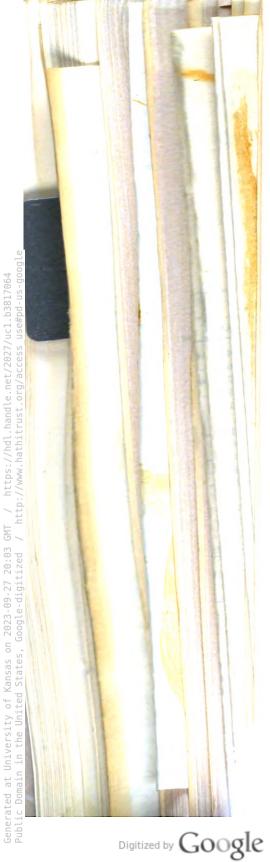
STATE GEOLOGICAL SURVEY OF KANSAS, BULLETIN 119 1956 REPORTS OF STUDIES, PART 4, PAGES 105-174, FIGURES 1-2 July 15, 1956

THE MINERAL INDUSTRY IN KANSAS 1950 TO 1954

Ву

WALTER H. SCHOEWE


CONTENTS

Foreword	109
Abstract	110
Introduction	110
Sources of information	116
THE MINERAL FUELS AND RELATED PRODUCTS	116
Coal	120
Oil	125
Natural gas	129
Natural gas liquids	134
Helium	136
Carbon black	137
Nonmetallic Minerals	137
Cement	138
Clay or shale	140
Pumicite or volcanic ash	141
Salt	143
Sand and gravel	
Stone	
Metals	166
Lead	166
Zinc	
Undistributed Minerals	169
Diatomaceous marl	
Gypsum	
Natural cement	
Dimension sandstone	
Perlite and expanded vermiculite	
Unevaluated Mineral Resources	
Water and soil	
Unexploited Minerals	
Estimate of Mineral Production in 1955	
References	

ILLUSTRATIONS

FIG	PAGE Graph showing value of metals, nonmetals, mineral fuels, all minerals, and wheat produced in Kansas, 1950 to 1954112
2.	Map of Kansas showing mineral commodities produced in each county in 1954. Minerals are listed in order of value117
	TABLES
1.	Summary of value of minerals produced in Kansas, 1950 to 1954, with value of wheat for comparison111
2.	Rank of mineral commodities in Kansas, and rank of Kansas among the states, 1950 to 1954, based on values114
3.	Quantity and value of Kansas mineral production, by commodities, 1950 to 1954115
4.	Range of value of 1954 mineral production per county116
5.	Value of mineral production in Kansas by counties in 1954118
6.	Summary of coal production in Kansas, 1950 to 1954
7.	Average annual production of coal, short tons per miner, and percent of strip and underground mine production in Kansas, 1950 to 1954122
8.	Number of coal mines and number of men employed in Kansas coal mines, 1950 to 1954
9.	Kansas coal production, by type of mine and by counties, 1950 to 1954 123
10.	Directory of Kansas coal-mining companies on record as of December 31, 1954
11.	Petroleum or crude oil production in Kansas, 1950 to 1954
12.	Ten leading oil-producing counties in Kansas, 1950 to 1954
13.	Leading oil-producing counties in Kansas
14.	Kansas proved reserves of crude oil, natural gas liquids, and total liquid hydrocarbons, 1950 to 1954
15.	Leading oil pools in Kansas, 1950 to 1954
16.	Directory of petroleum refineries in Kansas on record as of December 31, 1954
17.	Natural gas production in Kansas, 1950 to 1954130
18.	Production of natural gas in the Hugoton gas area, Kansas, 1950 to
19.	Production of natural gas in Kansas counties producing 2 billion cubic feet or more annually, 1950 to 1954
20.	Leading gas-producing counties in Kansas
21	Natural gas reserves and new gas pools discovered in Kansas, 1950 to 1954
22	Production, consumption, imports, and exports of natural gas in Kansas, 1950 to 1954

23.	Production of natural gas liquids in Kansas, 1950 to 1954
24.	Production and value of natural gasoline, propane, butane, and other LP gases in Kansas, 1950 to 1954
25.	Directory of Kansas plants producing natural gasoline and liquefied petroleum gas on record as of December 31, 1954
26.	Quantity and value of helium produced in Kansas, 1950 to 1954137
27.	Quantity and value of carbon black produced in Kansas, 1950 to 1954 138
28.	Production and shipments of portland cement in Kansas, 1945 to 1949 average and 1950 to 1954
29.	Directory of portland cement producers in Kansas, 1954
30.	Clay or shale sold or used by producers in Kansas, 1950 to 1954140
31.	Value of clay or shale and products in Kansas, 1950 to 1954141
32.	Directory of clay or shale producers in Kansas in 1954
33.	Quantity and value of pumicite or volcanic ash produced in Kansas, 1950 to 1954
34 .	Directory of Kansas producers of pumicite or volcanic ash in 1954143
35.	Salt produced and sold or used by producers in Kansas, 1950 to 1954 144
36.	Directory of salt-producing companies in Kansas, 1950 to 1954146
37.	Sand and gravel sold or used in Kansas by commercial, government, and contractor producers, 1945 to 1949 average and 1950 to 1954
38.	Production of sand in Kansas, 1950 to 1954, by uses
39.	Production of gravel in Kansas, 1950 to 1954, by uses
4 0.	Directory of sand and gravel producers on record as of December 31, 1954
41.	Production of stone in Kansas, 1950 to 1954, by kinds
42 .	Summary of stone production in Kansas, 1950 to 1954, by uses
43 .	Kansas stone production by kinds of rock and uses, 1950 to 1954159
44.	Directory of stone producers on record as of December 31, 1954
45 .	Quantity and value of lead produced in Kansas, 1950 to 1954167
46 .	Directory of lead and zinc producers in Kansas on record as of December 31, 1954
47.	Quantity and value of zinc produced in Kansas, 1950 to 1954168
18.	Estimated values of minerals produced in Kansas in 1955

FOREWORD

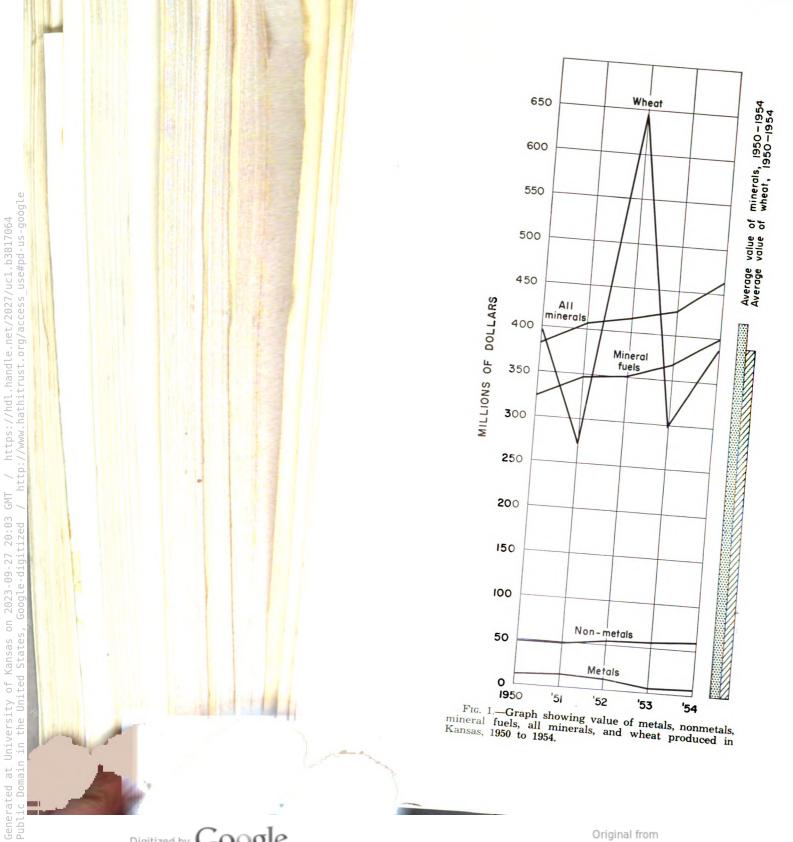
Mineral statistics for Kansas have been published by the United States Geological Survey for the years 1882 to 1923 and by the United States Bureau of Mines since 1924. The United States Bureau of the Census has also collected mineral data at stated intervals. Since at least 1913 the State Geological Survey of Kansas has cooperated with these agencies in the collecting of mineral data. Except for the period 1897 to 1903, the State Survey has not published any bulletin dealing with the entire mineral industry in Kansas. The Survey has, however, published annually since 1927 circulars and bulletins relative to the oil and gas resources and developments in Kansas during these years. Because of the demand for statistical information on all mineral commodities produced in the state and numerous requests for directories of mineral producers operating in Kansas, the Survey has decided to issue each year a report on the mineral industry in Kansas, in addition to the oil and gas development reports issued since 1927.

This first bulletin covers the five-year period 1950 through 1954; subsequent bulletins will consider the mineral industry for one year only, and will make comparison with the preceding year. Publication of statistical data in this series will be in addition to publication in the United States Bureau of Mines Minerals Yearbook.

Production figures for all the 22 mineral commodities produced in the state can be collected and compiled only with the fullest cooperation of the mineral producers themselves and of various state agencies. The cooperation in supplying mineral statistics is gratefully acknowledged.

> Frank C. Foley, Director State Geological Survey of Kansas

ABSTRACT


Kansas, for many years rated among the first ten states in the United States in mineral production, produced \$2,100,000,000 in mineral wealth between 1950 and 1954. Of this amount, the mineral fuels contributed approximately 85 percent, or \$1,800,000,000, the nonmetals 13 percent, or \$265,000,000, and the metals 2 percent, or \$44,000,000. Annual increases ranged from 2 percent in 1952 to 8 percent in 1954. The average value of the yearly mineral production in the period was \$419,719,231, or \$27,500,000 more than the average value of wheat produced yearly in the same period. Total mineral production from 1950 to 1954 exceeded by \$137,500,000 the value of wheat produced in the state during the same years. In each of the five years, twenty-two different minerals were produced, five others were available but not exploited, and at least six others, of still undetermined commercial value, were known in the state. Of the 105 counties in Kansas, 101 reported mineral production in 1954, and 49 counties annually produced mineral commodities valued at \$1,000,000 or more. Barton County led all other counties in 1954, its mineral production exceeding \$40,000,000 in value. Most important minerals produced in Kansas were oil, natural gas, portland cement, natural gasoline and LP gases, stone, salt, coal, clay, sand and gravel, zinc, and lead. This report discusses the production and value of all minerals produced in the state from 1950 to 1954, inclusive, and includes directories of mineral producers on record as of December 31, 1954. An estimate of mineral production in Kansas for 1955 concludes the report.

INTRODUCTION

Kansas for many years has ranked among the first ten states in the United States in the total annual value of minerals produced. In the 5-year period, 1950 to 1954, Kansas produced \$2,098,596, 157 in mineral commodities (Table 1). Of this amount, the mineral fuels contributed 85.2 percent, or \$1,789,516,278, the nonmetals excluding the mineral fuels 12.6 percent, or \$265,140,545. and the metals, lead and zinc, 2.2 percent, or \$43,939,334. Average yearly production amounted to \$357,903,255 for the mineral fuels. \$53,028,109 for the nonmetals, and \$8,787,867 for the metals. Although the value of the metals produced decreased almost 50 percent between 1950 and 1954, the values of the mineral fuels and nonmetals, with one exception, increased in value each year in the 5-year period. Percentagewise the increase in value of all minerals produced has ranged from 2 percent in 1952 to 8 percent in 1954 (Table 1). To Kansans who are accustomed to thinking of Kansas in terms of wheat, because Kansas is the leading wheat-producing state in the nation, it may be of interest to note that (1) the value of minerals produced in Kansas from 1950 to 1954 exceeded by

392,212,000 387,658,000 1,961,060,000 271,143,000 646,021,000 296,557,000 \$ 395,681,000 TABLE 1.—Summary of value of minerals produced in Kansas, 1950 to 1954, with value of wheat for comparison change from previous year +8.0 +6.8 +2.0+3.1429,393,242 2,098,596,157 407,592,072 416,126,914 463,992,024 419,719,231 All minerals (total) \$ 381,491,905 2.6 1.2 8.0 2.2 of total 3.5 2.8 4,445,364 13,616,718 43,939,334 8,787,867 \$10,279,474 10,364,976 5,232,802 Metals 12.6 12.9 12.7 11.7 13.1 of otal 12.4 Nonmetals (excluding mineral fuels) 265,140,545 53,028,109 54,617,360 55,694,409 59,250,573 \$ 47,612,644 47,965,559 85.2 84.8 84.3 85.9 86.5 of total 84.8 Mineral fuels 1,789,516,278 357,903,255 399,508,639 346,009,795 351,144,578 369,253,469 323,599,787 Average, 1950-54 1950-54 Total, 1952 1953 1954 Year 1950 1951

Digitized by Google

Original from UNIVERSITY OF CALIFORNIA Generated at University of Kansas on 2023-09-27 20:03 GMT / https://hdl.handle.net/2027/ucl.b3817064 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

\$137,536,157 the value of wheat produced in the state during the same period. (2) the average value of the annual mineral production from 1950 to 1954 was almost \$27,500,000 more than the average value of the annual wheat production, and (3) the yearly change in value of the mineral production was an almost regular increase rather than erratic fluctuation, as for wheat, which ranged from \$271,143,000 in 1951 to more than \$646,000,000 in 1952 only to drop again to \$296,557,000 in 1953 (Fig. 1). Just as Kansas is truly a great agricultural state, so likewise Kansas ranks equally high as a mineral-producing state.

Kansas produces twenty-two minerals commercially, five others are available but currently are not exploited, at least six other minerals are known to exist in the state but have not been studied sufficiently to determine their commercial possibilities, and at least two minerals are processed into useful mineral commodities from raw materials shipped into the state from outside sources. The rank of Kansas relative to the other states in the production of each of the various mineral commodities, and the rank of each mineral with respect to the other minerals produced in the state are shown in Table 2. Table 3 presents data on annual mineral production in Kansas from 1950 to 1954, inclusive.

Of the 105 counties in Kansas, 101 reported mineral production in 1954, and only Greeley, Mitchell, Rawlins, and Wichita Counties reported none. In 1954 each of 49 counties produced minerals worth \$1,000,000 or more. Barton County, which produced minerals valued at \$46,398,335, led all other Kansas counties. Ellis and Russell Counties, each of which produced minerals valued between \$30,000,000 and \$40,000,000, were second and third in importance. In the \$20,000,000-to-\$30,000,000 category were Butler, Rice, Rooks, and Stafford Counties, in order of rank. Counties that each produced in 1954 mineral wealth valued between \$10,-000,000 and \$20,000,000 were Greenwood, Grant, Cowley, McPherson, Graham, and Stevens Counties. Table 4 summarizes the counties producing mineral wealth in the various value categories.

The counties that produce the greatest dollar volume of minerals are those in which oil is found. Most of these are western Kansas counties, but Butler, Greenwood, and Cowley Counties are included. Among the counties producing minerals valued at \$1,000,000 or more, Allen, Cherokee, Elk, Montgomery, Neosho, Reno, Wilson, and Wyandotte Counties derived their mineral

Table 2.—Rank of mineral commodities in Kansas, and rank of Kansas among the states, 1950 to 1954, based on values

	1950	0	1921		1952	2	1953		1954	4
Mineral commodity	Rank of commodity in Kansas	Rank of Kansas among states								
Cement	က	98	က	11ª	က	104	က	12 ^b	က	11,
Clay and clay products°	10	15	00	13	9	14	9	14 ^d	9	144
Coal	9	17	7	17	00	11	00	17	8	17 ^d
Lead	11	10	11	6	10	12	11	12^{b}	11	10 ^b
Natural gas	2	2	2	ro	63	7.0	2	rc	2	2^{d}
Natural gasoline and LPG	4	9	4	9	4	9	4	9	4	₽9
Petroleum, crude	1	ro.	1	ιc	1	ις	1	rc	1	2^{4}
Salt	6	4	6	4	∞	4	7	S,	7	9
Sand and gravel	∞	14	10	ន	6	22	6	19	6	194
Stone	2	16	9	19	າດ	15	າວ	15^{4}	ro	15^{d}
Zinc	7	11	ro.	11	7	11	10	13 ^b	10	11b
Total production	,	6		10		80		6		ъб

^a Based on values given in Table 5, Mineral production in the United States, 1949-52, by states, Minerals Yearbook, Vol. 1, 1952, p. 55-82. Many states produce and ship portland cement but the value is included under "undistributed" and therefore the rank of those states in comparison to Kansas is indeterminate.
^b Data provided by the U. S. Bureau of Mines.
^c In defermining rank of Kansas among the states only miscellaneous clays were used.
^d Estimated and preliminary figures.

Commodity	Tinit										
	1110	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Carbon black	Pounds	82,508.506 \$	ı	3,992,268 112,205,669 \$	5,334,126	82,000,000 \$	3,900,000	69,985,475	3,207,600	54,328,515	\$ 3,014,326
Cement (portland)	376-lb. bbl.	8,759,103	19,400,068	8,163,916	19,413,144	8,811,762	20,956,886	8,546,250	21,428,536	9,075,995	23,718,609
Clay and clay											
products	Short tons		5,600,000		7,000,000		8,500,000		8,500,000		8,500,000
Coal	op	2,195,714	8,303,913	1,951,132	7,687,460	2,016,096	7,862,774	1,720,306	7,122,067	1,415,640	5,860,750
Helium	Cu. ft.	•	1	26,280,000	327,000	38,509,000	491,000	42,782,800	563,923	37,530,000	593,162
Lead (recoverable											
content of ores, etc.) Short tons	Short tons	9,487	2,561,490	8,947	3,095,662	5,916	1,904,952	3,347	876,914	4,033	1,105,042
Natural gas	M cu. ft.	360.874.912	25,860,907	25.860.907 407,192,252	29,099,451	29,099,451 408,732,836	32,860,740	32,860,740 420,588,383	37,680,408	37,680,408 405,841,987	44,692,618
Natural gas liquids											
Natural gasoline	42-gal. bbl.	2,478,715	7,312,209	2,632,433	7,765,627	2,802,105	8,266,210	2,978,066	8,785,295	2,521,598	7,438,714
Propane	op	335,559	704,674	373,561	784,478	676,077	1,419,762	897,862	1,885,510	904,543	1,899,540
Butane	op	190,466	399,979	250,550	526,155	334,358	702,152	845,031	1,774,565	869,573	1,826,103
LPG	op	693,282	1,164,714	915,697	1,730,667	865,122	1,635,081	318,485	601,937	318,155	601,313
Petroleum (crude)	op	107.339,000	275,861,123 113,912,366		292,754,781 114,399,556		294,006,859 114,390,176	114,390,176	307,632,164 118,309,260	118,309,260	333,632,113
Pumicite (volcanic	41040	0	6	9		6	90	6		9	000
asn)	Suort tons	3,852	12.000	3,088	11,801	3,218	56,069	3,203	36,568	23,433	92,899
Salt (common)	op	846.374	5.914,514	900,917	6,639,343	911,744	6,850,027	905,227	7,480,556	877,667	7,778,405
Sand and gravel	op	9.781,123	6,782,285	7,676,888	4,747,544	8,380,065	5,023,593	8,728,291	5,668,308	10,421,673	7,194,390
Stone (except lime- stone for cement)	op	7,630 300	8,920,207	7,191,483	9,058,512	8,830,871	12,051,740	8,385,378	10,681,737	7,096,057	10,597,540
Zinc (recoverable											
content of ores, etc.)	op	27.176	7,717,984	28.904	10,521,056	25.482	8,460,024	15,515	3,568,450	19,110	4,127,760
Unditributed (diatomaceous marl, gypsum, natural century)											
mension sandstone,											
expanded vermicu- lite*)			983.510		1,095,215		1,209,045		1,898,704		1,368,695
Total maline			201 401 005		407 509 079		416 196 014		490 903 949		462 001 520

Minerals processed but not mined in Kansas.

116 Geological Survey of Kansas—1956 Reports of Studies

TABLE 4.—Range of value of 1954 mineral production per county

Value of annual production, millions of dollars	Number of counties producing minerals valued in this range
40-50	1
30-40	2
20-30	4
10-20	6
1-10	36
0- 1	52
no production	4

wealth mainly from the nonfuel minerals. Counties that exploited the most different minerals (six) were Cherokee, Cowley, Kingman, Reno, and Wilson; of these, Cherokee produced no oil (Fig. 2). A summary evaluation based upon mineral fuels and nonfuel minerals for Kansas counties in 1954 is presented in Table 5.

Sources of information.—In compiling the information for this report many of the data were obtained from the tabulation sheets provided by the United States Bureau of Mines, with whom the State Geological Survey of Kansas has been cooperating for many years in collecting mineral statistics for the state. Coal statistics were derived from the reports of Mr. John Delplace, Chief Mine Inspector of the Mine Inspection Section and Mine Rescue Station of the Kansas Labor Department at Pittsburg, Kansas. Data pertaining to petroleum and related products were summarized from the reports by Ver Wiebe and others on Oil and Gas Developments in Kansas published as State Geological Survey Bulletins 92, 97, 103, 107, and 112. Many of the data on oil and gas production in these bulletins were supplied by the Kansas Corporation Commission, Conservation Division.

THE MINERAL FUELS AND RELATED PRODUCTS

Since 1917 the mineral fuels—oil, gas, and coal, and more recently added natural gasoline and liquefied petroleum gases—have contributed the greatest share to the mineral wealth produced in Kansas. The mineral fuels account for 84 percent or more of the value of all minerals produced each year from 1950 to 1954.

	ŗ			-							-	-		
	-	•	DECATUR	MORTON	PHILLIPS	atties.	TIBASE	BEPUBLIC	WASHINGTON	MARSHALL NE	MANA MANA	<u>ر</u> ا	5	
SG			0,86	0, P, SG	0,56,51	SG	SG	SS	SG	Gp,SG,St	0	0, SG St	**************************************	
BHERMAN	THOMAS		1	1	,	1		61000			_	ATCHISON	3	
			SHERIDAN	-	ROOKS	OSBORNE	MITCHELL		CLAY 'RILEY	POTTAWATOWIE	JACKSON	Sŧ	16.05 16.05	
2	 	0,58	0,56	0	98'0	0, 56		2	SG St,	98' S' SG	St, SG	No.	O	
WALLACE	100	-		1			LINCOLN		ř:	المرح فلا	SHAWAGE	2,0	,	,
St.SG,			:	78690	ELLIS	RUSSELL	4	Se	DICKINSON DEANY	1		7	C. C.	
۳ 0	S 		98,0	0,56	98'0	0,56,0	T	SALINE	<u>ئ</u> .	St. SG 0, SG, SI	—!-		10000000	_
ONCELEY	1		7-1-1				CLL SWORTH	0.56	SG Luonnii	ز •	08460	2,0,1	2,10,10	
		80011	LANE	£88	HO3H	BARTON	0,5,56		o	, St, SG, LYON			1	_
		98,0	0	0, 86	O,H,G,	0,6,86,		McPHER SON	MARION	6 6.SG	02,t2	0,0,0	0,54,6	
	-		-		N6, LP	CI,NG	2000	0.00	0		COFFE	ξί -	i	Τ-
HAMILTON	KEARNY	FIRMEY	ļ <u>-</u> 	нородиям	PANEE		5 6	2	_	0.866	J 0. St.	٠.		
(G, NG,	6,0,NG, SG		0	0,6,86	-		HARVEY	7	1		, o o st	5 5 5 7 8	
50,5	0,18	_		7	FOWARDS		S,0, NG, LP	LR 0,56,6	G BUTLER	GREENWOOD	M00000M	-	<u> </u>	_
† <u>-</u>	- SG -			FORD	0,6,86	5, 6, 86	9,98	SEDGWICK	5	ost, SG	9'0 9		St, St, NC	
	GRANT	HASKELL	- SS	26.60	KIOWA	PRATT	KINGWAN	O' NG	-			의 oresida	<u>ဒု</u>	7
ა	<u></u>	SG O		2000	86.0	0,6,86	O, NG, G,	SG.LP V.G.	-	ļ Įž	-7 c,0,st,		St, Casurone	
MORTON	+-	SEWARD	1 30734	CLARK		BANBER	LP SG	SUMMER	CONTEX	51.0.6.56	SG CI, G, SG	98	O'S'C	- (3
6,0,56	o	G, NG, LP, O,	0,6, 59,	0,6,56	SG,0	0,6,66,	0,6,56	0,56,6			å	3	- <u>-</u> -	
-	1	SG	.			NG, 20			5,5°	0.51,6,56	SG! St, G	8,5	_	
											-			

Fig. 2.—Map of Kansas showing mineral commodities produced in each county in 1954. Minerals are listed in order of value within counties. C—cement. CB—carbon black. CI—clay. Co—coal. Dm—diatomaceous marl. G—natural gas. Gp—gypsum. H—helium. LP—liquefied petroleum gases. NC—natural cement. NG—natural gasoline. O—oil. P—pumicite or volcanic ash. Pb—lead. Pe—perlite. S—salt. SG—sand and gravel. St—stone. V—vermiculite. Zn—zinc.

118 Geological Survey of Kansas-1956 Reports of Studies

TABLE 5.—Value of mineral production in Kansas by counties in 1954

	Value	of mineral pr	oduction	
County	Fuels	Non-fuels	Total	Commodities in order of decreasing importance
Allen	\$ 2,371,008	\$ 7,511,609	\$ 9,882,617	C, O, St, Cl, G
Anderson	2,105,547	133,788	2,239,335	O, St, SG
Atchison	••••	•	•	St
Barber	4,010,790	•	•	O, G, Gp, NG, SG
Barton	46,116,926	281,409	46,398,335	O, G, SG, Cl, NG
Bourbon	225,669	903,540	1,129,209	St, NC, O, Co
Brown	6,193	•	•	O, SG
Butler	24,697,193	322,735	25,019,928	O, St, SG
Chase	98,834	38,095	136,929	O, SG, G
Chautauqua	2,708,189	40,300	2,748,489	O, St, G, SG
Cherokee	2,398,717	5,597,258	7,995,975	Zn, Co, Pb, St, Cl, Sc
Cheyenne		9,600	9,600	SG
Clark	466,845	•	•	O, G, SG
Clay		224,037	224,037	SG
Cloud		359,006	359,006	SG, Cl
Coffey	607,849	49,374	657,223	O, St, SG, Co, G
Comanche	744	•	•	SG, 0
Cowley	12,540,139	617,212	13,157,351	O, St, NG, SG, G, LF
Crawford	1,304,293	181,229	1,485,522	Co, O, Cl, St, G
Decatur	981,495	•	•	O, SG
Dickinson	297,809	185,450	483,259	O, St, SG
Doniphan	••••	192,371	192,371	St
Douglas	38,769	210,759	249,528	St, SG, O
Edwards	241,817	•	•	O, G, SG
Elk	844,391	1,497,243	2,341,634	St, O, G, SG
Ellis	32,053,870	•	•	O, SG
Ellsworth	8,933,343	789,098	9,722,441	O, S, SG
Finney	3,942,084	86,295	4,028,379	G, O, NG, SG
Ford	12,500	109,072	121,572	SG, G, 0
Franklin	1,284,518	259,471	1,543,989	O, Cl, St, Co
Geary		395,143	395,143	St, SG
Gove	58,534	•	•	O, SG
Graham	10,930,111		10,930,111	0
Grant	16,014,326	•	•	G, CB, NG, LP, SG
Gray		•	•	SG
Greeley			••••	None reported
Greenwood	17,318,962	56,254	17,375,216	O, St, SG
Hamilton	487,972		•	G, SG
Harper	450,691	•	•	O, G, SG
Harvey	507,272			O, SG, G
Haskell	3,736,615			G, NG, SG, 0
		•	204.010	•
Hodgeman	394,910	•	394,910	О

	(1)	
	00	
4	0	
90	-0	
$\overline{}$	2	
81	7	
3	pd	
9	#	
	Se	
ĭ	=	
~		
2	S	
20	Ce	
· ·	0	
Et.	B	
Ę	6	
a)	0	
Ĭ	ij	
pu		
g	rus	
-		
믕	Ħ	
þ	T	
	B	
	-	
bS	3	
+	Ś	
Ħ		
_	t D	
	÷	
\vdash	_	
Ĭ.		
03	ъ	
	0	
20	įΖ	
	+-	
27	gi	
- 1	긒	
60	9	
m	9	
N	6	
20		
0	-	
	S	
as	ŭ	
	Ø	
an	St	
\leq		
4	ë	
0	Ħ	
>	Z	
Ξ	\supset	
S	0	
0	÷	
ive		
Ξ	Ę.	
\equiv	_	
+	Ę.	
O	maj	
0	0	
tec		
at		
G		

_		f mineral pro-		Commodities in order		
County	Fuels	Non-fuels	Total	Commodities in order of decreasing importance		
J ack son	•	113,362	113,362	St, SG		
Jefferson	3,293	347,944	351,237	St, G		
Jewell	•	*	•	SG		
Johnson	19,260	340,625	359,885	St, O, G		
Kearny	7,438,317	•	•	G, NG, O, LP, SG		
Kingman	3,781,053			O, NG, G, LP, SG		
Kiowa	8,432	•		SG, O		
Labette	236,280	206,989	443,169	O, St, G, Co		
Lane	6,063	•	6,063	0		
Leavenworth	547	551,869	552,416	St, SG, G		
Lincoln		384,329	384,329	St, P		
Linn	2,056,791	132,342	2,189,133	Co, O, St, G		
Logan		•	•	SG		
Lyon	1,080,261	114,550	1,194,811	O, SG		
Marion	2,057,482	•	•	O, St, G		
Marshall		455,015	455,015	Gp, SG, St		
McPherson	11,357,768	43,899	11,401,667	O, SG, G		
Meade	1,874,910	103,582	1,978,492	O, G, SG, P		
Miam i	1,937,826	•	•	O, St, G		
Mitchell	••••		••••	None reported		
Montgomery	2,652,598	5,467,226	8,119,824	C, O, Cl, St, G		
Morris	113,683	96,403	210,086	O, St, SG, G		
Morton	5,322,705	•	•	G, O, SG		
Nemaha	105,947		105,947	0		
Neosh o	1,760,662	4,493,813	6,254,475	C, O, St, G		
Vess	741,147	•	•	O, SG		
Norton	2,131,195	20,373	2,151,568	O, P, SG		
Osage	44,239	•	•	St, Co		
Osb orne	254,237	•	•	O, SG		
Ottawa	•	•	*	SG		
Pawnee	4,698,508	86,249	4,784,757	O, G, SG		
Phillips	5,816,733	634,094	6,450,827	O, SG, St		
Pottawatomie	••••	117,698	117,698	St, SG		
Pratt	8,258,932	82,843	8,341,775	O, G, SG		
Rawlins		••••	•	None reported		
Reno	3,377,213	5,853,353	9,230,566	S, O, NG, LP, SG,		
Republic	, .	•		SG		
Rice	21,426,416	1,548,218	22,974,634	O, S, SG, St, G		
Riley	,,	279,634	279,634	St, SG		
-	20 270 502	213,004 ±	£13,034 ±			
Rooks	20,278,583	•	4 700 000	O, SG		
Rush	1,728,038	•• ·	1,728,038	O, H, G, NG, LP		
Russell	31,573,900	•	•	O, SG, G		
Saline	4,032,383			O, SG		

120 Geological Survey of Kansas-1956 Reports of Studies

	Value o	f mineral pro	duction	
County	Fuels	Non-fuels	Total	Commodities ^a in order of decreasing importance
Scott	135,947	*		O, SG
Sedgwick	5,072,247	1,230,276	6,302,523	O, NG, SG, LP, V, C
Seward	3,727,829			G, NG, LP, O, SG
Shawnee		713,692	713,692	St, SG
Sheridan	1,076,682	*		O, SG
Sherman		12,075	12,075	SG
Smith		*		SG
Stafford	20,182,186			O, G, SG
Stanton	1,515,821		1,515,821	G
Stevens	10,257,865	••••	10,257,865	G
Sumner	5,352,831			O, SG, G
Thomas	12,902	51,155	64,057	SG, O
Trego	2,898,072			O, SG
Wabaunsee	513,282	86,198	599,480	O, SG, St
Wallace		69,854	69,854	St, SG, Dm
Washington				SG
Wichita				None reported
Wilson	545,276	3,163,705	3,708,981	C, O, St, Cl, G, SG
Woodson	2,135,886		2,135,886	O, G
Wyandotte	467	6,792,599	6,793,066	C, St, SG, Pe, G
Undistributed	ł	2,303,332	172,518,557	
Unassigned		7,650,098		Cl products and "granite"
Kansas total	398,145,730	63,597,742	461,743,472	(\$1000 9 W

^{*}Undistributed, values may not be revealed.

COAL

Coal was the first mineral commodity sought in Kansas, which ranked 17th among the coal-producing states in the 5-year period 1950 to 1954. Among the minerals produced in the state coal ranked 5th to 9th in importance in those years. Coal production in Kansas, as elsewhere in the United States, has suffered a setback in the last decade. The average quantity of coal mined annually from 1945 to 1949 was 2,563,798 tons, 27.9 percent more than it was in 1950 to 1954, when average annual production was 1,849,777 tons of coal (Table 6). Strip mining decreased 24.7 percent and deep or shaft mining decreased 73.3 percent, on the average, between the 1945-1949 and 1950-1954 periods. Within the 5-year

^a Commodities: C, cement; CB, carbon black; Cl, clay; Co, coal; Dm, diatomaceous mari; G, natural gas; Gp, gypsum; H, helium; LP, liquefied petroleum gases; NC, natural cement; NG, natural gasoline; O, oil; P, pumicite (volcanic ash); Pb, lead: Pe, perlite; S, salt; SG, sand and gravel; St, stone; V, vermiculite; Zn, zinc.

Table 6.—Summary of coal production in Kansas, 1950 to 1954, and changes from prior years

	Q	uantity,	tons	Total value	Average price per ton	chang	cent ge from ous year
Year	Strip mines	Under- ground mines	Total			Quantity	Value
1945-49							
average	2,353,953	209,845	2,563,798				
1950	2,041,132	104,582	2,145,714	\$8,303,913	\$3.87		
1951	1,876,412	74,720	1,951,132	7,687,460	3.94	-10.9	— 7.5
1952	1,971,183	44,913	2,016,096	7,862,774	3.90	+ 3.3	+ 2.2
1953	1,688,741	31,565	1,720,306	7,122,067	4.14	-14.7	— 9.5
1954	1,287,895	25,245	1,415,640	5,860,750	4.14	17.8	17.8
1950-54							
average	1,773,073	56,205	1,849,777	7,367,393	3.99		
Percent							
change in							
5-year							
average	-24.7	-73.3	-27.9				

period 1950 to 1954, coal tonnage and value were greatest in 1950 and least in 1954. In 1950 coal production amounted to 2,145,714 tons valued at \$8,303,913, whereas by 1954 production had dropped to 1,415,640 tons valued at \$5,860,750, a decrease of 34.1 percent in tonnage and 29.5 percent in value. With the exception of 1952 each year saw a decrease in quantity and in value from the preceding year, most strikingly shown by a 17.8 percent decrease in both quantity and value in 1954. Although less coal was produced year after year, the average price of coal advanced from \$3.87 a ton in 1950 to \$4.14 a ton in 1954. It is interesting to note (Table 7) that production by strip mining has increased steadily from approximately 95 percent of all coal mined in the state in 1950 to slightly more than 98 percent in 1954, whereas deep or shaft mining decreased correspondingly. The advantage of strip mining over underground mining is clearly indicated by the fact that the average strip miner produced 9 to 11 times as much coal as the average shaft miner. In 1950 each strip miner produced 2,363 tons of coal whereas the shaft miner produced only 263 tons. In 1954 the strip miner produced 2,920 tons of coal, the shaft miner 255 tons (Table 7). The decline in the coal-mining industry is not only

Generated at University of Kansas on 2023-09-27 20:03 GMT / https://hdl.handle.net/2027/ucl.b3817064 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access use#pd-us-google

	Average an	Percent of total production			
Year	Strip mines	Underground mines	All mines	Strip mines	Under ground mines
1950	2,362	263	1,703	95.2	4.8
1951	2,735	240	1,955	96.3	3.7
1952	3,428	251	2,674	97.8	2.2
1953	3,198	251	2,630	98.2	1.8
1954	2,920	255	2,622	98.1	1.9

recorded in the amount of coal produced annually but is also indicated by the marked decrease of the number of mines and by the number of miners employed (Table 8). In 1950 there were 84 coal mines in Kansas, 52 of which were strip mines and 32 underground mines. The 84 mines employed a total of 1,261 miners, of whom 864 worked in the strip mines and 397 in the underground mines. By 1954 the total number of coal mines has decreased to 40 and the total number of miners employed to 540, in each case a decline of more than 50 percent.

Coal in Kansas was produced in eight eastern counties—Bourbon, Cherokee, Coffey, Crawford, Franklin, Labette, Linn, and Osage. In 1954, Cherokee County was foremost in production, followed by Linn and Crawford Counties, each producing more than 200,000 tons of coal (Table 9). Counties producing 12,000 tons of coal or less were, in order of importance, Bourbon, 12,003 tons: Osage, 10,660 tons; Coffey, 2,834 tons; Labette, 1,277 tons; and

Table 8.—Number of coal mines and number of men employed in Kanscs coal mines, 1950 to 1954

	Number of mines			Number of men employed		
Year	Strip mines	Under- ground mines	Total	Strip mines	Under- ground mines	Total
1950	52	32	84	864	397	1,261
1951	46	23	69	686	312	998
1952	32	15	47	575	179	754
1953	30	11	41	528	126	654
1954	30	10	40	441	99	540

Table 9.—Kansas coal production, by type of mine and by counties, 1950 to 1954

			Produ	ction, sho	rt tons		
County	Type of mine	1950	1951	1952	1953	1954	Rank of county 1954
Bourbon	Strip	102,907	75,405	17,566	15,632	12,003	
	Underground	•	••••		••••	••••	
	Total	102,907	75,405	17,566	15,632	12,003	4
Cherokee	Strip	505,035	608,368	585,385	656,525	578,004	
	Underground	7,096	1,828	• ••••		••••	•
	Total	512,131	610,196	585,385	656,525	578,004	1
Coffey	Strip	3,100	3,877	3,579	3,284	2,834	1
-	Underground	•			•		
	Total	3,100	3,877	3,579	3,284	2,834	6
Crawford	Strip	698,389	713,012	781,842	520,739	253,631	
	Underground	72,579	56,535	34,721	24,604	20,053	;
	Total	770,968	769,547	816,563	545,343	273,684	3
Franklin	Strip	423				•••	
	Underground	2,501	1,903	1,073	1,017	731	
	Total	2,924	1,903	1,073	1,017	731	. 8
Labette	Strip Underground	3,162	2,995	482	527 	1,277	
	Total	3,162	2,995	482	527	1,277	7
Linn	Strip	714,525	458,253	572,422	486,470	435,678	
	Underground	2,488	957	199	115	269)
	Total	717,013	459,210	572,621	486,585	4 35,947	2
Osage	Strip	13,591	14,502	9,907	5,564	6,468	}
	Underground	19,918	13,497	8,920	5,280	4,192	}
	Total	33,509	27,999	18,827	11,384	10,660	5

Franklin, 731 tons. Bourbon, Cherokee, Coffey, and Labette Counties have produced only strip coal since 1952, whereas Franklin County has produced coal only by underground mines since 1951. Sharpest decline in coal production in 1954 was in Crawford County, where production declined from 816,563 tons in 1952 and 545,343 tons in 1953 to a low of 273,684 tons in 1954, a loss of 66.5 and 49.8 percent respectively. Coal production by counties and by type of mining for each year, 1950 to 1954, is presented in Table 9.

Generated at University of Kansas on 2023-09-27 20:03 GMT / https://hdl.handle.net/2027/ucl.b3817064 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

124 Geological Survey of Kansas—1956 Reports of Studies

All the Kansas coal is mined from rocks of Pennsylvanian age, is thin compared to the coals of the eastern states, and is all of bituminous rank, ranging from high volatile C to high volatile A coals. In currently operating mines the coal is 10 to 40 inches thick and lies at the surface or at depths not exceeding 285 feet. Typical B.t.u. values per pound of coal range from 10,700 to 13,300. Kansas coal reserves are estimated at somewhat more than one billion tons. The Kansas coal fields are in Coal Producing District 15 as defined by the Bituminous Coal Act of 1937 and are part of the Western Region of the Interior Province, which includes also parts of Iowa, Missouri, Oklahoma, and Arkansas.

Coal companies operating in Kansas on record December 3, 1954, are listed in Table 10.

Table 10.—Directory of Kansas coal-mining companies on record as of December 31, 1954

		emoer 31, 1934			
County	Coal company	Address			
Bourbon	Brooks	Route 2, Pittsburg			
do	Garrett	Route 2, Garland			
do	Jones	Arcadia			
do	Pellett	Route 5, Fort Scott			
do	Wood	Route 1, Pleasanton			
Cherokee	Apex-Compton	P.O. Box 267, Pittsburg			
do	Black Diamond	Route 3, Pittsburg			
do	Boyd	301 W. Walnut, Columbus			
do	Markley	Route 2, McCune			
do	Pittsburg-Midway	314 Natl. Bank Building, Pittsburg			
do	Semple	Baxter Springs			
do	Wilkinson	Weir			
Coffey	Thorne	P.O. Box 171, Lebo			
Crawford	Clemens	312 Globe Building, Pittsburg			
do	Cliff Carr	Route 1, Mulberry			
do	Davis	Cherokee			
do	De Gasperi	Route 2, Pittsburg			
do	Hill	Route 1, Garland			
do	Illner	802 N. Taylor, Pittsburg			
do	Lucky Star	2024 S. Broadway, Pittsburg			
do	Mark	Route 1, Mulberry			
do	N Coal Co.	1010 S. Catalpa, Pittsburg			
do	Palmer & Son	Mulberry			
do	Quality	Route 3, Girard			
do	Savage	704 N. Water, Pittsburg			
do	Target	P.O. Box 321, Mulberry			
do	True Cherokee	Arma			
do	Victory	3240 Gillham Plaza, Kansas City, Mo			

County	Coal company	Address
Franklin	Red Star	Homewood
Labette	Gallagher	P.O. Box 65, Oswego
do	Richards	Oswego
Linn	Fyock	Prescott
do	Hume-Sinclair	309 N. Maple, Butler, Mo.
do	La Cygne	La Cygne
do	Snow	Pleasanton
Osage	Linville & Son	P.O. Box 266, Carbondale
do	Osage	Osage City
do	Oxbow	Osage City
do	Rogers	Lebo

OIL

After coal, petroleum or crude oil was the next mineral sought in Kansas. Search for oil was made in Miami County as early as 1860, approximately a year after the first commercial oil well in the United States was completed in Pennsylvania. Since records of its production have been kept, Kansas has produced, to the end of 1954, a recorded cumulative total of 2,521,520,272 barrels of crude oil valued in excess of \$4,700,000,000. As an oil state Kansas has ranked 3rd to 6th in the United States since 1916; among the minerals produced in the state, oil has headed the list since 1917.

Oil production has steadily increased from year to year. In 1950 Kansas produced 107,339,000 barrels of crude oil valued at \$275,861,123, but by 1954 production had reached 118,309,260 barrels valued at \$333,632,113, an increase of 10.2 percent in quantity

TABLE 11.—Petroleum or crude oil production in Kansas, 1950 to 1954

	Pr	oduction		Percent from pr yea	evious
Year	Barrels	Value	Estimated average price per bbl.	Quantity	Value
1950	107,339,000	\$ 275,861,123	\$2.57		
1951	113,912,366	292,754,781	2.57	+6.1	+6.1
1952	114,399,556	294,006,859	2.57	+0.4	+0.4
1953	114,390,176	307,632,164	2.689	-0.1	+4.6
1954	118,309,260	333,632,113	2.82	+3.4	+8.5
Total	568,350,358	1,503,887,040			

and 20.9 percent in value. With the exception of 1953, when production was less by 9,380 barrels than it was in 1952, each year since 1950 has showed an increase in production as well as in value (Table 11).

The number of oil-producing counties in the state increased from 59 in 1950 to 76 in 1954. The ten leading oil-producing counties in Kansas for each year of the 5-year period 1950 to 1954 are given in Table 12. Barton County held first place for each of the five years. Russell and Ellis ranked second and third respectively for the first four years but interchanged rank in 1954. Butler County replaced Rice County in fourth place in 1953. Rooks County has maintained sixth place throughout the period; Stafford and Greenwood Counties have interchanged seventh and eighth places several times. In 1954 Cowley County was ninth. although Ellsworth County had held ninth place from 1950 to 1953. McPherson County was continuously the tenth largest oil producer from 1950 to 1954. On the basis of cumulative production. thirteen counties have each produced more than 50,000,000 barrels of oil (Table 13). Butler County was the first important oil producing county in the state and still ranked fourth in annual production in 1954. In cumulative production it tops the list with a total production of 397,205,760 barrels of oil; Barton County is second, Russell third, and others as shown in Table 13.

TABLE 12.—Ten leading oil-producing counties in Kansas, 1950 to 1954

	Production, bbl.							
County, by rank in 1954	1950	1951	1952	1953	1954			
Barton	19,424,231	18,956,122	16,959,379	17,075,634	16,353,520			
Ellis	11,077,013	11,694,249	11,070,399	11,164,383	11,366.975			
Russell	13,561,393	12,959,676	11,635,324	12,583,124	11,195,338			
Butler	6,862,459	7,567,782	8,164,208	8,615,810	8,757,870			
Rice	8,656,838	9,503,159	9,566,545	8,477,552	7,578.134			
Rooks	5,759,190	7,088,170	7,287,132	7,016,581	7,190,986			
Stafford	5,296,899	6,336,930	6,462,936	6,874,805	7,148,225			
Greenwood	5,375,676	5,932,510	6,834,217	5,638,077	6,141,478			
Cowley					4,363,797			
McPherson	3,477,164	3,326,246	3,366,023	3,348,787	4,021,567			
Ellsworth	4,149,448	4,135,395	3,856,505	3,539,273				

TABLE 13.—Leading oil-producing counties in Kansas based upon recorded and estimated cumulative production (50 million barrels or more) to end of 1954

C	County	Cumulative production, bbl.
F	Butler	397,205,760
F	Barton	267,139,672
F	Russell	258,111,792
F	Rice	198,343,888
C	Greenwood	196,323,700
F	Illis	169,738,638
ı	AcPherson	128,010,085
S	Stafford	90,036,561
F	Ellsworth	81,025,055
C	Cowley	78,825,053
F	Reno	76,953,650
S	ledgwick	56,463,102
F	Rooks	52,990,702

An important fact regarding oil production in Kansas is that, despite the ever-increasing rate of oil production, the proved oil reserves have steadily increased. In 1950 they amounted to 732.2 million barrels, in 1951 they were estimated at 791.9 million barrels, and by 1954 they had reached 978.5 million barrels, an increase of 32.2 percent over the reserves of 1950 (Table 14). The explanation for the increased oil reserves from year to year is to be found in the continued discovery of new oil pools. As listed in

TABLE 14.—Kansas proved reserves of crude oil, natural gas liquids, and total liquid hydrocarbons, 1950 to 1954, and changes from prior years (American Petroleum Institute, 1950 to 1954)

	Crude oil reserves			Natural gas liquids reserves		All liquid hydrocarbons reserves	
Year	Quantity, million bbl.	Percent change from previous year	New oil pools dis- covered	Quantity, million bbl.	Percent change from previous year	Quantity, million bbl.	Percent change from previous year
1950	732.2		118	163.6		895.8	
1951	791.9	+ 8.1	147	159.6	-2.4	951.5	+ 6.2
1952	916.0	+15.6	157	168.2	+5.4	1084.2	+14.0
1953	913.3	— 3.7	165	177.8	+5.6	1091.1	+ 0.5
1954	978.5	+ 7.1	122	175.2	-1.4	1153.6	+ 5.7

Table 15.—Leading oil pools in Kansas, 1950 to 1954

			Annu	Annual production, barrels	arrels	
Fool, by						
1994 rank	County	1950	1951	1952	1953	1954
Trapp	Russell-Barton	7 000 005	100 070			
4 3 2	Targett - Dat Mil	6,502,535	340,325	6,279,833	5,881,840	5,409,869
Aran-Prusa	Barton-Ellsworth	6.477.596	6 900 225	K 415 900	200	
Hall-Gurney	£	2006 1116	0000000	END'OTE'O	3,373,043	4,681,172
farms arms	russell-barron	3,128,230	3,662,430	4.199.197	4.569 899	4 547 Q24
Chase-Silica	Rice Barton Ctofferd	400 200			300,000,1	E30, 1E0,E
I	tree, Dai toll, Stallord	5,108,723	6,666,359	4,898,153	5,507,155	4.114.824
El Dorado	Butler	3.062.823	3 240 465	9 497 094		
Bemis-Shutte		Profession (OF (01-7)	470' / C#,'C	3,891,884	3,833,188
Sing-Sing	EIIIS		4,199,030	3.642.381	3 447 828	2 279 277
				1006	0,111,000	10,010,0

Table 14, the number of newly discovered oil pools ranged from 118 in 1950 to 165 in 1953, averaging approximately 142 new oil pools per year between 1950 and 1954.

Most of the largest oil pools are in western Kansas (Table 15). Of the six major oil pools only the El Dorado pool in Butler County lies east of the Sixth Principal Meridian, which is the division line between Eastern and Western Kansas insofar as oil and gas are concerned. The Trapp pool, in Russell and Barton Counties, which was discovered in 1936, is the largest oil pool in the state in annual production as of 1954. The Kraft-Prusa pool, in Barton and Ellsworth Counties, ranked second in importance throughout the 1950-1954 period. Other large oil pools include the Hall-Gurney pool, in Russell and Barton Counties, the Chase-Silica pool, in Rice, Barton, and Stafford Counties, the El Dorado pool, in Butler County, and the Bemis-Shutts pool, in Ellis County. Production of these large oil pools for each year of the 1950-1954 period is listed in Table 15.

Many major oil companies operate in Kansas, as do numerous independent oil companies and operators, whose number changes from year to year. For this reason no directory of oil companies is included in this report.*

The number of oil refineries, however, is less variable than the number of oil companies, so a directory of refineries is given in Table 16.

NATURAL GAS

Second most valuable mineral resource produced in Kansas is natural gas. For many years Kansas has held fifth place among the states producing natural gas. Through 1954 Kansas had produced a recorded cumulative total of 3,423,854,990 thousand cubic feet of natural gas. Gas production increased from 360,874,912,000 cubic feet in 1950 to 405,841,987,000 cubic feet in 1954. Peak production was reached in 1953, when the amount produced was 420,588,383,000 cubic feet. Even though production in 1954 was 3.6 percent less than in 1953, the value of the gas in 1954 was \$44,642,618 as compared to \$37,680,408 in 1953, an increase of 18.4 percent, brought about by an advance of price from 9.5 cents per thousand

[•] For the names of oil companies, independent operators, and consulting geologists, see the Kansas Geological Society Directory published by the Society at 508 East Murdock Street, Wichita 5, Kansas, and the Morrison Petroleum Directory of Kansas published annually by John H. Morrison, Box 191, Wichita, Kansas.

130 Geological Survey of Kansas-1956 Reports of Studies

TABLE 16.—Directory of petroleum refineries in Kansas on record as of December 31, 1954

Address	County
Arkansas City	Cowley
Coffeyville	Montgomery
P.O. Box 570 Phillipsburg	Phillips
420 W. Douglas Wichita	Sedgwick
P.O. Box 551 El Dorado	Butler
Chanute	Neosho
P.O. Box 770 McPherson	McPherson
2029 Fairfax Trafficway Kansas City	Wyandotte
114 W. Pine Garden City*	Finney
1401 S. Douglas Road El Dorado	Butler
P.O. Box 546 Augusta	Butler
1101 Illinois Neodesha	Wilson
Wichita**	Sedgwick
	Arkansas City Coffeyville P.O. Box 570 Phillipsburg 420 W. Douglas Wichita P.O. Box 551 El Dorado Chanute P.O. Box 770 McPherson 2029 Fairfax Trafficway Kansas City 114 W. Pine Garden City* 1401 S. Douglas Road El Dorado P.O. Box 546 Augusta 1101 Illinois Neodesha

^{*} Refinery at Shallow Water, Scott County (shut down 9-1-54)
** Refinery at Potwin, Butler County

TABLE 17.-Natural gas production in Kansas, 1950 to 1954

				Percent from prev	
Year	Production, M cu. ft.	V alue	Price, cents per M cu. ft.	Quantity	Value
1950	360,874,912*	\$ 25,860,907	8		
1951	407,192,252*	29,099,451	8	+12.8	+12.8
1952	408,732,836*	32,860,740	9	+ 0.3	+12.9
1953	420,588,383 ^h	37,680,408	9.5	+ 2.8	+14.6
1954	405,841,987°	44,642,618	11	— 3.6	+18.4
Total	2,003,232,370	170,144,124			

^{* 16.4} psia b 16.4 psia first 6 months, 14.65 second half c 14.65 psia

TABLE 18.—Production of natural gas in the Hugoton Gas Area, Kansas, 1950 to 1954

			Percent		
Year	Production, M cu. ft. (14.65 psia)	Value	Quantity	Value	Percent of state total
1950	320,545,480	\$ 22,438,184			88
1951	371,002,475	25,970,173	+15.7	+15.7	91
1952	375,081,748	33,757,357	+ 1.1	+ 6.5	92
1953	387,635,243	36,825,148	+ 3.3	+ 9.1	92
1954	346,732,192	38,140,541	-10.6	+ 3.6	85.4
Total	1,800,997,138	157,134,403			

cubic feet in 1953 to 11 cents per thousand cubic feet in 1954. Quantity and value of natural gas produced in Kansas from 1950 to 1954 are shown in Table 17.

Of the total amount of gas produced annually in the state between 1950 and 1954, 85 to 92 percent came from the Hugoton Gas

Table 19.—Production of natural gas in Kansas counties producing 2 billion cubic feet or more annually, 1950 to 1954.

		Production, M cu. ft.*				
County	1950	1951	1952	1953	1954	Rank in 1954
Barber	10,483,580	9,574,988	6,407,405	6,644,619	8,970,191	9
Barton	3,980,091	3,302,662	2,687,303	2,530,856	2,170,509	13
Finney	h	h	h	30,784,079	28,048,734	5
Grant	h	h	h	84,403,364	75,765,639	2
Hamilton	h	h	h	5,367,827	4,436,105	10
Haskell	h	h	h	31,315,837	25,528,913	7
Kearny	h	h	h	71,955,888	61,466,542	3
Meade	h	•···		2,987,016	3,482,797	12
Morton	h	h	h	24,357,419	47,822,615	4
Pawnee	6,120,589	4,068,784	2,986,948	3,146,047	3,934,660	11
Pratt	••••	•	2,646,761	2,323,599		
Rush	4,193,230	2,936,849		•		
Seward	h	h	h	26,997,298	26,095,598	6
Stanton	h	h	h	16,018,254	13,780,190	8
Stevens	h	h	h	101,239,764	93,253,317	1

^{*}Gas production is based on a 16.4 psia base except for the last six months of 1953 and for the entire year 1954, when the base used was 14.65 psia.
h=Hugoton Gas Area, production not segregated by counties.

Area comprising all or part of Finney, Grant, Hamilton, Haskell, Kearny, Morton, Seward, Stanton, and Stevens Counties, all in southwestern Kansas. The contribution of the Hugoton area in thousands of cubic feet of gas and in percent of the state's total is shown in Table 18. Natural gas was produced in 44 counties in 1950, 48 in 1951, 52 in 1952, 46 in 1953, and 48 in 1954. Each of fifteen gas-producing counties produced annually two billion cubic feet of gas or more between 1950 and 1954, and are listed in Table 19. Stevens County leads with a cumulative production of 1,267,573,081,000 cubic feet. Grant and Kearny Counties follow in the order named. Other counties are listed with Stevens, Grant, and Kearny in Table 20, which shows the cumulative gas production of leading Kansas counties.

The reserves of natural gas, like those of oil, have steadily increased year after year, owing to the continued discovery of new gas fields. New gas pools numbered 4 in 1950, 7 in 1951, 10 in 1952, and 22 each in 1953 and 1954. Gas reserves increased from 13,790.834 million cubic feet in 1950 to 15,758,332 million cubic feet in 1954, an increase of 14.2 percent. Gas reserves in 1951 were less than they were in 1950, and likewise reserves in 1954 were slightly

Table 20.—Leading gas-producing counties in Kansas based on estimated and recorded cumulative production to end of 1954

Rank	County	Production, M cu. ft.
1	Stevens*	1,267,573,081
2	Grant*	612,768,003
3	Kearny*	408,030,430
4	Barber	229,476,298
5	Haskell*	218,379,750
6	Morton*,b	208,328,298
7	Finney*	179,796,813
8	Seward*	152,916,211
9	Stanton*	74,870,444
10	Rice	31,912,258
11	Pawnee	22,459,930
12	Barton	20,897,764
13	Pratt	14,656,523
14	Hamilton*	12,785,932

Hugoton Gas Area counties.

Generated at University of Kansas on 2023-09-27 20:03 GMT Public Domain in the United States, Google-digitized / h

b Not all the gas produced in Morton County is from the Hugoton Gas Area

TABLE 21.—Natural gas reserves and new gas pools discovered in Kansas, 1950 to 1954 (American Gas Association, 1950 to 1954)

	Res		
Year	Million cu. ft.	Percent change from previous year	New gas pools
1950	13,790,834		4
1951	13,457,498	— 4.5	7
1952	14,193,565	+ 5.4	10
1953	15,787,602	+11.2	22
1954	15,758,332	— 1.2	22

less (0.2 percent) than they were in 1953. Gas reserves and the number of new gas pools discovered in each year from 1950 to 1954 are presented in Table 21.

Consumption of natural gas in Kansas is increasing. In 1954 Kansas consumed 269.3 billion cubic feet of gas, which was 66.4 percent of the gas produced in the state, an increase of 6 percent over 1953 (Table 22). In 1951, the year of least gas consumption, 59.8 percent of 243.4 billion cubic feet of gas produced in Kansas was consumed within the state. The remaining gas produced in the state was exported plus an additional quantity imported from neighboring states. The greatest amount of Kansas-produced gas was exported in 1953, but the largest amount of gas was imported and the largest total exported in 1952. Imports and exports of natural gas in 1954 were respectively 65.5 and 202 billion cubic feet. Data on production, consumption, percent consumed, imports, and exports of natural gas in Kansas for 1950 to 1954 are presented in Table 22.

Table 22.—Production, consumption, imports, and exports of natural gas in Kansas, 1950 to 1954

				Consumption		
Year	Production, billion cu. ft.	Imports, billion cu. ft.	Total quantity, billion cu. ft.	Quantity, billion cu. ft.	Percent of total	Exports, billion cu. ft.
1950	362.1	59.6	421.7	226.4	62.5	195.3
1951	407.1	47.8	454.9	243.4	59.8	211.5
1952	408.7	67.2	475.9	256.4	62.7	219.5
1953	420.6	48.2	468.8	253.9	60.4	214.9
1954	405.8	65.5	471.3	269.3	66.4	202.0

NATURAL GAS LIQUIDS

In the 5-year period 1950 to 1954 Kansas produced 22,201,238 barrels of natural gas liquids, consisting of natural gasoline, propane, butane, and LPG (liquefied petroleum gases) valued at \$57,244,735. Except in 1954, production and value of the natural gas liquids increased year by year. Percent increase in quantity ranged from 7.7 percent in 1953 to 12.8 percent in 1951; percent increase in value ranged from 8.5 percent in 1953 to 12.7 percent in 1951. In 1954 production decreased 9.5 and value 9.9 percent compared to 1953 (Table 23). A decrease of 14.4 percent in quantity

Table 23.—Production of natural gas liquids in Kansas, 1950 to 1954, and changes from prior years

	Produ	Percent change from previous year		
Year	Quantity, bbl.	Value	Quantity	Value
1950	3,698,022	\$ 9,581,576		
1951	4,172,241	10,806,977	+12.8	+12.7
1952	4,677,662	12,023,205	+12.1	+11.2
1953	5,039,444	13,047,307	+ 7.7	+ 8.5
1954	4,613,869	11,765,670	- 9.5	— 9.9
Total	22,201,238	57,224,735		

and value of natural gasoline accounted for most of the reduction in the 1954 production and value of natural gas liquids. Although production and value of the LP gases decreased slightly in 1954, the decrease in production and value in 1953 had been notable. The 1954 quantity and value of the LP gases was 65.3 percent less than it was in the peak year of 1951. Data on the production and value of natural gasoline, propane, butane, and LP gases are presented in Table 24.

Natural gasoline and liquefied petroleum gases were processed by 14 companies in 16 plants located in 12 counties; 3 plants are close to Ulysses in Grant County. Plants on record as of December 31, 1954, are listed in Table 25.

TABLE 24.—Production and value of natural gasoline, propane, butane, and other LP gases in Kansas, 1950 to 1954

bl.							50mg =	5 1934 to 1934	PC81 02 0
Quantity. bbl. Value Quantity. bbl. Value Quantity. bbl. Other LPGs 2,478,715 \$ 7,312,209 335,559 \$ 704,674 190,466 \$ 399,979 693,282 \$ 2,632,433 7,765,677 373,561 784,478 250,550 526,155 915,697 \$ 2,802,105 8,266,210 676,077 1,419,762 334,358 702,152 865,122 \$ 2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	'	Natural ga	asolinea	Propar	Jeb	Buton	4		
2,478,715 \$ 7,312,209 335,559 \$ 704,674 190,466 \$ 399,979 683,282 \$ \$ 2,632,433 7,765,677 373,561 1,419,762 334,358 702,152 865,122 2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	Year		Weles			Trans	2.	Other L	PĢ
2,478,715 \$ 7,312,209 335,559 \$ 704,674 190,466 \$ 399,979 683,282 \$ 2,632,433 7,765,677 373,561 784,478 250,550 526,155 915,697 2,802,105 8,266,210 676,077 1,419,762 334,358 702,152 865,122 2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741			value	Quantity, bbl.	Value	Quantity, bbl.	Value	Quantity, bbl	Velue
2,632,433 7,765,677 373,561 784,478 250,550 526,155 915,697 2,802,105 8,266,210 676,077 1,419,762 334,358 702,152 865,122 2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	1920	2,478,715	\$ 7,312,209	335,559	\$ 704674	190 466	900 000		Aarne
2,632,433 7,765,677 373,561 784,478 250,550 526,155 915,697 2,802,105 8,266,210 676,077 1,419,762 334,358 702,152 865,122 2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	,				- 126- 1	OP. (001	RIR'RRC +	683,282	\$1,164,714
2,802,105 8,266,210 676,077 1,419,762 334,358 702,152 865,122 2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	1651	2,632,433	7,765,677	373,561	784,478	250,550	526.155	915 697	1 720 667
2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	1959	2 000 404						100,010	1,100,001
2,978,066 8,785,295 897,862 1,885,510 845,031 1,774,565 318,485 2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	7001	6,002,103	8,266,210	676,077	1,419,762	334,358	702.152	865 129	1 295 004
2,521,598 7,438,714 904,543 1,885,510 845,031 1,774,565 318,485 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	1953	2 070 066	100					771	190,000,1
2,521,598 7,438,714 904,543 1,899,540 869,573 1,826,103 318,155 13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	2001	6,370,000	8,785,295	897,862	1,885,510	845,031	1.774.565	318 485	760 102
13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741	1954	9 591 500	7 420 944					901,010	100T
13,412,897 13,568,105 3,187,602 6,693,964 2,489,978 5,228,954 3,110,741		2,021,030	47,604,1	904,543	1,899,540	869,573	1,826,103	318.155	G01 219
3,110,741	Total	13 419 897	12 550 105	0.00					OLG. LO
		100/272 02	CO1,000,c1	3,187,602	6,693,964	2,489,978	5,228,954	3,110,741	5.733.712

Estimated average price \$2.95 per barrel.

Estimated average price \$2.10 per barrel.

Estimated average price \$1.89 per barrel.

Generated at University of Kansas on 2023-09-27 20:03 GMT Public Domain in the United States. Goodle-dinitized / P

TABLE 25.—Directory of Kansas plants producing natural gasoline and liquefied petroleum gas on record as of December 31, 1954

F	Plant location	
County	Town	Company
Barber	Medicine Lodge	Kansas Power & Light Company
Barton	Pawnee Rock	A. R. Jones Oil & Operating Company
Cowley	Atlanta	The Texas Company
Finney	Holcomb	Northern Natural Gas Company
Grant	Ulysses	Hugoton Production Company
do	do	Magnolia Petroleum Company
do	do	Stanolind Oil and Gas Company
Haskell	Sublette	Northern Natural Gas Company
Kearny	Lakin	Colorado Interstate Gas Company
do	Deerfield	Deerfield Petroleum, Inc.
Kingman	Cunningham	Skelly Oil Company
Reno	Burrton	Cities Service Oil Company
Rush	Otis	Dunn-Mar Oil and Gas Company
Sedgwick	Wichita	Cities Service Oil Company
do	Cheney	Drillers Gas Company
Seward	Liberal	Panhandle Eastern Pipe Line Company

HELIUM

Helium, first discovered in natural gas at Dexter, Cowley County, Kansas, in 1905, was produced at the United States Bureau of Mines plant at Otis in Rush County in 1951 to 1954. In 1950 the plant was idle but on a stand-by basis. The helium is extracted from helium-bearing natural gas from more than 80 wells in the Otis-Albert, Ryan, Pawnee Rock, Behrens, Unruh, Dundee, Bergtal, and Ash Creek gas fields. The Kansas natural gas that supplies the helium contains approximately 1.4 percent helium. The production and price of helium are controlled by the Federal Government. In addition to Federal agencies, such as the Army, Navy, Air Force, and Weather Bureau, which purchase and use most of the helium produced, other customers of the United States Bureau of Mines, which sells the helium, include commercial concerns that distribute the gas for use in arc welding, the practice of medicine, and many types of research work. Federal agencies pay \$12.00 per thousand cubic feet of helium gas at the production plants. Other Helium production in Kansas ranged from 26,280,000 cubic feet valued at \$327,000 (1951) to 42,782,800 cubic feet valued at \$563,923 (1953). In 1954 production amounted to 37,530,000 cubic feet valued at \$593,162. Data on helium production in Kansas for 1950 to 1954 are presented in Table 26.

TABLE 26.—Quantity and value of helium produced in Kansas, 1950 to 1954

Year	Quantity, cu. ft.	Value
1950	(Stand-by basis)	••••
1951	26,280,000	\$ 327,000
1952	38,509,000	491,000
1953	42,782,800	563,923
1954	37,530,000	593,162
Total	145,121,800	\$1,975,085

CARBON BLACK

Carbon black has been produced in Kansas since 1937. It is used in the manufacture of rubber and as a pigment in paints and inks. The quantity produced between 1950 and 1954 is estimated at 401 million pounds, valued at approximately \$19,000,000. Production of carbon black in Kansas is declining. In 1954 Kansas produced 54,328,515 pounds, valued at \$3,014,326, a decrease of 22.5 percent in quantity and 6.1 percent in value from 1953 figures. Data on carbon black production and value in Kansas for 1950 to 1954 are presented in Table 27.

Carbon black was produced in Kansas by the Columbian Carbon Company and the Peerless Carbon Black Division, Columbian Carbon Company of Ulysses, Grant County, and by the United Carbon Company, P.O. Box 122, Satanta, Haskell County, (plant at Ryus, Grant County).

NONMETALLIC MINERALS

Between 1950 and 1954 the value of the annual production of nonmetallic minerals—cement, clay, gypsum, pumicite (volcanic ash), salt, sand and gravel, and stone averaged \$53,028,109, and for the five years totaled \$265,140,545. In the 5-year period, 1954

Generated at University of Kansas on 2023-09-27 20:03 GMT Public Domain in the United States, Google-digitized / ht

138 Geological Survey of Kansas—1956 Reports of Studies

TABLE 27.—Quantity and value of carbon black produced in Kansas, 1950 to 1954

Year	Quantity, lb.	Value	Gas consumed million M cu. ft. at 14.65 psia.
1950	82,508,506*	\$ 3,992,268*	15.7
1951	112,205,669*	5,334,126*	17.4
1952	82,000,000 ^b	3,900,000"	15.6
1953	69,985,475°	3,207,600	10.9
1954	54,328,515 ^d	3,014,326	8.9
Total	401,028,168	\$19,448,380	

^{*} Pfister, 1953, p. 51.

was the peak year; total value was \$59,804,735, or \$12,536,215 more than the value in 1950, a gain of 26.7 percent. Between 1950 and 1954 the nonmetals annual contribution to the mineral wealth of the state ranged from \$47,612,644 to \$59,250,573 or 11.7 to 13.1 percent of the total. Total value of nonmetallic minerals produced in Kansas from 1950 to 1954 is given in Table 1.

CEMENT

Kansas produces portland and natural cement. Portland cement is produced by six companies and natural cement by one company, all in the eastern part of the state. The portland cement industry showed a sharp advance in the 1950-1954 period compared to the previous 5-year period, 1945-1949. Average annual production and shipments increased more than 30 percent, and value of the shipments, which averaged \$20,983,449 annually between 1950 and 1954, showed an increase of \$8,419,706, or 67.1 percent, compared to the 1945-1949 period. The average price per barrel of portland cement increased from \$1.86 (1945-1949) to \$2.42 (1950-1954), or slightly more than 30 percent (Table 28). It will be noted from Table 28 that annual shipments of portland cement in 1951 and 1953 were less than shipments in each of the other three years but that the total value of the shipments increased annually from 1950 to 1954. Production increased from 8.-616,357 barrels in 1950 to 8,803,007 barrels in **1954, a gain of 2.1** percent. Shipments in the same five years increased from 8,759,103 barrels in 1950 to 9,075,995 barrels in 1954, a gain of 3.6 percent,

b Estimate.

Ver Wiebe and others, 1954, table 9, p. 30. Ver Wiebe and others, 1955, table 9, p. 28.

TABLE 28.—Production and shipments of portland cement in Kansas, 1945 to 1949 average and 1950 to 1954, and changes from prior years

		Shipments			Percent change from previous year	
Year	Production, 376-lb. bbl.	Quantity, bbl.	Value	Av. price per bbl.	Quantity	Value
1945-49						
average	6,449,060	6,594,600	\$12,563,743	\$1.86		
1950	8,616,357	8,759,103	19,400,068	2.21		
1951	8,514,521	8,163,916	19,413,144	2.38	-6.8	+ 0.5
1952	8,672,883	8,811,762	20,956,886	2.38	+7.9	+ 7.9
1953	8,766,206	8,546,250	21,428,536	2.51	-3.1	+ 2.2
1954	8,803,007	9,075,995	23,718,609	2.61	+6.1	+10.6
195 0-54						
average	8,674,595	8,671,405	20,983,449	2.42		
Percent						
increase	34.5	31.4	67.1	30.1		

and in value from \$19,400,068 to \$23,718,609, a gain of 22.2 percent (Table 28).

All the cement produced in Kansas is made from limestone and shale of Pennsylvanian age. Natural gas is used as fuel in most cement kilns in Kansas, but powdered coal is also used to some extent. One company, the Fort Scott Hydraulic Cement Company, Fort Scott, Bourbon County, produced natural cement. Its production is included under the "undistributed" minerals.

Portland cement producers on record as of December 31, 1954, are listed in Table 29.

Table 29.—Directory of portland cement producers in Kansas, 1954

County	Company	Address	Quarry
Allen	Lehigh Portland Cement Co.	Young Building 718 Hamilton St. Allentown, Pa.	Iola
do	Monarch Cement Co.	Humboldt	Humboldt
Montgomery	Universal Atlas Cement	100 Park Ave.	Independence
	Co.	New York 17,	
		New York	
Neosho	Ash Grove Lime &	101 W. 11th	Chanute
	Portland Cement Co.	Kansas City 6, Mo.	
Wilson	Consolidated Cement Corp.	Fredonia	Fredonia
Wyandotte	Lone Star Cement Corp.	1650 Dierks Bldg.	Bonner
	_	Kansas City 6, Mo.	Springs

TABLE 30.—Clay or shale sold or used by producers in Kansas, 1950 to 1954.

and changes from prior years

Year	Production		Percent change from previous year	
	Quantity, short tons	Value	Quantity	Value
1945-49				
average	490,984	\$355,276		
1950	725,282	601,014	····	
1951	731,960	728,921	+ 0.9	÷21.2
1952	665,582	789,293	— 0.9	+ 82
1953	670,694	749,579	+ 0.7	_ 5.1
1954	766,476	916,035	+14.2	+22.2
1950-54				
average	711,999	756,968		
Percent chang	ge in			
5-year average	ge +45.1	+113.1		
Percent increa	ase			
1954 vs 1950	5.5	52.4		

Generated at University of Kansas on 2023-09-27 20:03 GMT Public Domain in the United States, Google-digitized / h

cent in quantity from 1950 to 1954 but increased 17.3 percent in value. Quantity and value of all clays produced in Kansas from 1950 to 1954 are given in Table 30. Value of clay products, such as brick, tile, and lightweight aggregate, increased from about \$5,600,000 in 1950 to approximately \$8,500,000 in 1954, an increase of 51.8 percent (Table 31).

TABLE 31.—Value of clay or shale and products in Kansas, 1950 to 1954, and changes from prior years

Year	Value	Percent change from previous year
1950	\$5,600,000	••••
1951	7,000,000	+25.0
1952	8,500,000	+21.4
1953	8,500,000	0
1954	8,500,000	0

Eleven companies operating in eight counties produced clay or shale in Kansas in 1954, compared to thirteen companies in 1953. The Dryden Pottery at Ellsworth, Ellsworth County, purchased all its raw materials, and the Saline Brick and Tile Company of Saline County went out of business in 1954. All clay or shale produced was used by the companies themselves for the manufacture of brick, tile, cement, and lightweight aggregate. Fireclay was produced in Barton and Cloud Counties, whereas miscellaneous clays were produced in Allen, Cherokee, Crawford, Franklin, Montgomery, and Wilson Counties. Crawford and Franklin Counties led all others in clay or shale production in 1954. Raw clay or shale ranked 12th among mineral commodities produced in 1954, and 6th if clay products are included. Producers of clay or shale in Kansas in 1954 are listed in Table 32.

PUMICITE OR VOLCANIC ASH

Three to four operators produced pumicite or volcanic ash in Kansas from 1950 to 1954. Total quantity and value for the 5-year period amounted to 37,394 tons and \$179,397 respectively. Of this tonnage the larger part, 23,433 tons, was mined in 1954; the amount was 9,472 tons more than the cumulative production of the preceding four years. In value the 1954 production was \$92,-899, or \$16,401 more than the combined value of volcanic ash

TABLE 32.—Directory of clay or shale producers in Kansas in 1954

County	Company	Address	Pit location	Type of plants
Allen	Humboldt Brick & Tile Co.	Humboldt	Humboldt	В
op	United Brick & Tile Co.	207 Pickwick Bldg., Kansas City 6, Mo.	Iola	Ø
Barton	Great Bend Brick & Tile Co.	Great Bend	Great Bend	щ
Cherokee	United Brick & Tile Co.	207 Pickwick Bldg., Kansas City 6, Mo.	Weir	Д
Clond	Cloud Ceramics	Concordia	Concordia	В
Crawford	W. S. Dickey Clay Mfg. Co.	607-617 Commerce Trust Bldg., Kansas City 6, Mo.	Pittsburg	щ
Ellsworth	Dryden Pottery	Ellsworth	Ellsworth	ሷ
Franklin	Buildex, Inc.	312 Globe Bldg., Pittsburg, Kansas	Ottawa	∢
Montgomery	United Brick & Tile Co.	207 Pickwick Bldg., Kansas City 6, Mo.	Coffeyville	д
qo	Ludowici-Celadon Co.	75 East Wacker Drive, Chicago 1, Illinois	Coffeyville	В
Saline	Saline Brick & Tile Co.	P.O. Box 491, Salina	Salina	В
Wilson	Acme Brick Co.	Fort Worth, Texas	Buffalo	Д
qo	Excelsior Brick Co.	P.O. Box 32, Fredonia	Fredonia	В

A. aggregate; B. brick, tile; P. pottery.

Table 33.—Quantity and value of pumicite or volcanic ash produced in Kansas, 1950 to 1954

				t change vious year
Year	Quantity, tons	Value	Quantity	Value
1950	3,852	\$ 12,060		•••
1951	3,688	11,801	- 4.3	— 2.2
1952	3,218	26,069	— 12.8	+120.9
1953	3,203	36,568	- 0.5	+ 40.2
1954	23,433	92,899	+631.5	+154.4
Total	37,394	179,397		
Average	7,479	35,879		

produced from 1950 to 1953. When compared to the years 1920 to 1939, when Kansas ranked first in the United States as producer of pumicite or volcanic ash, annuar production and value in the 1950's are insignificant. Quantity and value of annual production for the period 1950 to 1954 are presented in Table 33. Producers on record in 1954 are listed in Table 34.

TABLE 34.—Directory of Kansas producers of pumicite or volcanic ash in 1954

County	Company	Address	Pit location
Lincoln	Ernest Hanzlicek	Wilson	Wilson
Meade	The Cudahy Packing Co.	Union Stock Yards Omaha 7, Nebraska	Meade
do	San Ore Construction Co.	McPherson	Meade
McPherson	San Ore Construction Co.	McPherson	Lindsborg
Norton	Wyandotte Chemical Corp.	Wyandotte, Michigan	Calvert
Seward	San Ore Construction Co.	McPherson	Liberal

SALT

Salt was produced by five companies operating in three counties in Kansas, Ellsworth, Reno, and Rice. Annual production for the 5-year period 1950 to 1954 averaged 888,386 tons valued at approximately \$6,932,569. Production of salt ranged from 846,374

-Salt produced and sold or used by producers in Kansas. 1950 to 1954, and changes from prior years TABLE 35 -

	Evapora	Evaporated salt	Roc	Rock salt	Tota	Total salt	Perce pr	Percent change from previous year
Year	Quantity,	Value	Quantity,	Value	Quantity,	Value	Total tons	Total tons Total value
1945-49								
average	335,566	\$ 3,067,723	512,318	\$ 1,445,452	847,882	\$ 4,633,169		
1950	344,751	4,066,310	501,623	1,848,204	846,374	5,914,514	÷6.4	+12.2
1951	360,785	4,659,036	540,132	1,980,307	900,917	6,639,343	+1.2	+ 3.1
1952	358,887	4,775,741	552,857	2,074,286	911,744	6,850,027	-0.8	+ 9.2
1953	370,569	5,285,805	534,658	2,194,751	905,227	7,480,556	-3.1	+ 3.9
1954	357,045	5,474,150	520,622	2,304,255	877,667	7,778,405	+0.9	+ 7.1
Total 1950-54 1,792,037	4 1,792,037	24,261,042	2,649,892	10,401,803	4,441,929	34,662,845		
1950-54 average	358,407	4,852,208	529,978	2,080,361	888,386	6,932,569		
Percent								
change in								
5-year								
average	79+	+58.1	+44	+4.7	+49.6			

Generated at University of Kansas on 2023-09-27 20:03 GMT Public Domain in the United States, Google-digitized / ht

tons in 1950 to 877,667 tons in 1954, reaching a peak of 911, 744 tons in 1952 (Table 35). Even though production declined through 1953 and 1954 by 3.7 percent, the value of the salt produced increased each year from 1950 to 1954. As compared to the average annual tonnage and value of salt produced from 1945 to 1949, the average annual tonnage and value for the period 1950 to 1954 shows a decided gain in all types of production. Whereas the average amount of salt produced in the later period shows only a 4.7 percent gain over the average production from 1945 to 1949, the average value of the salt produced in the 1950's was approximately 50 percent greater than it was in the 5-year period before 1950 (Table 35). In 1950 Kansas produced salt worth \$5,914,514 and 1954 production was valued at \$7,778,405 (Table 35). The quantity of salt produced in 1954 was 3.7 percent greater than in 1950, but the increase in value during the same period was 31.5 percent. As a salt-producing state Kansas ranked seventh in tonnage and fourth in dollar value. Among mineral commodities produced in the state, salt ranked seventh in 1954.

In Kansas, salt is extracted by shaft mining and also by means of wells, the brine from which is evaporated by the open and vacuum-pan methods. Most of the salt (59.3 percent in 1954) was obtained by shaft mining, but the value of the salt produced by evaporation was more than double that of the shaft-mined product. Data on quantity and value of salt sold or used by the producers, based upon the type of salt, for the years 1950 to 1954 are presented in Table 35.

Kansas salt is obtained from the Wellington formation, of Permian age. The salt lies at a depth of 645 feet at Hutchinson, Reno County, at 1,000 to 1,065 feet at Lyons, Rice County, and at 800 to 850 feet at Kanopolis, Ellsworth County (Taft, 1946, p. 244). Kansas salt is used for many purposes, chief of which are meat packing, livestock feed supplement, and treatment of hides and leather. Kansas salt is shipped to 36 other states and to Canada. The five salt companies that operated in Kansas in 1950 to 1954 are listed in Table 36.

SAND AND GRAVEL

Of all the non-fuel mineral resources exploited in Kansas, sand and gravel are the most widespread. At least 75 counties list sand and gravel production. Some of the material is dredged or pumped directly from stream beds or adjacent flood plains or terrace depos-

TABLE 36.—Directory of salt-producing companies in Kansas, 1950 to 1954

County	Company	Address	Location of mine or well	Type of plant
Ellsworth	Independent Salt Co.	4115 Packers Ave. Chicago 9, Illinois	Kanopolis	Rock
Reno	The Barton Salt Co.	Hutchinson	Hutchinson	Evaporated
do	The Carey Salt Co.	Hutchinson	Hutchinson	do
do	do	do	do	Rock
do	Morton Salt Co.	120 S. La Salle Chicago 3, Illinois	do	Evaporated
Rice	American Salt Co.	630 New York Life Building, Kansas City 6, Missouri	Lyons	Evaporated and rock
do	The Carey Salt Co.	Hutchinson	do*	Evaporated and rock

^{*}Shut down permanently.

its, and some is obtained from dry pits located on high terraces remote from present-day streams. Average quantity and value of sand and gravel produced annually between 1950 and 1954, both commercial and noncommercial, were almost twice as great as in the preceding 5-year period (1945 to 1949)—9,197,608 tons, or 98.6 percent greater quantity, and \$5,883,224, or 113.6 percent more value (Table 37). The total quantity of sand and gravel produced in the peak year of 1950 amounted to 9,781,123 tons valued at \$6,782,285. This peak in production and value was due primarily to the unusually large production of noncommercial sand and gravel for use in the expanded road-building program. Subsequently noncommercial production and value declined greatly. Commercial production increased greatly between 1950 and 1954. Quantity increased from 4,987,710 tons in 1950 to 8,341,068 tons in 1954, an increase of 67.2 percent. Value increased \$3,118,914 or 99.4 percent. Between 1951 and 1953 quantity and value showed a steady, but not unusual, advance. Quantity and value of sand and gravel produced in 1954, however, showed a decided increase over 1953. In 1954, quantity was 10,421,673 tons, valued at \$7,194,390, a gain of 19.4 and 26.7 percent respectively. Data on quantity and value of sand and gravel sold or used are presented in Table 37.

TABLE 37.—Sand and gravel sold or used in Kansas by commercial, government, and contractor producers, 1945 to 1949 average

	Commercial	ercial	Noncommercial	mercial	Total sand and gravel	and gravel		Perce from p	Percent change from previous year
Year	Quantity,	Value	Quantity, short tons	Value	Quantify, short tons	Value	Av. price per ton	Quantity,	Value
1945-49									
average	3,646,780	\$2,196,585	982,600	\$ 320,952	4,629,440	\$2,517,537	\$.54	•	ŀ
1950	4,987,710	3,246,970	4,793,413	3,535,315	9,781,123	6,782,285	69	i	:
1951	6,167,690	4,234,173	1,509,198	513,371	7,676,888	4,747,544	.62	-21.6	-29.9
1952	6,797,975	4,675,216	1,582,090	348,377	8,380,065	5,023,593	99.	+ 9.1	+ 5.8
1953	6,678,241	4,946,934	2,050,050	721,374	8,728,291	5,668,308	.65	+ 4.1	+12.8
1954	8,341,068	6,365,884	2,080,605	828,506	10,421,673	7,194,390	69	+19.4	+26.9
1950-54									
average	6,594,549	4,693,835	2,403,071	1,189,387	9,197,608	5,883,224	.65		
Percent									
change in									
5-year									
average	6:08+	+1136	+154.7	+270.5	986+	+1336	1203		

TABLE 38.—Production of sand in Kansas, 1950 to 1954, by uses

		-		An	nual produc	tion		
Use		_	1950	1951	1952		1953	1954
Glass	Tons						50,687	141,226
	Value			••••	••••	\$	37,063	308,224
Molding	Tons		•	•	•		2,600	102,000
	Value		•	•	•	\$	2,210	51,080
Structural	Tons	2	,335,306	2,638,341	2,845,738	3,	009,548	3,260,548
	Value	\$1	,495,199	1,821,707	1,997,223	2	,203,269	2,205,510
Paving	Tons	1	,472,971	2,100,642	1,954,584	2	,248,350	2,556,240
	Value	\$	775,451	1,313,182	1,113,565	1,	,476,624	1,648,511
Grinding,								
polishing	Tons		•	•	•			••••
	Value			•	•			
Fire, furnace	Tons			•			2,200	
	Value			•	•	\$	1,416	
Engine	Tons		82,659	136,275	94,175		96,151	124,047
	Value	\$	71,838	102,356	69,348		81,315	110,180
Filter	Tons		7,653	•	34,719		21,413	50,404
	Value	\$	7,209	•	81,764		40,891	125,004
Railroad								
ballast	Tons		79,761	240,185	238,655		216,872	191,612
	Value	\$	42,750	77,416	70,487		120,657	116,379
Other	Tons		70,426	82,989	328,682		111,375	596,116
	Value	\$	29,052	32,786	118,874		92,961	293 ,139

^{*}Undistributed.

TABLE 39.—Production of gravel in Kansas, 1950 to 1954, by uses

					Anr	ual produc	tion	
Use			1950		1951	1952	1953	1954
Structural	Tons		166,277		170,913	222,306	268,860	726,095
	Value	\$	139,349		146,711	181,742	223,010	759,955
Paving	Tons	5,	550,042	2,	252,718	2,647,114	2,649,381	2,517,421
	Value	\$4,	205,563	1,	192,696	1,372,117	1,457,291	1,431,955
Railroad								
ballast	Tons		780		*	63	20,164	9,700
	Value	\$	1,170		*	19	6,356	5,596
Other	Tons		•		2,371	9,810	30,190	146,264
	Value		•	\$	6,310	15,111	25,245	138,857

^{*}Undistributed.

Generated at University of Kansas on 2023-09-27 20:03 GMT / https://hdl.handle.net/2027/ucl.b3817064 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

Among Kansas minerals, sand and gravel ranked 9th in value. Kansas ranked variously 14th to 25th in the United States as a producer of sand and gravel. In 1954 at least 100 commercial producers and more than 55 noncommercial producers were operating in Kansas. Wyandotte and Sedgwick Counties led all others in production of sand and gravel. Most of the sand produced was used for construction and paving, but some was used for railroad ballast, glass making, filtering, molding, engine sand, and other miscellaneous purposes (Table 38). Gravel was used chiefly in concrete (Table 39).

Sand and gravel producers that operated in 1954 are listed in Table 40.

Table 40.—Directory of sand and gravel producers on record as of December 31, 1954

	December 31, 1334	
County	Company or operator	Address
Allen	Allen Co. Highway Dept.	Iola
Anderson	Anderson Co. Highway Dept.	Garnett
Atchison	G. W. Kerford Quarry Co.	Atchison
Barber	Barber Co. Highway Dept.	Medicine Lodge
Barton	Barton Co. Highway Dept.	P.O. Box 747 Great Bend
do	Arkansas Sand & Gravel Co.	1423 Second St. Great Bend
do	Du Bois Sand Co.	P.O. Box 172 Great Bend
do	Gruber Sand Plant	918 Stone St. Great Bend
đo	Charles Hardesty	Ellinwood
do	Moos Brothers Sand Co.	Great Bend
do	Savely Sand Co.	Ellinwood St. Ellinwood
Bourbon	Fort Scott Hydraulic Cement Co.	Fort Scott
Brown do	Brown Co. Highway Dept. Ralph Mitchell	Hiawatha Hiawatha
Butler do	Butler Co. Highway Dept. George M. Meyers	El Dorado El Dorado
Chase	Chase Co. Highway Dept.	P.O. Box 176 Cottonwood Falls
Chautauqua	Chautauqua Co. Highway Dept.	Sedan
Cherokee do	Cherokee Co. Highway Dept. Eagle-Picher Mining & Smelting Co.	Columbus Miami, Oklahoma

County	Company or operator	Address
Cheyenne	New Era Sand & Gravel Co.	St. Francis
Clark	Clark Co. Highway Dept.	Ashland
Clay	Clay Co. Highway Dept.	Clay Center
do	John H. Aslop	Wakefield
do	John H. Aslop—Ernest R. Fyfe	Wakefield
do	Clay Center Concrete-Sand Co.	Clay Center
Cloud do	Cloud Co. Commissioners Earl Beaver Sand Co.	Concordia Glasco
do	Huncousky Sand & Gravel Co.	Clyde
do	Ross Sand Co.	P.O. Box 461, Concord
Coffey	Coffey Co. Highway Dept.	Burlington
Comanche	Comanche Co. Road Dept.	Coldwater
Cowley do	Cowley Co. Highway Dept. A-C Sand & Gravel Co.	Winfield Arkansas City
do	Arkansas City Sand & Gravel Co.	•
do	McFarland Gravel Co.	Arkansas City
do	West Madison Sand Co.	Arkansas City
do	Oxford Sand & Gravel Co.	Oxford
do	Phillips & Son Construction Co.	Winfield
do	Wilson Brothers	Route 3, P.O. Box 59
do	Winfield Sand & Gravel Co.	Arkansas City Winfield
Crawford	Freeto Asphalt Co.	Pittsburg
Decatur	Decatur Co. Highway Dept.	Oberlin
Dickinson	Oscar R. Gowing	Route 3, Abilene
do	Las Brothers	Chapman
do	Putnam Sand & Building Co.	P.O. Box 26, Salina
do	Shoffner Sand & Gravel Co.	134 E. Jewell, Salina
do	C. Smith Sand & Gravel Co.	1200 N. Kuney
Doniphan	Doniphan Co. Highway Dept.	Troy
Douglas	Bowersock Mills Power Co.	546 Massachusetts St. Lawrence
Edwards do	Dave Showalter Meneh Sand & Gravel Co.	Garfield Kinsley
Elk	Elk Co. Highway Dept.	Howard
do	Concrete Materials Co.	Moline
Ellis	Lewis C. Schmidtberger	Victoria
Ellsworth	Ellsworth Co. Highway Dept.	Ellsworth
do	Lowell Johannes	148 S. Clark, Salina
do	Henry Millberger	Wilson

	(1)
54	
0	Ĭ
17	
00	Ξ
b3	#pod
	#0
Ü	JSE
\equiv	
27	SS
0	
7	0
+	Ü
9	
-	\subseteq
9	
0	ب
<u></u>	S
_	7
į,	Ξ
D	-
_	0
-	-
S	3
t p	Ś
÷	5
-	
_	5
	F
-	_
GMT	
33	-
٠.	
20	iz
	H
2	
-	그
0	Ĭ
m	۳
02	g
26	0
_	
0	
w	9
Sa	Ė
	10
a	S
	0
J.O	te
_	H
1	
-13	(L)
	Ē
Ve	+
Ē	1
a	Œ
0	0
te	ă
Œ	
0	Ī
	5
Ge	

County	Company or operator	Address
Finney do	Finney Co. Highway Dept. Sam Alsop Construction Co.	Garden City 1207 Pinecrest
do	Smith Sand Co.	Garden City Burnside Drive, Box 2 Garden City
Ford do	Davis Sand Co. Dodge City Sand Co.	Dodge City P.O. Box 430 Dodge City
do	Miller Sand & Gravel Co.	Dodge City
Franklin do	Franklin Co. Highway Dept. Harry Henry	Ottawa Ottawa
Gear y do	Junction City Sand & Gravel Co. More Sand Co.	Route 3, Junction City 626 W. 6th St. Junction City
Gove do do	Gove Co. Highway Dept. Ray Bigsby Carl Kaiser	Gove Grinnel Grainfield
Grant do	Grant Co. Highway Dept. Glen Popejoy	Ulysses Ulysses
Gray do	Gray Co. Highway Dept. Kerr Sand Co.	Cimarron Cimarron
Greenwood do do	Greenwood Co. Highway Dept. A. C. Houston Lumber Co. Medley Brothers Construction Co.	Eureka Eureka Eureka
Hamilton do	Hamilton Co. Highway Dept. Syracuse Sand & Gravel Co.	Syracuse 107 N. Elizabeth St. Syracuse
Harper	Harper Co. Highway Dept.	Anthony
Harvey	Howard R. Thach	Route 1, Burrton
Haskell do	Haskell Co. Highway Dept. Howard Mitchell	Sublette Hugoton
Jackson do	Jackson Co. Highway Dept. Anderson-Oxandale	Holton Holton
Jewell	Jewell Co. Highway Dept.	Mankato
Kearny	Kearny Co. Highway Dept.	Lakin
Kingman	Roy Wells	Route 1, Kingman
Kiowa do	Kiowa Co. Highway Dept. Seacot Sand Co.	Greensburg Greensburg
Lane	Southwest Sand & Gravel Co.	Alamota
Leavenworth	Leavenworth Co. Highway Dept.	Leavenworth

County	Company or operator	Address
Leavenworth	Geiger Ready Mix Co.	2nd & Poplar
		Leavenworth
do	Missouri Valley Sand Co.	P.O. Box 822
		Leavenworth
Linn	Linn Co. Highway Dept.	Mound City
Logan	Logan Co. Highway Dept.	Russell Springs
do	D. G. Hansen	Logan
Lyon	Lyon Co. Highway Dept.	Emporia
do	Center Township Highway Dept.	Olpe
do	Pike Township Highway Dept.	Emporia .
do	Lynn Ormsby	Emporia
do	Wesley Parks	648 Oak Street
•	** *** ***	Emporia
do	Henry Waterman	1 Congress Street
		Emporia
McPherson	McPherson Co. Highway Dept.	McPherson
do	A. N. Colburn	Route 1, McPherson
do	San Ore Construction Co.	McPherson Lindsborg
do	Train Construction Co.	
Marion	Virgil Metcalf	Route 5, Council Gr
do	J. L. Wilson	El Dorado
Marshall	Marshall Co. Highway Dept.	Marysville
do	Blue River Sand & Gravel Co.	Blue Rapids
do	C. C. Garrett	Blue Rapids
do	Kenneth Grippe	Oketo
do	Grossmans-Petersen	Marysville
do	Hall Brothers	204 Calhoun, Marysv
do	Heizelman Construction Co.	Marysville
do	Hugo P. Vogler	Waterville
Miami	Miami Co. Highway Dept.	Paola
Montgomery	Montgomery Co. Highway Dept.	Independence
Morris	Morris Co. Highway Dept.	Council Grove
do	Lynn Ormsby	Emporia
Morton	Morton Co. Highway Dept.	Richfield
do	Leo Doolittle	104 Case Ave., Morte
do	Ralph Morgan	Rolla
Ness	Cecil Knoy	Route 1, Ness City
Norton	Norton Co. Highway Dept.	Norton
Osborne	Osborne Co. Highway Dept.	Osborne
Ottawa	Ottawa Co. Highway Dept.	Minneapolis
Pawnee	Pawnee Co. Highway Dept.	Larned

County	Company or operator	Address
Pawnee	Willis Eakin, Johnson Sand and Gravel Co.	P.O. Box 545, Larned
do	Johnson Sand & Gravel Co.	Larned
do	Larned Sand & Gravel Co.	P.O. Box 227, Larned
do	River Sand Co.	P.O. Box 233, Topeka
do	Dave Showalter	Garfield
Phillips	Phillips Co. Highway Dept.	Phillipsburg
do	Construction Engineer, Kirwin Construction Field Division, Bureau of Reclamation	P.O. Box 317, Kirwin
do	D. G. Hansen	Logan
Pottawatomie	Pottawatomie Co. Highway Dept.	Westmoreland
do	Anderson-Oxandale	Holton
do	Wamego Sand Co.	Wamego
Pratt	Pratt Co. Highway Dept.	Pratt
do	C. D. Hogard	Pratt
do	Miller Sand & Gravel Co.	Route 2, Pratt
do	Jim Tillery	St. John
Reno	City Manager	Hutchinson
do	Fountain Sand Pit	Arlington
do	Haven Sand Co.	Haven
do	Henderson Sand and Gravel Co.	Route 2, Hutchinson
do	J. A. Mummy	Nickerson
do	J. H. Shears & Sons	P.O. Box 227, Hutchinson
do	J. E. Steele Sand & Gravel Co.	Route 4, Hutchinson
Republic	Republic Co. Highway Dept.	Belleville
Rice	Rice Co. Highway Dept.	Lyons
do	Aversman Sand & Gravel Co.	Bushton
do	Rock Hill Stone & Gravel Co.	P.O. Box 412, Sterling
do	A. L. Stapleton	307 S. Garfield, Lyons
do	Sterling Sand & Gravel Co.	P.O. Box 431, Sterling
do	A. Tobais W. Wright	Lyons
Riley	Riley Co. Highway Dept.	Manhattan
do	Blue River Sand & Gravel Co.	Blue Rapids
do	Walters Sand Co.	P.O. Box 30, Manhattan
		•
Rooks	Construction Engineer, Webster Construction, Bureau of Reclamation	P.O. Box 841, Stockton
Russell	Russell Co. Highway Dept.	Russell
Saline	Saline Co. Highway Dept.	Salina
do	Salina Sand Co.	113 W. Minneapolis Salina

County	Company or operator	Address
Sedgwick	Sedgwick Co. Highway Dept.	1015 Still Well Ave. Wichita 12
do	City Engineer	Wichita 2
do	John Beagley	Mount Hope
do	Bentley Sand Co.	Bentley
do	Big Three Sand & Gravel Co.	2204 N. West Wichita 15
do	Black Cat Sand Co.	661 No. Meridian Wichita 12
do	John E. Blair	4155 N. Arkansas Wichita 4
do	Bob Sand & Gravel Co.	21st St. & Meridian Wichita
do	H. E. Cochran & Son	1738 E. 24th St. Wichita
do	Dolese Brothers Co.	13 N.W. 13th St. Okla. City, Oklahoma
do	Dusenberry & Son	371 N. Elizabeth Wichita
do	L. C. House	Route 2, Bentley
do	Inland Construction Co.	P.O. Box 1993, Wichita
do	Walt Keeler Co.	P.O. Box 1972 Wichita 1
do	McKinster-Gove Sand Co.	Route 6, Box 408 Wichita
do	Miles Sand Co.	Route 1, Wichita
do	Miles Sand Service	Valley Center
do	R. R. Provence Sand & Gravel Co.	Route 1, P.O. Box 988 Wichita
do	Sand, Inc.	1313 West 31 South Wichita 2
do	Southwest Sand & Gravel Co.	Route 8, Wichita 15
do	Superior Sand Co.	1800 W. 18th, Wichita
do	Vics Sand & Gravel Co.	1806 Garland, Wichita
do	Wichita Big River Sand Co.	623 W. 27th, Wichita
do	P. R. York	P.O. Box 61, Sedgwick
Shawnee	State Highway Commission, Engineer of Maintenance	Topeka
do	Shawnee Co. Engineers Office	Topeka
do	City Engineer, Topeka	Topeka
do	Consumers Sand Co.	Topeka
do	Inland Construction Co.	P.O. Box 1993, Wichita
do	Kansas Sand Co.	531 N. Taylor, Topeka

County	Company or operator	Address
Shawnee do do do	Schoffner Sand Co. Schoffner Sand Co. Victory Sand & Stone Co. M. W. Watson	Solomon 134 E. Jewell, Salina Foot of Waite, Topeka 1004 National Bank of Topeka Building Topeka
Sheridan	Sheridan Co. Highway Dept.	Hoxie
Sherman do do do	Sherman Co. Highway Dept. J. R. Hahn Tom Ramsey Forrest Seigal	P.O. Box 22, Goodland Goodland 802 Center, Goodland 216 Main, Goodland
Smi th	Smith Co. Highway Dept.	Smith Center
Stafford do	County Engineer, Stafford County Partin Sand & Gravel Co.	St. John P.O. Box 274, Stafford
Sumne r do	Sumner Co. Highway Dept. Mulvane Sand Co.	Wellington Mulvane
Thomas do do do	Thomas Co. Highway Dept. Earl Carpenter Joe Hubbard Ed Purma	Colby Colby 975 2nd Street Colby
Trego do	Trego Co. Highway Dept. Ruth O. Wiles	WaKeeney 1621 Fairview, Wichita
Wabaunse e	Wabaunsee Co. Highway Dept.	Alma
Wallace do do	Wallace Co. Highway Dept. Lacey Gravel Co. Holliday Sand & Gravel Co.	Sharon Springs Sharon Springs 728 Railway Exchange Building Kansas City 6, Mo.
Washington do do	Washington Co. Highway Dept. Mueller Sand & Gravel Co. Finlayson Gravel Co.	Washington Hanover Barnes
Wilson	Wilson Co. Highway Dept.	Fredonia
Woodson	Nelson Quarry	Piqua
Wyandotte do do do	American Sand Co. Builders Sand Co. Dreyer Sand Co. Ebb Rees	Turner Morris Turner 1228 Homer St. Kansas City
do	Happe Sand Co.	Muncie

County	Company or operator	Address
Wyandotte	Holliday Sand & Gravel Co.	728 Railway Exchange Building Kansas City 6, Mo.
do	Kaw Sand Associates	Route 2, Kansas City 3
do	Kaw Valley Sand Co.	42nd & Speaker Road Kansas City
do	Stewart Sand Material Co.	1805 Grand Ave. Kansas City 8, Mo.
do	Thompson-Strauss Quarry	Morris
do	Peck Woolf Sand & Material Co.	1920 Paseo Blvd. Kansas City 8, Mo.
Various	Atchison, Topeka, and Santa Fe Railway	Chicago 4, Illinois

STONE

Stone ranks 5th in value among the minerals produced in Kansas. The average annual production between 1950 and 1954 exceeded the average between 1945 and 1949 by 67.1 percent in quantity and by 104.7 percent in value. In 1952 Kansas produced 8,830,871 tons of stone valued at \$12,051,740. Production declined to 7,096,057 tons valued at \$10,597,540 in 1954 (Table 41). Data on quantity and value of stone produced are not strictly comparable year by year, however, because in some years certain types of stone are assigned to the "undistributed" category. This procedure is followed whenever fewer than three operators produce a mineral or mineral product during the year. Hence an exact tabulation of tonnage and value of stone is not always possible. Stone produced in Kansas consists chiefly of limestone, but includes some sandstone and chat, the latter being classified under "miscellaneous" stone.

Most of the stone produced was crushed and used for concrete and road metal. Quantity ranged from 4,102,290 tons in 1950 to 6,044,265 tons in 1952 (Table 42). Value of the crushed product ranged from \$5,233,341 in 1950 to \$8,085,491 in 1952. In 1950, value of crushed stone comprised 58.6 percent of the total value of all stone produced; in 1953 it was 72.1 percent; it averaged 67.2 percent for the period 1950 to 1954.

TABLE 41.—Production of stone in Kansas, 1950 to 1954, by kinds, and changes from prior years

İ	Lime	Limestone	Sand	Sandstone	Misce	Miscellaneous		Total stone	one	
									Percent from p	Percent change from previous year
Year	short tons	Value	short tons	Value	short tons	Value	short tons	Value	Quantity	Value
1945-49										
average	2,890,676	\$ 4,239,838	150,804	\$208,431	1,634,786	\$483,661	4,681,318	\$ 5,011,251	!	i
1950	5,594,790	7,673,016	612,220	793,331	1,423,290	453,860	7,630,300	8,920,207	:	i
1951	5,824,103	8,284,559	277,446	444,108	1,089,934	329,845	7,191,483	9,058,512	- 5.8	+ 1.5
	7,551,061	11,204,877	295,246	485,871	984,564	360,992	8,830,871	12,051,740	+22.7	+33.0
1953	7,026,871	10,045,111	274,150	260,045	1,084,357b	376,581	8,385,378	10,681,378	- 5.1	-11.5
1954	6,744,398	9,934,116	351,659°	663,424	٧		7,096,057	10,597,540	-15.4	6.0 —
1950-54										
average	6,548,245	9,428,336	362,142	529,356	920,536	380,319	7,826,818	10,261,947		
Percent change										
in 5-year										
average	+126.5	+122.3	+140.1	+153.9	-43.7°	-21.4	+67.1	+104.7		
Percent change										
1954 vs 1950	+ 20.5	+ 29.4	- 42.6	133	13.9	_171	- 1	188		

Excludes crushed sandstone for 1953.
 Excludes noncommercial miscellaneous stone for 1953.
 Excludes dimension sandstone.
 Miscellaneous stone "crushed granite" and chat, included under "undistributed" values
 Computed on 4-year basis.

158 Geological Survey of Kansas—1956 Reports of Studies

TABLE 42.—Summary of stone production in Kansas, 1950 to 1954, by uses

			Annual	production		
Use		1950	1951	1952	1953	1954
Concrete, road	l Tons	4,102,290	4,707,711	6,044,265	5,867,966	5,661,627
	Value	\$5,233,341	6,059,887	8,085,491	7,680,028	7,595,952
Railroad	Tons	1,508,500	1,304,674	189,268	1,311,789	1,017,909
ballast	Value	\$ 683,167	680,785	270,141	780,321	540,271
Riprap	Tons	953,150	530,118	936,653	907,849	511,925
	Value	\$ 949,265	689,318	1,175,541	1,077,767	686,368
Agriculture	Tons	736,000	562,368	770,314	528,363	518,415
	Value	\$1,014,965	755,673	1,160,917	827,016	764,325
Dimension	Tons	44,690	37,630	51,063	18,009	39,02
stone	Value	\$ 685,554	678,038	825,853	626,232	764,42
Miscellaneous	Tons	180,650	48,982	77,669	146,647	189,91
	Value	\$ 215,549	194,811	283,574	331,486	402,50
Total	Tons	7,630,300	7,191,483	8,830,871	8,385,378	7,096,05
	Value	\$8,920,207	9,058,512	12,051,740	10,681,737	10,597,54

Other products, in order of value, include agricultural limestone, riprap, dimension stone, and railroad ballast (Table 42). A summary of Kansas stone production by kinds and uses for the period 1950 to 1954 is presented in Table 43. Chat, a waste product from the lead and zinc mines in Cherokee County, is included under miscellaneous stone. Dimension sandstone produced by fewer than three producers is included among the "undistributed" minerals.

Stone is produced in Kansas by approximately 100 commercial companies and by 85 noncommercial operators, principally county highway departments. A directory of stone producers in Kansas on record as of December 31, 1954, is given in Table 44.

Rock	Use	Top.	Value	Tone	11011	E					
					A 411116	Tous	value	Tons	Value	Tons	Value
Limestone	Agriculture Crushed	736,000	\$1,014,965	562,368	\$ 755,673	770,314	770,314 \$1,160,917	528,363	\$ 827,016	518,415	\$ 764,325
	concrete, road										
	metal	3,928,890	4,983,936	4,580,960	5,882,748	5,681,267	7,719,886	5,521,202	7,210,478	5,474,890	7,283,276
	Crushed—										
	railroad										
	ballast	138,010	148,869	87,242	95,031	40,268	46,641	220,482	291,628	186,129	249,657
	Dimension	44,220	685,075	37,067	677,588	50,913	825,665	18,009	626,232	38,626	763,355
	Miscellaneous	38,590	154,783	26,598	184,451	72,946	277,307	91,417	303,086	148,401	310,006
	Riprap	709,080	685,388	529,868	890'689	935,853	1,174.461	625,389	786,671	330,300	379,668
Sandstone	Crushed—										
	concrete, road										
	metal	134,640	231,863	86,961	161,154	140,073	254,836	197,724	363,293	120,753	246,578
	Crushed—										
	railroad										
	ballast	128,020	158,746	189,672	282,254	149,000	223,500	104,550	146,370	7,767	11,650
	Dimension	470	479	563	450	150	188	:	•	•	•
	Riprap	244,070	263,877	250	250	8 00	1,080	270,400	280,845	181,625	306,700
	Other			i	•	5,223	6,267	18,750	9,500	4,514	92,496
Miscellane-											•
sno	Crushed—										
	concrete.										
	road metal	38,760	17,542	39,790	15,985	222,925	110,769	149,040	106,257	75,984	960'99
	Crushed—	•									
	railroad										
	ballast	1,242,470	375,552	1,027,760	303,500	*	•	989,757	342,323	824,013	278,964
	Dimension	:	:	;	:	;	:	:	:	396	1,072
	Riprap	:	i	:	•	i	:	12,060	10,251	i	:
	Other	142.060	60,766	22,384	10.360	;	;	;	;	36.480	18.900

^{*}Value included under "undistributed."

TABLE 44.—Directory of stone producers on record as of December 31, 1954

County	Company or operator	Address
Allen	Allen Co. Highway Dept.	Iola
do	Monarch Cement Co.	Humboldt
do	Nelson Brothers Quarries	La Harpe
do	Anderson Co. Highway Dept.	Garnett
Anderson	Garnett Rock Co.	Garnett
do	Lee Giles	Greeley
Atchison	Atchison Co. Highway Dept.	Atchison
do	District Engineer, Corps of Engineers	601 Davidson Bldg. 10 E. 17th St.
1.	Dalah Danasian	Kansas City 8, Mo.
do do	Ralph Bromley George W. Kerford Quarry Co.	Atchison Atchison
Barton	Barton Co. Highway Dept.	Great Bend
Bourbon	Bourbon Co. Highway Dept.	Fort Scott
do	Anderson-Oxandale	P.O. Box 425, Heringt
do	Bandera Stone Quarry*	222 W. 72nd St. Kansas City, Mo.
do	Cullor Limestone Co.	Route 1, Fort Scott
do	Fort Scott Hydraulic Cement Co.	P.O. Box 267, Fort Sc
do	Paul Fusch	Route 4, Fort Scott
do	Harold Morrell	Fulton
do	Otto Womekdorf	Mapleton
Butler	County Engineer, Butler County	El Dorado
do	City of El Dorado	El Dorado
do	G. W. Baker	Holton
do	Concrete Materials Construction	Moline
	Co.	
do	Walt Keeler	1101 S. Mosley Place Wichita
do	George M. Meyers	P.O. Box 669 El Dorado
Chautauqua	Chautauqua Co. Highway Dept.	Sedan
do	Sedan Limestone Co.	Sedan
Cherokee	Cherokee Co. Highway Dept.	Columbus
do	Baxter Chat Co.*	Baxter Springs
do	Eagle-Picher Mining & Smelting Co.	Miami, Oklahoma
do	Frances Reeves Limestone Co.	P.O. Box 36, Columbia
do	S. A. Jones†	135 W. 11th St.
do	C. Y. Semple	Baxter Springs
ao	James L. Smith	Baxter Springs

County	Company or operator	Address
Cherokee	Southwest Chat Co.†	Baxter Springs
do	Youngman Mining Co.†	P.O. Box 166
		Baxter Springs
Clar k	Clark Co. Highway Dept.*	Ashland
Clay	Clay Co. Highway Dept.	Clay Center
Cloud	Cloud Co. Highway Dept.	Concordia
Coffey	Coffey Co. Highway Dept.	Burlington
do	Baxter Chat Company†	Baxter Springs
do	Neosho Valley Rock Co.	Burlington
Cowley	Cowley Co. Highway Dept.	Winfield
do	Arkansas City Highway Dept.	Arkansas City
do	C. L. Daniels Stone Co.	Winfield
do	John V. Elam	Winfield
do	San Ore Construction Co.	McPherson
do	Silverdale Cut Stone Co.	Silverdale
do	Silverdale Limestone Co.	Route 3, Box 180 Arkansas City
Crawford	Crawford Co. Highway Dept.	Girard
do	John J. Stark	P.O. Box 7, Girard
Decatur	Decatur Co. Highway Dept.‡	Oberlin
Dickinson	Dickinson Co. Highway Dept.	Abilene
Doniphan do	County Engineer, Doniphan County District Engineer, Corps of Engineers	7 Troy 601 Davidson Bldg. 10th E. 17th St. Kansas City 8, Mo.
do do do	City of Troy Highway Dept. Everett Quarries Wolf River Limestone Quarry	Troy Plattsburg, Mo. Troy
Douglas do do do do	Douglas Co. Highway Dept. Palmyra Township Highway Dept. Clark Rock Quarry Howard Henry Quarries Killough Construction Co.	Lawrence
Elk do	Elk Co. Highway Dept. Concrete Materials Construction Co.	Howard Moline
Ellis do	Ellis Co. Highway Dept.* City of Ellis Highway Dept.	Hays Ellis
Ellsworth do	Ellsworth Co. Highway Dept. District Engineer, Corps of Engineers*	Ellsworth 601 Davidson Bldg. East 17th St. Kansas City 8, Mo.

County	Company or operator	Address
Franklin	Franklin Co. Highway Dept.	Ottawa
do	Dan Fogle	Ottawa
do	Bert Ross	634 S. Oak St., Ottaw
Geary	Fort Riley Reservation, Quartermaster	Fort Riley
do	City Engineer, Junction City	Junction City
do	W. O. Homer Construction Co.	Grand Ave. Junction City
do	Walker Cut Stone Co.	P.O. Box 269 Junction City
Graham	Graham Co. Highway Dept.*	Hill City
Gray	County Engineer, Gray County	Cimarron
Greenwood	Greenwood Co. Highway Dept.	Eureka
Hamilton	County Engineer, Hamilton County*	Syracuse
Jackson	Jackson Co. Highway Dept.	Holton
do	City of Holton, Street-Alley Dept.	Holton
do	G. W. Baker	Holton
Jefferson	County Engineer, Jefferson County	
do do	Roy Baker H. R. Hamm Quarry	Valley Falls Perry
	•	·
Jewell	County Engineer, Jewell County	Mankato
Johnson	Johnson Co. Highway Dept.	Olathe
do	Deitz Hill Development Co.	28 Southwest Blvd. Kansas City 10, Mo.
do	Holliday Sand & Gravel Co.	Holliday
do	Reno Construction Co.	Overland Park
do	Southwest Quarries	89th & State Line
do	Thompson Quarries	Kansas City, Mo. Holliday
Labette	Labette Co. Highway Dept.	Oswego
do	City of Parsons, Street Dept., City Engineer	Parsons
do	Home Lumber & Supply Co.	310-S 17th St., Pars
do	John J. Stark	P.O. Box 7, Girard
Leavenworth	Leavenworth Co. Highway Dept.	Leavenworth
do	City of Leavenworth, Street Dept.	Leavenworth
do	Kansas State Penitentiary	Lansing
do	J. C. Haigwood	Tonganoxie
do	Peerless Stone Products	Kansas City
do	Loring Quarries	P.O. Box 174 Bonner Springs

	9
	6
_	00
79	9
0	Ĭ.
17	5
00	÷
03	0
	#
	S
\equiv	Ξ.
	(0
0	S
20	9
	Ö
et	/ 9
n e	5
(1)	-
_	٠.
0	25
an	rus
_	
j	Ħ
5	\subseteq
7	at
_	_
S	>
0	Š
T	3
=	<
	0
_	+-
	H
\vdash	_
\geq	
0	
3	_
:03	/ pa
0	Ze
	ize
7 20:	itize
0	gitize
9-27 20:	itize
-27 20:	-digitize
3-09-27 20:	le-digitize
23-09-27 20:	gle-digitize
3-09-27 20:	oogle-digitize
2023-09-27 20:	ogle-digitize
023-09-27 20:	, Google-digitize
n 2023-09-27 20:	s, Google-digitize
as on 2023-09-27 20:	tes, Google-digitize
sas on 2023-09-27 20:	es, Google-digitize
as on 2023-09-27 20:	ates, Google-digitize
nsas on 2023-09-27 20:	tates, Google-digitize
f Kansas on 2023-09-27 20:	ed States, Google-digitize
Kansas on 2023-09-27 20:	ted States, Google-digitize
y of Kansas on 2023-09-27 20:	ed States, Google-digitize
ty of Kansas on 2023-09-27 20:	ited States, Google-digitize
sity of Kansas on 2023-09-27 20:	United States, Google-digitized
rsity of Kansas on 2023-09-27 20:	he United States, Google-digitize
versity of Kansas on 2023-09-27 20:	the United States, Google-digitize
iversity of Kansas on 2023-09-27 20:	n the United States, Google-digitize
versity of Kansas on 2023-09-27 20:	the United States, Google-digitize
University of Kansas on 2023-09-27 20:	ı in the United States, Google-digitize
t University of Kansas on 2023-09-27 20:	in the United States, Google-digitize
at University of Kansas on 2023-09-27 20:	ain in the United States, Google-digitize
t University of Kansas on 2023-09-27 20:	in in the United States, Google-digitize
ted at University of Kansas on 2023-09-27 20:	ain in the United States, Google-digitize
rated at University of Kansas on 2023-09-27 20:	c Domain in the United States, Google-digitize
ated at University of Kansas on 2023-09-27 20:	ain in the United States, Google-digitize

County	Company or operator	Address
Linc oln	G. W. Baker*	Holton
do	Roy Baker*	Valley Falls
do	Baker Construction Co.*	Holton
do	Quartzite Stone Co.	Lincoln
Linn	Linn Co. Highway Dept.	Mound City
do	Blacktop Construction Co.	Emporia
do	Freeto Asphalt Co.	Pittsburg
do	Lee Giles	Greeley
do	Murray Limestone Production Co.	
do	Martin A. Wolten	Garnett
Lyon	Lyon Co. Highway Dept.	Emporia
do	Center Township Highway Dept.	Olpe
do	City of Emporia Highway Dept.	Emporia
McPherson	Engineer, McPherson County*	McPherson
do	Riddle Quarries	Windom
Marion	•	Marion
do	Marion Co. Highway Dept. Anderson-Oxandale	P.O. Box 425, Heringto
do	Baxter Chat Co.	Baxter Springs
do	Riddle Quarries	National Bank of
uo	idddie Quarries	America Bldg., Salina
Marshall	Marshall County Engineer	
	, c	Marysville
diami	Miami Co. Highway Dept.	Paola
do	City of Osawatomie	Osawatomie
do	A. J. Forster	Paola
do	L. W. Hayes, Hayes Quarries	4550 Main St.
J.	Trans Manuals Miles	Kansas City 2, Mo.
do	Hays Transit Mix	Paola
do	Killough Construction Co.	1414 Cedar St., Ottawa
litchell	Mitchell Co. Highway Dept.	Beloir
fontgomery	County Engineer, Montgomery County	Independence
do	City of Caney Highway Dept.	Caney
do	City of Coffeyville, City Engineer	Coffeyville
do	Anderson-Oxandale	P.O. Box 425, Herington
do	Peerless Stone Co.	Coffeyville
do	Universal Atlas Cement Co.	100 Parke Ave. New York 17, N.Y.
lorris	County Engineer, Morris County	Council Grove
do	H. H. Oxandale	Holton
	Country Engineer Namely Country	C
emaha	County Engineer, Nemana County	Seneca
emaha eosho	County Engineer, Nemaha County County Engineer, Neosho County	Erie Erie

County	Company or operator	Address
Neosho	Anderson-Oxandale	Box 425, Herington
do	Ash Grove Lime & Portland	101 W. 11th St.
	Cement Co.	Kansas City, Mo.
do	Harry Byers	500 N. Plummer,
•		Chanute
do	Joe O'Brian	St. Paul
Norton	County Engineer, Norton County	Norton
Osage	County Engineer, Osage County	Lyndon
do	Anderson-Oxandale*	Holton
do	Weldon Baker	Holton
do	A. B. Coal Co.*	Burlingame
do	K. S. Dusenburg	P.O. Box 224
•	T	Melvern
do	Jones Construction Co.*	Emporia
do	Perry Jones John T. Stark*	Carbondale Girard
do		
Osborne	Osborne Co. Highway Dept.	Osborne
Ottawa	Ottawa Co. Highway Dept.	Minneapolis
Phillips	Phillips Co. Highway Dept.	Phillipsburg
do	Construction Engineer, Kirwin	P.O. Box 317, Kirwin
	Construction, Field Division,	
	Bureau of Reclamation	
Pottawatomie	Pottawatomie Co. Highway Dept.	Westmor eland
Republic	County Engineer, Republic County	Belleville
Rice	Riddle Quarries	National Bank of
		America Bldg., Salin
Riley	Riley Co. Highway Dept.	Manhattan
do	Concrete Materials Construction	Moline
	Co.	
do	Grosshaus-Peterson	Wathena
do	Manhattan Cut Stone Co.‡	P.O. Box 855,
_		Manhattan
do	Manhattan Stone Co.	414 S. 5th St.,
•	Pill O	Manhattan
do	Riddle Quarries	National Bank of
		America Bldg., Salin
Rooks	Construction Engineer, Webster	P.O. Box 641, Stockto
	Construction, Field Division,	
	Bureau of Reclamation	
Rush	Rush Co. Highway Dept.	La Cross
Salina	Saline Co. Highway Dept.	Salina
	S = -F	

County	Company or operator	Address
Sedgwick do	County Engineer, Sedgwick County City of Wichita Highway Dept.	1015 Stillwell Wichita 12 City Building, Wichita 2
Shawnee	County Engineer, Shawnee County	Court House, Topeka
do	Henry Howard Quarries	Lecompton
do	Henry C. Luttjohaun	2001 James St., Topeka
do	Netherland Construction Co.	1315 MacVicar, Topeka
do	Pattons Crushed Stone Co.	Pauline
do	Storms-Green Construction Co.	6601 E. 37th St. Kansas City, Mo.
Sheridan	County Engineer, Sheridan County	Hoxie
Sh erman do	Sherman Co. Highway Dept. Brown Bros. Contractor, c/o DeLore Division, National Lead Co.	Goodland 2808 Carondelet, Station
Smith	Smith Co. Highway Commission, County Engineer*	Smith Center
Sumner	County Engineer, Sumner County	Wellington
Wabaunsee	County Engineer, Wabaunsee County	Alma
do	G. W. Baker	Holton
Washington	County Engineer, Washington County	Washington
do	Acme Barite Co.*	Mineral Point, Mo.
Wilson	Wilson Co. Highway Dept. County Engineer	Fredonia
do	Benedict Rock-Lime Co.	Benedict
do	Carr Rock Products Co.	P.O. Box 117, Neodesha
Woodson	County Engineer, Woodson County	Yates Center
Wyandotte	County Engineer, Wyandotte County	Kansas City
do	City of Kansas City, Dept. of Streets and Parks	Kansas City
do	American Rock Crusher Co.	3700 Rainbow Blvd., Rosedale, Kansas City
do	Joe Gregor	836 Bunker St. Kansas City
do	Mike Gregor	4514 Cambridge St. Kansas City
do	Lone Star Cement Corp.	1651 Dierks Bldg. Kansas City 6
do	Peerless Quarries	Turner
40	· ·	

Generated at University of Kansas on 2023-09-27 20:03 GMT / https://hdl.handle.net/2027/ucl.b3817064 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

County	Company or operator	Address	
Wyandotte do	Thompson-Strauss Quarries John Wear	Route 2, Kansas City Route 1, Kansas City	
Various	Union Pacific Railway Co., W. C. Perkins, Chief Engineer;	1416 Dodge St. Omaha 2, Nebraska	

^{*}Sandstone

METALS

The only metals mined in Kansas are lead and zinc. The mines are all located in Cherokee County in the southeast corner of the state. The Kansas lead and zinc area is part of the Tri-State district, which comprises parts of Missouri, Oklahoma, and Kansas. The Tri-State district produces more zinc than any other area in the United States, and ranks third in the production of lead. In 1950 Kansas produced lead and zinc worth \$10,279,474. Peak production for the 5-year period was reached in 1951, when metals mined were valued at \$13,616,718. By 1954, production had declined appreciably, and was valued at \$5,232,802. Average value of metals mined annually between 1950 and 1954 was \$8,787,867; cumulative value amounted to \$43,939,334 for the 5-year period.

LEAD

Lead production declined steadily from 1950 to 1953, when the quantity produced was 3,347 short tons. In 1954, however, production increased to 4,033 tons, an increase of 686 tons, or 12.4 percent. The value of lead produced in 1954 was \$228,128, or 26 percent greater than in 1953. In the 5-year period 1950 to 1954, greatest value was attained in 1951 while subsidies were still in effect. Though lead production in 1951 was less by 540 tons than in 1950, its value was \$534,172, or 20.8 percent greater than in 1950. Quantity and value of lead produced in the period are presented in Table 45. A decrease in the price of lead, and the lifting of restrictions on production and importation of lead resulted in a general decline in the lead-mining industry in Kansas. According to the Kansas State Metal Mine Inspector the number of lead mines

[†] Chat

[‡] Miscellaneous

All others limestone

	Produc	etion	Percent change from previous year			••
Year	Quantity, tons ²	Value	Amount	Value	Number of mines	Number ¹ of employees
1950	9,487	\$2,561,490			46	683
1951	8,947	3,095,662	— 5.7	+20.8	34	653
1952	5,916	1,904,952	-33.9	-39.5	32	628
195 3	3,347	876,914	—43.5	— 5.4	23	423
19 54	4,033	1,105,042	+12.4	+26	13	242

Data from reports of mine inspection section, Labor Department, Kansas. Production based upon recoverable content of ores, concentrates, tailings.

r / https://hdl.handle.net/2027/uc1.b3817064 http://www.hathitrust.org/access use#pd-us-google

Generated at University of Kansas on 2023-09-27 20:03 GMT Public Domain in the United States, Google-digitized / ht decreased from 46 mines (employing 683 persons) in 1950 to 23 mines (employing 423 persons) in 1953 (Delplace, 1952, p. 50; 1954, p. 81). The only lead smelter operated in Kansas was the Eagle-Picher Company smelter at Galena, Cherokee County. This smelter treated ores not only from Kansas but also from the entire Tri-State district and some from Illinois. Two pigment plants, both in Montgomery County, were active from 1950 to 1954, one at Coffeyville, operated by the Ozark Smelting and Mining Company, and one at Cherryvale, operated by the National Zinc Company.

Lead and zinc mines that operated in Kansas in 1954 are listed in Table 46.

TABLE 46.—Directory of lead and zinc producers in Kansas on record as of December 31, 1954

Operator or Company	Address	Mine*		
B. & I. Mining Co.	Picher, Okla.	Hartley		
B. P. e Y Mining Co.	Baxter Springs	Lindsey, Muncie		
Ora Black	Picher, Okla.	Boulders		
Bonanza Mining Co.	Picher, Okla.	Semple		
Jim Burke	Treece	Foley, Fox		
Discard Mining Co.	Baxter Springs	Discard		
Harley Drane	Treece	Boulders, Muncie		
Eagle-Picher Co.	Miami, Okla.	Big John, Grace B unit,		
		Lucky Jew, Webber,		
		West Side #2		
Cecil Gibson	Baxter Springs	Hartley		
Harris Mining Co.	Baxter Springs	Golden Rod		
Helen H. Mining Co.	Baxter Springs	Stebbins, Karcher		

Operator or Company	Address	Mine*
John Henderson	Commerce, Okla.	Northern
Jim Jennings	Quapaw, Okla.	Robinson
Linda Lou Mining Co.	Miami, Okla.	Northern
Carey McCoy Mining Co.	Treece	Sonny Boy
J. C. McDonald	Treece	Foley, Mullen
Robert Mason	Baxter Springs	Brewster #6
Mid Century Mining Co.	Cardin, Okla.	Bendelari
Mid Continent Lead &	Baxter Springs	Tulsa, Quapaw
Zinc Co.		
National Lead Co.	Fredericktown, Mo.	Ballard group
Frank Poole	Picher, Okla.	Lindsey
A. R. Rowden	Baxter Springs	Robinson
Clarence Shipmen	Baxter Springs	Thomas, Boulders
Tiger Mining Co.	Picher, Okla.	Fox
Treece Milling Co.	Treece	Webber
Mark Twain Mining Co.	Picher, Okla.	Jarrett
Wilbur Mining Co.	Picher, Okla.	Wilbur

^{*}All lead and zinc mines in Kansas are situated in Cherokee County.

ZINC

From 1950 to 1954 the zinc industry paralleled the lead industry in Kansas, in production and value. Greatest quantity and value of zinc were produced in 1951, when 28,904 tons of recoverable zinc was obtained having a value of \$10,521,056. In 1954, production amounted to 19,110 tons, which was 9,794 tons, or 33.9 percent, less than in 1951, the peak year. In 1954, the zinc produced was valued at \$4,127,760, which is \$6,393,296, or 60.8 percent, less than in 1951.

Table 47.—Quantity and value of zinc produced in Kansas, 1950 to 1954, and changes from prior years

	Prod	uction	Percent change from previous year			Number
Year	Quantity, tons ²	Value	Amount	Value	Number ¹ of mines	of em- ployees
1950	27,176	\$ 7,717,984			46	683
1951	28,904	10,521,056	+ 6.3	+36.3	34	653
1952	25,482	8,460,024	-11.9	-19.6	32	628
1953	15,515	3,568,450	-39.2	-57.9	23	423
1954	19,110	4,127,760	+23.1	+15.6	13	242

Data from reports of mine inspection section, Labor Department, Kansas. Production based upon recoverable content of ores, concentrates, tailings.

Data on quantity and value of zinc production are given in Table 47. Table 46 gives names and addresses of zinc mines that operated in 1954.

UNDISTRIBUTED MINERALS

Kansas produced several minerals that are classified as "undistributed". Undistributed mineral commodities are those that are produced by fewer than three companies and also those produced almost exclusively by one company, so that the total quantity and value cannot be revealed. Such minerals include diatomaceous marl, gypsum, natural cement, and in some years certain stone commodities. In addition, perlite and expanded vermiculite were processed within recent years from material shipped into Kansas from outside sources.

DIATOMACEOUS MARL

Diatomaceous marl, discovered in Wallace and Logan Counties by the State Geological Survey of Kansas about 1929, has been produced by the DeLore Division of the National Lead Company of St. Louis, Missouri. The material is mined in sec. 10, T. 11 S., R. 28 W., in Wallace County, and trucked to the company's processing plant at Edson in Sherman County about 17 miles from the mine. Mining of the marl started in 1949 but it was not until midsummer of 1953 that the company opened its plant at Edson for processing and shipping. Production increased yearly until 1954, when the quantity mined was slightly less than in 1953. Value of the diatomaceous marl is included in the total listed under "undistributed" in Table 3.

Gypsum

Gypsum was produced near Medicine Lodge in Barber County by the National Gypsum Company of Buffalo, New York, and at Blue Rapids in Marshall County by the Certain-teed Products Corporation, Ardmore, Pennsylvania. Quantity and value of both crude and calcined gypsum produced have been increasing for several years. Quantity of crude gypsum produced between 1950 and 1954 was 82.7 percent greater than it was in the preceding five years, and its value was 57.1 percent greater. Calcined gypsum

increased still more; the quantity produced between 1950 and 1954 was double that of the preceding 5-year period, and the value increased more than 90 percent. Value of gypsum produced is included in the total listed under "undistributed" in Table 3.

NATURAL CEMENT

Natural cement was produced by only one company, the Fort Scott Hydraulic Cement Company of Fort Scott in Bourbon County. The cement rock is obtained from the lower portion of the Fort Scott limestone formation, which overlies the coal-bearing Cherokee shale, all of Pennsylvanian age. Production, shipments and value of shipments have been increasing for several years. Shipments and value of shipments of natural cement in 1954 exceeded shipments and value of shipments in 1950 by 104.2 and 67.3 percent respectively. When compared to the annual production shipments, and value of shipments of the preceding 5-year period annual production, shipments, and value of shipments between 1950 and 1954 show still greater increases. Value of natural cement shipments is included in the total listed under "undistributed" in Table 3.

DIMENSION SANDSTONE

Dimension sandstone was produced by one company, the Bandera Stone Quarry Company of 222 W. 72nd Street, Kansas City, Missouri. The quarry is located near Redfield in Bourbon County, Kansas. Production has been increasing in recent years. Value of dimension sandstone is included in the total listed under "undistributed" in Table 3.

PERLITE AND EXPANDED VERMICULITE

Expanded perlite and expanded vermiculite were processed by the Panacalite Perlite Company of Kansas City, Wyandotte County, and expanded vermiculite by the Dodson Manufacturing Company of Wichita, Sedgwick County, from raw materials imported from other states. Both industries show annual increases in value of their production since they started operations. Values of perlite and expanded vermiculite are included in the total listed under "undistributed" in Table 3.

UNEVALUATED MINERAL RESOURCES

WATER AND SOIL

Two of the most important mineral resources of Kansas are water, both surface and underground, and soil. Water and soil are truly mineral commodities, but because of their nature and universal usage, are difficult to evaluate as to quantity and value. Water, to a considerable extent, is a replenishable resource, in that water supplies may be completely replenished in some geologic situations, and partly replenished in others. Soil lost by erosion is replaced only by slow soil-building processes. No data are at hand at present in regard to the actual quantity of soil that exists in Kansas. Without the soil that covers the 82,113 square miles of land surface (total area including water surface is 82,276 square miles), Kansas could not have produced \$1 billion to \$1.5 billion dollars of agricultural products including livestock each year since 1950. The amount of available water and the quantity used or consumed in the state in 1953 were estimated by the Kansas Water Resources Fact-Finding and Research Committee in 1954. According to the survey, a total of 1,898 mgd (million gallons a day) was withdrawn from the available water resources, but the amount consumed and removed from the supply for all purposes amounted to 652 mgd, or 237,980 million gallons per year. The actual value of the 237,980 million gallons consumed per year is not known. It is estimated (Foley, Smrha, and Metzler, 1955, p. 1) that city dwellers pay an average of only about \$5 a year each for water, and rural residents somewhat less. On the assumption that 51 percent of the population is urban and 49 percent rural, the minimum value of water consumed is computed to be about \$9,-000,000 a year. This sum, however, does not include the value of water consumed by industry, which is estimated to pay an additional \$27,000,000 a year, or about three-fourths of the state's water bill. The figures cited are not intended to be exact, but they do suggest the magnitude of the value of water consumed in Kansas each year.

UNEXPLOITED MINERALS

In addition to the minerals produced there are other mineral commodities in Kansas that either have never been exploited or are not at present being produced on a commercial scale. Such minerals include aluminum from clays (Kinney, 1943, 1952), ben-

tonite (Kinney, 1942), chalk (Runnels and Dubins, 1949) of which the state has virtually unlimited supplies, iron (Jewett and Schoewe, 1942, p. 103), magnesium (Schoewe, 1943; Jeffords. 1948), mineral waters (Schoewe, 1953, p. 133), oil shale (Runnels and others, 1952), phosphatic nodules (Runnels, 1949; Runnels and others, 1953), pyrite (Jewett and Schoewe, 1942, p. 168), rock asphalt (Jewett, 1940), and tripoli (Jewett and Schoewe, 1942. p. 168). Still other minerals are known to occur in Kansas, such as germanium (Schleicher and Hambleton, 1954), and uranium (Runnels, Schleicher, and Van Nortwick, 1953), but these have not been investigated sufficiently to show whether they exist in commercial quantities. Further study of these unexploited minerals in Kansas coupled with favorable economic conditions may eventually result in the production of some, if not all, of these mineral commodities.

ESTIMATE OF MINERAL PRODUCTION IN 1955

At the end of each year the State Geological Survey of Kansas estimates the value of mineral production for the year just concluded. These estimates are based upon figures and trends obtained from producers. In the past, State and Federal government agencies have proved to be correct within 1 percent of the final figures. For 1955 the estimated value of mineral production is \$474,500,000, or about \$10,000,000 more than in 1954. Estimated values of minerals produced in 1955 are given in Table 48.

Table 48.—Estimated values of minerals produced in Kansas in 1955

Mineral commodity	Value
Cement (portland)	\$ 24,000,000
Clay and clay products	10,000,000
Coal	3,000,000
Lead	1,500,000
Natural gas	49,000,000
Natural gasoline and LPG	13,000,000
Petroleum, crude	339,000,000
Salt	8,000,000
Sand and gravel	7,500,000
Stone (building stone, crushed rock, ag. lime, etc.)	11,000,000
Zinc	6,500,000
Miscellaneous (gypsum, volcanic ash, natural	cement,
helium, diatomaceous marl, etc.)	2,000,000
	\$474,500.000

REFERENCES

- Delplace, John (1952) Report of the mine inspection section and the mine rescue station from January 1, 1950, to June 30, 1952: Kansas Labor Department, p. 1-135.
- —— (1954) Report of the mine inspection section and the mine rescue station from January 1, 1952, to June 30, 1954: Kansas Labor Department, p. 1-120.
- FOLEY, F. C., SMRHA, R. V., and METZLER, D. F. (1955) Water in Kansas, 1955, A report to the Kansas State Legislature: Kansas Water Resources Fact-Finding and Research Committee, Kansas Univ., p. 1-216, 53 fig.
- Jeffords, R. M. (1948) Graphic representation of oil-field brines in Kansas: Kansas Geol. Survey Bull. 76, pt. 1, p. 1-12, fig. 1-6.
- Jewett, J. M. (1940) Asphalt rock in eastern Kansas: Kansas Geol. Survey Bull. 29, p. 1-23, fig. 1-3, pl. 1-2.
- —— and Schoewe, W. H. (1942) Kansas mineral resources for wartime industries: Kansas Geol. Survey Bull. 41, pt. 3, p. 69-180, fig. 1-13.
- KINNEY, E. D. (1942) Kansas bentonite, its properties and utilization: Kansas Geol. Survey Bull. 41, pt. 9, p. 349-376, fig. 1, pl. 1-2.
- —— (1943) A process for extracting alumina from Kansas clay: Kansas Geol. Survey Bull. 47, pt. 4, p. 113-136.
- —— (1952) Amenability of certain Kansas clays to alumina extraction by the lime-sinter process: Kansas Geol. Survey Bull. 96, pt. 7, p. 301-328, fig. 1-3.
- Prister, Richard (1953) Economic development in southwestern Kansas, Part VI, Manufacturing: Kansas Univ. School of Business—Bur. Business Research, p. 1-66, fig. 1-9.
- Runnels, R. T. (1949) Preliminary report on phosphate-bearing shales in eastern Kansas: Kansas Geol. Survey Bull. 82, pt. 2, p. 37-48, pl. 1-2.
- —— and Dubins, I. M. (1949) Chemical and petrographic studies of the Fort Hays chalk in Kansas: Kansas Geol. Survey Bull. 82, pt. 1, p. 1-36, fig. 1-6, pl. 1.
- "KULSTAD, R. O., McDUFFEE, C., and SCHLEICHER, J. A. (1952) Oil shale in Kansas: Kansas Geol. Survey Bull. 96, pt. 3, p. 157-184, fig. 1-2, pl. 1-3.
- ——, SCHLEICHER, J. A., and VAN NORTWICK, H. S. (1953) Composition of some uranium-bearing phosphate nodules from Kansas shales: Kansas Geol. Survey Bull. 102, pt. 3, p. 93-104, fig. 1-3.
- Schleicher, J. A., and Hambleton, W. W. (1954) Preliminary spectrographic investigation of germanium in Kansas coal: Kansas Geol. Survey Bull. 109, pt. 8, p. 113-124, fig. 1-2.
- Schoewe, W. H. (1943) Kansas oil field brines and their magnesium content: Kansas Geol. Survey Bull. 47, pt. 2, p. 37-76, fig. 1-3.
- —— (1953) The geography of Kansas, pt. 3, hydrogeography: Kansas Acad. Sci. Trans., v. 56, no. 2, p. 131-190, fig. 71-84.
- TAFT, ROBERT (1946) Kansas and the Nation's salt: Kansas Acad. Sci. Trans., v. 49, no. 3, p. 223-272, fig. 1-14.
- Ver Wiebe, W. A., Jewett, J. M., Nixon, E. K., Smith, R. K., and Hornbaker, A. L. (1951) Oil and gas developments in Kansas during 1950: Kansas Geol. Survey Bull. 92, p. 1-187, fig. 1-12, pl. 1-2.
- Ver Wiebe, W. A., Jewett, J. M., Goebel, E. D., and Hornbaker, A. L. (1952)
 Oil and gas developments in Kansas during 1951: Kansas Geol.
 Survey Bull. 97, p. 1-188, fig. 1-15, pl. 1-2.

Generated at University of Kansas on 2023-09-27 20:03 GMT / https://hdl.handle.net/2027/ucl.b3817064 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

- VER WIEBE, W. A., GOEBEL, E. D., JEWETT, J. M., and HORNBAKER, A. L. (1953)
 Oil and gas developments in Kansas during 1952: Kansas Geol
 Survey Bull. 103, p. 1-201, fig. 1-15, pl. 1-2.
- VER WIEBE, W. A., GOEBEL, E. D., HORNBAKER, A. L., and JEWETT, J. M. (1954) Oil and gas developments in Kansas during 1953: Kansas Geo-Survey Bull. 107, p. 1-204, fig. 1-16, pl. 1-2.
- VER WIEBE, W. A., GOEBEL, E. D., HORNBAKER, A. L., and JEWETT, J. M. (1955)
 Oil and gas developments in Kansas during 1954: Kansas Geo.
 Survey Bull. 112, p. 1-215, fig. 1-16, pl. 1-2.