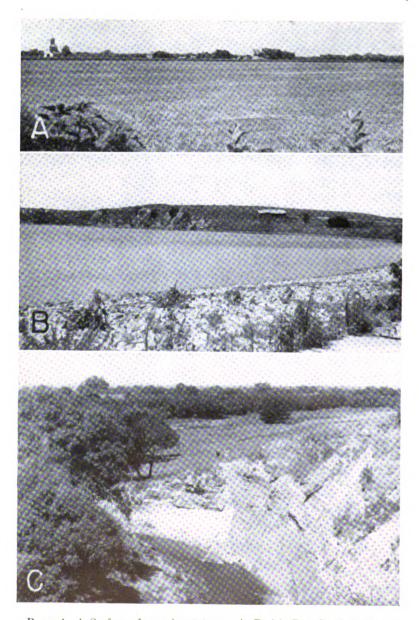


PLATE 4. A, Surface of prominent terrace in Prairie Dog Creek Valley at Woodruff, Phillips County. B, Lake Lenora, east of Lenora, southwestern Norton County. Bluff of Niobrara chalk exposed on distant side of lake and riprap of Niobrara chalk on back of dam. C, Prairie Dog Creek Valley, Phillips County. A fault, Niobrara chalk against Pierre shale, is exposed in the east bank of Prairie Dog Creek.

Still another rock type of commercial usefulness occurs within the Ogallala formation of Norton County. This is a soft light-gray to white limestone produced by calcium carbonate cement, which binds tightly together a sandy silt. The rock as quarried is predominantly calcium carbonate, and in some zones contains abundant molds of fossil snails. The limestone has been quarried east of Almena and south of New Almelo, where it is used as crushed rock and as building stone. A church and adjacent buildings at New Almelo are constructed from this rock. At some localities the bed that has been quarried is more than 10 feet thick, but at other places it is only 2 or 3 feet thick. Soft limestone is known to occur at several stratigraphic positions within the Ash Hollow member of the Ogallala formation. Active and abandoned quarries of limestone of the Ogallala formation are shown by the quarry symbol on Plate 1.

Although deposits of clean sand and gravel are not as abundant in this area as they are at some places in western Kansas, they have been quarried near Lenora and at several other places throughout the two counties. Sand and gravel mixed with silt is common at many stratigraphic positions within the Ogallala formation, and underlies much of the prominent terrace area along North Fork Solomon River, Prairie Dog Creek, and Sappa Creek. Also, the alluvium under the channel and flood plains of these streams consists partly of sand and gravel deposits.

Soft chalks and chalky shales of the Niobrara formation underlie all of Norton County and northwestern Phillips County. They crop out at the surface at many places along the major valleys. For the most part these chalky shales are too soft to be used for construction, but might be utilized as a source of impure calcium carbonate for some purposes. At a few localities the upper part of this chalky shale has been altered by the addition of silica and a hard flinty rock has resulted. This silicified chalk breaks very much like bottle glass when struck with a hammer, and it has been used to some extent as road material and riprap (Pl. 4B). Its occurrence in Phillips County has been described by Landes and Keroher (1942, pp. 305-308) and active and abandoned quarries in Norton County are shown by a symbol on Plate 1 of this report.

Ceramic materials.—Clay of a type usable for certain ceramic products occurs widely in Norton and northwestern Phillips Counties. Deposits of bentonitic clay are known in the basal part of the Ogallala formation in northwestern Phillips County. Data concerning the usefulness of the bentonitic clays have been presented

by Kinney (1942). The ceramic character of the widespread loess mantle of the region is described briefly by Norman Plummer in paragraphs immediately below.

Detailed ceramic tests have been made on samples collected from the several members of the Sanborn formation exposed in cuts north of the City of Norton. Data obtained from these tests are presented in Table 2. The firing range was determined to be relatively short (over a range of 5 cones, or approximately 150° F.) but sufficiently great to allow commercial usefulness. Although significant differ-

Table 2.—Ceramic properties of the Sanborn formation, 1 mile north of Norton, central Norton County (Data furnished by Norman Plummer)

			1	2	3		4
rties	Water of plasticity, percent		20.3	23.3	21.7		25.6
Plastic properties	Linear drying shrinkage, percent,	• •	3.5	4.5	2.1		6.1
-		At cone				At cone	
	Fired color 5	02 4	O Dr	O Dr	Lr Dr	01 3	Lr Dr
	Linear firing shrinkage	02 4	.1 8.9	$\begin{array}{c} 1.3 \\ 9.3 \end{array}$	$\begin{smallmatrix} .4\\10.7\end{smallmatrix}$	01 3	4.8 9.5
	Total linear shrinkage	02 4	$\begin{matrix} 3.6 \\ 12.4 \end{matrix}$	5.7 13.8	$\begin{array}{c} 2.5 \\ 12.9 \end{array}$	01 3	11.0 15.6
	Absorption (5 hours in boiling water)	02 4	$\begin{array}{c} 20.0 \\ 1.8 \end{array}$	$\substack{18.0 \\ 2.1}$	$\begin{array}{c} 23.7 \\ 2.0 \end{array}$	01 3	$\begin{matrix} 12.1 \\ 3.0 \end{matrix}$
£	Absorption (24 hours in cold water)	02 4	$\begin{matrix} 16.3 \\ 1.2 \end{matrix}$	$15.5 \\ 1.3$	19.9 1.1	01 3	
Fired properties	Saturation coefficient	02 4	.81 .64	.86 .64	.84 .58		
Fired 1	Apparent porosity	02 4	$\begin{matrix} 34.3 \\ 4.1 \end{matrix}$	$\substack{ 32.0 \\ 4.8 }$	$\begin{array}{c} 38.1 \\ 4.6 \end{array}$	$\begin{array}{c} 01 \\ 3 \end{array}$	$\substack{23.8 \\ 6.8}$
	Apparent specific gravity	02 4	$2.62 \\ 2.35$	2.61 2.40	$\frac{2.60}{2.38}$	01 3	$2.57 \\ 2.45$
	Bulk specific gravity	02 4	$\begin{array}{c} 1.72 \\ 2.25 \end{array}$	$\frac{1.78}{2.29}$	$\substack{1.61\\2.27}$	01 3	$\frac{1.96}{2.28}$
	Hardness, as to steel 6	02 4	S H	S H	S H	01 3	Sh H
	Firing range (cones)		02-3	01-3	01-3		02-3
	Pyrometric cone equivalent (cone)		8	8	6-7		10

^{1.} Composite of 4 feet of Bignell silt member.

^{2.} Composite of 2 feet of Brady soil (top of Peoria silt member).

^{3.} Composite of 12 feet of Peoria silt member.

^{4.} Composite of 19 feet of Loveland silt member.

^{5.} O, orange; Lr, light red; Dr, dark red.

^{6.} S, softer than steel; H, harder than steel; Sh, steel hard.

ences among the several members of the Sanborn formation were determined, their characteristics were sufficiently comparable to permit ceramic utilization of the entire thickness of the Sanborn silts at this locality. These clays work well both by hand molding and by stiff mud extrusion, even though they are slightly lean. They are particularly adaptable to stiff mud extrusion. Also, the drying characteristics are good.

These data, given in Table 2, show that the silts of the Sanborn formation are suitable for the manufacture of red brick, hollow tile, and other structural clay products. Their usefulness for the manufacture of artificial aggregate and railroad ballast has been described by Plummer and Hladik (1948). The several silt members of the Sanborn formation present a uniform aspect and it is probable that throughout the area covered by this report their properties as a ceramic raw material are essentially the same.

GEOLOGY IN RELATION TO GROUND WATER

GEOLOGIC SETTING

The area treated in this report lies in the heart of the Great Plains physiographic province. The Great Plains is a broad region extending several hundred miles eastward from the eastern margin of the Rocky Mountains and from Texas northward into Canada. The Great Plains are typified by relatively flat lying sedimentary rocks of Cretaceous age, or younger. Much of the surface area of the Plains region is mantled by nonmarine deposits of late Tertiary and Quaternary age. It is this mantle of nonresistant gently dipping to flat beds and the relatively low precipitation that typify the region throughout its entire extent. The local relief is moderate, and ranges from the almost flat and undissected High Plains surface to the moderately fine-textured topography illustrated in this area and the cuestas and low scarps that characterize part of the belt of the Cretaceous outcrop farther east.

In the latitude of Norton and Phillips Counties, the eastern margin of the Cretaceous outcrops extends to within a hundred miles of Missouri River, from where the Cretaceous formations extend westward under north-central and northwestern Kansas to reappear again in central Colorado where they are upturned sharply along the eastern flank of the Rocky Mountain Front Range.

Below the thick Cretaceous section, Paleozoic rocks rest on a basement complex of Pre-Cambrian crystalline rocks and exhibit a

much more complex structural pattern, recording a history of repeated gentle folding and erosion. The intermittent deposition, folding, and erosion during Paleozoic time has produced conditions suitable for the accumulation of petroleum, as indicated by the numerous oil fields that extend from this area toward the south and east. The major structural feature in the Paleozoic rocks is a broad arch that extends from Phillips County toward the southeast and is generally referred to as the Central Kansas uplift (Moore and Jewett, 1942). The petroleum production of Norton County comes from wells drilled on the west flank of this broad regional structure.

Although the pre-Cretaceous rocks of north-central Kansas are of great importance to the production of oil and gas, they are not known to contain potable waters; therefore, for the purposes of this report the discussion of stratigraphy will be confined to Cretaceous and younger sediments.

SUMMARY OF STRATIGRAPHY*

The age of the outcropping rocks of Norton County and north-western Phillips County is late Cretaceous (Gulfian), Pliocene, Pleistocene, and Recent. The subdivisions and stratigraphic classification of these strata are shown in Table 3 and in the cross sections on Plate 3. The areal distribution of their outcrops is shown on the geologic map (Pl. 1).

The Niobara formation of Cretaceous age underlies the entire area and crops out at many places along the valleys of North Fork Solomon River, Prairie Dog Creek, and Sappa Creek. It consists predominantly of chalks and chalky shales. Locally in northwestern Phillips County it is overlain by the Pierre shale, which consists of black fissile shale with thin beds of bentonite. The Ogallala formation of Pliocene age underlies most of the area with the exception of the major valleys. Owing to its widespread occurrence and generally porous texture, it is of great importance as a source of ground water. A blanket of eolian silt, classed as the Sanborn formation and divided into the Loveland, Peoria, and Bignell silt members, covers much of the upland areas, and deposits of gravel, sand, and silt underlie the prominent terrace surfaces along the major valleys. Alluvium is present under the channels and flood plains of all the major streams and the lower reaches of all the im-

^{*} The stratigraphic classification used in this report is that of the State Geological Survey of Kansas.

TABLE 3. Generalized section of the geologic formations of Norton County and northwestern Phillips County, Kansas

STOTEM	Series	Formation	Member	Thickness (feet)	Character	Water supply
	Recent	Alluvium		15-40	Sand, gravel, silt, and clay, well sorted along major valleys; poorly sorted in tributary valleys.	Yields abundant supplies of water to wells in major valleys; small supplies in tributary valleys.
	Recent and Pleistocene	Deposits under surfaces in the Prairie Dog	Deposits underlying prominent terrace surfaces in the valleys of Sappa Creek, Prairie Dog Creek, and North Fork Solomon River.	35-85	Gravel, sand, and silt, generally coarse and well sorted in lower part, and fine-textured in upper part. Several buried soils in upper part.	Yields abundant supplies of water to wells.
			Bignell silt member	0-50	Massive, well-sorted silt, light yellow gray to light tan. Blankets the up- lands in some places.	Above the water table; yields no water to wells.
Quaternary	Pleistocene	Sanborn formation	Peoria silt member	0-40	Massive, well-corted silt, light yellow tan to ash gray. Brady soil at top. Underlies most uplands and gentle slopes.	Generally above water table; yields little or no water to wells.
			Loveland silt, and Crete sand and gravel members	09-0	Massive silt, reddish tan to tan. Thick Loveland soil at top. Locally sand and gravel (Crete member) at base.	Basal sand and gravel, where present, yields moderate to large supplies of water to wells.
		Meade(?) formation	Sapps and Grand Island members	20-30	Sand, gravel, and silt in lower part (Grand Island), grading into sandy silt and silt in upper part (Sappa). Crops out at only a few places in south-central Norton County, and northwestern Philips County.	Where basal sand and gravel are below the water table, probably yields abundant supplies to wells at a few places only.

Generated at University of Kansas on 2023-09-25 18:39 GMT / https://hdl.handle.net/2027/ucl.b3817056 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access use#pd-us-google

All known occurrences above the water table; yields no water to wells. Yields moderate to large supplies of water to wells at many places. Yields small supplies of mineralized water to wells at some places. Yields moderate supplies of water to wells at many places. Yields no water to wells. Water supply Generalized section of the geologic formations of Norton County and northwestern Phillips County, Kansas—Concluded Chalky shale and chalk, blue gray, gray and yellow tan. A few bentonite beds. Silt, gravel, sand, partly cemented with CaCO₃, volcanic ash, and impure limestone; tan, reddish tan, and gray. Sand, gravel, silt (partly cemented by CaCO₃), impure limestone, and opal-cemented lentils, gray, gray tan, and greenish gray. Black to coffee-colored fissile shale, a few beds of chalky shale, and ben-tonite in lower part. Chert, sand, gravel, silt, in part cemented with calcium carbonate. Occurs at only a few places. Character Thickness (feet) ∓009 75 3 100 ∓ 90 - 1500 - 100Sharon Springs shale member Ash Hollow member Valentine member Smoky Hill chalk member Kimball member Member Pierre shale Formation Ogallala formation Niobrara Pliocene Gulfian 3 TABLE ? Cretaceous Tertiary SYSTEM

portant tributaries. Remnants of stream deposits classed as the Meade formation occur along the north part of the North Fork Solomon River Valley in south-central Norton County and along the south side of Prairie Dog Creek Valley in northwestern Phillips County. Somewhat younger stream deposits classed as the Crete sand and gravel member of the Sanborn formation occur at a level above the prominent terrace on the north side of Prairie Dog Creek Valley and at some places in the Valleys of North Fork Solomon River and Sappa Creek.

Throughout this area the Carlile shale of Cretaceous age underlies the Niobrara formation. Oil wells drilled in the area have encountered a sequence of pre-Carlile Cretaceous sediments above the Paleozoic rocks comparable to the sequence exposed in the outcrop belt farther east in Kansas.

CRETACEOUS SYSTEM (GULFIAN SERIES) FORMATIONS OF PRE-NIOBRARA AGE

At only a few places in the area covered by this report do wells obtain water from rocks occurring stratigraphically below the Niobrara formation. However, in southeastern Norton County, both north and south of Solomon River, a few wells have been drilled through the Niobrara formation and obtain meager supplies of mineralized water from the underlying formation. A few deep wells have also been drilled in the vicinity of Norton and at a few other localities throughout the area.

The Carlile shale, which is about 300 feet thick, underlies the Niobrara formation. The Carlile has been divided into three members, the lowest of which is composed of calcareous shale with thin chalky beds in the lower part and is called the Fairport chalky shale The Blue Hill shale member overlies the Fairport and consists of about 200 feet of dark-colored, platy, noncalcareous shale containing zones of flat discoidal concretions in the lower part and zones of septarian concretions in the upper part. sandstone member occurs as a lentil above the Blue Hill shale member and immediately below the base of the Niobrara formation. The Codell sandstone member ranges in thickness from a few inches to as much as 20 feet where it is exposed on the outcrops, and consists predominantly of fine to very fine sand and silt. At some places where this part of the section is exposed, the Codell does not consist of a well-developed sandstone bed but of thin lentils of sand in the upper 15 to 20 feet of the Blue Hill shale member.

sand streaks in many places do not exceed 2 or 3 inches in thickness and are thought to be relatively nonpersistent. At a few localities a lentil of sand several feet in thickness and lithologically resembling the Codell occurs as much as 20 to 40 feet below the top of the Blue Hill shale member.

As none of the test holes drilled in this area penetrated the Carlile shale and as samples were not generally collected from the oil tests drilled in this area until a greater depth was attained, little detailed information on the exact nature of the Codell sandstone member in this area is available. Several of the deeper water wells in southeastern Norton County may obtain all or part of their water from the Codell sandstone member of the Carlile shale.

The Greenhorn limestone lies below the Carlile shale. It consists of alternating beds of chalky limestone and chalky shale and probably does not exceed 100 feet in thickness in this area. Next below the Greenhorn limestone is the Graneros shale which is a dark-gray to black, fissile, noncalcareous shale with lentils of sand. The Graneros shale overlies the Dakota formation, which is made up of clay, shale, siltstone, and sandstone. Although in areas farther east and southeast the Dakota formation is an important source of ground water, no water wells drilled to the Dakota were found in the area Wells drilled into the Dakota toward the east in of this report. Smith and Phillips Counties have encountered highly mineralized water in the formation and it is probable that waters of similar quality occur in the formation in this area. Below the Dakota formation are the Kiowa shale and Chevenne sandstone of the early Cretaceous Comanchean Series.

NIOBRARA FORMATION

The Niobrara formation was named in 1862 by Meek and Hayden from exposures along Missouri River near the mouth of Niobrara River in Nebraska. The first detailed description of this stratigraphic unit in Norton County is included in "The Geology of Norton County" by Hay (1885, pp. 18-20). Hay describes outcrops of Niobrara chalk along the three major valleys of the county. In 1897 Logan (pp. 219-221) described the occurrence of the Niobrara formation in western Kansas. He used a twofold subdivision of the Niobrara consisting of the Fort Hays limestone member as the lower division and the *Pteranodon* beds or Smoky Hill chalk, a name proposed earlier by Cragin, as the upper division. In his description of the Niobrara, Logan mentions chert, which seems to be interstratified with the chalk and is well exposed in the vicinity of Nor-

ton and Prairie Dog Creek Valley. In the same year Williston (1897, pp. 237-246) described the stratigraphy of the Niobrara formation of western Kansas and its contained fossils. In 1925 the stratigraphy of the Niobrara formation in Russell County, Kansas, southeast of this area, was described in detail by Rubey and Bass (pp. 25-32), and in the following year Bass (1926, pp. 19-26) described the Niobrara formation in Ellis County immediately west of Russell County. A rough zonation of the Smoky Hill chalk member was proposed by Russell in 1929, and Elias in 1931 (pp. 29-43) described the Niobrara formation in Wallace County, Kansas.

The exposures of Niobrara in Norton County and northwestern Phillips County represent approximately the upper half of the Smoky Hill chalk member. However, the lower part of the Smoky Hill chalk member and the Fort Hays limestone member underlie the entire area covered by this report. Where it is exposed at the surface to the east and south, the Fort Hays consists of massive beds of chalky limestone as much as 4 feet in thickness, separated by thin beds of chalky shale and shaly chalk. The Fort Hays grades upward into chalky shales and shaly chalks composing the Smoky Hill chalk member. Where encountered in fresh exposures or penetrated by the drill, the Smoky Hill chalk member is typically bluish gray in color and contains a large percentage of calcium carbonate. On weathered exposures it is yellow, orange, light gray, or nearly white in color and has a shaly or claylike appearance. In many of the test holes penetrating the Niobrara formation in this area, a similar weathered zone was encountered immediately below the unconformity without regard to stratigraphic position. Although the Smoky Hill chalk member is predominantly shaly in appearance, at some localities thick massive beds of chalk have been observed (Pl. 9C), and thin beds of bentonite occur at many stratigraphic positions. The upper part of the member is particularly characterized by numerous thin bentonite beds, which also occur in the overlying Pierre shale, as shown by the measured stratigraphic section in northwestern Phillips County.

Section measured along creek bank in the SW¼ sec. 6, T. 1 S., R. 19 W., Phillips County

CRETACEOUS—GULFIAN

Pierre shale—Sharon Springs shale member

	T	hickness feet
18.	Shale, thin-bedded, dark gray; fine gypsum crystals and	
	limonite along bedding planes	2.0
17.	Shale, fissile, dark gray, noncalcareous; ochre on bedding	
	planes	1.3

		Thickness feet
16.	Chalky paper shale, yellow brown	0.05
15.	Shale, fissile, dark gray; noncalcareous; contains bands of	
	ochre, gypsum crystals, and limonite	3.5
14.	Bentonite, impure, with limonite and calcareous shale	0.1
13.	Shale, fissile, dark gray; noncalcareous; bands of ochre, gypsum	
	crystals, and limonite on bedding planes	5.0
12.	Bentonite with gypsum and limonite	0.05
Niobrah	RA FORMATION	
Smol	ky Hill chalk member	
11.	Chalky shale, thin-bedded, gray, weathers to yellow tan	1.5
	Bentonite, yellow tan	0.3
9.	Chalk, dark gray, massive	0.7
8.	zeciesine, impare, sensor audition in the contract of the cont	
7.	Chalk, thin-bedded, dark gray, breaks with a conchoidal frac-	
	ture on exposed surfaces, weathers to light orange	1.5
6 .	Bentonite, yellow tan	0.2
5.	Chalk, massive, dark gray, weathers to light orange	0.9
	Bentonite	0.05
3.	Chalk, thin-bedded, dark gray	0.8
	Bentonite	
1.	Chalk, thick-bedded, dark gray. From low water level in	
	Prairie Dog Creek	2.0
	That I are seed I	00

For many years silicified zones in the Smoky Hill chalk member were thought to represent definite stratigraphic horizons. These zones have been observed at several localities in north-central Kansas at various stratigraphic positions but always near the eroded upper surface of the member. In a few places, the silicified chalk is cemented to overlying silicified deposits of the Ogallala formation. It is our conclusion that the silicified zones in the chalk were formed by secondary silicification of the uppermost exposed chalk beds probably at the same time as the silicification of zones in the overlying Ogallala formation (Landes and Keroher, 1942, p. 306; Frye and Swineford, 1946, pp. 58-59).

The maximum thickness of the Niobrara formation in Phillips County has been reported by Landes and Keroher (1942, p. 286) as 650 feet. They considered the thickness of the Fort Hays limestone member as about 50 feet and the remaining 600 feet of the formation they assign to the Smoky Hill chalk member.

Although the Niobrara formation yields meager supplies of mineralized water to wells at some places, the relatively impervious character of the formation prevents the movement of large quantities of water and renders it unsatisfactory as a general source of

PLATE 5. Cretaceous rocks in northwestern Phillips County. A, Niobrara chalk (left) faulted against Pierre shale (right) exposed along east bank of Prairie Dog Creek in the SE¼ sec. 24, T. 1 S., R. 20 W.; B, Pierre shale exposed in east bank of Prairie Dog Creek in the SE¼ sec. 24, T. 1 S., R. 20 W.

ground water. At some places, particularly where the chalk has been partially silicified, jointing in the upper part has permitted the entrance of water in sufficient quantities to supply small wells. Old stone well (no. 2-23-33aa) near Norton is an example of a well producing water from silicified chalk of the Niobrara formation. Also, faults occur in the Niobrara in some areas (Pls. 4C and 5A) and some water may move along the porous fracture zones produced by the fault planes. Deep wells drilled into the chalk, particularly in southeastern Norton County, obtain water from depths of 250 to 400 feet. In most cases, although the water level in these wells stands up in the chalk, the source of the water is from the underlying Codell sandstone. Chemical analyses of water from several wells penetrating the Niobrara and Codell are shown in Table 5 and Figure 9.

PIERRE SHALE

The Pierre shale was named by Meek and Hayden in 1862 from exposures at old Fort Pierre in South Dakota. The Pierre shale of Kansas has been studied and described in detail by Elias (1931, pp. 43-131). He described several members in the Pierre shale and discussed their correlation with late Cretaceous units throughout North America. In the area covered by this report only the lowermost of the members described by Elias, the Sharon Springs shale member, is exposed. The occurrence of Pierre shale in northwestern Phillips County was described by Landes and Keroher (1942, pp. 284-286).

In Phillips County the Pierre shale consists of black to dark graybrown fissile, platy noncalcareous shale with numerous thin beds of bentonite and several zones of chalky shale. The shale typically contains thin veins and isolated crystals of gypsum and scattered Large septarian concretions, described by nodules of limonite. Elias as typical of the upper part of the Sharon Springs shale member, were not observed in the Pierre shale of this area. However, a few small concretionary limestones were observed at scattered lo-The maximum thickness of Pierre shale observed in outcrops was about 30 feet (Pl. 5B), and the maximum thickness encountered in test holes was 46 feet. Probably the total thickness of the Pierre shale in Phillips County is considerably less than 100 Although no fossils were obtained from this formation in Phillips County, close similarity of lithology to that in Wallace and adjacent counties, described by Elias, and the stratigraphic thickness encountered above the top of the Niobrara formation suggest that all the Pierre shale of Phillips County should be classed as the lower part of the Sharon Springs member. The contact between the Niobrara formation and the Pierre shale is described by Elias (1931, pp. 29-31) as difficult to recognize in the field except by the use of acid, because the two units where they are in contact may be of similar color and lithologic appearance. However, he describes the contact as being sharp when checked for calcium carbonate content. In Phillips County, several beds of chalky shale occurring in the lower part of the Pierre attain a maximum thickness of more than 3 feet; as outcrops are generally meager, it is difficult in some places to distinguish with certainty Pierre shale from Niobrara formation. The occurrence of numerous thin bentonite beds in both the upper part of the Niobrara and the lower part of the Pierre shale is shown by the measured section in the SW1/4 sec. 6, T. 1 S., R. 19 W., Phillips County. For the purposes of this report the base of the Pierre shale is drawn at the top of the uniformly calcareous chalky shales which are here classed as the upper part of the Niobrara formation.

The occurrence of Pierre shale in northwestern Phillips County and adjacent Nebraska, lying east of widespread Pierre shale deposits of northwestern Kansas and isolated from that area by an extensive region devoid of Pierre shale outcrops, has been explained by downwarping of the Long Island syncline on the west flank of the Stockton anticline (Landes and Keroher, 1942, p. 289. Faults have been observed at many of the outcrops of Pierre shale (Pls. 4C and 5A) and it is possible that this faulting is associated with the structural movements that gave rise to the Long Island syncline. No wells in this area are known to obtain water from Pierre shale.

TERTIARY SYSTEM (PLIOCENE SERIES)

OGALLALA FORMATION

The Ogallala formation was named by Darton in 1899 (pp. 734, 735, 741-742, pl. 84) from a locality in southwestern Nebraska. In 1920 Darton (p. 6) referred to the type locality as near Ogallala Station in western Nebraska. Elias (1931) made a detailed study of the Ogallala formation in Wallace County and adjacent area of western Kansas and later (Elias, 1937) briefly described the Ogallala in Rawlins and Decatur Counties immediately west of Norton County. In 1942 Elias described Tertiary fossil seeds and other plant remains of the central Great Plains. Lugn (1939) presented a

3-7915

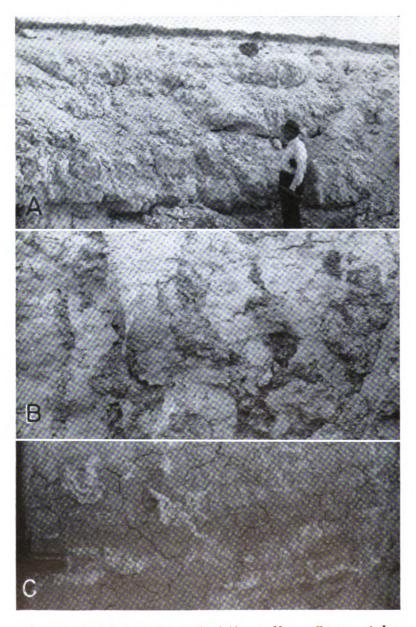


PLATE 6. Ogallala formation south of Almena, Norton County. A, Impure limestone of the Ogallala formation in quarry on south side of Prairie Dog Creek Valley. Quarry is one-fourth mile east of measured section in this report and the rock grades laterally into bed 14 of measured section. Limestone contains a few molds of fossil snails. B, Detail of middle of bed 12 of measured section south of Almena. C, Detailed view of weathered surface of bed 10 of measured section south of Almena.

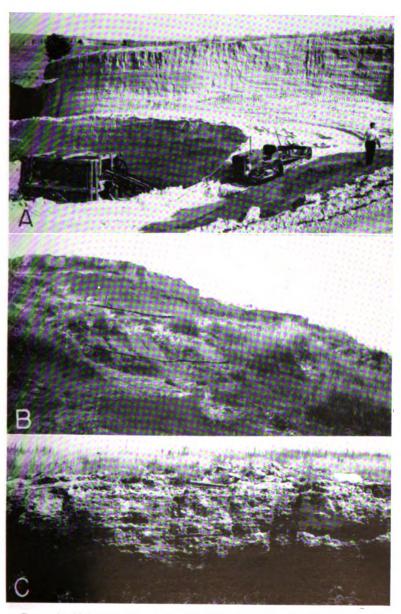


PLATE 7. Volcanic ash of the Ogallala formation in Norton County. A, Mine of Wyandotte Chemical Corporation at Calvert. B, Exposure of Ogallala formation showing volcanic ash below beds from which Biorbia jossilia (Berry) was collected, NW½ NE½ sec. 36, T. 2 S., R. 25 W. C, Cemented upper part of volcanic ash, south of Almena. Bed 17 of measured section in this report.

classification of the Tertiary formations of Nebraska in which he considered the Ogallala as a group containing the following formations in ascending order: Valentine, Ash Hollow, Sydney gravel, and Kimball.

Character and subdivisions.—The Ogallala formation of Norton and Phillips Counties consists of a wide diversity of clastic sediments. It contains sand and gravel, silt, sandy silt, clay, bentonitic clay, and, locally, sandy limestone, silty limestone, volcanic ash, opaline-cemented sands and gravels, and chert (Pls. 6, 7, and 9A). The character of the Ogallala is shown by the logs of test holes and the measured sections included in this report, and by the cross sections in Plate 3. The bluffs on the south side of Prairie Dog Creek Valley in the vicinity of Almena present exceptionally good exposures of the Ogallala formation, and a measured section from that locality is given below.

Section measured south of Almena, W½ sec. 16, T. 2 S., R. 21 W., Norton County, Kansas (Measured by M. K. Elias and John C. Frye)

•	NARY—PLEISTOCENE	Thickness,
	Silt and fine sand, buff; contains nodules of calcium carbonate	feet 4.0
		4.0
	Y—PLIOCENE	
	ala formation—Ash Hollow member(?)	
23.	Limestone, porous, hard, light cream; contains abundant gas	
99	tropod molds	
	Covered. Two feet of mortar bed exposed about midway Sand, silty, fine to medium, locsely cemented with calcium carbonate; contains <i>Biochia fossilia</i> (Berry), <i>Berryochloc</i>	1
	amphoralis, and Celtis willistoni (Cockerell)	6.4
20.	Covered. Unconsolidated silt and sand, buff, poorly exposed	i
	at a few places	. 32.0
19.	Sand, coarse to fine, and some silt; cemented with calcium	1
	carbonate	. 1.0
18.	Sand, fine to medium, buff; contains a small amount of eal	
	cium carbonate cement	
17.	Volcanic ash, sandy at base (becomes impure to south); upper part locally cemented with calcium carbonate. At Calver ash mine this bed contains Krynitzkia coroniformis Elias, Stipidium variegatum var. dartoni Elias, Celtis willistoni (Cock	t -
	erell)	
16.	Silt and sand cemented with calcium carbonate, roughly	
	bedded; contains Krynitzkia coroniformis Elias	
15.	Partly covered. Calcareous clay silt, greenish gray at top	
	buff silt and very fine sand with calcium carbonate concretion	
	in middle; and greenish-gray calcareous clay silt at base	
14.	Silt, sand, and calcium carbonate	. 4.0

		Thicknes feet
13.	Sandy silt, buff, locally unevenly cemented with calcium car-	
	bonate	0.7
	Silt, sand, and calcium carbonate, massive, light greenish buff,	6.9
alei	ntine member(?)	
11.	Sand, fine to medium, pale greenish tan	3.7
10.	Silt, sand, and clay, calcareous, greenish brown	3.0
9.	Silt, clay, and sand, greenish brown	1.8
8.	Sand and some gravel	3.0
7.	Sand, clay, and silt, greenish brown; contains abundant frag-	
	ments of fossil vertebrates	2.5
6.	Sand, medium, poorly sorted, uncemented, brown	3.0
5.	Covered	4.0
4.	Limestone, porous, hard, white; contains gastropod molds	1.0
	Sand and silt, highly calcareous, irregularly bedded, gray to pink; upper part more calcareous and contains a few gas-	
	tropod molds	3.2
•	•	
	Silt, with some clay and fine sand, massive, gray to gray green,	
1.	Sand, fine, and silt, with some clay and coarse sand, highly calcareous, massive to irregularly bedded, gray. Covered in	
	lower part to level of C. R. I. and P. R. R. tracks	5.3
	Total measured	167.0

In spite of the wide diversity of rock types included within the Ogallala formation, the outcrops present a uniformity of aspect which makes the stratigraphic unit easy to identify for mapping purposes. Poorly sorted sandy silts and silty sands and gravels, commonly cemented loosely with calcium carbonate or containing nodules and stringers of calcium carbonate, predominate throughout the formation.

Thin lenticular bodies of well-sorted sand and sand and gravel have been penetrated by several of the test holes as shown by the logs. However, well-sorted sand or sand and gravel is rare in Ogallala outcrops. The general occurrence of sandy silts and silty sand and gravel beds loosely cemented with calcium carbonate gave rise to the widespread application of the term "mortar bed" to the Ogallala formation in northwestern Kansas. Although color differentiation should not be relied upon for correlation purposes, the lower part of the Ogallala section in Norton and Phillips Counties is predominantly gray to gray green in color, whereas the upper part generally is characterized by a pinkish color.

The stratigraphic subdivision of the Ogallala formation is rendered difficult by the occurrence throughout its entire thickness of similar lithologies. In Nebraska the Ogallala has been classed by Lugn (1939) as a group consisting of four formational units. Because

 \mathbf{V}

these several units are conformable they are recognized with difficulty in field mapping; the State Geological Survey of Kansas classes the Ogallala as a formation and recognizes as members within it three units classed in Nebraska as formations. It is our judgment that in Norton County and northwestern Phillips County nearly an entire section of Ogallala is present, representing the Valentine, Ash Hollow, and Kimball members. The cross sections (Pl. 3) clearly show that the unconformable surface on which the Ogallala deposits were laid down is not flat but has relief of more than 100 feet in this area. The tracing of seed zones and lithologic types suggests that deposits here classed as Valentine member accumulated in the low areas on the pre-Ogallala erosion surface and thus represent fills in the early Pliocene valleys. The Valentine member thus thins toward the Cretaceous highs and probably pinches out entirely under part of the divide area between Prairie Dog Creek and Solomon River in the eastern part of Norton County and south of Sappa Creek Valley in northwestern Norton County. The Ash Hollow member is thought to be represented by many of the outcrops encountered along the major valley areas and to have been deposited over the entire area. Alluviation of this part of the Great Plains during the time of Ash Hollow sedimentation had built the surface of the alluvial plain (Frye, 1945) above the level of the pre-Pliocene major stream divides. Although deposits comprising the Kimball member of the Ogallala are thought to have originally been continuous over this part of Kansas, they are now represented only by isolated erosion remnants projecting above the general upper surface of Ogallala deposits. The crest of Twin Mounds south of Lenora, capped by resistant cherty beds, may represent the approximate stratigraphic position of the Algal limestone and thus mark the top of the Kimball member and of the Ogallala formation.

The recognition of the Valentine, Ash Hollow, and Kimball members is based primarily on plant fossils and a few distinctive lithologic types. Elias (1942) has described the fossil flora of the Ogallala formation and recognized floral zones characterized by three distinctive fossil seeds. He considers the zone of *Stipidium commune* to be roughly coincident with the Valentine member, the zone of *Krynitzkia coroniformis* to occur in the lower Ash Hollow and possibly uppermost Valentine, and the zone of *Biorbia fossilia* to comprise all but the lowermost part of the Ash Hollow. As the seeds occur widely in Ogallala deposits, they are quite useful in aiding the recognition of the several members. Their stratigraphic position

in Norton and Phillips Counties is noted in several measured sections included in this report.

Of the special lithologic types included in the Ogallala formation of this area, lenticular deposits of volcanic ash have proved to be the most useful stratigraphically. Detailed petrographic studies (Swineford and Frye, 1946) of volcanic ash from six localities in Norton County have been made. At five of these places the petrographic characteristics indicate that the ash represents the same fall, whereas a higher index of refraction at the sixth locality (NW1/4 NE1/4 sec. 36, T. 2 S., R. 25 W.) suggests a different ash fall not contemporaneous in age with the other ash deposits. The widespread ash typically exposed in the Calvert mine (Pl. 7) has been placed by Swineford and Frye (1946) in the lower part of the Ash Hollow member.

Another distinctive lithologic type in this area is the silica-cemented lentils of sand and gravel. This rock type has been described in detail by Frye and Swineford (1946) and, although it occurs at several slightly different stratigraphic positions, the lentils for the most part have been placed by them in the zone of Stipidium commune and the lower part of the zone of Krynitzkia coroniformis and thus probably should be assigned to the lowermost part of the Ash Hollow member or the uppermost part of the Valentine member. Beds of soft limestone typified by molds of fossil snails and the absence of coarse sand or gravel occur at several stratigraphic positions within the formation and are well exposed in the vicinity of Almena and New Almelo.

Bentonitic clay, in places silty or sandy, is another distinctive lithologic type found in the Ogallala formation. Landes and Keroher (1942) have described the occurrence of this clay in Phillips County and Kinney (1942) has made a study of its properties and use. It is typically gray green to olive tan in color and occurs in lenticular bodies in the lower part of the formation. This clay has been assigned to the Cretaceous by some geologists, but its occurrence in some localities interstratified with and overlying typical calcium carbonate-comented sand and gravel place it definitely within the Ogallala. The occurrence of this clay at the base of the Ogallala overlying Pierre shale at some places and upper Niobrara at other places suggests that it may be related to the erosional surface below the Ogallala formation.

Distribution and theckness.—The ogallala formation underlies all of Norton and northwestern Phillips Counties, except where it has

been removed by erosion along the valleys of the major streams and the lower parts of some of their tributaries, and in an area adjacent to North Fork Solomon Valley in southeastern Norton County where the relatively high position of the Niobrara formation has permitted the removal by erosion of the Ogallala formation from the upland areas. Westward from Norton County the Ogallala formation extends in an unbroken sheet to the Colorado State line. thickness of the formation is shown in the cross sections (Pl. 3) and the logs of test holes in this report. It was penetrated by 28 test holes where its thickness ranged from 5 to more than 250 feet; the average thickness penetrated by test holes is about 115 feet. original thickness of the Ogallala formation at the close of the time of its deposition in this area probably ranged from a little more than 100 feet to about 300 feet.

Age and correlation.—The beds in the type area of the Ogallala formation near Ogallala, Nebraska, have been studied by Elias (1931) and the fossil vertebrates have been described and discussed (Hibbard, 1933; Hesse, 1935; Stirton, 1936). Although a large collection of vertebrate fossils has been made from quarries in the Ogallala formation south of Long Island in northwestern Phillips County and a few fragmentary fossil vertebrates have been collected from several places in Norton County, detailed correlations on the basis of fossil vertebrates have not been made in this area. However, abundant collections of fossil seeds, made by us and identified by M. K. Elias, aid in the correlation of these deposits with the Ogallala formation of Nebraska and western and southwestern Kansas. The stratigraphic placement of the fossil seeds is shown in the measured sections. A list of fossil plants collected from the Ogallala in Norton and Phillips Counties is given below.

Fossil seeds from the Ogallala formation in Norton and northwestern Phillips Counties, Kansas (Identified by M. K. Elias)

> Berryochloa amphoralis Biorbia fossilia (Berry) Biorbia minor (Elias) Celtis willistoni (Cockerell) Krynitzkia coroniformis Elias Panicum elegans mut, nebraskense Elias Prolithospernum corrugatus Elias Stipidium coloradocusis Elias Stipidium commune Elias Stipidium ef. grande Elias Stipidium intermedium Elias Stipidium sp.

The Ogallala formation of Norton and northwestern Phillips Counties is considered to be entirely of Pliocene age, as it has been correlated with deposits elsewhere in the Central Great Plains that have yielded characteristic Pliocene vertebrate faunas.

Water supply.—The sand and gravel of the Ogallala formation is the most widespread source of ground water in Norton County. Most of the wells in the uplands obtain all or part of their water from this formation. The finer materials of the formation and those cemented with calcium carbonate generally are porous and hold considerable water but are not permeable enough to yield water The coarser materials—gravel in particular—commonly yield abundant supplies of water. Although laboratory determinations of coefficients of permeability of samples from the Ogallala formation from Norton County were not made, determinations made on similar materials from Thomas County showed a range from 107 to 609 for uncemented sand and gravels (Frye, 1945, p. 65). though these permeabilities are probably considerably less than the permeability of materials underlying the prominent terraces of Solomon River and Prairie Dog and Sappa Creeks, they indicate that relatively large supplies of water can be obtained from wells where a considerable thickness of Ogallala sediments is saturated.

The position of the water table in the Ogallala is shown on Plate 2 by contour lines and figures indicating the altitude of the water table and its depth below land surface, and on the cross sections in Plate 3. Details concerning individual wells producing from the Ogallala are given in Table 8. The chemical character of the water from the Ogallala formation is given in Tables 5 and 6, and is shown on Figures 9 and 10.

QUATERNARY SYSTEM

Although relatively thin in most places, deposits of Quaternary age were found to be the near-surface materials in a very large part of the area shown by the geologic map (Pl. 1). The Quaternary deposits are classed as Meade formation, Sanborn formation, terrace deposits, alluvium, and slope deposits.

MEADE (?) FORMATION (PLEISTOCENE SERIES)

Deposits tentatively classed as Meade formation occur south of Prairie Dog Creek Valley in the vicinity of Long Island and north of Solomon River Valley in south-central Norton County. In the vicinity of Long Island these deposits consist of sand and gravel

containing abundant abraded pebbles of several distinctive rock types of the Ogallala formation and overlain by sandy silt. They occupy a topographic position well above that of the sand and gravel classed as the Crete member of the Sanborn formation, which in turn occurs topographically higher than the prominent terrace level along Prairie Dog Creek Valley. Thus at this locality the deposits assigned to the Meade formation constitute a dissected remnant of a high terrace. The topographic position of the sediments judged to be Meade in Solomon Valley is similar to that of the deposits in the Long Island locality. The south-central Norton County deposits, however, consist primarily of fine sand and silt which contains a meager snail fauna. An auger hole revealed the presence of relatively well-sorted sand below the sand and silt.

The Meade formation has been correlated from its type locality in Meade County, Kansas, widely over the western and central parts of the state (Frye, Swineford, and Leonard, 1948). However, the distinctive Pearlette volcanic ash was not found in this area, and a meager collection of fossil snails from the south-central Norton County locality failed to yield diagnostic species which would have permitted definite correlation. Where observed, the Meade (?) formation occurs above the water table and is of small importance as a water-bearing formation. It may, however, underlie several square miles of northwestern Phillips County where the surficial materials consist entirely of the younger Sanborn formation.

Because of their small areal extent, these outcrops of Meade (?) formation are included with the Sanborn formation on the geologic map (Pl. 1).

SANBORN FORMATION (PLEISTOCENE SERIES)

Character and subdivisions.—In 1931 Elias (pp. 163-181) described unconsolidated Pleistocene deposits consisting mostly of silt in northwestern Cheyenne County, Kansas, and named these deposits the Sanborn formation from the town of Sanborn located in Nebraska just north of the type area. In 1944 Hibbard, Frye, and Leonard made a reconnaissance of the Sanborn formation and its contained vertebrate and molluscan faunas in north-central Kansas. This report uses the classification and correlations of the Sanborn formation as described by Frye and Fent (1947) in central Kansas. Four members are recognized within the Sanborn formation in this area—Crete sand and gravel member at the base, grading upward into the Loveland silt member which is capped by the Loveland soil,

the Peoria silt member terminated upward by the Brady soil, and the Bignell silt member terminated upward by the modern surface soil.

The formation as a whole consists of three predominant lithologic types which directly reflect three environments of deposition. Stream deposits of sand and gravel representing the major channel fills of earliest Sanborn time occur in a terrace position above the prominent terraces of the major valleys and well below the uplands. The Crete sand and gravel is almost continuous along the north side of Prairie Dog Creek Valley throughout Norton County and northwestern Phillips County. Similar deposits of a local type occupy a tributary position to the major valleys in some places. Deposits of Crete sand and gravel were also observed at scattered localities along North Fork Solomon River and Sappa Creek Valleys. second lithologic type occurs widely as a surficial material over much of the area mapped, as shown in Plate 1. It consists of eolian silts transported by winds from the flood plains of the major valleys of these counties and adjacent areas during periods of active alluviation and deposited as a nearly continuous mantle over the upland The third lithologic type is minor in areal extent and thickness and consists of colluvial materials on steep slopes derived in part from the underlying bedrock (Pliocene or Cretaceous) and in part from the upland mantle of eolian silts. Two measured sections of the Sanborn formation and underlying Ogallala formation are given below.

Section measured along steep cut bank on W. side of creek in the SE¼ sec. 13, T. 1 S., R. 24 W., Norton County, Kansas. (Measured by Stafford C. Happ and John C. Frye.)

QUATERNARY—PLEISTOCENE Sanborn formation						
15. Silt and very fine sand below surface with no soil development, indistinct bedding, light yellow tan (Bignell silt member?).						
Some fossil snails present	1.5					
14. Soil (Brady), dark brown to brown black, blocky; indistinct						
contacts at top and bottom	1.5					
13. Silt, with some very fine sand, massive, yellow tan (Peoria silt member). Snails collected from zone 3-5 feet above base included Pupilla muscorum (Linnaeus), Helicodiscus parallelus (Say), Succinea grosvenori Lea, Vallonia gracilicosta Rein-						
hardt	14.0					
12. Soil (Loveland), brown to reddish brown, compact sandy silt with a few pebbles, indistinct contacts at top and bottom. Lower 0.5 foot contains fossil vertebrates and the following fossil snails: Vertigo tridentata Wolf, Succinea grosvenori Lea, Vallonia gracilicosta Reinhardt, and Pupilla muscorum (Lin-						
naeus)	3.5					

	Thicknes feet
11. Silt, sandy with occasional small pebbles, compact, irregular	
vertical structure, pinkish buff (Loveland silt member)	1.5
10. Sand, silt, and some gravel, massive, buff	1.0
9. Silt, sandy, massive, brown	1.0
8. Sand, fine, silty, massive, with some pebbles, tan	1.0
7. Covered	1.5
6. Sand, stratified, tan; contains streaks of uncemented silt and	
pebbles (dominantly mortar-bed material)	1.5
5. Sand, gravel, and silt, lenticular, irregularly bedded, tan (peb-	
bles of Ogallala type)	2.0
4. Gravel (mostly derived from the Ogallala formation); minor	0.0
disconformity at base	0.8
gray. Distinct unconformity at base	3.2
•	3.2
Tertiary—Pliocene (?)	
Ogallala formation (?)	0.0
 Silt, sandy, calcareous, greenish	0.8
lower part	4.5
lower part	4.0
Total measured	39.3
3-23-11. Section measured in road cut in the NW¼ sec. 11, T. 3 S., R Norton County, Kansas. (Measured by Claude W. Hibbs John C. Frye [Hibbard, Frye, and Leonard, 1944]).	
Sanborn formation	Thickness feet
4. Silt, massive, gray to yellow tan (Peoria silt member). Citellus	
richardsonii (Sabine) 2.5 feet and 21 feet above base. Fossi	
snails 4 feet above base include Vallonia gracilicosta (Müller)	
Succinea grosvenori Lea, and Pupilla blandi Morse; 20 feet above	
base, Succinea grosvenori Lea, Pupilla muscorum (Linnaeus), Pu-	
pilla blandi Morse, and Discus cronkhitei (Newcomb)	
3. Soil (Loveland). Sand, fine, and silt, blocky to massive; contains	
nodules of caliche in lower part; Citellus richardsonii (Sabine)	3.5
2. Silt and fine sand, a few patches and streaks of caliche, light gray	,
buff (Loveland silt member). Citellus richardsonii (Sabine) and	
Geomys sp. Bed 2 pinches out laterally on unconformable surface	!
of the Ogallala formation	4.4
Ogallala formation—Ash Hollow member	
1. Sand, silt, and gravel, cemented loosely throughout with calcium	
carbonate, gray. Fossil vertebrates 12.5 feet below top	21 A
	31.0
Total	
TotalOn the upland divides, where the Sanborn formation consis	63.9

On the upland divides, where the Sanborn formation consists predominantly of eolian silts with minor amounts of colluvial materials in the basal part, three stratigraphic units have been recognized on the basis of two distinct unconformities. For the most part these

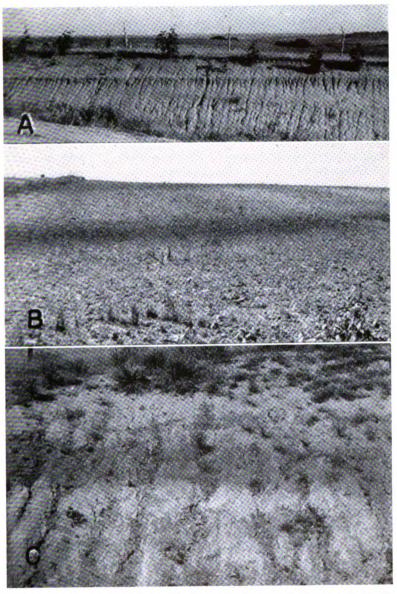


PLATE 8. Buried soils in the Sanborn formation. A, Brady soil developed on Peoria silt member and overlain by Bignell silt member. Road cut, N. line, NW¼ sec. 26, T. 2 S., R. 23 W., Norton County, Kansas. Fossil snails abundant in Peoria member. B, Loveland soil overlain by Peoria silt, truncated by modern sloping surface, exposed in a plowed field in the NW¼ NE¼ sec. 21, T. 3 S., R. 12 W., Smith County, Kansas. C, Loveland soil overlain by Peoria silt member, in cut along Kansas Highway 9, sec. 18, T. 5 S., R. 23 W., Norton County, Kansas.

unconformities are not marked by deep erosion or intricate dissection of the area, but rather by episodes of weathering that have given rise to well-developed soil profiles now buried below overlying silts. The most prominent of these soil profiles occurs at the top of the Loveland member on the divide areas, and is several times as thick as the modern soil profile at the surface. It is well exposed in road cuts in the vicinity of Norton and elsewhere throughout the area, and has been encountered in test holes and auger borings. The depth of leaching in all exposures where it was checked exceeds 30 inches and the upper part of the soil is colored dark brown by organic material and oxidation. An accumulation of clay occurs below the dark-brown zone and a prominent red color extends downward into the Loveland silt member for several feet at most places. Concentration of caliche in the form of nodules and stringers has been observed at depths of 4 to 6 feet below the top of the soil. The Loveland silt member on the divides rarely exceeds a thickness of 20 feet.

The Peoria silt member overlies the Loveland and consists predominantly of light yellowish-tan massive uniform calcareous silt. At the base of the Peoria member there is a gradational transition zone which is judged to represent the initial slow accumulation of silt that later culminated in the deposition of the member. This slow initial deposition allowed weathering processes to leach part of the calcium carbonate from the silts as they were deposited. The Peoria silt member is terminated upward by the Brady soil, which is somewhat thicker than the modern top soil which it resembles in road cuts and auger holes.

The uppermost division of the Sanborn formation consists of discontinuous thin deposits of colian silt resting on the surface of the Brady soil. This uppermost member has been named Bignell from a locality in Nebraska (Schultz and Stout, 1945) and is terminated upward by the modern top soil (Pl. 8). Its occurrence is sporadic and is largely confined to the divide areas.

Colluvial deposits on some slopes are not properly classed as part of the Sanborn formation. However, for the purposes of field mapping, such slope deposits are included with the Sanborn formation on the geologic map (Pl. 1), where they are of sufficient thickness to conceal the underlying rocks in gullies and along road cuts.

Where the Sanborn formation is thick, the topography is generally characterized by rounded slopes and a deep fertile soil. Where road cuts have been made through these silt members, they display in

some degree the characteristic of loess in that they stand in steep cuts for long periods of time. On the broad interdivide areas in western Norton County the Sanborn formation underlies flat upland surfaces.

Distribution and thickness.—As shown on Plate 1, the Sanborn formation and minor amounts of associated slope deposits underlie the surface of a very large part of Norton County and northwestern Phillips County. The thickness of this unit is shown by logs of test holes and measured sections included in this report and in the plotted cross sections shown on Plate 3. The uppermost or Bignell silt member is generally 3 to 5 feet in thickness but a total thickness of 20 feet was penetrated in one test hole. The underlying Peoria silt member is as much as 40 feet thick, and is commonly 15 to 25 feet thick. The next older member, the Loveland silt member, in the upland areas ranges in thickness from a featheredge to as much as 15 feet, and the basal or Crete sand and gravel member is commonly more than 30 feet thick.

Age and correlation.—The Sanborn formation includes the deposits referred to in 1885 by Hay (p. 21) as "chalky sandy marl of Pliocene age." Subsequently it was called "Tertiary marl" or "Plains marl" by many of the early workers in the central Great When Elias (1931) applied the name Sanborn to Plains region. these deposits farther west in Kansas, he considered them to be of Pleistocene age. In 1944 a reconnaissance of the Pleistocene deposits of north-central Kansas was made by Hibbard, Frye, and Leonard, and collections of both vertebrate and invertebrate fossils from these deposits were made at many localities. One of the sections studied at that time included the exposures of Loveland and Peoria members of the Sanborn which cap the Ogallala bluffs south of the City of Norton. A measured section from that locality is included in this report and the stratigraphic placement of fossils is The Loveland soil has been traced into Nebraska where it is included within the Citellus zone of earlier Nebraska classifica-Condra, Reed, and Gordon (1947) have traced the Peorian loess and Loveland loess from western Iowa across Nebraska to the Colorado line. These units have been traced southward from Nebraska as far as central Kansas (Frve and Fent, 1947) but are here classed as members of the Sanborn formation. In the Missouri Valley area these two stratigraphic units occur above and below deposits of glacial till, and the Peoria member of the Sanborn has been established as post-Iowan in age and the Loveland member as

pre-Iowan. In fact, a well-developed soil was formed on the top of the Loveland before it was overridden by the Iowan ice, and for that reason it is quite probable that this member may be as old as the Illinoian glacial epoch. The Bignell member is separated from the Peoria by a well-developed profile of weathering, and it is thought to be latest Pleistocene in age.

Fossil snails were collected from the Sanborn formation during the course of field work for this report. They have been identified by A. Byron Leonard and are given in the measured sections. All species obtained from the Loveland and Peoria members are listed below.

Fossil snails from the Loveland silt member of the Sanborn formation in Norton County (Identified by A. Byron Leonard)

Pupilla muscorum (Linnaeus)

Succinea grosvenori Lea

Vallonia gracilicosta Reinhardt

Vertigo tridentata Wolf

Fossil snails from the Peoria silt member of the Sanborn formation in Norton and Phillips Counties (Identified by A. Byron Leonard)

Columella alticola Ingersol

Discus cronkhitei (Newcomb)

Euconulus fulvus (Müller)

Helicodiscus parallelus (Say)

Pupilla blandi Morse

Succinea grosvenori Lea

Vallonia gracilicosta Reinhardt

Vallonia pulchella (Müller)

Vertigo modesta Gould

Vertigo coloradensis Cockerell

Water supply.—On the upland divide areas the Sanborn formation occurs entirely above the water table and therefore does not yield water to wells. The fine-textured composition and low permeability of these silts probably retard the downward percolation of water into the underlying formations. The Crete sand and gravel member, on the other hand, is an important source of ground-water supplies, particularly in a strip averaging about 2 miles in width along the north side of Prairie Dog Creek Valley, and at scattered localities along the margins of Sappa Creek Valley and North Solomon River Valley. Analyses of water from two wells in the Crete member are listed in Table 6 and shown on Figure 11.

TERRACE DEPOSITS OF MAJOR VALLEYS (PLEISTOCENE AND RECENT SERIES)

Character and extent.—Broad smooth terrace surfaces (Pl. 4A) trenched by relatively narrow channels characterize the major valleys of this area. Their extent is shown on the geologic map (Pl. 1) and their thickness and character are given by cross sections in Plate 3 and logs of test holes at the end of this report.

Although the terrace surface along each major valley is in general continuous, there are minor breaks in level which indicate that the broad terraces were developed during several episodes, and thus each should probably be considered as a terrace complex rather than as a single terrace. The more recognizable breaks in the terrace surface—that is, where a generally flat terrace area drops to a slightly lower level—are shown by dashed lines on the geologic map. These variations in surface level, however, are not reflected by variations in the character of the deposits below the terrace surface or in the level of the eroded bedrock valley floor.

For the most part, each terrace is underlain at depths ranging from 40 to 80 feet by deposits of sand and gravel immediately above the Cretaceous bedrock surface. The deposits of sand and gravel grade upward into sand, sandy silt, and well-stratified silts in the upper part of the terrace fill. At many places an alluvial soil band has been observed in the upper part of the terrace deposits (Pl. 9B) and in the cuttings from several of the test holes.

After the major valleys had eroded bedrock below the level of the Crete sand and gravel the basal member of the Sanborn formation, they filled their valleys with alluvium to develop the terraces. The episode of cut and fill that produced terraces in the major valleys also affected the minor tributaries. In many of the more important tributary streams of Norton and northwestern Phillips Counties remnants of terraces which represent an extension of the major terrace levels can be observed (Pl. 10B). However, owing to their small areal extent, discontinuous nature, and small importance as water-bearing material, the remnants of terraces in the tributary valleys have been included with the alluvium on the geologic map (Pl. 1).

Age and correlation.—The terrace deposits along all the major valleys are of late Pleistocene and Recent age. This is attested by their relationship to the Crete and Loveland members of the Sanborn formation. The Crete sand and gravel deposits and the Love-

4-7915

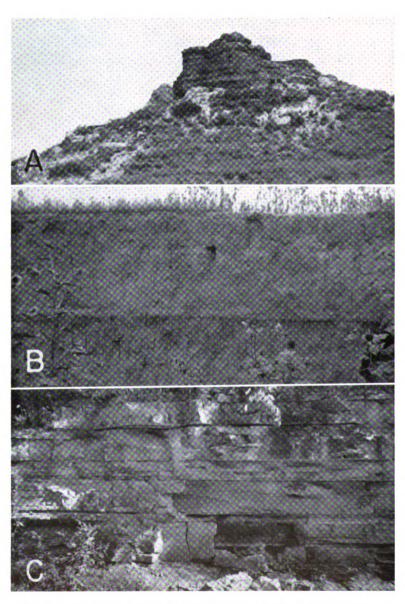


PLATE 9. Rocks of central Norton County. A, Ogallala formation exposed along south side of Prairie Dog Creek Valley west of Dellvale. Biorbia fossilia (Berry) collected from the sandy silt beds exposed. B, Soil band in terrace deposits of Prairie Dog Creek Valley west of Norton. C, Niobrara chalk along south bank of Prairie Dog Creek at Norton.

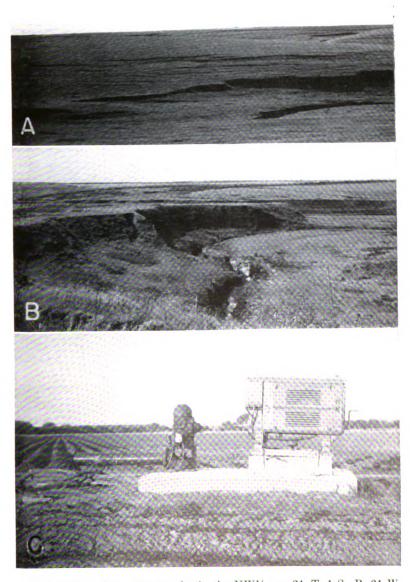


PLATE 10. A, Loess topography in the NW¼ sec. 24, T. 1 S., R. 24 W., Norton County. The thin loess mantle over the Ogallala formation has resulted in small slump or creep features referred to as "cat steps." B, Terrace remnants and alluvium in a tributary valley, E. of center sec. 29, T. 3 S., R. 24, W., Norton County. C, Irrigation pumping plant on terrace level in Prairie Dog Creek Valley in the NE¼ sec. 8, T. 1 S., R. 19 W., Phillips County.

land silt and its contained soil were dissected during the period of erosion that developed the present valley, and therefore the terrace deposits are younger than Crete and Loveland and are probably Wisconsinan in age. The relationship of the Peoria silt member of the Sanborn formation to the terrace deposits is not clear. It is possible, that the prominent soil band in the upper part of the terrace silts corresponds in age to the Brady soil that marks the top of the Peoria silt member of the Sanborn formation and occurs below the Bignell silt member of the Sanborn formation. lationship, however, is not clearly demonstrated by field observations. Other evidence for the extreme youth of the terraces is their At many places along each of the relation to the stream courses. three major streams narrow promontories and islands of terrace deposits project into meander loops of the streams (Pl. 1). As the meanders move downstream, they will cut off the promontories to form islands and eventually eradicate them. In a short span of geologic time, the streams will have meander belts of uniform width without projections of terraces into them.

Collections of fossil snails were made from the terrace deposits along North Fork Solomon Valley and Prairie Dog Creek Valley and a few fossil snails were collected from alluvium. They have been identified by A. B. Leonard and are listed below.

Fossil snails collected from terrace deposits of late Pleistocene and Recent age and Recent alluvium in Norton County (Identified by A. Byron Leonard)

> Discus shimeki (Pilsbry) Euconulus fulvus (Müller) Gastrocopta armifera Sterki Gastrocopta procera Gyraulus parvus (Say) Hawaiia miniscula (Binney) Helisoma trivolvis (Say) Helicodiscus parallelus (Say) Physa hawnii Lea Pupoides marginatus Say Pupilla blandi Morse Pupilla muscorum (Linnaeus) Sphaerium sp. Succinea grosvenori Lea Vallonia gracilicosta Reinhardt Vertigo modesta Gould

Correlation of these terraces with other described terraces toward the east is possible only in the case of the North Fork Solomon River. Here a prominent terrace named Kirwin by A. R. Leonard (Report in preparation) has been traced by him across Osborne, Smith, and

Phillips Counties and found to be continuous with the prominent terrace mapped across southern Norton County. For the purpose of this report the terrace of Prairie Dog Creek Valley is named the Almena terrace from the town of that name built on its surface. The Almena terrace has been traced across Norton and Phillips Counties and into Nebraska, where it is thought to merge with one of the terraces of Republican River Valley. However, as an adequate correlation with a named and described terrace in Nebraska has not yet been made, it is thought preferable to use a local name for this terrace. The terrace of Sappa Creek Valley has not been traced beyond the limits of the area shown in the geologic map (Pl. 1).

Water supply.—The terrace deposits constitute the most important source of ground-water supply for irrigation, municipal, and industrial wells in this area. The relatively coarse-textured sand and gravel that constitutes the lowermost part of the valley fill under much of the terrace surfaces is quite permeable. In most places it lies below the water table and is saturated with water. Along many of the major valley courses ground water moves from the adjacent Ogallala formation and Crete sand and gravel member of the Sanborn formation laterally into the terrace deposits, thus contributing to the replenishment of water in this material. stream channels lie below the water table and are fed by groundwater seepage throughout their courses across Norton and Phillips The relatively shallow depth to the deposits and shallow static level contribute to the availability of ground-water supplies The chemical character of water obtained from terrace deposits. from these materials is shown by the analyses in Tables 5 and 6 and Figures 9 and 10.

ALLUVIUM (RECENT SERIES)

In major valleys.—Deposits of alluvium occur along the valleys and underlie the flood plains of all the major valleys of this area. The alluvium consists predominantly of sand and gravel with some silt and very small amounts of clay. In most cases the valley flat or flood plain that forms the upper surface of the Recent alluvium along Solomon River and Prairie Dog and Sappa Creeks is from 15 to 25 feet below the adjacent terrace surfaces. The flood plains in turn stand pronouncedly above the channel floors. There are indications that these flood plains are being built upward by deposits of sand and silt during each major flood; thus the alluvial deposits of this area are still in the process of accumulating.

The areal extent of alluvium in the major valleys is shown on the

geologic map (Pl. 1). Detailed information concerning thickness of Recent alluvium is not generally available as only a few test holes were drilled on the flood-plain surface. The inferred thickness in many places is shown by the cross sections in Plate 3.

The body of ground water contained in the terrace deposits is continuous with the water in the alluvium, and wells drilled into this material should obtain large quantities of water at shallow depths. Their small areal extent, however, renders them a minor source of water in this area.

In tributary valleys.—The character of the alluvium occurring in the valley flats of tributary streams is quite diverse. This is largely because alluvial deposits are representative of the rocks underlying their drainage basins. The source of sediments varies from one tributary valley to another. As a result, where the watershed is underlain by rocks of the Ogallala formation, the alluvial deposits consist predominantly of fragments of Ogallala rocks. Likewise, where the watershed is underlain largely by rocks of Niobrara formation, the alluvium contains an abundance of water-worn pebbles and grains of Niobrara chalk. For this reason it is impossible to generalize concerning all the tributary valleys of the area. For the most part, however, in their lower courses they contain coarse alluvial material saturated in part and serve as a source of moderate supplies of ground water of variable quality to wells. Chemical analyses of water obtained from wells in the alluvium are given in Tables 5 and 6 shown on Figure 10.

GEOMORPHOLOGY

The development of the present topography of Norton County and northwestern Phillips County has been entirely in response to events during Pleistocene and Recent times. During Pliocene time streams flowing east and southeast from the Rocky Mountain region deposited sediments which accumulated in the lower parts of former broad valleys and later, as these valleys were filled, the streams shifted laterally and developed an extensive almost featureless plain of alluvium (Frye, 1945). Early in Pleistocene time the then-existing streams, in response to climatic or structural control, started to cut valleys below the surface of this vast constructional plain. The nature of events in this area during earliest Pleistocene time is not known because deposits of Nebraskan and Aftonian age have not been found. Furthermore, only scattered remnants of deposits of Kansan and Yarmouthian age have been observed in the

area. They are adequate, however, to indicate that by Kansan time the major valleys had become entrenched approximately halfway from the surface of the Ogallala alluvial plain to the present maximum depth of bedrock cutting, and that these Kansan-Yarmouthian valleys were later alluviated.

By Illinoian or Sangamonian time, the bedrock floors of the major valleys had been cut to within approximately 30 feet of the present bedrock floors, and the major valleys were again alluviated, as is demonstrated by the deposits of the Crete sand and gravel member of the Sanborn formation. The rapidly aggrading valley floors of this age probably served as a source of eolian silts that were spread over the uplands and on valley slopes and which now constitute the Loveland member of the Sanborn formation. Late Sangamonian time represented a period of essential equilibrium when the topography was more subdued than now and the area was not being actively eroded. Prevalent grasslands of that time aided the development of the deep Loveland soil.

The period of erosion during which the Loveland surface was dissected and valleys were cut below the level of the Crete sand and gravel member of the Sanborn formation must have been followed by rapid alluviation which brought a large quantity of fine sediments into the valleys of this region. This is suggested by the extensive deposits of eolian silt which form a nearly continuous blanket over the upland areas and valley slopes, and which are here classed as the Peoria member of the Sanborn formation. fact that the Peoria deposits are for the most part eolian in origin is attested by their uniformly fine texture, lack of bedding, molluscan fauna, stratigraphic position above an extensive well-developed soil undisturbed by physical processes, and by the topographic position of these silts which form an almost unbroken blanket over the highest elements of the topography—uplands, parts of the valley slopes, and high terraces alike. No other known process of transportation and deposition can account for these facts.

The Bignell silt member of the Sanborn, which occurs at scattered localities above the Peoria member, attests to minor recurrence of comparable conditions during latest Pleistocene time. That the topography and drainage pattern acquired its present aspect by about mid-Pleistocene time is suggested by the general concordance of the Loveland soil topography with the present topography and the parallelism of the Crete sand and gravel member of the Sanborn with the major terrace deposits and present channel course. These same data, however, demonstrate that the local relief has increased

markedly since mid-Pleistocene time, both by the dissection and lowering of the major valley levels and by an increase in height of many of the upland areas by the deposition of several feet of eolian silt. The presence of undistorted fossil rodent burrows, terminating at the top of the Loveland soil, extending downward into the Loveland silt member, and containing fossil Citellus richardsonii, strongly suggests that these deposits have not moved down slope by creep except in local areas. Greater relief and steeper slopes existing at the present time, however, are more conducive to creep, and at many places where a thin silt mantle overlies sloping surfaces on the Ogallala formation small slump terraces, sometimes referred to as "catsteps," can be observed (Pl. 10A).

Several physiographic features worthy of note are suggested by the geologic map. At several locations along the major valleys, particularly west of Almena, streams have breached saddles in narrow spurs, leaving isolated remnants of earlier Pleistocene deposits projecting as hills above the prominent terrace surfaces. The sharp hairpin turn in the course of Prairie Dog Creek, which now reverses the direction of flow in the vicinity of Woodruff and passes to the west and northwest around a hill capped by the resistant silicified lentils of the Ogallala formation, is also of interest. Pleistocene course of Prairie Dog Creek is thought to have been, at least in part, through the saddle south of this resistant hill, and the deposits are now exposed in the cut along the Chicago, Burlington, and Quincy Railroad. This anomalous course of Prairie Dog Creek is thought to have given rise to the long parallel tributary Elk Creek and the development of gentle, almost imperceptible natural levees along the main stem of Prairie Dog Creek.

GROUND WATER

SOURCE

The following discussion on the source and occurrence of ground water has been adapted from Meinzer (1923, pp. 2-102) and the reader is referred to his report for a more complete discussion of the subject. A summary of ground-water conditions in Kansas has been made by Moore (1940).

Water that occurs in the pores or openings of the rocks and within the zone of saturation is called ground water. The amount of ground water that can occur below the surface in any region and the manner and rate of its movement to wells or springs is largely controlled by the character of the rocks.

In Norton and northwestern Phillips Counties, as in other parts of the central Great Plains, ground water is derived almost entirely from precipitation in the form of rain or snow. Part of the water that falls as rain or snow is carried away by surface runoff and is lost to streams, part of it may evaporate or be absorbed by vegetation and transpired into the atmosphere. The part that escapes surface runoff, evaporation, and transpiration percolates downward through the soil and underlying strata until it reaches the water table, where it joins the body of ground water in the zone of saturation. In the southern High Plains the average amount of rainfall entering the ground-water body each year has been determined by two different investigations as about one-fourth inch (Frye, 1942, p. 66) and as about one-half inch (Theis, Burleigh, and Waite, 1935, pp. The geologic conditions in this area are somewhat different from those in the two areas farther south, but the average annual rainfall is only a few inches more and the amount of rainfall reaching the ground-water body is probably of the same order of magni-Although this is a small percentage of the annual rainfall, it should be noted that one-half inch of water entering the groundwater reservoir under 1 square mile amounts to 8,689,348 gallons, or 26.6 acre-feet.

Ground water moves slowly through the rocks in directions determined by the shape and slope of the water table, which is controlled by topography, local variations in the quantity of recharge or discharge, and the stratigraphy and structure of the rocks. It is eventually discharged through springs or wells, through seeps into streams, or by evaporation or transpiration in bottom lands adjacent to streams. Most of the water obtained from wells in Norton County and northwestern Phillips County comes from precipitation in the general vicinity and adjacent areas to the west.

Occurrence

Nearly all rocks that underlie the surface of the earth at depths shallow enough to be penetrated by drills contain voids or interstices. These range in size from microscopic openings to the large caverns developed in limestone regions. The percentage of the volume of the rock mass consisting of such open spaces is known as the porosity. Although it is desirable when considering problems of ground-water supply to know the porosity of the strata under an area, it is the permeability of the material that influences the amount of ground water which can move through it toward a pump-

ing well. The permeability of a rock is determined by the size, shape, and arrangement of the openings. For instance, a bed of fine silt or clay might have a relatively high porosity, but because of the size of the particles each opening is very small. As the force known as molecular attraction holds a very thin layer of water on the surface of each grain, these layers of water (that are not free to move) might fill or almost fill all the openings in such a fine-textured sediment; thus the permeability, or water-yielding capacity of the rock, is very low even though its porosity, or water-holding capacity, is quite high. Likewise, larger openings that are not connected or are poorly connected might produce a high porosity and a low permeability. Water moves most freely through a rock that has relatively large and well-connected openings. Several common types of openings or interstices and the relation of texture to porosity are shown in Figure 4.

THE WATER TABLE AND MOVEMENT OF GROUND WATER

SHAPE AND SLOPE

The water table is defined as the upper surface of the zone of saturation, except where that surface is formed by an impermeable body (Meinzer, 1923a, p. 32). It may also be regarded as the boundary between the zone of saturation and the zone of aeration. The water table is not a level surface but rather is generally a sloping

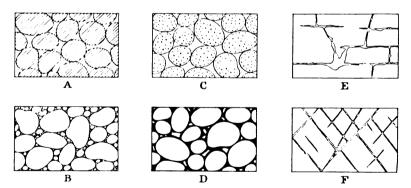


Fig. 4.—Diagram showing several types of rock interstices and the relation of rock texture to porosity, A, Well-sorted sedimentary deposit having a high porosity; B. Poorly sorted sedimentary deposit having low porosity; C, Well-sorted sedimentary deposit consisting of pebbles that are themselves porous so that the deposit as a whole has a very high porosity; D, Well-sorted sedimentary deposit whose porosity has been diminished by the deposition of mineral matter in the interstices; E, Rock rendered porous by solution; F, Rock rendered porous by fracturing. (From O. E. Meinzer)

surface having many irregularities caused by differences in permeability or thickness of the water-bearing materials or by unequal additions to or withdrawals from the ground-water reservoir at different places.

The shape and slope of the water table in Norton and northwestern Phillips Counties are shown on the map (Pl. 2) by means of contour lines drawn on the water table. Each point on the water table along a given contour line has the same altitude. These watertable contours show the configuration of the water surface just as contours on a topographic map show the configuration of the land surface. The direction of movement of the ground water is at right angles to these contour lines—in the direction of the greatest slope.

Plate 2 shows the location of all water wells in which depth to water level was measured, the location of test holes drilled with the State Geological Survey's hydraulic rotary drilling machine, and the sea-level elevation of the water surface at various points along the channels of the main streams. These various data were utilized in the preparation of the water-table contour map, which is generalized because the wells are not close enough to allow detailed control in variable materials such as the Ogallala formation. Also, it was impossible to show minor variations in the water table produced by the deeper parts of many of the tributary valleys. It should be noted that contours have not been drawn for several local areas, particularly in the southeastern corner of Norton County, because in such areas the surficial mantle of Tertiary and Quaternary sediments is thin or absent. This lack of contour lines should not be construed, however, to mean that ground water is not present in the area. the uncontoured localities of southeastern Norton County some wells obtain water from local alluvial deposits, and deep drilled wells obtain water from Cretaceous rocks.

The map shows that ground water moves under the plains in a general easterly direction across this area, and moves out from the major divide areas toward the principal valleys. The direction of flow of ground water toward the major valleys generally makes an oblique angle upstream with them, and some water may move in a direction essentially parallel to the divides for long distances under the interstream areas. Owing to the great variation in direction of ground-water flow, the gradient of the water table varies greatly. Under the major divide crests it has a general easterly slope of as little as 5 feet per mile. However, along the flanks of the major

valleys the water table attains a gradient of as much as 50 feet per mile.

All the major streams of Norton and northwestern Phillips Counties exert an important influence on the shape of the water table. In the divide areas ground water moves down slope toward these streams through Ogallala formation, terrace deposits, and alluvium, and is discharged into the channel by seepage along its banks. However, most of the tributary valleys, except in their lower parts, are well above the water table and during periods of flow lose water by seepage rather than gain it. These two relationships of streams to the water table are called influent, for streams that lose water to the water table, and effluent, for streams that gain water from the water table. They have been described by Meinzer and are illustrated in Figure 5.

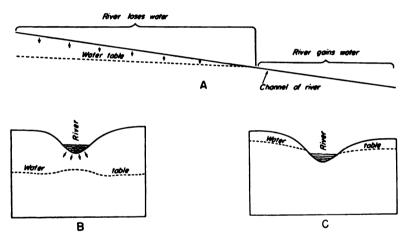


Fig. 5.—Diagrammatic sections showing influent and effluent streams. (From O. E. Meinzer.)

RELATION TO TOPOGRAPNY

In general the shape of the water table conforms to the regional topography, but it is little affected by minor or local features. That is, the water table slopes upward under the major divide areas to a crest about midway between the major streams, but it is at a greater depth under the divide areas than it is in the valley areas. It might be said that the hills on the water table are not as high as the hills on the surface. Plate 2 shows that the depth to water in some wells in the uplands is as much as 175 feet, whereas the depth to water under the prominent terrace surface along the major valleys is gen-

erally less than 40 feet, and in some wells dug or drilled into the alluvium it is less than 10 feet. For the most part, minor topographic features such as the headwater areas of tributary valleys have little or no effect on the water table. For this reason a well drilled in a small valley in the uplands will generally encounter water at a shallower depth than a well drilled on a nearby divide, although the water level in the two may be at about the same elevation with reference to sea level.

FLUCTUATIONS OF THE WATER TABLE

The water table does not remain in a stationary position but fluctuates much like the water level in a surface reservoir. If the inflow to the underground reservoir exceeds the draft, the water table will rise. Conversely, if the draft exceeds the inflow, the water table will decline. Thus the rate and magnitude of fluctuations of the water table depend upon the rate and magnitude at which the underground reservoir is replenished or depleted.

Factors controlling the rise of the water table in this area are the amount of rainfall that descends through the soil to the water table, the amount of seepage that reaches the underground reservoir from surface streams whose channels are above the water table, and the amount of water entering the county beneath the surface from areas to the west and south. All these factors depend upon precipitation, either in this area or immediately adjacent to the western edge of Norton County.

Factors controlling the decline of the water table are the amount of water pumped from wells, the amount of water absorbed directly from the water table by plants (transpiration), the amount of water lost from the ground-water reservoir by evaporation, the amount of ground water entering surface streams by channel-bank seepage, and the amount of water passing beneath the surface into adjacent areas.

Changes in the water levels in wells record the fluctuations of the water table, which in turn record the recharge and discharge of the ground-water reservoir. In order to determine the character and magnitude of water-level fluctuations in this area, a group of wells was selected for observation and periodic measurement of the water levels in them was begun in 1947. Complete records of these wells are to be published annually by the Federal Geological Survey.

The fluctuations of water level in four observation wells in Norton and Phillips Counties and the monthly precipitation near Norton and at Long Island for the period 1945 through 1947 are given

in Figures 6 and 7. The period of observation measurements in these wells is as yet too short to permit definite correlation between precipitation and recharge. Nevertheless, the general concordance between rising water levels and high precipitation is indicated.

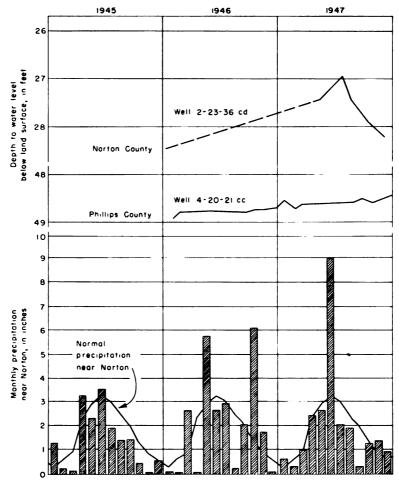


Fig. 6.—Hydrographs of two observation wells and monthly precipitatation (1945-47) near Norton. (Precipitation data from U. S. Weather Bureau.)

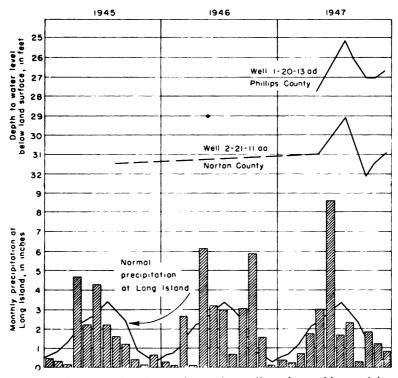


Fig. 7.—Hydrographs of two observation wells and monthly precipitation (1945-47) at Long Island. (Precipitation data from U. S. Weather Bureau.)

RECHARGE

Recharge is the addition of water to the underground reservoir and may be accomplished in several ways. All ground water within a practicable drilling depth in Norton and northwestern Phillips Counties, with the possible exception of that obtained from some of the Cretaceous rocks, as in the southeastern part of Norton County, is derived from water that falls as snow or rain either within the area or on nearby areas to the west. Once the water becomes a part of the ground-water body it moves down the slope of the water table, later to be discharged for the most part into the channels of the major streams of this area or those areas immediately adjacent to the east and northeast, or by transpiration in the shallow water areas.

Recharge from local precipitation.—The normal annual precipitation in this area is about 21 inches, but probably only a small fraction of this amount enters the zone of saturation, thus to re-

The depth to the water table charge the ground-water reservoir. exerts an important influence on the amount and frequency of recharge, as does the type of material occurring above the water table. That is, the broad flat terrace surfaces and flood plains of North Fork Solomon River and Prairie Dog and Sappa Creeks, where the water table lies relatively near the surface and is overlain by unconsolidated deposits of sand and sandy silt, represent areas of relatively high recharge. On the other hand, maturely dissected divide areas characterized by channels and steep slopes, where the water table lies at considerable depth below the surface and is overlain by the Ogallala formation and massive silts and buried soils of the Sanborn formation, represent areas of relatively small recharge. Recharge into the small areas of outcropping Cretaceous rocks may vary widely, as little water can penetrate the almost impervious chalky shales and black fissile shales which typify these formations. However, in areas where faulting has occurred, where joints are well developed, or where solution has opened up small channelways in the chalk, recharge may be relatively high.

Recharge from streams and ponds.—All three of the major streams crossing this area occur below the water table and are receiving water from the ground-water reservoir. Therefore they do not constitute sources of recharge to the ground-water body, except in rare instances in local areas where heavy pumping from wells may have lowered the water table below channel level. The upper courses of tributary streams, however, occur above the water table, and during and after rains when these valleys are carrying surface flow some water probably seeps into the alluvial deposits and percolates downward to join the general body of ground water.

A relatively large number of surface ponds have been constructed in Norton County (Moore, 1940, p. 55). Where such ponds contain water, occur above the water table, and are underlain by permeable material, they constitute a source of recharge to the groundwater body. However, where the ponds are well sealed to prevent downward leakage, they have small effect in recharging the groundwater reservoir.

Recharge from subsurface inflow.—As indicated by the slope of the water table (Pl. 2), the movement of ground water under the major divides is in an easterly direction. Hence a small amount of recharge from precipitation that occurs in eastern Decatur County moves into western Norton County and contributes to the available supply of ground water.

Much of the recharge to the water-bearing zones in the Cretaceous rocks may be derived from areas outside Norton and Phillips Counties. Water has been thought to enter these rocks along their outcrop belt east and southeast of this area, and to move westward to replenish the supply under these counties. However, the Cretaceous rocks in southeastern Norton County dip eastward toward the outcrop areas, and the wells which penetrate these rocks in that part of the area encounter water that is under artesian pressure, so that at some places the piezometric surface is more than 100 feet above the level at which the water was encountered. These facts, together with the folding and faulting noted in the Cretaceous rocks in many places, suggest that the source of the water in these beds is either in or adjacent to this area or west of it, where the land surface is higher and would contribute to the development of hydrostatic pressure.

DISCHARGE

Natural discharge at the surface.—Before any wells were drilled the ground-water reservoir of Norton and northwestern Phillips Counties was in a state of approximate equilibrium—that is, the average annual recharge was balanced by an approximately equal average annual discharge. The greater part of this discharge occurred by ground-water movement into the major stream channels and eastward under the divide areas out of the counties, and by transpiration by plants in the areas of shallow water. The factors producing discharge by seepage into major stream channels have been changed little, and seepage likely accounts for the major part of the ground-water discharge in the area.

Discharge from wells.—At the present time wells constitute one of the principal means of discharge of ground water. Although the total quantity of water pumped annually from wells is not known, all city supplies and some irrigation supplies have been obtained from wells. Most of the rural residents of these counties obtain their domestic and stock supplies from wells, but the total volume of water pumped for such uses is comparatively small.

RECOVERY

PRINCIPLES OF RECOVERY

When water is withdrawn from a well there is a difference in head between the water inside the well and the water in the surrounding material for some distance from the well. The water table in the

5-7915

vicinity of the well develops a cone of depression (Fig. 8). In any given well a higher pumping rate produces a greater drawdown (depression of the water level, commonly expressed in feet), and the diameters of the cone of influence and of the area of influence will be greater.

The specific capacity of a well is its rate of yield per unit of draw-down, and it is generally stated in gallons a minute per foot of draw-down after a specified period of pumping. When a well is pumped the water level drops rapidly at first and then more slowly, and it may continue to decline until a balance is established between recharge and pumping. In testing the specific capacity of a well,

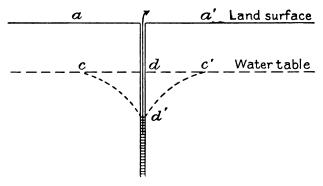


Fig. 8.—Diagrammatic section of a well that is being pumped showing drawdown (dd'), cone of influence (cc'd'), and area of influence (aa'). (From O. E. Meinzer.)

therefore, it is important to continue pumping until the water level remains approximately stationary. When the pump is stopped the water level rises rapidly at first, then more slowly, and may continue to rise long after pumping has ceased (Fig. 9).

The character and thickness of the water-bearing materials have a definite bearing on the yield and drawdown of a well and hence on its specific capacity. Drawdown increases the height that water must be lifted in pumping, thus increasing the cost of pumping. If the water-bearing material is coarse and of fairly uniform size it will readily yield large quantities of water to a well with a minimum drawdown; if the water-bearing material is fine or poorly sorted it will offer more resistance to the flow of water, thereby decreasing the yield and increasing the drawdown. Other things being equal, the drawdown of a well varies inversely with the permeability of the water-bearing material.

TYPES OF WELLS

Dug wells.—Dug wells are excavated with picks, shovels, spades, or power machinery. They generally are between 2 and 10 feet in diameter and are quite shallow. Many of the early wells in this area were dug by hand, but many of these have since been replaced

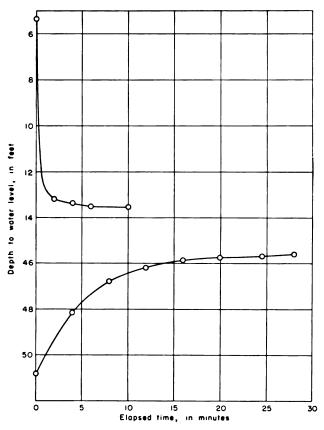


Fig. 9.—Drawdown curve of city well at Lenora, and recovery curve of a city well at Norton. All measurements were made by steel tape during the field season of 1945.

by drilled wells. A few dug wells now are in use in the major valleys. Of the 285 wells listed in Table 8 only 28 are dug wells, 10 are bored wells, and 247 are drilled wells.

Bored and driven wells.—Bored wells are made by augers or posthole diggers. Some wells are bored to the water-bearing formation, and a well point is then driven into the sand or gravel from which the water is obtained. In some shallow-water areas well points are driven from the surface without recourse to boring. These are called driven wells. Bored and driven wells are in use in the valley areas and at some places on the uplands.

Drilled wells.—A drilled well is one that is excavated by means of a percussion or rotary drill. Many of the wells in Norton County and northwestern Phillips County are drilled wells. The drilled domestic and stock wells generally are 6 inches in diameter and those used for irrigation and public supply purposes generally are 14 to 18 inches in diameter.

All the wells in this area, with the exception of the few deep wells penetrating Cretaceous rocks, obtain water from relatively unconsolidated deposits. Wells in such deposits generally are cased nearly to the bottom of the hole with galvanized or wrought-iron casing. In some wells the water may enter only through the open end of the casing, but to provide greater intake facilities a strainer or well screen may be used or the casing may be perforated below the water table. The size of the perforations is an important factor in the construction of a well and the capacity or even the life of the well may be determined by it. If the perforations are too large the fine material may filter through and fill the well; if the perforations are too small they may become clogged so that water is prevented from entering the well freely.

Some wells in unconsolidated sediments are equipped with well screens. It is good practice to select a slot size that will pass 30 to 60 percent of the water-bearing material, depending on the texture and degree of sorting. The coarser particles that remain around the screen form a natural gravel pack which increases the effective diameter and therefore the capacity of the well.

Gravel-wall wells generally are effective for obtaining large supplies of water from relatively fine-grained unconsolidated deposits and have been used for public supply and irrigation. In such wells a large-diameter hole is first drilled with a rotary drill or excavated by a hoist and orange-peel bucket and temporarily cased with unperforated casing. A well screen or perforated casing is then centered in the hole opposite the water-bearing material and enough blank casing added to reach the surface. The space between the two casings is filled with carefully screened gravel and all but 20 or 30 feet of the outer casing is pulled from the hole. A packing of a well-sorted medium to coarse gravel generally gives the best results, but where the water-bearing material is extremely fine a

coarse sand or fine gravel may be preferred. The slots in the screen or casing should be as large as possible without permitting entry of the gravel used for packing the well. If the water-bearing formation consists of well-sorted coarse gravel the capacity of the well probably will not be increased by addition of a gravel pack around the screen.

McCall and Davison (1939, p. 29) state that drawdown can be kept at a minimum in several ways:

First, the well should be put down through all valuable water-bearing material. Secondly, the casing should be properly perforated so as to admit water to the well as rapidly as the surrounding gravel will yield the water. Third, the well should be completely developed so that the water will flow freely into the well. . . Increasing the depth of a well will have a greater effect on reducing the drawdown than will increasing the diameter, so long as additional water-bearing formations are encountered.

A report (Davison, 1939) containing descriptions of different types of pumping plants, the conditions for which each is best suited, construction methods, and a discussion of construction costs is available from the Division of Water Resources, Kansas State Board of Agriculture, Topeka, Kansas, and the reader is referred to this publication for additional details of well construction.

METHODS OF LIFT AND TYPES OF PUMPS

Water from many of the domestic and stock wells in this area is obtained by wind-mill-operated lift or force pumps. The cylinders or working barrels in both lift pumps and force pumps are similar and are located below the land surface, either above or below the water surface, but a lift pump is capable of discharging water only at the pump head, whereas a force pump can raise water above this point—such as to an elevated tank. Pitcher pumps are used on some dug or bored wells in the shallow-water areas of the major valleys. Most of the pitcher pumps and a few of the lift and force pumps are hand-operated.

Several types of power-driven pumps are in use in the irrigation and city wells. For the most part these are turbine pumps and are powered by electric motors, stationary gasoline engines, and tractor engines. Data concerning such wells are given in Table 8.

UTILIZATION

During the course of this investigation data on 241 wells in Norton County and 44 wells in northwestern Phillips County were obtained. All types of wells in all parts of the area were visited. Of

the 285 wells listed in Table 8, 86 were used for stock water, 46 for domestic supplies, and 101 for both purposes. Of the remaining wells, 14 were used for public supply and 17 for irrigation; 21 were not in use at the time they were visited. Although Table 8 includes only part of the domestic and stock wells in the area, all the public supply and irrigation wells that could be located during the course of the field work were visited and are listed in the table.

DOMESTIC AND STOCK SUPPLIES

Nearly all the domestic supplies and many of the stock supplies in rural areas are obtained from wells. In parts of Norton County ponds are used to some extent to supply stock water. The domestic use of water generally includes drinking, cooking, washing, and in some cases the disposal of sewage. In this area the ground water generally is satisfactory for all domestic purposes (see Quality of Water), and can be obtained in sufficient quantities for such uses at nearly any locality.

PUBLIC SUPPLIES

Four municipalities in Norton County and one in northwestern Phillips County have public water supplies obtained from wells.

Almena.—The City of Almena, located in the Prairie Dog Creek Valley in northeastern Norton County, obtains its water supply from two wells (2-21-8ca and 2-21-8dc) drilled into sand and gravel deposits underlying the prominent Almena terrace surface. Water is pumped from these wells to a steel standpipe located on the bluffs of Prairie Dog Creek Valley on the south side of the city. The storage tank has a reported capacity of 90,000 gallons. Each of the two wells is pumped with a turbine pump powered by an electric motor; they have rated capacities of 150 and 250 gallons per minute. The reported maximum daily capacity of the system is 72,000 gallons but the average daily consumption is not known. Data on the wells are given in Table 8 and a chemical analysis is given in Table 5. The water is of good quality and is not treated.

Clayton.—The City of Clayton, located at the western edge of Norton County in the Prairie Dog Creek Valley, obtains its water supply from one well (4-25-6ab) drilled into the terrace deposits. Water is pumped from this well into a concrete storage tank on the southeast side of town, which provides capacity for 50,000 gallons. The maximum daily use of water in Clayton is reported to be 9,000 gallons and the annual use is reported to be about 300,000 gallons. Data on the well are given in Table 8 and a chemical analysis of the

water is given in Table 5. The water is of good quality and is not treated.

Lenora.—The City of Lenora, located in the valley of North Solomon River in southwestern Norton County, obtains its water supply from one well (5-24-14cb) drilled in the alluvium of North Fork Solomon River. The water is pumped with a 4-inch centrifugal pump powered by an electric motor and a standby pump powered with a gasoline engine is provided in the well house. Water is pumped from the well to an elevated standpipe with a reported storage capacity of 50,000 gallons. Data on the well are given in Table 8 and a chemical analysis of the water is given in Table 5. The water is of good quality and is not treated.

Long Island.—The City of Long Island, located in northwestern Phillips County in the Valley of Prairie Dog Creek, obtains its water supply from two wells (1-20-23da1 and 1-20-23da2) drilled into the deposits underlying the prominent terrace surface. Water is pumped from the wells to an elevated steel storage tank with a reported capacity of 30,000 gallons in the northern part of town. Reported maximum daily use is 26,000 gallons, and 4,900,000 gallons was used from June 1, 1946, to June 1, 1947. Data on the wells are given in Table 8 and a chemical analysis of the water is given in Table 5. The water is of good quality and is not treated.

Norton.—Norton, the county seat of Norton County and largest city in the area covered by this report, obtains its water supply from six wells drilled into the deposits underlying the dominant terrace level along Prairie Dog Creek Valley. Each of the six wells is pumped with a turbine pump powered by electricity and has a rated capacity of 250 gallons per minute. Water is pumped from the wells into a collecting reservoir with a capacity of 360,000 gallons located near the municipal power plant. The water from the collecting reservoir is pumped to the city distribution system by three high-service pumps having a combined capacity of approximately 1,400 gallons An elevated storage tank with a capacity of 250,000 gallons is located in the northwestern part of the city. The annual pumpage of water by the city generally exceeds 100,000,000 gallons and the largest pumpage recorded is for 1946 when 181,474,600 gallons of water was pumped. Pumpage data for the period 1930 through 1947 are given in Table 4. The rated daily capacity of the system is 1,730,000 gallons. Data on the wells are given in Table 8 and a chemical analysis of the water is given in Table 5. water is of good quality and is not treated.

IRRIGATION SUPPLIES

A relatively small amount of water has been pumped for irrigation use in Norton County and northwestern Phillips County. The Division of Water Resources of the Kansas State Board of Agriculture lists 575 acres under irrigation in Norton County in 1943. For the most part irrigation has been by well water, but in a few places some water has been pumped from major stream channels for irriga-

Table 4.—Annual pumpage of water by the city of Norton, 1930-47 (Data furnished by Lloyd Johnson, City Engineer).

			Water pumped
Year			(millions of gallons)
1930	 	 	135
1935	 	 	131
1940	 	 	
1941	 	 	104
1942	 	 	89
1943	 	 	136
1944	 	 	115
1945	 	 	121
1946	 	 	
1947	 	 	168

tion purposes. At the time field work was in progress for this investigation, irrigation was restricted to the terrace surfaces along three major valleys of the area studied. Seventeen irrigation wells were visited, and data concerning them are given in Table 8. Chemical analyses of the water obtained from several of these wells are given in Tables 5 and 6. The yields of the irrigation wells visited vary widely, but several of them have reported yields well in excess of 1,000 gallons per minute.

The quantity of water available for possible future irrigation supplies varies widely throughout this area. The terrace deposits along the three major valleys present the most adequate source of ground water for irrigation. Also, the water table is relatively near the surface and is uniform in slope under these generally flat terrace The water-table contours on Plate 2 show that water is moving from the divide areas into the deposits underlying the terrace surfaces, so that these deposits are supplied with ground water not only from recharge by precipitation on their surfaces but also from recharge that occurs in the broad divide areas. Furthermore, the stream channels of the three major valleys are essentially at water-table level; therefore, in areas where local cones of depression are developed which might lower the level of the water table below the stream channel some additional recharge might be obtained by water entering the ground from the stream channels. Owing to the lenticular nature of the alluvial deposits underlying the major terraces, however, it is advisable to drill test holes to determine the amount of saturated sand and gravel at any locality before an irrigation well is constructed there.

The area underlain by the Crete sand and gravel member of the Sanborn formation, generally along the north side of Prairie Dog Creek Valley, probably represents the second most likely source of irrigation water. Here water generally moves from the divide area on the north and aids in the replenishment of the supply in these sands and gravels. However, the Crete sand and gravel has been dissected by many tributaries, and the bedrock floor below the sand and gravel deposits is somewhat uneven. For these reasons the quantity of water available in this area varies widely, and careful test drilling should be done before any irrigation well is constructed.

A third area in which quantities of water adequate for irrigation purposes might be obtained is the upland divide area between Sappa and Prairie Dog Creeks in northwestern Norton County. The cross sections in Plate 3 show a relatively great thickness of saturated sand and gravel underlying this divide, with the water table generally at a depth of more than 100 feet below the surface. However, only relatively meager subsurface data on this area are available and special caution should be used in planning any irrigation in this area.

It is unlikely that the Ogallala formation, except in northwestern Norton County, will yield adequate supplies of water to wells for extensive irrigation. Future test drilling, however, may reveal other small areas of the Ogallala formation where large supplies of water may be obtained. In the parts of the two counties where saturated deposits of Tertiary and Quaternary age do not generally occur and where the existing water wells draw upon supplies in the Cretaceous rocks, it is quite unlikely that adequate supplies of water for irrigation can be obtained.

For data concerning cost of pumping water for irrigation and construction of irrigation pumping plants the reader is referred to reports prepared by the Kansas State Board of Agriculture (Davison, 1939; McCall and Davison, 1939).

QUALITY

The chemical character of ground water in Norton County and northwestern Phillips County is indicated by the analyses in Tables 5 and 6, and in Figures 10 and 11. The analyses were made by Howard Stoltenberg in the Water and Sewage Laboratory of the Kansas State Board of Health and by the Quality of Water Branch

of the Federal Geological Survey. Samples of water were collected for chemical analysis from 45 representative wells distributed as uniformly as possible within Norton County, but concentrated in the Prairie Dog Creek Valley of Phillips County. The water samples are representative of all the water-bearing formations of the area. Analyses of the water pumped from several municipal wells are also given in Table 5.

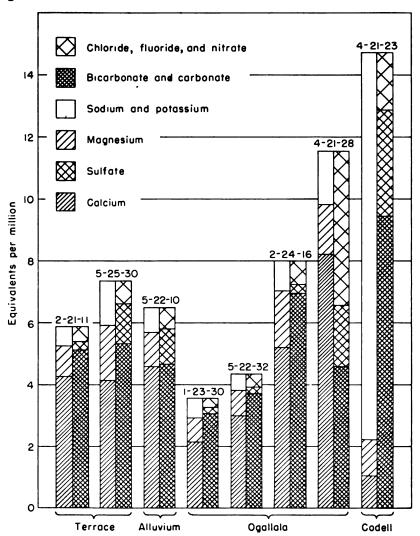


Fig. 10.—Analyses of water from the principal water-bearing formations in Norton County. The various constituents are shown by patterns and the number refers to the number of the well in this report.

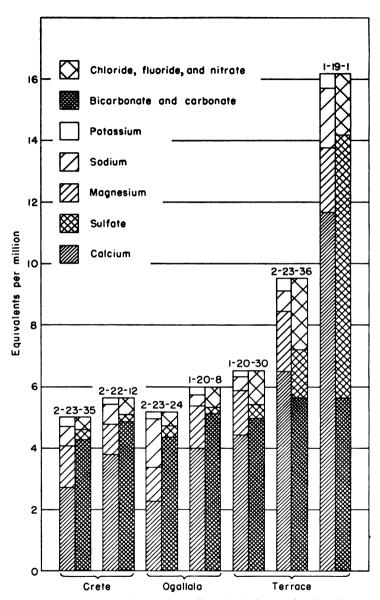


Fig. 11.—Analyses of water from the principal water-bearing formations in eastern Norton County and northwestern Phillips County. The various constituents are shown by patterns, and the number refers to the number of the well in this report.

Analyzed by H. A. Stoltenberg. Discolved constituents given in parts per million," and in equivalents per million (in italics) Table 5. Analyses of water from typical wells in Norton County, Kansas

	00	Non- car- bonate	158	71	•	0	0	0	0	0	•	9	8	0	-	•	•	a
`	Hardness as CaCO,	Car- bonate	និ	252	82	25	216	146	ă	218	88	368	223	343	351	210	88	242
	Hard	Total	280	200	228	520	216	145	224	218	338	564	252	343	352	210	217	¥
		Nitrate (NO ₂)	80 1.89	2.7	1.3	88.5		900	4 .	8.0. 8.0.	8.3	8.	13	; ; 6	34	4.4	7.1	FIF
		Chloride Fluoride (Cl) (F)	0.1	4.0	→ .8	wig	, ro g	3~3	စ္ဇ		wig	, w 9	wig		2,0	4.8	4.8	8,00
		Chloride (Cl)	78	19.	7.0	0.8	20.0	8.0.8	7.0	6.0	13	11 31	19	12 34	6.0	9.0	5.0	9.0
		Sulfate (SO ₄)	118	9.9	9.5	3.7	8.00	9.1.	9	5.3	15	12 .25	*	26 29	12	6.2	9.5	0.0
		Bicar- bonate (HCO ₃)	8.46	307	279	328		189-10	282	266.2	436	314 16	283	439 .47	428 7.08	266	2 5	205-16
	Sodium	potae- sium (Na+ K)	85 8.81	12 .63	10	21	. II	15.	15	80,3		14 . 4	15	28. 28	22	\$1. \$9.	6.7	13.29
	Š	Mag- nesium (Mg)	88. 88.	16	15	12	. 22	. 6. 8. 8.	17	16.40	19	12 99	=	22.18	1.81	19	7	17.16
	;		173 8.63	80.8 8.99	67	3 5	÷8	5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62,	. 18 . 20 . 20	104	88	82	101	105	£ 6.	\$	8.75 8.48
		Iron (Fe)	80.0	.57	2.7	18	99.	31	3.4	æ.	8.	91.	01.	7.7	8.	22	8.0	1.2
		Silica (SiO ₂)	40	32	38	28	84	18	41	45	\$	33	9	35	42	41	31	22
	i	Dis- solved solids	088	323	286	311	282	196	296	282	456	338	333	442	154	278	263	90
	Tem-	pera- ture (°F)		9 6	Z	88	5.5	Z	82	22		88	38	28	92	22	8	8
	Date of	col- lection, 1946	Jan. 18(c)	June 27	April 3	April 4	April 3	April 4	June 24	June 24	Nov. 20	April 5	June 27	April 3	June 24	June 27	April 4	June 27
		Geologic source	Тегтасе	Ogallala	ф	ф	do	do	do	фор	Terrace	do	Ogallala	Теттасе	Ogallala	ф	do.	Alluvium
		Depth (feet)	46	56.2	67.4	108.2	143.0	109.2	8.09	95.6	\$	82	93.3	47.2	148.5	148.0	96.5	
		LOCATION	Long Island City well	T. 1 S., R. 21 W. SE, SE, sec. 16	T. 1 S., R. 22 W. NE, NW, sec. 14.	T. 1 S., R. 25 W. NE, SE, sec. 7.	NE, NE, sec. 26	NE, NE, sec. 30	T. 1 S., R. 25 W. NE, NE, sec. 19	SW, SW, sec. 24	T. g S., R. e! W. Almena City wells	NE, NE, sec. 11	T. 2 S., R. 22 W. SW, SE, sec. 9.	8E, NW, sec. 32	T. 2 S., R. 24 W. SW, SE, sec. 16	T. 2 S., R. 26 W. NE, NW, sec. 27	T. S.S., R. 21 W. SE. SE. sec. 21	SW, SW, sec. 27
		No. on Plate 2	1-20-23da	1-21-16dd	1-22-14ba	1-23-7ds	1-23-2688	1-23-30as	1-25-19ая	1-25-24cc	2-21-8	2-21-11am	2-22-9de	2-22-32bd	2-24-16dc	2-25-27bs	3-21-2dd	3-21-27cc

-	102	8	•	0	267	0	92	13	0	9	16	0	22	~	134	88	91	27
212	336	170	202	114	722	72	258	ផ	311	808	212	8	ន្ត	98	222	380	33	360
213	438	193	282	114	\$	72	284	244	211	315	228	88	287	193	456	388	352	206
2	بن بن	200	2.2	2.1	12 8.8	8.0 9.0	15	8.8	9.9 80.	5 .3	8.8	1.9	21	8.0 13	39	13	12	4.4
4.9.	ه. چ	ي نو	4.8	5.0	, w 9	4.0	wig	4.8	٠. <u>چ</u>	۳. <u>و</u>	w 9	3.4	4 :	~ ō			يغنج	ణ <u></u>
6.0	27.0	8	16 84.	86	3.04	6.0	0.8	7.5	6.5		.31	12 .54	11 37	10	51	===	. \$1	22
7.0	97		8 st.	165	\$ 8 \$ 8	3.6	91	30.0	6.4	28	12.	40 88.	58	11 84		14.	21.2	61
259	410	307	371	878	277 4.64	279	315	282	261			340	281	3.78	393	. 63.	60.77	328 5.58
8. 8.		12.51	27.0		40 40	12 .63		7.6	10	27	2.3	129	17	12 61	4.	6.7	16.77	33
10	%	10.8.	19 1.66	15	20.1	14 1.15	12	15.83	15 1.£	23	15. 2. 2. 2. 1.	9.2	14	. 9 . 8	27	19	22.8	21 1.73
85 24.	136	61.0	86 4.89	23	165 .88 8.83	5.34	\$	45. 8. 8. 8.	60.8	8.	67.48	12	92	. 19 20 %	138	3.5	105 .24	84 4.19
6.4	84.	1.7	27.	88.	¥.	2.1	13	4.4	99.	8	1.3	4 .6	क्ष	.97	0.0	7 .0	0.0	0.0
8	31	7	\$	12	æ	35	31	æ	36	37	*	9.	45	36	77	45	35	32
250	914	286	395	852	722	38	338	28	266	\$	282	3 8	397	290	719	449	427	430
\$		22	28	20	2	8	:2	22	128		22	88	88	88		28	28	55
April 4	Feb. 11	June 26	June 27	June 27	April 4	April 4	April 4	June 26	June 26	July 5	June 27	June 25	June 26	June 26	Mar 23	April 4	June 26	June 26
Ogaliala	Terrace and	ogallala	Terrace	Codell	Ogallala	Ogallala	ф	do	Alluvium	Terrace	Ogallala	Niobrara and Codell	Alluvium	Ogallala	Alluvium	Тегтасе	ф	do
70.2	58-70	153.3	34.1	364.2	45.3	109.0	74.0	145.3	30.6	51	120.0	309.5	34.9	117.0	8	43.1	æ	33.4
T. 5.8; R. 98 W. NW, NW, 80c. 9	T. S S., R. #5 W. Norton City wells	NE, NW, sec. 27	T. 5 S., R. 25 W. SE, NE, sec. 27	T. 4 S., R. 21 W. SE, SW, sec. 23.		T. 4 S., R. 22 W. NE, SE, sec. 29.	T. 4 S., R. 23 W. SW. NE. sec. 1	SW, SE, sec. 19	T. 4 S., R. 24 W. SE, NE, sec. 31	T. 4 S., R. 25 W. Clayton City well	- :	T. 5 S., R. 21 W. NE, NW, sec. 16	T. 6 S., R. 22 W. SE, SE, sec. 10	NE, SE, sec. 32	T. 5 S., R. 24 W. Lenora City well	SW, NW, sec. 20	SW, NW, sec. 24	T. 5 S., R. 25 W. SE, SE, sec. 30
3-22-9bb	3-23-3	3-23-27ba	3-25-27ad	4-21-23cd	4-21-28ba	4-22-29da	4-23-1ac	4-23-19dc	4-24-31ac	4-25-6ab	4-25-7da	5-21-16ba	5-22-10dd	5-22-32da	5-24-14cb	5-24-20bc	5-24-24bc	5-25-30dd

a. One part per million is equivalent to one pound of substance per million pounds of water or 8.33 pounds per million gallons of water.

b. An equivalent per million is a unit chemical equivalent weight of solute per million unit weights of solution. Concentration in equivalents per million by the chemical combining weight of the substance or ion.

c. 1947.

And by Quality of Water Branch, Federal Geological Survey, Lincoln, Nebraska. Dissolved constituents given in parts per million, and in equivalents per million italics) Table 6.—Analyses of water from typical wells in Almena Unit area, Norton and Phillips Counties, Kansas

;	- 5				Date						2									Per-	Hardne	Hardness as CaCOs		U.S.O.B.
z.d	No. on Plate 2	LOCATION	(feet)	Geologic source	of col- lection, 1947	pera- ture	solved	Silica (SiO ₂)	Fe)	Calcium (Ca)	Mg)	Sodium (Na)	Sium (K)	bonate (HCO ₃)	Sulfate (SO.)	Chloride (CI)	Fluoride (F)	Nitrate (NO,)	Boron (B)	Gium Gium	Total	Car	Non- car- bonate	sample. No.
1-19	1-19-1db	T. 1 S. R. 19 W. NW, SE, sec. 1.		46.7 Terrace Dec. 18	Dec. 18	:3	1.020	5	0.1			3		353	402	8	0.3	88	0.07	-	687	88	88	3406
1-19	1-19-8cb	NW, SW, sec. 8	3	do	Dec. 19	23	86	ĸ	.05			46.80		6.78 497	8.31 118	3. 3. 3. 3.	0.08	0.68	8	Ξ	573		3	3407
1-19	1-19-9cb	NW, SW, sec. 9	£	do	Dec. 18	23	1,030	\$	01.	202	3. S.			8.14 512	242.48	- ₂	9.60	1.78 90.78	.12	18	3	_	25	3409
1-19	1-19-20dd	SE, SE, sec. 20	41.8	Alluvium	Dec. 19	25	1.880	22	<u>.</u>			8		8.38 269	272	160	9.4	768 768	8.	7	1,220	222	866	341
1-20	PP8-02-1	T. 1 S., R. 20 W. SE, SE, sec. 8.	26	Ogallala Dec. 18	Dec. 18	8	342	45	80.			8.5	8.1	4.41	9 6	4.61	<i>7</i> 0. 89	18.39	0	•	270	280	<u> </u>	1401
1-20	1-20-11de	SW, SE, sec. 11	70.2	do	Dec. 18	33	297	£3	\$	60 7 69	12.3	12.57	5.7	6.20 270	0.20	0.54	0.4	42.4		. =	22		•	3402
1-20	1-20-30dd	SE, SE, sec. 30	45.4	Terrace	Dec. 17	8	393	\$.03	91 443	0.987	9.6	7.8	310 4.90	183.	.\$10	20.00	35.065		•	297	355	\$	3413
1-20	1-20-32ad	SE, NE, sec. 32	8	do	Dec. 17	22	682	26	8.	138 54	£. 40	. ti	18	80	o t . 8 5 1	28.61	70.	1.68		•	88	8	121	3405
2.20	2-20-1ab	T & S. R. 20 W. NW, NE, sec. 1	32	Ogallala	Dec. 18	z	868	51	8.	71	5.70	1.01		11	88 89 89	. 79	0 10	1.5	٥	_	82	216 6	4	3413
2-20	2-20-5da	NE, SE, sec. 5	46	do	Dec. 17	23	200	\$.05	\$ 643	16.987	.380	8.741	328	50.187	197.	.15	30.024	٥.	•	373		3	3403
2-21-	2-21-30cb	T. & S., R. 21 W. NW, SW, sec. 30		71.7 Теттасе Dec. 17	Dec. 17	\$	306	25	.12	75 75	1.32	.60		6.58	1.04	1.87	10. E.	1.5	٥.	2	7	71	•	240
2-23-	2-22-12ab	T. 2 S., R. 22 W. NW, NE, sec. 12	110	Crete	Dec. 17	15	327	#	20.	76 743	1.083	.659		4.949	11	. 358		. 024 8	8.	12	23	ŝ	•	34 10
1-23	1-23-24da	T. 2 S., R. 25 W. NE, SE, sec. 24	66.5	Ogallala	Dec. 15	28	302	3	ş		28	35	8.6	4.897	. 22 9	.367	110.	. 129	•	8	121	171	•	3408
1.23	-23-35bb	NW, NW, sec. 35 113	113	Crete Dec. 15	Dec. 15	8	274	7	8	55.346	80	1.638	11		14. 512	11		2.5	٥.	13	88	8	•	340
-23-	:-23-36ce	SW, SW, sec. 36	8	Terrace Dec. 19	Dec. 19	23	989	36	8	131 746	23.516	15.630	18. 91	349	72 291	47	55	0 7 0.08	٥.	7	ä	88	98	3414
-										5	7.00	8		9).0	7.00	1.33	S	:						

a. One part per million is equivalent to one pound of substance per million pounds of water or 8.33 pounds per million gallons of water.
b. An equivalent per million is a unit chemical equivalent weight of solute per million unit weights of solution. Concentration in equivalents per million is calculated by dividing the concentration in purts per million by the chemical combining weight of the substance or ion.

CHEMICAL CONSTITUENTS IN RELATION TO USE

The following discussion of the chemical constituents of ground water has been adapted from publications of the United States Geological Survey and the State Geological Survey of Kansas.

Dissolved solids.—The residue left after a natural water has evaporated consists of mineral matter, with which may be included some organic materials and a small amount of water of crystallization. Water containing less than 500 parts per million of dissolved solids generally is entirely satisfactory for domestic use, except for difficulties resulting from its hardness, and, in some areas, its excessive iron content. Water having more than 1,000 parts per million of dissolved solids is likely to contain enough of certain constituents to produce a noticeable taste or to make the water unsuitable in other respects.

The dissolved solids in samples of water collected from private wells in this area ranged from 196 to 1,880 parts per million. Water from 3 of the 45 wells sampled contained more than 1,000 parts per million of dissolved solids, and that from 8 other wells, between 500 and 1,000 parts per million. The average content for all waters analyzed is 440 parts per million, and only one sample showed less than 250 parts per million.

Hardness.—The hardness of water, which is the property that generally recieves the most attention, is commonly recognized by its effect when soap is used with the water; it produces a curdlike scum. Calcium and magnesium cause nearly all the hardness in most water. These constituents are also the active agents in the formation of the greater part of all the scale found in steam boilers and in other vessels in which water is heated or evaporated.

In addition to total hardness, the analyses indicate the carbonate hardness and the noncarbonate hardness of water. The carbonate hardness is that due to the presence of calcium and magnesium bicarbonate, and it is largely removed by boiling. In some reports this type of hardness has been called temporary hardness. The noncarbonate hardness is due to the presence of sulfates or chlorides of calcium and magnesium, which cannot be removed by boiling, and has sometimes been called permanent hardness. With reference to use with soap, there is no difference between the carbonate and noncarbonate hardness. In general, the noncarbonate hardness forms a harder adhering scale in steam boilers.

Water having hardness of less than 50 parts per million is generally rated as soft, and its treatment for removal of hardness under

ordinary circumstances is not necessary. Hardness between 50 and 150 parts per million does not seriously interfere with the use of water for most purposes, but it does slightly increase the consumption of soap; its removal by a softening process is profitable for laundries or other industries using large quantities of soap. Water in the upper part of this range of hardness will cause considerable scale in steam boilers. Hardness exceeding 150 parts per million can be noticed by anyone; if the hardness is 200 or 300 parts per million it is common practice to soften water for household use or to install a cistern to collect soft rain water. Where municipal water supplies are softened, an attempt is generally made to reduce the hardness to about 60 parts per million. The additional improvement from further softening of an entire public supply is deemed not worth the increase in cost.

The hardness of water samples collected from wells in this area ranged from 68 to 1,220 parts per million and averaged 308 parts per million. Of the 45 samples, 3 have a hardness of less than 150 parts per million, 30 between 150 and 300 parts per million, and 12 more than 300 parts per million.

Iron.—Next to hardness, iron is the constituent of natural waters that receives the most attention. The quantity of iron in ground waters may differ greatly from place to place, even though the waters are from the same formation. If a water contains much more than 0.3 part per million of iron, the excess may separate out as a reddish sediment. Iron, which may be present in sufficient quantity to give a disagreeable taste and to stain clothing, porcelainware, and cooking utensils, may be removed from most waters by simple aeration and filtration, but a few waters require the addition of lime or some other substance.

The analyses given in Tables 5 and 6 show the range in iron content of waters in the area studied to be from 0 to 31.0 parts per million and the average iron content of 45 samples to be 2.8 parts per million. Twenty-five analyses show 0.3 part per million or less, and 18 show an iron content between 0.3 and 5.0 parts per million.

Fluoride.—Although quantities of fluoride are relatively small as compared with other common constituents of natural waters, it is desirable to know the amount of fluoride present in water that is likely to be used by children. Fluoride in water has been associated with the dental defect known as mottled enamel, which may appear on the teeth of children who drink water containing excessive quantities of fluoride during the period of formation of their permanent

teeth. Water containing 1.5 parts per million or more of fluoride is likely to produce mottled enamel. If the water contains as much as 4 parts per million of fluoride, 90 percent of the children exposed are likely to have mottled tooth enamel, and 35 percent or more of the cases will be classed as moderate or worse (Dean, 1936). Small quantities of fluoride, not sufficient to cause mottled enamel, are likely to be beneficial by decreasing dental caries (Dean, Jay, Arnold, and Elvove, 1941).

Two samples of water collected from this area contained more than 1 part per million fluoride and 43 samples contained less than 1 part per million. The average fluoride content of the 45 samples of water analyzed is 0.53 part per million.

Nitrate.—Considerable interest has been shown recently in the amout of nitrate in ground waters. A discovery was made a few years ago that an unusally large amount of nitrate in well water may cause cyanosis when the water is used in the preparation of a baby's formula. The range and average nitrate content for waters analyzed from each formation in the area covered by this report are shown in Table 7. The difference in nitrate content for the waters is great and seemingly is not related to any geologic formation. High nitrate content probably is due to the inflow of surface water around the well or to the movement of water through soil that contains more than a normal amount of nitrate. Wells near fields of alfalfa or other legumes might receive some of the nitrate which these plants have added to the soil. Shallow and poorly sealed wells allow more infiltration of surface seepage than do deeper, more tightly cased Thus shallow wells in alluvium or terrace deposits and dug wells of large diameter are more likely to have water of high nitrate content.

Although nearly all the water samples analyzed contained some nitrate, 40 samples had less than 45 parts per million. Water that contains more than 90 parts of nitrate is considered, by the Kansas State Board of Health, likely to cause infant cyanosis. Water containing less than 10 parts of nitrogen, or 45 parts of nitrate, is generally condisered safe. Four water samples had nitrate contents ranging from 90 to 768 parts per million. It should be noted also that water from two city supplies had considerable nitrate. The water from the Long Island supply had 80 parts per million of nitrate and that from Lenora had 39 parts per million.

6--7915

Table 7. Range in concentration of constituents, in parts per million, in water from several stratigraphic units in Norton County and northwestern Phillips County, Kansas

STRATICRAPHIC	No.		Total hardness (as CaCO ₃)	ness 3)		Fluoride (F)	•		Iron (Fe)			Nitrate (NO ₃)			Dissolved solids	70
Unit	analy- ses	I	Mini- mum	Aver- age	Maxi- mum	Mini- mum	Average	Maxi- Mini- Aver-	Mini- mum	Average	Maxi- mum	Mini- mum	Average	Maxi Mini- mum mum		Aver– age
Alluvium	4	1,220	211	490	.50	.20	.40	1.20	1.20 0.10	.55	892	4.9	200.3* 1,880	1,880	266	712
Terraces	13	289	241	411	09.	. 10	.32	32 9.4 0.0 1.77 111 0.44 28.76 1,030	0.0	1.77	111	0.44	28.76	1,030	338	999
Crete	2	239	203	221	. 70	.20	.45	80.	.02	.05		8.0 2.5	5.25	327	274	300
Ogallala	24	494	1.45	247	.70	.15	.37	.37 31.0	.02	3.95	124	0.0	12.8	722	196	323
Codell	2	114	89	16	5.0	5.0 3.4 4.2 4.6	4.2	4.6	88	.88 2.74		2.1 1.9	2.0	852	384	618

* Average of three samples, 21.6.

SANITARY CONSIDERATIONS

The analyses of water (Tables 5 and 6) show only the amount of dissolved mineral matter in the water and do not indicate the sanitary quality of the water. An abnormal amount of certain mineral constituents, such as nitrate or chloride, however, may indicate pollution of the water.

The entire population of Norton County and northwestern Phillips County and nearly all the livestock are dependent on well-water Although the area has five municipal water plants that are safeguarded against pollution, a large percentage of the population is dependent upon private wells, and every precaution should be taken to protect these supplies from pollution. Deep drilled wells on the uplands that penetrate relatively impervious silt above the water table are less subject to pollution than are shallow dug or driven wells in the valleys, where pervious sandy material extends from the surface down to the shallow water table. A well should not be located close to or below possible sources of pollution, such as barnyards, privies, and cesspools, and every well should be tightly sealed down to a level several feet below the land surface. It is generally advisable to locate a well on a site slightly higher than the surrounding area, or bank earth around the top of the well so that surface drainage will run away from rather than into the If a well must be located near a source of possible pollution it should be up slope from such pollution so that rain water will run toward the source of pollution rather than toward the well. Drilled wells are generally satisfactorily protected by the casing, although some are poorly sealed at the top.

QUALITY IN RELATION TO STRATIGRAPHY

The quantity of various dissolved mineral constituents in the ground waters of this area differs greatly from one formation to another. A sufficient number of chemical analyses are available to permit general conclusions concerning waters pumped from the Ogallala formation and the terrace deposits, but the few analyses of water collected from the alluvium, the Crete member of the Sanborn formation, the Niobrara formation, and the Codell sandstone member of the Carlile shale give less reliable indication of the quality of water in those stratigraphic units.

The maximum, minimum, and average concentrations of several constituents in parts per million from five water-bearing formations are given in Table 7, and typical analyses from each are plotted

in graphic form in Figures 10 and 11. Twenty-four analyses show the water in the Ogallala formation to be of generally good quality and the range in dissolved constituents to be relatively low. The highest total hardness of Ogallala waters is less than 500 parts per million, and the average hardness of the 24 samples is 247 parts per million. The range in iron content is high—from 0.02 to 31.0 parts per million—with an average of 3.95 parts per million.

Two samples of water from Crete sand and gravel were analyzed and all constituents fall within the range of the Ogallala waters. As the water table is continuous from the Ogallala deposits into the Crete there is seemingly no significant difference between the waters of the two formations (Fig. 10).

Thirteen analyses of water pumped from terrace deposits indicate that the water from this source is significantly higher in total hardness than water in the Ogallala formation. The average hardness of waters from the terrace deposits is 411 parts per million as contrasted with an average of 247 parts per million for the Ogallala. The average iron content is much lower than for the Ogallala water but the range of 0.0 to 9.4 parts per million indicates that this may have little significance. Dissolved solids in waters from the terrace deposits have a range of 338 to 1,030 parts per million and the average is nearly 250 parts per million more than the average for water in the Ogallala.

As the water table at many places is continuous from the Ogallala into the terrace deposits the contrast in quality between the two probably is the result of the addition of dissolved mineral matter to the water from the terrace deposits themselves, or from the Cretaceous bedrock adjacent to the terrace deposits. Part of the water occurring under the prominent terraces is derived from the adjacent Ogallala formation and Crete sand and gravel and part from recharge from the terrace surface.

Although only four samples of water from alluvium in this area were analyzed, the ranges in total hardness and total dissolved solids are greater than for all other waters analyzed, and the average in each case is higher than the average for water from any other formation. The fluoride and iron content, on the other hand, are relatively low. Because only four analyses are available and the range in concentration of various constituents is extremely large, comparison with waters from other formations is apt to be misleading. The differences in composition of the water may be caused by the range in materials constituting the alluvium and by the fact that part

of the recharge to these deposits is derived from surface-water infiltration at times of overflow of the stream channels.

Only two analyses of water from the Niobrara formation and Codell sandstone are available. However, the contrast in quality of these waters to the other waters of the area is so striking that they deserve special notice. The fluoride contents shown by these analyses are 5.0 and 3.4 parts per million, whereas the highest fluoride among the other 43 analyses is 0.7 part per million. total hardnesses are 68 and 91 parts per million, whereas the lowest hardness among the other 43 analyses is 145 parts per million and only 4 samples have a hardness of less than 200 parts per million. The range of iron content and dissolved solids is no greater than in water from the other formations. The calcium and magnesium content of water from the Codell is low and the sodium content is quite high (129 and 289 parts per million). The lowest sodium content is significantly greater than the highest reported from the Probably the chemical characteristics peculiar other formations. to waters from the Codell sandstone are the result of a natural softening process. Water which percolates into the Codell from the overlying formations probably has a high content of calcium and magnesium and would be quite hard. The water in the Codell probably is softened by a natural base exchange in which calcium and magnesium ions in the water are exchanged for sodium ions in the rocks.

SUMMARY OF GROUND-WATER CONDITIONS IN THE ALMENA UNIT AREA

The Almena Unit is a proposed project in the U. S. Bureau of Reclamation's Missouri Basin development program. The area is now being investigated and if approved for construction, a dam would be built on Prairie Dog Creek a few miles west of Norton to form a storage reservoir. Water from this reservoir would be brought downstream through a series of canals to an irrigation district comprising much of the terrace area between Almena and the point where Prairie Dog Creek flows into Nebraska. At present, irrigation in this area is limited to five well plants, four of which are in Norton County, and to several surface-water pumping plants which have not been used for several years.

Like the main part of the area covered by this report, ground water in the Almena Unit area is derived ultimately from precipitation in or near the area in the form of rain or snow. Some of the

water is carried away by surface drainage, some is evaporated into the atmosphere, and a part is transpired by vegetation. A small part percolates downward through the soil to join the body of ground water in the zone of saturation.

The rocks which immediately underlie the terrace surface along Prairie Dog Creek Valley consist of silt and sandy silt from 30 to 40 feet in thickness, underlain by sand and gravel. This material is described in detail in the test-hole logs at the end of this report. These unconsolidated deposits fill the trough which Prairie Dog Creek has cut into the Cretaceous bedrock (Pl. 3). The deposits of sand and gravel have large interconnected openings which allow the storage of a considerable amount of water and permit it to move freely through the rocks. Plate 2 shows that the ground water moves generally toward the northeast, but also moves from the upland areas toward the valley. Within the valley, there is a general downstream movement of the water with subordinate movement toward the stream channel. Prairie Dog Creek gains water from the water table and it is therefore an effluent stream throughout this area. It is in equilibrium with respect to the water table for a distance of several miles in the vicinity of Long Island. The stream seems to gain water by seepage from the uplands south of the valley, and to lose water into the terrace deposits north of the stream. ground-water trench seems to correspond, in part at least, with the position of the deep channel in the Cretaceous bedrock beneath the terrace deposits.

The average gradient of the water table in the terrace deposits in the Almena Unit is about 8 feet per mile. The gradient in eastern Norton County is about 7½ feet per mile and increases to about 9 feet per mile near Long Island. Just southwest of the hairpin loop of Prairie Dog Creek 4 miles west of Woodruff the gradient decreases to only 7 feet per mile. After the stream resumes its eastward course the gradient steepens slightly so that it is about 8 feet per mile near Woodruff.

The water table fluctuates in response to additions to or with-drawals from the ground-water reservoir. In general, the water table declines during dry periods and rises during times of heavy precipitation. There is a lag between the time of the rainfall and the rise in the water table, representing the time required for water to percolate downward to the water table. Figure 7 illustrates the changes in the level of the water table due to variations in precipitation. The hydrographs for wells 1-20-13ad and 2-21-11aa show a

rise of nearly 2 feet in the water table following the period of heavy rainfall in June 1947. The hydrographs also show a sharp decline in the water table during September 1947, when rainfall was only a fraction of normal.

The addition of water to the ground-water body is called recharge. The source of much of the recharge in the terrace area along Prairie Dog Valley is local precipitation. Part of the water which falls in the valley as rain or snow percolates down to the water table and moves downstream through the porous material that comprises the lower part of the terrace deposits. Recharge in the terrace areas is relatively high compared to the more dissected, steeply sloping areas bordering the valley because runoff from the flat terrace areas is small and the surficial materials are somewhat more permeable than the loess which blankets the upland areas. In addition to the recharge directly from precipitation, some recharge comes from small tributary streams whose channels lie above the water table. of these tributaries do not have definite channels across the terrace area, but empty their drainage onto the terrace surface where much of it seeps into the ground and recharges the water table.

In order that the ground-water reservoir shall remain in equilibrium, the amount of discharge in the area must be equal to the amount of recharge. The water table beneath the Almena terrace is neither rising steadily nor declining continually; therefore the ground-water system must be in equilibrium and the amount of discharge over a period of time must be equal to the recharge. During dry seasons, of course, the recharge may be considerably less than the discharge, but during periods of heavy precipitation recharge will be greater than discharge, so that over a long period of time the system remains in equilibrium.

The principal methods of discharge are evaporation from the ground-water reservoir, transpiration by plants, natural discharge into streams, and pumping from wells. Evaporation from the water table can occur only where the water table surface is within a few feet of the land surface. This condition occurs only along the flood plain of Prairie Dog Creek and its principal tributarities. The flood-plain areas are narrow and represent a very minor part of the valley area. The amount of ground water discharged by evaporation in Prairie Dog Creek Valley is relatively small.

A more important method of natural discharge is through transpiration by trees and other plants whose roots reach the water table. Transpiration probably accounts for a considerable amount of the

discharge from the reservoir underlying the Almena terrace. The water table lies from 25 to 40 feet below the land surface, within easy reach of the roots of trees and plants such as alfalfa, which is a common crop in this area.

Another important method of discharge is by seepage from the ground-water reservoir into the permanent streams. Prairie Dog Creek is an effluent stream and gains water from the water table throughout its course in Norton and Phillips Counties. This type of discharge serves to keep the ground-water system in equilibrium. When the ground-water level is high the gradient toward the stream is greater, allowing more seepage into the stream. This lowers the water table and reduces the gradient and the amount of discharge.

Wells that pump water from the ground-water reservoir constitute an important means of discharge. Individual domestic and stock wells pump only small quantities of water, but the total volume pumped by them must be quite large. Wells such as irrigation and municipal supply wells which discharge large amount of water frequently lower the water table for a considerable area about the This lowering of the water table is called a cone of pumped wells. depression, and it may extend for some distance if the wells are not allowed to recover fully before being pumped again. city wells seem to have developed a cone of depression about that area (Pl. 2). After a period of prolonged pumping the irrigation wells also probably have cones of depression. Because these wells are pumped only a short time each year they have ample time to recover before the next season and the cone of depression soon disappears.

Wells for stock and domestic use in the Almena unit area are generally drilled or bored and cased with 5- or 6-inch galvanized casing, slotted opposite the water-bearing sand and gravel. A few are dug wells of large diameter, walled with stone. Most of the wells are equipped with a cylinder pump and windmill. Many are drilled only a few feet below the water table and no attempt is made to penetrate all the water-bearing material. The irrigation wells in the area, however, are constructed somewhat more scientifically. Sites for these wells are generally determined by test drilling or boring and they penetrate all the water-bearing gravel. Commonly they are constructed with either natural or artificial gravel walls, and they are usually equipped with turbine pumps powered with gasoline engines. All the irrigation wells in this area

at the time of the field investigation are listed and described in Table 8.

Irrigation.—As already stated, only five irrigation wells are now in use in the Almena Unit area. All these wells obtain water supplies from the gravel deposits underlying the Almena terrace. Test drilling in the valley in the vicinity of Long Island has revealed that in Phillips County the bedrock floor beneath the terrace is not flat but has a deep, narrow notch or channel which was cut by the stream in an earlier erosion cycle. This channel contains about three times as much coarse saturated material as occurs elsewhere beneath the terrace. Wells that penetrate this channel have much higher yields than those penetrating only the thinner gravel deposits. Well 1-19-8ad (Table 8, Pl. 10C) seemingly is drilled into this This well penetrated 56 feet of saturated material and was reported to yield 700 gallons per minute when test pumped in Unfortunately there is no surface indication of this buried channel; it can be located only by test drilling.

Irrigation wells might be located in favorable places in the Crete deposits along the north side of the valley. Test hole 1-20-14ad penetrated 32 feet of these deposits, including nearly 20 feet of saturated sand and gravel. In general, the Crete deposits are not so likely to furnish large supplies of water as the terrace deposits because they are thinner, contain a smaller percentage of coarse material, and the water table is deeper beneath the surface so that the pumping lift is greater. In addition, the area underlain by Crete is not satisfactory as an irrigation area because it is so dissected that only small areas are flat enough to be irrigated, and it is traversed by numerous deep gullies which make the construction of irrigation ditches very difficult.

Several ground-water problems occur in connection with irrigation which are not encountered under other conditions. One is the problem of subsurface drainage of the irrigation water in excess of that used readily by plants. Poor subsurface drainage will cause the soil to become waterlogged and will drown out the vegetation. Throughout the terrace area in Prairie Dog Creek Valley subsurface drainage is good. The surficial deposits consist of sandy silt which seems to allow surface water to seep readily into the soil. After the water has moved through the silty layers it reaches a layer of sand and gravel, which is thick enough and permeable enough to provide good subsurface drainage. None of the irrigation

plants now in operation has experienced drainage difficulties. However, should a large area, such as the irrigation district proposed in the Almena Unit plans, be irrigated, the water table might be raised high enough to saturate the near-surface silty material. This can be foreseen and corrective measures designed before serious damage occurs if an observation well program is begun and maintained to note any abnormal rises in the water table. In order for such a program to be a success, it is essential that normal ground-water conditions in the area be known. The determination of the normal ground-water conditions in the area of the Almena Unit has been one of the primary purposes of this investigation.

Another problem affecting irrigation is the chemical character of the water used for that purpose. Water that has a concentration of sodium ions equal to 50 percent or more of the total bases (percent sodium) may cause an alkaline condition when used to irrigate certain types of soil. Table 6 shows that the percentage of sodium in 15 samples of water analyzed ranges from 1 to 30. The average for nine samples of water from the terrace and Crete deposits is 10 percent.

Chloride is another chemical constituent which may render water unfit for irrigation use. Water that has a high concentration of chloride is too salty for irrigation. Boron is also one of the dissolved constitutents which might also affect the use of water for irrigation. Although the samples of ground water analyzed from this area contain relatively large amounts of some constituents, they are well within the limits for irrigation use. Surface water is generally somewhat less mineralized than ground water, so that the chemical character of the water in this area should present no problems, unless prolonged irrigation should alter the character of the soil.

RECORDS OF TYPICAL WELLS

Information pertaining to 241 water wells in Norton County, 44 wells in northwestern Phillips County, and 9 wells in adjacent areas is tabulated in the following pages (Table 8). The well-numbering system used in this table is described on page 11.

There 8.—Records of wells in Norton and northwestern Phillips Counties, Kansas, and adjacent areas

					-			Principal water-bearing bed	-bearing bed			Measuring point	point		Depth to water		
	No. on Plate 2 (1)	Location	Owner or fenant	Type of etc of well (feet) we (3) (in	Depth Diamof of eter well of (feet) well (3)	Diameter of well (in.)	Of of age-	haracter material	(irologic source	Method of lift (5)	Use of water (6)	Description	Distance above land surface (feet)	Height skove mean sea level (feet)	level below measur- ing point (feet)	Date of meas- urement	Remarks
,	1-18-5bc	T. 1 S., R. 18 W., SW14 NW1, Sec. 5.	Henry Danielson	å	52 0	ç	5	Sand and gravel	Terrace	('Y'H	D	Top of casing	0.7	2.002 8	44 55	10-14-47	44 55 10-14-47 Not in use.
	1-18-8bc	SW14 NW14 sec. 8	School District	۵	57.0	စ	5	op	do	СУ,Н	۵	Top of concrete plat- form	81	2.019 4	33 68	10-14-47	ρο
-	1-19-1db	T. 1 S. R. 19 W. NWJ, SEL sec. 1	Elick Hunter	'n	1. 9	မှ	5	ф.	op	CY,W	D.S	Top of casing in bottom	3.5	2,006.8	37 53	10-14-47	Pit 3.5 feet beneath plat- form Chemical analysis.
-	1-19-3aa	NE!4 NE!4 sec. 3		æ	44.5	ę	Ë	do	do ob	CY.W	D,S	Top of casing	- 3	2,006.8	28 28	10-13-47	Z.
-	1-19-4bd	SEU NWW sec. 4		å	7-	S	5	do	do	CY.W	w.	ор	1.0	2 026 2	38 22	9 -24-47	
-	1-19-5db	NW1, SE14 sec. 5 Hardy Estate.	Hardy Estate	DD	66 3	50		Sand	('rete	CY.W	D,S.	Base of pump	æ	2.076 4	63 37	9-25-47	
-	1-19-61-1	NWI4NWI4 sec. 6 Mrs. Brash	Mrs. Brash	څ	12	412	-	Sand and grave! Alluvium.	Alluvium.	CY,W	D,S	Top of casing	7	2.032 9	20 02	9-25-47	
_	1-19-8ad	SE!4 NE!4 sec. 8.	L. M. Wilson	۵	2	30	:	ф	Terrace	T,C	_	Land surface	0.	:	24 90	8-14-8	6-14-48 Completed June 1948.
_	1-19-8cb	NW14 SW14 sec. 8.	H. S. Kats	×	23 4			do	9 2 9	CY.W	D,S	Base of pump	7	2.050 6	26.50		9-25-47 Chemical analysis.
-	1-19-9cb	NW14 SW14 sec. 9 Raymond Caswell	Raymond Caswell	ā	43 +	•	Ξ	op	육	CY.W	æ	Top of concrete plat-	1 7	2.053 7	33 72	9-24-47	Do
-	1-19-10cb	NW14SW14 sec. 10		2	:: !-	ž	~	ф	Pleistocene	CY.W	x	Base of pump	•0	2 088 2	2.	14 73 10-14-47	Not in use.
_	1-19-12bc	SW14 NW14 sec. 12 John Steenis	John Steenis	ū	55 0	36	:	do	Ogallala	CY,W	D,S	Top of board platform	E 9	2.013 7	89 6 8	49 68 10-14-47	
-	1-19-15cc	SW14 SW14 sec. 15		aa	9.	0 24,48		ф	ф	y.	z.	ор	0	2.173 8	67.36	10-13-47	Do
-	1-19-18dd	SE'4 SE'4 sec. 18	:	æ	26.5	10	5	olo	Terrace	y.	z.	Top of casing	20	2 055 7	24 84	10-13-47	Do
	-19-19ec	1-19-19cc SW14 SW14 sec. 19. Al Skelton	Al Skelton	Du 33	33 0	0 [96, 120] C,GI do	C'en	ор	Alluvium	CY,W	x.	Top of board platform	0.4	2.088 9	21 5	10-10-67	21 5 10-10-47 Used as observation well-

250	SEL SEL	ond SE1/ SE1/ sec 20 L. B. Richardson	Du	41.8	-	-	op	do ob	CY,W	S,O	D,S Top of concrete curb.	₹.	2,104,1	39 60	10-10-47	39 60 [10-10-47] Chemical analysis.
31db	NWK SEK sec. 31	NWK SEK sec. 31. W. A. Kats	Ď	62	2	5	op	Ogallala	W,Y)	oc.	Top of casing	40	2,193 2	88 18	10 13-47	
-	T. 1 S., R. 20 W.	Ice & Young	ă	39.8	٠,	ē	ę	Alluvium	z	z	Top of GI casing	1 0	2.075 1	29 98	9-24-47	Not in use.
-100	NEI/ NWI/ see 9	NEINWIN as 9 Lean litter	ō	0 68	.0	-		Ogallala	CY,W	D,S	Top of casing	60	2.146 7	7 79	9-22-47	
8091	SELVEDIVE 3		å	96	9		op	op	CY,W	œ	Top of concrete mound	~	2.184.1	88 40	9-23-47	
g :	SEN SEN SET			122	*		op	op op	CY,W	8'Q	Top of casing	• 0	2.231.6	109 96	9-22-47	Not in use.
pag :	SWI CWI COM			92.5	ı ıçı		- op	ф	H,Y')	D	ф	1 3	2,195 0	20 90	9-22-47	
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	NW1/ NW1/ sec. 8		∸	89.5	9	:	op op	op	CY,W	D,S	op	- 3	2 216 9	77.87	9-22-47	Do
pp8-1	SE% SE% sec. 8	Ernest Halderman	Ģ	26	•	:	op	do.	CY,W	D,S	do	17.	2 204 5	88 87	9-22-47	9-22-47 (Themical analysis.
, pli4		Cale Halderman	Ď	70.2	ç	=	ep ep	ф ор	CY,W	S,O	Top of concrete plat-	67	2.441.1	% 35	9-24-47	Do
F13ad			Ģ	8 29	æ	:	ор	Terrace	z	Z.	Top of casing	æ	2 059 4	28.46	2- 7-47	Not in use.
)-14cc		op	Dr	54 5	9	Ē	Sand	Crete	CY,W	œ	Top of GI casing	6	2 092 7	42 81	9-23-47	9-23-47 Used as observation well
) Filede			Ď	0.92	:	:	Sand and gravel	Ogaliala	CY,W	D,S	Top of casing	••	2,163 0	38 07	87-6-4	4- 9-48 Not in use.
7.17cc			<u>.</u>	45	ç	:	op.	do	CY,W	œ	ф.	٠,	2.163 8	40 20	8- 6-47	
F22dd	SE14 SE14 sec. 22		D.	3× 0	3, 6	Ē	op	Terrace	×	2	do ob	•0	2.081.0	34 13	9-23-47	Do
)-23aa	NE½ NE¼ sec. 23	John Graham	Dr	63 2	œ	GI	op	op	z	Ω	Top edge of hole, board	က	2.069 7	31 96	9-23-47	Do
)-23da			8	46	01	ਛ	do do	op	T,E	4	At surface	0.	2,068.9	31	9-22-4	Long Island Municipal well. Chemical analysis.
1-25cb		:	Ď	66 2	:	:	op	do	CY.W	v.	Top of concrete platform	64	2,095 2	47.73	9-24-47	
)-28ad		School	Ď	54.5			op	; op	CY,H	Ω	Top of casing	₹.	2.084.8	58 66	9-23-47	Not in use.
F.29a.			ā	76.5	ç		Sand	('rete	CY,W	D,S	ф	17.	2,153.7	=	Ţ.	Do
730cc			Ď	85 0	2	:	op	op	CY,W	S'O	Base of pump	1.0	2,183 0	78.87	\$ £	Observation well; not in use.
P9064			æ	45 4	ъ	:	Sand and gravel	Terrace	CY.₩	or:	Top of casing	0 1	2, 121, 6	37 00	5-7-47	Observation well; Chemical analysis.
-32ad	SE4 NE4 sec. 32. L. C. Vanderlynn.	L. C. Vanderlynn.	ċ	50	٠.	<u></u>	op op	ф ор	CY,W	v.	do	- 3	2.105 0	29.15 10	10 01	

TABLE 8.—Records of wells in Norton and northwestern Phillips Counties, Kansas, and adjacent areas.—Continued

:	Principal water-bearing bed	Type			
Method Use of Office water (5) (6) source	· · · · · · · · · · · · · · · · · · ·	Character of material	of cassing (4)	of cas- well ing (in.) (4)	of cas- well ing (in.) (4)
Terrace N Top of casing		Sand and	GI Sand and gravel	9 -	5
N N do	ор	Jo	GI do	15 9	E
N Top of board platform	ор	Jo	ор	36	:
lala CY,W S Top edge of casing	Ogallala.	9	GI do	15 9	15
CY,W S do.	ф	Jo	GI do	15 9	CI
CY,W D,S do	do	olool	GI do	15 9	GI
CY,H D do	ф	Jo	GI do	15 9	GI
CY,W 8 At base of pump	ф	Jo	GI do	9 9	ij
CY,W D,S Top of cement at pump	 ရာ	Joot	GI do	6 GI	5
CY,W D,S Hole in base	do	Jo	GI do	6 GI	E
e CY,W S Top edge of casing	Crete	Sand	GI Sand		GI
ace T,G I do	Terrace.	Sand and gravel	I Sand and gravel	34 I Sand and gravel	н
liala CY,W D,S do	Ogaliala	do	GI do		15
CY,W D,S do	do	Jo	GI do	15 9	GI
CY,W S do	do	Jo do	GI do	6 GI do	GI do

									analysis.											5- 6-46 Used in summer only.
2,397.6 109.37 1- 9-46 Not in use.		å		ů	D°		Not in use		Chemical analysis		ů		Do					Not in use	å	Used in su
-1 -1	1-7-46	1- 7-46	1- 9-46	12-11-45	5-8-46	1- 9-46	1-8-46	1-8-46	1-8-46	1-8-46	12-11-45	1- 2-46	1- 8-46	12- 2-46	5-8-46	5-21-46	5-21-46	5-8-46	5-8-46	5- 6-46
109.37	25 63	2	101.64	52 63	58.76	117 17	85.99	67.73	102.2	69.2	126	104.45	80.87	132.2	52	33	101.2	100 7	107 62	48.6
2,397 6	2,267.8	2.367.2	2,043.1	2,351.3	2,299.0	2,387.0	2,360.3	2,356.2	2,391.3	2,379.5	2,410.3	2,416.5	2,420.7	2,452 1	2.328.0	2,320 1	2,436.6	2,435.3	2,465.3	2,394.4
2.0	1.0	2	9	6.1	0	ĸ.	0.7	1.7	84	نع	1.1	œ.	œ	1 0	6	4.	1.0	∞.	1-	1.0
ф.	ор	op	op	At base of pump	Top edge of casing	Top of casing	Top edge of casing	ор	op	do	Top of curb	Board platform by	Top of casing	do	ф.	Edge of board platform	Top edge of casing	ф.	ор	do
s	æ	D'S	œ	D,S	D,S	œ	æ	D'S	۵	œ	D,S	, ,	œ	D'S	D,S	D,8	œ	D,S	D,8	s
CY,W	CY,W	CY,H	CY,W	CY,W	СУ,Н	CY,W	CY,W	CY,W	CY,H	CY.W	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	CY	CY,H	CY,W
do	фор	doob	doob	ф.	do	do.	do ob	doob	ф.	op	ф.	ф	do	фор	Crete	Alluvium	Ogallala	doob	фор	do ob
ф.	ф.	ф.	ор	ф.	ф.	do	ор	ор	ор	doob	ор	op	ор	ф.	Sand	Sand and gravel	do	ор	ф.	do
15	5	E	G	Б	G	GI	G	GI	GI	15	ij	-	15	G	5	19	Ē	5	ij	15
9	9	9	9	9	9	•	•	•	•	9	9		9	\$	9	9	9	9	9	9
1117.7	32 6	109.6	132.3	69 3	68.3	134.4	87.9	70.4	108.2	4.4	143	113.7	100 2	148	20	42.6	105.6	113	114.5	68 7
D	<u>ā</u>	<u>.</u>	<u>ā</u>	٥	<u></u>		<u>ā</u>	<u>~</u>	<u></u>	<u>.</u>	<u></u>	Du D	٥	<u></u>	<u> </u>	<u>.</u>	<u>.</u>	<u></u>	<u>,</u>	<u>ت</u>
H. Darling	A. G. Leuszler	J. S. Thacker	L. H. Donovan	K. H. Cohrs, et al.		A. Fredde	Alma Lofgreen	H. Collins	School District	W. C. Marvin	V. Chase	Ross Severis		P. Fox	L. I. Pywell	McKinley Ranch	L. S. Rothschild	C. W. Smiley	J. Tweed	J. F. Bryant
-18bc SW14 NW14 sec. 18 H. Darling	-24ab NWK NEK sec. 24. A. G. Leuszler.	-28ab NW14 NE14 sec. 28. J. S. Thacker	-30da NE¼ SE¼ sec. 30. L. H. Donovan	SWX SWX sec. 31 K. H. Cohrs, et al.	SE¼ SW¼ sec. 35	-2bd SEJ, NWV, sec. 2. A. Fredde.	NE14 SE14 sec. 4 Alma Lofgreen	NEW NEW sec. 6. H. Collins.	NE1/2 SE1/4 sec. 7 School District.	SE14 SE14 sec. 16.	NE14 NE14 sec. 26 V. Chase	SE¼ SE¼ sec. 26 Ross Severis	NE% NE% sec. 30	NW14 NW14 sec. 34 P. Fox	T.; I S., R. 24 W. SE)4 NE)4 sec. 5 L. L. Pywell	NEM NEM sec. 11 McKinley Ranch	SW14 SW14 sec. 13 L. S. Rothschild	-17aa NE14 NE14 sec. 17. C. W. Smiley	NEW NEW sec. 32. J. Tweed	135be SW14 NW14 sec. 35 J. F. Bryant
-18be	-24ab	-28ab	-30ds	3160	-35cd	-2bd	#p#	-6aa	-7da	-16dd	-26ав	-26dd	~30aa	-34bb	-5ad	-Ilaa	-13cc	-17ва	-32aa	-35bc

TABLE 8.—Records of wells in Norton and northwestern Phillips Counties, Kansas, and adjacent areas-Continued

	Renarks	6- 5-46 Not in use.	Do		Do	Do	Chemical analysis.	Do				6-24-46 Used as observation w	Do			8-28-45 Almena municipal well	Do	32.44 8-29-45 Chemical analysis.
	Date of meas- urement	6-5-46	6- 5-46	f 5 46	6-5-46	5-21-46	9 9	9-1-49	5-21-46	6- 1-46	8 647	6-24-46	6-27-46	8- 6-47	5- 8-46	8-28-45	8-28-45	8-29-45
Depth to water	level below measur- ing point (fret)	22	81.60	106,77	16.58	30 8	39.36	59.	38.28	146.85	25.46	27.14	25 76	27.33	40 13	36.32	35	32.44
	Height above niean sea level (feet)	2.339 0	2.442.6	2.481 7	2,361.9	2,380.2	2,397.6	2,424.6	2,442.6	2,526.1	2,117.2	2,125,35	2,127,70	2,138.4	2.342.8	2, 253, 1	2,142.5	2.132 40
point	Distance above land surface (feet)	2	7	١-,	r-,	1 0	s,	8.0	80	1.	0.1	1.3	0	87	œ	۲.		1 0
Measuring point	Description	Top of casing	ф	do	ф.	Edge of old wheel at	Top edge of casing	Top of casing	Edge of manhole in con-	crete platform Top edge of casing	Base of pump	Top of pump base	Top of casing	ф.	Edge of platform at	Hole in pump base	Land surface	Hole in pump base
	Use of water (6)	D,S	D,S	S,C	œ	D,S	တ	D,S	D,S	D,S	S'Q	-	_	ø	တ	۵	Д	_
	Method of lift (5)	CY,W	CY,W	CY,W	CY	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	T,G	T,T	CY.W	CY,W	T,E	T,E	T,G
-bearing bed	Geologie source	Тептасе	Crete	Ogallala	Alluvium	do ob	Ogallala	ор	ф	do ob	Terrace	ф ор	doob	do	Ogallala	Terrace	ф	do
Principal water-bearing bed	('haracter of material	Sand and gravel	Sand	Sand and gravel	ор	ф.	ор	do	do	ор	op	ф ор	ор	ор	ф.	ор	ф.	do
	Type of sales	5		E	5	5	3	5	æ	5	Ξ	5	Ξ	_	:	-	_	-
	Oter of well (in.)	y	9	g	æ	9	9	9	36	9	5, 6	24	24	y	:	ž	×	<u>«</u>
	Depth (Fell	4-0	85.3	124 3	35.8	1.	% 0%	92.6	39 6	157	£	70 3	57 5	3	4 2		:	
	Type of well (2)	٥	<u>-</u>	Ġ	٦	<u>_</u>	۵	۵	D _{II}	Ţ	ū	۵	×	۲	D _D	<u>_</u>	<u>.</u>	<u>_</u>
	Owner or tenant	P. Van Cleave	D. Fawcett		Lola Dey	Robt. Sumner	Robt. Sumner	Celia Albin	A. Kane	Orley Goes	W. M. Sorrick	Verner Ross	Vernon J. Hamilton.	Shaw	Fern Donaldson	City of Almena	ор	W. B. Woods
	Lосатіон	T. I S., R. 25 W. NE'4 NE'4 sec. I	NW1, SW1, sec. 3.	NW14 SW14 sec. 5.	NW1/4 NE1/4 sec. 13. Lola Dey	SW14 SE14 sec. 16. Robt. Sumner	25-19aa NE14 NE14 sec. 19. Robt. Sumner	SW14 SW14 sec. 24. Celia Albin	25-32da NEW SEW sec. 32. A. Kane.	SE14 SE14 sec. 34 . Orley Goss	T. 2 S., R. 21 W. N. Sorrick	NW14 NW14 sec. 1. Verner Ross	SEM NW14 sec. 2 Vernon J. Hamilton.	SWM SWM sec. 3 Shaw	NW14 NW14 sec. 6 . Fern Donaldson	NEW SW% sec. 8 City of Almena	SW1/4 SE1/4 sec. 8 do	NE% NE% sec. 11. W. B. Woods.
	No. on Plate 2 (1)	25-124	25-3cb	25-5cb	25-13ab	25-16de	25-19aa	25-24cc	25-32da	25-34dd	21-13-8	21-1bb	21-2bd	21-3cc	21-6bb	21-8ca	21-8dc	21-11aa

ı

Dr. 78.1 6 GI do. Openlals CY,W D.S. Dr. 71.7 5 GI do. Grallals CY,W D.S. Dr. 71.7 5 GI do. GY,W D.S. Dr. 71.7 5 GI do. CY,W D.S. Dr. 116.7 6 GI do. CY,W D.S. Dr. 45.0 G G G CY,W D.S. Dr. 45.0 G G G G G D.S. Dr. 45.0 G G G G G G G D.S. Dr. 45.0 G G <td< th=""><th>#</th><th>2-21-18aa NE34 NE¹⁴ sec. 18 Haypkema</th><th><u>D</u></th><th>57.5</th><th>-</th><th>-</th><th></th><th>op.</th><th>z</th><th>-</th><th>Top of 5-inch plank</th><th>₹.</th><th>2,171,20</th><th>43 45</th><th>8-7-47</th><th>8- 7-47 Used as observation well.</th></td<>	#	2-21-18aa NE34 NE ¹⁴ sec. 18 Haypkema	<u>D</u>	57.5	-	-		op.	z	-	Top of 5-inch plank	₹.	2,171,20	43 45	8-7-47	8- 7-47 Used as observation well.
Dr. 119 5 6 (11 do do (Y.W) D.S. Dr. 71 7 5 (11 do (Y.W) D.S. Dr. 78 2 6 (11 do (Y.W) D.S. Dr. 116 7 6 (11 do (Y.W) D.S. Dr. 116 8 (11 do (Y.W) D.S. D.S. Dr. 110 8 (11 do (Y.W) Y.W D.S. </td <td>E. Du Boig</td> <td>:</td> <td>Ď</td> <td>18.1</td> <td>ç</td> <td></td> <td></td> <td>Ogallala</td> <td>CY,W</td> <td>D,S</td> <td>Top edge of rasing</td> <td>6.</td> <td>2,226 50</td> <td>38.</td> <td>5-27-46</td> <td>°C</td>	E. Du Boig	:	Ď	18.1	ç			Ogallala	CY,W	D,S	Top edge of rasing	6.	2,226 50	3 8.	5-27-46	°C
Dr. 73.7 6 GI do Terrace CY,W D.S Dr. 78.2 6 GI do CRAIIsla CY,W D.S Dr. 116.7 6 GI do CY,W D.S Dr. 106.8 6 GI do CY,W D.S Dr. 108.8 6 GI do CY,W D.S Dr. 46.0 5 GI do CY,W D.S Dr. 46.0 6 GI do CY,W D.S Dr. 46.0 6 GI do CY,W D.S Dr. 46.0 6 GI do CY,W D.S Dr. 78.8 6 GI do CY,W D.S Dr. 78.8 6 GI do CY,W D.S Dr. 78.0 6 GI do CY,W D.S D		:		119 5	9			up	CY.W	s,c	ф.	- 35	2,209.1	116 72	3-27-46	
Dr. 78.2 6 GI do Openitals CY,W S Dr. 96.6 5 GI do O CY,W D.S Dr. 116.7 6 GI do O CY,W D.S Dr. 98.8 6 GI do CY,W D.S Dr. 98.8 6 GI do CY,W D.S Dr. 46.0 5 GI do CY,W D.S Dr. 46.0 5 GI do CY,W D.S Dr. 46.0 6 GI do CY,W D.S Dr. 46.0 6 GI do CY,W D.S Dr. 78.8 6 GI do CY,W D.S Dr. 80.9 5 GI do CY,W D.S Dr. 72.0 16 3and CYete CY.W D.S <t< td=""><td>2-21-30cb NW14 SW14 sec. 30 Bessie Bebe</td><td></td><td>Ď</td><td></td><td>.0</td><td></td><td>0</td><td>Terrace</td><td>CY,W</td><td>S.O</td><td>Base of pump.</td><td>1.5</td><td>2,201.3</td><td>34.05</td><td>8-8-47</td><td>Chemical analysis.</td></t<>	2-21-30cb NW14 SW14 sec. 30 Bessie Bebe		Ď		. 0		0	Terrace	CY,W	S.O	Base of pump.	1.5	2,201.3	34.05	8-8-47	Chemical analysis.
Dr. 96 6 5 G1 do Ho CY.W D.S. Dr. 106 8 6 G1 do do CY.W D.S. Dr. 106 8 6 G1 do do CY.W D.S. Dr. 106 8 G1 do do CY.W D.S. Dr. 46.0 G1 do do CY.W D.S. Dr. 46.0 G1 do do CY.W D.S. Dr. 78 8 G1 do CY.W D.S. Dr. 78 8 G1 do CY.W D.S. Dr. 78 6 G1 do CY.W D.S. Dr. 80 9 5 G1 do CY.W D.S. Dr. 72 0 16 G1 do CY.W S. Dr. 72 0 16 Sand and gravel Torrace C.E. P. Dr. <	S. Wiles	:	Du	78.2	ç			Ogallala	CY,W	v.	Top of caring	s	2,263.7	61.78	5-27-46	Not in use.
Dr. 106 8 6 GI do do CY,W D,S Dr. 106 8 6 GI do do CY,W D,S Dr. 98.3 6 GI do do CY,W D,S Dr. 46.0 5 GI do do CY,W D,S Dr. 46.0 5 GI do do CY,W D,S Dr. 73 8 6 GI do do CY,W D,S Dr. 73 8 6 GI do do CY,W D,S Dr. 73 8 6 GI do do CY,W D,S Dr. 82 2 6 GI do do CY,W D,S Dr. 82 2 6 GI do do CY,W D,S Dr. 82 3 6 GI do do CY,W D,S Dr. 72 0 16 Gr. 8and and gravel Torrace CY,W D Dr. 72 0 16 Gr. 3and and gravel Torrace C,E P Dr. 72 0 16			Ā		••			do	CY,W	s, C	op	œ	2,267 9	98 T6	5-28-46	Do
Dr. 106.8 6 G1 do. do. GY,W S Dr. 98.3 6 G1 do. GY,W D.S. B. 32.0 5 G1 do. GY,W D.S. Dr. 46.0 6 G1 do. GY,W D.S. Dr. 23.3 24 do. GY,W D.S. Dr. 78.8 6 G1 do. GY,W D.S. Dr. 110. 6 G1 do. GY,W D.S. Dr. 80.0 5 G1 do. GY,W D.S. Dr. 82.1 6 G1 Sand and gravel Terrace J.E. D.S. Dr. 72.0 16 Sand and gravel Terrace J.E. P. Dr. 72.0 16 do. G.E. P. Dr. 72.0 16 do. <t< td=""><td>Nora Sevier</td><td>:</td><td></td><td></td><td>æ</td><td></td><td>0</td><td>ep ep</td><td>CY,W</td><td>S,O</td><td>ор</td><td>0</td><td>2.380 8</td><td>107.5</td><td>1-7-46</td><td>Do</td></t<>	Nora Sevier	:			æ		0	ep ep	CY,W	S,O	ор	0	2.380 8	107.5	1-7-46	Do
Dr 98.3 6 (11 do. do. (Y.W D.S. Br 32.0 5 (11 do. do. (Y.W D.S. Dr 46.0 6 (11 do. (Y.W D.S. Dr 73.8 6 (11 do. (Y.H D.S. Dr 110 6 (11 do. (Y.H D.S. Dr 80.1 6 (11 do. (Y.H D.S. Dr 82.2 6 (11 do. (Y.Y.H D.S. Dr 82.3 6 (11 do. (Y.Y.H N N Dr 82.0 6 (11 Sand and gravel Y.T.ete.	Schilling	:			9			op	CY,W	œ	ор	9	2.373.9	87.04	1- 9-46	
B 32.0 5 GI do do CY,W D Dr 46.0 6 GI do CY,W D,S Dr 78.8 6 GI do CY,W D,S Dr 110 6 GI do CY,W D,S Dr 80 5 GI do CY,W D,S Dr 82.2 6 GI do CY,W D,S Dr 82.9 6 GI Sand and gravel Crete N N Dr 72.0 16 Ao Sand and gravel Terrace C.E P Dr 72.0 16 Ao GC CY,W N N Dr 70 16 Ao GC CR P Dr 70 16 Ao GC CR P Dr 70 16 Ao CC P P <	Drommer	:		98 3	9			ор	CY.W		ор	₹.	2.324 3	69 52	94 9 4	Chemical analysis.
Dr. 46.0 5 (11 do. do. (Y.W D.S. Dr. 73.8 6 (31 do. (7.H D Dr. 110 6 (31 do. (7.ete (7.H D Dr. 80 5 (31 do. do. (7.W D.S. Dr. 82.2 6 (31 do. do. (7.W D.S. Dr. 82.1 6 (31 do. (7.ete J.E. D Dr. 50.9 5 (31 Sand and gravel Terrace J.E. D Dr. 72.0 16 Sand and gravel Terrace J.E. P Dr. 63 16 do. do. C.E. P Dr. 70 16 do. do. C.E. P Dr. 6 6 6 1 do. C.E. P	John Hogan	:	æ	32.0	••			ф.	CY.W		ор	2.0	2,156.0	27.16 10-	10- 9-47	Do
Du 22 3 24 do do do CY,H D Dr 78 8 6 G1 do CY,H D Dr 110 6 G1 Sand CY,W D,S Dr 80 5 G1 do CY,W D,S Dr 82 1 6 G1 do CY,W D,S Dr 83 1 6 G1 Sand and gravel Crete N N Dr 72 0 16 Sand and gravel Terrace C.E P Dr 63 0 5 G1 Sand and gravel Terrace C.E P Dr 63 0 16 A0 C.E P Dr 63 0 16 C.C P Dr 70 0 16 C.C P Dr 10 40 C.C P	ank Nelso		ň	46.0	•			do ob	CY,W		op	'n	2,123 5	₹ 8	10-01	ρ°
Dr 78 8 6 (11 do do Type		:	Da	22.3	24			do	CY,H	Ω	Top of cement platform	ĸ.	2, 155, 1	21.43	10- 87	
Dr. 110 6 G1 Sand Crete CY,W D.S Dr. 82 6 G1 do CY,W D.S B 53 6 G1 Sand and gravel Terrace J.E D Dr. 50 6 G1 Sand and gravel Terrace J.E D Dr. 72 16 Sand and gravel Terrace G.E P Dr. 63 16 Ao do C.E P Dr. 67 6 G1 do C.E P Dr. 70 16 G G G C.E P Dr. 70 16 G1 do G CY.H D Dr. 70 6 G1 do G CY.W S	. A. Wilm		ņ		9			ф. ор	H'A.)	Ω	Top edge of casing	0	2,280 8	67.17	1- 7-46	Water unfit f consumption.
Dr 80 5 GI do do CY,W D.S. Dr 82 6 GI do do CY,W S Dr 53 GI Sand and gravel Terrace J.E D Dr 50 GI Sand and gravel Terrace N N Dr 63 16 A do do CE P Dr 63 16 A do do CE P Dr 63 6 GI do do CE P Dr 70 16 A do do CE P Dr 6 GI do do CE P Dr 70 16 G do CE P	.G. Hawl		Ď	01	•		and	Crete	CY.W	D.S	do	3.7	2.272.2	89.65	8- 6-47	
Dr 82 2 6 (ii) do do Sand and gravel Trave J.E D Dr 50 9 5 (ii) Sand and gravel Trete N N Dr 72 0 16 Sand and gravel Trerace C.E P Dr 63 16 do do C.E P Dr 70 16 do do C.E P Dr 47 2 6 (ii) do do CY,H D Dr 70 7 6 (ii) do do CY,W S	2-22-13ab NW14 NE14 sec. 13 Lloyd Hahn	-	ņ	 &	•			do ob	CY,W	D,S	Base of pump	1.5	2.247.8	78 76	17 -8 -8	5-47 Not in use.
B 53 1 6 (ii) Sand and gravel Trace. J.E D Dr 50 9 5 (ii) Sand and gravel Trerace. N N Dr 72 0 16 Sand and gravel Trerace. C.E P Dr 63 16 do C.E P Dr 70 16 do C.E P Dr 47 2 6 GI do do CY.H D Dr 70 7 6 GI do do CY.W S	E. Fisher	:	Ď	82 2	9		0	ор	CY,W	œ	Top edge of casing	6	2,276.3	92	\$ 8.48	
Dr 50 9 5 G1 Sand and gravel Crease N N Dr 72 0 16 Sand and gravel Terrace C.E P Dr 63 16 do do C.E P Dr 70 16 do do C.E P Dr 47.2 6 G1 do do CY.H D Dr 70.7 6 G1 do CY.W S	rcy G. W)	ntaker .	В	- 83	ç		and and gravel	Terrace	Э.Е	Q	Top edge of pit	-:	2,193 10	29.41		4-29-46 Observation well.
Dr 72 0 16 Sand and gravel Terrare. C.E P Dr 63 16 do do C.E P Dr 70 16 do C.E P Dr 47.2 6 G1 do CY,H D Dr 70.7 6 G1 do CY,W S	E. Fisher		Ď	6 05	٠,		and	('rete	Z.	z	Top of casing	٥.	2,243.9	49 17		5- 7-47 Used as observation well
Dr 63 16 do do C.E P Dr 70 16 do do C.E P Dr 47.2 6 G1 do CY,H D Dr 70.7 6 G1 do CY,W S	ate TB S	anitorium	۵	72.0	91		and and gravel	Теттясе	C.E	а,	Land surface	:		38 0	10-14-47	240 gpm with 20-foot drawdown reported.
Dr 70 16 do do C.E P Dr 47.2 6 G1 do CY,H D Dr 70.7 6 G1 do CY,W S	do	:	Ď	.	91		0	op	C,E	۵,	do	:		35	10-14-47	
Dr 70 7 6 G1 do do CY,H D D Tr 70 7 6 G1 do do		:	Ė	5.	9	-	0	do	C.E	۵,	ф.	:		35	10-14-47	
Dr 70 7 6 GI do do S 8	hool Dist	rict	Ā	4: 2	9		0	do ob	CY,H	Q	Top of casing	₹.	2 221 10	36 02		1-12-46 Chemical analysis.
	2-22-34bb NW14 NW14 sec. 34 H. A. Fredde et al		Ē	10.	<u> </u>			ф.	CY,W	s	ф.	1.2	2,219 1		1-12-46	44 60 1-12-46 Not in use.

Digitized by Google

2-22-32hd SE'4 NW'4 sec. 32 School District 2-22-34bb | NW!4 NW14 sec. 34 | H. A. Fredde et al. 7-7915

TABLE 8.—Records of wells in Norton and northwestern Phillips Counties, Kansas, and adjacent areas.—Continued

	Remarks	12-11-45 Not in use.				Do	Do	D _o			12-11-45 Chemical analysis. N.	use. Not in use.		Chemical analysis.	D°	7- 1-46 Used as observation
	Date of meas- urement	2-11-45	1- 2-46	1- 7-46	5- 6-46	12-11-45	12-11-45	12-21-45	5-4-46	5-4-46	2-11-45	5-8-46	\$ 118	8 117	5 5 47	7- 1-46
Depth to water		92.15	83.0	89.2	138.48	60.2	34.52	102.64	31.25	46.34	18.8	39.96	17.05	76 83	88.30	30.15
	Height above mean sea level (feet)	2.397 9	2,394.9	2,426.6	2,472.8	2,363.1	2,300 8	2,425.3	2,367.9	2,349.5	2,297.2	2,253.3	2,340.1	2,335.8	2,265.9	2,238.4
point	Distance above land surface (feet)	1.0	بعد	0,	œ.	0.	8	8	1.2	•	1.0	=	20.	6 9.	6.	1.7
Measuring point	Description	Ритр base.	Top edge of casing	ф	ф	Top edge of casing	At base of pump	Top of casing	ор	ф.	Northeast corner of	Top of casing	Top edge of casing	Base of pump	Top of 3-inch plant	Lower edge of inspec- tion hole
	Use of water (6)	D,S	82	D,S	D,S	D,S	D,S	D	œ	D,S	D,S	D'S	90	D	S'Q	_
	Method of lift (5)	CY,W	CY,W	CY,W	CY,W	CY.W	CY,W	CY,W	CY,W	CY,W	CY,W	СУ,Н	CY,W	CY,W	CY,W,G	Ξ.
bearing bed	Geologic	Ogallala	do	ф.	фор	do	Alluvium	Ogallala	Alluvium	Ogallala	ф	Terrace	Alluvium	Crete	Terrace	do
Principal water-bearing bed	Character of material	Sand and gravel	ф	- · · · · · · · · · · · · · · · · · · ·	ор	do	ор	do	ф	ор	ф.	ф	ф	Sand	Sand and gravel	фор
	17 o o se de	Ē	5	5	5	:	5	Ē	5	5	5	15	5	Ē		Ē
	Diam- eter of well (in.)	9	9	9	Ģ	ç	မှ	9	æ	9	æ	•	•	*0	34	82
	Depth Diam of eter well (feet) well (3)	96 6	95 4	101.5	155	63 7	57.4	601	38.2	80.3	66 5	62	27.2	113	90	69 1
	Type of well (2)	Ω	Į.	Ď	ņ	Ď	ō	Dr	ņ	Ā	Dr	Ď	ņ	Ď	Du	Dr
	Owner or tenant	Anna Caskey	M. C. Gleason	Arthur E. Brown	A. Marvin.	J. Donnelly	J. C. Martin	J. A. Wherman	C. A. Fitzsimons	School district	Trust's Dartm'th Col.	A. E. Williams	G. Murphy	C. H. Bryant	Donnley Estate	R. L. Brooks
	Госатіом	T. & S., R. 23 W. NW14 NE14 sec. 1.	SE14 NE14 sec. 2 M. C. Gleason	SE14 SW14 sec. 4 Arthur E. Brown	NE'4 NE'4 sec. 6. A. Marvin	NE'4 NW1/4 sec. 12 J. Donnelly	NE¼ NW¼ sec. 13 J. C. Martin	NEW NEW sec. 16. J. A. Wherman	SW14 SW14 sec. 17. C. A. Fitzsimons	SEM SEM sec. 21 School district	NE'4 SE1/4 sec. 24. Trust's Dartm'th Col.	SEM SEL sec. 26 A. E. Williams	SE14 SE14 sec. 30 G. Murphy	NWM NWM sec. 35 C. H. Bryant.	SW1/4 SW1/4 sec. 36 Donnley Estate	1-23-36cd SE14 SW14 sec. 36. R. L. Brooks
	No. on Plate 2 (1)	-23-lab.	-23-2ad	:-23-4cd	1-23-6aa	:-23-12ba	1-23-13ba	:-23-16aa	2-23-17cc	3-23-21dd	23-24da	3-23-26dd	3-23-30dd	2-23-35bb	?-23-36ce	?-23-36cd

١

		Chemical analysis.						Abandoned.			5- 7-46 Chemical analysis.		D _o			n use.	Do			Chemical analysis.	n iise
	9		9	9	-9	- 9	- 9		- 9	9	6 Chem				- 9	6 Not in use.	- 9	9		6 Chem	Not
5- 7-46	5-6-46	5-6-46	5- 6-46	5-8-46	5-7-46	5-7-46	5-7-46	5-21-46	9+ 1.46	5-6-46	47 Y	5- 4-46	1-12-46	5 27-46	1-12-46	1-12-46	1-12-46	1-14-46	1-12-46	9-11-40	40 1- 9-46 Not in use
*	128 3	127.64	90.18	100.87	99 73	136 84	92.9	128.57	126 25	16.4	134 13	4 3 83	88 20	137, 45	162 34	33 38	140 42	60 36	57 25	20.20	68 40
2,442.0	2.466 3	2,498.6	2,439.6	2,471.3	2.495.7	2.537 0	2,477.9	2.547.6	2.559 8	2.483.4	2.548.3	2.429.7	2.271 0	2.329 7	2.370 6	2.210 1	2.362 7	2.259.1	2,225,3	2,207.7	2.280.2
	0.1	1-	1.5	10	ıo	3.0	1-	1.0	1.3	1.0	:	1.0	4 0	<u>د</u>	<u>د</u>	67		89	••	6	'n
:		:	:	:	:	:		:	:		:		:				:	:	:	:	_
Bing		:						•	:												
Top of casing	9 9	ф 	do	9	9	qo	9	e e	e e	ှ မ	е 9	9	op op	e e	9 9	9 9	op	do.	do	do	ob
œ	Ω	902	œ	Q	œ.	œ	æ	D,S	œ	œ	D'S	20	æ	D,S	x	E,C	Q	D,S	D,S	or.	Ω
CY,W	CY,H	CY,W	CY.W	CY,H	CY,W	CY,W	C.Y.W	CY	CY,W	CY,W	CY,W	C.Y.W	CY,W	CY.W	CY,W	('Y,W	CY,W	CY,W	CY.W	CY,W	CY,W
	:	:	:	:	:	:	:	:	:		:	:		:		:	:			- -	
Ogallala	ф.	do.	ор 	op	မှ	မွ	ф	op	op	do.	do op	op op	ę	op	op.	Alluvium	Ogallala	op	op e	Alluvium	Ogallala
•	:		:		:	:	:		:					:	:						
: - 9	do.	op	do	do.	е 9	9	op	op	do 	ф.	do op	do op	- - - -	ep ep	do ob	op Op	op op	e op	op	do	ор Ор
15	15	3	5	15)	5	5	15	5	5	5	5	5	5	3	IJ	<u>=</u>	5	3	E	E	3
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	•
80.5	154.5	148.5	104 5	122.7	114.5	142	114.5	137.1	140.5	17.	148	55.1	96.5	142.1	166.0	58.3	152.2	81.5	76.3	40.1	72.2
<u></u>	Ď	ă	Ď	占	ρ	Ū.	Δ	Ď	Ď	Ď	٥	٥	Ğ	٥	Ď	ū	ئے	۵	ā	ŗ.	<u>_</u>
A. C. Blickenstaff	School District	G. Wegener	G. M. Schultz	School District	T. Duensing	H. M. Rallshack	N. Strayer Estate		Merl Erwin	D. M. Conway Estat	Hobart Garrison	L. B. McCabe	J. Bogart	F. Hays	A. Roeder	F. Hays	L. W. Fellwork Estat	Federal Land Bank.	J. M. Stewart, Jr	W. F. Bennett	D. G. Hausen
SE'A SWA sec. 4 A. C. Blickenstaff	NE% NE% sec. 10 School District	SWM SEM sec. 16 G. Wegener	NWM NEW sec. 24 G. M. Schultz	2-24-28aa NEK NEK sec. 28. School District.	2-24-30ab NW1/4 NE1/4 sec. 30 T. Duensing	T. 2 S., R. 25 W. SW)4 SE)4 sec. 10. H. M. Rallshack	NE's NE's sec. 12 N. Strayer Estate	2-25-16cb NW1/4 SW1, sec. 16	SE1/4 SW1/4 sec. 20 Merl Erwin	NE14 NE14 sec. 26. D. M. Conway Estate	NE ¹ 4 NW 1/4 sec. 27 Hobart Garrison	SE¼ SE¼ sec. 36 L. B. McCabe	T. S.S., R. 21 W. SE14 SE14 sec. 2	NW14 NW14 sec. 3. F. Hays.	SW1/4 SE14 sec. 8 A. Roeder	SE14 SE14 sec. 14 F. Hays.	NWM NW14 sec. 18 L. W. Fellwork Estate	NEW NEW sec. 21 Federal Land Bank.	3-21-25cb NW14 SW14 sec. 25 J. M. Stewart, Jr	3-21-27cc SW1/4 SW1/4 sec. 27. W. F. Bennett	3-21-32bb NW1/4 NW1/4 sec. 32 D. G. Hausen.
1-34-4 cd	2-24-10as	2-24-16dc	2-24-24ab	2-24-28am	2-24-30ab	2-25-10dc	2-25-12aa	2-25-16cb	2-25-20cd	2-25-26aa	2-25-27ba	2-25-36dd	3-21-2dd	3-21-3bb	3-21-8dc	3-21-14dd	3-21-18bb	3-21-21aa	3-21-25cb	3-21-27cc	3-21-32bb

Table 8.—Records of wells in Norton and northwestern Phillips Counties, Kansas, and adjacent areas—Continued

							Principal water-bearing bed	-bearing bed			Measuring point	point		Depth to water		
No. on Plate 2 (1)	LOCATION	wher or tenant	Type of well (2)	Depth of well (feet)	Diameter of well (in.)	T o 2 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0	Character of material	Geologic	Method of lift (5)	Use of water (6)	Description	Distance above land surface (feet)	Height above mean sea level (feet)	level below measur- ing point (feet)	Date of meas- urement	Remarks
22-2dc	T. 3 S. R. 22 W. SW14 SE14 sec. 2.	R. B. Wynn	Ď	123 1	•	5	Sand and gravel ('gallala	(igallala	ζ	Ω	Top of casing	1 2	2.327.2	103 9	1-12-46	
22-5cc	SW1 SW1 sec. 5	I., P. Reincke	Ģ	114.3	9	5	op	op	CY	x.	Top of iron disc	:	2.361.3	97 97	12-10-45	
22-7cc	SW1/4 SW1/4 sec. 7	S. E. Jeffers	Ď	111.8	9	15	ф.	op	Š	S,O	Top of casing	œ –	2,358.0	99 24	12-10-45	
22-9bb	NW14 NW14 sec. 9. J. E. Curry.	J. E. Curry	Ω	70.2	9	5	ор	do	C.Y.	œ	ф.	3.2	2.308.8	62.3	12-10-45	12-10-45 Chemical analysis.
22-9dd	SE14 SE14 sec. 9	K. M. Casev	占	7.	•	5	do. ob	ф	č	တ	op	1.2	2.407.6	163 05	12-10-45	
22-18dd	SE14 SE14 sec. 18	SE14 SE14 sec. 18 Fed. Farm Mtg. Corp.	ŭ	8 62	9	5	ф.	ф	CY,W	ø.	do.	0 -	2,338.7	99 92	12-11-45	
22-21bb	NW14 NW14 sec. 21 Ida Lawson	Ida Lawson	Ā	148.2	æ	ē	do	ф.	CY,W	œ	op	ç	2 386 4	127, 15	12-11-45	127.15 12-11-45 Not in use.
22-24dc	SW14 SE14 sec. 24 C. Wachtel.	C. Wachtel	۵	172.7	ç	5	do ob	ф.	CY.W	S'Q	do	0.1	2.385.2	163 1	1- 9-46	
22-33cd	SE14 SW14 sec. 33	SE14 SW14 sec. 33. Fed. Farm Mtg. Corp.	۵	102 4	æ	5	op	ф.	CY,W	Q	do	es.	2 352 7	æ 5.	1-12-46	Do
23-1aa	T. 3 S., R. 23 W. NEW NEW Sec. 1.	:	Ď	45.6	•	15	op	Terrace	ω	æ	qo	0.1	2 238 3	36	12-10-45	
23-3ac	SW1/4 NE1/4 sec. 3 City of Norton	City of Norton	Da	67.5	27.	æ	ф	op	T,E	۵.	Level of pump house	1.0	2.258.5	45.59	8-27-45	8-27-45 Norton city well No. 7.
23-3ad1	SE'4 NE'4 sec. 3 do	ор	۵	09	8	ن	do.	ор	T,E	۵.	Land surface		2,255 9	45	8-27-45	8-27-45 Norton city well No. 6.
23-3ad2	SE14 NE14 sec. 3	op	Δ	%	81	ن	ф.	ф.	T,E	۵,	do	:	2 247 4	45	8-27-45	8-27-45 Norton city well No. 5.
23-3ad3	SE 1/4 NE1/4 sec. 3.	op	Ωn	8	\$	æ	ф.	Alluvium	T,E	Ь	op		2.254	38	8-27-45	8-27-45 Norton city well No. 10.
1945-82	23-3bd1 SE14 NW14 sec. 3 . do	op	Du	9,	9 5.	æ	ф ор	ор	T,E	4	- op	-	2,259.3	45	8-27-45	8-27-45 Norton city well No. 8.

8-27-45 Norton city well No. 9.	ý						Chemical analysis.	Je.												
Norton e	Not in u					õ	Chemica	Not in use.	Õ	ů					Do		ů		Ω°	
8-27-45	9-25-45 Not in use	5- 7-47	\$ 4 T	8- 4-47	1-18-46	2-12-45		9-8-46	1-18-46	9-24-45	5-22-46	5-25-46	8- 4-47	5-31-46	9-24-45	8 4 47	5-22-46	6-20-46	9-24-45	5-31-46
45	29.79	38 10	37 52	66.32	52.36	152.60 12-12-45	147.27 12-10-45	158 45	18.81	82.89	45.28	94.99	8	31 02	8.	83	44.27	3	47.15	99.32 5.31-46
2.267.4	2,314.4	2,279.3	2,294 5	2,313.8	2,323 1	2,423.3	2,425 6	2,441.6	2.472 7	2,392.7	2,363.6	2,417.6	2.303 5	2,305.5	2,345.0	2.385.9	2.363.7	2.340.2	2.343.8	2.405.8
:	ĸņ.		ĸ5	₆₅	1 0	1 0	3 .	<u>-</u>	9	0.1	1.2	w	က္	87	0.	1.3	0.	0.	2.1	0
do	Top of casing	ф.	Base of pump	ф.	Top of casing	Top of pump buse	Top of casing	Top edge of pump body	Top of casing	do	Top edge of casing	ор	Base of pump	Top of wooden platform	Top of casing	Base of pump	Top edge of casing	Top of concrete curb	Top of casing	Top edge of casing
۵.	or.		D,S	œ	·/.	ø.	7.	72	D,S	Ω	D,S	Q	D,S	D'S	×	S,O	o,s	۵	7 .	n.
T,E	CY,W	C.Y.	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	H,Y')	CY.N	CY,H	CY,W	CY,H	N,W	('Y,W	CY,N	CY,H	×	CY,W
op	Crete	Terrace	do	Ogullala	oł	ф.	ф.	фор	фор	ф	do	ф	Теттасе	фор	Crete	do ob	do	Terrace	Ogallala	do
do	Sand	Sand and gravel	do ob	do	doob	doob	ф ор	do ob	doob	фор	doob	ф	op	ф.	Sand	do ob	do	Sand and gravel	doob	ф
-	:		:	5	5	5	5	3	5	5	5	5	3	3	5	5	5	5	5	5
18		9	r.	s	9	9	9	9	9	ç	9	9	2	æ	9	9	9	9	æ	9
0,	32 0	8.88	Dr 126	7.5	66 2	Dr 160 8	Dr 153.3	Dr 159.7	Dr 182 8	1. 18	51.6	76.7	52 0	43.0	3 5	77. 4	Dr . 51.6	39 3	51.8	128
Ď	Ď	٥	Ğ	8	<u>م</u>	ă	Ď	<u>,</u>	٦	ū	ភ	۵	٦	æ	, O	<u>.</u>		<u>.</u>	<u>ā</u>	ū
do.	Mrs. Sarah Woolsey.	N. Stapleton	Ivan Bryant	Campbell Estate	T. M. Heaton	ф.	J. E. McKee	L. O. Cope	D. G. Hamilton	School District	Julia Thompson et al.	School District	Ed Temple	John B. Lawn	Will Collins	C. H. Camp	J. Van Meter	School District	Carl Roc	Federal Land Bank
SE'4 NW'4 sec. 3 do.	SE14 SE14 sec. 6 Mrs. Sarah Woolsey.	NE14 NE14 sec. 8	SW14 SE14 sec. 8.	NE'4 NE'4 sec. 17. Campbell Estate.	NWM NELL sec. 23 T. M. Heaton.	SE14 SE14 sec. 24 do	NE14 NW14 sec. 27 J. E. McKee	NW14 NW14 sec. 29 L. O. Cope	SE14 SE14 sec. 33	T. 3 S., R. 24 W. NWI, NWI, sec. 1.	SE'4 SE'4 sec. 4	NE14 NE14 sec. 7.	SE'4 SE'4 sec. 12	NE14 NE14 sec. 14 John B. Lawn	NW14 SE14 sec. 16.	NE¹₄ NE¹₄ sec. 17 . C. H. Camp	SE)4 SE14 sec. 18	SW1, SW1, sec. 20	NW14 SE14 sec. 21 Carl Roc.	NE14 NE14 sec. 27 . Federal Land Bank . Dr :128
23-3bd2	23-6dd	.23-8aa	.23-8dc	-23-17aa	.23-23ab	-23-24dd	-23-27ba	-23-29bb	-23-33dd	-24-1bb	-24-4dd	-24-78a	-24-12dd	-24-14aa	-24-16db	-24-17aa	-24-18dd	-24-20cc	-24-21db	-24-27aa

TABLE 8.—Records of wells in Norton and northwestern Philips Counties, Kansas, and adjacent areas—Continued

							Principal water-bearing bed	-bearing bed			Measuring point	g point		Depth		
(o. on late 2 (1)	Location	Owner or tenant	Type of well (2)	Depth of freet)	Diameter of well (in.)	Type of of ing	Character of material	Geologic source	Method of lift (5)	Use of water (6)	Description	Distance above land surface (feet)	Height above mean sea level (feet)	to water level below measur- ing point (feet)	Date of meas- urement	Remarks
5-2dd	T. 3 S., R. 25 W. SE!4 SE!4 Sec. 2.	School District	۵	94.6	မ	5	Sand and gravel	Ogallala	СУ,Н	Ω	Top of edge casing	9	2.479 0	15	5-22-46	e G
5-5ra	NEW SEL sec. 5	N. B. Nelson	ā	2 92	9	5	do	do	CY,W	s	do	1-	2.483.3	65 97	5-22-46	:
5-17dc	SW1/4 SE14 sec. 17.	F. H. Brooks	ă	82.9	9	5	ф.	ф.	CY,W	Q	do	1.	2.473.2	66 89	- 1 - 1 - 1	
5-20cd	SE14 SW14 sec. 20 H. K. Brooks	H. K. Brooks	۵	06	s	15	do	do	CY,W	D,S	Base of pump	œ	2.474.7	20 22	4	
5-21dd	SE14 SE14 sec. 21 W. K. Goodman	W. K. Goodman	å	79.2	'n	15	do ob	do	CY,W	D,S	do	*	2,442.5	78 15	4	
5-23ba	NE!4 NW14 sec. 23	A. Schoen	Ğ	132.8	9	15	do	do	CY,W	œ	Top edge of casing	1.0	2.424.0	87 15		
≻25bc	SW14 NW14 sec. 25	SW14 NW14 sec. 25 . J. N. Van Meter et al.	Ď	52.8	2	В	do	Terrace	CY,W	တ	do	1.0	2.374.2	42.75		ď
5-27ad	SE14 NE14 sec. 27	SE¼ NE½ sec. 27 Mrs. T. A. Mizell	Dr	¥.	9	G	do	do	CY,W	D'S	Top casing	0.	2,372.6	27.89	6-27-46	Chem
5-33bc	SW1/4 NW14 sec. 33 L. R. Collins	L. R. Collins	፭	59.1	9	3	ф	op	CY,W	σ:	Top edge of casing	1.0	2.407.8	30	6-7-46	
1-1dd	T. 4 S., R. 21 W. SE14 SE14 sec. 1.	C. Nelson	Du		\$	24	ф	Ogallala	су,н	Ω	At manhole on concrete	1.1	2 188 2	52.6	1-92-46	ost ii toN
1-2bb	NW14 NW14 sec. 2 R. Sides	R. Sides	Ď	21.5	01	CI	do	Alluvium	z	ø	platform Top of casing	1.2	2,168.7		1-22-45	Do
1-3pp	NW1/4 NW1/4 sec. 3 J. W. Baird	J. W. Baird	Du	105.5	20	2	тор	Ogallala	CY,W	D	Top of board platform	1.4	2,249.9		1-12-46	D _o
-7dc	SW1/4 SE1/4 sec. 7	SW14 SE14 sec. 7 E. E. Stephenson	ď	75.6	9	GI	ф.	фор	CY,H	Q	Top of casing	2.	2,229.6	8	1- 9-46	Do
-23cd	SE14 SW14 sec. 23.	SE14 SW14 sec. 23 S. L. Atkinson Estate	Ď	364.2	•	G	Sand	Codell	CY,W	D,S	Top of concrete base	9.	2,135.8	194.38	6-21-46	Chemical analysis.
-24pp	NW14 NW14 sec. 24	-24bb NWK NWK sec. 24 Federal Land Bank.	Ď	401.7	9	CI	do	фор	CY,W	D'S	ф	s.	:	98.14	6-21-46	6-21-46 Not in use.

dysis.											dysis.	dysis.				Chemical			
41.90 1-22-46 Chemical analysis.		Not in use.	Do		Not in use.	D°	Do			Do	Chemical analysis.	60 24 12-12-45 Chemical analysis.	Not in use.			Z	Not in use.	Do	
1-22-46	1-22-46	1-22-46	1-12-46	1-12-46	1- 7-46	1- 9-46	1- 9-46	1- 9-46	1-18-46	8-13-47	1-18-46	12-12-45	1-18-46	8-10-46	1-18-46	6-10-46	1-18-46	1-18-46	9-4-9
41.90	17.62	24.20	7.09	36.80	110.30	129.43	58.11	45.28	71.48	4	96 70	2 09	122.67	159.60	67.58	121.05	87.19	154 44	58 33
2,144.0	2,063.4	2.062.4	2,286.3	2,269.7	2,381.5	2.287.3	2,283.3	2,269.1	2,299.9	2,230.0	2.283.0	2,335.1	2,404.2	2,467.9	2.324.7	2,424.5	2,298.8	2,406.4	2,284.7
o.	0.	o .	w.	64	₹.	6	ıo.	- .	0.	esi	က	2	0.5	1.9	1.5	z,	87	'n	•°:
Top of board platform.	ф	Top of stone curb	Top of casing.	ор	ор	do	ор	ф.	ор	op	Top of concrete plat-	Top of casing.	ор	Top edge of casing	Top of casing	Top edge of casing	Top of concrete	op	Top of easing
sc	۵	۵	۵	œ	œ	D,S	D,S	တ	Ω	z	Q	တ	۵	۵	œ	۵	۵	۵	D,S
CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	CY,W	z	CY,H	CY,W	CY,W	CY,H	CY,W	CY,H	CY,H	CY,H	CY,W
Ogallala	Alluvium	Niobrara and	Ogallala	do	do	ор	do	do	do	do ob	ф	do	фор	do	doob	do	do	မွ	doob
Sand and gravel Ogaliala CY,W	ф.	Chalk, sand,	Sand and gravel	do	do	do	ор	ор	op	ор	ф.	op	op	ор	op	op	do	оф	do ob
~	:		5	GI	E	15	5	15	15	ΙĐ	15	ij	E	GI	G	3	3	5	15
81		-	9	æ	9	9	9	9	9	2	ç	9	9	9	æ	9	9	9	9
45.3	36.7	155	8.69	47.1	125.5	151 3	70.07	50.3	97.6	73.3	109 0	74.0	127.8	177 6	91.7	145.3	122.0	159 0	71.0
D _u	2	T D	å	ሷ	ā	5	Ū.	<u>.</u>	<u>.</u>	٦	Ā	<u></u>	Ď	۵	<u>Ā</u>	۵	۵	<u>۲</u>	<u>.</u>
Henrietta Veeh et al.	Chester Beach	Henrietta K. Wiltrou	First State Bank of	W. T. Green	C. A. Sleffel	C. Wachtel	Federal Land Bank.	E. E. Thompson	J. M. Scott Estate.	School District	School District 95.	Trena Veth	J. E. Toole	School District	W. H. Bretton	School District	School District	W. W. Bales	Federal Land Bank
21-20bb NEIG NWIG sec. 28 Henrietta Vech et al. Du	21-30de SWM SEM sec. 30. Chester Beach	21-35bb NW14 NW14 sec. 35 Henrietta K. Wiltrout Dr.	22-1ba NE! 4 NW14 sec. 1. First State Bank of	NW1, NW1, sec. 2	22-6ad SE14 NE14 sec. 6 C. A. Sleffel	SW14 SW14 sec. 9. C. Wachtel.	22-15aa NE'4 NEW sec. 15 Federal Land Bank.	22-15cd SE ¹ 4 SW14 sec. 15. E. E. Thompson	SW14 SW17 sec. 17. J. M. Scott Estate	22-26bb NW14 NW14 sec. 26 School District	22-29da NE14 SE14 sec. 29 School District 95	Z3-1ac SW14 NE14 sec. 1 Trena Veth	SW1, SE14 src. 2. J. E. Toole	SW14 SE14 sec. 5 School District	23-14ad SE'4 NE'4 sec. 14. W. H. Bretton	23-19de SW14 SE14 sec. 19. School District	23-25da NE ¹ SE ¹ sec. 25 School District	-23-26lu NE'4 NW!4 sec. 26 W. W. Bales	23-34cd SE14 SW14 sec. 34 . Federal Land Bank
21-2×bb	21-30dc	21-35bb	22-1ba	22-2bb	22-6ad	22-9cc	.22-15am	.22-15cd	.22-17rc	.22-26bb	.22-29da	-23-1ac	.23-2dc	.23-5dc	.23-14ad	.23-19de	.23-25da	-23-26ba	.23-34cd

TABLE 8.—Records of wells in Norton and northwestern Phillips Counties, Kansas, and adjacent arens.—Continued

Part Dame Country Country								Principal water-bearing bed	-bearing bed			Measuring point	g point		Depth to water		
WW1, NW1, sec. 8 R. L. Bolllock Dr. 1715 5 GI Sand and grave! N Top of casing. 3 2.518 3 148 00 5-5-15 NW4, NW1, sec. 10 E. C. Larson Dr. 190 5 5 GI do GN N Top cdge of casing. 1 2.518 6 170 6 5-31-46 NW4, NW1, sec. 20 T. M. Wright Dr. 181 2 6 GI do GN N Top cdge of casing. 1 2.458 8 143 16 5-31-46 SW4, SW1, sec. 20 T. M. Wright Dr. C. Grid do do GG G	No. on Plate 2 (1)	Location		Type of well		Diam- efer of well (in.)		Character of material	Ceologic source	Method of lift (5)		Description	Distance above land surface (feet)	Height above mean sea level (feet)	level below measur- ing point (feet) (8)	Date of meas- urement	Remarks
NWY, NWY, sec. 30 L. C. Larson Dr. 159 2 6 (GI do do CV.N. D.S. do 2511 6 175 0 6 531-6 SEY, NWY, NWY, sec. 23 T. M. Wright Dr. 159 2 6 (GI do do CV.N. D.S. do 10 2.478 8 13 16 531-16 SEY, NWY, Sec. 31 D. C. Norkers Dr. Norkers Dr. Norkers Dr. 106 6 GI do do GI do do 10 2.382 8 2.85 6 144-6 SWY, SWY, Sec. 32 Theodorr Fought Dr. 106 6 GI do do CY.W D.S. do 2.426 3 107 85 5-146 SWY, SWY, SWY, Sec. 35 A. A. Schreiber Dr. 106 4 GI do do CY.W D.S. Top edge of casing 2.426 3 107 85 5-146 SEY, SWY, SWY, SWY, SWY, SWY, SWY, SWY, SW	24-8bb	T. 4 S., R. 24 W. NW14 NW14 Sec. 8	R. L. Bullock	۵	171 5	.c.	15	Sand and gravel	Ogallala	×	×	Top of casing.	s.	2.518 3	148 00	8-5-47	Not in use.
SEY, NEY, SWY, SWY, SWY, SWY, SWY, SWY, SWY, SW	24-10bb	NW14 NW14 sec. 10	E. C. Larson	ū		2	5	op	do	×	×	Top edge of casing	1 0	2,511.6	176 06	5-31-46	Do
SELA NEL, sec. 31. D. C. Neikers Dr. Solkers Dr. Solkers </td <td>24-23bb</td> <td>NW1/2 NW14 sec. 23</td> <td>T. M. Wright</td> <td>7</td> <td>15! 2</td> <td>9</td> <td>3</td> <td>ф.</td> <td>do</td> <td>CY.N</td> <td>D.S</td> <td>op</td> <td>1 0</td> <td>2,478.8</td> <td>143 16</td> <td>5-31-46</td> <td>Do</td>	24-23bb	NW1/2 NW14 sec. 23	T. M. Wright	7	15! 2	9	3	ф.	do	CY.N	D.S	o p	1 0	2,478.8	143 16	5-31-46	Do
SW15 SW15 sec. 32 Theodore Pought Du 37.2 144+ C, GI do do C, G I Top of centrut curb 10.6 2.360 8 13.80 SW15 SW15 Swc. 35 A.A. Schreiber Dr 110.5 G GI do Goallala N Top edge of casing 2 2.426 3 107.53 T. J. S. S. W. 5 SW15 Swc. 2 Lester Haget Dr 113 6 GI do do CY.W D.S Top surface of platform 8 2.320 8 137.57 NP4 SELS Swc. 5 Bradley Brooks Dr 113 6 GI do do CY.W D.S Top of pump 9 2.450 0 107.53 17.55 NW4 NW4 Swc. 5 Bradley Brooks Dr 113 6 GI do CY.W D.S Top of pump 9 2.450 0 107.53 17.55 NW4 NW4 Swc. 5 Bra. Wonderlich Dr 112 6 GI do do CY.W D.S Top of pump	24-31ad	SE!4 NE!4 sec. 31.	D. C. Neikers	ځ	30.6	9	5	ор	Alluvium	CY.W	D.S.	do	<u>د</u> ز	2,382 8	22 85	6 14-46	Z
SW4_5 SW4_5 sec. 35 A. A. Schreiber Dr 110 5 6 GI do Opallala N Top edge of casing 2 2.426 3 107 53 E. 4_SE4_Sec. 2 Lester Haget Dr 164 8 6 GI do do CY,W D,S Base of pump 9 2.490 0 109 58 NE4_SE4_Sec. 5 Bradley Brooks Dr 113 6 GI do do CY,W D,S Base of pump 9 2.497 0 109 58 NW4_NE4_Sec. 5 Bradley Brooks Dr 11 S do Terrace T.E D 709 0f pump 9 2.497 0 117 87 NW4_NE4_Sec. 5 Griffith Dr 100 GI do 0 0 0 0 11 88 118 8 118 8 118 8 118 8 118 8 118 8 118 8 118 8 118 18 18 118 18 18 118 18 18 118 18 18 118 18 18 118 18 18 118 18 18 118 18 18 118 18 18 118 1	24-32cc	SW14 SW14 sec. 32	Theodore Fought	D _u		144	C, G		ф	5,5	-	Top of cement curb	9 01	2,360 8		8-15-47	y sts.
T. J.S., R. 25 W. Loster Hiaget. Dr. 164 s. 6 GI do do CY, W. D.S. Rase of planform 8 2.520 S. 137 57 NEY, NEY, Sec. 5. Bradley Brooks. Dr. 113 6 GI do do CY, W. D.S. Base of pump. 9 2.490 0 109 58 NWY, NEY, Sec. 5. Bradley Brooks. Dr. 120 + 6 GI do Oogalala. CY, W. S. Top of floor 5 2.417 6 31 NEY, SEY, Sec. 7. W. E. Griffith. Dr. 120 + 6 GI do do Oogalala. CY, W. D.S. Top of pump bowl 3 2.516 7 117 83 NEY, SEY, Sec. 16. E. A. Wolf. Dr. 180 0 GI do do CY, W. D.S. Top of pump bowl 3 2.516 7 117 83 NEY, SEY, Sec. 26. H. L. Vahling. Dr. 181 3 6 GI do do CY, W. D.S. Top edge of casing. 8 2.515 9 134 23 NEY, SEY, Sec. 26. H. L. Vahling. Dr. 131 3 6 GI do	24-35cc	SW14 SW14 sec. 35	A. A. Schreiber			9	5	ф.	Ogallala	7.	×	Top edge of casing	.2	2,426 3	107 53	5 31-46	Not in use.
NF! (NE) (NE) (A sec. 5) Bradley Brooks Dr. 113 6 (i) do do (i) D. Base of pump 9 2.490 0 109 58 NWI, NEI, Sec. 6 (i) 6 (i) do (i)		T. 4 S., R. 25 W. SE14 SE14 Sec. 2	Lester Haget			9	5	ор	ф.	CY.W	D,S	Top surface of platform	oo	2.520 8	137 57	6-13-46	
NWY, NEX, sec. 6 City of Clayton. Dr. 51 12 S do Terrace T.E. D Top of floor 5 2.417 6 31 NEY, SEY, sec. 7. W.E. Griffith. Dr. 120 + 6 GI do do CY,W S Top of pump bowl 34 2.516 7 117.88 NEY, SEY, sec. 16 E. A. Wolf. Dr. 182 3 6 GI do do CY,W D,S Top of pump bowl 34 2.515 9 179 47 NEY, SEY, sec. 24 Elia. Mindrup. Dr. 133 1 6 GI do do CY,W D,S Top of concrete plat- 8 2.516 9 179 47 NEY, SEY, sec. 25 H. L. Vahling. Dr. 121 3 6 GI do do CY,W D,S Top of concrete plat- 8 2.516 9 179 45 SEY, SEY, sec. 26 H. L. Vahling. Dr. 121 3 6 GI do do CY,W D,S Top of casing. 0 2.446 6 68 35 T. 5 S., sec. 1 A. G. Clark. Dr. 43 9	25-5aa	NE ¹ 4 NE ¹ 4 sec. 5	Bradley Brooks	Ė	113	9	3	ф.	do	CY.W	D,S	Base of pump	6.	2.490 0	NS 52	8- 5-4;	
NEY, SEY, sec. 7. W. E. Griffith. Dr. 120+ 6 (ii) do Opaliala CY, W B.S. Top surface concrete 5 2.516 7 117.85 SEY, SEY, sec. 16 E. A. Wolf Dr. 180 0 GI do do CY, W D.S. Top edge of casing 34 2.516 7 117.83 NEY, SEY, sec. 26 E. A. Wolf Dr. 182 3 6 GI do do CY, W D.S. Top edge of casing 8 2.575 9 179 47 NEY, SEY, sec. 26 H. L. Vahling Dr. 121 3 6 GI do do CY, W D.S. Top edge of casing 8 2.510 9 134 23 SEY, SEY, sec. 26 H. L. Vahling Dr. 121 3 6 GI do GY, W D.S. Top edge of casing 0 2.466 6 68 35 SEY, SEY, sec. L. A. G. Clark Dr. 43 5 8 T do Tornace CY, W D.S. Top edge of casing 0 3.477 1	25-6ab	NW14 NE14 sec. 6.		à	15	2	x	ф	Terrace	T.E	Ω	Top of floor	ĸċ	2,417 6	31	8-15-47	8-15-47 (layton municipal well.
E. A. Wolf. Dr 180 GI do do CY.W D.S. T partorn 34 2 551 3 178 37 178 37 D. R. Wonderlich Dr 182 3 6 GI do do CY.M D.S. Top edge of cassing 8 2.515 9 179 47 Eliz. Mindrup Dr 133 1 6 GI do do CY.W D.S. Top of cascing 8 2.510 9 134 23 H. L. Vahling Dr 121 3 6 GI do CY.W D.S. Top of casing 0 S 2 446 6 68 35 A. G. Clark Dr 43.5 8 T do Terrace CY.W D.S. Top of casing 0 S 2 446 6 68 35 C. H. Elliott Dr 43.5 6 GI do CY.W D.S. Top of casing 1.11 2.000 1 34.77 1	25-7da	NE14 SE14 sec. 7		<u>-</u>	120	9	5	op	Ogallala	CY.W	×	Top surface concrete	S.	2,516 7	117.8s	9+1-9	6- 7-46 Chemical analysis.
D. R. Wonderlich Dr. 182 3 6 G1 do do CY.M D.S. Top edge of casing. 8 2.575 9 179 47 Eliz. Mindrup Dr. 138 1 6 G1 do CY.W D.S. Top of concrete plate 8 2.510 9 134 23 H. L. Vabling Dr. 121 3 6 G1 do CY.W D.S. Top edge of casing 0 S 2 446 6 68 35 A. G. Clark Dr. 43.5 8 T do Terrace CY.W D.S. Top of casing 1.1 2.000 1 34.77 1 C. H. Elliott Dr. 43.9 6 G1 do do CY.H D do .9 2.008.8 21.86	25-16dd	SE!4 SE!4 sec. 16 .		۵	200		5	do	do	('Y.W	D,S	Top of pump bowl	3.4	551	178 37		Not in use.
NET NW4 sec. 24 Elia. Mindrup Dr 13x 1 6 GI do do CY.W D.S. Top of concrete plat- form 8 2.510 9 134 23 T. 5. S. E. I. W. S. S. S. S. E. I. W. S. S. S. S. E. I. W. S.	25-19da	NE14 SE14 sec. 19.	D. R. Wonderlich	ā	63	9	5	op	do	CY.H	D,S	Top edge of casing	œ	2.575 9	179.47		Do
SEY SEY sec. 26. H. L. Vahling Dr. 121.3 6 GII do do CY, W D.S. Top of casing 0.8 2.446.6 68.35 T. S. R. 21 W. SEY SEY sec. 1. A. G. Clark Dr. 43.5 8 T do Terrace CY, W D,S Top of casing 1.1 2.000.1 34.77 1 SEY NEY sec. 1. A. G. Clark Dr. 43.9 6 GI do do CY, H D do .9 2.008.8 21.86	35-24ha		Eliz. Mindrup	<u>_</u>	13x 1	9	Ξ	d	do ob	CY.W	D,S	Top of concrete plat-	œ	2,510.9	134 23	6-13-46	Do
T. S. R. 21 W. SEM SEM Sec. 1. A. G. Clark Dr. 43.5 8 T do. Terrace CY,W D,S Top of easing 1.1 2,000 1 34.77 SEV, NEW, sec. 3. C. H. Elliott. Dr. 43.9 6 GI do do cY,H D do 9 2,008.8 21.86	25-26dd			ā	121	9	5	do	doob	CY,W	D'S	Top edge of casing	80	2,446 6	68.35	6-13-46	Not in use.
SEL4 NEL4 sec. 3. C. H. Elliott Dr 43.9 6 GI do do CY,H D do 9 2.008.8 21.86	11-1dd	T. 5 S. R. 21 W. SEM SEM SEM Sec. 1		Ď		×	F	do	Тегтасе	(.Y.W	D,S	Top of casing	=	2,000.1	12.78	11-28-45	Do
	1-3ad	SE14 NE14 sec. 3	C. H. Elliott	Ď.	43	9	CI	do	doob	CY,H	Q	qo	э. -	2.008.8	21.86	6-22-46	Do

22.95 8-13-47 New well constructed	August 1871.		Not in use.	Chemical analysis.			Not in use.		Do		Chemical analysis.	Depth to water 12.24 feet, April 10, 1948.		Chemical analysis.				Not in use.			
1-13-47	8-13-47	6- 3-46	6 21 -46	6-22-46	6-21-46	6-3-46	6- 3-46	6-22-46	1- 7-45	6-22-46	6-22-46	8-13-47	8-13-47	6-3 46	3-25 48	1-18-46	9 11 46	6- 4-46	8-14-47	6-11-46	1-15-47
22 95	134 70	49.46	92 69	40 25	75 32 (84 65	99 96	24 80	86.73	45.89	20.95	15.26	£ 73	88.25	00 101	63.42	86 25	24 18	 01	31 05 (10 18 8-15-47
2,031.4	2.061 2	2,163 3	2,159.3	2,125.7	2,253 2	2.215 4	2,265.6	2.065 0	2,193 1	2,117.6	2,085.9	2,163 3	2 262 7	2,317,5	2,304.9	2.253.2	2 343 5	2.169 4	2.148 9	2, 223, 1	2 225 4
1.6	5.2	20 .	8	0.1	8.	30	0.	2	9	-	o;	1.2	2 3	0.1	15	0 3	0.	¢1	0	-	
op	ор	Top edge of casing	Top of platform	Top board of platform	Top of concrete base	Top edge of casing	Top edge of board cover	Top of casing	Top of concrete curb	Top edge of casing	Top of casing	Top of easing	Top of casing	Top edge of casing	Pump base	Top of concrete plat-	Top edge casing	Top of wooden platform	Floor surface at engine	Top edge of casing	Top of floor
Q	D,S	D,S	x	D,S	D,S	w	×	Ω	Ω	Q	D,S	œ	-	w.	D.S.	v.	a	D,S		۵	_
z	CY,W	CY,W	W.N	CY,W	CY,W	(°Y, W	×	CY,H	CY.W	CY,H	CY,W	CY.W	P,H	€.7.₩	W.Y.)	('Y,W	('Y.H	н,ү	9,5	CY,H	5.0
do	Niobrara	Ogallala	Niobrara and	dodb	Ogallala	ф.	do ob	Terrace	Niobrara(?).	Niobrara	Alluvium	do	dodo	Ogallala	do	op	do	Terrace	Mluvium	Terrace	do
ор	Chalk	Sand and gravel	Chalk and sand	do	Sand and gravel	ф.	ф ор	ор	Chalk(?)	Chalk.	Sand and gravel	do	ор	ф.	do	op	do	.: op	op	do	do ob
<u> </u>	ತ	5	_	5	5	3	5	5	ਣ	ਤ	5	:	₹	5		3	5	5	:	3	- - -
9	9	ç	١٠	8	9	*	ç	9	g	9	¥		36	9	9	چ	9	9	**	· ·	<u>2</u>
50 7	23	24 -	Dr 383.0	Dr 309 5	86	0 68	105 8	30	916	99 3	34	13	6 !-	Dr 117.0	Dr 109 0	さた	 	4.5	31	26	33
ā	D	Dr			ŭ	Dr		Ğ	Ğ	۵	Ģ	<u>-</u>				٥		ā	Da	ā	Da
Louis Reimann	W. Archer	J. W. Baird	George Glennemier	Joseph Archer	Louis Voss	F. M. Dedrick.	E. J. Seely.	Martin Jacobson	J. W. Heins	Frank Schulte	Frank Stenger	W. Hunter	Harry Brooks	R. A. Billips	Leland Stewart	A. B. Conkey	School District	G. A. Sanborn	H. A. Delp	School District	Herbert Fought
21-5aa NE14 NE14 sec. 5 Louis Reimann	NEI NWI sec. 9. W. Archer	21-14dd SE14 SE14 sec. 14. J. W. Baird	SW14 NW14 sec. 15 George Glennemier.	NE14 NW14 sec. 16 Joseph Archer	SE14 SW14 sec. 19. Louis Voss.	SE14 SE14 sec. 26 F. M. Dedrick.	SW14 SE14 sec. 33. E. J. Seely	T. 5 S. R. 22 W. SW14 SE14 sec. 1 Martin Jacobson	SE14 SE14 sec. 7 J. W. Heins	NW14 SW14 sec. 10 Frank Schulte.	SEM SE14 sec. 10 Frank Stenger	22-21db NW14 SE14 sec. 21 W. Hunter	22-30ba NE14 NW14 sec. 30 Harry Brooks.	22-32da NE4 SE4 sec. 32	22-36dd SE14 SE14 sec. 36 Leland Stewart	T. 5 S., R. 23 W. NE'4 SE'4 sec. 1. A. B. Conkey.	SW14 SW14 sec. 5 School District	SW14 NW14 sec. 14 G. A. Sanborn	-23-14da SW14 NE14 SE14 H. A. Delp	23-17de SW14 SE14 sec. 17. School District	23-19bb NW!4 NW!4 sec. 19 Herbert Fought
21-5aa	21-9ba	21-14dd	21-15bc	21-16ha	21-19cd	21-26dd	21-33de	22-1dc	22-7dd	22-10cb	:22-10dd	22-21db	.22-30ba	.22-32da	.22-36dd	23-1da	23-5ec	23-14bc	23-14da	23-17de	23-19bb

Table 8.—Records of wells in Norton and northwestern Phillips Counties, Kansas, and adjacent areas—Concluded

Depth to water	the below Date of Remarks n ing urement (feet)	0.7 65.48 6-4-46	1.9 46.44 9-22-45 Do	3.3 33.8 6-11-46 Do	5.8 150.16 6-4-46	3.5 66.0 6-14-46	3.2 31.15 8-12-47 Not in use.	5.1 1.35 8-15-47 Centrifugal pump in 7-fo	37.09 6-20-46	5.3 16.38 8-15-47	1.3 5.34 8-30-45 Lenora city well.	3.1 35.49 9-25-45 Chemical analysis.	6 14.34 6-20-46	1.9 35.48 6-20-46 Not in use.	3.9 28.33 7- 1-46 Do	1.0 24.16 8-30-45 Chemical analysis.	
	Height Height above mean ce sea t) level (feet)	0 2,320.7	9 2,334.9	.8 2,368.	0 2,405.8	.6 2,403.5	.5 2,298.2	0 2,255.1	.6 2,255.7	5 2,235.	5 2,239.3	.3 2,328.1	0 2.271.6	2,276.9	2.248	2,252.0	
ng point	Distance above land surface (feet)	1.0	1 9		1.0	.	•	-7.0		2.5	-11.5		1.0	•	1.0	1.2	
Measuring point	Description	Top edge of casing	Top of 5-inch casing	Top edge of casing	Top of casing	Top edge of casing	Top of casing	op	ф	Top of tile casing	Top of concrete casing	Top of casing	At edge of well house.	Top of casing	Top of platform	Hole in pump base	
	Use of water (6)	D,S	œ	D,S	D,S	D,S	z	-	တ	-	Ь	۵	-	۵	-	-	
	Method of lift (5)	CY,W	z	CY,W	CY,W	CY,W	z	ບ,ດ	CY,W	C,G	C,E	су,н	0,0	z	N,T	0,0	
-bearing bed	Geologic source	Ogallala	do	do	do	do	Terrace	do	do	Alluvium	op	Terrace	ф	фор	doob	doob	
Principal water-bearing bed	('haracter of material	Sand and gravel Ogallala	ор	ф.	do.	фор	ор	ф.	ор	do	do	do	do	do	do.	ор	
	of Series (4)	5	5	3	5	15	5	C,GI	5	T,GI	ນ	61	-	:	၁	-	
	Diameter of well (in.)	9	2	9	9	9	9	24	9	12, 36	81	2	16		48	24	
	Depth of well (feet)	88.0	106.5	43 6	157_0	83.3	37	21.1	62.3	34.3	29.0	43.1	35.8	4.5	37	ಜ	
	Type of well (2)	Dr	Ď	Dr	'n	Dr	D.	Du	۵	Ω	Ď	Dr	DD	Du	Du	Dr	_
	Owner or tenant	J. Williams	R. V. Bennett	O. I. Simons	A. E. Flowers.	Anna Zierlein	Dave Greig.	F. H. Belden	L. N. Moore	SW14 SE14 sec. 13 Steve T. Kaufman	NW1/4 SW1/4 sec. 14 City of Lenora	School District 62	Erms B. Finley	E. Goodman Estate.	E. A. Snider	SW1/4 NW1/4 sec. 24 T. H. Van Diest	
	Location	SE14 SW14 sec. 28 J. Williams	SW14 NW14 sec. 29	SW1/4 sec. 31 0. I. Simons	NW14 SW14 sec. 35	T. 5 S., R. 24 W. SEM, SEM, sec. 7.	NE'4 NW'4 sec. 10 Dave Greig.	NE% SE% sec. 10 F. H. Belden	NE% SW1 8ec. 13 L. N. Moore	SW14 SE14 sec. 13	NW14 SW14 sec. 14	SW14 NW14 sec. 20	NW1/4 NE1/4 sec. 21	NE!4 NW14 sec. 22	NE% NW% sec. 24 E. A. Snider	SW1/4 NW1/4 sec. 24	
	No. on Plate 2 (1)	23-28cd	23-29hc	23-31cc	23-35cb	24-7dd	24-10bs	24-10da	24-13ca	24-13de	24-14cb	24-20bc	24-21ab	24-22ba	24-24ba	24-24bc	

use.				6-20-46 Not used for several years.		Chemical analysis.			8-5-47 6-foot pit beneath well	form.		50.32 10-16-47 6-foot pit under platform.			use.	Do	17.99 10-14-47 4-foot pit under platform.
Not in		_		Not us					6-foot	platform Not in use		6-foot			Not in		4-foot
6-14-46 Not in use.	6-13-46	6-20-46	6-13-46	6-20-46	97-02-9	6-20-46	10-15-47	6-14-46	4 5 47	19.14.47	10-16-47	10-16-47	10-16-47	27.70 9-24-47	9-24-47 Not in use.	30.75 10-16-47	10-14-47
47.14	124.94	62.08	86.09	17.92	21.78	20.38	25.67	130.3	144.8	90 87	8	50.32	38.58	27.70	31.57	30.75	17.90
2,466.2	2,490.6	2,457.5	2,403.7	2,358.3	2,405.6	2,416.0	2,419.5	2,523.2	2,585.3	1 975 6	1,983.7	2,065.0	2,067.5	2,029.9	2,019.0	2,004.3	1,988.1
•	7.	1.0	0.	8.	∞ .	1.0	۲.	*3	-5.5	er.		-5.5	2.3	1.7	1.0	7.	0.7
Top edge of casing	do	ф	ф	Top of concrete curb	Top of casing	Top edge of casing	Base of pump	Top edge of casing	Top of casing	Ton of concrete plat-	form at manhole Top of concrete plat-	form Top of casing in 6-foot	pit Top concrete curb	Edge of inspection well	Base of pump	Top of casing	Top of casing in 4-foot pit
80	80	6 2	D,8	_	Ω	ø	-	D,S	D,8	6	Ω	D,S	82	-	D,S	z	D,S
CY,W	CY,W	CY,W	CY,₩	T,G	CY,H	CY,W	T,G	CY,W	CY,W	CY.W	CY,W	CY,W	CY,W	T,G	CY,W	z	CY,W
ф.	do	do	do	Terrace	do	do	doob	Ogallala	Terrace	Alluvium	Теггасе			Terrace	do	ф	do
ф	ф.	do	ф	ф	do	ф	ф.	ф.	ф.	op	do			Sand and gravel	ф	ор	ф
G	5	ij	G	:	G	ij	ij	E	ij	15	IS	ij	-	ı	E	GI	GI
•	9	မ	9	:	9	•	72	9	10	4	20	5, 6	24	:	စ္	4	2
-83. 8.	±	82.3	71.2	55.5	40.8	33.4	56.3	152.4	171	27.6	50.9	0.09	40.0	73.5	42.6	68.2	49.9
Ā	ă	占	ሷ	ΩΩ	፭	Ď	፭	ă	ď	n	Ď	ď	Du	Dr	Ď	Ď	В
L. P. Moore	SW1/4 SW1/4 sec. 12. A. L. Mindrup.	J. T. Dellere	John Hickert	do	School District	T. A. Costello	F. A. Vahling	Paul Dellere	Leo Mindrup		J. S. Stone	J. R. Starr	C. Abbot			Phillip Rogers	Fred Howsden
4sb NW 14 NE14 sec. 4. L. P. Moore		SWXSWX sec. 15. J. T. Dellere	SWM NW14 sec. 25 John Hickert	NE'4 NE'4 sec. 26. do	SE14 SE14 sec. 29 School District	SE1/4 SE1/4 sec. 30 T. A. Costello	-32ba NE'4 NW1/4 sec. 32 F. A. Vahling	-34cb NW1/4 SW1/4 sec. 34 Paul Dellere	T. 5 S., R. 26 W. NE!4 SE!4 sec. 12. Leo Mindrup	18-31da NE ¹ 4 SE ¹ 4 sec. 31	18-33 bc SW1/4 NW1/4 sec. 33 J. S. Stone	19-25ac SW14 NW14 sec. 25 J. R. Starr	19-28de SW14 SE14 sec. 28 C. Abbot	19-32 cc SW14 SW14 sec. 32	19-33 cc SW14 SW14 sec. 33	19-35 bc SW14 NW14 sec. 35 Phillip Rogers	19-36 ca NE ¹ 4 SW ¹ 4 sec. 36 . Fred Howsden
48b	-12cc	-15cc	-25be	-26aa	-29dd	~30dd	-32ba	-34cb	-12da	18-31 da	18-33bc	19-25 ac	19-28 de	19-32 cc	19-33 cc	19-35 bc	19~36 ca

Well number indicates location of the well as described in the introduction.

B. borde well; DD, duy and drilled well; Du, duild well; Du, duy well.

Reported depths below the land surface are given in feet; measured depths are given in feet and tenths below measuring points.

B. brick; C. concrete: GI, galvanized sheet iron; I, iron; R. rock; S, steel; T, tile.

Method of lift: C, horizonnal centringal; CY, cylinder; J, jet pump; N, none; P, pitcher pump; T, turbine.

Type of power: E, electric: G, gas engine; H, hand operated; T, tractor; W, windmill.

D, domestic; I, frigation; N, not being used; P, public supply: S, stock.

Minus sup preceding figure indicates measuring point below land surface.

Measured depths to water level are given in feet, tenths, and hundredths; reported depths to water level are given in feet. isisi÷is 6:1.8

Digitized by Google

LOGS OF TEST HOLES AND MEASURED STRATIGRAPHIC SECTIONS

Listed in the following pages are logs of 64 test holes and 8 measred stratigraphic sections in Norton County and northwestern Phillips County. The logs and stratigraphic sections are grouped separately and arranged by townships from north to south and ranges from east to west. Within a township they are arranged by section number. The test holes were drilled by the State Geological Survey during 1946, 1947, and 1948. Samples of the material penetrated by the test holes were examined in the field by James Cooper (1946) and Glenn Prescott (1947 and 1948), who supervised the drilling and prepared logs of the holes. The samples were subsequently studied microscopically by O. S. Fent, John C. Frye, or A. R. Leonard. General location of the test holes is shown on the index map in Plates 2 and 3.

Stratigraphic sections were measured in the field during the seasons of 1945 and 1947. Where credit is not given in the heading, the sections were measured by us. Four additional sections are included in the text. Fossil seeds listed with the sections were identified by M. K. Elias of the Nebraska Geological Survey and fossil snails were identified by A. Byron Leonard of the University of Kansas.

LOGS OF TEST HOLES

1-18-8aa. Sample log of test hole at the NE cor. sec. 8, T. 1 S., R. 18 W., Phillips County, Kansas; drilled in 1948. Surface altitude, 2,108.2 feet.

Quaternary—Pleistocene Sanborn formation—Peoria member	Thickness,	Depth feet
Silt, tan	••••	23
Teretary—Pliocene		
Ogallala formation		
Silt, sandy, yellow brown	. 12	34
Silt and fine sand, white; loosely cemented with		
calcium carbonate	. 10	45
Silt and fine sand, pale green, becoming more sandy in	ı	
lower part	. 13	58
Clay, silty, bentonitic, olive green	. 16	74
Cretaceous—Gulfian		
Pierre shale		
Shale, noncalcareous, blue gray	. 7	81
Niobrara formation		
Shale, calcareous, gray	. 13	94

1-19-9ab. Sample log of test hole in the NW1/4 NE1/4 sec. 9, W., Phillips County, Kansas; drilled in 1948. Surface altitu		
Sanborn formation—Loveland and Crete members	Thickness, feet	Depth, feet
Silt, sandy, brown	7	7
Sand, medium to coarse, and fine gravel; contains silt	-	•
and clay in middle part		32
Sand, fine to medium, and fine gravel; contains small		
chalk pebbles		35
Silt and very fine sand, light tan	3	38
Cretaceous—Gulfian		
Pierre shale		
Shale, clayey and silty, calcareous, yellow		40
Shale, light gray and yellow; contains calcareous zones	11	51
Shale, noncalcareous, olive, gray, and mottled red	6	E 77
and yellow		57 72
Shale, noncalcareous, black; contains calcareous zones		81
Niobrara formation	·	0.
Shale, calcareous, gray	3	84
Sand, medium to coarse (probably a fault zone)		84.5
Shale, calcareous, gray	1.5	86
1-20-2aa. Sample log of test hole at the NE cor. sec. 2, T. Phillips County, Kansas; drilled in 1948. Surface altitue water level, 21 feet below land surface.		
Quaternary—Recent	Thickness,	Depth,
Alluvium	feet . 11	feet 11
Silt, sandy, dark brown		22
Cretaceous—Gufian		
Pierre shale		
Shale, noncalcareous, olive green to light gray	p.	30
olive-green clay	. 12	42
Niobrara formation	13	55
Shale, calcareous, gray	. 13	99
1-20-12bb. Sample log of test hole at the NW cor. sec. 12, T Phillips County, Kansas; drilled in 1948. Surface altitude		
	Thickness, teet	Depth, feet
Road fill, silty, dark brown	. 4	4
Quaternary—Recent Alluvium		
Silt, sandy, tan; contains gravel	. 10	14
Gravel, fine to coarse, and sand		15
Silt. white		19
Sand, coarse, and fine to coarse gravel; contains chall		
fragments		27

Cretaceous—Gulfian	Thickness.	Depth,
Pierre shale	feet	feet
Shale, noncalcareous, olive green		28
Shale, noncalcareous, black; contains zones of calcareous		
shale	. 30	58
Shale, calcareous, gray	. 2	60
1-20-13bb. Sample log of test hole in the NW1/4 NW1/4 sec. 1. W., Phillips County, Kansas; drilled in 1948. Surface altitudes.	•	•
	Thickness, feet	Depth,
Road fill, silty, brown	4	4
Quaternary—Pleistocene		
Sanborn formation—Peoria member		
Silt, black and dark brown	4	8
Silt, sandy, tan	12	20
Loveland member		
Silt, sandy, tan to brown		30
Silt, sandy, brown; contains gravel and snail shells		44
Silt, sandy, gray and yellow brown	4	48
Cretaceous—Gulfian		
Pierre shale	_	
Shale, noncalcareous, black; contains calcareous zones	7	55
Niobrara formation	-	co
Shale, calcareous, hard, gray		60
1-20-14ad. Sample log of test hole in the SE¼ NE¼ sec. 14, T Phillips County, Kansas; drilled in 1948. Surface altitude		
	Thickness,	Depth,
Road fill, sandy silt, dark brown	feet 4	feet 4
Quaternary—Pleistocene	1	7
Sanborn formation—Peoria member		
Silt, sandy, light tan	7	11
Loveland member	•	**
Silt, sandy, light brown with upper part dark brown		
(Loveland soil)	16	27
Crete member		
Sand and gravel, fine to coarse; contains caliche and snail		
shells in upper part	20	47
Silt, sandy, brown and green	5	52
Sand and gravel, fine to coarse; contains pebbles up to		
half an inch in diameter	7	59
Cretaceous—Gulfian		
Niobrara formation		
Chalk, yellow	2	61
Shale, calcareous, gray	9	70

1-20-14dd. Sample log of test hole in the SE½ SE½ sec. 14, T Phillips County, Kansas; drilled in 1948. Surface altitude	. 1 S., R. e, 2 ,063 8	20 W., feet.
Terrace deposits	Thickness, feet	Depth,
Silt, dark brown (fill)	4	4
Silt, tan	21	25
Silt and sand, brown		39
zones, gray, greenish gray, to black		68
Gravel, fine to coarse	2	70
Gravel, coarse	4	74
Cretaceous—Gulfian Niobrara formation Shale, calcareous, dark gray	6	80
1-20-20bc. Sample log of test hole in the SW1/4 NW1/4 sec. 20, T Phillips County, Kansas; drilled in 1948. Surface altitude	. 1, S., R. . 2.129.5	20 W.,
QUATERNARY—Recent	,,	,
	Thickness,	Depth,
	feet	feet
Silt (soil), dark brown	1	1
Silt with some sand, light brown	19	20
gravel	10	30
Gravel and coarse sand	3	33
CRETACEOUS—Gulfian Pierre shale Shale, noncalcareous, black to brown Shale, noncalcareous, dark gray to black; contains a few bentonite streaks	2	35 68
Niobrara formation	00	00
Shale, calcareous, dark gray	32	100
1-20-24cb. Sample log of test hole in the NW4 SW4 sec. 24 W., Phillips County, Kansas; drilled in 1948. Surface of		
feet; water level, 29 feet.	Thickness, feet	Depth, feet
Road fill, sandy silt, dark brown	2	2
QUATERNARY—Pleistocene and Recent Terrace deposits		
Silt, sandy, light tan; contains caliche	2	4
Silt, dark brown and tan	6	10
Silt, sandy, yellow tan	21	31
Sand and gravel, fine to coarse	12	43
CRETACEOUS—Gulfian Niobrara formation		
Chalk, yellow	2	45
Shale, calcareous, light gray	5	50
Shale, calcareous, fight gray	J	00

1-20 25bb. Sample log of test hole in the NW¼ NW¼ sec. 25 W., Phillips County, Kansas; drilled in 1948. Surface altitudes		
water level, 29 feet.	hickness, feet	Depth, feet
Road fill, dark brown silt	2	2
QUATERNARY—Pleistocene and Recent		
Terrace deposits Silt, sandy, tan; contains two thin dark brown "soil"		
bands at 6 and 15 feet below top	34	36
Silt and clay, green	7	43
Sand and gravel, green	3	46
CRETACEOUS—Gulfian		
Niobrara formation		
Chalk, yellow brown	1	47
Shale, calcareous, dark gray	13	60
1-20-25bc. Sample log test hole in the SW¼ NW¼ sec. 25, T. Phillips County, Kansas; drilled in 1947. Surface altitude water level, 28 feet. QUATERNARY—Pleistocene and Recent		
Terrace deposits	Thickness, feet	Depth, feet
Silt, black (soil)	3	3
Silt, light tan; contains abundant snails in lower part	29	32
Silt, sandy, tan	9	41
Sand and gravel, fine to coarse; contains chalk fragments	13	54
CRETACEOUS—Gulfian Niobrara formation		
Clay, chalky, yellow	1	55
Shale, calcareous, gray		70
1-20-27cb. Sample log test hole in the NW1/4 SW1/4 sec. 27, T.	1 S., R.	
Phillips County, Kansas; drilled in 1947. Surface altitue water level, 22 feet.	(e, 2,081.	7 jeet;
QUATERNARY—Pleistocene and Recent		
Terrace deposits	Thickness, feet	Depth, feet
Silt, dark brown (soil)	1	1
Silt, sandy, tan	9	10
Silt, tan; contains caliche	18	28
Silt, sandy, greenish gray	8	36
Sand and gravel, fine to coarse; contains chalk pebbles	7 14	43 57
Silt and clay, sandy; black		68
Gravel, medium to coatse		79
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, gray	11	90

1-20-27dc. Sample log of test hole in the SW1/4 SE1/4 sec. 27, T. 1 S., R. 20 W., Phillips County, Kansas; drilled in 1948. Surface altitude, 2,089 & feet.

Road fill, black silt

QUATERNARY—Pleistocene and Recent

2

Thickness, Depth, feet feet 2

Towns densits		
Terrace deposits Silt, blocky, dark brown	8	10
Silt, light brown; contains caliche		25
Silt and sand, very fine		46
Sand and gravel, green; contains calich	e and chalk frag-	
ments		53
Sand and gravel, greenish		72
Sand and gravel, fine to coarse		78
Silt and clay, gray	8	86
Cretaceous—Gulfian		
Niobrara formation		
Shale and clay, hard, calcareous, dark		103
Shale, calcareous, gray		105
1-20-28ad. Sample log of test hole in the St W., Phillips County, Kansas; drilled in 18 water level, 26 feet.		
, ,	Thickness, feet	Depth,
Road fill, dark brown silt	2	2
QUATERNARY—Pleistocene and Recent		
Terrace deposits		
Silt, tan		30
Silt and sand, very fine, brown		38
Silt, dark gray		58
Silt, greenish gray; contains snail shells.	9	67
Sand and gravel, fine to coarse; co		
white clay and silt	13	80
Cretaceous—Gulfian Niobrara formation		
Shale, calcareous, gray	20	100
Silving Carcarcous, gray		
Road fill, dark brown silt		
	Thickness, feet	Depth, feet
Road fill, black sandy silt	2	2
Quaternary—Pleistocene and Recent		
Terrace deposits		
Silt, sandy, tan; contains caliche	17	19
Silt, tan; upper part dark brown		35
Silt and sand, very fine, tan		40
Stat		
0 701F		
8— 7915		

	Thickness,	Depth, feet
Clay, silt and caliche, light green and tan; contains sand		
46 to 50 feet		62
Silt and sand, very fine to coarse, tan		70
Sand and gravel, fine to coarse; contains chalk pebbles	. 14	84
CRETACEOUS—Gulfian Niobrara formation		
	11	95
Shale, calcareous, gray		• • •
1-20-36cc. Sample log of test hole at the SW cor. sec. 36, T. Phillips County, Kansas; drilled in 1947. Surface altitude		
Quaternary—Pleistocene	Thickness.	Depth,
Sanborn formation—Peoria member	feet	feet
Silt, sandy, light tan	. 7	7
Tertiary—Pliocene		
Ogallala formation		
Sand, fine to medium, with some silt	. 2	9
Sand and gravel, cemented with calcium carbonate	. 9	18
Silt, fine sand, and caliche, green	. 7	25
Silt and clay, hard, brown	. 5	30
Silt and sand, cemented with calcium carbonate in some		
zones	. 50	80
Clay, bentonitic, noncalcareous, olive green and gray	. 28	108
Silt and fine sand, tightly cemented with calcium car	-	
bonate	. 10	118
Cretaceous—Gulfian		
Niobrara formation		
Chalk, pink and yellow	. 7	125
Shale, calcareous, gray and brown		140
· · · · · · · · · · · · · · · · · · ·		
1-21-5aa. Sample log of test hole in the NE cor. sec. 5, T. 1 S. ton County, Kansas; drilled in 1946. Surface altitude, 2,3		
level, 96 feet.		
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation—Peoria member	feet	feet
Silt, medium compact, gray; contains nodules of caliche.		4
Silt, soft, tan; contains snail shells	. 12	16
Loveland member		
Silt, compact, tan to chocolate brown (Loveland soil)		20
Silt, tan; contains some fine sand	. 42	62
Tertiary—Pliocene		
Ogallala formation		
Silt with some sand, cemented with calcium carbonate	e	
in some zones	. 60	122
Silt and fine sand, tightly cemented with calcium car	-	
bonate	. 8	130
Sand, fine to coarse, with some fine gravel and caliche	. 6	136
Silt and some fine sand, medium compact, calcareous		
light gray	. 28	164

Cretaceous—Gulfian		
Niobrara formation	Thickness, feet	Depth, feet
Shale, chalky, pink to light yellow	2	166
Chalk, hard, white to light yellow	0.5	166.5
Shale, chalky, light yellow, pink, and buff	3.5	170
1-21-28bb. Sample log of test hole in the NW cor. sec. 28, T. Norton County, Kansas; drilled in 1946. Surface altitude water level, 41 feet.	•	•
Quaternary—Pleistocene	Thickness.	Depth,
Sanborn formation—Peoria member	feet	feet
Silt, medium, compact, gray	6	6
Loveland member	•	•
Silt, compact, tan (Loveland soil)		9 23
•	14	20
TERTIARY—Pliocene		
Ogallala formation Silt, gray to tan; contains some fine sand and caliche	8	31
Sand and gravel, fine to coarse		37
Sand, tightly cemented with calcium carbonate		39
Silt, compact, gray		40
Sand and gravel, fine to coarse, partly cemented	_	49
Silt, light gray; contains some sand; cemented with cal-		
cium carbonate		60
Silt, sand, and gravel, medium compact, yellow tan to	ı	
gray	25	85
Cretaceous—Gulfian		
Niobrara formation		
Chalk, hard, white, interbedded with chalky shale	2	87
Shale, chalky, soft, yellow buff; contains some thin ben-	,	
tonite beds	13	100
1-21-29dd. Sample log test hole in the SE cor. sec. 29, T. 1 S.,	R 91 W	Nor-
ton County, Kansas; drilled in 1946. Surface allitude, 2,2	49.5 leet	· water
level, 56 feet.	40.0 1000	, water
Quaternary—Pleistocene		
Sanborn formation—Peoria member	Thickness, feet	Depth,
Silt, loose, tan; contains abundant snail shells		14
Loveland member		
Silt, dark gray brown, compact (Loveland soil)	4	18
Silt, medium compact, tan and light gray	7	25
Silt, light gray; contains some sand and fine gravel	5	30
Tertiary—Pliocene		
Ogallala formation		
Sand and gravel, coarse to fine; contains some caliche		40
Silt and some fine sand and gravel, loose		44
Silt and some fine sand, loosely cemented in some zones		
with calcium carbonate	35	79

•	Thickness,	Depth, feet
Sand, fine to coarse; contains some gravel and silt Silt, light gray to white; contains some fragments of chalk	14	93
and sand		105
CRETACEOUS—Gulfian Niobrara formation		
Shale, calcareous, soft, yellow to white		108
Chalk, hard, yellow buff		108.2
1-22-28ad. Sample log of test hole in the SE¼ NE¼ sec. 28 W., Norton County, Kansas; drilled in 1948. Surface altituwater level, 48 feet.		
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation—Peoria member Silt (soil), dark brown	feet 2	feet 2
Silt, tan		15
Loveland member	_	
Silt, compact, noncalcareous, brown (Loveland soil)		22 40
Silt, light tan	10	40
Ogallala formation		
Silt and fine sand, calcareous, light tan to light brown		83
Silt, sand, and some gravel, tightly cemented with cal- cium carbonate, light grav to white		111
Sand and silt, partly cemented with calcium carbonate,	,	100
greenish gray to light brown		120
carbonate, greenish gray to brown. (Unable to drill		
deeper with existing equipment.)	5	125
1-23-35bb. Sample log of test hole in the NW cor. sec. 35, T. Norton County, Kansas; drilled in 1946. Surface altitude,		
Quaternary—Pleistocene		D 41
Sanborn formation—Peoria member	Thickness, feet	Depth, feet
Silt, compact, dark gray to tan		5
Silt, loose, tan; contains many snail shells	14	19
Silt, compact to loose, tan to gray	31	50
Tertiary—Pliocene		
Ogallala formation	48	0=
Sand and silt, cemented in some zones, tan to white		97 122
Silt and fine sand, loose, gray		154
Cretaceous—Gulfian		
Niobrara formation		
Limestone, hard, gray to white	. 1	155

1-24-34da. Sample log of test hole in the NE4 SE4 sec. 34 W., Norton County, Kansas; drilled in 1948. Surface altituater level, 127 feet.		
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation—Peoria member	feet	feet
Silt (soil), dark brown		1
Silt, tan; contains snail shells	22	23
Loveland member	. 3	26
Silt, noncalcareous, compact, brown (Loveland soil)		20 42
Silt, light tan	10	42
Tertiary—Pliocene		
Ogallala formation		
Silt and fine sand, calcareous, with some clay and gravel		00
light tan		80
Silt, sand, and caliche, tightly cemented, white		91
Silt, dark brown to tan		96
Sand, fine, and silt, brown and greenish		111
Silt and clay, light tan to light gray green		122
Silt and sand, tan to light brown		139
Silt and sand, cemented with calcium carbonate, light gray		150
Sand and gravel, with a few streaks of silt, white to light		172
brown		173 179
Silt, brown		206
Sand and gravel, brown, with thin beds of silt		200
Clay, bentonitic, noncalcareous; contains scattered sand		227
grains and some light greenish-gray to yellow-tan silt.		228
Sand, fine to medium		230
Clay, slightly calcareous, bentonitic, light gray green		230
Clay, bentonitic, noncalcareous, light gray green, yellow		240
brown, and gray	. 10	240
Cretaceous—Gulfian		
Niobrara formation		250
Shale, calcareous, blue gray	. 10	250
1-25-1bb1. Sample log of test hole in the NW1/4 NW1/4 sec.	1. T. 1 S.	. R. 25
W., Norton County, Kansas; drilled in 1946. Surface altit		
water level, 28 feet.	, ,	, ,
QUATERNARY—Pleistocene and Recent		
Terrace deposits	Thickness,	Depth, feet
Silt, dark gray to black		3
Silt, loose, gray to tan; contains some caliche		9
Silt, gray, compact; contains some sand and gravel		38
Sand, fine; contains some fine gravel and silt		51
Gravel, fine to coarse; contains some sand and gray-blu		
silt	_	54
Cretaceous—Gulfian		=
Niobrara formation		
Shale, calcarcous, fissile, dark gray to black; contains	A	
few bentonite streaks	_	60
iew demonite strans		30

1-25-1bb2. Sample log of test hole in the SW cor. NW4 NW4 R. 25 W., Norton County, Kansas; drilled in 1946. 2,329 S feet; water level, 16 feet.	-	
QUATERNARY—Recent	Thickness.	Depth.
Alluvium	feet	fcet
Silt, compact, brown and tan	. 7	7
Sand, very fine to fine	. 2	9
Silt, loose, gray		16
chalk and some sand	. 11	27
CRETACEOUS—Gulfian Niobrara formation		
Clay, silty, yellow brown and gray	. 6	33
Shale, calcareous, fissile, dark gray	. 7	40
	7 1 Q D	0 5 W
1-25-1bc. Sample log of test hole in the cen. W. line sec. 1, T Norton County, Kansas; drilled in 1946. Surface altitu water level, 40 feet.	•	•
Norton County, Kansas; drilled in 1946. Surface allitu	ide, 2,352.	€ jeet;
Norton County, Kansas; drilled in 1946. Surface allity water level, 40 feet.	•	•
Norton County, Kansas; drilled in 1946. Surface altitu water level, 40 feet. QUATERNARY—Pleistocene and Recent	Thickness,	2 feet;
Norton County, Kansas; drilled in 1946. Surface altitumater level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits	Thickness, feet	2 feet; Depth, feet
Norton County, Kansas; drilled in 1946. Surface altitute water level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black	Thickness, feet . 4 . 3	Depth, feet
Norton County, Kansas; drilled in 1946. Surface altitute water level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black	Thickness, feet . 4 . 3 . 21	Peet; Depth, feet 4 7
Norton County, Kansas; drilled in 1946. Surface altitumater level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black	Thickness, feet 4 . 3 . 21	Peet; Depth, feet 4 7 28
Norton County, Kansas; drilled in 1946. Surface altitumater level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black Silt, brown; few nodules of caliche Silt, loose, tan; contains snail shells	Thickness, feet . 4 . 3 . 21 . 8 d	Peet; Depth, feet 4 7 28
Norton County, Kansas; drilled in 1946. Surface altitumater level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black	Thickness, feet . 4 . 3 . 21 . 8 d	Depth, feet 4 7 28 36
Norton County, Kansas; drilled in 1946. Surface altituwater level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black	Thickness, feet . 4 . 3 . 21 . 8 d	Depth, feet 4 7 28 36
Norton County, Kansas; drilled in 1946. Surface altituwater level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black Silt, brown; few nodules of caliche Silt, loose, tan; contains snail shells Silt and sand, loose, brown Gravel, fine, and sand; contains pebbles of chalk an some silt CRETACEOUS—Gulfian Niobrara formation	Thickness, feet . 4 . 3 . 21 . 8 d . 7	Depth, feet 4 7 28 36
Norton County, Kansas; drilled in 1946. Surface altituwater level, 40 feet. QUATERNARY—Pleistocene and Recent Terrace deposits Silt, compact, black	Thickness, feet . 4 . 3 . 21 . 8 d . 7	2 feet; Depth, feet 4 7 28 36 43

1-25-1cc. Sample log of test hole in the SW cor. sec. 1, T. 1 S., R. 25 W., Norton County, Kansas; drilled in 1946. Surface altitude, 2,358.7 feet; water level, 41 feet.

QUATERNARY—Pleistocene and Recent Terrace deposits	Thickness,	Depth,
Silt, compact, black; contains some sand	. 6	6
Silt, brown; contains nodules of caliche and snail shells	. 5	11
Silt, tan; contains abundant snail shells	. 22	33
Gravel, fine, and fine to coarse sand; contains fragment of chalk		37.5
CRETACEOUS—Gulfian		
Niobrara formation		
Limestone, hard, dense, yellow brown	. 0.5	38
Shale, calcareous, yellow brown	. 4	42
Shale, calcareous, fissile, brown	. 4	46
Shale, calcareous, compact, blue gray	. 4	50

1-25-11dd. Sample log of test hole in the SE cor. sec. 11, T. Norton County, Kansas; drilled in 1948. Surface altitude water level, 65 feet.	•	
QUATERNARY—Pleistocene	Thickness.	Depth,
Sanborn formation—Peoria member	feet	feet
Silt, loose, brown	. 2	2
throughout	29	31
Silt, gray; contains small amount of sand and fine gravel Sand, fine to coarse; contains silt, gravel, and fragments		37
of caliche	. 9	46
Tertiary—Pliocene Ogallala formation		
Sand, tightly cemented with calcium carbonate, gray	15	61
Sand, fine to medium, partly cemented, gray	5	66
Niobrara formation		
Chalk, hard dense, gray to yellow brown	4	70
1-25-35dd. Sample log of test hole in the SE cor. sec. 35, T. Norton County, Kansas; drilled in 1946. Surface altitue		
water level, 122 feet.	,,,	z ject,
Quaternary—Pleistocene	Thickness.	Depth.
QUATERNARY—Pleistocene Sanborn formation—Peoria member	Thickness, feet	Depth,
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet	Depth, feet
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet 3 8	Depth, feet 3
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet 3 8	Depth, feet
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet 3 8 9	Depth, feet 3
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown Silt, loose, brown; contains many snail shells Silt, compact, tan Loveland member	Thickness, feet 3 8 9	Depth, feet 3 11 20
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown Silt, loose, brown; contains many snail shells Silt, compact, tan Loveland member Silt, compact, brown	Thickness, feet 3 8 9	Depth, feet 3 11 20 25
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet 3 8 9	Depth, feet 3 11 20 25
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet 3 8 9 5 , 11	Depth, feet 3 11 20 25
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet 3 8 9 5 , 11	Depth, feet 3 11 20 25 36
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown	Thickness, feet 3 8 9 5 , 11	Depth, feet 3 11 20 25 36 39 146
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown Silt, loose, brown; contains many snail shells Silt, compact, tan Loveland member Silt, compact, brown Silt, gray; contains some fine sand and nodules of caliche Tertiary—Pliocene Ogallala formation Sand, fine, gray; cemented with calcium carbonate Sand, fine; contains some coarse sand and fine gravely locally cemented with calcium carbonate Sand and gravel, clean, loose	Thickness, feet 3 8 9 5 , 11 3 3 5 107 35	Depth, feet 3 11 20 25 36 39 146 181
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown. Silt, loose, brown; contains many snail shells. Silt, compact, tan. Loveland member Silt, compact, brown. Silt, gray; contains some fine sand and nodules of caliche Tertiary—Pliocene Ogallala formation Sand, fine, gray; cemented with calcium carbonate. Sand, fine; contains some coarse sand and fine gravel locally cemented with calcium carbonate. Sand and gravel, clean, loose. Sand and silt, plastic, yellow tan.	Thickness, feet 3 8 9 5 11 3 3 5 5 5	Depth, feet 3 11 20 25 36 39 146
QUATERNARY—Pleistocene Sanborn formation—Peoria member Road fill of silt soil, brown Silt, loose, brown; contains many snail shells Silt, compact, tan Loveland member Silt, compact, brown Silt, gray; contains some fine sand and nodules of caliche Tertiary—Pliocene Ogallala formation Sand, fine, gray; cemented with calcium carbonate Sand, fine; contains some coarse sand and fine gravely locally cemented with calcium carbonate Sand and gravel, clean, loose	Thickness, feet 3 8 9 5 , 11 3 107 35 5 18	Depth, feet 3 11 20 25 36 39 146 181 186

2-21-4cc. Sample	le log of t	est hole in	n the SV	7 cor. sec.	4, T. 2 S.,	R. 21 W., Nor-
ton County,	, Kansas ;	drilled in	1946.	Surface al	ltitude, 2,1	55.6 feet; water
level, 36 fec	t.					

Orramora Disistense and Donat		
QUATERNARY—Pleistocene and Recent Terrace deposits	Thickness,	Depth,
Silt, compact, dark brown; contains some gravel		8
Silt, compact, light gray tan		16
Silt, loose, tan; contains snail shells		44
Silt and fine sand, gray to tan; contains caliche		49
Sand, fine to coarse, and some gravel; contains fragments	\mathbf{s}	
of chalk		64
Gravel and sand; contains chalk fragments	. 2	66
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, yellow buff	. 2	68
Silicified chalk, very hard, yellow buff to white		68.5
2-21-5aa. Sample log of test hole in the NE cor. sec. 5, T.	2 S R.	21 W
Norton County, Kansas; drilled in 1946. Surface altitu		
Quaternary—Pleistocene		~
Sanborn formation—Peoria member	Thickness, feet	Depth, feet
Silt, compact, dark brown	. 3	3
Silt, compact, gray to tan; contains snail shells		15
Loveland member		
Silt, compact, dark brown (Loveland soil)	. 4	19
Silt, compact, tan; contains snail shells		89
Silt, compact, light green; contains snail shells	. 7	96
Crete member		
Sand, fine to coarse, and some gravel	. 7	103
Silt and fine sand, gray to tan	. 5	108
Silt and sand, fine to coarse, gray	. 22	130
Gravel of chalk fragments and some sand and silt		134
Cretaceous—Gulfian		
Niobrara formation		
Shale, chalky, yellow buff	. 6	140
2 21 Sad Sample log of test hole in the SEW NEW sec 8 7	' 2 S R	21 W

2-21-8ad. Sample log of test hole in the SE¼ NE¼ sec. 8, T. 2 S., R. 21 W., Norton County, Kansas; drilled in 1946. Surface altitude, 2,1499 feet; water level, 26 feet.

Quaternary—Pleistocene and Recent	Thickness,	Depth,
Terrace deposits	feet	
Silt, compact, dark brown		6
Silt, gray to tan; contains some fine sand and a few snai	1	
shells	. 26	32
Silt, dark gray	. 12	44
Silt and sand, dark gray; contains snail shells and some	9	
gravel		49

Sand and gravel, fine to coarse	3.5	Depth, feet 58 61.5
2-21-9cc. Sample log of test hole in the SW cor. sec. 9, T. Norton County, Kansas; drilled in 1946. Surface altitum water level, 31 feet.	2 S., R. de, 2,1552	21 W., 3 feet;
Silt, loose, brown; contains nodules of caliche	7 8	Depth, feet 11 18 26
Silt, tan to gray; contains some sand and fragments of shells	16 11 14	42 53 67 72.5
CRETACEOUS—Gulfian Niobrara formation Shale, calcareous, fissile, dark gray; contains a few streaks of bentonite	7.5	80
2-21-20aa. Sample log of test hole in the NE¼ NE¼ sec. 20, 7 Norton County, Kansas; drilled in 1946. Surface altitu water level, 142 feet.		
QUATERNARY—Pleistocene	Thickness,	Depth,
Sanborn formation—Peoria member Silt, tan to tan brown; contains snail shells Loveland member	teet 18	feet 18
Silt, medium compact, dark brown (Loveland soil) Tertiary—Pliocene Ogallala formation	. 7	25
Sand, fine to very fine, and silt, partly cemented with cal-		28
cium carbonate	. 3	31
calcium carbonate cement		64
Clay, gray green, compact; contains some silt	l	71
and uncemented zones and gravel occur in some places	, 122	193
CRETACEOUS—Gulfian Niobrara formation		
Shale, calcareous, yellow buff, soft		206
Shale, dark brown to black, soft, chalky	. 4	210

2-24-36cb. Sample log of test hole	in the NW	14 SW	1/4 sec. 3	8, T. 2 S.	, R. 24
W., Norton County, Kansas;	drilled in	1946.	Surface	altitude,	2,392.0
feet; water level, 57 feet.					

feet; water level, 57 feet.		
QUATERNARY—Pleistocene	Thickness.	Depth,
Sanborn formation—Peoria member	feet	feet
Silt, dark brown	3	3
Silt, medium compact, gray		4
Silt, loose, tan; contains snail shells	16	20
Loveland member		
Silt, compact, tan to light gray; contains a few nodules of		
caliche	9	29
Tertiary—Pliocene		
Ogallala formation		
Silt and sand with some gravel; cemented with calcium	l	
carbonate, gray		43
Silt, fine sand, and gravel, tan and gray		55
Sand and gravel, with some silt		59
Silt, with some sand, fine gravel, and caliche, tan and gray	, 41	100
Cretaceous—Gulfian		
Niobrara formation		
Clay, calcareous, white and yellow		102
Limestone, hard, white and yellow brown	0.1	102.1
2-25-36cc. Sample log of test hole in the SW cor. sec. 36, T. Norton County, Kansas; drilled in 1946. Surface altitue water level, 121 feet.		
OTTATERNARY—Pleistocene	6 01 1 1	D 41
OTTATERNARY—Pleistocene	Thickness, feet	Depth,
QUATERNARY—Pleistocene	feet	Depth, feet 1
QUATERNARY—Pleistocene Sanborn formation—Bignell member	feet 1	feet
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown	feet 1	feet 1 14
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown	feet 1 13	feet 1 14 22
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white.	feet 1 13	feet 1 14
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member	feet 1 13 8 31	feet 1 14 22
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown Silt, loose, brown; contains many snail shells Peoria member Silt, loose, brown; contains many snail shells Silt, loose, tan to white Loveland member Silt, compact; contains nodules of caliche and some sand	feet 1 13 8 31	feet 1 14 22 53
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown Silt, loose, brown; contains many snail shells Peoria member Silt, loose, brown; contains many snail shells Silt, loose, tan to white Loveland member Silt, compact; contains nodules of caliche and some sand in lower part	feet 1 13 8 31	feet 1 14 22
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene	feet 1 13 8 8 31	feet 1 14 22 53
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown	feet 1 13 8 31	1 14 22 53 65
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green.	feet 1 13 8 31 1 12	1 14 22 53 65
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green. Caliche, white to gray.	feet 1 13 8 31 1 12	1 14 22 53 65
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green. Caliche, white to gray. Sand and silt, gray; contains some gravel.	feet 1 13 8 31 1 12 6 4 9	1 14 22 53 65 71 75 84
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown Silt, loose, brown; contains many snail shells Peoria member Silt, loose, brown; contains many snail shells Silt, loose, tan to white Loveland member Silt, compact; contains nodules of caliche and some sand in lower part Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green Caliche, white to gray Sand and silt, gray; contains some gravel. Silt and sand, white to gray; contains caliche.	feet 1 13 8 31 1 12 6 4 9 34	feet 1 14 22 53 65 71 75 84 118
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green. Caliche, white to gray. Sand and silt, gray; contains some gravel. Silt and sand, white to gray; contains caliche. Sand with some gravel and silt.	feet 1 13 8 31 1 12 6 4 9 34 16	feet 1 14 22 53 65 71 75 84 118 134
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green. Caliche, white to gray. Sand and silt, gray; contains some gravel. Silt and sand, white to gray; contains caliche. Sand with some gravel and silt. Sand, fine to very fine, and silt, gray.	feet 1 13 8 31 1 12 6 4 9 34	feet 1 14 22 53 65 71 75 84 118
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green. Caliche, white to gray. Sand and silt, gray; contains some gravel. Silt and sand, white to gray; contains caliche. Sand with some gravel and silt. Sand, fine to very fine, and silt, gray. Cretaceous—Gulfian	feet 1 13 8 31 1 12 6 4 9 34 16	feet 1 14 22 53 65 71 75 84 118 134
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green. Caliche, white to gray. Sand and silt, gray; contains some gravel. Silt and sand, white to gray; contains caliche. Sand with some gravel and silt. Sand, fine to very fine, and silt, gray. Cretaceous—Gulfian Niobrara formation	feet 1 13 8 31 1 12 6 4 9 34 16 111	feet 1 14 22 53 65 71 75 84 118 134 245
QUATERNARY—Pleistocene Sanborn formation—Bignell member Silt, dark gray to brown. Silt, loose, brown; contains many snail shells. Peoria member Silt, loose, brown; contains many snail shells. Silt, loose, tan to white. Loveland member Silt, compact; contains nodules of caliche and some sand in lower part. Tertiary—Pliocene Ogallala formation Sand, fine, silt, and gravel, tan to gray green. Caliche, white to gray. Sand and silt, gray; contains some gravel. Silt and sand, white to gray; contains caliche. Sand with some gravel and silt. Sand, fine to very fine, and silt, gray. Cretaceous—Gulfian	feet 1 13 8 31 1 12 6 4 9 34 16 111	feet 1 14 22 53 65 71 75 84 118 134

3-21-9bb. Sample log of test hole in the NW cor, sec. 9, T.	3 S., R.	21 W.,
Norton County, Kansas; drilled in 1948. Surface altitud	de, 2,314.	8 feet;
water level, 110 feet.		
Quaternary—Pleistocene		
Sanborn formation—Peoria member	Thickness, feet	Depth,
Silt, compact, dark brown and red tan	7	7
Silt, compact, tan		12
Loveland member		
Sand, fine, some coarse, tan	5	17
Tertiary—Pliocene		
Ogallala formation		
Sand and silt with some clay and a small amount of		
gravel; cemented with calcium carbonate		31
Silt, red tan		36
Sand, fine, cemented with calcium carbonate		39
Sand, very fine to fine, tan		43
Silt, clay, and sandy silt, interbedded, compact, gray		
green to tan, cemented with calcium carbonate		99
Sand and gravel, fine to coarse		113
Silt and sand, with some gravel and caliche		147
Sand and some gravel		174
Cretaceous—Gulfian		
Niobrara formation		
Chalk, white, and chalky shale	2	176
3-23-8cb. Sample log of test hole in the NW 4 SW 4 sec. 8, T		
Norton County, Kansas; drilled in 1946. Surface altitude,	2,347.7 je	eet.
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation—Peoria member	feet	feet
Silt, loose, tan; contains snail shells	15	15
Loveland member		
Silt, loose, tan to gray; contains nodules of caliche	36	51
Crete member		
Gravel and sand, with some silt		55
Silt and sand, with some gray gravel		70
Sand and gravel	5	75
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, yellow, white, and pink	15	90
3.93 See Sample log of toot hole in the NET/ SWI/ SWI/	. o T	9 C D
3-23-8cc. Sample log of test hole in the NE¼ SW¼ SW¼ so		
23 W., Norton County, Kansas; drilled in 1946. Surface feet; water level, 25 feet.	annue,	الله 100 شوعه
QUATERNARY—Pleistocene	Thickness,	Depth,
Terrace deposits	feet	feet
Silt, dark gray; contains some sand and fragments of		

Sand and gravel, with some silt.....

12

27

33

	Thickness, feet	Depth, feet
Sand with some gravel, gray-green silt, and snail shells		49
Gravel and sand; contains some clay	. 2	51
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, yellow and white		55
Shale, calcareous, brown		61
Shale, calcareous, dark gray; contains some bentonite	. 3	64
3-23-8cd. Sample log of test hole in the SE1/4 SE1/4 SW1/4 sc	c. 8, T. 3	S., R.
R. 23 W., Norton County, Kansas; drilled in 1946.	Surface a	titude,
2,303.8 feet; water level, 44 feet.		
QUATERNARY—Pleistocene	Thickness.	Depth,
Terrace deposits	feet	feet
Silt, dark gray		3
Silt, loose, tan; contains a few snail shells and a smal		
amount of sand		23
Silt, compact, light gray tan; contains some gravel and		01 5
sand		31.5
Sand, with some gravel and fragments of chalk Gravel and clay; contains some silt and sand		41 47
• •	. 0	41
CRETACEOUS—Gulfian Niobrara formation		
Shale, calcareous, yellow and white	. 13	60
, , , , , , , , , , , , , , , , , , ,		• •
3-23-9cb. Sample log of test hole in the NW1/4 SW1/4 sec. 9, 7		
Norton County, Kansas; drilled in 1946. Surface altitu	ide 2 ,285.	3 seet;
water level, 34 feet.		
Quaternary—Pleistocene	Thickness.	Depth,
Terrace deposits	feet	feet
Silt, gray, tan, and brown		20
Silt, loose, tan; contains snail shells		31
caliche, and snail shells		40
Sand, with some gravel, caliche, and silt	-	51
Gravel and sand		57
Silt, yellow tan; contains some sand, gravel, and pebble		•
of chalk		59
Sand; contains some silt and pebbles		62
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, light yellow	. 5	67
Shale, calcareous, gray brown		70

3-23-17ad. Sample lo	g of test	hole in th	e cen. I	E. line sec	:. 17, T. 3,	S., R. 2	23 W.,
Norton County,	Kansas;	drilled in	1946.	Surjace	altitude,	2,390.4	feet;
water level, 116	feet.						

water level, 116 feet.		
Tertiary—Pliocene	m · ·	5
Ogallala formation	Thickness, reet	Depth, feet
Silt, compact, dark brown	3	3
Silt and sand, tightly cemented with calcium carbonate,		
light gray; contains fragments of fossil Biorbia seeds,	10	13
Silt, compact, light gray; contains some sand and caliche,	13	26
Silt and sand, tightly cemented with calcium carbonate,	19	45
Sand with some tan silt	9	54
Silt and sand, light gray to gray green, cemented with cal-		
cium carbonate; contains some clay	19 '	73
Sand, partly cemented, gray and tan	29	102
Silt and sand, partly cemented, gray	8	110
Sand, partly cemented; contains some light-gray silt	26	136
Silt and sand, gray and yellow; contains some caliche and		
fragments of chalk	25	161
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, yellow, white, and pink	9	170
3-23-17ba. Sample log of test hole in the NE¼ NW¼ sec. 17		
W., Norton County, Kansas; drilled in 1946. Surface altitu	ide, 2,301	8 feet;
water level, 34 feet.		
Quaternary—Pleistocene	Thickness.	Depth,
Terrace deposits	feet	feet.
Silt, dark brown		3
Silt, loose, tan; contains snail shells	26	29
Sand, with some fine gravel and a few pebbles of lime-	•	
stone	5	34
Cretaceous—Gulfian		
Niobrara formation		
Limestone, hard, yellow brown	6	40
		D 00
3-23-18ad. Sample log of test hole at the cen. E. line, sec. 18	•	•
W., Norton County, Kansas; drilled in 1946. Surface altitudes and the second se	iae, z,z9z	s jcei;
water level, 26 feet.		
Quaternary—Pleistocene	Thickness.	Depth,
Terrace deposits		feet
Silt, compact, dark gray; contains some sand and snai	feet	
, , , , , , , , , , , , , , , , , , , ,	l	
shells	l 22	22
, , , , , , , , , , , , , , , , , , , ,	l 22	

Sand and silt, gray.....

Sand, with some gravel and silt.....

Gravel and sand; contains some pebbles of chalk and silt, 10

40

60 70

Cretaceous—Gulfian		
Niobrara formation	Thickness, feet	Depth, feet
Limestone, hard, yellow brown	0.5	70.5
Shale, calcareous, yellow and brown	8.5	79
Shale, calcareous, gray	. 1	80
3-23-27aa. Sample log of test hole in the NE cor. sec. 27, T. Norton County, Kansas; drilled in 1946. Surface altitude,		
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation—Peoria member	feet	feet
Silt, compact, dark brown and gray		6
Silt, loose, tan	. 6	12
Tertiary—Pliocene		
Ogallala formation		
Sand, fine, with some gray silt	. 9	21
Silt, compact, tan; contains some fine sand	. 9	30
Sand, fine; contains some silt and nodules of caliche		46
Sand, fine, and silt, tightly cemented with calcium car-		
bonate, light gray		74
Sand, fine; contains some silt		89
Silt, gray; contains some fine sand, partly cemented		111
Sand, fine, and gray silt		121
Sand, fine, and silt, tightly cemented with calcium carbon		
ate, light gray		132
Silt, compact, light gray; contains some fine sand		142
Sand, fine; contains some tan silt		153
Silt, compact, tan and gray; contains some fine sand		186
Sand, fine; contains some white silt		195
Silt, gray; contains some fine sand and caliche	. 4	199
Cretaceous—Gulfian		
Niobrara formation		100
Limestone, calcareous, very hard, silicified, yellow brown	,	199
3-24-lad. Sample log of test hole in the SE'4 NE'4 sec. 1, T. Norton County, Kansas; drilled in 1946. Surface altitude,		
QUATERNARY—Pleistocene	(T). ! -1	D4b
Sanborn formation—Peoria member	Thickness, feet	Depth, feet
Silt, compact, dark brown	. 3	3
Silt, loose, tan; contains a few snail shells	21	24
Loveland member		
Silt, loose, gray tan; contains nodules of caliche	. 37	61
Crete member		
Sand and silt, tan		70
Silt with some fine sand and gravel, gray tan		77
Sand, fine, well sorted, compact	14	91
Tertiary—Pliocene		
Ogallala formation		
Silt and fine sand, light gray and yellow tan		101
Sand, fine	7	108

	Thickness,	Depth,
Silt and fine sand, tan and gray	. 3	111
Sand with some fine gravel		120
CRETACEOUS—Gulfian Niobrara formation Limestone, hard, and shale, calcareous, yellow and white.	. 2	122
, ,		0 T TT
3-25-23aa. Sample log of test hole in the NE cor. sec. 23, T.		
Norton County, Kansas; drilled in 1946. Surface altitu water level, 54 feet.	de, 2,396	4 jcet;
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation—Loveland member	feet	feet
Silt, compact, tan		4
Silt, compact, tan; contains a few nodules of caliche		15
Silt, tan; contains some very fine sand	. 3	18
Gravel and sand; contains some caliche	. 11	29
Silt, compact, tan	. 4	33
Sand, fine to very fine, and tan silt		40
Gravel, tan; contains some sand and silt	. 21	61
Tertiary—Pliocene		
Ogallala formation		
Sand and silt, tightly cemented with calcium carbonate	. 8	69
Sand, fine to very fine, partly cemented, light gray	. 11	80
Silt, gray; contains some sand and gravel	. 9	89
Silt, tan; contains a few nodules of caliche, sand, and	d	
gravel	. 6	95
Gravel and sand; contains some gray and tan silt	. 5	100
Gravel and sand, yellow; contains fragments of chalk and	d	
some silt	. 12	112
Cretaceous—Gulfian		
Niobrara formation		
Limestone, hard, yellow	. 1	113
3-25-23da. Sample log of test hole in the NE1/4 SE1/4 sec. 23, 7 Norton County, Kansas; drilled in 1946. Surface altituwater level, 74 feet.		
Quaternary—Pleistocene		
Sanborn formation—Bignell member	Thickness, feet	Depth, feet
Silt, loose, tan; contains a few snail shells		10
Silt, compact, yellow tan; contains some fine sand and		
snail shells	. 11	21
Peoria member		
Silt, dark gray, compact (Brady soil)	. 4	25
Silt, gray to tan	. 41	66
Loveland member		
Silt, compact, gray to dark brown ((Loveland soil)	. 7	73
Crete member		
Sand and some gravel	. 10	83

Ogaliala formation	Thickness, feet	Depth, feet
Silt and fine sand, cemented with calcium carbonate in upper part, gray		98
Silt, compact, gray; contains some sand		113
Sand and gravel		116
CRETACEOUS—Gulfian Niobrara formation	Ū	110
Limestone, hard yellow	1	117
3-25-24cb. Sample log of test hole in the NW4 SW4 sec. 24 W., Norton County, Kansas; drilled in 1946. Surface altituwater level, 23 feet.		
Quaternary—Pleistocene	Thickness,	Depth,
Terrace deposits	feet	feet
Silt, loose, dark gray to black	13	13
Silt, compact, tan to light gray		19
Sand, fine, and a little gravel, partly cemented, red brown,		23
Sand, gravel, and silt, gray	24	47
TERTIARY—Pliocene Ogallala formation Silt and sand, locally cemented; contains some fragmnets of chalk		62
Cretaceous—Gulfian		
Niobrara formation Limestone, hard, yellow	8	70
3-25-25bc. Sample log of test hole in the cen. W. line sec. 25 W., Norton County, Kansas; drilled in 1946. Surface altituwater level, 26 feet.		
QUATERNARY—Pleistocene		
Terrace deposits	Thickness, feet	
Silk loose block		Depth, feet
Silt, loose, black	4	
, ,	-	feet
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown	3	feet 4
Silt, compact, light gray; contains some fine sand	3 4	feet 4 7
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown	3 4 8	feet 4 7 11
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand	3 4 8 5	feet 4 7 11 19 24 28
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand	3 4 8 5 4 7	feet 4 7 11 19 24 28 35
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand Silt, compact, tan; contains a few snail shells Silt and sand, loose, gray; contains many snail shells	3 4 8 5 4 7	feet 4 7 11 19 24 28
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown	3 4 8 5 4 7	feet 4 7 11 19 24 28 35
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand Silt, compact, tan; contains a few snail shells Silt and sand, loose, gray; contains many snail shells Sand with some gravel, streaked with blue-gray silt near the base Tertiary—Pliocene Ogallala formation	3 4 8 5 4 7	feet 4 7 11 19 24 28 35
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand Silt, compact, tan; contains a few snail shells Silt and sand, loose, gray; contains many snail shells Sand with some gravel, streaked with blue-gray silt near the base Tertiary—Pliocene Ogallala formation Silt and sand, compact, cemented, white	3 4 8 5 4 7	feet 4 7 11 19 24 28 35 46
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand Silt, compact, tan; contains a few snail shells Silt and sand, loose, gray; contains many snail shells Sand with some gravel, streaked with blue-gray silt near the base Tertiary—Pliocene Ogallala formation	3 4 8 5 4 7	feet 4 7 11 19 24 28 35
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand Silt, compact, tan; contains a few snail shells Silt and sand, loose, gray; contains many snail shells Sand with some gravel, streaked with blue-gray silt near the base Tertiary—Pliocene Ogallala formation Silt and sand, compact, cemented, white Sand, white; contains some fine gravel and silt Cretaceous—Gulfian	3 4 8 5 4 7	feet 4 7 11 19 24 28 35 46
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand Silt, compact, tan; contains a few snail shells Silt and sand, loose, gray; contains many snail shells Sand with some gravel, streaked with blue-gray silt near the base Tertiary—Pliocene Ogallala formation Silt and sand, compact, cemented, white Sand, white; contains some fine gravel and silt Cretaceous—Gulfian Niobrara formation	3 4 8 5 4 7 11	feet 4 7 11 19 24 28 35 46
Silt, compact, light gray; contains some fine sand Silt, compact, gray and brown Silt, compact, tan; contains some sand Silt, partly cemented, light gray; contains some sand Silt, compact, tan; contains a few snail shells Silt and sand, loose, gray; contains many snail shells Sand with some gravel, streaked with blue-gray silt near the base Tertiary—Pliocene Ogallala formation Silt and sand, compact, cemented, white Sand, white; contains some fine gravel and silt Cretaceous—Gulfian	3 4 8 5 4 7 11	feet 4 7 11 19 24 28 35 46

3-25-36ac. Sample log of test hole in the SW4 NE4 sec. 26 W., Norton County, Kansas; drilled in 1946. Surface altituater level, 12 feet.		
Quaternary—Recent	Thickness,	Depth,
Alluvium	icet	feet
Silt and sand, dark gray		6
Silt, loose, gray, with some fine sand		15
Sand and some gravel, locally silt, tan, gray, and brown	, 30	45
Cretaceous—Gulfian		
Niobrara formation		
Limestone, silicified, yellow and white	0.5	45.5
4-21-29aa. Sample log of test hole in the NE cor. sec. 29, T. Norton County, Kansas; drilled in 1946. Surface altitude		
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation—Peoria member	feet . 1	feet 1
Silt, loose, dark brown		14
Silt, loose, tan; contains some very fine sand Loveland member	. 13	14
Silt, compact, brown (Loveland soil)	. 4	18
Silt, compact, tan and light gray	. 2	20
Sand, fine to very fine, brown	. 3	23
Silt and fine sand, light gray	2	25
Silt, chalky, dark brown; contains some sand	. 1	2 6
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, yellow, pink, red, and white	4	30
4-23-22dd. Sample log of test hole at the SE cor. sec. 22, T. Norton County, Kansas; drilled in 1946. Surface altitu		
water level, 99 feet.	,,	,,,,,
Quaternary—Pleistocene Sanborn formation	Thickness,	Depth,
Silt, tan and buff	3	3
Silt, gray and dark brown	5	8
Tertiary—Pliocene		
Ogallala formation		
Silt, white; contains sand, gravel, and caliche; some	•	
cemented material		26
Sand and gravel, fine to coarse; contains some brown and		
yellow clay		55
Silt, pink, buff, and gray; contains fine sand and some tar		
clay		94
Sand; contains some gravel, caliche, and cemented zones		123
Silt, gray; contains sand and zones cemented with calcium		
carbonate		151
Silt, buff, gray, and tan	19	170

9-7915

CRETACEOUS—Gulfian Niobrara formation Shale, soft, chalky, yellow and white	Thickness, feet 10	Depth, feet 180
4-25-1bb. Sample log of test hole in the NW cor. sec. 1, T. Norton County, Kansas; drilled in 1946. Surface altitude,		
Sanborn formation—Peoria member	Thickness, feet	Depth,
Silt, dark brown	2 16	2 18
Silt, tan to light gray; contains some sand and fine gravel, partly cemented		29
TERTIARY—Pliocene Ogallala formation Silt and fine sand, partly cemented with calcium car-		
bonate, gray		41
Silt and fine sand, cemented, gray green		52
Silt and very fine sand, partly cemented, light gray		83
Silt and clay, compact, blocky, gray green		94
Silt and fine sand, partly cemented, gray		133
Silt, sand, and caliche, yellow buff	28	161
Silt, sand, and fine gravel, tan to light gray	;	197
and clay	7	204
Clay, bentonitic, compact, blocky, yellow, buff, and gray	10	214
Shale, silty, noncalcareous, tough, dark gray to black		222
5-21-4bb. Sample log of test hole in the NW1/4 NW1/4 sec. 4, T Norton County, Kansas; drilled in 1946. Surface altitude		
water level, 30 feet.		
Terrace deposits	Thickness,	Depth,
Silt, dark brown		7
Silt, compact, gray		13
Silt, tan to light gray, with some sand; contains soil zone		22
Sand, fine to coarse; contains some gravel	3	42
of chalk		68
Sand and gravel, fine to coarse	. 5	73
Cretaceous—Gulfian		
Niobrara formation Shale, calcareous, gray, soft	. 7	80

5-21-5ad. Sample log of test hole in the cen. E. line sec. 5, 7 Norton County, Kansas; drilled in 1946. Surface altitude		
QUATERNARY—Recent	Thickness.	Depth,
Alluvium	feet	feet
Silt and sand, brown		3
Sand, fine to coarse, light tan		6
Sand, fine to coarse, light tan; contains some gravel	. 7.5	13.5
Cretaceous—Gulfian		
Niobrara formation		
Shale, calcareous, soft, dark gray	. 6.5	20
5-21-8aa. Sample log of test hole in the NE cor. sec. 8, T. Norton County, Kansas; drilled in 1946. Surface altituater level, 39 feet.		
Quaternary—Pleistocene	Thickness.	Depth,
Terrace deposits	feet	feet
Sand, fine to very fine		1
Silt, gray tan to brown; contains some sand		13
Silt, dark brown, medium compact (soil zone)		15
Silt, gray tan		17
Silt, gray; contains some sand		38 40
Silt, gray tan; contains sand and gravel		53
Sand and gravel, fine to coarse		60
Sand and gravel, fine to coarse; contains fragment		00
of chalk		65
Cretaceous—Gulfian	. •	00
Niobrara formation		
Shale, calcareous, dark gray	. 5	70
, , , , , , , , , , , , , , , , , , , ,		
5-21-33cc. Sample log of test hole in the SW¼ SW¼ sec. 3 W., Norton County, Kansas; drilled in 1946. Surface altit		•
water level, 101 feet.		
Quaternary—Pleistocene	Thickness.	Depth,
Sanborn formation—Peoria member	feet	feet.
Silt, loose, dark gray brown	. 3	3
Silt, loose, tan; contains snail shells	. 10	13
Loveland member		
Silt, loose, tan		27
Sand, fine to very fine, and tan silt	. 7	34
Tertiary—Pliocene		
Ogallala formation		
Sand, fine, light tan to gray; contains gravel and silt		51
Sand, well cemented with calcium carbonate		52
Sand and silt, light gray to green gray, and caliche		76
Silt, compact; contains some dull-red sand		97
Sand, fine, and dull-red silt; contains caliche		123
Sand, fine to very fine, and silt and some gray and brown		178
clay	. 00	1/8

CRETACEOUS—Gulfian Niobrara formation	Thickness,	Depth,
Shale, calcareous, gray, fissile; contains a few thin ben	-	
tonite zones	. 12	190
5-23-34dd. Sample log of test hole at the SE cor. sec. 34, T Norton County, Kansas; drilled in 1946. Surface altitude		,
Quaternary—Pleistocene	Thickness,	Depth,
Sanborn formation	feet	feet
Silt, brown		2 7
Silt, tan; contains snail shells	. 3	•
Tertiary—Pliocene Ogallala formation		
Sand, fine and very fine, silty, white	. 12	19
Sand and silt, cemented with calcium carbonate; contain		19
fossil seeds		36
Sand, fine to coarse; contains silt, gravel, and caliche		85
Sand, with some silt; contains zones cemented with cal		00
cium carbonate		125
Sand, very fine to coarse, and silt		142
Silt, sand, and caliche; contains cemented zones		159
Sand and gravel, fine to coarse		183
Silt, soft, brown and gray		191
Cretaceous—Gulfian		
Niobrara formation		
Shale, chalky, fissile, brown, yellow, and gray; contain		
bhaic, charky, hashe, blown, yehow, and gray, contain	s	
bentonite		200
bentonite	. 9	
bentonite	. 9 7. 5 S., R.	
bentonite	. 9 7. 5 S., R.	
bentonite 5-24-33bb. Sample log of test hole in NW1/4 NW1/4 sec. 33, T Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene	. 9 7. 5 S., R. 197 feet. Thickness,	24 W.,
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation	. 9 7. 5 S., R. 197 feet. Thickness, feet	24 W., Depth, feet
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2	24 W., Depth, feet 2
bentonite 5-24-33bb. Sample log of test hole in NW¼ NW¼ sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 2	24 W., Depth, feet 2 4
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 2 . 5	24 W., Depth, feet 2
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white Sand and gravel; contains zones loosely cemented wit	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 2 . 5	24 W., Depth, feet 2 4 9
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 2 . 5 h . 17	24 W., Depth, feet 2 4 9
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 2 . 5 h . 17 . 12	24 W., Depth, feet 2 4 9
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche Sand, fine to coarse; contains some gravel; some zone	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 2 . 5 h . 17 . 12	24 W., Depth, feet 2 4 9 26 38
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche. Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche. Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 5 h . 17 . 12 s . 27	24 W., Depth, feet 2 4 9
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate Sand, fine to coarse, and silt; contains caliche an	. 9 7. 5 S., R. 197 feet. Thickness, feet 2 2 5 1 17 12 8 27	24 W., Depth, feet 2 4 9 26 38
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate Sand, fine to coarse, and silt; contains caliche an cemented zones	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 5 h . 17 . 12 s . 27 d . 58	24 W., Depth, feet 2 4 9 26 38 65
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate Sand, fine to coarse, and silt; contains caliche an	. 9 7. 5 S., R. 197 feet. Thickness, feet 2 2 5 h 17 12 8 27 1 58 22	24 W., Depth, freet 2 4 9 26 38 65
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche. Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche. Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate Sand, fine to coarse, and silt; contains caliche an cemented zones Sand and gravel, fine to coarse.	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 5 h . 17 . 12 s . 27 d . 58 . 22 . 30	24 W., Depth, freet 2 4 9 26 38 65 123 145
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche. Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche. Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate Sand, fine to coarse, and silt; contains caliche an cemented zones Sand and gravel, fine to coarse. Sand, fine to coarse; contains brown clay.	. 9 7. 5 S., R. 197 feet. Thickness, feet 2 2 5 1 17 12 8 27 1 58 27 1 58 22 30 ;	24 W., Depth, freet 2 4 9 26 38 65 123 145
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche. Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche. Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate Sand, fine to coarse, and silt; contains caliche an cemented zones Sand and gravel, fine to coarse. Sand, fine to coarse; contains brown clay. Sand, fine to coarse; contains silt and some gravel	. 9 7. 5 S., R. 197 feet. Thickness, feet 2 2 5 17 12 8 27 1 58 27 1 58 22 30 ; 32	24 W., Depth, freet 2 4 9 26 38 65 123 145 175
bentonite 5-24-33bb. Sample log of test hole in NW4 NW4 sec. 33, 7 Norton County, Kansas; drilled in 1946. Water level, Tertiary—Pliocene Ogallala formation Silt, sand, and caliche Sand and gravel, fine to coarse; contains caliche. Limestone, hard, white Sand and gravel; contains zones loosely cemented wit calcium carbonate Sand, fine to coarse, silt, and caliche. Sand, fine to coarse; contains some gravel; some zone cemented with calcium carbonate Sand, fine to coarse, and silt; contains caliche an cemented zones Sand and gravel, fine to coarse. Sand, fine to coarse; contains brown clay. Sand, fine to coarse; contains silt and some gravel cemented in some zones	. 9 7. 5 S., R. 197 feet. Thickness, feet . 2 . 5 h . 17 . 12 s . 27 d . 58 . 27 d . 30 ; . 32	24 W., Depth, freet 2 4 9 26 38 65 123 145 175

5-25-1bb. Sample log of test hole in the NW cor. sec. 1, T. 5 S., R. 25 W., Norton County, Kansas; drilled in 1946. Surface altitude, 2,423.9 feet; water level, 42 feet.

Outternary—Recent.

QUATERNARY—Recent	Thickness,	Depth,
Alluvium	feet	feet
Silt, dark brown and tan	2	2
Silt; contains nodules of caliche, gravel, and snail shells	11	13
Silt, sand, and fine gravel, tan to brown	6	19
Gravel and sand; contains some tan silt	2.5	21.5
Silt, sand, and gravel, gray tan	4.5	26
Gravel, sand, and silt, tan	9.5	35.5
Tertiary-Pliocene		
Ogallala formation		
Silt, sand, and some gravel, gray white to tan; cemented		
with calcium carbonate		42
Silt; contains some fine sand and white caliche	5	47
Silt, partly cemented, gray green	8.5	55.5
Sand, light gray; contains some gravel and silt		57.5
Sand, tightly cemented with calcium carbonate, light gray,	2.5	60
Gravel, sand, silt, and caliche, gray	25	85
Slit, sand, gravel, and caliche, light gray	9	94
Cretaceous—Gulfian		
Niobrara formation		
Clay, calcareous, plastic, white to yellow	2.5	96.5
Limestone, hard, brown yellow		96.8
5-25-2ad. Sample log of test hole in the cen. E. line sec. 2, T.	5 C D	05 W
Norton County Kansas: drilled in 1946 Surface altitude	9 /250	fort
Norton County, Kansas; drilled in 1946. Surface altitude	, 2,475.9	fect.
Quaternary—Recent	Thickness,	Depth,
Quaternary—Recent Colluvium	Thickness,	Depth,
Quaternary—Recent Colluvium Silt, sand, and fine gravel, brown and gray	Thickness, teet	Depth, feet
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan	Thickness, teet	Depth,
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan Tertiary—Pliocene	Thickness, teet	Depth, feet
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan Tertiary—Pliocene Ogallala formation	Thickness, teet 2 5	Depth, feet
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with	Thickness, feet 2 5	Depth, feet 2 7
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan TERTIARY—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium—carbonate	Thickness, feet 2 5	Depth, feet 2 7
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel	Thickness, leet 2 5	Depth, reet 2 7 7 10 20
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel Caliche, white	Thickness, leet 2 5 1 3 10 4	Depth, reet 2 7 7 10 20 24
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan TERTIARY—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green	Thickness, feet 2 5 5 1 1 3 10 4 7	Depth, feet 2 7 7 10 20 24 31
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray.	Thickness, feet 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Depth, feet 2 7 7 10 20 24 31 54
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan.	Thickness, feet 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Depth, feet 2 7 7 10 20 24 31 54 75
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan.	Thickness, feet 2 5 5 1 1 3 10 4 7 23 21 51	Depth, feet 2 7 7 10 20 24 31 54 75 126
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel.	Thickness, leet 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Depth, feet 2 7 7 10 20 24 31 54 75 126 132
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel. Silt, fine sand, and clay, light gray.	Thickness, leet 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Depth, feet 2 7 7 10 20 24 31 54 75 126
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel. Silt, fine sand, and clay, light gray. Silt, fine sand, and clay, light gray. Silt, compact, blocky, tan and gray; contains silty beneficial.	Thickness, feet 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Depth, feet 2 7 7 10 20 24 31 54 75 126 132 142
QUATERNARY—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel. Silt, fine sand, and clay, light gray. Silt, compact, blocky, tan and gray; contains silty bentonitic clay.	Thickness, feet 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Depth, feet 2 7 7 10 20 24 31 54 75 126 132
Quaternary—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel. Silt, fine sand, and clay, light gray. Silt, compact, blocky, tan and gray; contains silty bentonitic clay. Cretaceous—Gulfiian	Thickness, feet 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Depth, feet 2 7 7 10 20 24 31 54 75 126 132 142
Quaternary—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel. Silt, fine sand, and clay, light gray. Silt, compact, blocky, tan and gray; contains silty bentonitic clay Cretaceous—Gulfiian Niobrara formation	Thickness, leet 2 5 5 1 1 3 10 4 7 23 21 51 6 10 7	Depth, feet 2 7 7 10 20 24 31 54 75 126 132 142 149
Quaternary—Recent Colluvium Silt, sand, and fine gravel, brown and gray. Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray. Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel. Silt, fine sand, and clay, light gray. Silt, compact, blocky, tan and gray; contains silty bentonitic clay. Cretaceous—Gulfiian Niobrara formation Clay, calcareous, yellow and white.	Thickness, leet 2 5 5 1 1 3 10 4 7 23 21 51 6 10 7 7 3	Depth, feet 2 7 7 10 20 24 31 54 75 126 132 142 149
Quaternary—Recent Colluvium Silt, sand, and fine gravel, brown and gray Silt, sand, gravel, and caliche, tan. Tertiary—Pliocene Ogallala formation Silt, gray; contains some sand and gravel; cemented with calcium carbonate Silt, gray, cemented; contains some gravel. Caliche, white Silt, fine sand, and caliche, loose, light gray green. Silt, sand, and fine gravel, loose, light gray Gravel, sand, and silt, tan. Silt, sand, and gravel, gray and tan. Sand; contains some fine gravel. Silt, fine sand, and clay, light gray. Silt, compact, blocky, tan and gray; contains silty bentonitic clay Cretaceous—Gulfiian Niobrara formation	Thickness, leet 2 5 5 1 1 3 10 4 7 23 21 51 6 10 7 7 3 2 3 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Depth, feet 2 7 7 10 20 24 31 54 75 126 132 142 149

, , , , , , , , , , , , , , , , , , ,		
5-25-14ad. Sample log of test hole in the SE¼ NE¼ sec. 14, I Norton County, Kansas; drilled in 1946. Surface altitu water level, 61 feet.		
QUATERNARY—Pleistocene Sanborn formation	Thickness,	Depth,
Silt (road fill)	. 4	4
Silt, compact, dark gray brown	. 5	9
Silt, tan; contains some gravel	. 4	13
Tertiary—Pliocene Ogallala formation		
Silt, calcareous; contains some gravel and sand	. 20	33
Silt, sand, and gravel, calcareous, tan	. 15	48
Silt, gray; contains some sand and gravel		65
Gravel and coarse sand		76
Silt and sand, tan to yellow	. 15	91
CRETACEOUS—Gulfian Niobrara formation		
Clay, calcareous, yellow and white	. 2	93
Limestone, hard, white and brown	0.2	93.2
Norton County, Kansas; drilled in 1946. Surface altitu water level, 18 feet.	de, 2,356. Thickness,	6 feet; Depth,
QUATERNARY—Pleistocene Terrace deposits	feet	feet
Silt, dark brown and gray, with a few pebbles	. 7	7
Silt, tan to gray, with some gravel, sand, and nodules	•	•
of caliche		15
Silt, brown, sand, and gravel; contains snail shells	. 4	19
Gravel, sand, silt, and clay balls		30
Gravel and sand; contains pebbles of chalk	. 13	43
Cretaceous—Gulfian Niobrara formation		
Clay, calcareous, yellow white	. 2	45
Shale, calcareous, gray		50
5-25-35aa. Sample log of test hole in the NE cor. sec. 35, T. Norton County, Kansas; drilled in 1946. Surface altitude,		•
QUATERNARY—Pleistocene Sanborn formation	Thickness, feet	Depth,
Silt, brown	3	3
Silt, loose, tan; contains a small amount of gravel and	1	0.5

many snail shells.....

Silt, plastic, light gray; contains a small amount of gravel, 13

Tertiary—Pliocene
Ogallala formation

25

38

76

	Thickness, feet	Depth, feet
Sand, compact	. 29	105
Gravel and sand, yellow, with some silt and clay	. 10	115
Gravel, sand, and silt, partly cemented, gray	. 40	155
Silt and sand, tan and gray	. 7	162
Sand, with some gravel	. 6	168
Sand and gravel, tightly cemented with calcium		
carbonate	. 0.3	168.3
Sand, yellow, with small amount of gravel, caliche, and	i	
clay (at the bottom of this interval the drill encoun	-	
tered a bed too hard to penetrate)	. 17.7	186
ACTION CONTINUE CONTINUE CONTINUE CONTINUE		

MEASURED STRATIGRAPHIC SECTIONS

1-19-31. Section measured along valley and tributary gullies, NW¼ SW¼ sec. 31, T. 1 S., R. 19 W., Phillips County, Kansas. (Measured by M. K. Elias and John C. Frve)

and John C. Frye)	
Tertiary—Pliocene	
Ogallala formation—Ash Hollow member	Thickness, feet
11. Sand and silt, cemented with calcium carbonate	1.5
10. Clay, silt, and fine sand, partly comented, light gray green	;
contains nodules and stringers of calcium carbonate	12.0
9. Sand, loosely cemented with calcium carbonate, gray; contains	8
fossil seeds of Biorbia fossilia (Berry)	3.0
8. Clay, silt, fine sand, and calcium carbonate, gray	2.0
7. Sand, medium to fine, cemented in upper part, greenish gray	;
contains fragments of fossil vertebrates	4.0
6. Sand, coarse to fine, and some silt; massive to irregular	r
bedding; weathers to irregular, pitted surface; greenish gray	;
the following fossil seeds occur in this interval and upper par	t
of bed 5: Krynitzkia coroniformis Elias, Biorbia minor Elias	i ,
Prolithospermum corrugatus Elias, Panicum elegans mut. ne	
braskanse Elias, Stipidium intermedian Elias, Stipidium cf	•
grande Elias	. 6.0
5. Sand, coarse to fine, and some silt; massive to irregularly	
bedded; cemented more firmly toward top	
4. Partly covered. Silt, clay, and fine sand, tan to greenish	ı
gray	
3. Partly covered. Sand, fine to medium, loose, pink tan; con	
tains concretions and nodules of calcium carbonate	
2. Sand and silt, massive to irregularly bedded, loosely and un	
evenly cemented with calcium carbonate, pale pinkish tar	
to gray	
1. Clay, silt, and sand with some calcium carbonate, gray to	
green gray. From bottom of creek	. 1.8
m . •	
Total	. 77.0

SW4 sec. 29, T. 1 S., R. 21 W., Norton County, Kansas. (Meas	
Stafford C. Happ and John C. Frye)	urea by
Quaternary—Pleistocene	
Sanborn formation	Thickness feet
13. Silt and fine sand, verticle jointed, light brown to gray (Big-	•
nell silt member)	1.8
12. Soil (Brady). sandy silt, blocky, dark brown to brown11. Silt, blocky to vertically jointed, tan to light brown (Peoria	1.0
silt member)	4.0
brown	1.0
to light buff, darker upward (Loveland silt member) 8. Sand and gravel; contains pebbles of Ogallala "mortar-bed" type, interbedded with reddish-brown sand and silt. Sand and gravel commonly at base (Crete?)	5.5 3.0
Terriary—Pliocene	0.0
Ogallala formation	
7. Rubble of sand with fragments of calcium carbonate-cemented sand and silt and concretionary masses of lime rock. Prob-	
ably weathering residue at top of Ogallala representing un- conformable surface	0.5
6. Sand, with some silt and calcium carbonate, irregularly bedded to platy	1.0
5. Clay, blocky, green to pale greenish gray	3.5
4. Sand, fine, and silt; irregularly laminated, gray to pale green-	0.0
ish gray	2.0
3. Clay, silty, blocky, greenish gray streaked with brown2. Sand, fine, sandy clayey silt, and silt, irregularly interbedded,	1.0
gray to pale greenish gray	2.0
light greenish gray. A "mortar bed" at top	3.5
Total measured	29.8
1-24-16. Section measured along cut bank of creek in the NE¼ SW¼ T. 1 S., R. 24 W., Norton County, Kansas. (Measured by Sta Happ and John C. Frye)	
Quaternary—Pleistocene	T hickness
Sanborn formation	icet
7. Silt, massive, yellow tan; contains fossil snails (Peoria silt member)	14.0
6. Soil (Loveland), brown to reddish brown, compact, sandy silt with a few pebbles	3.0
Silt, massive, indistinct verticle jointing, tan to pink buff; contains some sand and a few pebbles (Loveland silt mem-	
ber). Gradational with unit below	6.0

	feet
4. Sand and silt, with lenses of gravel, stratified, tan; zone of cross-bedded sand and gravel at base; some pebbles of Ogal- lala "mortar bed" material as large as 6 inches in diameter;	•
snails in upper part	
3. Partly covered. Gray to buff sandy silt	
2. Sand, bedded, loose, brown	3.0
Tertiary—Pliocene Ogallala formation	
1. Sand and silt with some gravel, compact, partly cemented	l
with calcium carbonate, tan to green gray	
Total	48.0
2-25-36. Section measured along creek bank in the NW1/4 NE1/4 sec. S., R. 25 W., Norton County, Kansas.	36, T. 2
Tertiary—Pliocene	Thickness,
Ogallala formation (Ash Hollow member) 6. Sand and fine gravel, cemented, thin lenses of loose sand and	feet 1
silt in lower part. Fossil seeds of Biorbia fossilia (Berry)	
from lower 0.3 foot	
5. Sand, compact but uncemented, blocky, irregularly bedded	
greenish tan; contains some silt	
 Volcanic ash, compact, impure in lower part, gray Sand with some silt, massive to thick-bedded, compact but 	t
not cemented, pale greenish gray	
2. Sand and silt, tightly cemented with calcium carbonate 1. Covered from bottom of creek channel	
1. Covered from bottom of treek thannel	
Total	. 25.7
3-23-8. Section measured in abandoned sand pit and along road dite NW1/4 sec. 8, T. 3 S., R. 23 W., Norton County, Kansas.	ch in the
Quaternary—Pleistocene	Thickness,
Sanborn formation 6. Silt, massive to blocky, yellow tan, partly covered. Contain	ieet
fossil snails in several zones	
5. Clay, silt, and sand, thin-bedded, blocky in upper part, brown	
4. Silt and fine sand, blocky, tan	
3. Sand, fine, silt, and clay, thin-bedded to laminated, light tan	
2. Sand and gravel, cross-bedded, generally well sorted	
1. Silt and clay, partly covered, gray; contains fossil snails	. 1.0
Total	. 48.0

4-23-27. Section measured in road cut and creek bank in the SE¼ set 4 S., R. 23 W., Norton County, Kansas. (Measured by Claude bard and John C. Frye, corrected from Hibbard, Frye, and Leonar	W. Hib-
Quaternary—Pleistocene	Thickness,
Sanborn formation	feet
7. Silt, massive, gray to light tan (Peoria silt member). Fossil snails 2 to 8 feet above base: Vallonia gracilicosta (Müller), Succinea grosvenori Lea, Pupilla muscorum (Linnaeus), Pu-	
pilla blandi Morse, and Euconulus fulvus (Müller) 6. Soil (Loveland). Sandy silt, massive to blocky; contains	32.0
caliche nodules and is dark gray to gray brown	3.0
sorted, tan (Loveland silt member?)	10.8
to coarse sand. Thickness changes laterally above unconformity at top of Ogallala. (Crete?)	8.8
Tertiary—Pliocene Ogallala formation—Ash Hollow member	
3. Volcanic ash, thin-bedded, coarse-textured, bluish gray	0.6
2. Clay, silt, and sand, greenish gray	0.6
1. Sand and silt with a few pebbles, loosely cemented with calcium carbonate; weathers to gray and ash gray	6.2
Total	62.0
4-24-2. Section measured along creek bank and road cut in the NE1/4 T. 4 S., R. 24 W., Norton County, Kansas.	sec. 2,
QUATERNARY—Pleistocene	Thickness,
Sanborn formation 11. Silt, massive to blocky, light tan to yellow tan; contains some fine sand in thin lenses. Fossil snails abundant in mid-	feet
dle part	45.0
coarse sand, blocky, light brown	7.0
careous, gray-buff. (Section offset along road cut)	2.0
Thickness of exposed Sanborn	54.0
Ogallala formation—Ash Hollow member	
8. Partly covered. Sand and silt with some clay, pale greenish gray. A cemented zone occurs at top or middle of interval 7. Volcanic ash, thin-bedded and massive in lower part to ir-	10.0
regularly bedded and massive in upper part. Passes laterally into interbedded volvanic ash and sand, partly cemented with	
calcium carbonate	4.0
lime nodules. Celtis willistoni abundant near top	1.5

	Thickness feet
5. Clay, silt, and sand, blocky, calcareous, gray	1.6
4. Sand and silt, massive, pale green; contains bone fragments	
and angular cemented fragments	0.8
3. Clay, silt, and sand, calcareous, irregularly bedded to mas-	
sive, pale greenish gray to gray	2.2
 Sand, loosely cemented with calcium carbonate at base, grading upward into well cemented bed that produces bench, greenish gray. Fossil seeds of Biorbia fossilia (Berry) abun- 	
dant in upper 1 foot	4.0
feet below top of interval	6.5
Thickness of exposed Ogallala formation	30.6
Total thickness measured	84.6
5-24-33. Section measured along creek valley in sec. 33, T. 5 S., R.	0 / TIT
Norton County, Kansas. (Measured by Ada Swineford, John (
and A. R. Leonard).	o. Fiye,
Termany—Pliocene	
Ogallala formation—Kimbal member	Thickness, feet
10. Limestone, cherty, dense, light gray; contains some silt,	•000
sand, and gravel	2.0
9. Covered	5.0
8. Sand, silt, and gravel, loosely cemented with calcium car-	
bonate, gray to pale buff	3.0
Ash Hollow member	
7. Covered slope (note log of adjacent test hole)	96.0
6. Silt, sand, and gravel, irregularly cemented with calcium	
carbonate, gray to pinkish buff. Weathers to irregular no- dular surface	6.0
5. Silt and sand, loosely cemented with calcium carbonate,	6.0
massive to platy	8.0
4. Sand and silt, with some gravel, well cemented with calcium carbonate, light gray to pale pink, weathers to irregular	0.0
nodular surface; contains Biorbia fossilia (Berry) 3. Silt, sandy, irregularly cemented with calcium carbonate,	3.0
greenish gray to gray with spots of brick red, massive. Contains concretions of calcium carbonate and Biorbia fossilia	6.0
(Berry)	
forms bench along valley side; contains Biorbia fossilia	
(Berry)	6.0
1. Sand and silt, loose, partly covered, forms slope to valley	- • •
floor	18.0
Total	153.0

REFERENCES

- Bass, N. W., 1926, Geology of Ellis County, Kansas: Kansas Geol. Survey, Bull. 11, pp. 11-52, figs. 1-12, pls. 1-4.
- ——, 1929, The geology of Cowley County, Kansas: Kansas Geol. Survey, Bull. 12, pp. 1-203, figs. 1-23, pls. 1-12.
- Byrne, F. E., Beck, H. V., and Bearman, C. H., 1949, Construction materials in Norton County, Kansas: U. S. Geol. Survey, Circ. 24, pp. 1-16, figs. 1-3, pl. 1.
- BYRNE, F. E., BECK, H. V., and Houston, M. S., 1948, Construction materials in Phillips County, Kansas: U. S. Geol. Survey, Circ. 21, pp. 1-12, pls. 1-5.
- CONDRA, G. E., REED, E. C., and GORDON, E. D., 1947, Correlation of the Pleistocene deposits of Nebraska: Nebraska Geol. Survey, Bull. 15, pp. 1-73, figs. 1-15.
- DARTON, N. H., 1899, Preliminary report on the geology and water resources of Nebraska west of the 103d meridian: U. S. Geol. Survey, 19th Ann. Rept., pt. 4, pp. 719-785.
- ———, 1905, Preliminary report on the geology and underground water supplies of the central Great Plains: U. S. Geol. Survey, Prof. Paper 32, pp. 1-433, figs. 1-18, pls. 1-72.
- ——, 1920, Description of the Syracuse and Lakin quadrangles: U. S. Geol. Survey, Geologic Atlas, Folio 212, pp. 1-85, figs. 1-7, pls. 1-6.
- DAVISON, M. H., 1939, Irrigation pumping plants—construction and costs: Kansas State Bd. Agri., Div. Water Res., vol. 58, no. 231-C, pp. 1-52, figs. 1-16.
- DEAN, H. T., 1936, Chronic endemic dental fluorosis: Am. Medical Assoc. Jour., vol. 107, pp. 1269-1272.
- Dean, H. T., and others, 1941, Domestic water and dental caries: Public Health Repts., vol. 56, pp. 761-792.
- ELIAS, M. K., 1931, Geology of Wallace County, Kansas: Kansas Geol. Survey, Bull. 18, pp. 1-254, figs. 1-7, pls. 1-42.
- ———, 1937, Geology of Rawlins and Decatur Counties, with special reference to water resources: Kansas Geol. Survey, Min. Res. Circ. 7, pp. 1-25, figs. 1-4.
- ——, 1942, Tertiary prairie grasses and other herbs from the High Plains: Geol. Soc. America, Spec. Paper 41, pp. 1-176, fig. 1, pls. 1-17.
- FENNEMAN, N. M., 1931, Physiography of western United States, pp. 1-534, figs. 1-173, McGraw-Hill Book Co., New York.
- FRYE, J. C., 1942, Geology and ground-water resources of Meade County, Kansas: Kansas Geol. Survey, Bull. 45, pp. 1-152, figs. 1-13, pls. 1-12.
- ——, 1945, Geology and ground-water resources of Thomas County, Kansas: Kansas Geol. Survey, Bull. 59, pp. 1-110, figs. 1-13, pls. 1-6.
- ———, 1945a, Valley erosion since Pliocene "Algal limestone" deposition in central Kansas: Kansas Geol. Survey, Bull. 60, pt. 3, pp. 85-100, figs. 1-2, pl. 1.
- FRYE, J. C., and BRAZIL, J. J., 1943, Ground water in the oil-field areas of Ellis and Russell Counties, Kansas: Kansas Geol. Survey, Bull. 50, pp. 1-104, figs. 1-9, pls. 1-2.

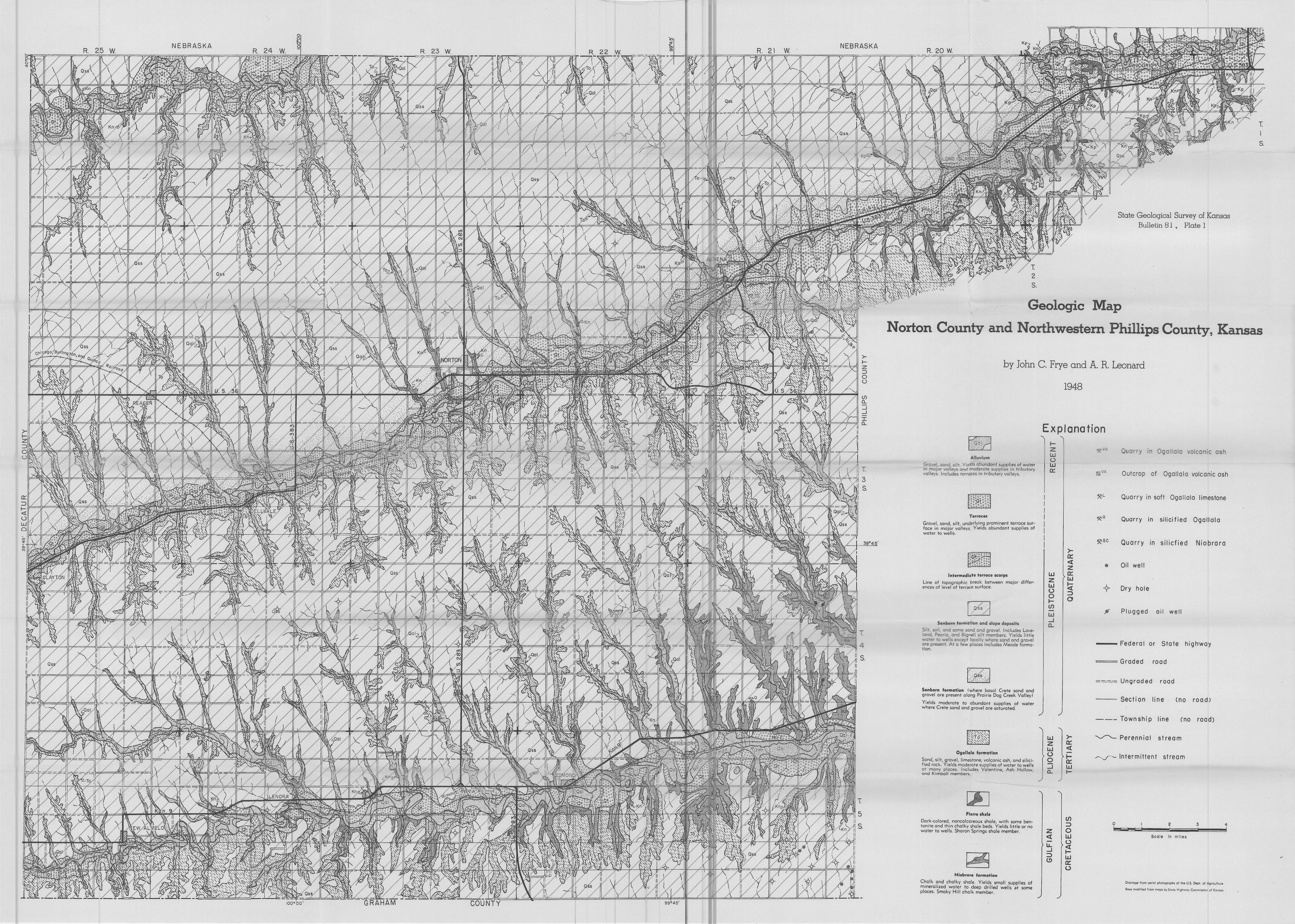
- FRYE, J. C., and FENT, O. S., 1947, The late Pleistocene loesses of central Kansas: Kansas Geol. Survey, Bull. 70, pt. 3, pp. 29-52, figs. 1-3, pls. 1-2.
- FRYE, J. C., and SWINEFORD, ADA, 1946, Silicified rock in the Ogallala formation: Kansas Geol. Survey, Bull. 64, pt. 2, pp. 33-76, fig. 1, pls. 1-8.
- FRYE, J. C., SWINEFORD, ADA, and LEONARD, A.B., 1948, Correlation of central Great Plains Pleistocene with the glacial section: Jour. Geology, vol. 56, no. 6, pp. 501-525, figs. 1-3, pls. 1-2.
- HAY, ROBERT, 1885, Preliminary report on the geology of Norton County, Kansas: Kansas Acad. Sci. Trans., vol. 9, pp. 17-24, figs. 1-3.
- Haworth, Erasmus, 1897, Physiography of western Kansas: Kansas Univ. Geol. Survey, vol. 2, pp. 11-49, fig. 1, pls. 1-8.
- Hesse, C. J., 1935, A vertebrate fauna from the type locality of the Ogallala formation: Kansas Univ. Sci. Bull., vol. 22, no. 5, pp. 79-117, pls. 15-22.
- Hibbard, C. W., 1933, New Bassariscus from the lower Pliocene of Nebraska: Kansas Univ. Sci. Bull., vol. 21, no. 7, pp. 273-278, figs. 1-3, pl. 26.
- HIBBARD, C. W., FRYE, J. C., and LEONARD, A.B., 1944, Reconnaissance of Pleistocene deposits in north-central Kansas: Kansas Geol. Survey, Bull. 52, pt. 1, pp. 1-28, figs. 1-2, pls. 1-2.
- JEWETT, J. M., and Schoewe, W. H., 1942, Kansas mineral resources for wartime industries: Kansas Geol. Survey, Bull. 41, pt. 3, pp. 69-180, figs. 1-13.
- JOHNSON, W. D., 1901, The High Plains and their utilization: U. S. Geol. Survey, 22d Ann. Rept., pt. 4, pp. 601-741.
- KINNEY, E. D., 1942, Kansas bentonite: its properties and utilization: Kansas Geol. Survey, Bull. 41, pt. 10, pp. 349-376, fig. 1, pls. 1-2.
- Landes, K. K., 1928, Volcanic ash resources of Kansas: Kansas Geol. Survey, Bull. 14, pp. 1-58, figs 1-3, pls. 1-5.
- LANDES, K. K., and KERCHER, R. P., 1942, Mineral resources of Phillips County: Kansas Geol. Survey, Bull. 41, pt. 8, pp. 277-312, figs. 1-5, pls. 1-4.
- LOGAN, W. N., 1897, The Upper Cretaceous of Kansas: Kansas Univ. Geol. Survey, vol. 2, pp. 195-234, pls. 28-34.
- LUGN, A. L., 1939, Classification of the Tertiary System in Nebraska: Geol. Soc. America Bull., vol. 50, no. 8, pp. 1245-1276, pl. 1.
- McCall, K. D., and Davison, M. H., 1939, Cost of pumping for irrigation: Kansas State Bd. Agri., Div. Water Res., vol. 58, no. 234, pp. 1-55, figs. 1-14.
- MEEK, F. B., and HAYDEN, F. V., 1862, Description of new Cretaceous fossils from Nebraska Territory: Philadelphia Acad. Nat. Sci. Proc., vol. 13, pp. 21-28.
- MEINZER, O. E., 1923, The occurrence of ground water in the United States, with a discussion of principles: U. S. Geol. Survey, Water-Supply Paper 489, pp. 1-321, figs. 1-110, pls. 1-31.
- ——, 1923a, Outline of ground-water hydrology with definitions: U. S. Geol. Survey, Water-Supply Paper 494, pp. 1-71, figs. 1-35.
- Moore, R. C., 1940, Ground-water resources of Kansas: Kansas Geol. Survey, Bull. 27, pp. 1-112, figs. 1-28, pls. 1-34.
- Moore, R. C., Frye, J. C., and Jewett, J. M., 1944, Tabular description of outcropping rocks in Kansas: Kansas Geol. Survey, Bull. 52, pt. 4, pp. 137-212, figs. 1-9.

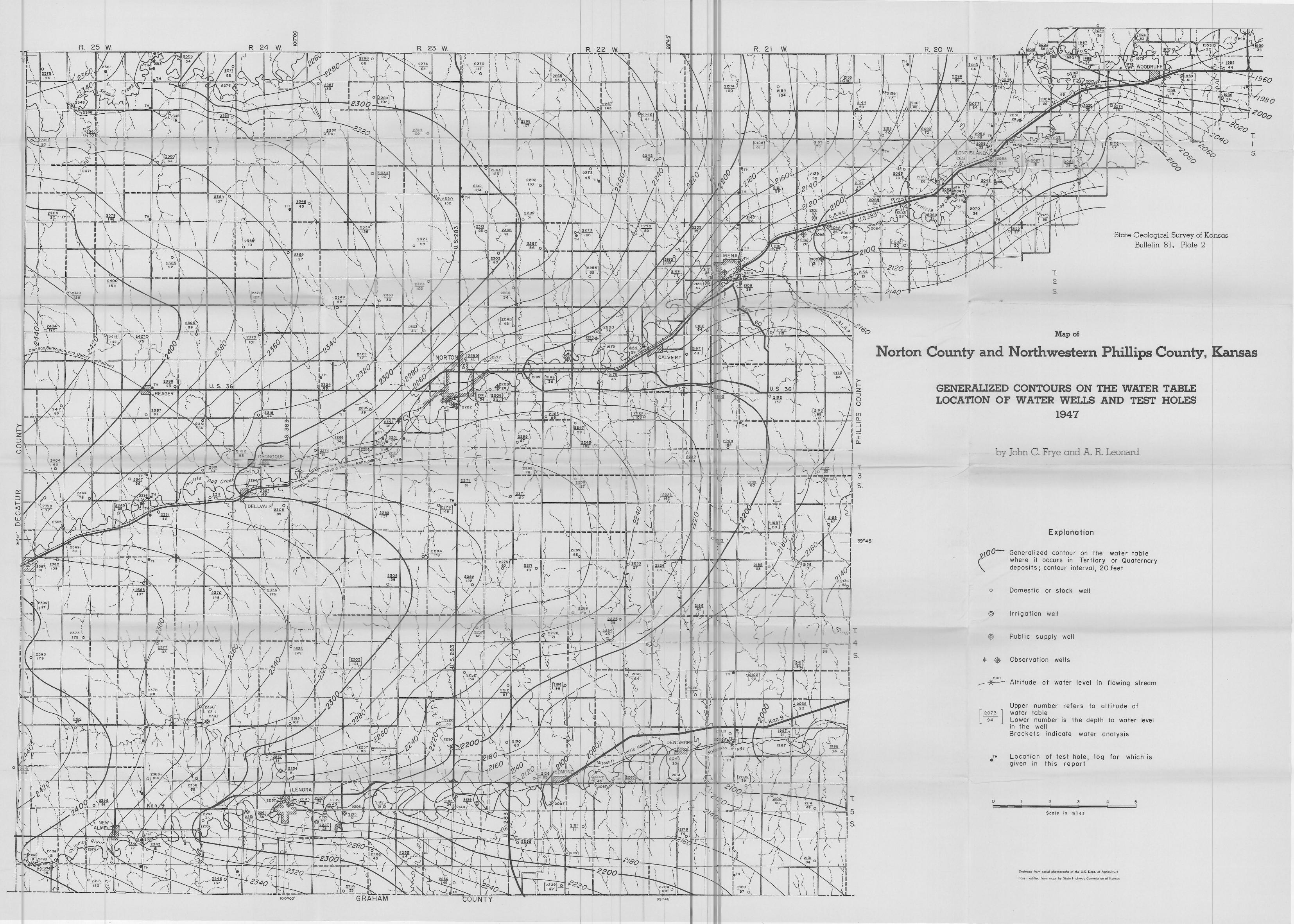
- Moore, R. C., and Jewett, J. M., 1942, Oil and gas fields of Kansas: Mines Magazine, vol. 32, no. 10, pp. 481-488, 515-520, 526, 538, 560, figs. 1-12.
- PLUMMER, NORMAN, and HLADIK, W. B., 1948, The manufacture of ceramic railroad ballast and constructional aggregates from Kansas clays and silts: Kansas Geol. Survey, Bull. 76, pt. 4, pp. 53-112, fig. 1, pls. 1-8.
- Rubey, W. W., and Bass, N. W., 1925, The geology of Russell County, Kansas: Kansas Geol. Survey, Bull. 10, pp. 1-86, figs. 1-11, pls. 1-5.
- Russell, W. L., 1929, Stratigraphy and structure of the Smoky Hill chalk in western Kansas: Am. Assoc. Petroleum Geologists Bull., vol. 13, no. 6, pp. 595-604, fig. 1.
- Schultz, C. B., and Stout, T. M., 1945, Pleistocene loess deposits of Nebraska: Am. Jour. Sci., vol. 243, no. 5, pp. 231-244, figs. 1-4, pls. 1-2.
- STIRTON, R. A., 1936, Succession of North American continental Pliocene mammalian faunas: Am. Jour. Sci., 5th ser., vol. 32, no. 189, pp. 161-206.
- Swineford, Ada, and Frye, J. C., 1946, Petrographic comparison of Pliocene and Pleistocene volcanic ash from western Kansas: Kansas Geol. Survey, Bull. 64, pt. 1, pp. 1-32, figs. 1-4, pl. 1.
- Theis, C. V., Burleigh, H. P., and Waite, H. A., 1935, Ground water in the southern High Plains: U. S. Dept. Interior, Memo. for the Press, Oct. 30, pp. 1-4.
- Ver Wiebe, W. A., 1947, Exploration for oil and gas in western Kansas during 1946: Kansas Geol. Survey, Bull. 68, pages 1-111, figs. 1-30.
- WAITE, H. A., 1947, Geology and ground-water resources of Scott County, Kansas: Kansas Geol. Survey, Bull. 66, pp. 1-216, figs. 1-16, pls. 1-16.
- WILLISTON, S. W., 1897, The Kansas Niobrara Cretaceous: Kansas Univ. Geol Survey, vol. 2, pp. 237-246, pl. 35.

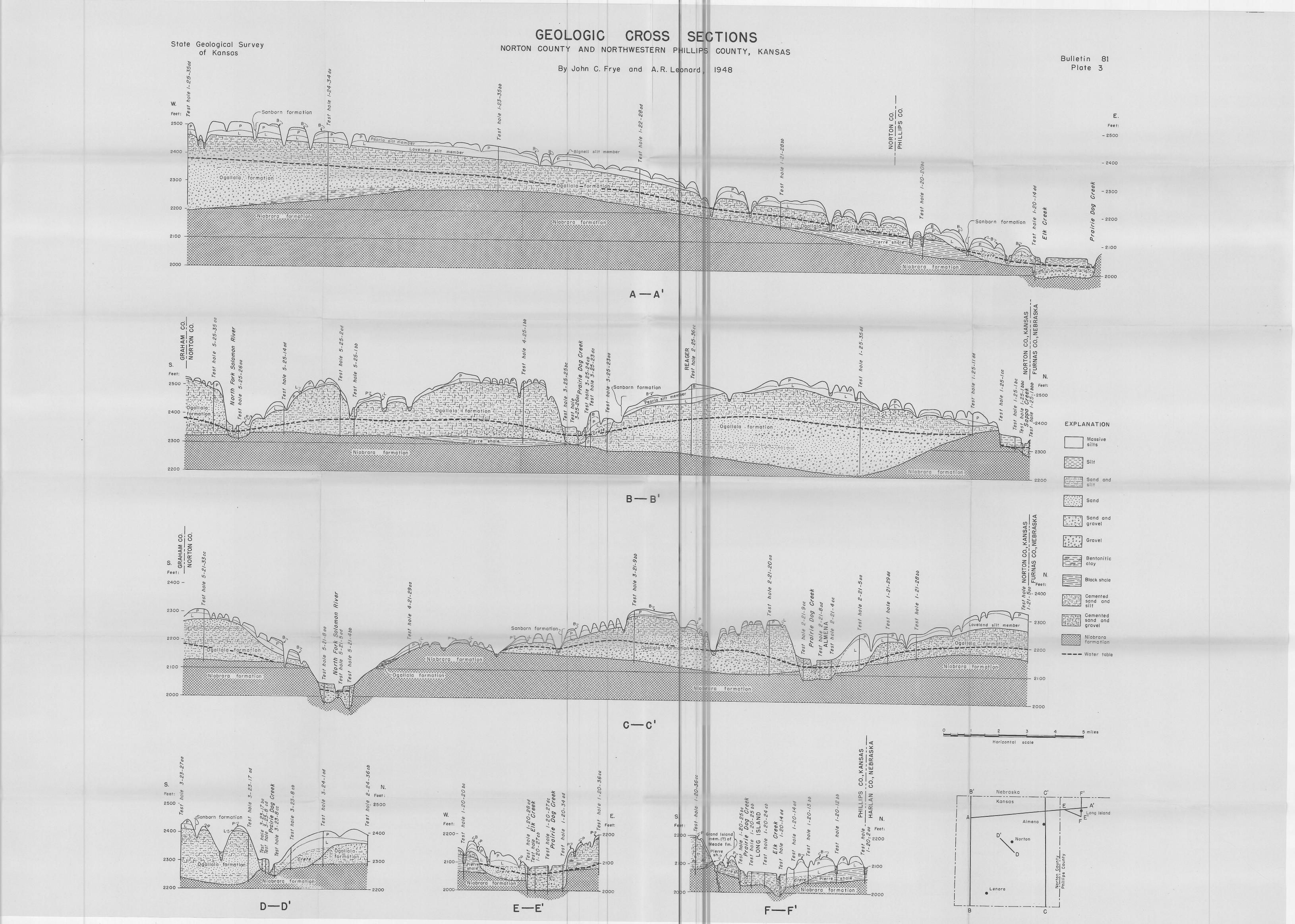
INDEX

Abstract, 7
Acknowledgments, 12
Agriculture, 17
Allucium, 53, 82, 84
Almena, 16, 70
Almena unit, 85
Analyses of water, 76
Ash Hollow member, 26, 38
Bentonite, 21, 29, 89
Bignell silt, 25, 26
Blue Hill shale, 27
Bored wells, 67
Brady soil, 46
Calvert, 18
Carlile shale, 27, 82
Ceramics, 21
Chalk, 21, 28
Chemical analyses, 76
Chemistry of water, 73
Chert, 19, 30
Citellus zone, 47
Cities, 16, 70
Clay, 21
Clayton, 16, 70
Climate, 15
Codell sandstone, 27, 82, 85
Colluvium, 46
Cretaceous, 27
Crete member, 43, 82
Crops, 18
Dakota formation, 28
Dissolved mineral matter, 78, 79
Drainage, 12
Drawdown, 66
Drilled wells, 68
Driven wells, 67
Dug wells, 67
Edmond, 16
Elevations, 13, 91
Fairport chalky shale, 27
Fluoride in water, 80
Fort Hays limestone, 28
Fossil seeds, 40
Fossil snails, 48, 52
Geography, 12
Geology, 23
Geologic formations, 24
Alluvium, 53, 82, 84
Ash Hollow member, 26, 38
Bignell silt, 25, 46
Blue Hill shale, 27
Carlile shale, 27, 82
Codell sandstone, 27, 82, 85
Crete member, 43, 82

Dakota formation, 28
Fairport chalky shale, 27
Fort Hays limestone, 28
Kimball member, 26, 38
Loveland silt, 25, 46
Meade formation, 25, 41
Niobrara formation, 26, 28, 82, 85
Ogallala formation, 26, 33, 82, 84
Peoria silt, 25, 46
Pierre shale, 26, 32
Sanborn formation, 25, 42
Sharon Springs shale, 26, 32
Smoky Hill chalk, 26, 29
Terrace deposits, 49, 82
Valentine member, 26, 38
Geomorphology, 12, 54
Graneros shale, 28
Gravel-wall wells, 68
Greenhorn limestone, 28
Ground water, 56
in Almena unit areas, 85
chemistry of, 78
discharge, 63
hardness, 79
irrigation, 72, 89
movement, 58
occurrence, 56
quality, 78
recharge, 63
recovery, 65
source, 56
utilization, 69
Gulfian Series, 27
Hardness, 79
Hewitt pool, 18
Highways, 17
Introduction, 8
Iron in water, 80
Irrigation, 72, 89
Kimball member, 26, 38
Lenora, 16, 71
Limestone, 21
Location, 9
Loess, 42
Logs, 108
Long Island, 16, 71
Loveland silt, 25, 46
Loveland soil, 46
Meade formation, 25, 41
Measured sections, 29, 36, 43, 44, 135
Methods of investigation, 10
Mineral resources, 17
bentonite, 21
clay, 21


(143)


Index


limestone, 21
oil, 18
quartzite, 19
sand and gravel, 21
stone, 18
volcanic ash, 18
Movement of ground water, 58
Mortar bed, 37
New Almelo, 21
Niobrara formation, 26, 28, 82, 85
Nitrate in water, 81
Norton, 16, 71
Observation wells, 61
Occurrence of ground water, 56
Ogallala formation, 26, 33, 82, 84
Oil and gas, 18
Peoria silt, 25, 46
Physiography, 12, 54
Pierre shale, 26, 32
Plains marl, 47
Pleistocene Series, 25, 41
Pliocene Series, 33
Pollution, 83 Population, 16
Previous investigations, 10 Pteranodon beds, 28
•
Public supplies, 70
Pumps, 69
Quality of water, 73
Quartzite, 19
Quaternary System, 25, 41
Railroads, 17
Rainfall, 15, 16, 62, 63
Ray pool, 18
Ray West pool, 18
Recent Series, 49
Recharge, 63
Reclamation, Bureau of, 8, 85
Recovery, 65
References, 140
Sanborn formation, 22
Sand and gravel, 21
Sanitary considerations, 83
Seeds, fossil, 40

Sharon Springs, shale, 26, 32
Silicified chalk, 30
Smoky Hill chalk, 26, 29
Snails, fossil, 48, 52
Source of ground water, 56
Specific capacity of wells, 66
Stratigraphic sections, 29, 36, 43, 44, 135
Stratigraphy, 24
Stock wells, 70
Stone, 18, 21
Temperature, 15
Terrace deposits, 49, 82
Tertiary System, 33
Test holes, 108
Topography, 12
Transportation, 17
Utilization of ground water, 69
Valentine member, 26, 38
Volcanic ash, 18
Water table, 58
drawdown, 66
fluctuations, 61
relation to topography, 60
shape, 58
Water wells, 67
Well logs, 108
Well-numbering system, 11
Well records, 91
Wells, 67
bored, 67
drawdown in, 66
drilled, 68
driven, 67
dug, 67
gravel wall, 68
irrigation, 72, 89
logs, 108
pollution of, 83
public supply, 70
records, 91
specific capacity of, 66
stock, 70

Well screens, 68

