/ UAL

Geology and Ground-Water Resources of Wallace County, Kansas

By Warren G. Hodson

143

10.161

STATE GEOLOGICAL SURVEY OF KANSAS BULLETIN 161

Digitized by Google

Whitley Austin A. H. Cromb **Ray Evans**

Clement H. Hall Dwight D. Klinger L. M. Morgan Clyde M. Reed, Jr.

Howard Carey Simeon S. Clarke Charles Cook Lee Cornell

O. S. Fent Dane Hansen E. W. Henkle

۲

ł

George K. Mackie Charles F. Spencer W. L. Stryker

STATE GEOLOGICAL SURVEY OF KANSAS

W. Clarke Wescoe, M.D., Chancellor of The University and ex officio Director of the Survey Frank C. Foley, Ph. D., State Geologist and Director William W. Hambleton, Ph. D., Assoc. State Geologist and Assoc. Director Raymond C. Moore, Ph. D., Sc. D., Principal Geologist Emeritus John M. Jewett, Ph. D., Senior Geologist Grace M. Muilenburg, B. S., Public Information Director Kenneth J. Badger, Chief Draftsman

Lila M. Watkins, Secretary

RESEARCH DIVISIONS

	Daniel F. Merriam, Ph. D., geologist in charge
Petrography and Geochemistry	Ada Swineford, Ph. D., petrographer in charge
Mineral Resources	Allison L. Hornbaker, M. S., geologist in charge
Oil and Gas	Edwin D. Goebel, M. S., geologist in charge
Ceramics	Norman Plummer, A. B., ceramist in charge

COOPERATIVE STUDIES WITH UNITED STATES GEOLOGICAL SURVEY

Ground-Water Resources	
Mineral Fuels	W. D. Johnson, Jr., B. S., geologist in charge

BRANCH OFFICES

Geological Survey Well Sample Library, 4150 Monroe, Wichita Geological Survey Southeast Kansas District Field Office, College Station, Pittsburg Geological Survey Southwest Kansas Field Office, 310 N. 9th Street, Garden City

Digitized by Google

BULLETIN 161

Geology and Ground-Water Resources of Wallace County, Kansas

By Warren G. Hodson

Prepared by the United States Geological Survey and the State Geological Survey of Kansas with the cooperation of the Division of Sanitation of the Kansas State Board of Health, and the Division of Water Resources of the Kansas State Board of Agriculture.

> Printed by authority of the State of Kansas Distributed from Lawrence

> > NOVEMBER 1963

Digitized by Google

CONTENTS

	PAGE
Abstract	5
Introduction	7
Purpose and scope of investigation	7
Location and extent of area	7
Previous investigations	7
Methods of investigation	8
Well-numbering system	9
Acknowledgments	9
Contraction	10
Geography	
Topography and drainage	10
Lakes	12
Climate	14
Population	14
Transportation	15
Agriculture	15
Mineral resources	15
Sand and gravel	15
Diatomaceous marl	15
Oil and gas	16
Volcanic ash	16
Geology	16
	16
Summary of stratigraphy	
Cretaceous rocks not exposed	18
Ground water	20
Principles of occurrence	20
The water table and movement of ground	
water	21
Fluctuations of the water table	23
Ground-water recharge	23
Infiltration of precipitation	23
Influent seepage from streams	24
Subsurface inflow	24
Infiltration of irrigation water	24
Ground-water discharge	24
Springs and seeps	24
	24 25
Transpiration and evaporation	
Wells	25
Subsurface outflow	25
Recovery of ground water	25
Utilization of ground water	26
Domestic and stock supplies	27
Municipal supplies	27
Sharon Springs	27
Wallace	27
Irrigation supplies	27
Hydrologic properties of water-bearing ma-	
terials	27
Determinations of transmissibility and per-	
meability	28
Thiem method	
	29
Theis nonequilibrium method	29
Jacob modified nonequilibrium method	30
Aquifer tests	30
Waugh aquifer test	30

Holland aquifer test	31
Theoretical predictions of drawdowns	34
Movement of ground water	35
Quality of ground water	36
Chemical constituents in relation to use	39
Dissolved solids	39
Hardness	40
Nitrate	40
Fluoride	41
Chloride	41
Iron	41
Sulfate	41
Silica	42
Bicarbonate	42
Sodium	42
Suitability of water for irrigation	42
Sanitary considerations	45
Geologic formations in relation to ground	
water	46
Cretaceous System—Upper Cretaceous	40
Series	46
Niobrara Chalk	46
Smoky Hill Chalk Member	46
Pierre Shale	46
	48
Tertiary System—Pliocene Series	48 48
Ogallala Formation	48 48
Character	48 50
Distribution and thickness	50 50
Water supply	
Quaternary System—Pleistocene Series	51
Peoria and Loveland Formations	51 51
Character and thickness	51 51
Water supply	•••
Alluvium	60 60
Character	
Distribution and thickness	60 60
Water supply	
Records of wells	61
Logs of test holes and wells	61
References	105
Index	107

ILLUSTRATIONS

PLATE

- 2. Geologic sections in Wallace County...(pocket)

•		
Figu	ap J	PAGE
1.	Map of Kansas showing area discussed in	
••	this report, and other areas for which	
	ground-water reports have been pub-	
		0
	lished or are in preparation	8
2.	Map of Wallace County illustrating the	
	well-numbering system used in this re-	
	port	10
3.	Map of Kansas showing physiographic	
	regions	11
4.	Normal monthly precipitation and aver-	
ч.	age growing season in Wallace County.	14
~		14
5.	Generalized contours showing depth to	
	Dakota Formation below land surface in	
	Wallace County	19
6.	Diagram showing several types of rock	
	interstices and relation of rock texture to	
	porosity	20
7.	Diagram of the hydrologic cycle	21
8.	Diagram showing generalized divisions of	
0.	Diagram showing generalized divisions of	22
~	subsurface water	22
9.	Hydrographs showing fluctuations of wa-	
	ter levels in the Ogallala Formation, and	
	graphs showing monthly and normal pre-	
	cipitation at Sharon Springs	22
10.	Diagrammatic sections showing influent	
	and effluent streams	24
11.		
•••	being pumped, showing its drawdown,	
	cone of depression, and radius of influ-	
••	ence	26
12.	Diagrammatic section of two closely	
	spaced wells being pumped, showing mu-	
	tual interference between wells and the	
	resulting cone of depression	26
13.	Map showing areas in Wallace County	
	covered by water rights to ground water	28
14.	Drawdown of water level measured in	
1 1.	pumped well and observation wells dur-	
	ing the Waugh aquifer test plotted	
	against time since pumping started	32
15.	Drawdown of water level in observation	
	wells at 180 and 940 minutes during the	
	Waugh aquifer test plotted against dis-	
	tance from pumped well	33
16.	Drawdown of water level in observation	
10.	wells during the Holland aquifer test	
	plotted against time since pumping	.
	started	35

5	Figu		PAGE
	17.	Drawdown of water level in observation	
		wells at 2,370 minutes during the Holland	
		aquifer test plotted against distance from	
3		pumped well	36
	18.	Drawdown of water level at any distance	
		from pumped well after pumping has	
)		begun	37
	19.	Drawdown of water level at any time	
L		after pumping has begun	37
	20.	Graphic representation of chemical con-	
1		stituents of samples of water from Wal-	
		lace County	39
`	21.	Nomogram for determining the sodium-	
9		adsorption ratio of water	43
	22.	Classification of water being used for ir-	
h		rigation in Wallace County	45
, 1			
•	TA	BLES	
2			PAGE
_	1.	Monthly and yearly mean discharge, in	
		cubic feet per second, 1 mile upstream	
		from mouth of Rose Creek, for period of	12
2		record	12
	2.	Annual precipitation in Wallace County	15
4	•	for period of record	1.)
	3.	Acreage, production, and value of crops in Wallace County in 1958	16
		Outcropping rocks of Wallace County	10
	4.	and their water-bearing properties	17
6	-	Drawdown of water level in pumped	17
	5.	well and observation wells during the	
		Waugh aquifer test, August 1960	31
^	0	Drawdown of water level in observation	
6	6.	wells during the Holland aquifer test,	
8		August 1960	34
0	7.	Analyses of water from typical wells in	.,.
	1.	Wallace County	38
	8.	Factors for converting parts per million	
2	о.	to equivalents per million	40
<u>ن</u>	9.	Sodium-adsorption ratios, conductivities,	107
	9.	sodium content, and calcium plus mag-	
		nesium content, and calcium plus mag- nesium content of water samples from	
3		selected wells	44
	10.	Volume of saturated water-bearing ma-	
	10.	terials and volume of water available for	
		pumping	50
5	11.		52
-		incomes of wens in wanace county	

Geology and Ground-Water Resources of Wallace County, Kansas

ABSTRACT

Wallace County is a 910-square mile area in the High Plains section of west-central Kansas. Chalk and shale beds of Late Cretaceous age are the oldest rocks cropping out in the county. The Ogallala Formation of Tertiary age (Pliocene) unconformably overlies the Cretaceous rocks in most of the county and consists of fluviatile deposits that in places exceed 400 feet in thickness. As much as 50 feet of loess and 70 feet of alluvium constitute the youngest deposits and are Late Pleistocene in age.

In Wallace County, the number of irrigation wells has been increasing about 6 percent per year in recent years. Yields of most irrigation wells range from about 400 gpm (gallons per minute) to more than 2,000 gpm. Most ground water is obtained from the Ogallala Formation, which contains about 4 million acre-feet in storage. Aquifer tests in the Ogallala indicate transmissibilities of about 150,000 gpd (gallons per day) per foot and permeabilities of about 1,000 gpd per square foot. Movement of ground water is eastward at about 0.9 foot per day.

Alluvial deposits along the principal valleys yield moderate quantities of water, but the deposits are narrow and confined to the inner valleys. In areas of Cretaceous outcrops, ground-water supplies are meager and where available are obtained from thin surficial deposits and weathered zones.

Résumé: Le Wallace County est une aire de 2357 kilomètres carrés dans la partie de High Plains du Kansas ouest-central. Les couches de craie et de schiste de l'âge Late Cretaceous sont les roches les plus vieilles qui affleurent dans le county. L'Ogallala Formation de l'âge Tertiary (Pliocene) recouvre discordantement les roches Cretaceous dans la plupart du county et consiste en dépôts fluviatiles qui excèdent 120 mètres d'épaisseur. Autant que 15 mètres de locss et 21 mètres d'alluvion constituent les dépôts les plus jeunes et sont de l'âge Late Pleistocene.

Dans le Wallace County, le nombre de puits d'irrigation a augmenté à environ 6 pour cent dans les ans recents. Les productions de la plupart des puits d'irrigation varient d'environ 1,5 à plus de 7,5 mètres cubes par minute. On obtient la plupart de la nappe superficielle de l'Ogallala Formation qui contient environ 5 milliard de mètres cubes d'emmagasinage. Les essais aquifères dans l'Ogallala indiquent des transmissibilities d'environ 1850 mètres cubes par jour par mètre et des permeabilités d'environ 40 mètres cubes par jour par mètre carré. Le mouvement de la nappe superficielle est vers l'Est a environ 0,3 mètre par jour.

Les dépôts alluviens le long des vallées principales produisent des quantités modérées d'eau, mais les dépôts sont étroits et limités aux vallées interieures. Dans les aires d'affleurements Cretaceous, les approvisionnements sont faibles et on les obtient où ils sont accessibles des minces dépôts subaériens et des zones altérées.

Resumen: Wallace County tiene una área de 2.357 kilómetros cuadrados. Está situado en la sección High Plains de la parte occidental-central de Kansas. Mantos de tiza y lutita de edad Cretácico superior son las rocas más antiguas que afloran en el county. La Ogallala Formation de edad Terciario (Plioceno), que consiste de depósitos fluviátiles los cuales en ciertos lugares exceden 120 metros en espesor, cubre unconformablemente rocas de el Cretácico en la mayor parte del county. Los depósitos más recientes, de edad Pleistoceno superior, consisten hasta 15 metros de loess y 21 metros de depositos aluviales.

En Wallace County, el número de pozos de irrigación ha aumentado cerca de 6 por ciento por año durante los últimos años. La rendición de la mayoría de los pozos fluctúa entre 1,5 y 7,5 metros cúbicos por minuto. La mayor parte de las aguas subterráneas es obtenida de la Ogallala Formation, la cual contiene cerca de 5 mil millones de metros cúbicos en depósito. Pruebas acuíferas realizadas en la Ogallala indican transmisibilidades de cerca de 1.850 metros cúbicos por día por metro y permeabilidades de cerca de 4 metros cúbicos por día por metro cuadrado. El movimiento de las aguas subterráneas es hacia el este a 0,3 metros por día.

Depósitos aluviales a lo largo de los valles prin-

cipales rinden cantidades moderadas de agua, pero los depósitos son estrechos y están confinados a los valles interiores. En áreas donde aflora el Cretácico, los abastecimientos de aguas subterráneas son pobres y donde accesibles son obtenidos de depósitos superficiales delgados y de zonas meteorizada.

Aufzug: Wallace County ist ein 2357 Quadratkilometer grosses Gebiet in der High Plains-Gegend dest westlichen Zentral-Kansas. Kreide- und Tonschieferbetten aus dem Late Cretaceous Alters sind die ältesten Gesteine, die im County zu Tage streichen. Im grössten Teil des County werden Cretaceous Gesteine von der Ogallala Formation Tertiary Alters (Pliocene) diskordant überlagert, welche aus Flussablagerungen besteht, die an einigen Stellen mehr als 120 Meter dick sind. Bis zu 15 Meter dicker Lös und 21 Meter dickes Alluvium stellen die jüngsten Ablagerungen dar; sie sind Late Pleistocene Alters.

Die Zahl der Bewässerungsbrunnen im Wallace

County ist in jüngster Zeit um etwa sechs Prozent pro Jahr angestiegen. Die Auschüttung der meisten Bewässerungsbrunnen beträgt etwa 1,5 bis zu mehr als 7,5 Kubikmeter pro Minute. Der grösste Teil des Grundwassers wird von der Ogallala Formation erhalten, in der etwa 5 Milliarden Kubikmeter gespeichert sind. Grundwasserleiter proben im Ogallala zeigen Transmissibilitäten von ungefähr 1850 Kubikmeter pro Tag pro Meter und Permeabilitäten von ungefähr 40 Kubikmeter pro Tag pro Quadratmeter an. Die Grundwasserbewegung findet nach Osten statt und beträgt etwa 0,3 Meter pro Tag.

Alluviale Ablagerungen entlang den Haupttälem ergeben bescheidene Mengen an Wasser; aber die Ablagerungen sind nur schmal und auf das Talinnere beschränkt. In den Gebieten, die Cretaceous-Ausbisse aufweisen, ist die Grundwasserversorgung gering und wird, wo sie vorhanden sind, aus dünnen Oberflächenablagerungen und verwitterten Zonen gespeist.

INTRODUCTION

PURPOSE AND SCOPE OF INVESTIGATION

This report gives the results of a study of the geology and the ground-water resources of Wallace County, Kansas. The study was designed to determine the quantity and quality of ground water in the county, to learn the geologic factors that control the occurrence of the water, and to serve as a guide to future ground-water development.

Nearly all water supplies in Wallace County are obtained from wells. Ground water is one of the county's principal natural resources, and although supplies are adequate for most uses in most of the county at the present rate of withdrawal, there is need for a better understanding of the quantity and quality of the available water supply in order to meet anticipated increases in water use.

According to Robert Hay (1891, p. 129), irrigation started in Wallace County when "in 1873 George Allman settled on the south bank of the Smoky Hill, a mile or two above Fort Wallace. One of the first improvements he made was to construct a ditch about a mile long, and by the aid of a small dam tap the first permanent water of that river. In proving up his claim, the dam, ditch, and laterals were among the improvements he described."

Irrigation has been practiced along the valley of the South Fork Smoky Hill River (referred to in this report as the South Smoky Hill River) and in the upland in the southern part of the county for several years, and interest in irrigation has greatly increased in recent years. In the summer of 1958 there were 86 irrigation plants in Wallace County, most of which were drilled after 1951. By the summer of 1960 there were 10 additional irrigation wells, all in areas of considerable pumping. Further increased use of ground water for irrigation can be expected. This study was made as a part of the ground-water program begun in 1937 by the State Geological Survey of Kansas and the U. S. Geological Survey, in cooperation with the Division of Sanitation of the Kansas State Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture. The present status of the program is shown in Figure 1.

LOCATION AND EXTENT OF AREA

Wallace County is in the High Plains of northwestern Kansas, in the first tier of counties east of the Colorado border, and in the third tier of counties south of the Nebraska border (Fig. 1). The county is about 30 miles square, with an area of approximately 910 square miles.

PREVIOUS INVESTIGATIONS

A report was prepared by Hay (1895) on the geology and ground water of the area along the Kansas-Colorado line, including the northwestern part of Wallace County. A report on the progress of the Division of Hydrography for 1893 and 1894 (Newell, 1895) contained records of 26 wells in Wallace County measured by Hay. Haworth contributed reports on the physiography of western Kansas (1897), on the physical properties of Tertiary rocks in Kansas (1897a), and on the geology of underground water and the possibilities of irrigation in western Kansas (1897b). Logan (1897) discussed the occurrence of Upper Cretaceous rocks in western Kansas. Williston (1897) described the Niobrara in western Kansas and also discussed (1897a) the Pleistocene deposits of Kansas. Johnson (1901, 1902) discussed the origin of the Tertiary of the High Plains and referred to the source, availability, and use of ground water in western Kansas. A report by Darton (1905) discussed the geology and ground-water resources of the central Great Plains, in which he treated the loess of

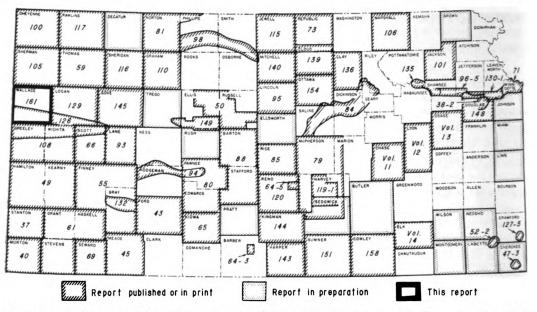


FIGURE 1.—Index map of Kansas showing area discussed in this report, and other areas for which ground-water reports have been published or are in preparation.

western Kansas as a distinctly separate formation from the underlying Tertiary deposits. Darton also briefly discussed (p. 320) the water resources of Wallace County and speculated on the possible water supply in the Dakota Formation in the county. A report by Parker (1911) on the quality of water supplies in Kansas contained a brief description of the geology of Wallace County and analyses of samples of ground water (p. 195-196). In a special report on well waters in Kansas, Haworth (1913) discussed the Tertiary of western Kansas and its water-bearing characteristics. The work of Elias (1931) on the geology of Wallace County was an important contribution to the geology of western Kansas, and his study of the Ogallala Formation and Upper Pleistocene deposits was the foundation for later studies. Frye and Leonard (1952) made a study of the Pleistocene geology Cardwell (1953) reported on of Kansas. irrigation-well development in the Kansas River basin of eastern Colorado. The southern part of the area considered in Cardwell's report borders part of Wallace County. Ground-water studies in areas of Kansas which border Wallace County or include parts of the county are Prescott (1953); Prescott, Branch, and Wilson (1954); Bradley and Johnson (1957); and Johnson (1958). An investigation of the geology and ground-water resources of Kit Carson County, Colorado, which borders about 6 miles of the northwestern edge of Wallace County, is in progress by George H. Chase of the U. S. Geological Survey district office in Colorado. Areas in Kansas where ground-water studies have been made, which have been published or are in preparation, are shown in Figure 1.

METHODS OF INVESTIGATION

The writer spent 4 months in the field during the summer and fall of 1957, about 2 months during the summer of 1958, and 1 month during the fall of 1960 gathering data upon which this report is largely based. The areal geology was mapped from field observations and from stereoscopic study of aerial photographs obtained from the U. S. Department of Agriculture. County maps prepared by the State Highway Commission of Kansas at a scale of 1 inch to the mile were used to record field data.

Data on 294 wells and 190 test holes were collected. Data on wells included the depth to water and the depth of the well. Most wells were measured by means of a steel tape graduated to hundredths of a foot. In a few wells measurements could not be made or were unreliable, and data on depth and water level for these wells were obtained from the owner or driller. Information concerning yield, adequacy of the supply, and quality of the water was obtained when possible from well owners. Drillers logs of wells and test holes were obtained when available from well owners and well drillers.

A total of 80 test holes were drilled in the county in conjunction with this investigation to determine the thickness and character of the Tertiary and Quaternary deposits. Of these test holes, 49 were drilled with a hydraulic rotary drilling machine and 31 with a jeep-mounted power auger, both owned by the State Geological Survey Well drillers and well owners of Kansas. provided logs of 51 irrigation wells, 1 domestic well, and 1 test hole. Logs of 32 shot holes were obtained from a seismograph party of Phillips Petroleum Company operating in the county during the summer of 1957.

Used in addition were logs of 18 test holes drilled and 4 test holes jetted in 1951 in conjunction with a ground-water investigation of the Ladder Creek area (Bradley and Johnson, 1957), and logs of 3 test holes near the Wallace-Sherman county line drilled in 1949 in conjunction with a ground-water investigation of Sherman County (Prescott, 1953).

Samples of water from representative wells were collected for analysis and were analyzed by Howard A. Stoltenberg, chemist, in the Sanitary Engineering Laboratory of the Kansas State Board of Health.

Locations of wells and test holes in the county were determined by means of an odometer and by aerial photographs. The altitudes of measuring points of wells and test holes were determined with a plane table and alidade. The base map used for Plate 1 was compiled from maps prepared by the State Highway Commission of Kansas.

Well-Numbering System

The locations of wells, test holes, and local features in this report are designated according to General Land Office surveys in the following order: township, range, section, quarter section, quarter-quarter section, and quarter-quarter-quarter section (10-acre tract). The quarter sections, quarter-quarter sections, and 10-acre tracts are designated a, b, c, or d in a counterclockwise direction beginning in the northeast quarter section. For example, well 11-41-25acb is in the NW⁴ SW⁴ NE⁴ sec. 25, T. 11 S., R. 41 W. (Fig. 2).

If more than one well or test hole is located in the same 10-acre tract, the location letters are followed by serial numbers in the order in which they were inventoried. The location number of one inventoried well located in Colorado is preceded by the letter C.

ACKNOWLEDGMENTS

The writer expresses appreciation to the many residents who gave permission to inventory their wells and supplied helpful information; to those who permitted their wells to be used for aquifer tests and who allowed access to their property for the study of rock exposures; and to the municipal officials who provided data concerning city water supplies. The following drillers furnished logs of wells and test holes and

Digitized by Google

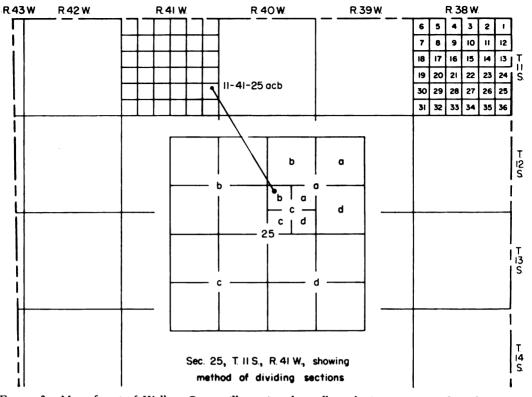


FIGURE 2.-Map of part of Wallace County illustrating the well-numbering system used in this report.

other information on wells in the county: Weishaar and Son, Scott City; Ben Hasz, Scott City; Jack Foust, Goodland; Kenneth Bogart, Goodland; and A. E. Agnew, Weskan. Logs of seismograph shot holes were obtained from a Phillips Petroleum Company seismograph crew. The staff of the Soil Conservation Service, U. S. Department of Agriculture, and Ray Mann, County Agent, gave helpful information.

E. L. and Carrie Reavis and William Gellinger of the U. S. Geological Survey and the State Geological Survey of Kansas gave assistance during field work. The illustrations were drafted by Mary J. Kummer.

The manuscript of this report has been reviewed by members of the U. S. Geological Survey and the State Geological Survey of Kansas; by Robert V. Smrha, chief engineer of the Division of Water Resources of the Kansas State Board of Agriculture; and by Dwight F. Metzler, chief engineer, and Willard O. Hilton, geologist, of the Division of Sanitation of the Kansas State Board of Health.

GEOGRAPHY

TOPOCRAPHY AND DRAINAGE

Wallace County lies within the High Plains section (Fig. 3) of the Great Plains physiographic province as designated by Schoewe (1949, p. 276). Physiographically much of the central part of the county differs somewhat from the High Plains of Kansas because the capping of unconsolidated sand, gravel, and silt of the Ogallala Formation (Tertiary) has been eroded by the South Smoky Hill River and its tributaries, exposing the older underlying Creta-

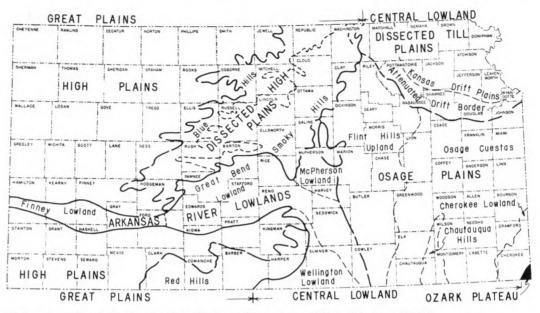


FIGURE 3.—Map of Kansas showing physiographic regions. (From Schoewe, 1949.)

ceous rocks. The southern, northwestern, and north-central parts of the county, however, consist of broad, flat, rolling uplands, characteristic of the High Plains.

The highest point in Kansas is in Wallace County. It is a knoll near the Kansas-Colorado border, about 11 miles north of U. S. Highway 40. The altitude is 4,038.7 feet above sea level, according to elevation levels run in April 1962 by William A. Long and Melvin H. Franz of the Ground Water Branch of the U. S. Geological The location is 0.3 mile north Survey. and 0.1 mile west of the SE cor. sec. 12, T. 12 S., R. 43 W. The second highest point, about 5 miles to the north, is approximately 4,022.7 feet above sea level and is about 200 feet east of the state line and 0.5 mile south of the NW cor. sec. 13, T. 11 S., R. 43 W.

The surface of the High Plains slopes gently eastward, and in Wallace County the average slope ranges from about 12 feet per mile in the southern part of the county to about 18 feet per mile in the northern part. The total topographic relief in Wallace County is about 885 feet. The lowest elevation, about 3,140 feet above sea level, is in the channel of the South Smoky Hill River on the eastern county line in the NE¼ sec. 25, T. 13 S., R. 38 W. Shallow valleys having inconspicuous bluffs are the rule, although the south wall of the South Smoky Hill Valley in the eastern part of the county is rough and very prominent. Stream tributaries enter major streams at angles of 60° to 90°.

The major stream in Wallace County is the South Smoky Hill River, which rises about 30 miles west of the Kansas-Colorado border in Cheyenne County, Colorado, and flows eastward across Wallace County. The stream has a gradient of about 22 feet per mile across Wallace County, dropping from about 3,800 feet above sea level at the state line to about 3,140 feet at the eastern edge of the county. The width of the floodplain and the adjacent low terraces is about half a mile along most of its course but varies from a quarter of a mile to more than a mile. North Ladder Creek and Sand Creek are the principal streams in the southern part of the county. The valleys of these streams are narrow and their floodplains and terraces are poorly developed. Sand Creek joins North Ladder Creek in northeastern Greeley County. North Ladder Creek joins the Smoky Hill River in eastern Logan County.

Most of the smaller streams in Wallace County are tributaries to the South Smoky Hill River. The more important of these are Lake Creek, which drains much of the north-central and northeastern parts of the county, and Goose Creek and Willow Creek, which drain the northwestern part of the county. Rose Creek and Eagle Tail Creek drain part of the south-central part of the county and are the only streams of any consequence entering the South Smoky Hill River in Wallace County from the The North Smoky Hill River cuts south. across the extreme northeast corner of the county and joins the South Fork in Logan County, where they form the main stem of the Smoky Hill River.

The headward parts of several streams have cut into the Ogallala Formation and these spring-fed streams flow, especially after frost, from contributions from the Ogallala. Rose Creek heads 4 or 5 miles south of Sharon Springs and flows about 8 miles to its junction with the South Smoky Hill River about 6 miles east of Sharon Springs. A considerable amount of ground water is drained from the Ogallala by Rose Creek. Table 1 shows mean monthly discharges 1 mile upstream from the mouth of Rose Creek for the period from May 1946 to September 1953. In addition, an undetermined amount of water from Rose Creek is diverted for irrigation. It is reported that Rose Creek usually flows even in the driest summers.

Several other small tributary streams have cut headward into the Ogallala Formation, from which they derive water, and flow especially after frost, when transpiration by plants and evaporation is reduced. The more notable of these are Eagle Tail Creek and Willow Creek.

Lakes

Common features of the High Plains are shallow, undrained depressions and intermittent natural lakes. Several deep, steepsided basins resulting from abrupt sinking of the ground also occur. Most of the depressions are circular to subcircular, although some appear to be linear and others have no particular pattern and may be designated as irregular in shape.

Dozens of undrained depressions characteristic of the surface of the High Plains are present in Wallace County. They range in size from a few tens of feet to nearly a mile in diameter. Some of the depressions appear to be grouped together.

TABLE 1.—Monthly and yearly mean discharge, in cubic feet per second, 1 mile upstream from mouth of Rose Creek, for period of record.

Water year	Oet.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Yearly mean
1946								3.52	2.98	1.79	0.69	2.46	
1947	4.10	4.24	4.35	4.0	4.56	9.15	5.72	7.98	5.18	2.77	2.31	2.54	4.7
1948	3.20	3.55	3.44	3.95	4.26	4.74	3.78	3.19	3.27	3.92	2.76	2.17	3.5
1949	2.6	3.4	3.5	3.1	3.4	3.1	5.8	7.1	15.5	2.8	18.1	7.9	6.4
1950	6.0	4.8	5.0	6.3	5.0	4.3	3.7	2.83	1.44	7.3	19.5	5.2	6.0
1951	4.4	4.3	4.7	5.5	4.8	3.3	5.2	4.8	10.6	7.5	4.7	3.9	5.3
1952	3.82	4.42	4.05	4.72	4.66	5.05	4.77	4.36	1.67	0.31	0.61	1.91	3.4
1953	2.44	2.38	3.70	3.92	3.70	3.41	4.16	2.79	0.94	0.22	6.67	0.56	2.9

At some localities there appears to be an alignment of depressions; in places the alignments are along shallow valleys. In general there are three types: small, shallow depressions; large, deep depressions; and smaller, steep-sided depressions.

Most of the depressions in Wallace County are small and shallow, ranging in size from less than an acre to several tens of acres. After heavy rains, storm runoff collects in these depressions, forming temporary lakes. The water generally evaporates or seeps into the ground after a few weeks. The shallow depressions are referred to locally as "lagoons" or "buffalo wallows."

There are also several large, deep depressions, which range up to several hundred acres in size and contain water for many weeks or months after heavy rains. The large depressions were mapped from aerial photographs and are shown on Plate 1. The two largest are in the east-central part of the county where Tertiary rocks are not present, the largest one being in the southeastern part of T. 12 S., R. 38 W.

An abrupt sinking of the land, resulting in deep, steep-sided holes, has also occurred at several places. Smoky Basin Cave-in, about 5 miles east of Sharon Springs in the SE¼ sec. 33, T. 13 S., R. 39 W., is an example of an abrupt subsidence that occurred in 1926. Another well-known cavein, referred to as Old Maid's Pool, is in the NE cor. sec. 30, T. 12 S., R. 40 W. This basin is perfectly circular and generally contains water at about the same level.

Several theories have been offered as to the origin of the depressions of the High Plains. Darton and others (1915, p. 36-37) referred to some of the depressions as buffalo wallows and explained their origin by the combined action of buffaloes and wind. They believed that the depressions were started by buffaloes, either at wet spots or places of salt or alkali, and were enlarged by wind action and by the removal of mud by the animals after rains. Although this explanation might account for some of the small, shallow depressions in Wallace County, it does not seem adequate for the large depressions having depths of 10 feet or more.

Johnson (1901, p. 702, 712) considered the origin of the basins of the High Plains to be the result of solution of soluble beds followed by collapse in areas of Permian bedrock; however, he believed this hypothesis inadequate in areas of Cretaceous bedrock. He attributed the shallow undrained depressions of the uplands to rainwater accumulation in initially flat, uneven and undrained areas. The seepage of water beneath the pond caused settling of the underlying sediments by mechanical compaction and solution in the Tertiary rocks.

Johnson's ideas are supported by work done in Thomas County (Frye, 1945, p. 30), where test holes were drilled near the centers and rims of two depressions. The test holes disclosed that there was no reflection on the underlying Cretaceous bedrock of the surface depressions in the Tertiary rocks.

Russell (1929) observed the depressions in Wallace, Logan, and other counties in western Kansas and excluded the possibility of solution of the underlying Cretaceous rocks because of their relatively impervious nature. He explained the subsidences as resulting from collapse of cavities that developed between the walls of faults in the Niobrara Formation from late Pliocene and Early Pleistocene tensional faulting.

Elias (1931, p. 224-236) studied the subsidences and concluded that they were caused by solution of chalk along fault planes in the Niobrara Formation and subsequent collapse of cavities. He believed that some of the shallow depressions could be cave-ins of earlier origin, the surface expressions of which had been subdued by gradual filling and slumping of the walls.

Just as there is more than one type of

depression so there could be more than one origin. Some of the depressions in Wallace County that are small and shallow could be accounted for either by Darton's buffalo wallow theory or Johnson's theory of compaction. However, for those depressions that are large and deep, Johnson's theory of compaction and solution of the Tertiary rocks seems applicable. It would seem that where Tertiary rocks are missing the large and relatively deep depressions must be explained by solution of the underlying rocks. Small, steep-sided depressions, such as Smoky Basin Cave-in and Old Maid's Pool, are the results of either solution of the Niobrara Chalk, probably along faults and fractured zones, or collapse within the Niobrara of cavities formed by tensional faulting. The uppermost rocks below the Niobrara that would be subject to solution would be about 2,000 feet below the land surface. Solution sufficient for collapse of large areas seems unlikely that far below the surface.

CLIMATE

The climate of Wallace County is semiarid, with low to moderate precipitation and a high rate of evaporation. The weather during spring and fall is mild and generally pleasant. Much of the summer is hot, although the summer heat is moderated by brisk winds and low humidity. and the nights are generally cool. As a rule the winters are reasonably mild; the periods of severe cold weather are short and the snowfall is relatively light. A large percentage of the winter days are clear, although snow flurries are common and occasionally the area is subjected to blizzard conditions. Ordinarily, snow remains on the ground only a short time.

In Wallace County the amount of pre-

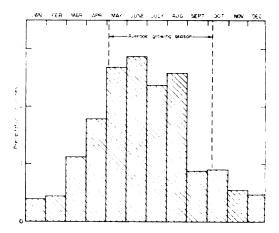


FIGURE 4.—Normal monthly precipitation and average growing season in Wallace County.

cipitation and its seasonal distribution are the controlling factors in crop growth. Rainfall is erratic, coming sometimes as storms of 4 inches or more, and at other times in no appreciable amount for several According to data compiled from weeks. published records of the U.S. Weather Bureau, about 65 percent of the annual precipitation in Wallace County falls during the growing season of about 5 months (Fig. 4). The mean annual precipitation at Sharon Springs is 17.03 inches. The greatest annual precipitation recorded was 34.00 inches, in 1880; the least was 7.45 inches, in 1873 (Table 2). The average length of the growing season is 157 days. The average date of the last killing frost in spring is May 3, and that of the first killing frost in fall is October 7.

POPULATION

According to the census, Wallace County in 1960 had a population of 2,069. This is an average of 2.3 persons per square mile as compared to 26.6 person per square mile for the state as a whole. Sharon Springs, the county seat, had a population of 966. Other communities are Wallace, population 110, and Weskan, unincorporated.

 TABLE 2.—Annual precipitation in Wallace County for period of record Measurements from 1870 to March 1923 at Wallace, subsequent measurements at Sharon Springs. From published records of the U. S. Weather Bureau.

Year	Precip- itation, inches	Year	Precip- itation, inches
1870	16.03	1916	10.60
1871	20.89	1917	11.95
1872	16.87	1918	20.37
1873	7.45	1919	17.86
1874	13.58	1920	14.85
1875	16.45	1921	16.15
1876	16.98	1922	12.58
1877	14.22	1923	25.03
1878	19.28	1924	10.93
1879	16.58	1925	11.77
1880	34.00	1926	10.32
1881	8.82	1927	17.02
1882	12.41	1928	22.27
1883	23.35	1929	16.69
1884	22.76	1930	23.49
1885	21.01	1931	10.87
1886	12.23	1932	15.71
1887	19.57	1933	25.67
1888	16.73	1934	9.40
1889	14.55	1935	12.13
1890	11.90	1936	11.12
1891	16.32	1937	12.36
1892	17.65	1938	22.47
1893	10.23	1939	13.02
1894	9.54	1940	17.17
1895	18.52	1941	24.35
1896	14.26	1942	24.01
1897	19.61	1943	13.39
1898	15.16	1944	18.81
1899	14.16	1945	15.89
1900	12.43	1946	17.65
1901	16.51	1947	17.49
1902	21.16	1948	18.74
1903	17.23	1949	31.05
1904	19.81	1950	13.92
1905	27.01	1951	22.65
1906	18.59	1952	15.01
1907	8.85	1953	17.05
1908	15.35	1954	12.53
1909	20.20	1955	13.06
1910	8.05	1956	8.16
1911	8.95	1957	25.75
1912	19.33	1958	20.74
1913	8.57	1959	17.56
1914	14.96	1960	17.35
1915	28.31		

TRANSPORTATION

The Union Pacific Railroad crosses eastwest near the middle of the county and passes through the towns of Wallace, Sharon Springs, and Weskan. U. S. Highway 40 crosses the county east-west and parallels the Union Pacific Railroad much of the way. Kansas Highway 27 crosses north-south near the middle of the county and passes through Sharon Springs. In addition, the county maintains many miles of section-line roads.

AGRICULTURE

Agriculture is the dominant economic activity in Wallace County. According to the Kansas State Board of Agriculture (1959), the county in 1958 contained 327 farms, 283,000 acres in pasture, and 137,305 acres in crops harvested. Because of the practice of summer fallowing, only a part of the cropland is in cultivation each year. The total value of field crops in 1958 was \$4,894,930, and of livestock and poultry produced was \$1,526,770. In January 1959 there were 25,000 cattle, 4,260 sheep, and 2,300 hogs in Wallace County. The acreage, production, and value of crops in Wallace County are given in Table 3.

MINERAL RESOURCES

Mineral resources of Wallace County other than soil and ground water include sand and gravel, diatomaceous marl, natural gas, and volcanic ash.

SAND AND CRAVEL.—Sand and gravel are available in Wallace County from Pleistocene deposits along the South Smoky Hill Valley and from the Ogallala Formation in the uplands, where the deposits are extensive. The sand and gravel are used for concrete aggregate and for road construction and surfacing.

DIATOMACEOUS MARL.—Wallace County is the only county in Kansas where diatomaceous marl is mined. It is produced by the DeLore Division of the National Lead Company of St. Louis, Missouri. As described by the Kansas Geological Survey (1931), the diatomaceous marl is an impure variety of diatomite or diatomaceous earth, which is a hydrous or opaline form of silica

1

Use	Acres planted	Acres harvested	Production, bushels	Value
Wheat	81,000	70,000	1,820,000	\$3,094,000
Sorghums	51,000	49,000	1,112,100	1,405,700
Barley	7,700	6,500	110,500	76,700
Hay	,	5,900	10,800 •	124,700
Corn	4,000	4,000	160,000	174,600
Oats	2,100	1,000	14,000	8,500
Rye	1,500	900	11,700	9,700

TABLE 3.—Acreage, production, and value of crops in Wallace County in 1958.

Tons

composed principally of skeletal remains of microscopic, one-celled, fresh-water plants called diatoms. The Wallace County deposits contain flaky calcium carbonate, sponge spicules, and minor amounts of The marl consists of about 20 persand. cent silica and 80 percent calcium carbonate by weight. Because of the box shape of empty tests of diatoms, the percentage of the volume occupied by the tests is much greater than the percentage by weight. About one-half the deposits by volume is estimated to consist of diatoms. The deposits, which are as much as 11 feet thick, are found in the Ogallala Formation of Tertiary age, along the south side of North Smoky Hill Valley near the northeast corner of the county, mainly in secs. 10, 11, and 12, T. 11 S., R. 38 W. The marl is snow white to grayish, light, and very fragile. The material is trucked to the company's processing plant at Edson in Sherman County, about 17 miles north of the mine, from where it is shipped by railroad cars. The deposits are estimated to exceed 1 million tons (Schoewe, 1959, p. 278). Kansas diatomaceous marl is used for a whiting substitute and as a paint filler.

OIL AND CAS.—Several wildcat wells have been drilled in Wallace County from time to time, but as yet oil in commercial quantities has not been produced. In 1956 gas was discovered on the Sexson lease in the SW¼ sec. 19, T. 13 S., R. 42 W. The production zone was in rocks of Morrowan age (Early Pennsylvanian) at 5,008 to 5,014 feet. The well was assigned an initial potential of more than 14 million cubic feet of gas per day and was named the discovery well of the Sexson field. Because no pipeline connections were available, the well was shut in and no production has been reported from the field.

VOLCANIC ASH.—A few deposits of volcanic ash occur in the Ogallala Formation in Wallace County. Although the ash is relatively clean, the deposits are not thick enough to be of commercial value. The thickest known deposit is in the SE cor. sec. 8, T. 14 S., R. 38 W., near the base of the Ogallala Formation. About 3 feet thick and fairly clean, the ash is exposed in a steep bluff under about 50 feet of overburden.

GEOLOGY

SUMMARY OF STRATIGRAPHY *

The rocks that crop out in Wallace County are sedimentary in origin and range in age from Cretaceous to Recent. Their areal distribution is shown on Plate 1; their stratigraphic relations are illustrated by cross sections on Plate 2. A generalized

^{*} The classification and nomenclature of the rock units described in this report follow that of the State Geological Survey of Kansas and differ somewhat from the classification and nomenclature of the U. S. Geological Survey.

	Stratigraphic unit Alluvium Peoria and Loveland Formations Formation Pierre Shale	Maximum thickness, feet 50 50 400 600 ±	Physical character Stream-laid deposits ranging in composition from clayey silt to coarse sand and gravel occur along principal stream valleys. Thick, coarse deposits occur in the basal part of major valleys; finer de- posits occur in smaller valleys. Thick, coarse deposits streams a thin bed of gravel rubble near the base. Mantles most of the uplands, particu- larly in the southern part of the county, and masks much of the valley walls. Locally includes colluvial deposits in draws and headwaters of tributary streams. Chiefly sand, gravel, silt, and clay; largely uncon- solidated but cemented to various degrees, in places by calcium carbonate and locally by silica. The deposits are interbedded and admixed in various proportions, sand and limy silt being the dominant constituents. Fissile dark-gray shale, clayey and fossiliferous. Concretions of varied size and composition occur in zones, usually along bedding planes; thin beds of mottled grayish-green and brown bentonite are common. Iron pyrite and macasite occur in fresh exposures. Imonite and selenite crystals character- ize weathered exposures.	Water supply Water supply Yields moderate to large quantities of water to wells in South Fork and North Fork Smoky Hill Valleys, moderate to small amounts in the smaller tributary valleys. Yields are as much as 1,000 gpm to irrigation wells in the major valleys. Most of the deposits are above the water table, and hence yield no water to wells. In areas where ground-water supplies are meager, colluvial de- posits overlying impervious bedrock in small up- land creeks and draws serve as local catchment pasins from which small amounts of ground water are available. Yields moderate to large quantities of water to wells in the southern and extreme western and northwestern parts of the county, and moderate to small quantities of water in much of the rest of the county. Yields are as much as 2,000 gpm to irriga- tion wells.
Smol N Nio	Smoky Hill Chalk Member of Niobrara Chalk	650 ±	Gray and light-gray chalk and chalky shale, thin bedded and platy. Contains thin beds of bentonite. Weathers to bright orange and cream vellow.	Do.

Generated at University of Kansas on 2023-10-04 18:25 GMT / https://hdl.handle.net/2027/ucl.b4185584
Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

section of the outcropping rock units is given in Table 4.

The Smoky Hill Chalk Member, upper member of the Niobrara Chalk of Late Cretaceous age, is the oldest rock unit exposed in Wallace County. The Smoky Hill Chalk Member crops out along the south side of the South Smoky Hill Valley in the extreme east-central part of the county; in the rest of the county it is buried beneath younger rocks.

The Pierre Shale of Late Cretaceous age conformably overlies the Smoky Hill in Wallace County and crops out in the central and northern parts of the county. The Pierre is the dominant bedrock and is exposed chiefly along the valley walls of the larger streams, along the streambeds of the smaller streams, and in some of the upland draws.

The Ogallala Formation of Late Tertiary (Pliocene) age unconformably overlies the Pierre Shale in Wallace County. The Ogallala is present in approximately two-thirds of the county, and in the southern part of the county it underlies most of the upland plain. Erosion has removed much of the Ogallala along the streams in the central and northeastern parts of the county, and in much of these areas the Ogallala caps only the uplands.

Thin, dissected and isolated deposits of sand and gravel of Pleistocene age occur along the larger streams, chiefly the South Smoky Hill and North Smoky Hill Rivers. These deposits have been derived from the Ogallala Formation and lithologically are very similar to the Ogallala. Because of this similarity it is difficult to distinguish the Pleistocene gravels from the Ogallala. In general, however, the Pleistocene deposits tend to be better sorted and are not admixed with finer clastics, as is characteristic of the Ogallala.

Eolian silts of Late Pleistocene age mantle much of Wallace County and are shown on the geologic map (Pl. 1) as the

Peoria and Loveland Formations. Colluvial deposits, consisting chiefly of reworked loess, but in many places containing sand and gravel derived from the Ogallala Formation and local bedrock fragments, constitute much of the thin surficial deposits on the slopes of the stream valleys and in the upland draws in the central and northeastern parts of the county. Where these deposits are thick enough to conceal the underlying rocks, they have been included with the Peoria and Loveland Formations in this report.

Alluvium believed to be Recent and late Wisconsinan in age occurs along the principal streams and constitutes the youngest geologic deposits in the county.

CRETACEOUS ROCKS NOT EXPOSED

Several rock units do not crop out in Wallace County but lie within a possible drilling depth for water wells.

The Dakota Formation of Early Cretaceous age is an important aquifer in some areas of Kansas and may be a potential source of small amounts of ground water in Wallace County. Generalized contours indicating the depth of the Dakota Formation below land surface in Wallace County are shown in Figure 5. So far as is known, no water wells have been drilled to the Dakota Formation in Wallace County.

The Graneros Shale and Greenhorn Limestone of Late Cretaceous age overlie the Dakota Formation. The Graneros Shale consists of about 60 feet of darkgray clayey shale. The Greenhorn consists of about 100 feet of thin, alternating beds of chalky limestone and calcareous shale. Neither the Graneros Shale nor the Greenhorn Limestone can be considered an important source of ground water in Wallace County.

The Carlile Shale of Late Cretaceous age overlies the Greenhorn Limestone. The

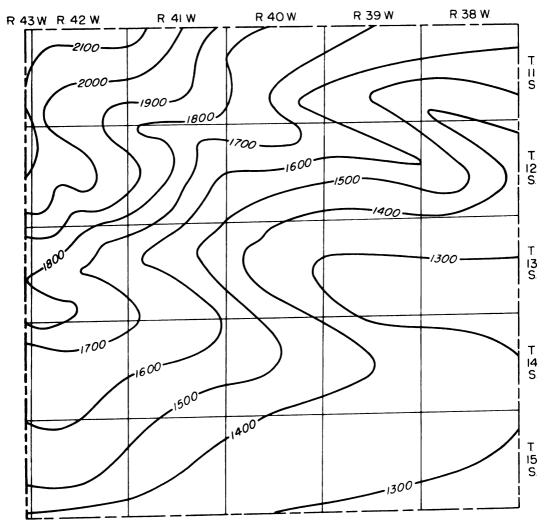


FIGURE 5.—Generalized contours showing depth to Dakota Formation below land surface in Wallace County. Interpolated from structural map of Dakota Formation by Merriam (1957) and from logs of oil and gas test wells. Contour interval 100 feet.

lower part of the Carlile consists of lightgray chalky shale; the upper part consists of dark-gray clayey shale. The Codell Sandstone Member, uppermost member of the Carlile, in much of Kansas consists of a thin bed of silty, fine-grained sandstone. Although the Codell tends to increase somewhat in thickness in the subsurface westward across Kansas, it is not considered an important source of ground water in Kansas except in local areas near outcrops, where small yields are characteristic. No wells derive water from the Codell in Wallace County.

The Fort Hays Limestone Member, lower member of the Niobrara Chalk, overlies the Carlile Shale. The Fort Hays Member consists of grayish-white chalk and chalky limestone beds separated by thin chalky shale partings. The Fort Hays is about 50 to 60 feet thick and ranges from about 900 feet below land surface in the southeastern part of the county to about 1,700 feet below in the northwestern part.

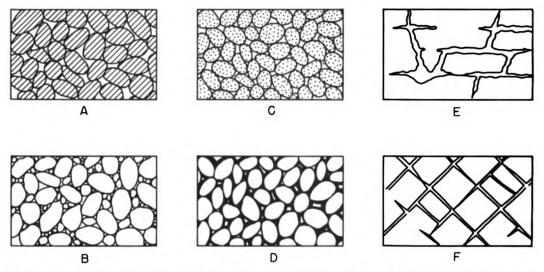


FIGURE 6.—Diagram showing several types of rock interstices and the relation of rock texture to porosity. (From Meinzer, 1923a.) A, Well-sorted sedimentary deposit having high porosity; B, poorly sorted sedimentary deposit having low porosity; C, well-sorted sedimentary deposit consisting of pebbles that are themselves porous, so that the deposit as a whole has a very high porosity; D, wellsorted sedimentary deposit whose porosity has been diminished by the deposition of mineral matter in the interstices; E, rock rendered porous by solution; F, rock rendered porous by fracturing.

GROUND WATER

PRINCIPLES OF OCCURRENCE

The fundamental principles governing the occurrence and movement of ground water were described by Meinzer (1923) and were summarized as they apply to Kansas by Moore (Moore and others, 1940). These principles will be discussed here briefly; for a more detailed discussion the reader is referred to the abovementioned reports.

The rocks and surficial deposits that form the outer crust of the earth are not solid throughout, but contain many open spaces. These spaces range in size from minute openings between particles of silt or clay to larger openings between grains or pebbles in sandstone, sand, or gravel, to open joints and crevices formed by fractures and solution in consolidated rocks. A unit in which the openings are interconnected and large enough to allow water to move to a well is called an aquifer. Figure 6 shows several common types of rock interstices and the relation of texture to porosity.

Figure 7 is a diagram of the hydrologic cycle, adapted from A. M. Piper (1953), and shows the part of ground water in the circulation of water near the surface of the earth. In Wallace County ground water is derived almost entirely from precipitation. Part of the water that falls as precipitation becomes surface runoff, part of it evaporates into the atmosphere, and part of it is absorbed by plants and later transpired into the atmosphere. The rest, a very small part, percolates downward through the soil and underlying strata until it reaches the water table, where it becomes ground water. Figure 8 shows the generalized divisions of subsurface water.

Where a water-bearing unit is confined between relatively impermeable beds and water is supplied to it from an adjacent area of higher altitude, the water table is absent and the water is said to be confined or under artesian pressure. When an aquifer under artesian pressure is penetrated by a

Digitized by Google

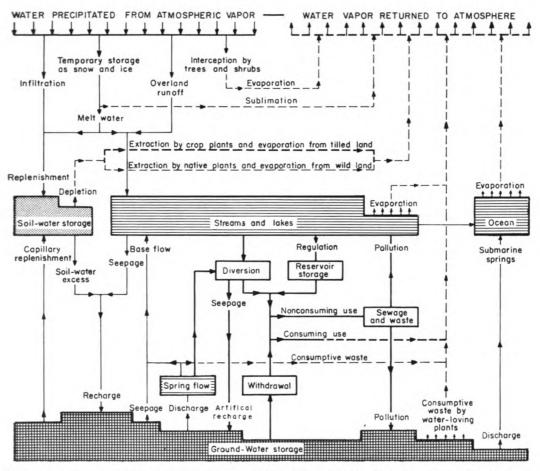


FIGURE 7.—Diagram of the hydrologic cycle. (After Piper, 1953.) Solid flow lines indicate movement of water as a liquid, and broken lines, movement as vapor. Heavy flow lines indicate man's principal changes in the natural cycle.

well, water will rise in the well until pressure of the column of water is equal to the hydraulic head. The imaginary surface connecting this level in wells is called the piezometric surface, which may or may not be above the land surface.

THE WATER TABLE AND MOVEMENT OF GROUND WATER

The water table may be defined as the upper surface of that part of the zone of saturation where water is free to move by gravity. The water table is not a static, level surface, but is a sloping surface having irregularities in the form of mounds, depressions, and ridges related to the topography, geology, and hydrology of the area. The configuration of the water table in Wallace County is shown on Plate 1 by means of contour lines. The direction of ground-water movement is at right angles to the contours and in a down-slope direction. In most of the county the movement is easterly. Because of frictional resistance of the small interstices through which the water must pass, this movement is very slow. The slope of the water table varies inversely with the permeability of the aquifer, the water-table contours being spaced

21

Digitized by Google

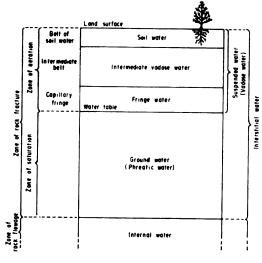


FIGURE 8.—Diagram showing generalized divisions of subsurface water. (After Meinzer, 1923a, fig. 2.)

farther apart in areas where the waterbearing beds are more permeable. The movement of ground water where aquifer tests were made in Wallace County is calculated elsewhere in this report, in the discussion of hydrologic properties of waterbearing materials.

Ground water that accumulates from recharge of the aquifer by precipitation moves eastward at a slope of approximately 11 feet per mile (Pl. 1), or at a hydraulic gradient of 0.002. The amount of ground water moving through that part of the aquifer shown on the southern part of the geologic cross section B-B' (Pl. 2) is estimated by assuming a coefficient of permeability of 1,000 gpd per square foot (determined from aquifer tests in this general area). The total area of saturated material in the cross section is about 7,200,000 square feet. The quantity of ground water moving through a given cross-sectional area of water-bearing material can be calculated from the following formula:

Q = PIAwhere Q = the quantity of water, P = the coefficient of permeability.

I = the hydraulic gradient, and A = the area.

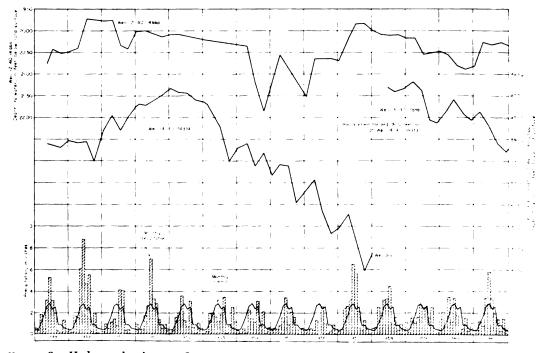


FIGURE 9.—Hydrographs showing fluctuations of water levels in the Ogallala Formation, and graphs showing monthly and normal precipitation at Sharon Springs.

Thus, the ground-water movement through the cross section is:

(1,000) (0.002) (7,200,000) =14,400,000 gpd, or 16,000 acre-feet per year. (One acre-foot equals 325,850 gallons.)

Fluctuations of the Water Table

The water table is not a stationary surface but one that fluctuates up and down in response to additions to or withdrawals from the aquifer. Hydrographs showing fluctuations of the water levels in two wells in Wallace County and the monthly precipitation at Sharon Springs are shown in Figure 9. Water levels in a number of irrigation wells in the southeastern part of the county were several feet lower in the fall of 1957, after many of the wells had been pumped during much of the summer and fall, than water levels in the same wells in the summer of 1958, when considerably less water had been pumped for irrigation because of ample rainfall.

GROUND-WATER RECHARGE

Ground water in Wallace County, as in other parts of the Great Plains, is derived almost entirely from local precipitation in the form of rain or snow. One inch of water falling on 1 square mile amounts to more than 17 million gallons. The mean annual precipitation of 17.03 inches amounts to nearly 300 million gallons per square mile and a total of more than 800 thousand acre-feet over the entire county. Only a small part of the annual precipitation, however, reaches the ground-water reservoir. As has been mentioned above, a very small part of the water that falls as precipitation in Wallace County is carried away as surface runoff by streams; part is evaporated into the atmosphere; part is absorbed by vegetation and later transpired into the atmosphere. The small amount of water that is not discharged by these

processes percolates downward to the zone of saturation. After the water reaches the water table, it moves down gradient slowly toward points of discharge such as wells, springs, and streams, or to points of evaporation and transpiration.

More than 60 percent of the mean annual precipitation in Wallace County falls during the 4 months of May through August when the climate is characterized by brisk wind movement, high temperatures, and relatively low humidity. Consequently, evaporation is rapid, and much of the annual precipitation returns to the atmosphere. Moreover, because much of the rainfall occurs during the growing season, a large part of the precipitation is returned to the atmosphere through transpiration by plants.

Recharge, the addition of water to the ground-water reservoir, may occur in several ways. The original source of all recharge is precipitation; however, in addition to direct infiltration of precipitation, a ground-water reservoir may be recharged locally by the seepage of water from streams, by subsurface inflow of water from adjacent areas, and by the infiltration of irrigation water applied on the land surface.

Infiltration of Precipitation

The topography, type of soil, and nature of subsoil greatly affect the amount of water that will infiltrate below the land surface. A good vegetative cover will retard runoff and allow water to seep into the soil. Most of the southern part of Wallace County is much more conducive to infiltration of rainfall than is the northern part, and the relative lack of surface streams in the southern part of the county in contrast to the predominance of streams in the northern part attests to this difference between the two areas.

The rate of ground-water recharge in Wallace County is not known, but studies

of recharge in other, similar areas in the High Plains indicate a recharge of about one-fourth inch per year. If the figure of one-fourth inch per year is applied to the area in Wallace County underlain by the Ogallala Formation, the annual addition to the ground-water reservoir from precipitation would be about 10,000 acre-feet.

Influent Seepage from Streams

Most streams in Wallace County are influent streams—that is, they have not cut their channels below the water table and thus add water to rather than receive water from the zone of saturation. Figure 10 illustrates influent and effluent streams. North Fork Ladder Creek, in the southern part of the county, probably contributes considerably more water to the groundwater reservoir than other streams in the county because of the sandy nature of the channel, its meandering course, and the permeable beds underlying the stream. Recharge from streams in the northern part of the county would tend to be minor because of the nearness of shale to the land surface in much of the area.

Subsurface Inflow

Subsurface inflow to an area results from the down-gradient movement of ground water from adjacent areas toward areas of discharge. Ground water moves into Wallace County along the western edge of the county. The quantity of subsurface inflow to the county is not known but is estimated to be approximately 100 acre-feet per day.

Infiltration of Irrigation Water

Recharge from the return of water applied to the land for irrigation has been estimated to approach 25 percent of the applied water in certain irrigated areas. In these areas, the irrigated water is distributed in relatively long ditches over soils

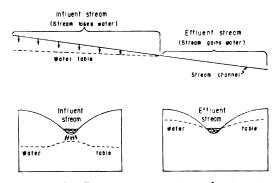


FIGURE 10.—Diagrammatic sections showing influent and effluent streams. A, Longitudinal section showing (right) how an effluent stream gains water and (left) how an influent stream loses water. B, Transverse section across influent part of a stream. C, Transverse section across effluent part of a stream. (After Meinzer, 1923a, fig. 26.)

and subsoils that are very permeable. The upland plain in Wallace County is thickly mantled by loess and has a relatively dense soil, and recharge probably does not average more than 10 percent of the applied water. On the irrigated land in the alluvial valleys, where the soils are more sandy, the percentage of applied water that recharges the aquifer probably is somewhat greater. However, the areal extent of the alluvial valleys is relatively small in Wallace County.

GROUND-WATER DISCHARGE

Ground-water discharge is the release of water from the zone of saturation. In Wallace County ground water is discharged by effluent seepage into streams, by springs, by transpiration and evaporation, by pumping from wells, and by subsurface outflow.

Springs and Sceps

Streamflow is maintained at low stages in Rose Creek, Eagle Tail Creek, and Willow Creek by ground-water discharge from the Ogallala Formation. Ground water is discharged into these streams mainly by seeps along stream channels, but there are many small springs along the valley walls where the stream channel intercepts the water table, and also at the contact of the Ogallala Formation and the underlying impermeable Pierre Shale. Many of the springs and seeps continue to discharge ground water during periods of drought, and the shallow ground water along the streams supports a heavy growth of vegetation. The amount of discharge of ground water by springs and seeps in Wallace County is not known but is believed to be considerable.

Transpiration and Evaporation

During the growing season, plants transpire a considerable amount of ground water in the major stream valleys in the area. The lowering of the water table by transpiration greatly reduces the ground-water discharge into streams, notably Rose Creek, Eagle Tail Creek, and Willow Creek, and in these streams the flow during the growing season is largely runoff from storms. The base flow increases markedly during the fall and winter when transpiration ceases. Transpiration does not occur from the water table underlying the upland areas of the county because of the greater depth of the water table. Soil mosture lost by transpiration on the uplands, however, must be replaced before any water can infiltrate downward to the water table.

Where the water table is within a few feet of the land surface, ground water may evaporate from the capillary fringe overlying the zone of saturation, or, if the water table is within a few inches of the land surface, water may evaporate directly from the zone of saturation. The evaporation of water from the ground-water reservoir is restricted to the alluvial valleys, and the amount is probably small compared to other ground-water discharge.

Wells

The effect of the pumping of wells upon an aquifer depends upon the extent and permeability of the aquifer as well as upon Withthe quantity of water pumped. drawal of ground water from wells in Wallace County is increasing. In 1960 there were 96 irrigation plants in the county using 16,234 acre-feet of water to irrigate 8,192 acres (as reported to the Division of Water Resources of the Kansas State Board Withdrawal of ground of Agriculture). water for domestic and stock supplies is small compared to withdrawal for irriga-Sharon Springs and Wallace are the tion. only towns in the county that derive municipal supplies from ground water.

Subsurface Outflow

Ground-water contours on Plate 1 show a subsurface outflow of ground water in the southeastern part of the county, where the movement is southeastward. A maximum of about 7,000 acre-feet of ground water per year leaves Wallace County by subsurface outflow. The amount of outflow in the alluvial valleys is considered negligible because of their relatively small areal extent,

Recovery of Ground Water

When water is pumped from a well, the water level becomes lower inside the well than outside, and water therefore moves toward the well. The water table or piezometric surface in the surrounding part of the aquifer is lowered, and a depression in the form of an inverted cone develops in the water table (Fig. 11). The lateral extent of this cone of depression is called the area of influence, and the vertical distance that the water level is lowered is called the drawdown. The size and shape of the cone of depression are determined by

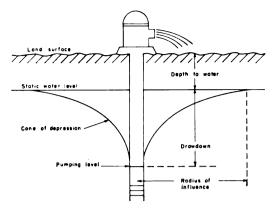


FIGURE 11.—Diagrammatic section of a well that is being pumped, showing its drawdown, cone of depression, and radius of influence.

the transmissibility of the aquifer, rate of pumping, length of pumping time, and extent to which the well penetrates the aquifer. The cone of depression around a pumped well will increase in depth and area until it intercepts enough recharge or reduces natural discharge sufficient to supply the demand of the well. After pumping stops, the water table or piezometric surface surrounding the well will in time return to its original position.

If wells are closely spaced, as in a well

field or an intensively irrigated area, the cone of depression developed by each well may overlap those of adjacent wells, causing mutual interference (Fig. 12). When mutual interference occurs, the drawdown at any point within the radius of influence of the wells is the sum of the drawdowns caused by the individual wells at that point. When wells interfere, the pumping lift in each well is increased and the discharge is decreased. Also, to maintain a constant discharge from a pumped well would increase the drawdown and extend the cone of depression. In areas where many wells are pumping from the same aquifer, the large cone of depression resulting from mutual interference may not have sufficient time to recover between pumping periods and the water level may decline persistently.

UTILIZATION OF GROUND WATER

Data on 294 wells in Wallace County were obtained during the course of this investigation. Only part of the domestic and stock wells were visited, but records were made of all municipal and irrigation wells in the county at the time of this investigation (Table 11). The principal

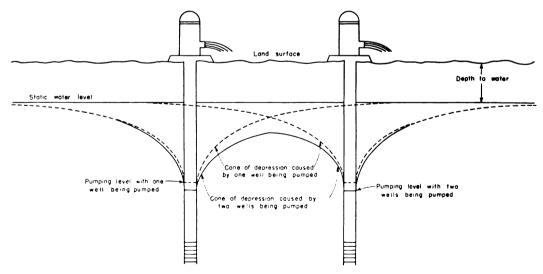


FIGURE 12.—Diagrammatic section of two closely spaced wells being pumped, showing mutual interference between wells and the resulting cone of depression.

Digitized by Google

uses of ground water in the county are listed below.

Domestic and Stock Supplies

One of the chief uses of ground water in Wallace County is to supply domestic and stock needs, although the amount so used is small as compared to the amount pumped for irrigation. Nearly all domestic and stock supplies in the rural part of Wallace County are obtained from wells, but in parts of the county where ground water is difficult to obtain, some stock supplies are provided by ponds created by dams across small watercourses. Most domestic and stock wells in the county are drilled wells in which standard-size casing has been set and which are equipped with displacement-type pumps in which the cylinder is below the water level. Most pumps are operated by windmills; others are operated by electric or gasoline motors, or by hand.

Municipal Supplies

At the time of this investigation only the communities of Sharon Springs and Wallace maintained municipal water-supply systems. Pertinent remarks regarding individual wells and details of well construction are given in Table 11.

SHARON SPRINCS.—Sharon Springs (population about 1,000) obtains its water supply from three drilled wells in Eagle Tail Creek valley in the southwestern part of town. The wells are equipped with electrically driven turbine pumps. Storage is provided by an elevated 50,000-gallon steel tank. An average daily use of about 100,000 gallons of water was reported by city officials.

wALLACE.—Wallace (population about 100) obtains its water supply from well 13-39-25daa drilled into alluvium of South Smoky Hill Valley. An electrically driven turbine pumps water directly into the mains, the excess going into an elevated 50,000-gallon steel tank. An average daily use of about 15,000 gallons of water was reported by city officials.

Irrigation Supplies

There were 96 irrigation plants in Wallace County in the fall of 1960. Nearly all were single wells, but a few plants in the valleys were pumping from batteries of two or more wells. Most of the irrigation wells are in the southern part of the county, chiefly in the lower two tiers of townships, where approximately 3 million acre-feet of water is in storage in the Ogallala Formation. Yields of irrigation wells range to more than 2,000 gpm. Figure 13 is a map of Wallace County showing the extent of land covered by water rights or applications for rights as of July 1961, according to records of the Division of Water Resources of the The Kansas State Board of Agriculture. acreage affected by these rights and applications totals 20,174 acres, of which 8,192 acres were reported to have been irrigated in 1960 by 45 appropriators. The authorized quantity of ground water appropriated totals 37,658 acre-feet, of which 16,234 acre-feet was reported to have been applied in 1960 by 49 appropriators. The acreages and quantities of water given above do not include data from surface-water irrigators, of whom there are several, mostly along Rose Creek.

HYDROLOGIC PROPERTIES OF WATER-BEARING MATERIALS

The quantity of ground water that an aquifer will yield to wells depends upon the hydrologic properties of the material forming the aquifer. The hydrologic properties of greatest significance are its ability to transmit and to store water, as measured by its coefficients of transmissibility and storage. Controlled aquifer tests in the field provide the data required to compute these coefficients.

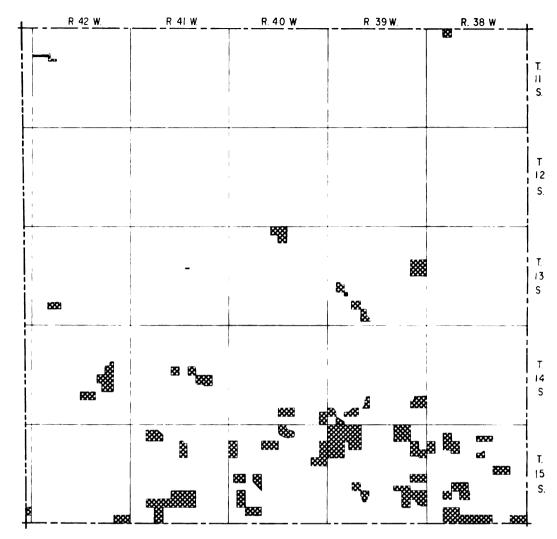


FIGURE 13.—Map showing areas in Wallace County covered by water rights to ground water.

The coefficient of transmissibility (T) may be defined as the rate of flow of water, in gallons per day, through a vertical strip 1 foot wide and extending the full height of the saturated thickness of the aquifer, under a hydraulic gradient of 1 foot per foot, at the prevailing temperature.

The coefficient of storage (S) may be defined as the change in the stored volume of water per unit surface area of the aquifer per unit change in the component of head normal to that surface.

The field coefficient of permeability (P)

can be computed by dividing the coefficient of transmissibility by the aquifer thickness (m). The field coefficient of permeability of an aquifer may be defined as the rate of flow of water, in gallons per day, through a square foot of its cross section, under a hydraulic gradient of 1 foot per foot, at the prevailing temperature.

DETERMINATIONS OF TRANSMISSIBILITY AND PERMEABILITY

Aquifer tests were made using two wells

https://hdl.handle.net/2027/uc1.b4185584 Generated at University of Kansas on 2023-10-04 18:25 GMT ^{aub}lic Domain in the United ctates 28

deriving water from the Ogallala Formation to determine the coefficients of transmissibility and permeability of the Ogallala in Wallace County. Values of transmissibility were computed from the test data by the methods generally referred to as the Thiem method, the Theis nonequilibrium method, and the Jacob modified nonequilibrium method.

Thiem Method

The Thiem method of determining the coefficients of transmissibility and storage of a water-bearing material is based on the rate of discharge of a pumped well and the drawdown in two or more observation wells at different known distances from the pumped well. The Thiem equation (Wenzel, 1942, p. 81), expressed in terms of transmissibility instead of permeability, is

$$T = \frac{527.7Q \log_{10} \frac{r_2}{r_1}}{s_1 - s_2}$$

in which T is the coefficient of transmissibility, in gallons per day per foot

- Q is the rate of discharge of the pumped well, in gallons per minute
- r1 and r2 are distances of two observation wells from the pumped well, in any unit
- s_1 and s_2 are drawdowns of water level at distances r_1 and r_2 , in feet

To apply the Thiem equation, some convenient elapsed pumping time, t, is selected after the water levels in the observation wells reach a steady rate of decline. When the values of drawdowns, s, are plotted on the arithmetic scale of semilogarithmic paper and the values of distances, r, are plotted on the logarithmic scale, the data should form a straight line. From this line the change in drawdown per log cycle, $\triangle s$, is determined, and the Thiem equation is reduced to

$$\Gamma = \frac{528Q}{\Delta s}$$

Using this same line and extrapolating it to the zero-drawdown axis, the storage co-

efficient may be calculated by the following equation:

$$S = \frac{0.3Tt}{r_0^2}$$

where S is the coefficient of storage T is as previously defined t is the time since pumping started, in days ro is the distance intercept on the zero-drawdown axis, in feet

The Thiem method of determining the coefficient of transmissibility is based on the theory that the aquifer is homogeneous throughout, but because aquifers are not perfectly homogeneous a probable error in the value of T is introduced. Some aquifers are so heterogeneous that the drawdown rate in aquifer tests is slowed in one or more of the observation wells and perhaps accelerated in others, thus giving a false slope to the line used in determining a value for Δs .

Theis Nonequilibrium Method

The Theis nonequilibrium method of determining the coefficients of transmissibility and storage is based on the rate of discharge of a pumped well and the rate of change of drawdown in one or more observation wells. The Theis nonequilibrium equation is

$$s = \frac{114.6Q}{T} \int_{u}^{\infty} \frac{e^{-u}}{u} du$$

where $u = \frac{1.87 \text{ r}^2\text{S}}{\text{Tt}}$

- s is the drawdown in an observation well, in feet
- r is the distance from pumped well to observation well, in feet
- Q is the rate of discharge of the pumped well, in gallons per minute
- T is the coefficient of transmissibility, in gallons per day per foot
- S is the coefficient of storage expressed as a decimal fraction
- t is the time since pumping began, in days

The integral expression is written sym-

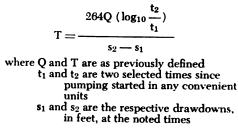
bolically as W(u) and is read as the "well function of u." The integral expression cannot be integrated directly, but its value is given by the series

$$W(\mathbf{u}) = -0.5772 - \log_{\mathbf{u}}\mathbf{u} + \mathbf{u} - \frac{\mathbf{u}^2}{2.2!} + \frac{\mathbf{u}^3}{3.3!} - \frac{\mathbf{u}^4}{4.4!} + \cdots$$

Two unknowns and the nature of the integral expression make an exact analytical solution impossible, but Theis devised a graphical method of superposition that makes it possible to obtain a simple solution of the complex equation.

In this method a type curve is plotted on logarithmic paper with W(u) plotted along the vertical axis and $\frac{1}{u}$ along the horizontal axis to form a type curve (Wenzel, 1942, p. 88-89). If values of s obtained in one observation well are plotted against values of t on logarithmic paper of the same scale as the type curve, the curve of the observed data will conform to a part of the type curve. The data curve is superposed on the type curve, the axes of the two curves being held parallel and in a position that best fits the data curve to the type curve. The selection of a match point common to both curves provides the data needed to solve the Theis equation, which in simple form reduces to

and


$$S = \frac{Tt}{1.87r^2 \left(\frac{1}{u}\right)}$$

For convenience a match point may be selected at the intersection of one of the major axes of the type curve, for example

where
$$\frac{1}{u} = 10$$
, or where $\frac{1}{u} = 100$.

Jacob Modified Nonequilibrium Method

From the Theis equation, Cooper and Jacob (1946) developed the following formula:

If the observed drawdowns for each well are plotted on the arithmetic scale and the values of t are plotted on the logarithmic scale of semilog paper, the resulting plot should form a straight line if enough time has elapsed since pumping began. If t_1 and t_2 are chosen one log cycle apart, the Jacob modified nonequilibrium equation reduces to

$$T = \frac{264Q}{\triangle s}$$

1

where \triangle s is the drawdown per log cycle.

The coefficient of storage can be determined from the same semilog plot of the observed data by the following equation:

$$S = \frac{0.3 \text{ Tt}_0}{r^2}$$

where S, T, and r are as previously defined, and to is the time intercept on the zero-drawdown axis, in days.

AQUIFER TESTS

Waugh Aquifer Test

An aquifer test was made in August 1960 using irrigation well 14-42-23dbb1, owned by E. M. Waugh. The well is 350 feet deep and yields water from the Ogallala Formation. A drillers log of the pumped well and a sample log of observation well 1W (14-42-23dbb2) are included with the logs of test holes and wells at the end of this report. Two observation wells were drilled at distances of 237 and 468 feet from the pumped well. The well was

30

Digitized by Google

 TABLE 5.—Drawdown of water level in pumped

 well and observation wells during the Waugh

 aquifer test, August 1960.

Time since	Drawdown, feet					
pumping started minutes	' Pumped well	Well 1W	Well 2W			
1		0.07				
4		0.46				
7		0.96				
8		1.04	0.30			
9 11		1.24 1.46				
13		1.40	0.60			
15		1.81	0.00			
17		1.97				
18			0.80			
19		2.09				
21		2.20				
23		2.28				
24			1.06			
25	31.78	2.36				
27		2.44				
28			1.20			
30	32.42	2.49				
33	32.49		1.05			
34 35		2.64	1.35			
	32.54	2.04				
38	-02.04		1.44			
40		2.74	1.11			
42		21	1.52			
45		2.83				
47	32.81		1.59			
50		2.92				
52			1.62			
53	33.00					
55		3.01				
57			1.75			
60	33.10	3.08				
62		0.00	1.80			
70 70	00.01	3.20	1 00			
72 80	33.31		1.90			
85	33.44	3.34				
87		0.01	2.02			
90	33.52		2.02			
100		3.44				
102			2.10			
106	33.64					
120	33.79	3.54				
130			2.23			
140		3.63				
150			2.31			
155	33.97	o =-				
160		3.71	0.40			
180	04.00	3.79	2.40			
182	34.08	2 07	9 40			
210	34.15	3.87	2.49			

	(TABLE 5.—Co	mtinued)	
240	34.22	3.92	255
270		3.98	2.60
287	34.26		
310		4.04	
315			2.65
330	34.33		
340		4.08	
345			2.69
390	34.47		
395		4.16	
398			2.75
450	34.50		
455		4.23	
457			2.82
473	34.55		
540	34.64		
545		4.29	
550			2.91
713	34.76		
720		4.50	
723			3.10
930	34,89		
940		4.70	
945			3.24

pumped at a rate of about 1,600 gpm, as measured frequently with a Hoff flow meter. Drawdown measurements in the pumped well and the two observation wells were made during the period of pumping and are given in Table 5.

The coefficients of transmissibility shown in Figure 14 were determined by the Jacob modified nonequilibrium method. The coefficients computed from data from the pumped well and observation well 1W are believed to be correct; the larger coefficient of transmissibility obtained from data from observation well 2W is believed to be too high and can probably be accounted for by insufficient time for the drawdown to attain the correct slope because of the greater distance from the pumped well. The coefficients of transmissibility, permeability, and storage shown in Figure 15 were determined by the Thiem method.

Holland aquifer test

An aquifer test was made in August 1960 using irrigation well 15-39-23cbcl owned

ł

1

۱

Ł

ŧ

\$

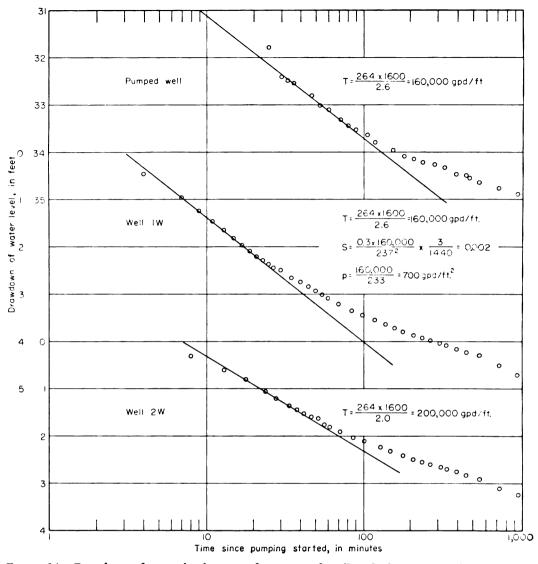


FIGURE 14.—Drawdown of water level measured in pumped well and observation wells during the Waugh aquifer test plotted against time since pumping started.

32

Digitized by Google

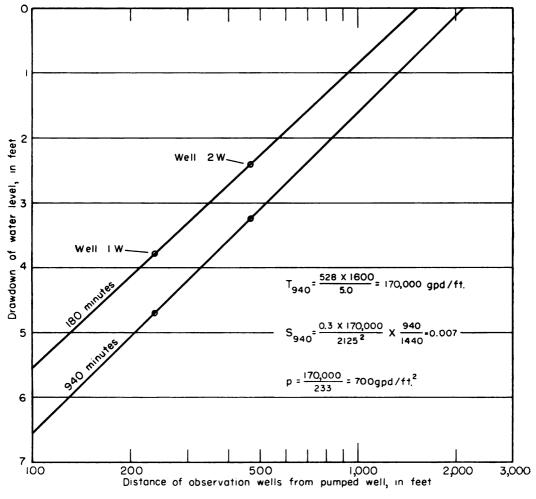


FIGURE 15.—Drawdown of water level in observation wells at 180 and 940 minutes during the Waugh aquifer test plotted against distance from pumped well.

by G. W. Holland. The well is 234 feet deep and yields water from the Ogallala Formation. A drillers log of the pumped well and a sample log of observation well 1S (15-39-23cbc2) are included in Table 11. Two observation wells were drilled at distances of 120 and 237 feet from the pumped well. The well was pumped at a rate of about 1,300 gpm, as measured frequently by a Hoff flow meter. Drawdown measurements were made in the two observation wells during the period of pumping and are given in Table 6.

The drawdown of the water level in the observation wells is plotted against time on logarithmic paper in Figure 16. The Theis type curve was applied to determine the coefficient of transmissibility. The plot of the data deviates from the type curve for the later measurements and probably indicates that vertical drainage is occurring from the confining beds, in which case T is probably correct but S is not. The coefficient of transmissibility computed from data obtained from observation well 2S is believed to be correct. Observation well 1S seemingly did not respond to the drawdown as quickly as it should have and probably was partially plugged, at least during the early part of the aquifer test. The coefficients of transmissibility, permeability, and storage shown in Figure 17 were determined by the Thiem method.

THEORETICAL PREDICTIONS OF DRAWDOWNS

In order to predict future drawdowns the assumptions have been made that all water pumped came from storage within the aquifer, that pumping is continuous at a rate of 1,000 gpm, and that the waterbearing material has a T of 150,000 gpd per foot and an S of 0.002. The predictions of future drawdowns are in error to the TABLE 6.—Drawdown of water level in observation wells during the Holland aquifer test, August 1960.

Time since pumping started, minutes	Drawdown, feet	
	Well 18	Well 28
3	2.52	
5 7	3.34	0.29
9		0.59
11 13	3.63	0.90
15	3.80	
17 19	3.98	1.17
21		1.44
$\frac{23}{25}$	3,99	1.60
27	4.05	1.00
29	4 00	1.74
31 33	4.09	2.00
35	4.15	
$37 \\ 39$	4.18	2.14
43		2.30
45 47	4.21	2.44
50	4.26	2.11
52 55		2.57
55 57	4.29	2.69
60	4.31	
62 68	4.34	2.74
70		2.91
75 77	4.37	2.97
84	4.40	2.97
88 96		3.09
96 100	4.45	3.17
112	4.49	
$\frac{115}{134}$	4.54	3.24
136		3.33
150	4.58	9 90
$\frac{153}{173}$	4.62	3.36
178		3.42
212 214	4.60	3.46
242	4.66	
246 300	4.72	3.50
390	4.69	$\frac{3.54}{3.58}$
505	4.66	3.60
815 855	$\begin{array}{c} 4.91 \\ 4.92 \end{array}$	$\begin{array}{c} 3.71 \\ 3.73 \end{array}$
1200	5.01	3.77
1620 2370	$egin{array}{c} 5.15 \ 5.26 \end{array}$	3.89 3.95
2975	5.39	3.95 4.05
3810	5.50	4.10

Generated at University of Kansas on 2023-10-04 18:25 GMT / https://hdl.handle.net/2027/uc1.b4185584 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access use#pd-us-google

Digitized by Google

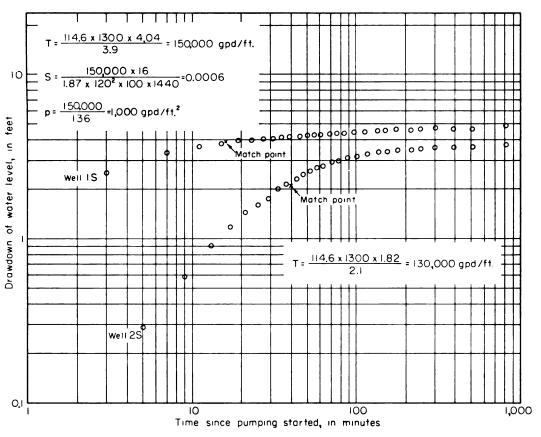


FIGURE 16.—Drawdown of water level in observation wells during the Holland aquifer test plotted against time since pumping started.

extent that these assumptions are in error, but the predictions are probably of the right order of magnitude.

Figure 18 shows, under the assumed conditions specified, the drawdown of water level at any distance from a pumped well after 1, 10, 100, 1,000, and 10,000 days. After 100 days of pumping at a rate of 1,000 gpm, the drawdown at a distance of 1,000 feet will be about 6 feet. Figure 19 shows the rate of decline caused by pumping. A well pumped at 1,000 gpm for 10 days will cause about 4 feet of decline at a distance of 1,000 feet, and after 100 days about 6 feet of decline. The data indicate that the cone of influence will spread rapidly in response to pumping. Large-yield wells can interfere with each other unless the wells are spaced at considerable distances. When wells mutually interfere, the drawdown at any one point will be the sum of the drawdowns produced by each well.

MOVEMENT OF GROUND WATER

The quantity of ground water moving through a given cross-sectional area of water-bearing material can be calculated from the following formula:

$$Q = pAv = PIA$$
where Q = the quantity of water
p = the porosity of the material
A = the cross-sectional area
v = the velocity of the ground water
P = the coefficient of permeability, and
I = the hydraulic gradient.

The approximate rate of movement of water through the water-bearing materials

٤

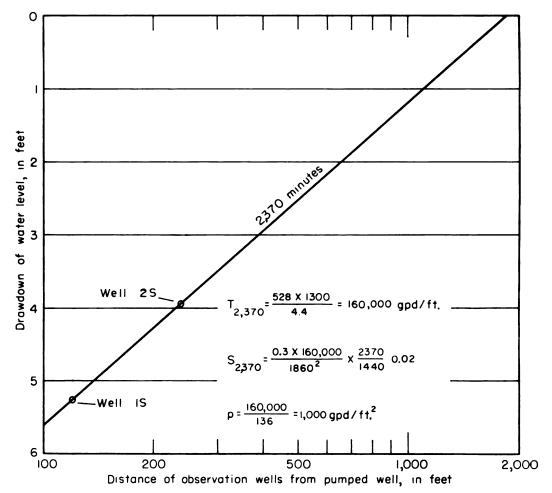


FIGURE 17.—Drawdown of water level in observation wells at 2,370 minutes during the Holland aquifer test plotted against distance from pumped well.

can be calculated by applying the above formula transposed as follows:

$$v = \frac{PI}{p}$$

If P is expressed in gallons per day per square foot, I in feet per mile, and p in percent, then v, in feet per day, is given by the following formula:

$$v = \frac{PI}{395p}$$

The hydraulic gradient in the Ogallala Formation is approximately 12 feet per mile across the county. Aquifer tests indicate an average permeability of about 900 gpd per ft². With an assumed porosity of 30 percent, the average velocity of the ground water is calculated to be

$$v = \frac{900 \times 12}{395 \times 30} = 0.9$$
 foot per day, or

about 11 inches per day, or about 1 mile in 16 years.

QUALITY OF GROUND WATER

The chemical character of ground water in Wallace County is indicated by analyses

Generated at University of Kansas on 2023-10-04 18:25 GMT Public Domain in the United States, Google-digitized / ht

/ https://hdl.handle.net/2027/ucl.b4185584 http://www.hathitrust.org/access_use#pd-us-google 36

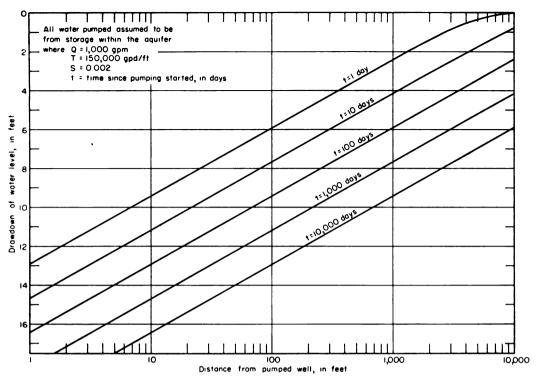


FIGURE 18.—Drawdown of water level at any distance from pumped well after pumping has begun.

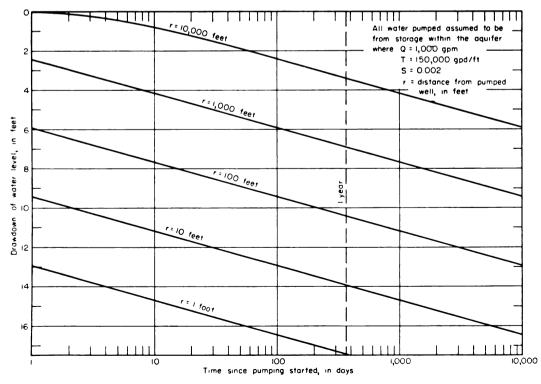


FIGURE 19.—Drawdown of water level at any time after pumping has begun.

38

rts per	CO3	Non- car- bonate	0	108 24	0 %	04	••	1,290	92	22	10	.0	~ o	00	00		200 [è0		0%	31	.00
n in pa	Hardness as CaCO3	Car- bonate	260	202 218 218	210 210	155 180	132 251	061	50F	8	220	204	981 731	166 146	132	ee s	223	156	154	155 168	156 156	149
ts give	Hardı	Total	260	370 242	002 802 802 802 802 802 802 802 802 802	33	132 251	989 889	230	572	530 72 72	204	124	99 99 19	132	133	823	156	161	22	187 156	148
Dissolved constituents given in parts	Nitrate	(NO ₃)	5.3	15 27	15.8	6 5 7	949 20-	787	:2	26.1	1.7	2.3	င်္ခံစ စ	8.01 8.01	0.0 80	9 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	်တ် တို့ဆိုင်	21	11	11 8.0	81	13
/ed co	Fluo-	E	1.0	ગગ	- 71 - 71		5 - 2 7 - 2	2.4 1	-	- 20	ör:	: œ.	<u>, , , , , , , , , , , , , , , , , , , </u>	ci 8.	20 1 - 7	0.1	2.2.	1.7	1.0	1.3		
Dissolv	Chle	efc)	16	9 2	23	15 7.0	9.0 11	103	3 <u>55</u> 5	1XI	329	\$=:	13.0	000	8.0 8.0	ie. New	; ; ; ; ;		0.0 0.0 0.0	101	15 9.0	8.0 8
Stoltenberg.	Sulfate	(s0.	7	84 6.6	57 174	22	41.4	2,760 184	2	116	229	1,270	19 6.2	83	21	88 P	985	583	22	22	202	25 59
A. Stolt	Bicar-	bonate (HCOa)	342	266 266	366 256	234 196	981 110	231 969	540		268	249	227 173	217 193	981 122	021	861	36	188	195 205	190	198 202
Analyses by H. A.	Sodium	potas- siuni (Na+K)	‡	22	60 81	6 7 1:3	69 69	827	10	25	<u>7</u> 7	:2	88 88 88	23 29	27 19	22	839	24	23	55	12 26	88
Inalyses	Mag-	(Mg)	17	25 12	38 38	=2	12 21	144 98	378	88	14	17	12 9.5	29	22	122	123	89	:91	14	12	12
	Cal-	Cium (Can	76	101 77	89 89	4 4 4 4	88	357	87	t 23	22	:2	34 52	44	83	385	93	38	38:	8 4	48	
', Kans	L In	(Fe)	0.03	.28 26	.28	.02 98	2 .2	.17	99	92:	28	90	1.2 .06	8. 5	03		5	38	17	9 <u>8</u>	92	1.4
County	Silica	(SiO2)	25	53	នខ	8 R	22	21	128	\$ 23	88	21	23	82	28	125	58	88	24:	222	28	125
/allace	-Bi(I	solved solids	396	305 305	425	320 219	199 435	4,420	287	184	374	316	324 193	244	224 206	230	2289	240 241	246	258 247	253	304
s in W		ture (9.F)	57	888	58 28 28	58 59	88 88 88	59														
:ypical wells in Wallace County, Kansas.	[])ate	of collection	7-31-58	7-28-58	7-29-58	8-2-58 7-28-58	7-28-58	7-29-58	7-29-58	7-28-58	7-29-58 8- 4-58	9-20-51 7-31-58	9-20-51 8-4-58	10-12-60	7-31-58	9-20-51	10-10-00	10-12-60	9-21-51 7-30-58	7-30-58 8- 4-58	10-11-60 8- 2-58	8- 1-58 9-20-51
LABLE 7.—Analyses of water from typ nillion."	1	Geologie source	Alluvium and Orallala Formation	Ogallals Formation do	Alluvium Ogallala Formation	ob b	do Colluvium	ę	Ogallala Formation	Ogallala Formation	Colluvium Alluvium	8 8	do Ogallala Formation	Rose Creek Ozallala Formation	우	000	9-9-	g op	9 9	ob ob	-p-f	o op
Analyse	Darth	feet	128.0	81.0 65.5	19.5 86.2	124.5 54.0	148 15.0	38.0	0.08 2.08 2.08	122.0	41.5 51.0	20 76.0	16.0 270.0	182.0	226.0	181 181				227 265	88.0 235	254.0
TABLE 7.— million.*		Well	11-38-5bbc	11-38-18dca 11-39-4cbc	11-39-28acc 11-40-1bcc	11-40-35aaa 11-41-2ccd	11-42-7dad 11-42-34abe	12-38-33bba	12-40-15edd	12-41-118801 12-42-15888	13-38-11bba 13-30-19dca	13-39-25adb 13-40-7aac	13-42-24cca 13-43-36abb	143917dad 143925ech	14-40-36dcc	14-12-23bca	15-38-30ecb	15-38-34cbc	15-39-11bbb 15-39-20dab	15-39-25bbb 15-40-19acb	15-40-27dec	15-41-32aca 15-43-12dda

pounds per million gallous of water.

8.33

of water or

pounds

• One part per million is equivalent to 1 pound of substance per million

(

•

١

ł

ł

١

۱

İ

ļ

1

۱

۱

١

1

1

ł

ł

I show a straight a start a

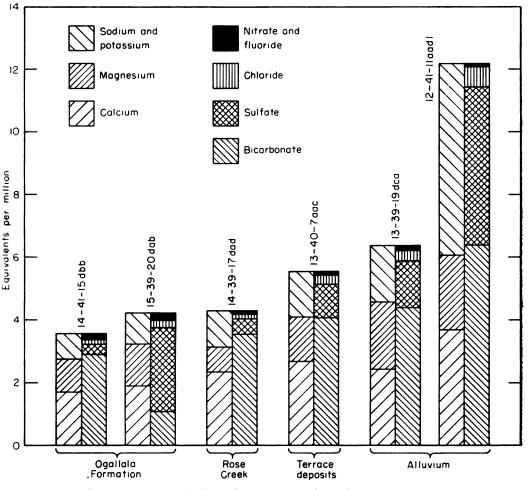


FIGURE 20.—Graphic representation of chemical constituents of samples of water from Wallace County.

of samples from wells deriving water from the principal aquifers (Table 7). The analyses of water were made by Howard A. Stoltenberg, chemist, in the Sanitary Engineering Laboratory of the Kansas State Board of Health. The results of the analyses are given in parts per million. Factors for converting parts per million of mineral constituents to equivalents per million are given in Table 8. The analyses show only the dissolved mineral constituents and do not indicate the sanitary condition of the water. Representative analyses of ground water from the principal aquifers are shown in Figure 20.

CHEMICAL CONSTITUENTS IN RELATION TO USE

The following discussion of the chemical constituents of ground water has been adapted in part from publications of the U. S. Geological Survey and the State Geological Survey of Kansas. (See Table 7 for chemical analyses of water from Wallace County.)

DISSOLVED SOLIDS.—The residue that is left after a sample of water has evaporated consists mainly of the dissolved minerals in the original sample, but may also include some organic material and water of crystal-

r / https://hdl.handle.net/2027/uc1.b4185584 http://www.hathitrust.org/access use#pd-us-google

Generated at University of Kansas on 2023-10-04 18:25 GMT Public Domain in the United States, Google-digitized / h⁻

lization. Water containing less than 500 ppm (parts per million) of dissolved solids generally is satisfactory for domestic and many industrial purposes. Water containing more than 1,000 ppm of dissolved solids is likely to contain enough of certain constituents to cause noticeable taste or to make the water unsuitable in other respects.

The dissolved solids in samples of water collected in Wallace County ranged from 193 to 4,420 ppm. Most of the samples were relatively low in dissolved solids; more than half contained less than 300 ppm. Only 5 samples contained more than 500 ppm, and only 1 sample contained more than 1,000 ppm.

HARDNESS.—Hardness of water is recognized most commonly by the amount of soap needed to produce a lather or suds and by an insoluble scum that forms during washing processes. Calcium and magnesium cause almost all the hardness of water and may be deposited as constituents of scale in heat-exchange equipment.

The hardness of water is of two typescarbonate hardness and noncarbonate hardness. Carbonate hardness includes that portion of the calcium and magnesium that would combine with the bicarbonate and the small amount of carbonate that are present. Carbonate hardness can be virtually removed by boiling the water, which causes the magnesium and calcium to precipitate. Noncarbonate hardness is caused by that portion of calcium and magnesium that would combine with the sulfate, chloride, and nitrate ions that are present, plus the slight hardness of other minor constituents. Noncarbonate hardness cannot be removed by boiling.

Water that has a hardness of less than 50 ppm is considered soft. A hardness of 50 to 150 ppm is satisfactory for most purposes, but the amount of soap needed increases with hardness, and water in the upper part of this range will cause con-

TABLE 8.—Factors for converting parts per million to equivalents per million.

Mineral constituents	Chemical symbol	Factor
Calcium	Ca++	0.04990
Magnesium	Mg++	.08220
Sodium	Na+	.04350
Potassium	K+	.02558
Carbonate	CO 3	.03333
Bicarbonate	HCO a	.01639
Sulfate	SO	02082
Chloride	Cl-	02820
Fluoride	F-	05263
Nitrate	NO 3 ⁻	.01613

siderable scale in steam boilers. Hardness of more than 150 ppm is obviously noticeable, and water that has a hardness of 200 or 300 ppm is considered undesirable for household purposes until it is treated by a softening process. Where municipal water supplies are softened, the hardness is generally reduced to about 100 ppm.

Hardness of the water samples collected in Wallace County ranged from 124 to more than 1,000 ppm. Only 9 samples had a hardness of 150 ppm or less. Six samples had a hardness of more than 300 ppm and 1 sample had 1,480 ppm.

NITRATE.—The nitrate content of natural water may vary greatly and frequently may seem unrelated to any geologic formation. Although some nitrate may be derived from nitrate-bearing rocks and minerals in the water-bearing formation, strong concentrations of nitrate probably are from other sources. Nitrates are dissolved readily from soils that contain nitrate concentrations derived from plants, nitrate fertilizer, animal waste, or nitrifying action. High nitrate concentrations in water from a well may be due to direct flow of surface water into the aguifer. Because privies, cesspools, and barnyards are sources of organic nitrogen, a large amount of nitrate in well water may indicate harmful bacteria or pollution.

In the last two decades investigations of the effects of nitrate have shown that too

much nitrate in water may cause cyanosis in infants (blue babies) when it is used for drinking or in the preparation of the formula for feeding. The Kansas State Board of Health, as well as the U.S. Public Health Service, regards 45 ppm as the safe limit of nitrate (as NO₃-). This amount of nitrate is equivalent to 10 ppm of nitrogen. Water containing as much as 90 ppm of nitrate generally is considered very dangerous to infants, and water containing as much as 150 ppm may cause severe cyanosis. Moderate nitrate concentrations are seemingly not harmful to older children or adults. Nitrate cannot be removed from water by boiling.

The nitrate content of samples of water collected in Wallace County ranged from less than 1 to 84 ppm (Table 7). Only one sample contained more than the 45 ppm limit set by the State Board of Health.

FLUORIDE.—Fluoride generally is present only in small amounts in ground water. However, the fluoride content of drinking water should be known, because if children drink water containing too much fluoride while their permanent teeth are forming, it may cause mottling of the tooth enamel. If the fluoride content is as much as 4 ppm, about 90 percent of the children using the water may have mottled tooth enamel (Dean, 1936). Although too much fluoride has a detrimental effect, a smaller amount in drinking water, about 1 ppm, lessens the incidence of tooth decay (Dean and others, 1941). The U. S. Public Health Service (1961) recommended standards for the content of mineral constituents in drinking water that is used on interstate carriers. The recommended maximum content of fluoride is 1.5 ppm.

Although the fluoride content of samples of water collected in Wallace County ranged from 0.2 to 2.6 ppm, most samples contained less than 1.5 ppm. (Table 7).

CHLORIDE.—Chloride is quite abundant in nature, and many rocks contain small to

large amounts of chloride salts which may be dissolved by ground water. Chloride has little effect on the suitability of water for ordinary use unless present in such concentrations as to make the water unpotable or Water that contains less than corrosive. 150 ppm of chloride is satisfactory for most purposes. Water containing more than 250 ppm generally is objectionable for municipal supplies, and water containing more than 350 ppm is objectionable for most irrigation or industrial uses; water containing as much as 500 ppm has a disagreeable However, animals can drink water taste. with much greater chloride concentration; the upper limit in water consumed by cattle is believed to be as much as 4,000 to 5,000 ppm.

Most water samples collected in Wallace County were low in chloride content, which ranged from only 5.5 to 103 ppm. All but 3 samples contained less than 50 ppm.

IRON.—Iron and manganese in quantities that exceed a few tenths of a part per million are undesirable, as they stain fabrics and plumbing fixtures and produce an objectionable coloration in the water. The limit generally specified is 0.3 ppm. Water in the ground may contain considerable iron in the ferrous state, but upon exposure to air most of the iron is oxidized and precipitated as reddish-brown ferric hydroxide. Iron can be removed from most water by aeration and filtration, but some water requires additional treatment. Drinkingwater standards of the U.S. Public Health Service (1961) recommend that the iron content should not exceed 0.3 ppm and the manganese 0.05 ppm.

The iron content of water samples collected in Wallace County ranged from 0.2 to 2.3 ppm; eleven out of 35 samples contained more than 0.3 ppm.

SULFATE—Sulfate (SO_4^{--}) in ground water is derived principally from gypsum or anhydrite (calcium sulfate) and from the oxidation of pyrite (iron disulfide). Magnesium sulfate (Epsom salt) and sodium sulfate (Glauber's salt), if present in sufficient quantities, will impart a bitter taste to the water, and the water may act as a laxative for people not accustomed to drinking it. More than 250 ppm of sulfate in drinking water generally is undesirable (U. S. Public Health Service, 1961). Most water samples collected in Wallace County were low in sulfate; only four samples exceeded 250 ppm, two of which exceeded 1,000 ppm.

SILICA.—Silicon combined with oxygen in the form of SiO_2 is called silica. Silica is a mineral constituent in most ground water. Except for the scale it may form, silica has little effect on the usefulness of water for most purposes. Silica may be deposited as scale with other incrustants, generally in the form of calcium or magnesium silicate. The silica content of water samples collected in Wallace County ranged from 17 to 50 ppm.

BICARBONATE.—Bicarbonate, the predominant anion in ground water in Wallace County, and carbonate cause alkalinity of ground water. The concentration of bicarbonate in samples of water from wells in Wallace County ranged from 170 to 410 ppm.

SODIUM.—The sodium content of water to be used for irrigation is important because a large percentage (equivalents per million of sodium divided by equivalents per million of sodium, potassium, calcium, and magnesium, expressed as a percentage) is undesirable. The effect of sodium in irrigation water is discussed on the following pages.

SUITABILITY OF WATER FOR IRRIGATION

This discussion of the suitability of water for irrigation is based on Agriculture Hand÷

book 60, U. S. Department of Agriculture (U. S. Salinity Laboratory Staff, 1954).

In areas of sufficient rainfall and ideal soil conditions, soluble salts in the soil or salts added to the soil with water are carried downward by percolation and ultimately reach the water table. Soil that was originally nonsaline and nonalkali may become unproductive if an excess of soluble salts or exchangeable sodium is allowed to accumulate as a result of improper irrigation and soil management. If the amount of water applied to the soil is not more than is needed by plants, water will not percolate downward below the root zone. and mineral matter will accumulate at that Likewise, impermeable soil zones point. near the surface can retard the downward movement of water and cause waterlogging of the soil and deposition of salts.

The characteristics that seem to be most important in determining the suitability of irrigation water are the dissolved-solids content and the concentration of sodium For diagnosis and classification, the ions. dissolved-solids content of irrigation water can be estimated from specific conductance, which is a measure of the capacity of the inorganic salts in solution to conduct an electrical current. The specific conductance can be measured accurately in the laboratory, or it can be approximated by multiplying the total equivalents per million of cations (calcium, magnesium, sodium, and potassium) by 100 or by dividing the dissolved-solids content in parts per million by 0.64.

Salt-sensitive crops such as strawberries, green beans, and red clover may be affected adversely by irrigation water having a specific conductance exceeding 250 micromhos per centimeter, but water having a specific conductance below 750 micromhos per centimeter is generally satisfactory for irrigation, insofar as salt content is concerned. Water in the range of 750 to 2,250 micro-

senerated at University of Kansas on 2023-10-04 18:25 GMT Public Domain in the United States, Google-digitized / h

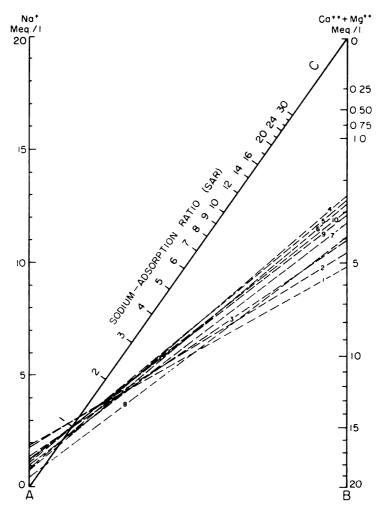


FIGURE 21.-Nomogram for determining the sodium-adsorption ratio of water.

mhos per centimeter is widely used, and satisfactory crop growth is obtained under good management and favorable drainage conditions, but saline conditions will develop if leaching and drainage are inadequate. Use of water having a conductivity of more than 2,250 micromhos per centimeter is the exception, and few cases can be cited where such water has been used successfully.

The sodium-adsorption ratio may be determined by the formula

$$SAR = \frac{Na^{\star}}{\sqrt{\frac{Ca^{\star \star} + Mg^{\star \star}}{2}}}$$

where the ionic concentrations are expressed in equivalents per million. It may be determined also by use of the nomogram shown in Figure 21. In using the nomogram to determine the sodium-adsorption ratio of a water sample, the concentration of sodium expressed in equivalents per million is plotted on the left scale (A), and

Sample number in Figures 21 and 22	Well	Na (equivalents per million)	Ca + Mg (equivalents per million)	SAR	Conductivity (micromhos per centimeter at 25°C)
1	11-38-5bbc	1.92	5,19	1.15	690
2	13-39-19dca	1.80	4.59	1.15	630
3	13-40-7aac	1.45	4.09	1.00	550
4	13-43-36abb	.87	2.48	. 80	330
5	14-40-36dcc	1.17	2.64	1.00	380
6	14-41-15dbb	.81	2.77	. 70	360
7	15-38-30ccb	1.02	3.40	. 80	440
8	15-38-34cbc	. 44	3,94	.35	430
9	15-39-25bbb	1.35	3.10	1.00	430
10	15-41-32aca	1.26	2.95	1.00	420

TABLE 9.—Sodium-adsorption ratios (SAR), conductivities, sodium content, and calcium plus magnesium content of water samples from selected wells.

the concentration of calcium plus magnesium expressed in equivalents per million is plotted on the right scale (B). (In this report the concentrations of sodium and potassium are given together as sodium, but the amount of potassium is considered negligible.) A line connecting these two points intersects the sodium-adsorptionratio scale (C) at the sodium-adsorption ratio of the water. Table 9 gives the wells and index numbers of samples for which analyses are plotted in Figures 21 and 22; also given are sodium-adsorption ratios, approximate electrical conductivities, and values for sodium and for calcium plus magnesium.

When the sodium-adsorption ratio and the electrical conductivity of a water are known, the suitability of the water for irrigation can be determined graphically by plotting these values on the diagram shown in Figure 22. Low-sodium water (S1) can be used for irrigation on almost all soils with little danger that harmful levels of exchangeable sodium will develop. Medium-sodium water (S2) may be used safely on coarse-textured or organic soils having good permeability, but S2 water will present an appreciable sodium hazard in certain fine-textured soils, especially under poor leaching conditions. High-sodium water (S3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management such as good drainage, leaching, and additions of organic matter. Very high-sodium water (S4) generally is unsatisfactory for irrigation unless special action is taken, such as addition of gypsum to the soil.

Low-salinity water (C1) can be used for irrigation of most crops on most soils with little likelihood that soil salinity will de-Medium-salinity water (C2) can velop. be used if a moderate amount of leaching occurs. Crops that tolerate moderate amounts of salt, such as potatoes, corn, wheat, oats, and alfalfa, can be irrigated with C2 water without special practices. High-salinity water (C3) cannot be used on soils having restricted drainage. Very high-salinity water (C4) can be used only on certain crops and then only if special practices are followed.

1

Ten representative chemical analyses of water samples from irrigation systems were selected for determining the suitability of water in Wallace County for irrigation (Table 9). Specific conductance ranged from 330 to 690 micromhos. In Figure 22, all the water samples were classified as lowsodium (S1) and medium-salinity (C2) water.

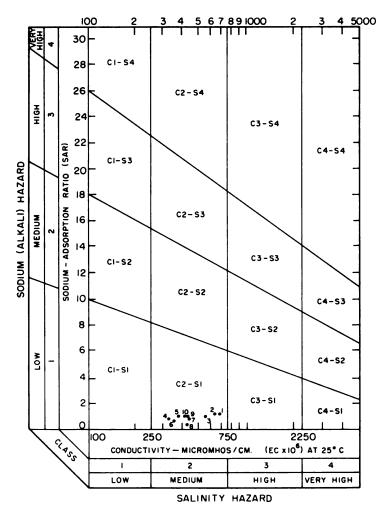


FIGURE 22.—Classification of water being used for irrigation in Wallace County.

SANITARY CONSIDERATIONS

The analyses of water in Table 7 give only the dissolved-solids content of the water and do not indicate the sanitary quality of the water, although a large amount of certain mineral constituents such as nitrate or chloride may indicate pollution. Water containing mineral matter that imparts an objectionable taste or odor may be free from harmful bacteria and safe for drinking. Conversely, water clear and pleasant to the taste may contain harmful bacteria. Great care should be taken to protect domestic and public water supplies from pollution. To guard against contamination, a well must be properly sealed to keep out dust, insects, vermin, debris, and surface water. Wells should not be placed where barnyards, privies, or cesspools are possible sources of pollution.

GEOLOGIC FORMATIONS IN RELATION TO GROUND WATER

CRETACEOUS SYSTEM-UPPER CRETACEOUS SERIES

Niobrara Chalk

The Niobrara Chalk consists chiefly of about 700 feet of alternating beds of lightgray chalk, chalky limestone, and chalky shale. The lower 50 to 60 feet of the Niobrara is massive-bedded chalk and chalky limestone called the Fort Hays Limestone Member. Most of the Niobrara consists chiefly of thin-bedded chalk and chalky shale called the Smoky Hill Chalk Member, upper member of the Niobrara Chalk.

The Niobrara was named by Meek and Hayden in 1862 from exposures of calcareous marl and chalky limestone near the mouth of the Niobrara River in northeastern Nebraska. Logan (1897, p. 219) described the Niobrara in north-central Kansas and divided it into the Fort Hays Limestone Member below and the Smoky Hill Chalk Member above. Williston (1897, p. 235) discussed the paleontology and stratigraphy of the Niobrara in western Kansas.

SMOKY HILL CHALK MEMBER

The oldest rocks that crop out in Wallace County consist of chalk and chalky shale of the Smoky Hill Chalk Member. Only the uppermost part of the member is exposed in Wallace County where it crops out along the south side of the South Smoky Hill Valley, in the east-central part of the county. In the rest of the county, these rocks occur in the subsurface.

The Smoky Hill consists principally of chalk and chalky shale, but thin beds of bentonite occur throughout. The Smoky Hill is characteristically thin-bedded and platy. Fresh exposures are light to dark gray but the beds weather colorfully to white, orange, and brown. Concretions of limonite and pyrite are common and they account for the bright colors of the Smoky Hill Chalk Member when weathered.

The Smoky Hill is noted for the abundant fossils it contains. Vertebrate fossils include bones of aquatic reptiles, such as mosasaurs and plesiosaurs, and many species of fish. Shark teeth are common. Invertebrate fossils characteristically include echinoderms and molluscs, the most numerous of which are the genera *Inoceramus*, a clam, and *Ostrea*, an oyster. Minute shells of foraminifers belonging mainly to the families Globigerinidae and Textularidae compose much of the chalk.

The Smoky Hill Chalk Member is also notable for its effect on topography. Soil development is either thin or absent, vegetation is sparse, and rainwash and gully erosion produce a badland type of topography.

The Smoky Hill Chalk Member is not important as an aquifer in Kansas and is believed to carry but little ground water in Wallace County. As the beds of shalv chalk are relatively impermeable, water within the formation would be transmitted chiefly through fractures and joints and would be found only locally. Cave-ins such as the Smoky Hill Cave-in and the Old Maid's Pool attest to solution within the underlying chalk beds and are apparently associated with local faulted areas. Ground water from the Smoky Hill would tend to be more mineralized than other water at comparable depth below the land surface in Wallace County, owing to its association with minerals within the chalk. Although the water probably would be undesirable for household use, it could be used to water livestock.

Pierre Shale

The Pierre Shale was named by Meek and Hayden in 1862 from exposures at old Fort Pierre in South Dakota. The Pierre

Shale in northwestern Kansas has been studied and described in detail by Elias (1931). He divided the Pierre into five named members and one unnamed unit. These are, in ascending order: Sharon Springs Shale, Weskan Shale, Lake Creek Shale, Salt Grass Shale, an unnamed shale interval of about 500 or 600 feet, and the Beecher Island Shale. According to Elias, the lithology of the Pierre is fairly uniform and the breaks are based largely on fossils. Only the lower four members, which make up about the lower half of the Pierre, are present in Wallace County, the upper half having been removed by pre-Ogallala erosion. The Pierre Shale ranges in thickness from 0 southeast of the town of Wallace to approximately 600 feet in the northwestern part of the county.

The Pierre Shale conformably overlies the Niobrara Chalk in Wallace County and consists chiefly of dark-gray to black, thinbedded shale which characteristically weathers to coffee brown and gray. Thin beds of greenish-gray, brown, and orange bentonite occur in much of the Pierre. Pyrite and marcasite are scattered throughout fresh exposures. Outcrops are characterized by limonite concretions and rusty spots, and by thin crystals of selenite, usually found in abundance along the cracks. Except for concretions, the Pierre Shale is noncalcareous, thus differing from the chalky shale of the underlying Niobrara Formation. Concretions of varied size and constituents occur commonly but generally consist of calcium carbonate, siderite, and limonite. The concretions characteristically occur in zones along bedding planes and form escarpments and prominent benches in places.

The contact of the Pierre Shale and the underlying Niobrara Formation may be seen southeast of the town of Wallace along the south side of the South Smoky Hill Valley. The Pierre Shale crops out at many localities in the central and northern parts of the county, particularly along stream valleys. It is typically soft and easily eroded, and low rolling slopes characterize its exposures. Because of the uniform hydrologic and lithologic character of the formation, the Pierre Shale is mapped as a single unit on Plate 1.

Following is a section of a part of the Pierre Shale, measured and described by C. R. Johnson and N. W. Biegler (Bradley and Johnson, 1957, p. 20).

Measured section of Pierre Shale in sec. 7, T. 14 S., R. 38 W.

Ogallala Formation

Oganala Formation	
CRETACEOUS—Upper Cretaceous Th Pierre Shale	nickness, feet
Shale, yellow and brown, mottled; lime- stone concretions near contact; fisl scales interspersed	n .
Shale, gray, fissile, weathering lighter gray, having white, powdery ma- terial in fractures	- 11.6
Shale, gray and brown, fissile, contain- ing lenticular silty limestone concre- tions as much as 7 inches in diameter	- 1.0
Shale, fissile, blue gray	6.5
Bentonite, having yellow limonitic shale partings	0.5
Shale, blue gray, containing lenticular limestone bodies as much as 0.5 foot thick and 6 feet long	t 3.5
Shale, blue gray, fissile, containing abundant bentonite stringers; a lim- onitic, resistant, persistent bed 0.5 inch thick lies at base	-
Shale, brown, limonitic, containing many limy concretions as much as inches in diameter	3
Shale, blue gray, weathering yellow brown and earthy, fissile; bentonito stringers as much as 0.5 inch thick are common; contains fish scales Gypsum crystals in platy aggregates a.e numerous	7 22 7
Total Pierre Shale measured	73.4

The Pierre Shale is of no consequence as as aquifer in Wallace County but serves as an impervious floor below the overlying water-bearing deposits and retards or prevents the downward percolation of water. Although the Pierre generally acts as an aquiclude, confining the ground water above it, at times a small amount of water probably moves along joints and bedding

47

planes; the quantity of water is considered insufficient to supply wells.

TERTIARY SYSTEM—PLIOCENE SERIES

Ogallala Formation

The Ogallala Formation was named by Darton in 1899 (p. 732-734) from exposures in southwestern Nebraska. Darton in 1920 (p. 6) designated the type locality as being near Ogallala Station in western Nebraska. Since his work, the most significant studies of the Ogallala Formation in western Kansas have been by Elias (1931), Smith (1940), and Frye and others (1956). The Ogallala Formation in Kansas is divided by Frye and others into three members which, in ascending order, are the Valentine, Ash Hollow, and Kimball. A thin. discontinuous bed of pisolitic limestone, 1 to 3 feet thick, commonly occurs at the stratigraphic top of the Ogallala Formation.

The Ogallala Formation was deposited upon an erosional surface of Upper Cretaceous rocks, chiefly by eastward-flowing streams whose source of load was igneous and metamorphic rocks of the Rocky Mountains and sedimentary rocks of eastern Colorado. Its lithology varies sharply both vertically and laterally. The Ogallala consists chiefly of a series of valley fillings, overlapping laterally from the axes of the main drainageways onto the gentle erosional slopes of the valley sides.

Thus, the Ogallala Formation consists of a heterogeneous complex of predominantly clastic deposits, the texture ranging from very coarse gravel and pebbles to clay, and the sorting from good to poor. Lentils of volcanic ash, marl or marly limestone, and bentonite contrast with the predominant stream-laid clastics. Throughout this heterogeneous assortment of sediments there is virtually no distinctive bed that can be traced appreciable distances in the field. The formation's topographic expression in-

cludes flat uplands, gentle erosional slopes, and nearly vertical cliffs. Because of the uniform hydrologic character of the formation, no attempt was made to divide the Ogallala in Wallace County, and it is shown on Plate 1 as a single unit.

CHARACTER.—The Ogallala Formation in Wallace County is characteristically buff to pinkish in color. It constitutes a widespread mantle of fluvial deposits consisting predominantly of sand, gravel, silt, and The deposits are interbedded and clay. admixed to various proportions and are largely unconsolidated, although cementation of beds occurs to some degree throughout the formation. Also commonly present are thin beds of volcanic ash, fresh-water limestone, and bentonitic clay. Calcium carbonate is a common constituent in almost all the Ogallala. It is distributed both as fine material and as stringers of caliche and small to medium-size nodules. In many places calcium carbonate binds the deposits so firmly as to produce a series of hard ledges, interbedded with only slightly cemented beds. The hard ledges are usually unevenly cemented and form roughly weathered benches and cliffs which resemble mortar and accordingly are often referred to as "mortar beds." Silica also is present as a cementing material in beds of opaline sandstone or as chert deposits, and variously colored chert in the form of nodules and in small irregular lenses and beds is occasionally seen.

Sand is the principal material within the Ogallala Formation and is present at all horizons, the sand typically being light gray or greenish. Beds of uniform sand may occur but generally the sand ranges from fine to coarse and commonly is mixed with gravel, silt, or clay. Gravel beds containing lenses of sand, silt, and clay are common but thick beds of uniform gravel are rare. Beds of sand and gravel with distinct cross bedding occur in places. Silt, sandy silt, and

clayey silt are present throughout the Ogallala and are greenish gray, pink, tan, and gray; if the beds contain a large amount of calcium carbonate, they are light gray or white.

Lenses and thin beds of white and pinkish limestone are common in the middle and uppermost parts of the Ogallala. Bluish-gray volcanic ash and light-gray to snow-white diatomaceous marl are locally found in the lower and middle parts of the formation.

Although relatively pure clay beds are not common within the Ogallala, fine plastic, bentonitic clays, greenish and reddish brown, are locally at or near the base of the Ogallala. Elias (1931, p. 153-158) discussed the occurrence of the clays and concluded that for the most part they were the product of weathering of volcanic ash that had been deposited on the surface of the Pierre Shale before Ogallala deposition began, or very early during Ogallala deposition. Subsurface samples of clay of similar appearance at the base of the Ogallala Formation in Thomas County were reported by Frye (1945, p. 67), who suggested that the clay might be a product of weathering of the underlying Pierre Shale. Bentonite lentils occur within the Ogallala, seemingly restricted to the lower member of the formation (Valentine Member). Bentonite was recognized in several test holes drilled in Wallace County, the thickest section being in test hole 14-42-13ccc, where 9 feet of gravish-green bentonite was recorded.

Following is a section of a part of the Ogallala Formation, measured and described by Frye and others (1956, p. 84).

Measured section of the Ogallala Formation in the SE¹/₄ sec. 11, T. 13 S., R. 42 W.

TERTIARY—Pliocene Th Ogallala Formation	ickness, feet
"Algal limestone"	0.5
Caliche, silt, fine sand, and a few peb- bles, gray to ash gray, distinctly	
platy structure throughout	9

Thic	kness,
Ę,	- to

Sand, fine, some coarse sand and peb- bles, massive, densely cemented with	
calcium carbonate, gray	13
Silt, fine sand, and clay, loose, massive	
to thin bedded, greenish gray to	

brown; contains nodules of caliche 11 and small cemented lenses Sand, pebbles of quartz and caliche, and cobbles of red silt, loosely cemented throughout; contains Celtis 10 willistoni Silt and fine sand, well sorted in thin some cross-bedded zones: beds, weathered volcanic ash shards abundant in basal part; discontinuous ca-10 liche zone at top . . **.** . . . Sand, medium, some fine gravel, massive, gray, densely cemented; contains Celtis willistoni 7 Sand, fine to medium, loosely cemented, gray to pinkish tan 4 Sand and gravel, brown to tan, densely cemented; contains the following fossil seeds: Berrichloa amphoralis, B. tuberculata, Biorbia fossilia, Krynitzkia auriculata, Stipidium intermedium, S. variegatum Silt and sand, loose, local cemented 8 lenses, pinkish to reddish brown. (The Ogallala rests on Pierre Shale),

26

Total Ogallala Formation measured 98.5

Outcrops are characteristically cemented to various degrees and typically are ash gray in color. In spite of the diversity of deposits, the outcrop pattern of the Ogallala presents a uniformity of aspect that makes the formation readily identifiable. Many beds in the Ogallala are cemented or partially cemented with calcium carbonate. Because the cemented beds are more resistant to erosion, many outcrops of the Ogallala form rough benches, hard ledges, and cliffs; exposed surfaces commonly have a knobby, irregular aspect.

Opinions regarding the origin of the thin, discontinuous bed of pisolitic limestoneoriginally called "algal" by Elias (1931, p. 136-141)—that marks the stratigraphic top of the Ogallala Formation have been controversial. Elias postulated a lacustrine origin for the capping limestone. Later workers advanced a hypothesis of subaerial origin as a caliche zone. Smith (1940, p. 90-92) discussed the two hypotheses, and

T / https://hdl.handle.net/2027/uc1.b4185584 http://www.hathitrust.org/access_use#pd-us-google

Generated at University of Kansas on 2023-10-04 18:25 GMT Public Domain in the United States, Google-digitized / h

more recently Frye and others (1956, p. 13-16) critically discussed the bed, postulating as a mode of origin the development of a mature to senile lime-accumulating soil which was later modified by solution.

DISTRIBUTION AND THICKNESS.—The Ogallala Formation rests on a subaerially eroded surface developed on shales of Late Cretaceous age. This surface has a relief of several hundred feet in Wallace County and slopes generally eastward at a rate of about 10 to 15 feet per mile. Logs of test holes show that the thickness of the Ogallala Formation in Wallace County ranges from 0 to approximately 400 feet, but that the thickness is not uniform because of unconformable contacts at the top and bottom of the formation.

The Ogallala, although generally mantled with eolian silts, underlies the upland plain in the southern, west-central, and northwestern parts of the county. The Ogallala is thickest and most extensive in the southern part of the county, where it underlies the upland loess in nearly all the area. The Ogallala also occurs extensively in the west-central and northwestern parts of the county and it is locally quite thick. The Ogallala is thin and discontinuous in the central and northeastern parts of the county, where much of it has been removed by erosion. In many parts of this area it only caps the high interstream areas. The Ogallala crops out along the bluffs of the major valleys and locally is well exposed in many of the tributary canyons. The thickness and character of the Ogallala Formation are shown by the logs of test holes and wells at the end of this report and are illustrated in the cross sections on Plate 2.

WATER SUPPLY.—The Ogallala Formation is the most widespread and important water-bearing formation in Wallace County. It supplies water for most domestic and stock supplies, and 96 irrigation plants were obtaining water from it in the fall of 1960. The yields of the wells range from a few gallons per minute for domestic and stock wells to more than 2,000 gpm for several irrigation wells.

In much of the southern, the extreme western, and the northwestern parts of the county, the saturated thickness of the Ogallala, which yields moderate to large quantities of water, is great enough to store relatively large quantities of ground water. In much of the central and northeastern parts of the county, the Ogallala is either missing or too thin to carry more than a little ground water, if any.

Studies were made to determine the quantity of ground water in storage in the Pliocene and Pleistocene deposits. A contour map (Pl. 3) showing the saturated thickness of the deposits was prepared by superimposing a contour map of the water table upon a contour map of the bedrock surface and connecting points of equal saturated thickness. The area between each pair of contours was measured with a planimeter and was multiplied by the average saturated thickness to give the volume of The total volume of saturated materials. saturated materials and the volume of water, based on an assumed specific yield of

TABLE 10.—Volume of saturated water-bearing materials and volume of water available for pumping in Wallace County, based on a specific yield of 15 percent.

Township	Volume of water-bearing materials, acre-feet	Volume of water, acre-feet
T. 11 S., Rs. 38 and 39 W.	290,000	43,000
T. 11 S., R. 40 W.	970,000	145,000
F. 11 S., R. 41 W.	1,200,000	180,000
T. 11 S., Rs. 42 and 43 W.	1,300,000	195,000
T. 12 S., R. 40 W.	90,000	13,000
T. 12 S., Rs. 42 and 43 W.	1,200,000	180,000
T. 13 S., Rs. 41, 42, and 43 W.	2.000,000	300.000
T. 14 S., R. 38 W.	280,000	42,000
T. 14 S., R. 39 W.	1,000,000	150,000
T. 14 S., R. 40 W.	1,600,000	240,000
T. 14 S., R. 41 W.	2,300,000	345.000
T. 14 S., Rs. 42 and 43 W.	3,700,000	555,000
T. 15 S., R. 38 W.	1,909,000	285,000
T. 15 S., R. 39 W.	2,800,000	420,000
T. 15 S., R. 40 W.	3,700,000	555,000
T. 15 S., R. 41 W.	2,000,000	300,000
T. 15 S., Rs. 42 and 43 W.	500,000	75,000
Total volume	27,000,000	4,000,000

15 percent from the saturated material, are given by townships in Table 10.

The total volume of saturated waterbearing materials in Wallace County, as measured, is about 27 million acre-feet. If the materials have a specific yield of 15 percent, a volume of water equal to 15 percent of the total volume of saturated materials would be available for pumping. Thus, about 4 million acre-feet of water would be available if the deposits were completely drained. From a practical standpoint, much less water than this would be available for pumping.

QUATERNARY SYSTEM—PLEISTOCENE SERIES

Deposits of Quaternary age, although relatively thin, are the surficial materials in much of Wallace County, as shown by the geologic map (Pl. 1) and cross sections (Pl. 2). The deposits are both eolian and fluvial in origin and are assigned to the Pleistocene Series. The eolian deposits consist of the Peoria and Loveland Formations, and the fluvial deposits consist of alluvium.

Eolian silts cover much of the upland areas and typically extend along the valleys, masking the valley slopes. In places the loess is intermixed with reworked loess and slope wash, and in some areas the upland draws contain several feet of this colluvial material.

Fluvial deposits are associated with the drainage system and consist of alluvial deposits of sand, gravel, and silt along the inner valleys of the principal streams.

Peoria and Loveland Formations

CHARACTER AND THICKNESS.—Eolian deposits form the most extensive outcrops in Wallace County, blanketing much of the county with a cover of loess ranging from 0 to about 50 feet in thickness. The loess is apparently thicker in the northwestern part of the county. It caps the rolling hills and flat uplands and masks the gentle slopes of the valleys. The loess represents the Loveland Formation of Illinoisan age and the Peoria Formation of early Wisconsinan age. Locally, chiefly in the northwestern part of the county, about 1 or 2 feet of loess, largely incorporated within the modern soil profile and believed to represent the Bignell Formation of late Wisconsinan age, was observed overlying a buried soil believed to be the Brady soil.

The Loveland Formation is a reddish-tan silt, mostly eolian, which characteristically grades into sand in the lower part. The Sangamon buried soil marks the top of the Loveland Formation and separates it from the overlying Peoria Formation. The Peoria is a massive, eolian, tan to gray silt, which covers much of the upland areas of Wallace County and typically masks the valley slopes along the principal stream valleys.

Colluvium, material deposited by slope wash and consisting of reworked loess, sand and gravel derived from the Ogallala Formation, and Cretaceous bedrock fragments, mantles many slopes and characteristically fills the upland draws. Where the colluvium is thick enough to conceal the underlying bedrock it has been included with the Peoria and Loveland Formations on Plate 1.

WATER SUPPLY.—The deposits mapped as Peoria and Loveland Formations in this report consist mostly of relatively thin, wind-deposited silt, generally well above In parts of central and the water table. northeastern Wallace County, however, where in places ground-water supplies are meager, shallow domestic and stock wells obtain small amounts of ground water from colluvial and slope deposits which in this report are included with the Peoria and Loveland Formations. In these areas where ground-water supplies are meager and difficult to find, the best well sites generally prove to be creek valleys and draws where thin alluvial and colluvial fill

Generated at University of Kansas on 2023-10-04 18:25 GMT / https://hdl.handle.net/2027/uc1.b4185584 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

		Tvbe	Depth	Diameter	Type	Principal	Principal water-bearing bed	Method		Depth to water level	Date	Altitude of land	Remarks	
Well (1)	Owner or tenant	well (2)	of well, feet (3)	of well, inches	of casing (4)	Character of material	Geologíc source	of lift (5)	of water (6)	below land surface, feet (7)	of measure- ment	surface above mean sea level, feet	(Yield given in gallons a minute; drawdown in feet)	
10-37-32dcc 10-40-34ddc	J. S. Garvey J. A. Parker	Dr B	63 0 33.0	ອເດ	19 19	Sand, Gravel do	Ogallala Formation do	Cy, W Cy, H	xα		7- 5-49 8-24-49	3,325.6 3,655.7	In Sherman County. Do; abandoned well.	
10-41-33daa 10-42-33bcd 10-42-36bcc 11-37-30bbb	W. B. Havden Bertha Rivers et al. C. A. Denton B. F. & E. A. Lanzdon	దర్ధర	129.0 51.4 114.5 43.8		5555	ფფეფ	-9999	20000 00000	D, s s s s s s s s s s s s s s s s s s s	20.95 39.07 38.37 38.84	$\begin{array}{c} -23-38 \\ 8-26-49 \\ 6-27-49 \\ 7-9-49 \\ 7-20-54 \end{array}$	3,875 2 3,931.8 3,913.6 3,405.1	In Sherman County. Do. In Logan County.	
	J. S. & W. W. Garvey John Cogswell et al.	5 D	16.0 128.0	5)2 16	8 S	op	Alluvium Alluvium and Octibale Formation	T, B	<u>х</u> н		7-21-54	3, 272.2	Reported yield 1,200.	
11-38-10aaa 11-38-13ddd	do C. Shurtz	Dr.	35.0 44.0	6 51/2	15 I5	99 P	Ogaliala Formation Ogaliala Formation	Cy, W Cy, W	D, S D, S	27	7-23-58	3,328.63,355.2		
11-38-16bec •11-38-18dea	G. & F. Harrison Berl Minnix	ಕಕ್ಷ	106.5 81.0	22	555	do do	do do	ANA SOO	D,S	1282	8- 7-57 7-14-58 97-57	3,508.4 3,484.1 3,380.5		
11-38-19cdc 11-38-21ada 11-38-26ada	C. E. Taylor G. H. Smith	555	86.0 86.0 130.7	0 2 0 0 2 0	555	Sand, gravel do	Ogallala Formation do	N N	XX	583	8-12-57	3,458.3		
11-38-28aaa 11-38-32dcc	W. L. Hoss I. C. Harrison	555	43.0	.	555	Sand, silt	do Colluvium Ocallala Formation	HAN COOL	XX C	22 00 00	10- 6-60 10- 6-60 8- 7-57	3,484.0 3,320.3 3,368 8		
11-39-35ccc 11-39-2cda •11-39-4cbe	Minnie Robidoux F. G. Trablik	కరద	108.0	סי סי ס	555	do do	do do	BB	-20 00 I	88	7-14-58	3,559.8		
11-39-7bca 11-39-28arc 11-39-36aaa	N. E. Parnell C. C. Pearce School District	దర్	110.5 19.5 22.4	מימימי	555	გმმ	do Alluvium do	E WW	Ωαα	222	8-8-57 7-23-58 7-14-58	3,425.7		
•11-40-1bcc	P. M. Piper	Dr	86.2	3	61	qo	Ogallala Formation	Cy, W	D'8	62	8-24-49	3,686.6		
11-40-14ace 11-40-15hbc 11-40-15ddd1	M. T. Smith J. A. Parker do	దదద	35.5 49.0 57.0	e no e	15 15 15	-9-9-9	ფფგ	Cy. W	Nww	19.05 38.55 42.74	6- 9-58 10- 5-60 5-17-48	3,546.0 3,598.3 3,560.5	Well has been destroyed.	
11-40-28dca	H. B. Rockwell John Stover	55	93.5	51%	19	ob	ob ob	Cv. Q	Qø		7-25-57	3,606.1		
•11-40-35aaa	R D. Mills Willa Mather	దద	124.5	9 0	55	99	99	MA CA	D,8		6- 9-58	3, 566.8		
11-41-4cda 11-41-6bbb	M. L. Goings C. A. Duell	దద	101.0	50	555	994	9-9-	200	zoc		8-26-49	3,884.3		
11-41-15ccc 11-41-18ccc +11-41-24add	G. W. & T. Agnew R. C. Ward	555	74.8	סי סי ס	555	8-8-8	8-9-9	J.E.W.	D.S.D		7-22-57	3, 853.9		
11-41-26cbc 11-41-32baa	L. G. Mather B. Roy	దద	36.0	500	66	Sand, silt	Colluvium	J.E.	D'S		8- 1-57	3,706.8		
11-41-33aab 11-42-4dcd	Emma King W. T. Niceschwander	552	93.8 116.5		5 5 °	Sand, gravel do	Ogallala Formation do	NA CO.	200-		5-26-58	3,937.0	Demosted wield 200	
11-42-10ad 11-42-11cda	walker Sivey O. L. Jones School District	555	93.3 120.0		•55	3-9-9	999	AN NO	-20		7-26-57	3, 954.9	one mat not not of at	
11-42-19aac	Joe Van Laeys A. S. Waltz	55	48.5	99	66	9 g	e e	OV. W	20 20		10-5-60 6-10-58	3,909.8		
•11-42-34abc	Paul Scott	'n	15.0	5%5	15	Sand, silt	Colluvium	G. E	D' 8		10- 5-60	3,759.5		

TABLE 11.—Records of wells in Wallace County.

Shale reported at 25 feet	Series of 4 wells; reported	yteid 300. New well; shale reported at	00 feet. Series of 3 wells, not used	much. Series of 5 wells; not used. Series of 10 wells; yield	1.750. Well has been destroyed. Cannot be measured; new concrete pump base; re-	Noted yield 1,100. Not used much. Reported yield 1,000. Reported yield 800. Reported yield 400.	uown 12. Reported yield 850. Series of 9 wells; not used. Series of 8 wells; reported	Reported yield 700. Reported yield 1000. Reported yield 1000.	uown 13. Reported yield 900. Reported yield 600
3,956,9 3,258,9 3,214,2 3,214,2 3,214,2 3,214,2 3,214,2 4,325,9 4,325,9 4,325,9 5,35,3 5,35,3 5,35,3 5,35,3 5,35,3 5,35,3 5,35,3 5,35,3 5,35,3 5,35,3 5,35,5 5,55,5 5,55,5 5,55,5 5,55,5 5,55,5 5,55,5	3,607.1 3,470.5 3,502.6	3,641.9 3,571.1 3,961.0 3,920.5 3,920.5 3,920.5 3,921.1 3,923.1 3,924.1 3,924.1 3,924.1 3,925.	3, 978, 3 3, 286, 8 3, 298, 3 3, 298, 3 3, 298, 3 3, 245, 3 3, 245, 3	3,177.0	3, 227.0 3, 307.6 3, 331.3 3, 385.0	3,349.8 3,341.0	3,261.0 3,290.5 3,339.7	3,338.7 3,334.3	3, 321.9
7-30-57 8-12-57 8-12-57 7-20-54 6-6-55 8-26-55 6-6-55 6-6-55 7-23-58 8-25-57 8-14-57 7-23-58 8-48 8-48 8-48 8-48 8-48 8-48 8-48 8	6-24-58 6-24-58 6-24-58	10- 5-60 7- 7-55 7- 7-55 7-30-57 7-30-57 7-30-57 10- 5-60 10- 5-60 7-21-57 7-57 7-21-57 7-57 7-57 7-57 7-57 7-57 7-57 7-57	7-7-30-57 7-8-58 7-5-58 7-5-58 7-5-58 7-58 7-5	7-19-51 7-30-58	7-20-51 10-11-60 6- 9-58 4-11-51 7- 9-51	9-26-57 9-26-57 9-26-57 9-26-57 9-26-57 7-17-51 7-17-51	6- 4-58 6- 4-58 7-20-51 7-17-51	6-12-58 6-12-58 7-17-51	6-12-58 6-24-58
11 8 25 25 25 25 25 25 25 25 25 25 25 25 25	59 13 10 40 11 87	28.24 15.27 109.46 69.35 69.35 76.36 76.36 71.65 108.13 108.13 16.31	66.07 15.62 8.84 22.72 23.67 33.67	5.88 4	15.37 25.28 13.03 8.09 7.43	9 6 22 5 36 22 36 22 36 22 36 36 36 36 36 36 36 36 36 36 36 36 36	8 8 8 8 4 8 5 8	6. 22 18. 23 18. 23	21 10 16 15
00 88 88	s D, S	0 8.88 8.88 8.88 8.88 8.88 8.88 8.88 8.	808 ⁰ 8881		NON-		4		
**** ਹੋਹੋਹੋਹੋਹੋ 	™ి ల స్పోల	▶≈≈≈≈≈≈≈≈≈ විට්ට්ට්ට්ට්ට්ට්ට්ට්	≥≥≥≥≎≥ దరదరదరర	00 00	N C T M C C C C N H C C C C T	೧೧೬೧೯೬೫ ೧೧೯೧೯೧	8000 1100	000 000	T, B T, B
Oxallakia Formation Collovium Collovium Collovium Oxallaka Formation Oxallaka Formation Oxallaka Formation Ogallaka Formation Ogallaka Formation do	do Colluvium Alluvium	Ocallala Formation Alluvium Occaliala Formation do do do do do do do do do do	do Colluvium do do do do Alluvium	qo	do Colluvium do Alluvium	୫୫୫୫୫୫	운영승용	နာနာန	do do
Sand, gravel Sand, gravel Sand, gilt Sand, gilt Sand, gilt Sand, gilt do do do do	do Sand, silt Sand, gravel		do Sand, silt do do Sand cravel	음음	do Sand, silt do Sand, gravel		-8588	မီဗိနိ	99
69999 99 99999	61 13 8	65 ~55555 ~ %	8333333	05	669 0	დაფეაად ფარეადი	დდად	തനത	20 20
សកម្មភលិលមកចំព័លមកមក 2	6 14 18	๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	к ө чөөкб	36 16	515 12 18 18	003888	16 20 16	12 16 12	18 16
2000 2000 2000 2000 2000 2000 2000 200	89.5 14.0 35	82 200 200 200 200 200 200 200 200 200 20	80 22 17 28 80 29 17 28 28 29 29 29 29 29 29 29 20 20 20 br>20 20 20 20 20 20 20 20 20 20 20 20 20 20 2	30	22.8 35.0 24.0 54.0	54 51.0 30 30 20 20	33 23	42.0 47 62.2	65 0 76.0
దర్వరణదర్దరందర 	655	6666666666	<u> </u>	దే		666666	డికికి	<u>ఉదిప</u>	డిద్
A. C. Sivey J. S. & W. W. Garvey G. E. Gletter D. M. Boutrager E. A. Hass C. E. Madizan T. A. Harrison G. Hileman G. Hileman Raunoud Stover W. P. Kirkham	R. D. Mills C. L. Hubbs W. D. Jones	Raymond Stover John Stover G. N. Stewart do R. Harah W. N. Bokkin Clen Cauleridge Frank Condwin P. Carstensen Clifton A. Smith	G. E. Price Jac (Supper Jac (Supper A. Zehreski et al. C. R. Holland Joe (Super C. C. Luper C. C. Luper	do do	F. Pearce Gilbert Hilom an G. H. Burris John Finley	do do do M. W. Moore do	City of Wallace L. O. Stanley B. T. Armstrong O. D. Duphorne	Marshall Finley do C. G. Tilton	do V. C. Morin
11-43 12aac 12-33-43ad 12-33-43ad 12-33-53ad 12-39-56b 12-39-56b 12-39-55dd 12-40-54b 12-40-54b 12-40-54b 12-40-54b 12-40-54b 12-40-54b	•12-40-15cdd 12-40-24fad 12-40-30bbe	12-41-2dab 12-42 10-11 and 1 12-42 10-6 12-42 10-6b 12-42 10-6b 12-42 10-6b 12-42 10-6b 12-42 20-6b 12-42 20-6b 1	12-47-36aab 13-38 faba 13-38 faba 13-38 fabb 13-38 fabb 13-38 154d 13-38 25bab	13 -38 -25hbh 13 -38 -26ada	12-38-27cad 13-39-5ca 13-39-19ach †13-39-19ach	13-39-19had 13-39-19had 13-39-19ha 13-39-19ha 13-39-25ace 13-39-25ace 13-39-25ach	13-39-25daa 13-39-25dab 13-39-25dab 13-39-25dab	13 - 39 - 29456 13 - 39 - 2946a 13 - 39 - 33456	+13=39-33hhd •+13-40-7aar

Generated at University of Kansas on 2023-10-04 18:25 GMT / https://hdl.handle.net/2027/uc1.b4185584 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

ĺ

Original from UNIVERSITY OF CALIFORNIA

.handle.net/2027/uc1.b4185584	trust.org/access_use#pd-us-google
tps://hdl.	ww.hathit
GMT / htt	/ http://w
n 2023-10-04 18:25	Google-digitized
University of Kansas o	<pre>n in the United States,</pre>
Generated at	Public Domain

		Tvre		Diameter	Tvpe	Principal	Principal water-bearing bed	Method		Depth to water level	Date	Altitude of land	Remarks
Well (1)	Owner or tenant	well (2)	feet (3)	of well, inches	(4)	Character of material	(ieologic source	9. 110 110	nator (6)		of measure- ment	surface above mean sea level, feet	(Yield given in gallons a minute; drawdown in feet)
13-40-7dba 13-40-10abb1	V. C. Morin Jeene Mumma	ేద	16 14.5	8	8.8	Sand, gravel do	Alluvium do	J,T,	1.0	8 13 8 8	10- 4-57 5-18-48	3,424.3	Bulldored pit. Not used much.
13-40-10mbb2	-9	ų	48.0	24	s	ę	ę	Т, Е	-	15.72	6-34-58	3,423.1	Series of 3 wells; reported viald 1 000.
13-40-10bba	Tom Jackson		1 F	16	B	ę	op	Т. Т	-	22	7- 9-51	3,430.2	Reported yield 500.
13-40-23 aa d	I. O. Miller	ų	41.5	6	ø	ę	ę	Cy. W	x	362 8	7- 9-61 5-21-68	3,398.9	
13-40-27cod1 13-40-27cod2 13-40-27cod2		668	105 129 129	16 168 168	ຈາວສ	-9-9-9-9-	8886	nana FFFF	مممم	5	7-17-58 7-17-58 7-17-58	3,433.4	
13-40-27cda2 13-40-27cdb 13-40-28daa	do do Guy Holland	ేదద్	29.2 29.2	16 18 8 2	•••5	Sand, silt	Colluvium	E F	Δ.N	85	7-17-58	3,440.1	
13-40-36bbe		ā	34.9	5	61	q	qo	Cy, W	30	283	7-13-61	3,414.5	
13-41-3aas 13-41-10dcb 13-41-12cod	David Ferguson Harmon Whitney Ira Chisum	దిలిద	40.2 27.0 11.0	51% 9	599	Sand, gravel Sand, silt Sand, gravel	Ogaliala Formation Colluvium Alluvium	Oy. W	ZZ 20			3,587.5 3,571.7 3,518.3	Well has been destroyed.
13-41-14bed 13-41-15ace 13-41-20dee	David Ferguaon C. H. Walker R. V. Baeler	దదద	222	14 14 14	888 61	-8-8-8	do do Ogaliaia Formation	లల≱ రలస్త్రి		. 2:		3,686.2	Reported yield 450. Reported yield 400.
13-41-32ebd	H. N. Holland	ይ	128.0	535	GI	용	ę	Cy. W	x	182		3,788.3	
13-41-34abb 13-42-6aaa 13-42-20add	F. H. Biermann M. S. Jellison C. A. Tupper David Paul	దేదదర	136.6 130.2 102.0	975 975 975	N 8 I I I	Sand, silt Sand, gravel do do	Colluvium Ogallala Formation do do	××× 2000	N S G S	88.88 88.66	229-51 200-51 200-50 500-500-500 500-500-500 500-500-50	3,909.4 3,800.2 3,819.5	Well has been destroyed.
13-42-22ada	I., E. Samuelson	Ā		ø	GI	ę	do	Cy. W	32	:24	19-1-6	3, 707.3	
•13-42-24ccm 13-42-28dcc	L. Walker R. B. Rigor	దద	16.0 160.0	88	55	ಕಿಕಿ	Alluvium Ogallala Formation	≥≥ 55	3 0 30	13 2 2		3,678.5 3,867.7	
†13-42-29ccc 13-42-31add	N. D. Sexson F. J. Armstrong	దద	217.0 165.0	9 . 0	8 GI	8 9	ф ф	ۍ ج⊦	-9	; 21		3,887.2 3,874.6	Reported yield 1,000.
13-43-24dae	F. Alford	à	58.0	÷	61	ą	do	Cy,₩	a	122		3,813.4	
•†13-43-36abb	Itey Sexson	Å	270.0	16	s	ę	qp	Т, В	-	16	10- 8-57	3,803.5	Reported yield 1,400; re- ported drawdown 8.
14-37-30ccc 14-38-9abb 14-38-21dcc	M. P. Surratt C. F. Pearce H. F. Schemm	దేషిడి	12.7 10.1 93.5	30 8 22 8 22	8 99	do Sand, rilt Sand, gravel	do Colluvium Ogallala Formation	W.W.	ててカ	8.44 4.88 81.91 81.91	7-27-56	3, 333.0 3, 525.0	In Logan County. Well has been destroyed.
14-38-29ddc 14-38-30ccc	do Lyman Fry	దద	76.0	22	19 8	8 8	8 8	Cy. W	Ζ£	263	7-17-61	3, 529.4 3, 564.0	Well has been destroyed

Obstruction in casing. Well has been destroyed.	Reported yield 1,000. Reported yield 850.	Reported yield 1,200.	relation from			Reported yield 1,400. Reported yield 1,150.			Reported yield 2,000		Reported yield 1,300.	Reported yield 1,150. Not used.	Well has been destroyed. Remeted vields 2.250.		Reported yield 2,000. Reported yield 1,750.				Reported yield 1,300.	Aquifer test using well.
3,477 5 3,410.4 3,455.6 3,598.6	3,571.4 3,576.4 3,573.3	3,623.1 2 810 8	3,558.5 3,485.8 3,485.8	3,667.5	3,660.2	3,689.6 3,644.6 3,559.6	3,685.5	3,703.1	3,663.9	3,641.9	3, 643. 4 3, 775. 0 3, 700. 6	3, 730.9	3,741.4	3,758.3 3,746.4	3,728.8 3,706.1 3,608.0	3,748.2	3,828.3 3,841.2 3,899.8	3,839.7	3,795.8 3,934.2	3,808.6
10-10-00 7-17-51 7-17-51 7-17-51 7-16-51 5-21-58	7-17-51 9-23-57 6-18-58 10- 3-57 7-17-51	9-20-57 10- 2-57 7-24-58		5-20-58 7-13-51 0-94-57	7-11-51	10-7-80 6-19-58 7-16-51	7-13-51	7-16-51	10-9-57	5-18-48		6-10-58 6-17-58	4- 3-51 6-11-58	6-26-58 7-13-51	6-11-58 6-10-58 7-13-51	7-13-51	10-10-80	7-11-51 7-11-51	6-21-50 7-19-51	7-22-58 10-8-57 6-24-58
32,12 16,34 122,70 128,59	106.89 106.91 117 88	108.94 108.97	98 40 89 40 71 98	11.28 125.20	18.05 66.68	38.1 88 88 1 88 88 1 88	117.24	117.35	108.76	88.12 88.12	8.28 19.15 19.15	93.04 91	87.48 98	87.10 80.19	8 22 8 23 8 23	106.68	125.68 131.75 125.08	178.46	122.08	116.00 116.00
^{x 2°,x} X	S I S	. 	- 20	30	20 20		N	N	I	0	- 20	-Z	Z-	88X	1 1 D, 8	8	0,8 8,7 8	Q	18	01
Ан А С С С С С С С С	Å aa≯	0 #	Cy. W	Cy. W	88 20	r.r.S	Cy, N	Z	Т, D	Z	a ₩ H OO	e t	N ^L	N N	um≱ PHQ	Cy, W	а Су. Ж	Cy. W	a, B Q, B	Ç. ¶
do Alluvium Ogall ala Forma tion	පී පිපිසි	do A	do Collurium	Ogallala Formation	අද	응응용	op	op	op	qo	-999	фф	-b-b	88	9 9 9 9	op	ob bb bb	do	99 99	දිපි
3388	8 888	8 4	do Sand, silt	Sand, gravel	응용	494	용	ą	ą	ę		응응	-9-9	88	응응응	ę		ę	응용	응 용
15×15	19 8 8 8 8 8	50 B	, 15 15	GI	55	8 S B	61	ы	8	ßI	819 819	00 00	00 00	55	8 x 19	GI	1990	ßI	8 GI	19 8
2002	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 18	222	5	6 5 ½	8 <u>7</u> 89	9	9	18	e	81 2 8	16 18	16	8 10	26 18 4	ŝ	8 99	90	16 6	8 9
38.5 20.0 19.5 135.0	120.0 208 123.0	240.0 240.0	105.0 15.8	139.5	31.0 71.0	230 220 41.4	140	173.0	290	91.0	226.0 125.0 56.6	217 190	165 254	96.5 85.0	218 262.0 91.0	115.0	143.0 145.0 200.0	148.0	400.0 164.0	180 350.0
దదదన	ద్దింద్	<u>م م</u>	్ దిది	占	దద	దదర్	ዾ	5			దదద	దద	దద	దద	దదద		దదద	ሪ	దద	<u>ځځ</u>
F. E. Buell Glenn Nealis H. A. Clark Estate J. Severin	Lyman Fry do Kenneth Buck do	H. B. Kuehler Glen Clovd	E. W. Artist C. C. Pierce	J. C. Heize	O. C. Walker S. Hinkle	Paul Cutright O. C. Walker I. N. Bricker	Carl Forsbeck	W. E. Barstow	P. L. Walker	A. Popp	H. B. Kuehler T. J. Reiss C. C. Pierce	M. J. Gauss do	J. B. McReady do	F. C. Minet G. E. Harper	D. M. Bontrager William Hagan M. F. Wallace	L. E. Samuelson	M. F. Powers John Welsh A. E. Satterfield	A. J. Holsey	Harvey Doop C. E. Waugh	E. M. Waugh
14-39-33dcb 14-39-9cbd 14-39-17dcc 14-39-22das	14-39-24add *†14-39-25ecb 14-39-28eaa 14-39-28eba	†14-39-31bb a †14-39-32bdc			14-40-13bdd 14-40-18cba	14-40-21bdd 14-40-233rdd 14-40-25acc	14-40-28bab	14-40-32ccc	14-40-34bda	14-40-34ddd	•†14-40-36dcc 14-41-8bcc 14-41-9aad				14-41-22bhb †14-41-23hbb 14-41-26baa	14-41-28dcd	14-42-2bbb 14-42-4ddd 14-42-7dd a	14-42-10maa	†14-42-14dhd 14-42-16cdd	•14-42-23bea †14-42-23dbb1

Well (1)		Trie	Denth	Diameter	Type	Principal	Principal water-bearing bed	Method		Depth to water level	Date	Altitude of land	Remarks
	Owner or tenant	ja≣ĝ	of well, feet (3)	of well, inches	of of (1)	Character of material	(Jeologic source	of lift (5)	of water (6)		of measure- ment	surface abyve mean sca level, feet	(Yield given in gallons a minute; drawdown in feet)
114-12-23dhb2 14-12-24bba	E. M. Waugh A. Waugh	దర్	0.601	212 217	43	Sand, gravel do	Ogallala Formation do	Cy, W	00	118-16 102-85	8-18-60 7-11-51	3,792.7	
14-42-26dba	A. W. Hunt	Dr	108.0	5	CI	qo	do	Cy, H	Z	833	6-26-55 7-13-51	3,783.6	
14-42-27bba	L. B. Hambleton	D.	285	16	s	op	qo	Т, В	-	17	10-01-01		Was not drilled to shale;
14-42-28cdd	J. E. Fly	Dr	143.0	3	GI	ob	ę	Cy, W	D		7-13-51	3,832.2	reported yield 1,000.
14-42-32cbb	Lee Wandling	Dr	137.0	9	61	op	qo	Cy, W	Z		7-13-51	3,853.8	Well has been abandoned.
15-37-18cdo	H. Burk	Dr.	0.69	515	61	qo	do	Cy, W	s		6-14-51 6-14-51	3,459.6	In Logan County.
•15-37-30cbb		52	73 0	6 812	83	ъ Р	චද	۸۸ کرک	u. 7		6-8-51 7-22-54	3,434.8 3,443.2	ő
15-39-3drh1	с н Г	55:	01	16	- Second	3-3-1	9-9-9	юс ;н-г) 		6-23-58	2 602 8	5
115-38-3deb2 15-38-3deb3		<u>خ</u> ة:	112 0	20	n n s	6-9-	99				6-23-58	0,000.0	Derosted minkly 1 000
115-38-5eeb 15-38-6ede	Lester Bolen H. Bolen	55	152.0	1x 5½	× 13	do do	9.9	Q, ₩	-Z		6-14-51 6-14-51	3,548.0	webored yield 1,000.
+15-35-7bbb	L. W. Pilger	Ŋ	178.0	16	x	qo	dn	Т, В	I		9-25-57	3,551.4	Reported yield 660.
+15-38-8bbb	Harlon Bogenhagen	Dr	148.0	16	s	op	do	Т, В	I		9-25-57	3, 531.9	Reported yield 530.
15-38-9bbb	Clarence Bolen	Ł	93.5	5,12	GI	op	op	Cy, W	Z		6-14-51	3,522.6	
115-38-10cbd 115-38-14ccd 15-38-15bbb	Fredrik Hedstrom O. E. Yaang School District	622	116.0 150.0 93.5	16 18 6	s s I	နီးရားရ	နာနာန	Т. в С. Т. В В В	v	82 65 72 97 82 31	6-23-58 6-14-58 6-14-51	3.511.4 3.485.9 3.510.0	Reported vield 225. Reported yield 550.
15-38-20chb	F. T. Pilger	Dr	93.5	512	IJ	qo	qo	Z	Z		9-25-57 6-14-51	3,531.5	
†15-38-20dba	Clarence Bolen	'n	0.781	18	v.	do	do	Т, В	1		10-7-57	8,517.8	Reported yield 1,000.
†15-38-21cbe	G. E. Shields	ų	180.0	18	ø	qo	qo	Т, В	I		10- 7-57	3,513.2	Do.
15 38-21rdd	do	Ł	67.0	9	GI	op	qo	Cy, W	z		6-14-51	3,508.5	
15-38-26bec	E. M. & G. A. Profitt	Dr	3 8°0	9	GI	ф	op	z	Z		6-14-51	3,478.0	
115-38-28hcc 115-38-28hcc		దర్	200.0 202.0	19 18	w w	ନ୍ଦ୍ର	ф. ф	Т, В В.	m (-)		10- 7-57	3,511.7	Reported yield 1,800. Reported yield 1,450.
15-38 29abe 15-38-30cb 15-38-31cda	Leigh Post John Larson C. L. Reimer	<u>ఉదద</u>	198.0 232.0 61.0	16 6	a∞≘	동용용	888	н Сун Ц	N		10-7-57 5-20-51	8, 520.2 3, 538.6 3, 488.9	keported yield 1,200. Reported yield 2,000.
†15-38-32baa	John Lake	'n	235.0	16	s	dо	do	T, B	I		10-4-57	3,522.8	Reported yield 1,800.
†15-38-32dbb †15-38-33cbb	C. L. Reimer Llovd Brown	దర్	230.0 225.0	18 18	so so	응응	ob do	1.B B B B			10-4-57	3,505.5	Do. Reported yield 1,600

TABLE 11.--Records of wells in Wallace County--Continued.

Generated at University of Kansas on 2023-10-04 18:25 GMT / https://hdl.handle.net/2027/uc1.b4185584 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

Reported yield 1,000. Do. Reported yield 700.	Reported yield 700. Reported yield 850.	Reported yield 800.	Cannot be measured; new pump base; reported vield 1.200.	Reported yield 2,000.	Reported yield 1,000.			Reported yield 1,600. Aquifer test using well.	Reported yield 1,000.	Do. Reported yield 1,200.	Reported yield 1,800.	Reported yield 1,200.		Reported yield 1,400.		Reported yield 1,200. Reported yield 1,200.	Reported yield 1,250.	Reported yield 1,500. Well has been destroyed.	Keported yield 1,200.	Well has been destroyed.		
3,491.6 3,481.4 3,569.0 3,587.0	3,584,6 3,582,0 3,602,1 3,618,2	3,622.4	3,617.0	3,637.2	3,615.5	3,579.5	3,558.1	3,609.5 3,601.1 3,571.3	3,561.5	3,559,1	3,561.6 3,567.3	3,564.9 3,571.6	3,583.7	3,642,9 3,636,3	3,659.3	3,706.2 3,661.4 3,628.5	3,641.6 3,640.7	3,692.6 3,695.1 3,681.7	3,641.0	3,634.8	3,609.0	3,628.4
10- 7-57 6-19-58 7- 2-51	6-23-58 6-23-58 6-23-58 10-8-60 10-11-60	10- 2-57 6-17-58	7-20-51	10- 2-57	7-16-51	7- 2-51	10- 7-60	10-10-60 10- 7-57 10- 3-57	8-13-60 6-13-58	6-13-58 10-3-57	7- 2-51 7- 2-51	6-18-58 7- 2-51	7- 2-51 7- 2-51	6-25-08 6-25-58 10- 9-57	7-13-51	6-12-58 6-12-58 7-16-51	6-12-55 6-18-58 7- 2-51	9-13-5/ 10-12-60 6-24-58 7-13-51	7- 2-51	5-18-48	7- 2-51	10-11-00
	112.22 111.22 111.20 109.62			119.28	113 24	08.38 08.38	100	111.98 102 100	98.66 101.63	100 98.28	86 91 88 91	65.32 64.43	81.38 81.38	86.81 86.81	89.18 81.68	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	103.95 103.95 103.95		76.97 78.97		
Z	D.s.D	H	I	I	Ι	s	8 N		0-		-7	-7	80	01	z	-21	۲Z	D, S	- 23	Z	Z	s
REEN REEN	en Bangara	T, B	J, D	T. B	Т, D	Cy, W	aa Girit	n n n n n n n	N,D,T,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,	T. D	T.B.N.N.	T.B.N.	Cy, W	Су. Н Т, В	Cy, W	ENC.	T, B Cy, H	AD N OL N	Cy.w	Z	Cy, H	Cy, W
ಕ್ರಿಕಿಕಿಕಿ	\$ 888	op	op	do	op	op	පි පිදි	9999	မိုမို	ę ę	စုစ	ob do	op	ob ob	op	မိုင် ရ	ф ф	-6-8- 6-	8 op	op	op	ф
÷888	-8-8-8-8	ę	ę	op	ф	qu	ဗိုဗိုဗို	მმმ	ဗီဗိ	do do	ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი	do do	op	ob do	qo	ရာ ရာ	ф ф	9 99	9 9	op	op	qu
ss GI	೧೧ <u>೧</u> %	ŝ	s	s	so	IJ	19	15 SS	۳ ۵	w so	SID	s	GI	GI S	GI	s I? s	s ID	US S	~13	θI	ΟI	19
81 8 8	1 9,030	18	18	18	18	9	9	512 16 18	16 16	16 18	16 6	16 6	9	5 16	÷	16 5 ¹ 2 18	16 6	51/2 16	9 9	9	9	51⁄2
214 0 153 0 180 0 121 5	195.0 204.0 133.0	227.0	220	239.0	222.0	136.0	130 180.0	125.0 228.0 234.0	130.0 219.0	219 0 227 0	239.0 92.0	200.0 67.5	87.0	112.0 254	93.4	260.0 87.0 232	242_0 101_0	118.0 265.0 115.0	235 98.5	80.5	87.0	88.0
6655	దిదిదిది	ŗ	č	D.	ň	ų	దికి	5555	ేద్	۵ ۵	దిష	దిది	ň	దద్	Dr	దర్చ	డద	దిదిది.	55	ų	'n	ų
Harold Brown E. L. Brown C. A. Myers Frauler Farma	do do Marvin Sides Willi a m Pletcher	qo	H. & F. Theis	William Mai	do	H. L. Wieland	D. M. Washburn Lester Bolen		-	do John Larson	do Elva Hinds	Roy Mangold H. C. Wilson	Oscar Bearce	C. Popp J. C. Heise	Heise & Heise	J. C. Heise C. M. Patterson I. M. Bricker	Henry Klinge J. C. Hetse	R. Sterrett Ralph Kuehler W. H. McNeil	u William Mai	School District	Henry Klinge	William Mai
•115-38-34cbo +115-38-36cbb •115-39-1ccc 15-39-2bcc	†15-39-2bcd †15-39-2cca 15-39-4abb 15-39-5bcc	†15-39-5ccc	15-39-6cad	†15-39-7dab	†15-39-8acc	15-39~10daa	•15-39-11bbb †15-39-12abb 15-39-12bda	15-39-1500 15-39-16966 • 115-39-204ab	115–39-23cbc2 115–39-24bbc	115-39-216bb +115-39-25bbb	†15-39-26acc 15-39-26bbb	†15-39-28hbd 15-39-29aas	15-39-32ccd	15-40-25565 15-40-3bab	15-40-4cdd	†15-40-7hbb 15-40-8ade 15-40-12d ag	115-40-13ba a 15-40-15daa	15-40-18cc 115-40-19arb 15-40-20aba1 15-40-20aba1	15-40-22dda	15-40-23hhb	15-40-24bbb	*15-10-27 d .c

•

Generated at University of Kansas on 2023-10-04 18:25 GMT / https://hdl.handle.net/2027/uc1.b4185584 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

		Type		Diameter	Type	Principal	Principal water-bearing bed	Method		Depth to water level		Altitude of land	Remarks
Well (1)	()wher or tenant	المي (2)	of well. feet (3)	of well. inches	of casing (4)	Character of material	(ieologic source	(3) (3) (3)	of water (6)	below land surface, feet (7)	of meacure- ment	surface above mean sea level, feet	(Yield given in gallons a minute; drawdown in feet)
115-40-30dbb 15-40-30dbb 15-40-31bcc 15-40-32aaa	Keith Niswanger Harry Voth E. M. Shuman	దిదిది	265.0 265 115.5	16 6	s ID	Sand, gravel do do	Oga llala Forma tion do do	сву Свр	z	83.00 83.00 83.00	10- 7-80 10- 7-80 7-13-51	3,694.3 3,694.7 3,656.5	Reported yield 1,500. Do.
1 5-40- 32bda	do	Dr	176	18	n	ф	ę	Т, В	I	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19-57 10-9-57	3,679.8	Reported vield 1,250.
15-40-35dad	Ethel Burnett	'n	92.8	9	s	q	ob	Cy. W	s	28 28 28	7-16-51	3,600.5	
15-41-2aaa1 •15-41-5acb 15-41-6acb	H. R. Lewis Fred Mixnerey Herman Gebhards	దిదిద	177.0 235 148.0	5 16 5½	0°8G	응응응	ફકક	≉≊≋ ئ+ئ	D.S D.S	128 88 88 88 178	7-24-56 6-11-58 7-13-51	3, 762.5 3, 794.5 3, 792.5	Reported yield 800.
†15-41-10bab 15-41-10bba 15-41-12daa	G. A. Branberg do Fred Klaassen	దదర	264.0 165 120.0	16 5 51/2	200 s	응응응	-999	G. F.O.N.	- ^Q N	161 161 161 161 161 161 161	6-11-58 6-11-58 7-17-58	3, 787.3 3, 778.0 3, 604.2	Reported yield 1,500.
15-41-14cac	F. H. Barstow	ŋ	116.0	512	GI	ą	ф	Cy. W	x	8 8 8 8 8 8	9-19-57 7-17-61	3, 707.8	
15-41-18caa 15-41-21bab	C. A. Westerberg W. H. Akers	దద	156 142.0	5 <u>7</u> 5 572	15 61	응응	ဗဗ	₩₩ చీచ	30 3 2	141.50	9-13-57 7-13-57	3, 794.9 3, 758.5	
15-41-25aaa	Ethel Akers	ų	131.0	535	ßI	ą	op	cy, W	80	8.28 108.12		3,698.1	
15-41-27acc 15-41-28cdd	N. & H. Smith Estate Dale Simonson	దద	257 171.0	16 5	8 810	응용	ob ob	e. ₹	- 2	8.99 99 99 19 19 19 19 19 19 19 19 19 19 1	9-12-58 9-13-51	3, 753, 0 3, 760, 6	Reported yield 1,200.
15-41-28dca 15-41-32aca 15-41-36ddb 15-41-36ddb 15-42-2bbb 15-42-2bbb	do Laverne Kud er F. R. Potter W. H. Charles do	<u> </u>	270 254.0 123.0 226 156.0	81 8 8 8 8 8 8 8 8 8	aanga ng	-8-8-8-8-8-8	දි පි පි පි පි	нн ив	D.8	180.% 180.52 181.53 181.53 181.53	7-12-58 7-12-58 7-13-51 10- 8-57 7-13-51	3,777.8 3,691.8 3,862.2 3,841.7	Reported yield 1,000. Reported yield 1,400. Well has been destroyed. Reported yield 900.
15-42-16adc	Alvin Goering	å	163.0	8	GI	ę	ф	Cy. W	N	153.01	9-13-57 7-13-51	3,863.2	Shale reported at 106 feet.
15-42-30hec 15-42-32abb 15-42-34bed	M. Miller W. T. Miller do	దదద	200 225.0	6 5}2	555	응응용	-988	∎∎∎ රිරිට්	ao ao ao	26.68 16.68	7-18-51 -2-1	3,902.8 3,862.2 3,847.4	
15-42-36cde	W. O. Smothermon	å	370			우	qo	T, D	Ι	193.93 214.76	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3,843.9	Reported yield 1,200.
•15-43-12dda	Elmer Akers	å	218.0	¢	61	ę	ę	Cy, W	D	210.58 206.38	-23-58 -13-51	3,922.9	
16-38-2abb	H. C. Wines	å	87.0	9	IJ	쉉	ę	cy. W	a	61 .10	7-8-8	3, 432.6	In Wichita County; well
16-38-5bcd 16-39-1bdc 16-39-3das 16-39-4ada	Mary Johnson J. F. Weaver do	దదదద	100.0 75.5		5555		do Alluvium Ogallala Formation do	¥	67.ZZ	72.91 23.55 29.29	5-20-51 5-20-51 5-20-61 5-20-61	3,474.1 3,434.5 3,512.4 3,517.4	In Wichita County. In Greeley County. Do. Do.
1 6-39-6 ebb	E. Bates	ద్	68.0	9	15	용	qo	Cy, W	x	42.37	5-28-51	3.639.4	De

4185584	d-us-google	
l.handle.net/2027/ucl.b	itrust.org/access_use#p	
5 GMT / https://hd	<pre>/ http://www.hath</pre>	
isas on 2023-10-04 18:2	ates, Google-digitizec	
ed at University of Kar	ic Domain in the United St	
Generat	Publi	

16-40-2cba 16-40-2dad	A. Sell T. M. Boulwarc	దేద	51.5 53.2	60	33	응용	фф	Cy. W	Zn	38.12 35.72 36.00	7-13-51 7-22-47 8-99-81	3,567.0 3,550.1	Do. Do.
16-40-6bbb 16-41-5caa	H. Hoffman R. Murphy	<u>చిద</u> ి	112.0	•	555	응은	-8 -6-1	N N CAN	Z % 2	102.83	7-13-51	3,672.2	Do. Do.
C 14-41-19adb	r. s. bedy	5 5	6.181 182.0	e 20	5 5	8 8	8-8	Cy. W	. Z	1/6.0	12-13-51	3,899.3	LOC; Well Das Deen destroyed. In Colorado.

* Chemical analysis given in Table 7. † Drillers log given at back of report.

Digitized by Google

Well-numbering system described in text.
 B. bored well; Dr, drilled well; Du, dug well.
 Measured depths of wells given in feet and tenths below land surface; reported depth given in feet.
 B. burke; C. concrete; GI, galvanized sheet iron; N, none; P, pipe; R, rock; S, steel.
 Method of lift: C. centrifugal; Cy, cylinder; J, jet; N, none; T, turbine.
 Type of power: B, butane engine; D, diesel engine; E, electric motor; G, gasoline engine; H, hand operated; N, none; T, tractor; W, windmill.
 D. domestic; I, irrigation; N, none; O, observation; P, public; S, stock.
 Measured depths to water level given in feet, tenths, and hundredths; reported depths given in feet.

and unconsolidated material overlie the bedrock and thus serve as local catchment basins. In periods of ample rainfall these wells generally prove adequate for most domestic or stock use. During extended periods of dry weather, however, the water drains from many of these deposits and wells tend to become dry.

Because ground water in these deposits is generally in contact with the underlying Cretaceous bedrock and with bedrock fragments that are incorporated within the deposits, the water obtained from these wells is generally of inferior chemical quality (Fig. 20).

Alluvium

/ https://hdl.handle.net/2027/uc1.b4185584 http://www.hathitrust.org/access use#pd-us-google

Generated at University of Kansas on 2023-10-04 18:25 GMT Public Domain in the United States, Google-digitized / ht

CHARACTER.—Alluvium believed to be of late Wisconsinan and Recent age occurs in narrow belts along the principal streams in the county. Thick, coarse alluvial deposits of sand and gravel are restricted to the larger valleys and are derived mostly by erosion of older alluvial deposits and the Ogallala Formation. Thin, poorly-sorted deposits of alluvium lie in the smaller valleys and contain relatively less coarse material, the deposits being predominantly silt and fine sand. These deposits grade headward into colluvium and slope deposits at the edge of the uplands. Their lithology depends chiefly upon the type of rock into which the valley has been incised.

In the South Smoky Hill Valley, the alluvium that underlies the braided stream channel and the narrow floodplain is considered to be Recent in age. Low, relatively narrow terraces, believed to be late Wisconsinan in age, border the floodplain. Although the narrow Recent floodplain and the low terraces are best developed along South Smoky Hill Valley, they are also found to a lesser extent along most of the other principal streams. The alluvium of Recent age and the alluvial deposits of late Wisconsinan age underlying the low terraces are lithologically indistinguishable and are shown together as alluvium on Plate 1.

DISTRIBUTION AND THICKNESS.—Alluvium occurs in narrow belts along the principal valleys. The width and thickness of the alluvium are greatest along the South Smoky Hill Valley, where the alluvium reaches a maximum width of about a mile, averaging about half a mile, and a maximum thickness of 70 feet in the central and eastern parts of the county. Alluvium in the valleys of the North Smoky Hill River and Lake Creek is 40 to 50 feet thick. Alluvium in the smaller valleys is thin and of narrow extent, and headward these deposits grade into colluvium and slope wash.

WATER SUPPLY.—Alluvial deposits constitute an important source of water in parts of Wallace County where other groundwater supplies are meager or not available. Many domestic and stock wells obtain water from the alluvium, and several irrigation wells obtain water from alluvium along the South Smoky Hill Valley. One irrigation well obtains water from alluvium in the North Smoky Hill Valley and one irrigation plant obtains water from alluvium in the Goose Creek valley.

Moderate to moderately large yields of water can be expected from wells in alluvium along the South Smoky Hill Vallev. The areal extent of the alluvium is not great, however, averaging only about half a mile in width. Ground-water yields from wells in alluvium in the smaller valleys can be expected to be considerably less than from those in the larger valleys, because of the finer, less permeable material in the smaller valleys. Since the cross-sectional areas of the smaller valleys also are less. water levels tend to fluctuate more in response to rainfall. Declining water levels. with subsequent drying up of wells in the smaller valleys and upland draws, can be

expected during extended periods of belownormal rainfall. In addition, because of the relatively shallow depth to water in the alluvium, transpiration by deep-rooted plants during the growing season often results in a decline of water levels.

RECORDS OF WELLS

Information on 294 inventoried wells in Wallace County and adjoining areas is given in Table 11 (see p. 52). Measured well depths are given to the nearest tenth of a foot; reported depths are given in feet. Measured depths to water are given to the nearest hundredth of a foot; reported depths are given in feet. The well-numbering system used in this table is described on page 9 and illustrated in Figure 2.

LOGS OF TEST HOLES AND WELLS

Listed on the following pages are logs of 190 test holes and wells in Wallace County and adjoining areas. Of these test holes, 70 are drilled, 31 are augered, and 4 are jetted, all by the State Geological Survey of Kansas. Also included are drillers logs of 51 irrigation wells, 32 seismograph shotholes, 1 domestic well, and 1 test hole. Logs designated "sample logs" describe test holes from which samples were collected. The logs are numbered according to the well-numbering system illustrated in Figure 2. Locations of wells and test holes are shown on Plate 1. Plate 2 illustrates the character of material penetrated by the test holes. Water-level measurements are stated in feet below land surface.

10-37-32cccSample log of test hole in SW SW
SW sec. 32, T. 10 S., R. 37 W., Sherman County
(Prescott, 1953, p. 118); drilled August 1949. Alti-
tude of land surface, 3,307.8 feet.

QUATERNARY-Pleistocene TI	nickness.	Depth.
Peoria and Loveland Formations	leet	feet
Silt, dark brown	9	9
Silt, light brown; contains snail		
shells; sandy from 40 to 44		
feet	35	44
Silt, black; contains many snail		
shells	2	46

Terriary—Pliocene	Thickness,	Depth, feet
Ogallala Formation		reet
Sand, coarse, and fine to coars	ie .	
gravel	. 7	53
Mortar bed	. 3	56
Sand, fine to medium; contain	15	
cemented layers from 60 t	0	
70 feet	. 14	70
Sand, fine to coarse, and fin	e	
gravel; contains a little me		
dium to coarse gravel		80
Sand, fine to coarse; contain		00
cemented layers of sand an		
		07
gravel	. 17	97
Mortar bed	. 5	102
Sand, medium to coarse; cor		
tains a little gravel; partiall	У	
cemented	. 6	108
Sand, fine to medium	. 4	112
Gravel, medium to coarse	. 4	116
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, light gray to red brow	n 4	120
Shale, light gray	3	123
Shale, dark blue	. 7	130
onaic, dark Diuc	•	100

10-40-36ddd.—Sample log of test hole in SE SE SE sec. 36, T. 10 S., R. 40 W., Sherman County (Prescott, 1953, p. 121); drilled September 1949. Altitude of land surface, 3,721.1 feet.

Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt, dark brown	1	1
Silt, tan	24	25
Silt, red brown	2	27
TERTIARY-Pliocene		
Ogallala Formation		
Clay and silt, cream colored;		
sandy from 30 to 35 feet,	8	35
Sand, fine to coarse, and fine to	Ŭ	00
coarse gravel	5	40
Gravel, fine to coarse, and	U	40
coarse sand; contains some		
pebbles 1 inch in diameter,	10	52
Clay and silt group	12	
Clay and silt, gray	13	65
Clay and silt, white	2	67
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow brown and green-		
ish	3	70
Shale, yellow brown	10	80

10-42-36ccc.—Sample log of test hole in SW SW SW sec. 36, T. 10 S., R. 42 W., Sherman County (Prescott, 1953, p. 124); drilled September 1949. Altitude of land surface, 3,868.8 feet; depth to water 36.7 feet, October 1, 1949.

QUATERNARY—Pleistocene Peoria and Loveland Formations	feet	Depth, feet
Silt, sandy, brown	. 3	3
TERTIARY-Pliocene		
Ogallala Formation		
Gravel, fine to coarse; contain	IS	
coarse sand from 10 to 1	7	
feet	. 14	17
Gravel, fine to coarse; contain	IS	
silt and very fine sand	. 7	24

Th	ickness, feet	Depth feet
Silt, clay, and very fine sand, Sand, fine to coarse, and fine to	7	31
coarse gravel; contains a lit- tle silt and very fine sand	9	40
Sand, fine to coarse, and fine to medium gravel; contains silt, very fine sand, and a little		
coarse gravel	10	50
Sand, fine to coarse, and fine gravel; contains much silt and very fine sand	14	64
Sand, fine to coarse, and fine to medium gravel; contains	14	04
a little coarse gravel	11	75
Gravel, medium to coarse	5	80
Gravel, fine to coarse, and		
coarse sand	8	88
Silt and very fine sand, brown,	2	90
Clay, yellow brown	7	97
Sand, fine to coarse, and fine gravel	3	100
Sand, fine to coarse, and fine gravel; contains a little me- dium to coarse gravel and yellow clay	26	126
CRETACEOUS—Upper Cretaceous Pierre Shale Shale, yellow brown to light		
gray	14	140

11-38-13aaa.—Sample log of test hole in NE NE NE sec. 13, T. 11 S., R. 38 W., 50 feet south of NE cor. sec. 13; drilled August 1960. Altitude of land surface, 3,376.0 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth feet
Silt, brown		10
Silt, sandy, brown		20
Silt, sandy, light tan	10	30
TERTIARY-Pliocene		
Ogallala Formation		
Silt, sandy, limy	12	42
Sand, fine to very coarse, and		
small amount fine gravel		
contains thin layer cemented		
limy silt		50
Silt, very sandy, and fin	e	
to coarse sand; contain		
cemented streaks		60
Silt, limy; contains thin laver		
of sand		92
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, brown and light gray	. 8	100

11-38-15ccc.—Sample log of test hole in SW SW SW see. 15, T. 11 S., R. 38 W., 25 feet NE of SW cor. see. 15; drilled August 1960. Altitude of land surface, 3,482.3 feet.

QUATERNARY—Pleistocene Thickness,	Depth,
Peoria and Loveland Formations feet	feet
Silt, brown5Silt, sandy, light brown12	$\frac{5}{17}$

Ь,	TERTIARY—Pliocene Ogallala Formation Silt, sandy, limy, light tan	Thickness, feet 6	Depth, feet 23
	Sand, fine to very coarse; co	n-	
	tains thin layers of sand	iy	25
	silt Sand fine to medium loose		35 50
	Sand, fine to medium, loose Sand, medium to coarse, clea	n, 19	50
	well sorted, loose	. 10	60
	Sand, medium to coarse ar fine gravel, loose		70
	Sand, medium to very coars	e,	10
	and fine to medium grave	el,	01
	loose CRETACEOUS—Upper Cretaceous	. 11	81
	Pierre Shale		
	Shale, brown and light gray	. 9	90
	11-38-18ccc.—Sample log of test 1 SW sec. 18, T. 11 S., R. 38 W., 5 25 feet north of SW cor. sec. 18; 1957. Altitude of land surface, 3,	hole in S 35 feet ea drilled O 431.1 feet	W SW st and ctober
		Thickness,	
	Peoria and Loveland Formations	feet	feet 14
	Silt, sandy, loose, brown CRETACEOUS—Upper Cretaceous	. 14	14
	Pierre Shale	-	
	Shale, gray	. 6	20
E	11-38-23bbb.—Log of test hole in sec. 23, T. 11 S., R. 38 W.; 40 feet sec. 23; augered July 1958. Altitu face, 3,445.0 feet.	SE of N de of lar	W cor. M sur-
of	QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness,	Depth, feet
of	Silt, eolian, tan		16
h,	Silt, very sandy, tan TERTIARY—Pliocene Ogallala Formation	. 2	18
	Sand, fine to coarse; contain		20
	cemented layers	$\frac{2}{2}$	20 22
	Silt, sandy, limy; contains c	e-	
	mented layers	. 4	$\frac{26}{35}$
	Silt, very sandy, tough Sand, very silty; contains c		
	mented layers		49
	11-38-25ddd.—Log of test hole in	SE SE S	E sec.
	11-38-25ddd.—Log of test hole in 25, T. 11 S., R. 38 W., 40 feet NW 25: augered July 1958. Altitude 3,441.8 feet.	of SE co of land s	or, sec. urface.
		Thickness,	Depth.
	Peoria and Loveland Formations Silt, eolian, tan		feet 10
	TERTIARY—Pliocene Ogallala Formation	10	10
	Sand, medium to coarse		15
$\frac{N}{N}$	Sand, fine to medium		$\frac{18}{21}$
d	Sand, medium to very coars		
	clean	. 4	25
h,	Sand, fine to very coarse; co tains thin layers of sandy si Gravel, fine to coarse	lt, 3	28 30
	Sand, medium to coarse, c		22

Digitized by Google

mented

2

32

	Thickness, feet	Depth, feet
Sand, fine to coarse	. 10	42
Sand, fine to medium; contain	ns	
thin layers of silt		46
Silt, sandy, tan	. 4	50
Gravel, medium to very coars	e, 5	55
Sand, fine to medium; contain	ns	
thin layers of silt	. 2	57
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, weathered, brown an	nd	
gray	. 12	69

11-39-1ccc.—Sample log of test hole in SW SW SW sec. 1, T. 11 S., R. 39 W., 75 feet NE of SW cor. sec. 1; drilled August 1960. Altitude of land surface, 3,562.5 feet.

QUATERNARY-Pleistocene Th	ickness,	Depth,
Peoria and Loveland Formations	feet	feet
Silt, brown	10	10
Silt, sandy, light brown	10	20
Silt, slightly sandy, light brown,		30
TERTIARY—Pliocene		
Ogallala Formation		
Silt, sandy; contains limy		
streaks	5	35
Silt. clavey, very limy; contains		
streaks of bentonite	20	55
Sand, fine to coarse; contains		
streaks of limy silt	5	60
Sand, fine to medium, well		
sorted	8	68
Sand, medium to very coarse;		
upper part contains thin		
layers of silt	12	80
Sand, medium to very coarse,		
and fine gravel, clean, loose,	20	100
Sand, fine to coarse; contains		
small amount fine to medium		
gravel	10	110
Sand, fine to very coarse, and		
fine gravel; lower part con-		
tains streaks of limy silt	10	120
Sand, medium to very coarse,		
clean, loose	29	149
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, brown and gray	11	160

11-39-6ccc.—Sample log of test hole in SW SW SW sec. 6, T. 11 S., R. 39 W., near edge of road near sec. line; drilled August 1960. Altitude of land surface, 3,640.5 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, light brown	8	8
Silt, very sandy, light tan	. 12	20
Silt, sandy, tan	. 8	28
TERTIARY-Pliocene		
Ogallala Formation		
Silt, very limy, light gray	. 4	32
Silt, very limy, light tan; con tains thin layers of sand	n-	43

Th Sand, medium to very coarse, and fine to medium gravel,	ickness, feet	Depth, feet
loose	12	55
Silt, sandy, light tan	3	58
Sand, fine to very coarse, and fine gravel; contains cemented streaks	12	70
Gravel, fine to medium, and very coarse sand; contains cemented layers	9	79
CRETACEOUS—Upper Cretaceous Pierre Shale Shale, brown and gray	6	85

11-39-9abb.—Log of test hole in NW NW NE sec. 9, T. 11 S., R. 39 W., 0.4 mile west near edge of road; augered July 1958. Altitude of land surface, 3,523.2 feet; depth to water, 20.0 feet, July 1, 1958.

TERTIARY—Pliocene Ogallala Formation	Thickness, feet	Depth, feet
Silt, sandy, red brown	. 3	3
Silt, very sandy, light tan	4	7
Gravel, medium to coarse		10
Sand, fine to coarse	. 10	20
Sand, fine to coarse, and m	e-	
dium gravel		27
Silt, very sandy		35
Sand, fine to coarse, silty		42
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, brown and gray	17	59

11-39-18cbb.—Drillers log of shothole in NW NW SW sec. 18, T. 11 S., R. 39 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,601 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, fect	Depth, feet
Surface silt	. 4	4
Sand and gravel		75
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	15	90

11-39-31baa.—Drillers log of shothole in NE NE NW sec. 31, T. 11 S., R. 39 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,533 feet.

CRETACEOUS —Upper Cretaceou	S Thickness,	Depth,
Pierre Shale	feet	feet
Shale, brown	30	30

11-40-9add.—Drillers log of shothole in SE SE NE sec. 9, T. 11 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,660 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	10	10
Silt, brown and red		85
Sand and gravel	115	200

CRETACEOU Pierre Sh	s—Upper nale	r Cretaceous	Thickness, feet	Depth, feet
Clay,	yellow .		5	205
				225

11-40-15ddd2.—Sample log of test hole in SE SE SE sec. 15, T. 11 S., R. 40 W., 60 feet south of SE cor. of schoolhouse; drilled October 1957. Altitude of land surface, 3,560.2 feet; depth to water, 38.22 feet, November 2, 1957.

	Thickness,	Depth, feet
Ogallala Formation	reet	
Silt, sandy, red brown		4
Sand, fine to coarse, loose	. 4	8
Sand, fine to medium; contain	ns	
layers of limy silt	. 7	15
Sand, fine to coarse, silty		25
Silt, sandy, tan	. 9	34
Sand, medium, clean		39
Silt, clayey, gray		41
Gravel, fine, and very coars		
sand, clean		45
Silt, sandy, limy, light tan		48
Sand, medium to coarse, gra		
and brown		57
Silt, sandy, tan		65
Silt, sandy, very limy, gray an		
light tan		74
Sand, fine to coarse; contain	ns	
thin layers of limy silt	. 14	88
Gravel, fine to medium	. 9	97
Silt, sandy, light tan; contain	ns	
limy cemented streaks		119
Sand, medium to very coars		
contains fine gravel in low		
part		137
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray and brown; upp		
9 feet silicified, hard	13	150

11-40-17ddd.—Sample log of test hole in SE SE SE sec. 17, T. 11 S., R. 40 W., 50 feet north and 30 feet west of SE cor. sec. 17; drilled August 1960. Altitude of land surface, 3,644.3 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, brown	10	10
Silt, sandy, tan	10	20
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, brown and gray	10	30

11-40-21cbb.—Drillers log of shothole in NW NW SW sec. 21, T. 11 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,631 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Sand	66	70
Silt, clayey, red		140

CRETACEOUS—Up Pierre Shale	per Cretaceous		Depth, fect
Clay, yellow		35	175

11-40-26bbb.—Log of test hole in NW NW NW sec. 26, T. 11 S., R. 40 W., 50 feet east of highway and 15 feet south of farm driveway; augered July 1958. Altitude of land surface, 3,575.7 feet.

QUATERNARY—Pleistocene	Thickness,	
Peoria and Loveland Formations	feet	feet
Silt, sandy, tan	. 4	4
TERTIARY—Pliocene		
Ogallala Formation		
Sand, fine to coarse, and fine t	0	
medium gravel	. 10	14
Gravel, cemented, hard	. 10	24

11-40-26bcb.—Log of test hole in NW SW NW sec. 26, T. 11 S., R. 40 W., 0.3 mile south of sec. line and 200 feet east of highway; augered July 1958. Altitude of land surface, 3,525.1 feet; depth to water, 10.90 feet, July 2, 1958.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth. feet
Silt, sandy, light tan	2	2
Sand, fine to coarse, and fi gravel		10
Sand, fine to very coarse, a fine to medium gravel	nd 6	16
TERTIARY—Pliocene Ogallala Formation		
Sand, medium to coarse, w	et, 9	25
Sand, fine to coarse, silty	. 16	41
Silt, sandy, tough	2	43
Sand, fine to coarse, silty		50
Silt, very sandy, tan	. 15	65
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, gray and brown	4	69

11-40-26cbb.—Log of test hole in NW NW SW sec. 26, T. 11 S., R. 40 W., 0.45 mile north of sec. line and 50 feet east of highway; augered July 1958. Altitude of land surface, 3,532.7 feet; depth to water, 15.80 feet, July 2, 1958.

QUATERNARY—Pleistocene Thickness, Alluvium fect	Depth.
Silt, sandy, brown 10	10
Sand, fine to medium 5	15
Sand, medium to coarse, clean 3	18
Silt, sandy, tan	20
Gravel, medium to coarse 4	24
Tertiary—Pliocene	
Ogallala Formation	
Sand, fine to coarse, very silty, 6	30
Silt, very sandy 5	35
Silt, tough, brown	40
Sand, fine to coarse	47
Silt, sandy, brown	65
CRETACEOUS—Upper Cretaceous	
Pierre Shale	
Shale, tough, tan and brown 1	69

11-40-29cdd.—Drillers log of shothole in SE SE SW sec. 29, T. 11 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,662 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Sand and red silt	75	75
Sand	55	130
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	40	170

11-40-34ddd.—Sample log of test hole in SE SE SE sec. 34, T. 11 S., R. 40 W., 35 feet north and 25 feet west of SE cor. sec. 34; drilled August 1960. Altitude of land surface, 3,704.0 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, brown		8
Silt, sandy, light tan	. 12	20
Silt, very sandy, tan	. 3	23
TERTIARY-Pliocene		
Ogallala Formation		
Silt, very limy, sandy	. 7	30
Sand, medium to very coars	e,	
and fine gravel, clean	. 18	48
Silt, clayey, light tan	. 6	54
Sand, medium to very coars		
and fine gravel, clean loos	e, 16	70
Sand, medium to very coars		
well sorted, loose	. 10	80
Silt, sandy, light tan	. 4	84
Sand, medium to very coars	e,	
and fine gravel		100
Sand, fine to coarse; contair	าร	
hard cemented streaks	. 15	115
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
	1 11	100

Shale, brown and dark gray ... 15 130

11-41-24add.—Drillers log of domestic well in SE SE NE sec. 24, T. 11 S., R. 41 W.; drilled by Kenneth Bogart, July 1957. Altitude of land surface, 3,691.2 feet; depth to water, 47.33 feet, July 29, 1957.

Quaternary—Pleistocene	Thickness,	
Peoria and Loveland Formations	feet	feet
Silt	. 10	10
Tertiary-Pliocene		
Ogallala Formation		
Silt, sandy; contains cemente	•d	
layers	. 8	18
Sand, silty, red tan	10	28
Sand, fine to coarse; contain		
layers of sandy silt an		
cemented streaks		60
Silt, very limy, light gray		65
Sand, medium to coarse, an	d	
gravel	. 16	81
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	. 8	89
Shale, brown and gray	2	91

11-41-24bbb.—Sample log of test hole in NW NW NW sec. 24, T. 11 S., R. 41 W., 45 feet south and 10 feet east of NW cor. sec. 24; drilled October 1957. Altitude of land surface, 3,742.1 feet; depth to water 65.43 feet, November 2, 1957.

QUATERNARY—Pleistocene The Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt, loose, brown		10
Silt, light brown		24
Tertiary-Pliocene		
Ogallala Formation		
Silt, sandy, cemented	7	31
Silt, sandy, very limy; contains	•	01
	11	42
cemented layers	11	44
Sand, fine to coarse; contains	00	05
silt layers		65
Silt, sandy, limy, tan	9	74
Sand, fine to medium	4	78
Silt, sandy, gray	6	84
Sand, fine; contains layers of limy silt and cemented		
streaks	26	110
Silt, limy, cemented, hard, light	20	
	8	118
gray	0	110
CRETACEOUS—Upper Cretaceous		
Pierre Shale	-	
Shale, gray and brown	2	120

11-41-25ddd.—Sample log of test hole in SE SE SE sec. 25, T. 11 S., R. 41 W., 30 feet north and 20 feet west of SE cor. sec. 25; drilled August 1960. Altitude of land surface, 3,694.0 feet.

QUATERNARY—Pleistocene TH Peoria and Loveland Formations Silt, brown; contains streaks of	ickness, feet	Depth, feet
sand in lower part	12	12
TERTIARY-Pliocene		
Ogallala Formation		
Silt, sandy, very limy, light		
grav	13	25
Silt, very sandy, tan	10	35
Silt, sandy, compact, rust tan	8	43
Sand, fine to coarse, silty	12	55
Sand, fine to medium; upper		
part contains thin layers of		
limy cemented streaks	7	62
Sand, fine to coarse; contains	•	~_
cemented streaks	11	73
Sand, fine, loose	7	80
Silt, very limy, cemented hard,	•	90
Sand, fine to coarse; contains	10	00
layers of cemented limy silt,	10	100
Sand, very coarse, and fine	10	100
gravel, clean	15	115
CRETACEOUS—Upper Cretaceous	10	110
Pierre Shale		
	10	107
Shale, brown and light gray	10	125

11-42-5bab.—Sample log of test hole in NW NE NW sec. 5, T. 11 S., R. 42 W., 75 feet east of fence and 15 feet south of road center; drilled October 1957. Altitude of land surface, 3,933.6 feet; depth to water, 61.60 feet, November 4, 1957.

QUATERNARY—Pleistocene	Thickness,	Depth,
Peoria and Loveland Formations	feet	feet
Silt, loose, brown	10	10

Tł	nickness, feet	Depth, feet
Silt, compact, light brown	10	20
TERTIARY—Pliocene		
Ogallala Formation		
Silt, sandy, limy, tan	7	27
Gravel, fine to medium, and		
very coarse sand, clean	16	43
Silt, sandy, tan	12	55
Silt, and fine sand; contains		
limy layers	6	61
Silt, sandy, limy; contains ce-		
mented layers, white and tan,	15	76
Sand, coarse to very coarse, and		
fine gravel, clean	14	90
Silt, and fine to medium		
sand; contains limy cemented	07	
layers	27	117
Sand, fine to coarse; con- tains thin silt layers	8	125
Silt, very limy, white and light	0	120
gray; contains cemented lay-		
ers in lower part	13	138
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray and brown	12	150
· - •		

11-42-20bbc.—Sample log of test hole in SW NW NW sec. 20, T. 11 S., R. 42 W., 0.18 mile south and 12 feet east of NW cor. sec. 20; drilled October 1957. Altitude of land surface, 3,946.6 feet; depth to water, 76.15 feet, November 2, 1957.

QUATERNARY—Pleistocene TF Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt, compact, light tan	8	8
Sand, fine to coarse, silty; con- tains caliche	9	17
Tertiary—Pliocene		
Ogallala Formation		
Sand, medium to coarse, and		
fine gravel; contains layers of limy silt	11	28
Sand, fine, cemented, gray	9	37
Silt, limy, light gray	6	43
Sand, fine, cemented, gray	5	48
Gravel, fine to coarse, and fine	0	
sand	15	63
Sand, fine to coarse; contains	10	0.5
layers of limy silt	15	78
Silt, sandy, cemented	2	80
Sand, coarse, and fine gravel	12	92
Silt, sandy, limy, yellow and tan; contains cemented lay-		. –
ers	15	107
Sand, medium to coarse, clean,	19	126
Gravel, fine to medium, and	10	120
coarse sand; contains layers of limy silt	6	100
	0	132
CRETACEOUS—Upper Cretaceous Pierre Shale		
	_	
Shale, greenish gray and tan	8	140

11-42-24aaa.—Sample log of test hole in NE NE NE sec. 24, T. 11 S., R. 42 W., 135 feet south and 5 feet west of NE cor. sec. 24; drilled October 1957. Altitude of land surface, 3,848.2 feet; depth to water, 48.22 feet, November 4, 1957.

Peoria and Loveland Formations	ickness, feet	Depth. feet
Silt, loose, brown; sandy in lower part	14	14
TERTIARY—Pliocene Ogallala Formation		
Silt, clayey, limy, light gray	6	20
Sand, fine to coarse, tan	15	35
Silt, very sandy, light tan; con-		
tains limy streaks	13	48
Silt, and fine to coarse sand; contains cemented layers	12	60
Gravel, fine to medium, and fine to coarse sand; contains limy silt layers and cemented	0	6 (1)
streaks	8	68
Sand, coarse, and fine gravel, clean	20	88
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, gray and brown	2	90

11-42-29cbb.—Sample log of test hole in NW NW SW sec. 29, T. 11 S., R. 42 W., near edge of road near ½-mile line; drilled August 1960. Altitude of land surface, 3,931.9 feet.

QUATERNARY—Pleistocene T	aickness.	Depth,
Peoria and Loveland Formations	feet	feet
Silt, brown	12	12
Silt, sandy, brown		23
TERTIARY-Pliocene		
Ogallala Formation		
Silt, sandy, very limy, light tan,	7	30
Sand, fine to very coarse	10	40
Sand, fine to very coarse; con-		
tains layers of cemented limy		
silt	20	60
Silt, limy, cemented; contains		
layers of fine to coarse sand,	10	70
Sand, medium to very coarse,		
clean, loose; contains small		
amount of fine gravel	8	78
Silt, sandy, limy; contains		
streaks of sand	12	90
Silt, sandy; contains thin layers		
of fine to coarse sand	10	100
Sand, medium to coarse, clean,	10	100
loose	8	108
	7	115
Clay, bentonitic, greenish gray,	1	115
Sand, fine to coarse; contains	•	
cemented streaks	9	124
Silt, very sandy, tigh t, reddish		
tan	21	145
Clay, bentonitic, greenish gray,	3	148
Silt, very sandy; contains ce-		
mented streaks and thin lay-		
ers of fine to medium sand	12	160
Starta 17		

Digitized by Google

Hodson-Geology and Ground Water, Wallace County

Th Sand, fine to coarse; contains	ickness, feet	Depth, feet
layers of sandy red-tan silt	10	170
Sand, fine to coarse; contains limy streaks and thin layers of sandy silt	13	183
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, brown and gray	17	200

12-38-10cdc.—Log of test hole in SW SE SW sec. 10, T. 12 S., R. 38 W., 250 feet south of Lake Creek near edge of farm road; augered June 1958. Altitude of land surface, 3,245.0 feet.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Silt, sandy, brown	. 2	2
Sand, fine, silty	2	4
Sand, fine to medium, red tan	. 6	10
Silt, clayey, tough, gray tan	. 2	12
Sand, coarse, and fine gravel		17
Sand, fine to medium, silt	у,	
wet	. 8	25
Silt, very sandy, tan	. 10	35
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, blue gray	. 9	44

12-38-27aaa.—Log of test hole in NE NE NE sec. 27, T. 12 S., R. 38 W., 50 feet SW of NE cor. sec. 27; augered June 1958. Altitude of land surface, 3,286.3 feet.

	Thickness,	
Peoria and Loveland Formations	feet	feet
Silt, loose, eolian, light tan	. 10	10
Silt, eolian, tan		20
Silt, compact, eolian, tan; sand	ly	
in lower part	. 8	28
Silt, clayey, tough, gray tan	. 4	32
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, weathered, gray	. 7	39

12-39-1abb.—Drillers log of shothole in NW NW NE sec. 1, T. 12 S., R. 39 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,447 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Surface silt		4
CRETACEOUS—Upper Cretaceous		
Pierre Shale Clay, yellow	. 41	45

12-39-3cbb.—Drillers log of shothole in NW NW SW sec. 3, T. 12 S., R. 39 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,550 feet.

QUATERNARY-Pleistocene	Thickness,	Depth, feet
Peoria and Loveland Formations	ieet	reet
Surface silt	4	4

Terriary—Pliocene Ogallala Formation	Thickness, fect	Depth, feet
Sand	26	30
CRETACEOUS—Upper Cretaceous		
Pierre Shale Clay, yellow	15	45

12-39-12cdd.—Drillers log of shothole in SE SE SW sec. 12, T. 12 S., R. 39 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,480 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	feet	Depth, feet
Surface silt	. 4	4
TERTIARY-Pliocene		
Ogallala Formation		
Clay, sandy	. 21	25
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	. 30	55

12-39-18add.—Drillers log of shothole in SE SE NE sec. 18, T. 12 S., R. 39 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,553 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations Sand		Depth, feet 8
CRETACEOUS —Upper Cretaceous		
Pierre Shale Shale, brown	. 62	70

12-39-22cdd.—Drillers log of shothole in SE SE SW sec. 22, T. 12 S., R. 39 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,510 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations Surface silt		Depth, feet 4
TERTIARY—Pliocene Ogallala Formation		
Sand and clay	. 16	20
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	. 30	50

12-40-2cdd.—Drillers log of shothole in SE SE SW sec. 2, T. 12 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,661 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, fect	Depth, feet
Surface silt		8
Silt, yellow	37	45
Sand	25	70
Blind	55	125
Sand	35	160
CRETACEOUS —Upper Cretaceous		
Pierre Shale		
Clav. vellow	. 5	165

12-40-15aaa.—Sample log of test hole in NE NE NE sec. 15, T. 12 S., R. 40 W., 50 feet west and 5 feet south of NE cor. sec. 15; drilled October 1957. Altitude of land surface, 3,672.6 feet.

QUATERNARY—Pleistocene The Peoria and Loveland Formations Silt, sandy, light brown Sand, fine to medium, silty, tan, TERTIARY—Pliocene Ogallala Formation	iickness, feet 7 5	Depth, feet 7 12
Gravel, fine to medium, and		
very coarse sand, clean	4	16
Silt, limy, gray	î	17
Sand, medium to coarse	13	30
Sand, medium to coarse; con- tains thin cemented silt lay-	10	
ers	6	36
Sand, medium to very coarse	20	56
Sand, medium to very coarse; contains cemented silt layers,		67
Sand, fine to coarse, and inter-		0.
bedded layers of limy silt CRETACEOUS—Upper Cretaceous Pierre Shale	6	73
Shale, gray and brown	7	80

12-40-23cbb.—Drillers log of shothole in NW NW SW sec. 23, T. 12 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,609 feet.

Pleistocene and Pliocene (undifferentiated) Surface silt Sand	Thickness, feet 	Depth, feet 6 25
CRETACEOUS—Upper Cretaceous Pierre Shale Shale, brown		60

12-41-11aad2.—Log of test hole in SE NE NE sec. 11, T. 12 S., R. 41 W., 120 feet north of Goose Creek near gate to farm driveway: augered July 1958. Altitude of land surface, 3,558.6 feet; depth to water, 10.55 feet, July 8, 1958.

Quaternary—Pleistocene Alluvium	Thickness, fect	Depth, feet
Silt, sandy, brown	. 2	2
Sand, fine to coarse	8	10
Silt, sandy, tan	4	14
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, blue gray	5	19

12-41-11add.—Log of test hole in SE SE NE sec. 11, T. 12 S., R. 41 W., near ½-mile line near edge of road; augered July 1958. Altitude of land surface, 3.568.4 feet; depth to water, 15.0 fect, July 8, 1958.

QUATERNARY—Pleistocene	Th	ickness,	Depth,
Alluvium		feet	feet
Silt, sandy, tan		10	10
Silt, heavy, brown		5	15
Silt, sandy, wet, tan		10	25
CRETACEOUS—Upper Cretaceous			
Pierre Shale			
Shale, blue gray		4	29

Digitized by Google

12-41-11dda.—Log of test hole in NE SE SE sec. 11, T. 12 S., R. 41 W., 20 feet west of road center near gate to pasture; augered July 1958. Altitude of land surface, 3,555.4 feet; depth to water, 15.83 feet, July 8, 1958.

Peoria and Loveland Formations Silt, sandy, light tan Silt, sandy, tan Silt, brown Silt, sandy, wet, tan CRETACEOUS—Upper Cretaceous	9 5	Depth, feet 3 12 17 20
Pierre Shale Shale, blue gray	. 4	24

12-41-12bbb.—Log of test hole in NW NW NW sec. 12, T. 12 S., R. 41 W., 20 feet east and 8 feet south of NW cor. sec. 12; augered July 1958. Altitude of land surface, 3,572.0 feet; depth to water, 15.0 feet, July 8, 1958.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Silt, light tan	. 10	10
Silt, tan	10	20
Silt, sandy	. 6	26
CRETACEOUS—Upper Cretaceous		
Pierre Shale Shale, blue gray	3	29

12-41-18add.—Sample log of test hole in SE SE NE sec. 18, T. 12 S., R. 41 W., near edge of road about 25 feet north of X-mile line; drilled August 1960. Altitude of land surface, 3,786.4 feet.

QUATERNARY—Pleistocene T Peoria and Loveland Formations Silt, brown		Depth, feet 5
Silt, sandy, brown		9
TERTIARY-Pliocene		
Ogallala Formation		
Sand, fine to very coarse; upper	•	
part contains streaks of limy silt	11	20
gravel: contains layers of ce-	<u></u>	
mented limy silt		32
Gravel, fine to medium, and		
very coarse sand, clean, loose	. 10	42
CRETACEOUS-Upper Cretaceous	•	
Pierre Shale		
Shale, brown and gray	18	60

12-41-23aaa.—Sample log of test hole in NE NE NE sec. 23, T. 12 S., R. 41 W., 70 feet west of road center and 15 feet south of fence; drilled October 1957. Altitude of land surface, 3,586.3 feet.

QUATERNARY—Pleistocene Thick fee Peoria and Loveland Formations fee Silt, loose, brown 6 Silt, compact, light tan 7 Silt, clayey, light gray 10 CRETACEOUS—Upper Cretaceous Pierre Shale	7 15
Shale, gray and brown 10) 35

12-42-5bbb.—Sample log of test hole in NW NW NW sec. 5, T. 12 S., R. 42 W., 80 feet east and 10 feet south of NW cor. sec. 5; drilled October 1957. Altitude of land surface, 3,940.4 feet; depth to water, 74.75 feet, November 2, 1957.

OUATERNARY-Pleistocene T	hickness,	Donth
Peoria and Loveland Formations	feet	feet
Silt, tan		10
Silt, compact, light tan	10	20
TERTIARY-Pliocene		
Ogallala Formation		
Silt, limy, tan and light gray	10	30
Silt, sandy, limy, light tan	7	37
Sand, medium to coarse, and		
fine gravel	6	43
Silt, sandy, limy, tan and brown.	. 7	50
Silt and caliche, white and		
gray	6	56
Gravel, fine to medium, and		
very coarse sand	6	62
Silt, sandy; contains limy		
streaks	14	76
Sand, coarse, and fine gravel	12	88
Silt, sandy, tan, very limy 95		
to 98 feet	10	98
Sand, nne to medium; contains		
layers of limy silt	9	107
Bentonite, green and orange	4	111
Sand, fine to medium	2	113
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, greenish gray and tan	17	130

12-42-14aaa.—Sample log of test hole in NE NE NE sec. 14, T. 12 S., R. 42 W., 35 feet west and 10 feet south of NE cor. sec. 14; drilled October 1957. Altitude of land surface, 3,856.2 feet; depth to water, 40.78 feet, November 4, 1957.

QUATERNARY—Pleistocene Th	nickness,	Depth.
Peoria and Loveland Formations	feet	Depth, feet
Silt, loose, brown	14	14
Silt, clayey, light brown	11	25
TERTIARY—Pliocene		
Ogallala Formation		
Silt, limy, light grav	7	32
Sand, medium, red and brown.	14	46
Silt, limy, cemented, light grav.	2	48
Sand, medium, gray, clean	3	51
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray and brown	9	60

12-42-18ddd.—Sample log of test hole in SE SE SE sec. 18, T. 12 S., R. 42 W., 75 feet west and 5 feet north of SE cor. sec. 18; drilled October 1957. Altitude of land surface, 3,938.5 feet; depth to water, 100.75 feet, November 2, 1957.

Peoria and Loveland Formations Silt, dark brown Silt, tan Silt, sandy, light tan TERTLARY—Pliocene Ogallala Formation	10 13 5	Depth, feet 10 23 28
Sand, fine to coarse, silty; con tains caliche streaks		36

Th	ickness, feet	Depth, feet
Sand, fine to coarse, very silty, Silt, sandy, light tan; contains	8	44
caliche streaks	14	58
Sand, medium to very coarse, and fine gravel, clean	5	63
Silt, very sandy, tan	15	78
Silt and caliche, light gray and white; contains hard ce-		
mented streaks	11	89
Gravel, fine to coarse, and coarse sand	11	100
Sand, medium to coarse	5	105
Gravel, fine to coarse	9	114
Silt, sandy, tan; contains caliche		
streaks	13	127
Gravel, fine to coarse, and coarse sand	9	136
Sand, fine to coarse, and fine		
gravel; contains hard ce- mented limy streaks	10	146
Silt, sandy; contains hard ce-		
mented limy streaks	8	154
Bentonite, greenish gray	3	157
Sand, medium to very coarse,	17	174
loose, clean	17	1/4
tains hard cemented limy		
streaks	9	183
Sand, medium to coarse, and		
fine gravel	20	203
CRETACEOUS—Upper Cretaceous		
Pierre Shale	-	010
Shale, green gray and tan	7	210

12-42-29bcc.—Sample log of test hole in SW SW NW sec. 29, T. 12 S., R. 42 W., near edge of road near ½-mile line; drilled August 1960. Altitude of land surface, 3,916.6 feet.

QUATERNARY—Pleistocene TT Peoria and Loveland Formations	hickness, feet	Depth, feet
Silt, brown		10
Silt, sandy, brown		20
Silt, sandy, tan		27
Tertiary—Pliocene		21
Ogallala Formation		
Silt, sandy, limy, light tan	15	42
Silt, sandy, very limy, light		
gray; contains cemented lay-		
ers	8	50
Silt, sandy, cemented hard,		
light tan	7	57
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray and brown	23	80

12-42-30aaa.—Log of test hole in NE NE NE sec. 30, T. 12 S., R. 42 W., 60 feet south of creek bridge and 15 feet west of road center; augered July 1958. Altitude of land surface, 3,886.2 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness,	Depth,
Peoria and Loveland Formations	ieet	reet
Silt, brown		3
Silt, sandy, tan	. 14	17
TERTIARY-Pliocene		
Ogallala Formation		
Silt, limy, light tan	. 7	24

QUATERNARY-Pleistocene T	nickness,	Depth.
Peoria and Loveland Formations	feet	feet
Silt, brown	10	10
Silt, sandy, tan	8	18
TERTIARY—Pliocene		
Ogallala Formation Silt, limy, sandy, gray and tan,	13	31
Sand, medium to very coarse	10	01
Sand, medium to very coarse, and fine gravel, clean, loose,	7	38
Silt, sandy, red tan; contains		
limy streaks	12	50
Sand, fine to very coarse; con-		
tains cemented streaks and thin layers of sandy red-		
brown silt	10	60
Sand, medium to very coarse.		
and fine gravel; lower part		
contains cemented.limy	10	70
streaks Sand, medium, clean, well	10	70
sorted	10	80
Silt, limy, light tan	10	90
Silt, light tan; contains streaks		
of sand	10	100
Silt, blocky, tan; middle part	1.~	
contains streaks of bentonite, Sand, fine to coarse; contains	15	115
streaks of silt	7	122
Sand, fine to medium, loose	8	130
Sand, fine to coarse; contains	•	2.50
streaks of limy silt	10	140
Sand, medium to coarse, loose,	10	150
Sand, very coarse, and fine		
gravel, clean, well sorted,	16	166
Sand, fine to coarse, and fine	10	100
gravel; contains thin layers of		
silt and cemented streaks	7	173
Sand, medium to very coarse,	-	100
clean, well sorted, loose	7	180
Sand, fine to medium, silty Sand, medium to coarse, clean,	10	190
loose	8	198
CRETACEOUS—Upper Cretaceous	0	100
Pierre Shale		
Shale, brown and gray	12	210

13-38-8ddd.—Log of test hole in SE SE SE sec. 8, T. 13 S., R. 38 W., 40 feet NW of SE cor. sec. 8; augered June 1958. Altitude of land surface, 3,284.4 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, sandy, brown	3	3
Silt, eolian, light tan	6	9
Silt, eolian, tan	11	20
Silt, eolian, tough, tan	10	30

Ogallala Formation	Thickness, fect	Depth, feet
Clay, silty, tough, tan; contain embedded gravel Silt, and fine to coarse sand	. 5	35
tan Clay, silty, tough	5	40 42
CRETACEOUS—Upper Cretaceous Pierre Shale Shale	. 4	46

13-38-22ddd.—Log of test hole in SE SE SE sec. 22, T. 13 S., R. 38 W., 30 feet west and 10 feet north of SE cor. sec. 22; augered July 1958. Altitude of land surface, 3,184.1 feet.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Silt, tan		3
Silt, heavy, brown	8	11
Sand, medium to coarse, an fine gravel Gravel, fine to medium, an	7	18
coarse sand; contains laye of silt CRETACEOUS—Upper Cretaceous	rs	33
Pierre Shale Shale, blue gray	. 1	34

13-39-5bbb.—Log of test hole in NW NW NW sec. 5, T. 13 S., R. 39 W., 50 feet east and 20 feet south of NW cor. sec. 5; augered June 1958. Altitude of land surface, 3,429.4 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations Silt, eolian, light tan Silt, sandy, eolian, tan Silt, sandy, tough CRETACEOUS—Upper Cretaceous	10	Depth, feet 10 14 18
Pierre Shale Shale, gray brown	6	24

13-39-10ccc.—Log of test hole in SW SW SW sec. 10, T. 13 S., R. 39 W., 40 feet NE of SW cor. sec. 10; augered June 1958. Altitude of land surface, 3.341.0 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations Silt, brown Silt, eolian, light tan Silt, eolian, tan	. 5	Depth, feet 4 9 12
Terriary—Pliocene	. 0	12
Ogallala Formation Silt, clayey	. 4	16
Gravel, medium	. 3	19
Silt, clayey, tough, brown	23	21 2 4
CRETACEOUS—Upper Cretaceous		
Pierre Shale	J	
Shale, weathered, brown an gray	_	29

Digitized by Google

13-39-19acb.—Drillers log of irrigation well in NW SW NE sec. 19, T. 13 S., R. 39 W.; drilled by Jack Foust, March 1946. Altitude of land surface, 3,385.0 feet; depth to water, 7.43 feet, July 9, 1951.

QUATERNARY—Pleistocene Thickness, Alluvium feet	Depth, feet
Top soil 3	3
Clay 7	10
Gravel	40
Clay, sandy 3	43
Gravel 11	54
CRETACEOUS—Upper Cretaceous Pierre Shale	
Shale 1	55

13-39-19dca.—Drillers log of irrigation well in NE SW SE sec. 19, T. 13 S., R. 39 W.; drilled by Jack Foust. Altitude of land surface, 3,349.8 feet; depth to water, 10.48 feet, September 26, 1957.

QUATERNARY—Pleistocene Alluvium Surface silt	25 7	Depth, feet 8 33 40 51
Pierre Shale Shale	1	52

13-39-25dad.—Sample log of test hole in SE NE SE sec. 25, T. 13 S., R. 39 W. (Bradley and Johnson, 1957, p. 117); jetted November 1951. Altitude of land surface, 3,252.8 feet; depth to water, 7.19 feet, November 28, 1951.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Silt, fine, light brown; con-	-	
tains some sand	. 0.5	0.5
Sand, quartz, fine to coars	e;	
contains some silt	. 1.5	2.0
Sand and gravel, quartz with		
a few mafic minerals	. 10.8	12.8
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, chalky, hard, gra	у;	
contains finely disseminate	d	
black flecks	0.1	12.9

13-39-25dda.—Sample log of test hole in NE SE SE sec. 25, T. 13 S., R. 39 W. (Bradley and Johnson, 1957, p. 117); jetted November 1951. Altitude of land surface, 3,250.1 feet; depth to water, 6.11 feet, November 29, 1951.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Silt, sandy, light brown	. 1.5	1.5
Sand, quartz, medium to coars	e, 5.5	7
Sand, quartz, and some grave	el	
with gray clay streak i		
upper part	13.0	20
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
(no sample obtained)	. 0	20

13-39-33bbd.—Drillers log of irrigation well in SE NW NW sec. 33, T. 13 S., R. 39 W.; drilled by Jack Foust. Altitude of land surface, 3,321.9 feet; depth to water, 21.10 feet, June 12, 1958.

QUATERNARY—Pleistocene Alluvium	Th	ickness, feet	Depth, feet
Silt		11	11
Clay, sandy		4	15
Sand and gravel			19
Gravel, coarse		25	44
Silt		14	58
Gravel, coarse		7	65
CRETACEOUS—Upper Cretaceous Pierre Shale			
Shale		1	66

13-39-36aaa.—Sample log of test hole in NE NE NE sec. 36, T. 13 S., R. 39 W. (Bradley and Johnson, 1957, p. 117); jetted November 1951. Altitude of land surface, 3,251.0 feet; depth to water, 6.21 feet, November 28, 1951.

	Thickness,	Depth,
Peoria and Loveland Formations	feet	feet
Clay, sandy, light brown		2
Sand, quartz, very fine to ver	у	
coarse		7
Gravel, fine to coarse with som	e	
silt; large quartz pebbles a		
base		10
Sand and gravel, quartz, poorl	У	
sorted		15
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
(no sample obtained)	. 0	15

13-39-36ada.—Sample log of test hole in NE SE NE sec. 36, T. 13 S., R. 39 W. (Bradley and Johnson, 1957, p. 118); jetted November 1951. Altitude of land surface, 3,273.6 feet; depth to water, 34.85 feet, November 28, 1951.

QUATERNARY—Pleistocene T Peoria and Loveland Formations	hickness, fect	Depth, feet
Clay, silty, dark brown		1.5
Sand, quartz, poorly sorted; contains silt and gray to		
buff calcareous clay streaks,	8.5	10
Sand, quartz and grains of		
mafic minerals	10	20
Sand, coarse, and fine gravel; contains mostly quartz, but		
mafic minerals are common,		33
Sand, coarse, and gravel, largely quartz with scattered		
mafic minerals	8	41
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
(no sample obtained)	0	41

13-40-3aaa.—Log of test hole in NE NE NE sec. 3, T. 13 S., R. 40 W., 30 feet south of road intersection near edge of road; augered June 1958. Altitude of land surface, 3,480.1 feet.

QUATERNARY—Pleistocene	Thickness,	Depth,
Peoria and Loveland Formations	feet	feet
Silt, sandy, brown Silt, eolian, light tan	. 3	3 9

	Thickness, feet	Depth, feet
Silt, eolian, tan CRETACEOUS—Upper Cretaceous Pierre Shale	6	15
Shale, gray	4	19

13-40-3aca.—Log of test hole in NE SW NE sec. 3, T. 13 S., R. 40 W., 0.3 mile south of road intersection near edge of road; augered June 1958. Altitude of land surface, 3,466.1 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, sandy, brown	. 2	2
Silt, eolian, light tan	. 18	20
Silt, clayey, tough, tan	. 3	23
Sand, coarse	. 2	25
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, gray and brown	. 10	35

13-40-3cdd.—Sample log of test hole in SE SE SW sec. 3, T. 13 S., R. 40 W., 50 feet west and 30 feet north of center of road intersection; drilled November 1957. Altitude of land surface, 3,424.9 feet; depth to water, 16.99 feet, November 2, 1957.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Silt, sandy, brown	12	12
Silt, sandy, very limy	. 3	15
Sand, medium to coarse, ar	nd	
fine gravel, clean	. 5	20
Sand, coarse, and fine to m	e -	
dium gravel, clean	10	30
Clay, greenish gray, tough	. 2	32
Silt, sandy, blue gray	. 11	43
Sand, coarse, and fine gravel	. 2	45
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, dark gray	. 5	50

13-40-3dbc.—Log of test hole in SW NW SE sec. 3, T. 13 S., R. 40 W., 0.3 mile north of section line near edge of road near driveway to field; augered June 1958. Altitude of land surface, 3,435.1 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, sandy, brown		10
Silt, clayey, gray brown	. 3	13
CRETACEOUS—Upper Cretaceous		
Pierre Shale Shale, brown gray	. 6	19

13-40-7aac.—Drillers log of irrigation well in SW NE NE sec. 7, T. 13 S., R. 40 W.; drilled by Jack Foust, March 1957. Altitude of land surface, 3,481.7 feet; depth to water, 16.15 feet, June 24, 1958.

QUATERNAR Alluvium	Y-		P	le	is	ste	00	ce	21	ıe	•							•	Гł	ickness, feet	Depth, feet
Silt																				39	39
Gravel																					52
Ciay .	•••	•	•	·	• •	•	•	•	•	·	·	•	•	·	·	·	•	•	·	2	54

	Thickness, feet	Depth, feet
Gravel	. 5	59
Clay	4	63
Gravel	. 13	76
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale	4	80

13-40-10abb2.—Drillers log of irrigation well in NW NW NE sec. 10, T. 13 S., R. 40 W.; drilled by Jesse Mumma, 1937. Altitude of land surface, 3,423.1 feet; depth to water, 15.72 feet, June 24, 1958.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, f ec t
Silt	. 15	15
Sand, fine to medium	. 5	20
Gravel	28	48
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale	. 2	50

13-40-10acb.—Log of test hole in NW SW NE sec. 10, T. 13 S., R. 40 W., 0.3 mile south of sec. line and 50 feet east of highway; augered June 1958. Altitude of land surface, 3,421.5 feet; depth to water, 14.65 feet, June 27, 1958.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Silt, sandy, tan	. 14	14
Sand, medium to coarse, an	nd	
medium gravel	. 3	17
Gravel, medium to coarse	. 3	20
Sand, fine to coarse; contain	ns	
layers of silt	3	23
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, blue gray	. 4	27

13-40-10acc.—Log of test hole in SW SW NE sec. 10, T. 13 S., R. 40 W., 75 feet north of bridge near edge of road; augered June 1958. Altitude of land surface, 3,411.7 feet; depth to water, 5.50 feet, June 27, 1958.

Quaternary—Pleistocene Alluvium	Thickness, feet	Depth, feet
Sand, fine to coarse, silty	. 4	4
Sand, coarse, and mediu coarse gravel CRETACEOUS—Upper Cretaceous	m	12
Pierre Shale Shale, blue gray	. 7	19

13-40-10dbc.—Log of test hole in SW NW SE sec. 10, T. 13 S., R. 40 W., 200 feet south of bridge near edge of farm driveway; augered June 1958. Altitude of land surface, 3,412.8 feet.

	Thickness, feet	Depth, feet
Silt, sandy, brown Sand, medium to coarse, an	2	2
Sand, medium to coarse, an fine gravel Gravel, fine to medium	. 4	6 12

		Depth, feet
Gravel, fine to coarse	4	16
Gravel, medium to coarse	9	25
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	3	28

13-40-10dcc.-Log of test hole in SW SW SE sec. 10, T. 13 S., R. 40 W., 300 feet north of sec. line near edge of road; augered June 1958. Altitude of land surface, 3,446.0 feet.

QUATERNARY—Pleistocene Th Peoria and Loveland Formations Silt, sandy brown	ickness, feet 5	Depth, feet 5
1 2000000		
Ogallala Formation		
Sand, fine to coarse	5	10
Sand, medium to coarse, and		
fine gravel	5	15
Sand, coarse, and fine gravel,	5	20
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, dark blue gray	29	49

13-40-11aaa.-Log of test hole in NE NE NE sec. 11, T. 13 S., R. 40 W., 40 feet west and 15 feet south of NE cor. sec. 11; augered June 1958. Altitude of land surface, 3,464.8 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, brown	. 3	3
Silt, light tan	. 11	14
Silt, clayey, brown	. 3	17
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, gray	. 2	19

13-40-15abc.-Log of test hole in SW NW NE sec. 15, T. 13 S., R. 40 W., 0.15 mile south of sec. line and 45 feet east of highway center near field driveway; augered June 1958. Altitude of land surface, 3,470.8 feet.

QUATERNARY-Pleistocene Thickne	ss, Depth,
Peoria and Loveland Formations feet	feet
Silt, sandy, dark brown 2	2
Silt, loose, eolian, light tan 12	14
Silt, clayey, tough, gray and	
brown	20
Tertiary-Pliocene	
Ogallala Formation	
Silt, sandy, tan 10	30
Sand, medium to very coarse,	
and fine gravel	35
Silt, sandy, brown 5	40
Sand, fine to coarse	45
CRETACEOUS—Upper Cretaceous	
Pierre Shale	
Shale, gray and brown 10	55

13-40-15dbc.—Log of test hole in SW NW SE sec. 15, T. 13 S., R. 40 W., 0.3 mile north of sec. line and 45 feet east of highway center near edge of road; augered June 1958. Altitude of land surface, 3,524.3 feet.

Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, dark brown	. 2	2
Silt, loose, eolian, light tan	. 13	15
Silt, tight, sandy, red tan	. 7	22
Tertiary—Pliocene		
Ogallala Formation		
Silt, clayey, tough, gray	. 3	25
Gravel, coarse	. 3	28
Silt, sandy, loose, gray	. 4	32
Sand, coarse, and fine gravel	. 4	36
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, clayey, tough, gray	. 14	50

13-41-5bbb.—Sample log of test hole in NW NW NW sec. 5, T. 13 S., R. 41 W., 50 feet south and 5 feet east of NW cor. sec. 5; drilled October 1957. Altitude of land surface, 3,784.1 feet.

QUATERNARY—Pleistocene	Thickness,	Depth,
Peoria and Loveland Formations	feet	feet
Silt, compact, light tan	. 12	12
Silt, sandy, tan	. 10	22
Tertiary—Pliocene		
Ogallala Formation		
Silt, limy, white and light gray	, 3	25
Sand, medium to coarse, gray	5	30
Silt, clayey, limy, light gray Sand, medium to coarse, clean	2	32
Sand, medium to coarse, clean	. 6	-38
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray and brown	. 2	40

13-41-16ccc.—Sample log of test hole in SW SW SW sec. 16, T. 13 S., R. 41 W., near side of road about 35 feet north of SW cor. sec. 16; drilled August 1960. Altitude of land surface, 3,615.5 feet.

QUATERNARY—Pleistocene T	hickness,	Depth.
Peoria and Loveland Formations	feet	feet
Silt, sandy, brown	5	5
Sand, fine to medium	7	12
Silt, clayey, light greenish gray,	9	21
Sand, medium to very coarse,	4	25
CRETACEOUS-Upper Cretaceous		
Pierre Shale Shale, brown and black	5	30

13-41-27abb.—Sample log of test hole in NW NW NE sec. 27, T. 13 S., R. 41 W., near ½-mile line 20 feet south of road center; drilled August 1960. Altitude of land surface, 3,619.0 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Silt, sandy, brown	8	8
Silt, clayey, light tan	. 7	15
Silt, sandy, tan	10	25
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, brown and dark gray	. 5	30

13-41-28ddd.—Drillers log of shothole in SE SE SE sec. 28, T. 13 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,736 feet.

Sand	Thickness, feet 25	Depth, feet 25
CRETACEOUS—Upper Cretaceous		
Pierre Shale Shale, brown	. 55	80

13-42-5bbb.—Sample log of test hole in NW NW NW sec. 5, T. 13 S., R. 42 W., 35 feet east and 5 feet south of NW cor. sec. 5; drilled October 1957. Altitude of land surface, 3,919.8 feet; depth to water, 107.72 feet, November 2, 1957.

	ckness, feet	Depth, feet
Silt, sandy, dark gray	9	9
Sand, medium to coarse; con- tains caliche streaks	4	13
Ogallala Formation		
Sand, coarse, and medium		
gravel; contains caliche and cemented streaks	7	20
Sand, medium to coarse; con- tains cemented layer at 24		
to 26 feet	7	27
Gravel, fine to medium, clean,	2	29
Sand, medium to very coarse,	14	43
Sand fine to coarse: contains		
abundant caliche and thin cemented layers	9	52
Sand, fine to medium, silty, red brown	12	64
Sand, fine to medium, and thin		v -
silt layers; contains caliche		
streaks	15	79
Silt, compact, tan	3	82
Sand fine to coarse, and silt		
lavers; contains caliche		~ •
streaks	11	93
Sand, coarse to very coarse, and fine gravel	14	107
Sand, fine to coarse; contains thin layers of very limy silt,	14	121
Sand, medium to coarse; con-	8	129
tains cemented streaks	0	120
Sand, medium to coarse; con- tains thin layers of very limy		
silt	11	1.40
Sand, medium to coarse, clean,	9	149
Silt sandy red brown	2	151
Sand, fine to coarse, silty, limy,		
cemented	2	153
Sand, medium to very coarse, loose	12	165
CRETACEOUS—Upper Cretaceous		
Pierre Shale Shale light grounish grou	F	170
Shale, light greenish gray	Э	170

13-42-7add.—Sample log of test hole in SE SE NE sec. 7, T. 13 S., R. 41 W., in ditch near ½-mile line; drilled August 1960. Altitude of land surface, 3,876.8 feet.

		D .1
QUATERNARY—Pleistocene Thio Peoria and Loveland Formations	ckness, feet	Depth, fret
Peoria and Loveland Formations	10	12
Silt, sandy, brown	12	14
Tertiary—Pliocene		
Ogallala Formation		
Sand, fine to very coarse; con-		
tains small amount fine		
gravel and streaks of rust-	10	22
brown silt	10	
Silt, sandy, limy, light gray	6	28
Gravel, fine to medium, and		40
very coarse sand, clean	12	40
Sand, medium to very coarse,		
and fine gravel	17	57
Silt. sandy, tan	2	59
Sand, fine to medium	11	70
Sand, medium to very coarse,	10	80
Sand, medium to very coarse,		
and fine gravel	5	85
Silt. compact. hard, brown	3	88
Gravel, fine and very coarse		
sand	12	100
Gravel, fine to coarse	11	111
Silt, sandy, tan	7	118
Sand, fine to very coarse, and	-	105
fine to medium gravel	7 3	$125 \\ 128$
Silt, sandy, tan	3	120
Sand, very coarse, and fine	12	140
gravel	12	140
Sand, very coarse, and fine gravel; contains thin layers		
of silt	18	158
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, brown and gray	8	166
Shale, brown and gray	5	

13-42-17cbb.—Log of test hole in NW NW SW sec. 17, T. 13 S., R. 42 W., 500 feet north of river bridge and 60 feet east of road center; augered July 1958. Altitude of land surface, 3,794.6 feet.

TERTIARY—Pliocene Thi Ogallala Formation	c kness, feet	Depth, feet
Sand, fine to coarse	4	4
Sand, medium to very coarse,		
and fine gravel	8	12
Silt, sandy, tan	ĩ	13
	•	
Sand, fine to very coarse,	3	16
silty	-	20
Silt, clayey, compact, brown	4	
Sand, fine, hard	4	24
Sand, fine to coarse, silty	8	32
Sand, fine to very coarse, and fine gravel, loose Gravel, fine to very coarse, and	8	40
coarse sand	10	50
Silt, sandy, wet, loose	4	54
CRETACEOUS—Upper Cretaceous	•	•••
Pierre Shale Shale, blue gray	10	64

74

Digitized by Google

13-42-17ccb.—Log of test hole in NW SW SW sec. 17, T. 13 S., R. 42 W., 20 feet south of river bridge and 10 feet east of road center; augered July 1958. Altitude of land surface, 3,767.2 feet; depth to water, 3.20 feet, July 8, 1958.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth, feet
Sand, medium, clean	. 4	4
Gravel, fine to medium, an coarse sand CRETACEOUS—Upper Cretaceous		10
Pierre Shale Shale, blue gray	. 4	14

13-42-17ccc.—Sample log of test hole in SW SW Sw sec. 17, T. 13 S., R. 42 W., 18 feet east of road center and 122 feet south of power pole on south bank of river (Bradley and Johnson, 1957, p. 118); drilled September 1951. Altitude of land surface, 3,764.2 feet.

QUATERNARY—Pleistocene Alluvium	Thickness, feet	Depth,
Alluvium	ieei	reet
Sand, fine to coarse; contai		
some fine to medium gray	vel	
and clay stringers	10	10
Sand, fine to coarse	2	12
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray	8	20

13-42-20bcb.—Log of test hole in NW SW NW sec. 20, T. 13 S., R. 42 W., 0.3 mile south of sec. line near edge of road; augered July 1958. Altitude of land surface, 3,798.1 feet.

TERTIARY—Pliocene Ogallala Formation	Thickness, feet	Depth, feet
Silt, very sandy, tan	. 5	5
Silt, sandy, tan	10	15
Silt, sandy, brown	9	24
Gravel, medium to coarse	. 4	28
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, gray	. 6	34

13-42-20cbb.—Log of test hole in NW NW SW sec. 20, T. 13 S., R. 42 W., 20 feet east of road center near %-mile line; augered July 1958. Altitude of land surface, 3,837.3 feet.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, fcet
Silt, sandy, tan	. 3	3
Sand, fine to medium, clean	. 9	12
Silt, sandy, tan Sand, fine, silty	. 2	14
Sand, fine, silty	. 2	16
Tertiary-Pliocene		
Ogallala Formation		
Silt, clayey, tan	. 2	18
Sand, fine to medium, red tar		24
Silt, sandy, tan	. 5	29
Sand, fine to medium; contair	15	
cemented streaks	. 7	36
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray	. 8	-4-4

13-42-27aaa.—Sample log of test hole in NE NE NE sec. 27, T. 13 S., R. 42 W., near edge of road 200 feet west of NE cor. sec. 27; drilled August 1960. Altitude of land surface, 3,732.0 feet; depth to water, 40.90 feet, October 10, 1960.

TERTIARY—Pliocene TH Ogallala Formation	ickness, feet	Depth, feet
0	10	10
Sand, fine, silty	10	10
Sand, fine to medium, clean,	10	20
loose	10	20
Sand, medium to very coarse;		
contains cemented layers of		
very limy silt	10	30
Silt, very limy; contains thin		
layers of sand	10	40
Silt, very sandy, limy; contains		
cemented streaks	10	50
Silt, sandy, compact, rust tan,	10	60
Sinc, sandy, compact, rust tan,	10	00
Sand, fine to very coarse, and		
fine gravel; contains thin lay-	10	70
ers of limy silt	10	70
Sand, fine to very coarse; con-		
tains small amount fine gravel		
and cemented limy streaks,	12	82
Silt, compact, blocky, brown;		
contains limy streaks	11	93
Sand, fine to medium, loose,	7	100
Sand, medium to very coarse,		
clean, loose	10	110
Sand, medium to very coarse,	10	
and fine gravel; upper part		
and line graver; upper part		
contains thin layers of silty	10	120
clay	10	120
Sand, medium to very coarse, and fine gravel; contains lay-		
and fine gravel; contains lay-	10	100
ers of limy silt	12	132
Sand, medium to very coarse;		
upper part contains thin lay- ers of silt		
ers of silt	8	140
Sand, medium to very coarse, and fine gravel, clean		
and fine gravel, clean	8	148
Sand, fine to very coarse; upper		
3 feet contains cemented		
streaks	10	158
Sand, fine; upper part contains		
thin layers of silt	12	170
Sand, medium to very coarse,		
and fine gravel; contains limy		
streaks	15	185
Silt, very sandy; contains streaks of fine to coarse		
sand	12	197
Sand, medium to very coarse;		
contains small amount fine	• •	
gravel	18	215
CRETACEOUS—Upper Cretaceous		
Pierre Shale	2	
Shale, brown and dark gray,	5	220

13-42-29ccc.—Drillers log of irrigation well in SW SW Sec. 29, T. 13 S., R. 42 W.; drilled by Jack Foust, 1953. Altitude of land surface, 3,887.2 feet.

		Thickness,	
Peoria and	Loveland Formations	feet	feet
Surface	silt	10	10

TERTIARY-Pliocene	Thickness, feet	Depth, feet
Ogallala Formation		
Sand, cemented		19
Gravel		23
Clay, sandy	11	34
Gravel	. 10	44
Clay, sandy	6	50
Gravel	6	56
Clay, sandy	4	60
Gravel		79
Clay, sandy		113
Gravel	25	138
Clay	12	150
Gravel	1	151
Clay		155
Gravel		179
U luvu	-	181
Clay	0	189
Gravel		
Clay	0	198
Gravel	. 9	207
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Soapstone	7	214
Shale	. 3	217

13-42-30daa.—Sample log of test hole in NE NE SE sec. 30, T. 13 S., R. 42 W., 12 feet west of road center and 3 feet south of fence line (Bradley and Johnson, 1957, p. 118); drilled September 1951. Altitude of land surface, 3,874.0 feet.

QUATERNARY—Pleistocene T Peoria and Loveland Formations	hickness,	Depth, feet
Soil silt and slave black	3	3
Soil, silt, and clay, black Clay and silt, tan gray	3 4	37
TERTIARY—Pliocene	4	1
Ogallala Formation		
Clay, limy, silty, light tan to tan		
brown	10	17
Clay, sandy, brown		21
Clay, limy, light tan	12	33
Clay, sandy, tan	2 3 2 9	35
Clay, very limy, light tan	3	38
Clay, very sandy, tan brown	2	40
Clay, limy, light tan Clay, light tan; contains im-	9	49
Clay, light tan; contains im-		
bedded fine to coarse sand	11	60
Sand, fine to coarse, very	,	
clayey, tan brown		67
Sand, fine to medium, clayey,		
tan	5	72
Sand, medium to coarse, and		
fine to coarse gravel: contains		
some clay Clay, very sandy, light tan to	19	91
Clay, very sandy, light tan to)	
brown	7	98
Sand, medium to coarse, and		
fine gravel; contains some		
clay		108
Sand and gravel, medium to		
coarse, and some clay	10	118
Sand, medium to coarse, and		
fine to medium gravel	10	128
Sand, medium to coarse, and		
fine to coarse gravel	10	138
Sand, medium to coarse, and		
fine to coarse gravel; contains		
some silty clay	8	146

ł

ŝ

Í

ŧ

i

,

Ì

т	nic <mark>kness,</mark> fe et	Depth, feet
Clay, sandy, tan	10	156
Sand, fine to coarse, clayey, tan,	8	164
Clay, sandy, tan brown	11	175
Clay, tan brown and light gray,	5	180
Sand, medium to coarse, and		
fine gravel; contains some		
clay	10	190
Sand, medium to coarse; con-		
tains some clay	10	200
Sand, fine to coarse; contains		
sandy clay stringer at 205		
feet	10	210
Clay, sandy, tan	10	220
Clay, sandy, tan to gray; con-		
tains interbedded layers of		
fine to coarse sand	10	230
Clay, sandy, tan to gray; con-		
tains layers of fine to coarse		
sand and fine gravel	30	260
Clay, sandy, tan	40	300
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, yellow gray to yellow		
green	6	306
Shale, gray	4	310

13-42-31ddd.—Sample log of test hole in SE SE SE sec. 31, T. 13 S., R. 42 W., 40 feet west and 10 feet north of SE cor. sec. 31; drilled August 1960. Altitude of land surface, 3,880.5 feet.

QUATERNARY—Pleistocene T Peoria and Loveland Formations	hickness, feet	Depth, feet
Silt, brown		5
Sand, fine, silty	19	17
Silt, sandy, light brown	12	$\frac{17}{23}$
	U	د.2
Tertiary-Pliocene		
Ogallala Formation		
Gravel, fine, and very coarse		
sand; contains streaks of ce-	•	
mented red silt	15	38
Silt, very sandy, rust red; lower		
part contains streaks of ben-		
tonite	16	54
Silt, very sandy, limy; upper		
part contains streaks of ben-		
tonite	16	70
Silt, very sandy, limy; contains		
streaks of caliche	14	84
Sand, medium to coarse, loose	6	- <u>90</u>
Sand, fine to coarse; contains		00
layers of silt		100
Sand, medium to very coarse.		100
clean	12	112
Sand, fine to coarse, and fine		<u>ئا ا</u>
gravel; contains layers of very		
		120
limy silt and cemented streaks		120
Sand, medium to very coarse;		
contains small amount fine		
gravel and streaks of limy		
silt	10	130
Silt, sandy, very limy; contains	i	
streaks of sand	10	140
Silt, sandy, limy; contains thin	1	
beds of sand	10	150
Sand, fine to very coarse; con-	•	

Digitized by Google

	ickness,	Depth, feet
tains small amount fine gravel and thin layers of silt		160
Sand, very coarse, and fine	10	100
gravel, clean, well sorted,		
loose	10	170
Gravel, fine to medium, and		
very coarse sand, clean, loose,	10	180
Sand, medium to very coarse,		
and fine gravel; contains thin	10	100
layers of silt	10	190
Sand, fine to very coarse, and fine gravel, contains layers of		
silt	10	200
Sand, medium to very coarse,	10	200
and fine gravel, loose	8	208
Sand, fine to coarse; contains streaks of silt		
streaks of silt	12	220
Gravel, fine, and very coarse		
sand, clean, loose	10	230
Gravel, fine to medium, and	10	940
very coarse sand, clean, loose, Gravel, fine to medium, well	10	240
sorted, loose	12	252
Silt, sandy, limy, tan	Ĩõ	258
Sand, very coarse, and fine	•	
gravel, clean	12	270
Gravel, fine, and very coarse		
sand, clean, loose	17	287
Silt, sandy; contains layers of	0	205
fine to coarse sand Sand, very coarse, and fine	8	295
gravel	15	310
Sand, coarse to very coarse, and	10	510
fine gravel; contains streaks of cemented limy silt		
of cemented limy silt	10	320
Sand, very coarse, clean, loose; contains small amount fine		
contains small amount fine	10	
gravel Gravel, fine, clean, well sorted,	10	330
Gravel, fine, and very coarse	10	340
sand, clean	30	370
CRETACEOUS—Upper Cretaceous		010
Pierre Shale		
Shale, gray and dark gray	10	380

13-43-36abb.—Drillers log of irrigation well in NW NW NE sec. 36, T. 13 S., R. 43 W.; drilled by Jack Foust, 1957. Altitude of land surface, 3,893.5 feet; depth to water 148.75 feet, October 8, 1957.

QUATERNARY—Pleistocene Peoria and Loveland Formations Surface silt TERTIARY—Pliocene Ogallala Formation	feet	Depth, feet 8
Sand, cemented	4	12
Gravel	5	17
Sand, cemented	6	23
Sand	. 8	31
Sand, cemented	6	37
Gravel	65	102
Sand, cemented	. 4	106
Gravel	. 34	140
Sand, cemented	8	148
Gravel	. 13	161
Sand	. 8	169
Sand, cemented	. 8	177
Gravel		230

	TI	nickn ess, feet	Depth, feet
Clay		5	235
Gravel		8	243
Clay		7	250
Sand		7	257
Clay			260
CRETACEOUS—Upper Cretaceous Pierre Shale			
Soapstone		10	270
14-38-17ddd.—Sample log of tes SE sec. 17, T. 14 S., R. 38 W., J			

14-38-17ddd.—Sample log of test hole in SE SE SE sec. 17, T. 14 S., R. 38 W., 125 feet west and 20 feet north of SE cor. sec. 17; drilled November 1957. Altitude of land surface, 3,545.0 feet; depth to water, 78.30 feet, November 14, 1957.

QUATERNARY—Pleistocene T Peoria and Loveland Formations	nickness, feet	Depth, feet
Silt, dark brown		10
Silt, light brown		$\overline{20}$
TERTIARY-Pliocene		
Ogallala Formation		
Silt, sandy, limy, light tan	8	28
Silt, sandy, very limy, ce-		_0
mented	4	32
Sand, fine, very silty		43
Sand, medium to very coarse,		
clean	5	48
Silt and fine to coarse sand,	-	-0
very limy, cemented hard	17	65
Silt, limy, tan	10	75
Sand, fine to medium, and limy		
silt	7	82
Silt, sandy, tan	1i	93
Bentonite, gray green	2	95
Sand, fine to coarse, very silty,	7	102
Sand, medium to coarse, silty	6	108
CRETACEOUS—Upper Cretaceous	-	
Pierre Shale		
Shale, gray and yellow	8	116

14-38-33ccc.—Sample log of test hole in SW SW Sw sec. 33, T. 14 S., R. 38 W., 55 feet north of sec. line and 11 feet east of road center (Bradley and Johnson, 1957, p. 120); drilled October 1951. Altitude of land surface, 3,526.2 feet.

QUATERNARY—Pleistocene The Peoria and Loveland Formations	ickness,	Depth,
Silt, tan gray, and tan clay		16
Tertiary-Pliocene	10	10
Ogallala Formation		
Clay, silty, limy, tan	2	18
Clay, silty, very limy, light tan		
to white	3	21
Silt and fine sand, limy, ce-	0 5	04 E
mented, tan Sand, fine to medium, silty,	3.5	24.5
light tan to gray white	4.5	29
Clay, silty, limy, light tan to	1.0	20
light gray	2	31
Silt and fine sand, cemented,		
tan brown	6	37
Sand, fine to coarse, and brown	_	
silty clay, limy	7	44
Clay, limy, gray to tan gray; con- tains some imbedded sand	10	56
Sand, fine to medium, silty, tan	12	30
gray; contains a little clay	9	65
5 <i>, ,</i>	-	

77

	Th	ickness, feet	Depth, feet
Sand, fine to coarse, and fine medium gravel; contains little light-tan clay CRETACEOUS—Upper Cretaceous Pierre Shale	а	18	83
Shale, bentonitic, clayey, gre to gray Shale, silty, yellow Shale, gray	 	8 14 5	91 105 110

14-38-34aaa.—Sample log of test hole in NE NE NE sec. 34, T. 14 S., R. 38 W., 25 feet west and 10 feet south of NE cor. sec. 34; drilled August 1960. Altitude of land surface, 3,512.4 feet.

QUATERNARY—Pleistocene TI Peoria and Loveland Formations	hickness, feet	Depth, feet
Silt, dark brown	5	5
Silt, sandy, brown	5	10
Silt, sandy, light tan	10	20
Silt, very sandy, tan	5	25
TERTIARY-Pliocene		
Ogallala Formation		
Silt, sandy, very limy; contains		
cemented layers		40
Silt, very sandy, cemented hard,	10	50
Sand, fine to coarse, silty, ce-		
mented hard	8	58
Sand, medium to very coarse,		
and fine gravel; contains ce-		
mented streaks	7	65
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, brown and gray	5	70

14-39-21bbb.—Sample log of test hole in NW NW sec. 21, T. 14 S., R. 39 W., 18 feet south and 9 feet east of NW cor. sec. 21; drilled November 1957. Altitude of land surface, 3,453.0 feet; depth to water, 12.18 feet, November 14, 1957.

TERTIARY—Pliocene Ogallala Formation	Thickness, feet	Depth, feet
Silt, sandy, light brown	. 17	17
Silt, limy, gray brown		22
Sand, medium to very coars	e;	
contains some medium grave		29
Silt, sandy, tough, brown		33
Clay, tough, yellow tan	. 2	35
Sand, fine to coarse, silty	. 8	43
Sand, medium to coarse, silty	. 8	51
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	. 19	70

14-39-25ceb.—Drillers log of irrigation well in NW SW SW sec. 25, T. 14 S., R. 39 W.; drilled by Jack Foust, March 1956. Altitude of kind surface, 3.576.4 feet; depth to water, 109.98 feet, June 18, 1958.

QUATERNARY—Pleistocene Peoria and Loveland Formations	Thickness, feet	Depth, feet
Surface silt	18	18
TERTIARY—Pliocene Ogallala Formation		
Sand, cemented		50

	Thickness, fect	Depth, feet
Clay	7	57
Sand		70
Clay	. 11	81
Sand, cemented		88
Clay, sandy		104
Sand		119
Gravel	10	129
Sand, cemented		130
Gravel		135
Sand, cemented		138
Sand		144
Clay		147
Gravel	17	164
Clay	·· -:	165
Gravel		174
CRETACEOUS—Upper Cretaceous		
Pierre Shale	-	
Soapstone	5	179
Shale	3	182

14-39-31bba.—Drillers log of irrigation well in NE NW NW sec. 31, T. 14 S., R. 39 W.; drilled by Ben Hasz, April 1955. Altitude of land surface, 3,623.1 feet; depth to water, 106.90 feet, July 24, 1958.

Peoria and Loveland Formations Topsoil and silt TERTIARY—Pliocene		Depth, feet 11
Ogallala Formation		
Sand and clay; cemented from		
94 to 97 feet	88	99
Sand, very coarse	31	130
Clay	4	134
Sand, coarse	5	139
Sand and sandy clay	6	145
Sand	8	153
Clay, sandy	8	161
Sand, coarse	6	167
Clay, sandy	7	174
Sand, fine; contains clay from		
188 to 189 feet	16	190
Clay, sandy	3	193
Sand, coarse	5	198
Clay, sandy; contains cemented		
layers	6	204
Sand	11	215
Clay, sandy	4	219
Sand	6	225
Clay, sandy	2	227
Sand	7	234
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	4	238
Shale	2	230
Shale	4	440

14-39-32bdc.—Drillers log of irrigation well in SW SE NW sec. 32, T. 14 S., R. 39 W.; drilled by Ben Hasz, October 1955. Altitude of land surface, 3,610.6 feet; depth to water, 108.14 feet, June 19, 1958.

QUATERNARY—Pleistocene	Thickness,	Depth,
Peoria and Loveland Formations	feet	feet
Topsoil and silt	9	9

Ogallala Formation	Thickness, feet	Depth, feet
Sand and clay; contains ce		
mented layers	. 138	147
Sand	. 5	152
Clay; contains cemented layer	s. 6	158
Sand, coarse, loose	. 4	162
Clay, sandy	2	164
Sand	. 2 . 2	166
Clay; contains cemented layers	s, 3	169
Sand	10	179
Sand; contains cemented layer	s. 4	183
Sand, coarse	20	203
Clay and sandy clay; contain	. 20	200
cemented layers	9	212
Clay, sandy; contains cementer	. .	212
layers	u 10	0.05
Rock hard	. 13	225
Rock, hard	. 4	229
Clay	. 3	232
Sand	. 7	239
Clay, tight, sticky	. 15	254
Clay; contains cemented lay		
ers	. 3	257
CRETACEOUS—Upper Cretaceous Pierre Shale		
Soapstone	5	262

14-39-33ddd.—Sample log of test hole in SE SE SE sec. 33, T. 14 S., R. 39 W., 70 feet north and 6 feet west of SE cor. sec. 33; drilled November 1957. Altitude of land surface, 3,599.9 feet.

QUATERNARY—Pleistocene T Peoria and Loveland Formations	hickness,	
Feoria and Loveland Formations	teet	feet
Silt, compact, light brown	15	15
Silt, limy, light gray	9	24
TERTIARY-Pliocene		
Ogallala Formation		
Silt, dense, cemented, light		
gray	12	36
Silt, sandy, tan; contains limy		
streaks in lower part	9	45
Sand, medium to coarse, and	-	
fine gravel: contains 2 feet of		
silt at base	15	60
Sand, fine to coarse, silty	-8	68
Silt, sandy, limy, light tan	10	78
Sand, medium to coarse, and		10
fine gravel	7	85
Silt, sandy, gray	8	93
Sand, fine, silty	7	100
Silt, sandy, gray	$\dot{\tau}$	107
Sand, medium to coarse, and	•	107
tine gravel contains silt lav-		
ers from 112 to 115 and 120		
to 122 feet	23	130
Silt, sandy, tan	-8	138
Sand, medium to coarse; con-	U	100
tains cemented limy silt from		
147 to 149 and 152 to 154		
feet	16	154
Sand, fine to very coarse; con-	10	104
tains limy silt layers	12	166
Silt, sandy, tan; contains limy	12	100
streaks	9	175
Sand, fine to medium, and limy	3	175
silt; contains thin cemented		
layers	15	190
Sand, medium to coarse, silty	9	190
, mouthing to compet stity .	5	133

CRETACEOUS—Upper Cretaceous Pierre Shale	feet	feet
Shale, yellow and gray	. 11	210

14-40-5baa2.—Drillers log of shothole in NE NE NW sec. 5, T. 14 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,491 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	. 5	5
Sand and gravel		27
CRETACEOUS		
Pierre Shale		
Shale		105

14-40-11dcc.—Drillers log of shothole in SW SW SE sec. 11, T. 14 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,639 feet.

TERTIARY—Pliocene Ogallala Formation	Thickness, feet	Depth, feet
Sand; contains cemented layer	s, 30	30
Sand and silt	55	85
Sand		170
CRETACEOUS—Upper Cretaceous		
Pierre Shale Clay, yellow	. 20	190

14-40-15dcc.—Sample log of test hole in SW SW SE sec. 15, T. 14 S., R. 40 W., 42 feet east of highway center and 13 feet north of sec. line (Bradley and Johnson, 1957, p. 121); drilled October 1951. Altitude of land surface, 3,660.0 feet.

QUATERNARY—Pleistocene T Peoria and Loveland Formations	hickness, feet	Depth, feet
Soil, black	1	1
Silt, clayey, tan to tan gray	14 5	-
		15.5
Sand, fine to coarse; contains		10
silty to clayey limy nodules	2.5	18
TERTIARY-Pliocene		
Ogallala Formation		
Limestone, silty, medium hard,		
white	2	20
Sand, fine to coarse; contains		
silt and clay, tan to light		
gray	5	25
Sand, fine, silty, cemented, tan	•	
brown; contains a little		
coarse to medium sand	10	35
Sand, fine to coarse, silty, ce-	10	00
mented, tan brown	16	51
	10	51
Sand, fine to coarse; contains		
fine to coarse gravel and silty		
clay	9	60
Sand, fine to coarse; contains		
clay layers	4	64
Clay, silty, gray tan; contains		
limy streaks	6	70
Clay, sandy, brown; contains a		
little sand	8.5	78.5
Sand, fine to coarse, and fine	0.0	10.0
gravel; contains yellow-tan		
silt and clay	16.5	95
Clay, silty, blue gray and tan	10.0	0.0
	4	00
green	4	99

Thickness Depth

٠

۱

1

1]

í

1.5

ţ

t

t

î 2

i I 3 (

Th	ickness, feet	Depth, fect
Clay, sandy, tan yellow	5	104
Sand, fine to coarse, and fine gravel; contains a little tan- yellow clay Clay, silty, tan yellow to tan brown; contains embedded		118
sand and fine to coarse gravel	10	128
Sand and clay, interbedded, brown to tan yellow	10	138
Sand, fine to coarse; contains a little tan-brown clay	19	157
Clay, sandy, tan brown	11	168
Sand, fine to coarse; contains a little clay	16	184
Clay, gray brown; contains a little sand	11	195
CRETACEOUS—Upper Cretaceous		
Pierre Shale Shale, yellow	8	203
Shale, dark gray		206

14-40-20dcc.—Sample log of test hole in SW SW SE sec. 20, T. 14 S., R. 40 W., 35 feet east of %-mile line and 25 feet north of road center; drilled August 1960. Altitude of land surface, 3,699.5 feet.

QUATERNARY—Pleistocene T Peoria and Loveland Formations	hickness, feet	Depth, fect
Silt, sandy, tan brown	10	10
Silt, very sandy, tan brown	. 5	15
Tertiary-Pliocene		
Ogallala Formation		
Oganata Formation	+	
Silt, sandy, very limy, ligh	5	20
gray		30
Sand, medium, tan	. 10	38
Sand, coarse to very coarse		53
Silt, very sandy, limy, tan		00
Sand, very coarse, and fin		58
gravel	. 5	20
Sand, fine to coarse; contain	S	
thin layers of cemented lim		50
silt		73
Sand, coarse to very coarse, an	d	
fine gravel, clean	. 11	84
Silt, sandy, limy, tan	. 6	90
Silt, sandy, limy, tan Sand, fine to coarse, and fin	e	
gravel; contains layers of lim	y	
silt and a thin layer of ber	1 -	
tonite at 105 feet	. 20	110
Sand, medium to very coars		
cemented		120
Sand, medium, clean		130
Sand, medium to very coars	e.	
and fine gravel, clean		150
Sand, fine to coarse		160
Sand, medium to coarse; con		
tains cemented layers	10	170
Sand, medium to very coars		
		180
clean		100
Sand, medium to very coars and fine gravel; contains la	е,	
ers of cemented silt	y- 10	190
Sand, medium to very coars		100
clean, loose		200
Clean, 10050	10	200

	Thickness,	
	Sand, medium to very coarse, feet	feet
	and fine gravel; lower part	
	contains layers of sandy silt, 10	210
	Sand, medium to very coarse,	
	and fine gravel 11	221
	CRETACEOUS—Upper Cretaceous	
	Pierre Shale	
	Shale, orange and brown 10	231
	Shale, black 4	235
	Shale, black	
		117 6117
	14-40-35cccSample log of test hole in S	W 3W
	SW sec. 35, T. 14 S., R. 40 W., 90 feet e	ast and
	35 feet north of SW cor. sec. 35; drilled I	Novem-
	her 1957. Altitude of land surface, 3,639	.3 feet;
	depth to water, 86.72 feet, November 12,	1957.
	-	
	QUATERNARY-Pleistocene Thickness,	
	Peoria and Loveland Formations reet	feet
	Silt, sandy, loose, light brown, 15	15
	Silt, sandy, loose, light brown, 15 Silt, sandy, limy, light gray 6	21
	TERTIARY-Pliocene	
	Ogallala Formation	
	Sand, medium to coarse, clean, 14	35
	Sand fine to medium; contains	
7	thin layers of limy silt and ce-	
f	mented streaks	47
	Silt, sandy, limy, light tan 7	54
;	Sand, medium to very coarse 8	62
e,	Sand, medium, silty 5	67
	Sand, very coarse; contains in-	
	terbedded layers of silt in	
٦,	lower 5 feet	83
	Sand, fine to medium 11	94
	Silt, very sandy, tan	102
	Sand, medium to coarse, silty in	
	lower part 10	112
	Silt and fine sand, limy, light	
	tan	130
	Sand, fine, and sandy silt; con-	
	tains interbedded cemented	
	limy layers	150
	Sand, fine to coarse, and limy	
	silt: contains cemented layers	
	in lower part 27	177
	Silt, sandy, limy, light tan 3	180
	Sand, fine, silty	195
	Sand, medium to coarse; con-	
	tains thin limy silt layers 10	205
	Silt sandy, tan	207
	Sand fine to coarse, silty	228
	Sand very coarse, and time	
	gravel; contains limy silt from	
	235 to 237 and 242 to 247	
	feet	251
	CRETACEOUS—Upper Cretaceous	
	Pierre Shale	
	Shale, orange and gray	260
	, 0 0,	
	14 40 Palas Duillow low of irrigation we	ll in SW
	14-40-36dcc.—Drillers log of irrigation we	hy Ren
	SW SE sec. 36, T. 14 S., R. 40 W.; drilled Hasz, 1956. Altitude of land surface, 3,64	13.4 feet
	masz, 1930. Annuae of fand suitace, 3,0	1017 ICCI.
	Pleistocene and Pliocene Thicknes	s, Depth,

30	Pleistocene and Pliocene (undifferentiated)	Thickness,	Depth, feet	
	Soil and silt	. 5	5	
90	Sand and clay	. 23	28	
	Sand	40	68	
00	Sand and coarse gravel	7	75	

1	l'hickness, feet	Depth, feet
Silt, sandy, cemented	. 2	77
Clay, sandy		85
Sand and sandy clay		88
Gravel	. 13	101
Clay; contains cemented layers	5, 5	106
Sand	10	116
Silt, sandy, cemented	. 2	118
Sand and sandy clay		129
Sand, coarse, clean, loose		140
Clay		143
Sand	. 7	150
Sand and clay; contains ce	-	
mented layers	. 6	156
Sand	. 9	165
Clay; contains cemented layers	s, 5	170
Gravel, good	. 37	207
Silt, sandy, cemented	. 3	210
Sand, clean		216
Sand	. 10	226
RETACEOUS—Upper Cretaceous		
Pierre Shale		
Soapstone	. 3	229

14-41-7add.-Sample log of test hole in SE SE NE sec. 7, T. 14 S., R. 41 W., 35 feet north of ^x-mile line and 35 feet west of road center; drilled August 1960. Altitude of land surface, 3,771.0 feet.

QUATERNARY—Pleistocene Theoria and Loveland Formations	ickness, feet	Depth, feet
Silt, sandy, light brown	12	12
Tertiary-Pliocene		
Ogallala Formation		
Sand, fine to medium, silty, limy;	~	
contains cemented streaks	8	20
Sand, medium to very coarse; contains cemented streaks	23	43
Sand, silty, limy, cemented	20	40
hard	5	48
Sand, medium to very coarse;	-	
contains cemented layers	12	60
Sand, fine to medium; contains		
layers of sandy silt	10	70
Sand, silty, limy, cemented	7	77
Sand, medium to very coarse, clean, loose; contains small		
amount fine gravel	13	90
Sand, fine to medium, loose	10	100
Sand, coarse to very coarse, clean	10	110
Sand, coarse to very coarse and	10	1 20
fine gravel, clean	10	120
Sand, coarse to very coarse; con- tains cemented limy streaks,	10	130
Sand, medium to very coarse,	10	1.90
clean	19	149
Silt, limy, cemented hard	1	150
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray and brown	6	156

14-41-13ccc.-Sample log of test hole in SW SW SW sec. 13, T. 14 S., R. 41 W., 30 feet north and 10 feet east of SW cor. sec. 13; drilled November 1957. Altitude of land surface, 3,735.2 feet.

Peoria and Loveland Formations	ickness, feet	Dep th, feet
Silt, sandy in lower part, light	15	15
Silt, sandy, very limy, light gray and white	12	27
TERTIARY-Pliocene		
Ogallala Formation		
Sand, medium to coarse, silty	5	32
Sand, fine to coarse	6	38
Silt, limy, cemented, light gray,	5	43
Sand, fine to coarse	12	55
Silt and interbedded fine to me- dium sand, cemented	7	62
Sand, fine; contains thin layers of limy silt in lower part	12	74
Sand, medium to coarse	11	85
Silt, sandy, light gray	4	89
Sand, medium to coarse, silty.	6	95
Silt, sandy, very limy	3	98
Sand, medium to coarse; con-		
tains sandy silt layers	17	115
Sand, fine to coarse, silty	15	130
Sand, medium to coarse, clean,	14	144
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, dark gray and gray brown,	6	150

14-41-13daa .--- Drillers log of shothole in NE NE SE sec. 13, T. 14 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,719 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Sand	94	98
CRETACEOUS—Upper Cretaceous Pierre Shale		
Clay, yellow	44	142

14-41-19bcc.—Drillers log of shothole in SW SW NW sec. 19, T. 14 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,766 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Sand	272	276
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale	4	280

Ся

14-41-20ddd.—Sample log of test hole in SE SE SE sec. 20, T. 14 S., R. 41 W., 75 feet north and 20 feet west of SE cor. sec. 20; drilled August 1960. Altitude of land surface, 3,727.0 feet.

Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt, sandy, brown	4	4
Silt, very sandy, tan	4	8
Sand, medium to coarse, clean,	12	20
TERTIARY—Pliocene		
Ogallala Formation		
Sand, medium to very coarse,		
and fine gravel, clean	15	35
Silt, sandy, very limy, light		
grav	5	40
Sand, fine to very coarse, silty,	10	50
Silt, very sandy, very limy, ce-		
mented	10	60
Sand, fine to coarse; contains layers of cemented limy silt,		
layers of cemented limy silt,	10	70
Sand, coarse to very coarse, and		
fine gravel, clean	7	77
Bentonite, greenish gray	3	80
Sand, medium to very coarse	7	87
Bentonite, greenish gray	3	90
Sand, coarse to very coarse, and		
fine gravel	10	100
Sand, coarse to very coarse, and		
fine gravel; contains layers of		
silt	10	110
Sand, fine, limy, cemented hard,	10	120
Sand, fine to coarse; contains		
thin layers of silt	10	130
Sand, fine to medium	10	140
Sand, fine to coarse	10	150
Sand, medium to coarse, and		
fine gravel	10	160
Sand, medium to coarse	10	170
Sand, medium to very coarse,		
clean	10	180
Sand, medium to very coarse,		
and fine gravel; contains a		
thin layer of bentonite	10	190
Sand, medium to coarse, clean,	10	200
Sand, medium to very coarse.		
and fine gravel	10	210
Sand, medium to very coarse,		
clean; contains a thin layer of		
bentonite in lower part	20	230
Sand, medium to very coarse; contains thin layers of ben-		
contains thin layers of ben-		
tonitic clay	12	242
CRETACEOUS —Upper Cretaceous		
Pierre Shale		
Shale, orange and tan upper	•	
part, black lower part	8	250

14-41-23bbb.—Drillers log of irrigation well in NW NW NW sec. 23, T. 14 S., R. 41 W.; drilled by Ben Hasz. Altitude of land surface, 3,706.1 feet.

Pleistocene and Pliocene	Thickness,	Depth,
(undifferentiated)	feet	feet
Top and subsoil	10	10

	Thickness, feet	Depth, feet
Clay	. 9	19
Sand	15	34
Clay	3	37
Sand	. 12	49
Clay	21	70
Sand, good, and sandy clay	9	79
Clay	19	98
Clay, sandy, and interbedd	ed	•••
lavers of sand	7	105
Sand and a little sandy clay	. 11	116
Clay, sandy	13	129
Sand and sandy clay	5	134
Sand, coarse, loose	18	152
	e-	
mented streaks	. 8	160
Sand, coarse, loose	13	173
Clay and sandy clay	. 8	181
Sand	. 5	186
Mortar bed	1	187
Clay	. 9	196
Sand	. 5	201 202
Mortar bed Sand		202
Sand and mortar bed	3	209
Sand and mortal bed	. 4	213
Mortar bed		215
Sand	2 2 2 3	217
Clay		2 20
Sand	3	2 23
Sand and clay	. 14	237
Sand, good, loose	25	262
CRETACEOUS —Upper Cretaceous		
Pierre Shale		
Soapstone	. 3	265
Shale	3	268

ł

∂ Ú

١

1

14-41-31ccc.—Sample log of test hole in SW SW SW sec. 31, T. 14 S., R. 41 W., 26 feet north of road center and 8 feet east of section line (Bradley and Johnson, 1957, p. 122); drilled October 1951. Altitude of land surface, 3,809.8 feet.

Peoria and Loveland Formations		feet
Soil, silt, and clay, black	2.5	2.5
	7	9.5
Tertiary—Pliocene		
Ogallala Formation		
Clay, silty to sandy; contains limy streaks and embedded		
gravel	8.5	18
Sand, fine to coarse, and fine to medium gravel, silty	3	21
Sand, fine, clayey; contains soft	0	~
limy streaks	14	35
Clay, limy, tan gray; contains layer of sand from 41 to 43		
feet	10	45
Clay, silty, limy, tan to gray brown	9	54
Clay, red brown; contains thin layers of sand	11	65

Digitized by Google

Th	ickness,	
Sand, fine to coarse; contains	teet	feet
interbedded layers of limy		
clay	18	83
Clay, tan to gray, and inter-		
bedded layers of sand	18	101
Sand, fine to coarse, and fine to		
medium gravel: contains thin		
layers of tan silt	19	120
Sand, coarse, and fine to coarse		
gravel	12	132
gravel Clay, silty, sandy, brown	5	137
Sand, fine to coarse, and fine to	0	101
medium gravel, contains		
medium gravel; contains layer of clay from 146 to 147		
layer of clay from 140 to 147	10	147
feet	10	147
Sand, fine to coarse, and fine to	10	1
medium gravel	10	157
Sand, fine to coarse, and fine to		
medium gravel; contains sandy clay from 161 to 164		
sandy clay from 161 to 164		
feet	10	167
Sand, coarse, and fine to coarse		
gravel	29	196
Clay, limy, gray, and inter-		
bedded layers of sand	10	206
Sand, medium to coarse, and		
fine gravel; contains thin lay-		
ers of gray clay	9	215
CRETACEOUS—Upper Cretaceous	-	
Pierre Shale		
	•	017
Shale, clayey, yellow	2	217
Shale, dark gray	3	220

14-42-2ccc.—Sample log of test hole in SW SW Sw sec. 2, T. 14 S., R. 42 W., in ditch 50 feet NE of SW cor. sec. 2; drilled August 1960. Altitude of land surface, 3,838.0 feet.

QUATERNARY—Pleistocene Th	ickness,	Depth.
Peoria and Loveland Formations	feet	feet
Silt, sandy, light brown	10	10
Silt, sandy, brown		15
Tertiary—Pliocene	•	
Ogallala Formation		
Silt, very sandy, limy, light tan,	5	20
Silt, sandy, very limy, light		~~
gray	12	32
Sand, fine to coarse, silty; con-		
tains limy streaks	8	40
Sand, medium to very coarse,		
and fine gravel, clean	10	50
Sand, coarse to very coarse,		
clean	5	55
Bentonite, gray green	2	57
Sand, medium to very coarse,		
and fine gravel, clean	13	70
Sand, very coarse, and fine		
gravel, clean	10	80
Sand, medium to very coarse;		
contains layers of cemented		
limy silt	10	90
Sand, medium to very coarse,		
and fine gravel, clean	15	105
Sand, fine to coarse, and fine to		
	7	119
	•	* * **
and fine gravel	8	120
medium gravel; contains ce- mented layers of limy silt Sand, medium to very coarse, and fine gravel	7 8	112 120

Sand, medium to very coarse, and fine gravel; lower part	ickness, feet	Depth, feet
contains cemented limy streaks	10	130
Sand, medium to very coarse, and fine to medium gravel	10	140
Sand, fine to very coarse; con- tains cemented streaks	10	150
Sand, medium to very coarse, and fine to medium gravel,		
clean	18	168
Sand, fine to medium, limy, ce- mented	12	180
Silt, sandy, limy, cemented	10	190
Sand, fine to coarse; contains cemented limy streaks	10	200
Sand, medium to very coarse; contains small amount fine		
gravel	24	224
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, brown and gray	14	238

14-42-8cbc.—Sample log of test hole in SW NW SW sec. 8, T. 14 S., R. 42 W., 0.3 mile north of sec. line and 7 feet east of road center (Bradley and Johnson, 1957, p. 123); drilled September 1951. Altitude of land surface, 3,900.2 feet.

QUATERNARY—Pleistocene TI Peoria and Loveland Formations	nickness, feet	Depth, feet
Silt and clay, tan gray		10
Silt, clayey, tan gray	11	21
	11	21
Tertiary-Pliocene		
Ogallala Formation		
Clay, silty, blocky, limy; con-		
tains a little embedded sand,	4	25
Clay, silty to sandy, gray		
brown; contains embedded		
fine to medium sand	6	31
Sand, and interbedded layers		
of clay and sandy silt	8	39
Sand and gravel, fine to coarse;		
contains layers of clay in		
lower part	11	50
lower part Sand and gravel, fine to coarse;		
contains layers of clay from		
56 to 59 feet	10	60
Sand, coarse, and fine to coarse		
gravel; contains layers of clay		
from 62 to 65 feet	10	70
Sand and gravel, fine to coarse;		
contains a little silty clay	10	80
Sand and gravel, fine to coarse;		
contains interbedded thin layers of silty clay and limy		
layers of silty clay and limy		
silt	$\frac{5}{7}$	85
Clay, silty, tan	7	92
Sand, fine to medium; contains		
a little brown silt	10	102
Sand, fine to coarse, and fine		
gravel, silty	14	116
Clay, sandy, tan gray; contains		
interbedded layers of coarse		
sand and fine gravel	11	127
Sand, medium to coarse, and		
fine gravel; contains a few		
thin layers of clay	15	142
•		

ł

Th Clay, silty and sandy, tan	ickness, feet	Depth, feet
brown	4	146
Sand, medium to coarse, and fine to medium gravel; con- tains layer of clay from 149 to 151 feet	10	156
Sand, fine to coarse; contains a little gravel and inter- bedded layers of brown sandy		
clay	10	16 6
Clay, sandy, brown; contains interbedded layers of sand Sand, medium to coarse, and	17	183
fine gravel	32	215
Clay, silty, and interbedded layers of sand		228
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, clayey, yellow gray	19	247
Shale, gray	3	250

14-42-13ccc.—Sample log of test hole in SW SW SW sec. 13, T. 14 S., R 42 W., 40 feet east and 35 feet north of SW cor. sec. 13; drilled November 1957. Altitude of land surface, 3,791.2 feet; depth to water, 100.05 feet, November 14, 1957.

QUATERNARY—Pleistocene Th Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt, sandy, light brown		16
Sand, medium, silty	4	20
Silt, very sandy, tan	3	20 25
Terriary—Pliocene	0	20
Ogallala Formation		
Sand, medium to coarse, and fine gravel, clean	12	37
Silt, sandy, limy, light tan;		
contains cemented layers in lower part	17	54
Silt, sandy, red brown; very limy in lower 3 feet	11	65
Silt and fine to medium sand; contains limy streaks	11	76
Sand, fine to medium, silty	8	84
Sand, coarse to very coarse, clean	5	89
Bentonite, gray green	9	98
Sand, fine, and limy silt	12	110
Sand, medium to coarse, silty,	10	120
Silt, sandy, light tan	8	128
Sand, fine to coarse; contains layers of limy silt and ce-	Ũ	120
mented streaks	7	135
Silt, very sandy, limy, light	12	147
Sand, medium to very coarse, and fine gravel	18	165
Sand, medium to coarse, clean,	13	178
Silt, sandy, tan	6	184
Sand, medium	6	190
Sand, very coarse, clean	6	196
Sand, fine, and interbedded	U	200
layers of limy silt: contains		
cemented streaks	16	212

Thickness, Sand, medium to coarse; con-feet	Depth, feet
tains thin layers of cemented silt	225
Sand, fine to medium, silty in	
lower 5 feet 10	235
Sand, medium to coarse	243
Sand, fine, silty in top 3 feet, 7	250
Sand, medium to very coarse, 5	255
Silt, very sandy, light brown, 11	266
CRETACEOUS—Upper Cretaceous Pierre Shale	
Clay, tough, yellow 4	270
Shale, dark gray 10	280

14-42-14dbd.—Drillers log of irrigation well in SE NW SE sec. 14, T. 14 S., R. 42 W.; drilled by Ben Hasz, April 1956. Altitude of land surface. 3,795.8 feet; depth to water, 102.06 feet, June 24, 1958.

Pleistocene and Pliocene T (undifferentiated)	hickne ss, feet	Depth, feet
Top and subsoil	8	8
Sand and clay		101
Sand		103
Clay and sandy clay; contains	. –	
cemented layers		122
Sand, fine, loose	24	146
Clay, sandy, and interbedded		
layers of sand	20	166
Sand: contains a little sandy		100
clay	12	178
Clay; contains cemented layers		197
Sand; contains a little sandy	, 1 0	101
		208
clay Clay and sandy clay		211
Sand coarse loose	10	221
Sand, coarse, loose	4	225
Clay, sandy Sand; contains a little sandy		220
Sand; contains a little sandy	7	232
clay		232
Clay, sandy; contains cemented	1	000
layers	6	238
Sand, coarse, loose	6	244
Clay, sandy; contains thir	1	~~~
layers of sand	13	257
Sand, coarse, loose Clay and sandy clay	10	267
Clay and sandy clay	11	278
Sand, coarse, loose		288
Clay, sandy; contains thir		
layers of sand		299
Sand, coarse, loose Clay and sandy clay	. 10	309
Clay and sandy clay	. 3	312
Sand, coarse, loose	. 18	330
Clay	. 6	336
Sand, coarse, loose		344
Clay and sandy clay; contain		
cemented layers		367
Sand, coarse, loose	. 3	370
Mortar bed	. 2	372
Sand, coarse, loose	. 4	376
Clay, sandy	. 2	378
Sand and a little sandy clay	. 14	392
Sand and a little sandy clay Sand, coarse, loose	6	398
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
	•	400
Soapstone	. 2	400

14-42-20ccb.—Sample log of test hole in NW SW SW sec. 20, T. 14 S., R. 42 W., 33 feet south of bridge and 13 feet east of road center (Bradley and Johnson, 1957, p. 124); drilled September 1951. Altitude of land surface, 3,837.0 feet.

QUATERNARY—Pleistocene Th	nickness,	Depth,
Peoria and Loveland Formations	feet	feet
Soil and sandy silt, gray brown		
to black	4	4
Clay, silty, tan brown	2	6
	2	0
TERTIARY—Pliocene		
Ogallala Formation		
Clay, limy, tan; contains thin		
layers of sand	2	8
Clay, very limy, light tan	3	11
Clay, silty to sandy, tan brown, Clay, very sandy, tan brown; contains layer of limy clay	10	21
Clay, very sandy, tan brown:		
contains layer of limy clay		
from 28 to 29 feet	18	39
Silt, very limy, cemented,	10	00
white	2	41
white	z	41
Silt and clay, sandy, cemented,	~	
tan	9	50
Sand, fine to coarse, and fine to		
medium gravel; contains thin layers of silt and clay		
layers of silt and clay	14	64
Clay, sandy, tan; contains ce-		
mented layer from 68 to 69		
feet	7	71
Sand, medium to coarse, and	1	11
fine grouply contains inter		
fine gravel; contains inter-	11	0.0
bedded layers of clay	11	82
Clay, silty to sandy, tan gray	3	85
Clay, sandy, brown	9	94
Sand, fine to coarse	50	144
Sand and tan clay, inter-		
bedded	7	151
Sand and gravel, fine to coarse;		
contains layers of clay at 152,		
158, and 167 feet	22	173
Clay, tan gray	6	179
Sand fine to madium	7	186
Sand, fine to medium	7	
Clay, silty to sandy	1	193
Sand, fine to coarse; contains	• •	•
streaks of clay	10	203
Sand, fine to coarse, and fine		
gravel; contains interbedded		
thin layers of clay Sand, fine to coarse, and tan	70	273
Sand, fine to coarse, and tan		
silty clay, interbedded	12	285
Sand, coarse, and fine to me-	-	
dium gravel	12	297
CRETACEOUS—Upper Cretaceous		
Pierre Shale	•	202
Shale, clayey, yellow tan	6	303
Shale, dark gray	4	307

14-42-22acc.—Drillers log of test hole in SW SW NE sec. 22, T. 14 S., R. 42 W.; drilled by Ben Hasz, October 1955. Altitude of land surface, 3,833.7 feet.

Pleistocene and Pliocene	Thickness,	
(undifferentiated)	feet	teet
Top and subsoil	6	6
Sand and clay; contains c	e-	
mented layers	. 100	106
Sand, fine; contains a little re		
clay and sandy clay	9	115

	Thickness, feet	Depth, feet
Clay	4	119
Sand and red clay		126
Clay, sandy, and red clay		136
Sand and red clay	18	154
Clay, sandy, and red clay	11	165
Sand		169
Clay, sandy		173
		185
	·	189
Clay, sandy		193
Sand, fine	· •	190
Clay and sandy clay; contair		203
cemented layers	. 10	
Sand		210
Clay, sandy; contains thin inter	r- 1 m	005
bedded layers of sand		225
Sand, good, loose	, 6	231
Clay, sandy; contains cemente		• • •
layers	. 9	240
Sand, coarse, loose		250
Clay, sandy	. 8	258
Sand, coarse, loose	. 12	270
Clay and sandy clay	. 6	276
Sand	. 9	285
Clay and sandy clay	. 15	300
Sand, coarse, loose	. 24	324
Clay	. 3	327
Sand	. 3	330
Clay and sandy clay; contain	IS	
cemented layers		348
Sand, coarse, loose	16	364
Clay, sandy; contains cemente	d	
layers	6	370
Sand	4	374
Clay	4	378
Sand	-	385
Clay, sandy	4	389
Sand	5	394
Clay and sandy clay	4	398
Clay, sandy	6	404
Sand	4	408
	2	410
	22	432
Sand, coarse, loose	. 44	704
CRETACEOUS—Upper Cretaceous		
Pierre Shale	0	405
Soapstone	. 3	435
Shale	. 3	438

14-42-23dbb1.—Drillers log of irrigation well in NW NW SE sec. 23, T. 14 S., R. 42 W.; drilled by Ben Hasz, October 1955. Altitude of land sur-face, 3,808.6 feet; depth to water, 114.09 feet, June 24, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Dep th, fee t
Top and subsoil	. 8	8
Sand and clay	. 87	95
Clay and sandy clay		114
Clay and sandy clay; contain	ns	
cemented layers	. 7	121
Sand and sandy clay		130
Clay, sandy; contains thin e	e-	
mented layers	. 17	147
Sand and sandy clay	3	150
Clay and sand; contains co	e-	
mented layers	9	159
Sand		165
Clay	3	168

Digitized by Google

Silt, light tan

Thickness, Depth, feet feet

2

160

1

1

ł

1

ŧ

i t

١ i. 1

	Thickness, feet	Depth, feet
Sand and gravel	. 12	180
Clay	9	189
Sand and gravel	13	202
Clay		206
Sand, coarse, loose		219
Clay, sandy; contains thin la		
ers of sand		223
Clay	8	231
Sand, coarse, loose	. 10	241
Clay	11	252
Sand; cemented from 257	to	
258	. 11	263
Clay	. 8	271
Sand	8	279
Clay	4	283
Sand	. 4	287
Clay and sandy clay	. 9	296
Sand	6	302
Clay; contains cemente	ed	
layers	3	305
Sand, coarse, loose	. 30	335
Clay, sandy	. 6	341
Sand	2	343
Clay, sandy	·· 2 ·· 2 ·· 3	345
Sand	. 3	348
Clay	. 2	350
CRETACEOUS—Upper Cretaceous Pierre Shale		
Soapstone	7	357

14-42-23dbb2 .--- Sample log of test hole in NW NW SE sec. 23, T. 14 S., R. 42 W., observation well for pumping test, 237 feet NW of irrigation well; drilled August 1960. Depth to water, 118.19 feet, August 18, 1960.

QUATERNARY—Pleistocene Th	ickness,	Depth.
Peoria and Loveland Formations	feet	feet
Silt, light brown	10	10
Silt, lower part very sandy, tan,	10	20
TERTIARY-Pliocene		
Ogallala Formation		
Sand, medium, clean, well		
sorted	16	36
Sand, fine to coarse, very limy,	6	42
Sand, medium to very coarse,	-	
clean, loose	8	50
Sand, medium to very coarse,	U	00
and fine gravel, clean, loose,	8	58
Sand, fine to very coarse; con-	U	00
tains cemented streaks	18	76
Silt, sandy, limy, light tan	9	85
	9	00
Silt, very sandy, very limy,	10	07
light gray	10	95
Sand, medium to very coarse;		
contains cemented limy silt		
streaks	15	110
Silt, very sandy, tan	5	115
Silt, very limy, cemented, light		
gray	15	130
Silt, limy, and streaks and thin		
layers of fine to medium		
sand, cemented hard; con-		
tains streaks of caliche	10	140
Sand, fine to medium: contains		
cemented limy silt streaks,	10	150
Sand, fine to coarse, clean	8	158

Silt, light tan	2	160
Sand, medium to coarse, and fine gravel; contains thin		
nne gravel; contains thin	10	170
layers of limy silt	10	170
14-42-29cbb.—Sample log of test hol	e in NV	N NW
SW sec. 29, T. 14 S., R. 42 W., 30 road center and 20 feet south of ½-mil) feet e	east of
road center and 20 feet south of ½-mil	le line;	drilled
August 1960. Altitude of land sur	face, 3	8,854.4
feet.		
QUATERNARY—Pleistocene Th	ic kness,	Depth.
Peoria and Loveland Formations	feet	feet
Silt, sandy, tan		10
Silt, very sandy, tan	15	25
TERTIARY-Pliocene		
Ogallala Formation		
Silt, very sandy, limy	7	32
Sand, fine to very coarse:	•	
Sand, fine to very coarse; lower part contains layers of		
limy silt	8	40
Sand, fine to very coarse, and		
fine gravel; upper part con-		
fine gravel; upper part con- tains layers of silt	10	50
Sand, fine to very coarse; con-		
tains silt layers	3	53
Silt, very limy	6	59
Gravel, fine to medium, and		
coarse sand; contains layers		
of limy silt	11	70
Gravel and coarse sand; con-		
tains layers of very limy silt,	10	80
Sand, fine to coarse, loose	15	95
Silt, sandy, very limy	5	100
Sand, fine to coarse; contains	••	
cemented limy layers	10	110
Sand, coarse to very coarse,		
very clean; contains small	10	100
amount fine gravel	10	120
Gravel, fine to medium, and coarse sand, clean, loose	10	130
Sand, fine to coarse; contains	10	100
cemented limy layers	10	140
Sand, medium to very coarse,	10	140
and fine gravely contains		
streaks of limy silt	10	150
Sand, coarse to very coarse,		100
and fine gravel; contains		
cemented hard streaks	18	168
Silt, sandy, tan	4	172
Sand, medium to very coarse,		
and fine to medium gravel;		
contains thin layers of silt,	8	180
Sand, medium to very coarse,		
and fine to medium gravel,		
clean, loose	10	190
Sand, very coarse, and fine to	_	
medium gravel, clean	7	197
Silt, light tan	2	199
Sand, coarse to very coarse,	•	000
and fine gravel	9	208
Silt, sandy, limy	7	215
Sand, fine to very coarse; con- tains thin layers of silt	15	000
Sand fine to modium. contains	15	230
Sand, fine to medium; contains cemented limy streaks	10	2.10
Sand, fine to very coarse, and	10	240
fine gravel, clean	10	250
mo Brater, cicali	10	<i></i> 0

Digitized by Google

Original from UNIVERSITY OF CALIFORNIA

	ickness,	
Sand, medium to very coarse,	feet	feet
clean, loose		260
Sand, medium to very coarse,		
and fine gravel, clean; con-		
tains cemented streaks	10	270
Sand, fine to coarse; contains		
cemented limy streaks	10	280
Sand, medium to very coarse,		
clean	10	290
Sand, very coarse, and fine		
gravel, clean	10	300
Sand, medium to very coarse,		
clean	15	315
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, gray and brown	10	325
Shale, black		340
•		

14-42-32ccc.—Sample log of test hole in SW SW Sw sec. 32, T. 14 S., R. 42 W., 50 feet north and 37 feet east of road intersection (Bradley and Johnson, 1957, p. 125); drilled September 1951. Altitude of land surface, 3,876.8 feet.

, ,		
QUATERNARY-Pleistocene Th	ickness,	
Peoria and Loveland Formations		feet
Soil, silt, and clay, black	3	3
Silt, tan gray	9	12
Sand, fine to coarse	7	19
Tertiary-Pliocene		
Ogallala Formation		
Clay, sandy, limy, tan to light		
gray	8	27
Clay, sandy, tan brown	2	29
Sand, fine to coarse, and fine	~	
gravel	8	37
Clay, sandy, limy, tan gray	2	39
Sand, fine to medium	11	50
Sand, fine to coarse	3	53
Clay, tan brown; contains ce-		
mented sandy and limy silt	0	00
from 57 to 58 feet	9	62
Gravel, fine to coarse, and very coarse sand	6	00
	о 7.5	68 75.5
Bentonite, white	4.5	75.5 80
Sand, fine to coarse; contains	4.5	00
thin layers of clay	8	88
Clay, silty, brown	3	91
Sand, fine to coarse, and fine	0	91
gravel	16	107
Clay, sandy, tan gray and	10	101
brown	11	118
Sand, fine to coarse, and fine	••	110
gravel	7	125
Clay, silty, limy, tan to light	•	
gray	10	135
Clay, silty, limy, tan to light		
gray, and interbedded brown		
sandy clay	12	147
Sand, fine to coarse	19	166
Clay, silty, tan gray	5	171
Sand, fine to coarse, and fine		
gravel	22	193
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, clayey, yellow	2	195
Shale, dark gray	3	198

15-38-3dcb2.—Drillers log of irrigation well in NW SW SE sec. 3, T. 15 S., R. 38 W., drilled by Kenneth Bogart, 1957. Altitude of land surface, 3,503.8 feet; depth to water, 78.37 feet, June 23, 1958.

Pleistocene and Pliocene T (undifferentiated)	hickness, feet	Depth, feet
Topsoil and silt	22	22
Sand and limy silt; contains ce mented layers Clay and sand; contains hard	20	4 2
cemented layers		56
Clay		63
Clay, very sandy		66
Clay		70
Sand		98
Mortar bed		99
Sand	21	120
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale	5	125

15-38-5ccb.—Drillers log of irrigation well in NW SW SW sec. 5, T. 15 S., R. 38 W., drilled by Ben Hasz, September 1957. Altitude of land surface, 3,530.9 feet; depth to water, 76.90 feet, June 13, 1958.

Pleistocene and Pliocene Th (undifferentiated)	ickness, feet	Dep th, feet
Top and subsoil	2	2
Sand and clay	17	19
Clay and sand; contains hard cemented layers	24	43
Sand and clay; contains ce- mented streaks	33	76
Clay, green; contains cemented layers	8	84
Sand, medium to coarse, loose,	6	90
Clay, cemented	1	91
Sand, medium to coarse, loose,	4	95
Sand: contains thin cemented		
lavers	10	105
Sand and gravel, loose	6	111
Sand, cemented	2	113
Sand and sandy clay; contains cemented layers	9	122
Sand, fine to medium, and in- terbedded layers of sandy		
clay	12	134
Sand and gravel, loose	5	13 9
Clay, pink; contains cemented streaks	5	144
CRETACEOUS—Upper Cretaceous		
Pierre Shale	7	151
Clay, yellow	7 6	157

15-38-7bbb.—Drillers log of irrigation well in NW NW NW sec. 7, T. 15 S., R. 38 W.; drilled by Ben Hasz. Altitude of land surface, 3,551.4 feet; depth to water, 90.55 feet, June 17, 1958.

Pleistocene and Pliocene	Thickness,	Dep th,
(undifferentiated)	fect	fe et
Soil and silt	17	17

:

1

1

ļ

t

i

i

۱

Sand;	contains	cemented		iickness, feet	Depth, feet
ers	• • • • • • • • •			32	49
Clay .	. 			6	55
Gravel				10	65
Sand.				2	67
Gravel				5	72
Clay				2	74
				$\tilde{5}$	79
Clay				6	85
Gravel				19	104
				4	108
		• • • • • • • • • •		12	120
	cemented	•••••		1	121
Grave				16	137
Sand;	contains	cemented	lay-		
ers				16	153
Gravel	1			14	167
CRETACEOU Pierre Sh		Cretaceou	S		
Soapst	one			8	175
Shale		•••••	• • • • •	3	178

15-38-8bbb.—Drillers log of irrigation well in NW NW NW sec. 8, T. 15 S., R. 38 W., drilled by Ben Hasz, May 1958. Altitude of land surface, 3,531.9 feet; depth to water, 77.87 feet, June 17, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Top and subsoil	. 10	10
Clay		24
Clay; contains cemented lay		24
ers	21	45
Sand, clay; contains a few co	e-	
mented layers	. 19	64
Clay and sandy clay	. 20	84
Sand	1	85
Clay, sandy	<u> </u>	89
Sand	8	97
Clay, sandy	. 4	101
Mortar bed	2	103
Sand, coarse		117
		124
Clay, sandy, and sand	• • • •	
Sand, fine, and sandy clay	. 11	135
Sand, coarse	. 11	146
CRETACEOUS—Upper Cretaceous Pierre Shale		
	0	140
Shale	. 2	148

15-38-10cbd.—Drillers log of irrigation well in SE NW SW sec. 10, T. 15 S., R. 38 W.; drilled by Jack Foust. Altitude of land surface, 3,511.4 feet; depth to water, 82.65 feet, June 23, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Soil and silt	. 36	36
Sand, contains cemented layer	rs, 18	54
Gravel	. 6	60
Sand	9	69
Clay, sandy	4	73
Sand		87
Sand; contains cemented layer		96
Sand		102
Sand, cemented	4	106
Sand	. 10	116
Clay; contains hard cemente layers		128

CRETACEOUS—Upper Cretaceous Pierre Shale	Thickne ss, feet	Depth, feet
Soapstone Shale	. 5	133
Shale	. 2	135

15-38-14ccd.—Drillers log of irrigation well in SE SW SW sec. 14, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,485.9 feet; depth to water, 72.97 feet, June 14, 1958.

Pleistocene and Pliocene (undifferentiated) Clay Clay, limy Sand	29	Depth, feet 20 49 72
Sand; contains clay streaks Clay, sandy Sand Sand; contains clay streaks Clay, sandy	8 14 29 9	80 94 123 132 142
CRETACEOUS—Upper Cretaceous Pierre Shale Clay, ycllow Shale	-	148 150

15-38-17daa.—Sample log of test hole in NE NE SE sec. 17, T. 15 S., R. 38 W., 42 feet south of bridge and 7 feet west of road center (Bradley and Johnson, 1957, p. 128); drilled October 1951. Altitude of land surface, 3,508.7 feet; depth to water, 66.56 feet, October 20, 1951.

	ickness, feet	Depth. feet
Peoria and Loveland Formations		
Soil, silt, and clay, black	5.5	5.5
Silt, clayey, tan gray	8.5	14
Silt, and fine sand, brown	5	19
TERTIARY—Pliocene		
Ogallala Formation		
Clay, sandy, tan	5	24
Sand and gravel, fine to coarse;		
contains thin layers of tan		
clay	6	30
Sand, fine to coarse, and fine		
gravel; contains cemented		
streaks	18	-48
Clay, sandy, limy, light tan;		
contains interbedded thin		
layers of fine to coarse sand,	5	53
Clay, sandy, gray green	3	56
Clay, sandy, limy, light tan to		
brown	9	65
Clay, silty, very sandy, tan	•	
brown	6	71
Sand, fine to coarse, and fine to	U	••
medium gravel	8	79
Sand and interbedded light-tan	0	15
	8	87
limy clay	0 4	
Clay, silty, gray	4	91
Sand, fine, and interbedded tan	•	0.7
to gray limy clay	6	97
Clay, silty, sandy, brown	5	102
Sand, fine Sand, fine, and interbedded lay-	16	118
Sand, fine, and interbedded lay-		
ers of clay	4	122
Sand, fine to coarse; contains		
thin layers of yellow and tan		
clay	12	134

88

CRETACEOUS—Upper Cretaceous	Thickness,	Depth,
Pierre Shale	feet	feet
Shale, clayey, yellow	··· 7 ·· 3	141 144

15-38-20dba.—Drillers log of irrigation well in NE NW SE sec. 20, T. 15 S., R. 38 W., drilled by Jack Foust, 1956. Altitude of land surface, 3,517.8 feet; depth to water, 88.90 feet, June 18, 1958.

Pleistocene and Pliocene	Thickness,	Depth,
(undifferentiated)	feet	fect
Soil and silt	. 17	17
Sand; contains cemented layers	s, 21	38
Gravel	5	43
Sand; contains cemented layers	s, 7	50
Gravel	. 4	54
Sand; contains cemented layers	s, 18	72
Gravel	. 6	78
Sand; contains cemented layers	5, 13	91
Gravel		100
Clay		107
Gravel		112
Clay	. 8	120
Gravel	. 23	143
Clay		146
Gravel	. 15	161
Clay	. 3	164
Gravel	. 11	175
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Soapstone	. 12	187
Shale	. 3	190

15-38-21cbc.—Drillers log of irrigation well in SW NW SW sec. 21, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,513.2 feet; depth to water, 85.88 feet, June 17, 1958.

Pleistocene and Pliocene	Thickness.	Depth.
(undifferentiated)	feet	feet
Clay	26	26
Clay, limy	21	47
Sand	3	50
Clay, sandy	47	97
Sand, fine; contains thin laye	ers	
of clay		104
Sand; contains thin layers	of	
clay		113
Sand		117
Sand; contains thin layers		
clay		121
Sand		126
Sand and gravel	11	137
Sand, cemented	3	140
Sand and gravel	7	147
Sand; contains thin layers		
clay	. 5	152
Sand	13	165
Sand, cemented	2	167
Clay, sandy	·· 2 ·· 5 · 7	172
Sand and gravel	7	179
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	7	186
Shale		190
	1	100

15-38-27aaa.-Sample log of test hole in NE NE NE sec. 27, T. 15 S., R. 38 W., 30 feet west and 28 feet south of NE cor. sec. 27; drilled November 1957. Altitude of land surface, 3,469.2 feet; depth to water, 58.08 feet, November 13, 1957.

	iickness, feet	Depth, feet
Silt, light tan, becoming limy in lower part	15	15
Tertiary-Pliocene		
Ogallala Formation		
Sand, medium to coarse, very		
silty	$\frac{7}{3}$	22
Silt, sandy, gray	3	25
Sand, medium to coarse, silty	3	28
Silt, sandy, very limy, light tan	_	~~
to light gray	7	35
Sand, fine to coarse, very silty,	7	42
Silt, sandy, limy; contains ce-	14	50
mented layers	14	56
Sand, medium to coarse; con-	4	00
tains thin layers of limy silt	4	60
Silt, sandy, limy; contains ce-	4	64
mented layers	4 4	6 4 68
Sand, medium, gray Silt, very sandy, tan; contains	4	00
thin interbedded layers of		
fine to coarse sand	10	78
Sand, medium to very coarse;	10	10
contains thin cemented lay-		
ers	14	92
Silt, sandy, very limy, cemented,	••	01
light gray	13	105
Silt and fine to coarse sand	10	115
Sand, fine to coarse, very silty,	7	122
Sand, fine; contains layers of		
limy silt at 128 to 130 feet.	9	131
Sand, medium to coarse	12	143
Silt, sandy, cemented, yellow		
and tan	4	147
and tan	7	154
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	11	165

15-38-28bcc.—Drillers log of irrigation well in SW SW NW sec. 28, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,511.7 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	. 19	19
Clay, limy		43
Sand		57
Clay	6	63
Sand; contains clay streaks	9	72
Sand		82
Sand; contains clay streaks	11	93
Sand and interbedded layers	of	
clay	21	114
Sand	7	121
Clay	7	128
Sand		136
Sand, fine, cemented; contai		
clay streaks	9	145

	Thickness, feet	
Sand, medium	8	153
Sand, cemented	9	162
Sand	36	198
CRETACEOUS —Upper Cretaceous		
Pierre Shale		
Clay, yellow	7	205
Shale	5	210

15-38-28dbb.—Drillers log of irrigation well in NW NW SE sec. 28, T. 15 S., R. 38 W.; drilled by Weishaar & Son, February 1957. Altitude of land surface, 3,502.0 feet; depth to water, 91.70 feet, October 7, 1960.

Pleistocene and Pliocene	Thickness,	
(undifferentiated)	feet	feet
Clay		19
Clay; contains limy layers	11	30
Clay, limy, tight; contain	ns	
streaks of sand	17	47
Clay, sandy; contains limy la	y-	
ers		55
Sand and clay	. 8	63
Clay, sandy	. 15	78
Sand and clay	. 6	84
Clay, sandy	. 12	96
Sand; contains streaks of clay	. 5	101
Clay		116
Sand, good	11	127
Sand and clay		130
Sand, fine to medium		138
Cemented layer		140
Sand, fine; contains a fe		
streaks of clay	. 11	151
Sand and clay	4	155
Sand, good	7	162
Sand and clay	4	166
Sand, good	. 13	179
Sand and gravel, good	. 16	195
Clay		197
Sand and gravel	4	201
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, yellow	7	208
Shale		210

15-38-29abc.—Drillers log of irrigation well in SW NW NE sec. 29, T. 15 S., R. 38 W.; drilled by Weishaar & Son, February 1957. Altitude of land surface, 3,520.2 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	23	23
Clay, limy	25	48
Sand; contains limy streaks	11	59
Clay	21	80
Sand and interbedded clay	. 13	93
Clay		107
Sand		116
Sand, good		126
Sand; contains clay streaks		133
Sand, medium	11	144
Sand	5	149
Clay, sandy	. 7	156
Sand; contains clay streaks	8	164
Sand	15	179
Sand and gravel	. 17	196

CRETACEOUS—Upper Cretaceous	Thickness,	Depth,
Pierre Shale	feet	feet
Clay, yellow	··· 4 ·· 5	200 205

15-38-30bbb.—Sample log of test hole in NW NW NW sec. 30, T. 15 S., R. 38 W., 30 feet east and 8 feet south of NW cor. sec. 30; drilled November 1957. Altitude of land surface, 3,539.1 feet; depth to water, 92.10 feet, November 13, 1957.

OUATERNARY—Pleistocene Th	ickness,	Depth,
	feet	feet
Silt, light tan, clayey in lower		
part	15	15
Tertiary-Pliocene		
Ogallala Formation		
Silt, very limy, white and light		
tan; contains cemented layers		
in lower mont	19	34
in lower part	19	04
Silt, sandy, limy, light tan, very	00	50
limy in lower part	22	56
Silt, clayey, gray	12	68
Sand, medium to very coarse,		
silty	10	78
silty Silt, sandy, limy, light tan	15	93
Silt, sandy, very limy, light gray		
and white; contains ce-		
mented layers	9	102
Sand, medium to coarse, and		
fine gravel; contains thin lay-		
ers of silt	17	119
Silt, sandy, light tan	6	125
Sand, fine to coarse, very silty,	15	140
Sand, medium to coarse, very	10	110
	12	152
silty Silt, sandy, very limy, light gray	12	152
Sift, sandy, very limy, light gray	10	105
and white	13	165
Sand, fine, silty	17	182
Silt, very sandy, light tan Silt and fine sand	13	195
Silt and fine sand	10	205
Sand, fine to coarse, silty	11	216
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, orange yellow and gray,	9	225
,		

15-38-30ccb.—Drillers log of irrigation well in NW SW SW sec. 30, T. 15 S., R. 38 W.; drilled by Weishaar & Son, August 1959. Altitude of land surface, 3,538.6 feet.

Pleistocene and Pliocene Thick (undifferentiated) Thick	
Clay 30) 30
Cemented limy layer	36
Clay 14	1 50
Cemented limy layer 7	7 57
Sand, fine, and clay 8	65
Clay	3 71
Sand, coarse 11	l 82
Sand, fine, and clay 12	2 94
Sand, fine, tight	3 97
Sand, coarse	9 106
Sand, fine, and clay 8	3 114
Sand, good	135
Sand, fine, and clay 8	
	1 147
	3 153
Sand, medium, good	7 160

Digitized by Google

	Thickness, feet	Depth, feet
Sand, fine, and clay	. 8	168
Sand, good	. 6	174
Sand, fine, tight	. 4	178
Sand, fine, and clay	. 3	181
Sand, medium, good	. 8	189
Sand, good		206
Clay	. 4	210
Sand and gravel, good		229
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, yellow	3	232
Shale		240

15-38-32baa.—Drillers log of irrigation well in NE NE NW sec. 32, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,522.8 feet; depth to water, 93.60 feet, June 18, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	. 24	24
Clay, limy	37	61
Sand	ii	72
Sand, fine; contains clay streak	s. 11	83
Sand		92
Clay, sandy		103
Clay	3	106
Clay, sandy	22	128
Sand, fine to medium	7	135
Sand		161
Sand, fine		172
Sand and gravel	34	206
Sand and clay	4	210
Sand and gravel	16	226
Clay		230
CRETACEOUS—Upper Cretaceous Pierre Shale	-	
Shale	. 5	235

15-38-32dbb.—Drillers log of irrigation well in NW NW SE sec. 32, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,511.7 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	. 19	19
Clay, limy		52
Clay	. 21	73
Sand	11	84
Sand; contains clay streaks	14	98
Sand	. 9	107
Sand; contains clay streaks	. 8	115
Sand, fine to medium		130
Sand		139
Sand, fine to medium		146
Sand; contains cemented lim		
streaks	7	153
Sand, fine; contains clay streak	s. 6	159
Sand		168
Sand, cemented		172
Sand	17	189
Sand, cemented		193
Sand		204
Sand, fine to medium		211
Sand		227

CRETACEOUS—Upper Cretaceo Pierre Shale			ickness, feet	Depth, feet
Clay, yellow			2	229 235
Shale		• •	0	235

91

15-38-33cbb.—Drillers log of irrigation well in NW NW SW sec. 33, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,505.5 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	17	17
Clay, limy		26
Clay, limy; contains cement	ed	
streaks	. 25	51
Sand; contains thin layers	of	
limy clay	. 9	60
Sand and interbedded clay	15	75
Sand	_	84
-1	-	90
Clay		•••
Sand, cemented		112
Sand	7	119
Clay, sandy	5	124
Mortar bed	1	125
Sand	. 25	150
Mortar bed		153
		160
Sand, fine to medium		
Sand	60	220
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	. 3	223
Shale	•	225
Unale	4	

15-38-33cdd.—Sample log of test hole in SE SE SW sec. 33, T. 15 S., R. 38 W., 3 feet north of fence line and 180 feet west of X-mile line; (Bradley and Johnson, 1957, p. 128); drilled October 1951. Altitude of land surface, 3,505.2 feet; depth to water, 80.60 feet, October 20, 1951.

QUATERNARY-Pleistocene Th		
Peoria and Loveland Formations	feet	feet
Soil, silt, and clay, black	2	2
Silt, tan gray		17
Clay, silty, tan gray		18
Clay, silty, tan brown to light		
tan		29
TERTIARY-Pliocene	••	
Ogallala Formation		
Silt, very limy, light gray to		
	10	39
white	8	
Silt and silty clay, tan brown	0	47
Clay, very silty, light gray; con-		
tains interbedded layers of	-	
fine to coarse sand	9	56
Sand, fine to coarse, silty, ce-		
mented	11	67
Sand, fine to coarse, and gravel;		
contains layer of clay from		
74 to 76 feet	10	77
Sand, fine to very coarse	17	94
Clay, brown, and interbedded		0.
layers of sand	10	104
Clay, sandy, light gray	2	104
	÷.	100
Sand, fine to coarse, and fine to	11	117
medium gravel	11	117
Clay, silty, tan gray	18	135

Th Sand, fine to coarse; contains interbedded thin layers of silt	iickness, feet	Depth, feet
and clay	10	145
Sand, fine to coarse; contains a		
few thin layers of limy clay,	25	170
Clay, limy, blocky, light gray	5	175
Sand, fine to coarse; contains		
thin layers of tan clay	20	195
Sand, fine to coarse	31	226
CRETACEOUS—Upper Cretaceous		
Niobrara Chalk-Smoky Hill		
Chalk Member		
Clay, yellow to white	3.5	229.5
Shale, gray	3.5	233

15-38-34cbc.—Drillers log of irrigation well in SW NW SW sec. 34, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,491.6 feet.

	Thickness,	
(undifferentiated)	feet	feet
Clay	19	19
Clay, limy	. 13	32
Clay, limy; contains cemente	ed	
layers	17	49
Clay and interbedded layers	of	
limy clay		57
Clay		71
Sand and interbedded clay	9	80
Sand		92
Sand; contains clay streaks	7	<u>99</u>
Sand	9	108
Sand, cemented	. 3	111
Sand, fine; contains clay streak		142
Sand Sand		161
Sand, fine, cemented		166
Sand, me, cemented	-	188
		100
Clay		101
Sand	. 21	212
CRETACEOUS —Upper Cretaceous		
Niobrara Chalk—Smoky Hill		
Chalk Member		
Clay, yellow	. 4	216
Shale	4	220

15-38-36cbb.—Drillers log of irrigation well in NW NW SW sec. 36, T. 15 S., R. 38 W.; drilled by Weishaar & Son. Altitude of land surface, 3,461.1 feet; depth to water, 70.81 feet, June 19, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	feet
Clay		19
Clay, limy		43
Mortar bed		45
Clay and limy clay		54
Clay, sandy	15	69
Sand, medium	9	78
Clay; contains thin beds of fi		
sand	. 24	102
Clay	. 5	107
Sand, fine to medium	12	119
Sand, coarse		153

CRETACEOUS—Upper Cretaceous Niobrara Chalk—Smoky Hill Chalk Member	Thickness, feet	Depth, feet
Clay, yellow	4 3	157 160

15-39-1ccc.—Drillers log of irrigation well in SW SW sec. 1, T. 15 S., R. 39 W.; drilled by Ben Hasz. Altitude of land surface, 3,569.0 feet.

Pleistocene and Pliocene	Thickness, feet	Depth, feet
(undifferentiated)		
Topsoil	. 2	2
Sand and sandy clay; contain		
cemented layers		105
Sand, fine to coarse, loose; co	on-	
tains a few streaks of san	dv	
clay		129
Clay, sandy, red		133
Sand, medium to coarse, loo		
contains hard cement		
streaks		143
		146
Clay, sandy		
Sand	3	149
Clay, sandy	3	152
Sand, fine to medium, loose	11	163
Sand: contains streaks of san	dy	
clay	. 4	167
Sand, loose		170
Sand and clay, cemented ha		174
Sand, medium to coarse, loo		178
	50, 4	110
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, yellow	4	182
Shale		187

15-39-2bcd.—Drillers log of irrigation well in SE SW NW sec. 2, T. 15 S., R. 39 W.; drilled by Gustav Thieszen, November 1957. Altitude of land surface, 3,584.6 feet; depth to water, 112.22 feet, June 23, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Topsoil and clay	106	106
Clay, limy	6	112
Sand		118
Sand and gravel	. 14	132
Clay		136
Sand	4	140
Clay	6	146
Sand and gravel	2	148
Clay	4	152
Sand and gravel	36	188
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	8	196

15-39-2cca.—Drillers log of irrigation well in NE SW SW sec. 2, T. 15 S., R. 39 W.; drilled by Gustav Thieszen, November 1957. Altitude of land surface, 3.582.0 feet; depth to water, 110.14 fect, June 23, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Topsoil, sand, and sand		88

Digitized by Google

	Thickness, feet	Depth, feet
Sand and gravel	4	92
Sand, coarse		104
Sand, cemented, and clay		106
Sand Sand	-	112
Sand, medium, and gravel		128
Sand and gravel, cement		120
		129
hard		
Sand, coarse		136
Clay and sand	2	138
Sand, medium, and gravel	16	154
Clay	. 2	156
Sand and gravel		170
Sand		172
Sand, medium, and gravel		184
		196
Clay		
Sand and gravel	6	202
CRETACEOUS-Upper Cretaceous		
Pierre Shale	-	
Clay	2	204

15-39-5ccc.—Drillers log of irrigation well in SW SW Sw sec. 5, T. 15 S., R. 39 W., drilled by Ben Hasz, February 1957. Altitude of land surface, 3,622.4 feet; depth to water, 110.40 feet, June 17, 1958.

Pleistocene and Pliocene	hickness,	Depth,
(undifferentiated)	feet	feet
Top and subsoil	. 3	3
Sand, clay, and limy clay		92
Clay, sandy; contains cemented	. 09	94
lawora	. 12	104
layers		110
Sand, medium to coarse, loose		
Clay, sandy		112
Sand, coarse, loose		126
Clay, sandy, soft		138
Sand, medium, loose	. 3	141
Clay and sandy clay; contain	S	
cemented streaks		149
Sand and sandy clay; contain	S	
cemented streaks	. 12	161
Sand, coarse, loose	. 12	173
Sand, fine, and sandy clay, soft		180
Mortar bed	2	182
Sand, fine to medium, fairly	v	
loose	6 3	185
Clay, sandy, and cemented	• •	200
sand	<u> </u>	189
Sand, coarse, loose; sandy cla	· •	100
from 197 to 198 feet		203
Clay, sandy		205
Clay, sandy		205
Sand, coarse, loose	. 12	
Clay, sandy	. 1	218
Sand, coarse, very loose	. 7	225
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Soapstone	. 7	232

15-39-7dab.—Drillers log of irrigation well in NW NE SE sec. 7, T. 15 S., R. 39 W.; drilled by Ben Hasz, February 1957. Altitude of land surface, 3,637.2 feet; depth to water, 117.51 feet, June 18, 1958.

Pleistocene and Pliocene	Thickness,	Depth,
(undifferentiated)	feet	feet
Top and subsoil	2	2

Th Clay and sand; contains ce-	ickness, feet	Depth, feet
mented streaks	80	82
Sand and sandy clay; contains	•••	
cemented streaks	15	97
Sand, gravel, and streaks of		
clav	12	109
Clay; contains cemented layers,	4	113
Clay and sandy clay	9	122
Sand, coarse, fairly loose	13	135
Clay, sandy, and a little sand,	8	143
Sand; contains cemented		
layers	4	147
Sand, coarse, loose	5	152
Mortar bed Sand and sandy clay, soft	1	153
Sand and sandy clay, soft	15	168
Sand, fine; contains cemented	•	174
streaks	6	174
Clay; contains cemented	10	104
streaks	10	184
Sand and sandy clay, soft	5	189
Sand, medium to coarse, loose,	6	195
Clay	2	197
Sand, medium to coarse, loose,	8 4	205 209
Clay; contains cemented layers,	4	209
Sand, fine, cemented; contains	15	224
a little sandy clay	4	224
Sand, medium to coarse, loose,	1	229
Clay, sandy	8	225
Sand, medium to coarse, loose,	0	201
CRETACEOUS—Upper Cretaceous Pierre Shale		
	4	241
Soapstone	4 3	241
Shale	J	244

15-39-8acc.—Drillers log of irrigation well in SW SW NE sec. 8, T. 15 S., R. 39 W.; drilled by Ben Hasz, April 1948. Altitude of land surface, 3,615.5 feet; depth to water, 113.24 feet, July 16, 1951.

Pleistocene and Pliocene (undifferentiated)	Thickness,	Depth,
	. 35	35
Topsoil		00
Sand and clay; contains c mented layers	. 15	50
Clay and interbedded laye	rs	
of sand		54
Sand	8	62
Sand, cemented		75
Sand and clay		84
Sand, cemented		92
Clay	2	94
Sand; contains cemented layer	rs. 4	98
Mortar bed		103
Sand and clay		105
Sand and Cary Sector		125
Clay		127
Sand and clay		130
Sand		140
		146
Sand and clay		153
Sand; contains cemented layer		161
Sand and clay		163
Sand		
Sand and clay	3	166
Sand		170
Clay		185
Sand		192
Sand and clay		195
Sand	2	197
Clay and sandy clay	. 12	209

	T	nickne <mark>ss,</mark> feet	Depth, feet
Sand		4	213
Sand and clay		5	218
Sand, good			221
CRETACEOUS—Upper Cretaceous			
Pierre Shale			
Clay		1	222

15-39-12abb.—Drillers log of irrigation well in NW NW NE sec. 12, T. 15 S., R. 39 W.; drilled by Weishaar & Son, September 1959. Altitude of land surface, 3,558.1 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	29	29
Cemented limy layers	4	33
Clay		38
Cemented limy layers		46
Clay		61
Sand, coarse		69
Clay		82
Sand		87
Clay		90
Sand, good	12	102
Sand, fine, tight	6	108
Sand, good	17	125
Sand, fine	. 26	151
Sand, cemented		156
Sand, good	10	166
Sand, cemented		168
Sand, good		177
CRETACEOUS—Upper Cretaceous	-	
Pierre Shale		
Shale, yellow	4	181

15-39-20dab.—Drillers log of irrigation well in NW NE SE sec. 20, T. 15 S., R. 39 W.; drilled by Weishaar & Son, September 1957. Altitude of land surface, 3,601.1 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	18	18
Clav, limy		34
Clay, sandy		41
Sand, cemented		48
Clay; contains limy streaks	14	62
Clav	_	69
Clay, sandy		83
Sand		92
Clay, limy		98
Clav	~	103
Clay, sandy		120
Sand, good		141
Clay, sandy		141
	10	145
		100
Sand, fine; contains thin laye		170
of clay		
Sand, cemented		$176 \\ 170$
Clay, sandy		179
Sand		189
Sand; contains thin layers		
clay		193
Sand		204
Mortar bed		205
Sand and gravel	22	227

CRETACEOUS—Upper Cretaceous	Thickness,	Depth,
Pierre Shale	feet	feet
Shale, yellow	5	232

15-39-20ddd.—Sample log of test hole in SE SE SE sec. 20, T. 15 S., R. 39 W., 55 feet north and 35 feet west of road intersection (Bradley and Johnson, 1957, p. 129); drilled October 1951. Altitude of land surface, 3,572.8 feet; depth to water, 65.90 feet, October 20, 1951.

	ickness, feet	Depth, feet
Soil, silt, and clay, black	3	3
Silt, clayey, tan gray		14
TERTIARY-Pliocene		
Ogallala Formation		
Clay, tan to tan brown	8	22
Clay, tan, and interbedded lay-	-	
ers of fine to coarse sand	6	28
Clay, limy, green blue and gray,	1.5	29.5
Sand, fine to coarse	3.5	33
Clay and limy silt, light tan and	0.0	0.5
	4	37
light gray Sand, fine to medium, and in-	-	
terbedded tan to light-tan		
clay	11	48
Clay, sandy, tan brown Sand, very fine, silty, tan gray,	7	55
Sand, very fine, silty, tan gray,	12	67
Sand, fine to coarse, and fine		
gravel	26	93
Sand and interbedded tan clay	4	97
Sand, fine to coarse, and fine		
gravel	12	109
Sand and interbedded tan clay,	16	125
Sand, fine to coarse, and fine	• •	100
gravel	14	139
Clay, limy, tan	9	148
Sand, fine to coarse; contains		
layer of clay from 151 to 154	10	158
feet	10	199
Sand, fine to coarse, and fine		
gravel; contains interbedded layers of tan clay	20	178
Sand fine to coarse and fine	20	110
Sand, fine to coarse, and fine to medium gravel; contains		
interbedded layers of tan		
clay	24	202
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, clayey, yellow	5	207
Shale, clayey, dark gray	š	210
	-	

15-39-23cbc1.—Drillers log of irrigation well in SW NW SW sec. 23, T. 15 S., R. 39 W.; drilled by Ben Hasz. Altitude of land surface, 3,571.3 fect.

(undifferentiated)		feet	Depth, feet
Top and subsoil		4	4
Clav, and sandy clay; contai	ins		
limv streaks		64	68
Sand		8	76
Clav, sandy		25	101
Sand and sandy clay		2	103
Clay, sandy		3	106
Sand and sandy clay		4	110

Th	ickness, feet	Depth, feet
Clay, sandy	5	115
Cemented layer	1	116
Sand, coarse	8	124
Clay, sandy; contains cemented		
layer from 124 to 125 feet,	7	131
Sand	2	133
Clay, sandy; contains cemented	• •	
layer from 137 to 138 feet	10	143
Sand	8	151
Clay, sandy; contains cemented		
streaks	13	164
Sand, coarse	8	172
Sand, and sandy clay; contains		
cemented layers	8	180
Sand	2	182
Cemented layer	1	183
Clay	5	188
Sand	16	204
Clay, sandy	13	217
Sand, coarse, loose	14	231
Clay	3	234
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	9	243

15-39-23cbc2.—Sample log of test hole in SW NW SW sec. 23, T. 15 S., R. 39 W., observation well for pumping test 119 feet south of irrigation well; drilled August 1960. Depth to water, 98.66 feet, August 13, 1960.

QUATERNARY—Pleistocene Th Peoria and Loveland Formations	ickness,	Depth, feet
Silt, dark brown	5	5
Silt, light brown	5	10
	-	
Silt, sandy, tan	10	20
Terriary—Pliocene		
Ogallala Formation		
Silt, sandy, very limy, light	0	•
gray	8	28
Sand, medium to coarse	2	30
Silt, sandy, limy, cemented, and		
caliche	20	50
Gravel, fine to medium, and		
very coarse sand	6	56
Bentonite, gray green	3	59
Silt, very sandy, red tan	11	70
Gravel, medium, and very		
coarse sand	5	75
Silt, very sandy, limy, tan	5	80
Sand, medium	5	85
Silt, very sandy, limy, tan;		
contains cemented streaks	5	90
Sand, medium to coarse, and		
fine gravel, clean	10	100
Sand, coarse to very coarse,		
clean; contains small amount		
fine gravel	30	130

15-39-24bbc.—Drillers log of irrigation well in SW NW NW sec. 24, T. 15 S., R. 39 W.; drilled by Ben Hasz, October 1955. Altitude of land surface, 3,561.5 feet; depth to water, 101.63 feet, June 13, 1958.

Pleistocene and Pliocene	Thickness.	Depth,
(undifferentiated)	feet	feet
Top and subsoil	. 7	7
Sand and clay; contains c		
mented layers		55
Sand	. 13	68
Clay, sandy	. 6	74
Sand		86
Clay, sandy	. 11	97
Sand, coarse, loose	. 17	114
Clay, sandy	. 10	124
Clay	. 3	127
Sand and sandy clay, very so	ft, 10	137
Sand	. 2	139
Clay and sandy clay		147
Sand; contains streaks of sand	ły	
clay		157
Clay		160
Sand and sandy clay		168
Sand	. 5	173
Sand and sandy clay; contain		100
cemented layers		180
Sand; contains sandy clay fro	m	102
185 to 186 feet		193
Sand and sandy clay; contain cemented layers		195
•		216
Sand, good, loose	21	210
CRETACEOUS—Upper Cretaceous Pierre Shale		
Soapstone	. 4	220
Shale		222

15-39-24cbb.—Drillers log of irrigation well in NW NW SW sec. 24, T. 15 S., R. 39 W.; drilled by Ben Hasz, October 1957. Altitude of land surface, 3,559.1 feet.

Pleistocene and Pliocene Ti (undifferentiated)	hickness, feet	Depth, feet
Top and subsoil	2	2
Sand and clay; contains ce- mented limy layers	72	74
Sand; contains a little sandy clay	9	83
Clay, sandy; contains cemented layers	2	85
Sand and sandy clay; contains cemented layers	2	87
Clay, sandy, soft	5	92
Sand	1	93
Clay, sandy, soft, green and brown; contains thin layers		
of sand	9	102
Sand, fine to medium, loose,	8	110
Sand, coarse, loose		123

Generated at University of Kansas on 2023-10-04 18:25 GMT / https://hdl.handle.net/2027/uc1.b4185584 Public Domain in the United States, Google-digitized / http://www.hathitrust.org/access_use#pd-us-google

feet feet 128 5 Clay 132 4 Sand, medium, loose 141 9 Sand, coarse, loose Sand; contains a little sandy 7 148 clay Sand, medium to coarse; con-tains streaks of sandy clay, 10 158 159 Clay ... 1 Clay, sandy, soft 9 168 Sand; contains a little sandy 172 4 clay Sand, medium, loose 174 2 Sand and sandy clay; contains 7 thin cemented layers 181 Sand, coarse, loose 4 185 Sand, and sandy clay; contains thin cemented layers 5 190 Sand; contains a little sandy 3 193 clay Sand, coarse, loose 9 202 Sand and sandy clay; contains 205 cemented layers 3 Sand, coarse, loose; contains a little sandy clay Sand and gravel, very loose 208 3 8 216 **CRETACEOUS**—Upper Cretaceous Pierre Shale 220 Soapstone 4 5 225 Shale

Thickness, Depth,

15-39-25bbb.—Drillers log of irrigation well in NW NW NW sec. 25, T. 15 S., R. 39 W.; drilled by Weishaar & Son, October 1956. Altitude of land surface, 3,555.7 feet; depth to water, 94.65 feet, June 18, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	22	22
Clay, contains cement		
streaks		51
Sand	10	61
Clay, sandy		69
Sand; contains clay streaks		80
Clay; contains sandy layers		93
Sand		101
Clay, sandy		113
Sand		127
Sand; contains clay streaks		133
Sand, good		139
Sand, medium		149
Sand, good		157
Clay		164
Sand, fine	_	171
Sand	5	176
Sand, medium	6	182
Sand	0	190
Sand, cemented		198
Clay, sandy	•	201
Sand, fine		212
Sand and gravel		227
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
L'OTTO OTTATO	-	222
Clay, yellow		232
Shale	3	235

15-39-26acc.—Drillers log of irrigation well in SW SW NE sec. 26, T. 15 S., R. 39 W.; drilled by Weishaar & Son, December 1958. Altitude of land surface, 3,561.6 feet; depth to water, 98.93 feet, October 7, 1960.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	32	32
Cemented limy layers		52
Hard cemented rock	4	56
Clay	_	61
Sand and gravel		67
Sand, fine, and clay		92
Sand, fine, tight		97
Sand, fine, and clay		100
Sand and gravel, good		109
Sand, fine, and clay	. 43	152
Sand, good	11	163
Sand, tight		165
Sand, good	~	174
Sand, fine, and clay	21	195
Sand, good	10	205
Sand, cemented		206
Sand, good		214 215
Sand, tight		215 218
Sand, good		220
Sand, hard		234
CRETACEOUS—Upper Cretaceous		
Pierre Shale Shale, yellow	2	236

15-39-28bbd.—Drillers log of irrigation well in SE NW NW sec. 28, T. 15 S., R. 39 W.; drilled by Weishaar & Son, September, 1957. Altitude of land surface, 3,564.9 feet; depth to water, 65.32 feet, June 18, 1958.

(undifferentiated) Clay Clay, limy	. 22	Depth, feet 17 39 45
		61
Clay	11	72
Clay, sandy	10	88
Sand		94
Sand and clay		100
Sand		105
Sand, medium		105
Clay, limy, cemented		10.
Clay and sand	. 13	120
Sand	7	127
Sand, fine; contains clay stread	ks, 8	135
Sand, fine to medium	. 12	147
Clay, sandy	4	151
Sand		162
Clay	2	164
Sand		184
Sand and gravel		198
CRETACEOUS—Upper Cretaceous Pierre Shale		
Clay, yellow	5	203
Shale	_	210

Digitized by Google

15-40-1aba.—Drillers log of shothole in NE NW NE sec. 1, T. 15 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,638 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Sand, gravel, and red silt	120	120
Sand	95	215
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	10	225

15-40-4ccc.—Drillers log of shothole in SW SW Sw sec. 4, T. 15 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,658 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Silt, very limy	. 51	55
Sand	215	270
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	13	283

15-40-7bbb.—Drillers log of irrigation well in NW NW NW sec. 7, T. 15 S., R. 40 W.; drilled by Jack Foust, April 1955. Altitude of land surface, 3,706.2 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Soil and silt	22	22
Sand, cemented	27	49
Gravel	11	60
Clay	6	66
Gravel	11	77
Clay, sandy	9	86
Sand, cemented	14	100
Gravel	2	102
Clay	6	108
Gravel	6	114
Clay	4	118
Gravel	3	121
Clay	2	123
Gravel	6	129
Sand, cemented	9	138
Gravel	10	148
Clay	5	153
Sand	12	165
Clay, sandy	9	174
Sand		200
Sand, cemented	5	205
Gravel	19	224
Clay	6	230
Gravel	24	254
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Soapstone	6	260
Shale	. 3	263

15-40-11bba.—Drillers log of shothole in NE NW NW sec. 11, T. 15 S., R. 40 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,621 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Sand		80
Blind	130	210
Sand		230
CRETACEOUS —Upper Cretaceous		
Pierre Shale		
Clay, yellow	7	237

15-40-11bbb.—Sample log of test hole in NW NW NW sec. 11, T. 15 S., R. 40 W., 40 feet east of highway center and 28 feet south of sec. line (Bradley and Johnson, 1957, p. 130); drilled October 1951. Altitude of land surface, 3,614.6 feet.

	ickness, feet	Depth, feet
Soil, silt, and clay, black	1	1
Silt, clayey, tan gray	4	5
Sand, fine to medium, silty	9	14
	-	
TERTIARY—Pliocene Ogallala Formation		
Clay, silty, tan gray	2	16
Sand, fine to coarse	8	24
Clay and silt, sandy, tan to		
white	5	29
Clay and sand, tan brown	2 2	31
Clay, sandy, gray green	2	33
Sand, fine to coarse, and thin		
lavers of clay	3	36
Sand, fine to coarse, and fine		
gravel: contains layer of limy		
silt from 45 to 46 feet	20	56
Clay, silty, limy, tan gray to		
light gray	4	60
light gray Clay, sandy to very sandy,		
brown	8	68
Sand, fine to coarse; contains		
a little clay	13	81
Sand, fine to medium, and in-		
terbedded gray clay	11	92
Sand and gravel, fine to coarse,	9	101
Clay, limy, tan to light tan; ce-		
mented from 103 to 105 feet,	6	107
Sand, fine to coarse, and fine to		
medium gravel; contains a	~ .	
few thin layers of clay	24	131
Clay, silty, sandy, tan	.5	135
Sand, fine to coarse	17	153
Clay, limy, light tan to tan	5	158
Clay, silty to very silty, limy,		
light; contains interbedded		1.00
fine to medium sand	10	168
Sand, fine to medium, and in-	••	100
terbedded limy clay	20	188
Sand, fine to coarse	39	227
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, clayey, yellow	5	232
Shale, clayey, gray	3	235

15-40-13baa.—Drillers log of irrigation well in NE NE NW sec. 13, T. 15 S., R. 40 W.; drilled by Ben Hasz, October 1957. Altitude of land surface, 3,641.6 feet; depth to water, 101.36 feet, June 18, 1958.

Pleistocene and Pliocene	Thickness,	Depth,
(undifferentiated)	feet	feet
Clay, sandy, and cemented lim	v	
clay	. 70	70
clay Sand, coarse, loose	4	74
Clay		78
Clay, sandy; contains thin lay	· -	
ers of cemented sand	. 15	93
Clay, sandy		99
Sand, medium to coarse, loose	e, 9	108
Sand, loose		iii
Sand and sandy clay		120
Sand, loose, coarse	3	123
Sand		126
Mortar bed		127
Sand, medium to coarse; cor		
tains cemented streaks		136
Clay, sandy		138
Clay, sandy	4	142
Clay, sandy Sand, fine to medium, fairl	v	
loose	. 4	146
Clay, sandy	4	150
Clay, brown		153
Sand, fine, and sandy clay		100
tight	15	168
tight Sand and sandy clay, tight	3	171
Sand, fine to medium, loose	a.	
contains streaks of clay		183
Sand, loose		186
Sand and sandy clay	3	189
Sand, medium to coarse, ver	v	200
loose	24	213
Sand, medium to coarse, loos	e. 24	237
CRETACEOUS —Upper Cretaceous	·,	
Pierre Shale		
Soapstone	3	240
Shale, blue gray		242
	-	

15-40-16ccc.—Sample log of test hole in SW SW sec. 16, T. 15 S., R. 40 W., 50 feet north and 20 feet east of SW cor. sec. 16; drilled August 1960. Altitude of land surface, 3,668.5 feet.

QUATERNARY-Pleistocene	Thickness,	Depth,
Peoria and Loveland Formations	feet	feet
Silt, sandy, light brown	2	2
Sand, medium, tan	. 6	8
Sand, fine to medium	12	20
Silt, very sandy, tan	. 8	28
Tertiary—Pliocene		
Ogallala Formation		
Silt, sandy, very limy, ligh	it	
gray	. 7	35
Sand, fine to coarse, very limy		
contains thin layers of co	<u>}-</u>	
mented limy silt	10	45
 Silt, very sandy, very limy; pin 	k	
tan; contains cemented layer		55
Silt, sandy, very limy, light pin		
tan; contains hard comente	d	
layers Sand, fine to coarse; contair	13	68
Sand, fine to coarse; contair	ns	
cemented layers	. 12	80

Th	ickness,	Depth,
Sand, coarse to very coarse, and	fect	feet
fine to medium gravel	10	90
Gravel, fine to medium, and		
very coarse sand	10	100
Gravel, fine to medium; con-		
tains layers of limy silt	10	110
Silt, very sandy, limy, tan	10	120
Sand, fine to coarse; contains		
cemented silt layers	10	130
Sand, medium to very coarse,		
clean	10	140
Sand, fine to medium; contains		
layers of green clayey silt	10	150
Sand, medium, clean	8	158
Sand, medium; upper part ce-		
mented	12	170
Sand, medium, clean	10	180
Gravel, fine to medium; con-		
tains a few thin layers of		
green clayey silt	10	190
Sand, medium to very coarse	10	200
Sand, medium to coarse; con-		
tains small amount fine	•	
gravel	20	220
Sand, medium to very coarse,	10	• • •
clean	10	230
Sand, coarse to very coarse,	10	240
clean Sand, medium to very coarse;	10	240
Sand, medium to very coarse;		
contains small amount fine	07	277
gravel	37	277
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, weathered, yellow and		
white	5	282
Shale, black	4	286

15-40-19acb.—Drillers log of irrigation well in NW SW NE sec. 19, T. 15 S., R. 40 W.; drilled by Ben Hasz, October 1955. Altitude of land surface, 3,695.1 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Top and subsoil	6	6
Clay; contains cemented layer		66
Sand and gravel		73
		10
Gravel; contains cemented lay	~	79
ers		89
Clay		98
Sand; contains cemented layer		90
Sand and sandy clay; contair		108
cemented layers		108
Sand and sandy clay		127
Sand, coarse, loose		
Clay, sandy	. 6	151
Mortar bed	. 3	154
Clay and sandy clay		156
Sand, good, loose	. 8	164
Clay, sandy, soft	. 3	167
Clay	3 2 s, 6	169
Sand; contains cemented streak		175
Sand and sandy clay		179
Sand, good, loose		187
Clay and sandy clay	. 6	193
Mortar bed	4	197
 Sand; contains cemented layer 		199
Sand, good, loose	12	211

Digitized by Google

	Thickness, feet	Depth, feet
Clay	. 6	217
Sand, good, loose	. 27	244
Clay, sandy	1	245
Sand, good, loose	. 10	255
Sand, clay, and sandy clay	. 6	261
CRETACEOUS—Upper Cretaceous Pierre Shale		
Soapstone	4	265
Shale	3	268

15-40-23ccc.—Sample log of test hole in SW SW Sw sec. 23, T. 15 S., R. 40 W., 30 feet north of sec. line and 25 feet east of highway center (Bradley and Johnson, 1957, p. 131); drilled October 1951. Altitude of land surface, 3,646.0 feet; depth to water, 94.70 feet, October 20, 1951.

QUATERNARY—Pleistocene Th Peoria and Loveland Formations	ickne ss, feet	Depth, feet
Soil, silt, and clay, black	2.5	2.5
Silt, tan gray		13.5
TERTIARY-Pliocene		
Ogallala Formation		
Clay, silty, tan gray	5.5	19
Clay, silty, tan gray Clay, limy, tan; becoming sandy		
in lower part Silt and fine sand, limy, ce-	10	29
Silt and fine sand, limy, ce-		
mented white to tan	5	34
Silt and clay, very sandy, ce-		
mented tan to light tan	17	51
	1.5	52.5
Clay, green gray Sand, fine to coarse, and fine to		
coarse gravel	23.5	76
Clay and sandy clay, tan gray,	10	86
Sand, fine to coarse; contains a		
little clay	10	96
Clay, tan to tan brown, and in-		
terbedded medium to coarse		
sand	11	107
Sand, fine to coarse; contains a		
little clay	7	114
Clay, sandy, tan gray	4	118
Sand, fine to coarse; contains a		
little clay	10.5	128.5
Clay, sandy, tan gray	4.5	133
Clay and interbedded fine sand,	17	150
Sand, fine to coarse, and fine		
gravel	17	167
Sand, fine to medium, and sandy		
silt	9	176
Sand, fine to coarse; contains a		
little tan to light-tan clay	66	242
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, clayey, yellow	6	248
Shale, gray to dark gray	ğ	257
	•	

15-40-30dbb.—Drillers log of irrigation well in NW NW SE sec. 30, T. 15 S., R. 40 W.; drilled by Vern Litton, June 1960. Altitude of land surface, 3,694.3 feet; depth to water, 111.40 feet, October 7, 1960.

Pleistocene and Pliocene	TI	hickness,	Depth,
(undifferentiated)		feet	feet
Top Sand			90 92

Digitized by Google

	Thickness, fect	Depth, fect
Cemented layer	1	93
Clay, sandy	18	111
Sand	1	112
Clay, sandy	14	126
Sand and gravel	3	129
Clay, sandy	21	150
Sand and gravel	. 2	152
Clay, sandy		153
Sand and gravel		154
Clay, sandy		157
Sand and gravel		166
Clay, sandy		176
Sand and gravel		184
Clay, sandy		187
Sand and gravel		203
Clay, sandy		206
Sand and gravel		210
Clay, sandy		214
Sand, fine, and sandy clay		218
Clay, sandy	. 14	232
Sand and gravel	. 10	242
Clay, sandy		249
Sand and gravel		252
Clay, sandy		264
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	6	270

15-41-2aaa2.—Sample log of test hole in NE NE NE sec. 2, T. 15 S., R. 41 W., 16 feet south of sec. line and 10 feet west of road center (Bradley and Johnson, 1957, p. 131); drilled October 1951. Altitude of land surface, 3,758.3 feet.

	ickness, feet	Depth, feet
Soil, silt, and clay, black Silt, tan gray; contains a little	2.5	2.5
clay	8	10.5
Tertiary—Pliocene		
Ogallala Formation		
Clay, silty, limy, light tan to light brown	16.5	27
Silt and fine sand, cemented,		
tan and brown	11	38
Sand and gravel, fine to coarse; contains interbedded ce-		
mented sand and silt	18	56
Sand, fine to coarse, silty	6	62
Sand, fine to coarse, and fine		
gravel; contains thin layers		
of tan clay	12	74
Clay, sandy, brown		81
Sand and gravel, fine to coarse,		92
Clay, silty, tan brown	8	100
Clay, sandy, brown	10	110
Clay and sand, interbedded,		
limy	7	117
Sand, coarse, and fine to me- dium gravel; contains thin		
layers of silt and clay	20	137
Sand, coarse, and fine to me-		
dium gravel	20	157
Sand, coarse, and fine to me- dium gravel; contains thin		
lavers of clay	17	174
Clay, silty, limy, tan white	5	179

Th Clay, sandy, gray brown; con- tains interbedded sand and	ickness, feet	Depth, feet
gravel	10	189
gravel; contains a little sandy clay	30	219
Sand, fine to coarse, and fine gravel Sand, fine to coarse; contains a	40	259
little fine gravel and thin lay- ers of brown silt	30.5	289.5
Sand, fine to coarse, and in- terbedded gray sandy clay	5	294.5
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale, clayey, dark gray	5.5	300

15-41-2abb.—Drillers log of shothole in NW NW NE sec. 2, T. 15 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,756 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Sand		274
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale	1	275

15-41-6abb.—Drillers log of shothole in NW NW NE sec. 6, T. 15 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,783 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Clay, sandy	106	110
Sand	83	193
CRETACEOUS—Upper Cretaceous Pierre Shale		
Shale	1	194

15-41-10bab.—Drillers log of irrigation well in NW NE NW sec. 10, T. 15 S., R. 41 W.; drilled by Jack Foust. Altitude of land surface, 3,787.3 feet; depth to water, 161.16 feet, June 11, 1958.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, fect
Top and subsoil	. 13	13
Sand, limy, cemented	. 11	24
Sand, cemented	. 9	33
Gravel and cemented sand	. 5	38
Sand, limy, cemented		41
Gravel	10	54
Sand, cemented	. 5	59
Sand and gravel		66
Sand, cemented		75
Gravel	4	79
Clay, sandy	6	85
Gravel	4	89
Clay, sandy	9	98
Sand, limy, cemented Gravel	2	100
Gravei	4	104

	Thickness, feet	Depth, feet
Clay, sandy	5	109
Sand, limy, cemented		114
Clay, sandy	24	138
Sand		146
Gravel		154
Clay, sandy	6	160
Sand, limy	3	163
Clay, sandy	2	165
Gravel		170
Sand, limy, cemented	2	172
Sand	3	175
Sand, limy, cemented	2	177
Sand		180
Sand, limy, cemented	1	181
Clay, sandy	12	193
Sand		201
Clay, sandy	4	205
Sand, limy, cemented	3	208
Clay, sandy		219
Sand	7	226
Clay, sandy	5	231
Gravel	17	248
Clay, sandy	9	257
Sand	2	259
Clay, sandy	4	263
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	1	264

15-41-18ccc.—Drillers log of shothole in SW SW Sw sec. 18, T. 15 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,828 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Sand	154	158
CRETACEOUS—Upper Cretaceous		
Pierre Shale Clay, yellow	. 12	170

15-41-19ccc.—Sample log of test hole in SW SW Sw sec. 19, T. 15 S., R. 41 W., 50 feet east of sec. line and 10 feet north of road center (Bradley and Johnson, 1957, p. 132); drilled October 1951. Altitude of land surface, 3,840.4 feet.

QUATERNARY—Pleistocene Th Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt and silty clay, tan	-	9
Tertiary—Pliocene		
Ogallala Formation		
Clay, very limy, light tan to		
white	7	16
Sand and gravel, fine to coarse,	6	22
Clay and limy silt, sandy, tan to light tan Sand, medium to coarse, and		44.5
fine gravel; contains a little brown sandy clay	7.5	52
Sand and interbedded sandy clay	16	68
Sand and gravel, fine to coarse; contains a little brown sandy clay	7	75

	ickness, feet	Depth, fect
Clay, silty and limy, gray brown: contains limy layer at 83	icci	1.00
	01	00
feet Clay, sandy, tan brown; con-	21	96
Clay, sandy, tan brown; con-		
tains thin layers of limy silt		100
at 96 and 105 feet	12	108
Clay and interbedded fine to	_	
medium sand	7	115
Sand, fine to coarse	4	119
Sand, fine to coarse; contains		
interbedded light-gray limy		
clay	4	123
Clay, limy, silty and sandy, tan		
gray to light tan	8	131
Sand, fine to medium; contains a		
little tan clay	9	140
Sand, fine to coarse; contains a		
little tan-brown clay, limy		
from 146 to 148 feet	10	150
Sand and interbedded sandy		
and limy clay	10	160
Sand, fine to coarse, and fine		
gravel; contains interbedded		
gray-brown sandy clay	10	170
Sand, fine to coarse, and fine		
gravel	17.5	187.5
Bentonite	.5	188
Clay, limy and sandy, brown		
to gray Clay, sandy, brown, and inter-	4	192
Clay, sandy, brown, and inter-		
bedded fine to coarse sand	34	226
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, clayey, yellow	11	237
Shale, dark gray	3	240
crate, dura Bruy	J	1 10

15-41-21add.—Drillers log of shothole in SE SE NE sec. 21, T. 15 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,762 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Sand, gravel, and red silt	. 205	205
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	1	206

15-41-23ddd.—Sample log of test hole in SE SE SE sec. 23, T. 15 S., R. 41 W., 40 feet west and 40 feet north of road intersection (Bradley and Johnson, 1957, p. 133); drilled October 1951. Altitude of land surface, 3,714.9 feet; depth to water, 123.50 feet, October 8, 1951.

QUATERNARY—Pleistocene Th	ickness,	Depth,
Peoria and Loveland Formations	feet	feet
Soil, silt, and clay, dark gray		
to black	2	2
Silt, tan to tan gray; contains		
a little tan clay	8	10
Tertiary-Pliocene		
Ogallala Formation		
Silt, and clay, sandy, limy, tan		
to light tan	12	22

	ickness, feet	Depth, feet
Silt, fine to medium, silty, ce- mented, brown	6	28
Silt and sand, limy, tan and	U	_0
gray white	10	38
Clay, silty, limy, light tan	2	40
Sand, silty, limy, tan	20	60
Clay, silty, and interbedded fine		
to medium sand	8	68
Sand and gravel, fine to coarse,	15	83
Silt, sandy, brown to gray	16.5	99.5
brown	10.5	99.0
Silt, clayey, gray tan to tan brown; contains interbedded		
sand	20.5	120
Sand, fine to medium, silty, tan,	10	130
Sand, fine to medium, and in-		
terbedded tan clay	12	142
Sand, fine to coarse, and fine	10	150
gravel, silty	10	152
Sand, fine to coarse; contains layers of limy silt	9	161
Sand, fine to coarse, and fine	3	101
to medium gravel	29	190
Sand, fine to coarse, and inter-		
bedded tan clay	20	210
Sand, fine to coarse, and fine		
gravel; contains a few thin	0 0	000
layers of clay	20 10	230 240
Sand, fine to coarse, silty	7	247
RETACEOUS—Upper Cretaceous	•	
Pierre Shale		
Shale, clayey, yellow	10	257
Shale, dark gray	3	260

15-41-32aca.—Drillers log of irrigation well in NE SW NE sec. 32, T. 15 S., R. 41 W.; drilled by Weishaar & Son, November 1956. Altitude of land surface, 3,777.8 feet.

С

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Clay	9	9
Clay, limy, tight		29
Sand		38
Clay, sandy		67
Sand and interbedded clay		79
Clay		102
Sand and interbedded clay		114
Sand, fine; contains clay streak		147
Sand, fine to medium		165
Clay; contains interbedded la	y-	
ers of fine sand	. 14	179
Sand	. 12	191
Sand and interbedded clay	6	197
Clay	. 7	204
Sand, medium		219
Sand, fine to medium; contain	ns	
streaks of clay	. 6	225
Sand	. 24	249
CRETACEOUS—Upper Cretaceous Pierre Shale		
Clav, vellow	. 5	254
Shale		260

İ

15-41-32add.—Drillers log of shothole in SE SE NE sec. 32, T. 15 S., R. 41 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,760 feet.

Pleistocene and Pliocene (undifferentiated) Surface silt Sand, gravel, and red silt CHETACEOUS	Thickness, feet 237	
Pierre Shale Shale	1	246

15-42-3baa.—Drillers log of shothole in NE NE NW sec. 3, T. 15 S., R. 42 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,865 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Sand, gravel, and red silt Sand	110	110 210
CRETACEOUS—Upper Cretaceous	. 100	210
Pierre Shale Shale	1	211

15-42-7daa.—Sample log of test hole in NE NE SE sec. 7, T. 15 S., R. 42 W., near edge of road near ½-mile line; drilled August 1960. Altitude of land surface, 3,900.3 feet.

QUATERNARY—Pleistocene Th Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt, light brown	10	10
Silt, sandy, light brown	10	20
Sand, medium, silty	5	25
TERTIARY-Pliocene		
Ogallala Formation		
Sand, medium, clean, well		
sorted	15	40
Sand, medium to coarse, limy,		
cemented	10	50
Sand, medium to very coarse,		
clean	10	60
Sand, medium to very coarse;		
contains silty streaks	10	70
Gravel, fine, and very coarse		
sand	10	80
Gravel, fine to medium, and	10	00
very coarse sand	7	87
Clay, bentonitic, greenish gray,	3	90
Bentonite, greenish gray and	0	30
	10	100
gray	10	100
Sand, fine to very coarse, and		
fine gravel; contains limy	10	110
streaks	10	110
Sand, medium to very coarse,		
clean, loose; contains small	• •	
amount fine gravel	10	120
Sand, coarse to very coarse, and		
fine gravel, clean, loose	10	130
Sand, medium to very coarse,		
clean, loose; contains small		
amount fine gravel	30	160
Sand, coarse to very coarse, and		
fine gravel, clean, loose	17	177
Silt, sandy, tan	5	182
Sand, medium to coarse; con-		
tains limy streaks	13	195

CRETACEOUS—Upper Cretaceous	ickness,	Depth,
Pierre Shale	feet	fect
Shale, black	 5	200

15-42-15aaa.—Sample log of test hole in NE NE NE sec. 15, T. 15 S., R. 42 W., 35 feet west and 25 feet south of NE cor. sec. 15; drilled August 1960. Altitude of land surface, 3,852.5 feet.

, -, -,		
QUATERNARY—Pleistocene Th Peoria and Loveland Formations	ickness, feet	Depth, feet
Silt, sandy near base, light brown	10	10
Sand, fine to very coarse; con-		
tains thin cemented streaks		
near base	10	20
TERTIARY-Pliocene	10	-0
Ogallala Formation		
Sand, fine to coarse; contains layers of cemented limy silt,	10	20
layers of cemented limy silt,	10	30
Sand, medium to coarse; con-		
tains streaks of limy silt	10	-40
Sand, fine to coarse, loose,		
clean Sand, fine, well sorted	10	50
Sand fine well sorted	6	56
Silt candy tan	š	59
Silt, sandy, tan Sand, medium to very coarse,	0	00
clean, loose	11	70
clean, loose	11	10
Sand, medium to very coarse,		
clean, loose; contains small		
amount fine gravel	16	86
Silt, sandy, and streaks of fine		
sand; limy in lower part Gravel, fine to medium, and	17	103
Gravel fine to medium and		
very coarse sand, loose	13	116
Silt, sandy, tan	4	120
Silt conduction and group con	-	120
Silt, sandy, tan and gray; con-		
tains limy streaks and thin	10	1.20
layers of bentonitic clay	10	130
Sand, fine to very coarse, and		
fine gravel; contains thin lav-		
ers of limy silt and cemented		
streaks	5	135
Sand, medium to very coarse,		
and fine to medium gravel	5	140
Silt, sandy, tan	ă	143
Sin, Sanuy, tan the vorth second	U	140
Sand, medium to very coarse,	4	1.477
and fine to medium gravel	4	147
CRETACEOUS-Upper Cretaceous		
Pierre Shale		
Shale, brown and gray	13	160
,		

15-42-20bbb.—Sample log of test hole in NW NW NW sec. 20, T. 15 S., R. 42 W., 50 feet east of fence line and 16 feet south of sec. line (Bradley and Johnson, 1957, p. 134); drilled October 1951. Altitude of land surface, 3,904.9 feet.

QUATERNARY—Pleistocene Th	nickness,	
Peoria and Loveland Formations	feet	feet
Soil, silt, and clay, gray tan	1.5	1.5
Silt, clayey, tan gray	12.5	14
Tertiary—Pliocene		
Ogallala Formation		
Silt, limy, and interbedded sand		
and gravel	4	18
Sand, medium to coarse, and		
fine to medium gravel	10	28

Digitized by Google

į

	ickness,	
Gravel, very coarse; contains	feet	feet
coarse sand	9	37
Silt, sandy, limy, tan to light		
gray	10	47
Silt, sandy	10	57
Silt, very sandy	15	72
Sand, coarse to fine, silty	8	80
Sand, coarse, and fine to me-		
dium gravel, silty	3	83
Silt, sandy, tan to tan gray	9	92
Sand, fine, and interbedded tan		
silt	19	111
Sand, fine, silty, limy	12	123
Silt, sandy, limy	4	127
Sand, fine to coarse, and fine to	-	
medium gravel	19	146
Sand, fine to coarse, and fine to		
medium gravel, silty	24	170
Sand, fine to coarse, and fine to		
coarse gravel; contains inter-		
bedded tan silt	10	180
Silt, limy, tan to light gray	7	187
Sand, fine to coarse, and fine to	•••	
medium gravel, silty	20	207
Sand, fine to coarse, and fine		
to medium gravel; contains yellow silty clay	18	0.05
CRETACEOUS—Upper Cretaceous	10	225
Pierre Shale		
Shale, clayey, dark gray	2	227
,, -,, uma Bruj	-	

15-42-21daa.—Drillers log of shothole in NE NE SE sec. 21, T. 15 S., R. 42 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,889 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, fect	Depth, feet
Surface silt	6	6
Sand, gravel, and red silt	194	200
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	1	201

15-42-32dcd.-Sample log of test hole in SE SW SE sec. 32, T. 15 S., R. 42 W., 0.3 mile west and 30 feet north of SE cor. sec. 32 (Bradley and Johnson, 1957, p. 135); drilled October 1951. Altitude of land surface, 3,882.6 feet; depth to water, 202.70 feet, October 12, 1951.

r coma and hovenand r ormations)epth, feet
Soil, silt, and clay, tan gray to dark gray	2.5
gray 6.5	9
	17
TERTIARY-Pliocene	
Ogallala Formation	
Silt, sandy, clayey, limy, tan	
	26
	30
	36
Silt, clayey, limy, and inter-	
	57
Sand and gravel, fine to coarse, 8	65

Th Sand, fine to coarse, and inter-	nickness, feet	Depth, feet
bedded tan silt	6	71
Sand, fine to coarse, and fine to		
coarse gravel	7	78
Silt, clayey, brown	6	84
Silt, clayey, sandy, tan brown	4	88
Silt and silty sand, limy	13	101
Silt, very sandy, brown to red		
brown	4	105
Sand, fine to coarse	2	107
Silt, sandy, limy, tan and gray,	4	111
Sand, fine to coarse, silty	6	117
Silt, clayey, limy, light gray	4	121
Sand, fine to coarse; contains a		
little gravel and tan limy silt,	10	131
Sand, fine to coarse, and fine to		
coarse gravel; contains tan		
limy silt	15	146
Silt, sandy, limy, tan	11	157
Sand, coarse, and fine to me-		
dium gravel; contains limy	• •	
silt	14	171
Sand, coarse, and fine to me-	0	170
dium gravel, silty	8	179
Silt, sandy, limy, tan gray	7	186
Sand, fine to coarse, and fine to		
medium gravel; contains tan, gray-green silt	11	197
Silt, sandy, tan gray	11	208
Sand very fine	6	208
Sand, very fine Sand and clayey silt, inter-	U	217
bedded	13	227
Sand, fine to coarse, and fine to		
médium gravel	25	252
medium gravel CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale, clayey, yellow	3	255
Shale, gray	3	258

15-42-34cbb.—Drillers log of shothole in NW NW SW sec. 34, T. 15 S., R. 42 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,856 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Sand, gravel, and red silt	104	108
Sand and gravel	112	220
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Shale	1	221

15-43-1dcd.-Drillers log of shothole in SE SW SE sec. 1, T. 15 S., R. 43 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface. 3,929 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	4	4
Clay		140
Sand		230
CRETACEOUS-Upper Cretaceous		
Pierre Shale Clay, yellow	. 8	238

15-43-24aba.—Drillers log of shothole in NE NW NE sec. 24, T. 15 S., R. 43 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,944 feet.

Pleistocene and Pliocene (undifferentiated) Surface silt Sand and red silt Sand		Depth, feet 6 95 220
CRETACEOUS—Upper Cretaceous Pierre Shale Shale	1	221

15-43-36dcd.—Drillers log of shothole in SE SW SE sec. 36, T. 15 S., R. 43 W.; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,920 feet.

Pleistocene and Pliocene	Thickness,	Depth,
(undifferentiated)	fect	feet
Surface silt	4	4

	Thickness, feet	Depth, feet
Clay	146	150
Sand		243
CRETACEOUS—Upper Cretaceous		
Pierre Shale		
Clay, yellow	8	251

16-42-1bbb.—Drillers log of shothole in NW NW NW sec. 1, T. 16 S., R. 42 W., Greeley County; drilled by Phillips Petroleum Co., 1957. Altitude of land surface, 3,796 feet.

Pleistocene and Pliocene (undifferentiated)	Thickness, feet	Depth, feet
Surface silt	6	6
Sand, gravel, and red silt	. 239	245
CRETACEOUS —Upper Cretaceous		
Pierre Shale		
Clay, yellow	5	250

REFERENCES

Bradley, Edward, and Johnson, Carlton (1957) Ground-water resources of the Ladder Creek area in Kansas: Kansas Geol. Survey Bull. 126, p. 1-192.

Cardwell, W. D. E. (1953) Irrigation-well development in the Kansas River basin of eastern Colorado: U. S. Geol. Survey Circ. 295, p. 1-72.

Cooper, H. H., Jr., and Jacob, C. E. (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, p. 526-534.

Darton, N. H. (1899) Preliminary report on the geology and water resources of Nebraska west of the 103d meridian: U. S. Geol. Survey 19th Ann. Rept., pt. 4-C, p. 719-785.

(1905) Preliminary report on the geology and underground water resources of the central Great Plains: U. S. Geol. Survey Prof. Paper 32, p. 1-433.

—— (1920) Description of the Syracuse and Lakin quadrangles, Kansas: U. S. Geol. Survey Geol. Atlas, folio 212, p. 1-10.

Darton, N. H., and others (1915) Guidebook of the western United States, Part C, The Santa Fe Route, with a side trip to the Grand Canyon of the Colorado: U. S. Geol. Survey Bull. 613, p. 1-194.

Dean, H. T. (1936) Chronic endemic dental fluorosis: Am. Med. Assoc. Jour., v. 107, p. 1269-1272.

Dean, H. T., and others (1941) Domestic water and dental caries: Public Health Repts., v. 56, p. 365-381, 761-792.

Elias, M. K. (1931) The geology of Wallace County, Kansas: Kansas Geol. Survey Bull. 18, p. 1-254.

Frye, J. C. (1945) Geology and ground-water resources of Thomas County, Kansas: Kansas Geol. Survey Bull. 59, p. 1-111.

Frye, J. C., and Leonard, A. B. (1952) Pleistocene geology of Kansas: Kansas Geol. Survey Bull. 99, p. 1-230.

Frye, J. C., Leonard, A. B., and Swineford, Ada (1956) Stratigraphy of the Ogallala Formation (Neogene) of northern Kansas: Kansas Geol. Survey Bull. 118, p. 1-92.

Haworth, Erasmus (1897) Physiography of western Kansas: Kansas Univ. Geol. Survey, v. 2, p. 11-49.

----- (1897a) Physical properties of the Tertiary: Kansas Univ. Geol. Survey, v. 2, p. 247-284.

(1897b) The geology of underground water in western Kansas: Rept. of the Board of Irrigation Survey and Experiment for 1895 and 1896 to the Legislature of Kansas, p. 49-114.

(1913) Special report on well waters in Kansas: Kansas Univ. Geol. Survey Bull. 1, p. 1-110. Hay, Robert (1891) Irrigation in western Kansas—Its water supply and possibilities: Kansas State

Board Agriculture 7th Bienn. Rept., v. 12, p. 129-133.

—— (1895) Water resources of a portion of the Great Plains: U. S. Geol. Survey 16th Ann. Rept., pt. 2-F, p. 535-588.

- Johnson, C. R. (1958) Geology and ground-water resources of Logan County, Kansas: Kansas Geol. Survey Bull. 129, p. 1-177.
- Johnson, W. D. (1901) The High Plains and their utilization: U. S. Geol. Survey 21st Ann. Rept., pt. 4-C, p. 601-741.

(1902) The High Plains and their utilization (sequel): U. S. Geol. Survey 22d Ann. Rept., pt. 4-C, p. 631-669.

Kansas Geological Survey (1931) Diatomaceous marl from western Kansas, a possible source of hydraulic lime: Circ. 3, p. 1-5.

Kansas State Board of Agriculture (1959) Farm facts, 1958-59: p. 1-93.

Logan, W. N. (1897) Upper Cretaceous of Kansas: Kansas Univ. Geol. Survey, v. 2, p. 195-234.

Meek, F. B., and Hayden, F. V. (1862) Description of new Cretaceous fossils from Nebraska territory: Philadelphia Acad. Nat. Sci. Proc., v. 13, p. 21-28.

Meinzer, O. E. (1923) The occurrence of ground water in the United States, with a discussion of principles: U. S. Geol. Survey Water-Supply Paper 489, p. 1-321.

(1923a) Outline of ground-water hydrology with definitions: U. S. Geol. Survey Water-Supply Paper 494, p. 1-71.

Merriam, D. F. (1957) Preliminary regional structural contour map on top of the Dakota Formation (Cretaceous) in Kansas: Kansas Geol. Survey Oil and Gas. Inv. 15, map.

Moore, R. C., and others (1940) Ground-water resources of Kansas: Kansas Geol. Survey Bull. 27, p. 1-112.

Newell, F. H. (1895) Report of progress of the Division of Hydrography for the calendar years 1893 and 1894: U. S. Geol. Survey Bull. 131, p. 1-126.

- Parker, H. N. (1911) Quality of water supplies of Kansas, with a preliminary report on stream pollution by mine waters in southeastern Kansas by E. H. S. Bailey: U. S. Geol. Survey Water-Supply Paper 273, p. 1-375.
- Piper, A. M. (1953) The Nationwide water situation, in Subsurface facilities of water management and patterns of supply-type area studies: U. S. House Comm. Interior and Insular Affairs Rept., Phys. and Econ. Found. Nat. Resources, v. 4, p. 1-20.
- Prescott, G. C. (1953) Geology and ground-water resources of Sherman County, Kansas: Kansas Geol. Survey Bull. 105, p. 1-130.
- Prescott, G. C., Branch, J. R., and Wilson, W. W. (1954) Geology and ground-water resources of Wichita and Greeley Counties, Kansas: Kansas Geol. Survey Bull. 108, p. 1-134.
- Russell, W. L. (1929) Local subsidence in western Kansas: Am. Assoc. Petroleum Geologists Bull., v. 13, p. 605-609.
- Schoewe, W. H. (1949) The geography of Kansas, part II, Physical geography: Kansas Acad. Sci. Trans., v. 52, no. 3, p. 261-333.
- (1960) The mineral industry in Kansas in 1959: Kansas Geol. Survey Bull. 142, pt. 6, p. 239-289.
- Smith, H. T. U. (1940) Geologic studies in southwestern Kansas: Kansas Geol. Survey Bull. 34, p. 1-244.
- U. S. Public Health Service (1961) Report of the advisory committee on revision of USPHS 1946 drinking water standards: Am. Water Works Assoc. Jour., v. 53, no. 8, p. 935-945.
- U. S. Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils: U. S. Dept. Agriculture, Agriculture Handbook 60, p. 1-160.
- Wenzel, L. K. (1942) Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods: U. S. Geol. Survey Water-Supply Paper 887, p. 1-192.
- Williston, S. W. (1897) The Kansas Niobrara Cretaceous: Kansas Univ. Geol. Survey, v. 2, p. 235-246. (1897a) The Pleistocene of Kansas: Kansas Univ. Geol. Survey, v. 2, p. 297-308.

INDEX

Abstract, 5 Acknowledgments, 9 Agriculture, 15 Alluvium, 17, 18, 60 character, 60 water supply, 60 Altitude, 11 Aquifer tests, 30, 31, 32, 33, 34, 35, 36 methods, 29, 30Bentonite, 49 Bicarbonate, 42 Carlile Shale, 18 Chemical analyses, table of, 38 Chemical character in relation to use, 39 Chemical suitability of water for irrigation, 42, 43, 44, 45 Chloride, 41 Climate, 14 Codell Sandstone Member, 19 Colluvium, 51 Cretaceous System, 46 Dakota Formation, 18, 19 Depressions, 12, 13, 14 Diatomaceous marl, 15 Discharge of ground water, 24 Dissolved solids, 39 Drainage, 10 Drawdown, predictions of, 34, 35, 37 Eagle Tail Creek, 12 Effluent seepage, 24 Evaporation, 25 Extent of area, 7 Field work, 8 Fluctuation of water level, 23 Fluoride, 41 Fort Hays Limestone Member, 19 Geography, 10 Geologic formations, generalized section of, 17 in relation to ground water, 46 Geology, 16 Goose Creek, 12 Graneros Shale, 18 Greenhorn Limestone, 18 Ground water, 20 appropriation, 27 chemical quality, 36 discharge, 24 domestic supplies, 27 irrigation supplies, 27 movement, 21, 35 municipal supplies, 27 occurrence, 20 quality, 36 recharge, 23 recovery, 25 rights, 27 source, 20 stock supplies, 27 utilization, 26, 27 Growing season, 14 Hardness of water, 40 Highways, 15 Hydrographs, 22 Hydrologic cycle, 21 Hydrologic properties, 27 Introduction, 7 Iron, 41

Irrigation, classification of water, 45 ground water applied, 27 ground water appropriated, 27 suitability of water, 42 supplies, 27 Lake Creek, 12 Lakes, 12, 13, 14 Old Maid's Pool, 13 Location of area, 7 Loess, 51 Logs of test holes and wells, 61 Loveland Formation, 17, 18, 51 Measured sections, 47, 49 Methods of investigation, 8 Mineral resources, 15 Movement of ground water, 21, 35 Municipal water supplies, 27 Niobrara Chalk, 19, 46 Nitrate, 40, 41 North Ladder Creek, 11, 12 Ogallala Formation, 17, 18, 48 character, 48 thickness, 50 volume of water in storage, 50, 51 water supply, 50 Oil, 16 Peoria Formation, 17, 18, 51 Permeability, coefficient of, 28, 32, 33, 35, 36 determination of, 28 Physiography, 10 Pierre Shale, 17, 18, 46, 47 Pleistocene Series, 51 Population, 14 Porosity, 20 Precipitation, 14, 15 infiltration of, 23 **Previous investigations**, 7 Quality of ground water, 36 Quaternary System, 51 Railroads, 15 Recharge, 23 from precipitation, 23 from streams, 24 from irrigation water, 24 Records of wells, 61 Recovery of ground water, 25 References, 105 Rose Creek, 12 Sand Creek, 11, 12 Scope of investigation, 7 Sharon Springs, 14, 27 Silica, 42 Smoky Hill River, 12 South Fork, 11 North Fork, 12 Smoky Basin Cave-in, 13 Smoky Hill Chalk Member, 17, 18, 46 Sodium, 42 Springs, 24, 25 Storage, coefficient of, 32, 33, 35, 36 Stratigraphy, summary of, 16 Streams, 11, 12 Subsurface movement, 22, 24, 25 Sulfate, 41, 42 Surface slope, 11

Terraces, 18, 60

.

I.

•

Tertiary System, 48 Test holes, 9 location of, Pl. 2 logs of, 61 Topography, 10, 11 Transmissibility, coefficient of, 28, 32, 33, 35, 36 determination of, 28 Transportation, 15 Utilization of ground water, 26 Volcanic ash, 16 Wallace, 14, 27 Water-bearing formations, 46 Water supplies, in alluvium, 60 in Ogallala Formation, 50 Water table, 21 fluctuations, 23 shape and slope, 21 Well-numbering system, 9 Wells, irrigation, 27 municipal, 27 numbering of, 9 records of, 61 sanitary considerations, 45 Weskan, 14 Willow Creek, 12 Zone of saturation, 22

Original from UNIVERSITY OF CALIFORNIA