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I JOHN W. HARBAUGH Stanford University , Stanford, California

I

A Computer Method for Four -Variable Trend Analysis

Illustrated by a Study of Oil -Gravity Variations
In Southeastern Kansas

ABSTRACT

A method for fitting four-variable trend hyper
surfaces by least squares has been programmed for
the IBM 7090 computer . The program fits first- ,
second- , and abbreviated third -degree hypersurfaces

to irregularly spaced data . The program automati
cally contours the intersection of each hypersurface

with a block whose top , bottom , and four sides rep
resent planes located in three-dimensional space .
This permits the four -variable or four-dimensional
hypersurfaces to be visualized . The program also
automatically plots original data and residual values
in a series of horizontal slice maps . The theory and
operation of the program are discussed and illustrated
in detail .

The program has been used to interpret variations
in crude oil gravity from place to place and in dif
ferent Paleozoic stratigraphic horizons in southeastern
Kansas . Hypersurfaces were fitted to API oil gravity
as a function of geographic location and depth below
the surface . The four variables involved are ( 1)
API gravity , (2 ) well depth , ( 3) north -south geo
graphic coordinates , and (4 ) east-west geographic
coordinates .

The trend hypersurfaces , distribution of residual
values, and other considerations suggest that oil
gravity variations in southeastern Kansas have been
affected by both well depth and environment of
deposition . The tendency for API gravity to increase
with depth is complicated by regional effects that
may reflect differences in environment of deposition .
The result is an overall increase in API gravities in a
west -northwest direction . Of interest is a tendency

for residual API gravity "highs " and " lows" to be
clustered in certain geographic areas even though oils
from different stratigraphic zones are involved . This ,

in turn , suggests that the depositional environment
may have affected o

il gravities in a given locality
much the same way from one geologic period to the
next .

The computer program described in this report
may have a number o

f geological applications , and
can be used readily by anyone having access to an
IBM 7090 or 7094 computer .

INTRODUCTION

This report deals with a method for using an
IBM 7090 or 7094 computer for fitting four
variable trend surfaces to geologic data . One

o
f

the purposes o
f

this report is to emphasize
the potential usefulness o

f

this method in in
terpreting certain types o

f geological informa
tion . Krumbein ( 1956 , 1959 ) has outlined

the principles o
f

three -variable trend surface
maps and Peikert ( 1962 , 1963 ) has illustrated
the techniques o
f

four -variable trend surfaces

in interpreting specific gravity variations in

intrusive igneous rocks . A second purpose

is to demonstrate the use of the method with

a
n example based upon variations o
f API

gravity of crude oil in southeastern Kansas .

theory and operation o
f

the computer pro

A third purpose is to present the details o
f

the

gram . It is suggested that the program might
profitably be used in oil exploration and in

other geological problems . The program is a

modification o
f
a program developed pre

viously b
y

the author (Harbaugh , 1963 ) .

Geologists have long been concerned with
trends . Some geological trends are readily
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the principles of three -variable trend surface
maps and Peikert ( 1962 , 1963 ) has illustrated
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an example based upon variations of API
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shown on maps by contour lines . For example ,
a structure contour map portrays a three
dimensional surface in which two of the di
mensions are "geographic" and are repre
sented by the length and breadth of the map .
The third dimension is the elevation of the
surface represented by the contours . Thus ,
the surface may be said to be embedded in
three-dimensional space .
It should be pointed out that , from a mathe
matical viewpoint , the terms "variable " and
"dimension" may be used somewhat inter
changeably . A surface that occupies three
dimensional space may be considered to repre
sent a mathematical function involving a total
of three variables . We can readily graph
mathematical functions of two or three vari
ables , using two or three dimensions . On the
other hand, we can also deal mathematically
with functions of four or more variables , but
we have difficulty in graphically representing
spatial relationships in four or more dimen
sions .

FOUR-DIMENSIONAL SURFACES

One of the objectives of this report is to
emphasize that geologists commonly deal with
relationships which may be thought of in a
four -variable or four -dimensional sense . Con

sider the problem of the distribution of pores
in a rectangular block of rock . All rocks are
porous , and, therefore , at every point within

this block , some particular value of porosity
exists . Because porosity is a variable , and
because we may regard a variable as a di
mension , in a sense we are dealing with four
dimensions if we consider the spatial distribu
tion of pores in the rock .
Visualizing the fourth dimension poses a
problem . We can, however , represent a fourth
variable in three -dimensional space by simply
plotting the particular values of the variable
at the points where they occur in a three
dimensional coordinate system . In Figure 1 ,
the three axes of a coordinate system are
represented by the variables w , x, and y. The
fourth variable , z , cannot be graphically rep
resented by an axis , but can be represented
by values at different points , the two points ,
z, and z₂, being shown for illustration's sake .

W
ORIGIN

ot

Z2

X

FIGURE 1.- Method of representing four variables in
three -dimensional space . Three variables (w , x, and
y) may be represented by values referred to three
coordinate axes . Fourth variable (z) can be repre
sented as series of values at specified points in three
dimensional space .

Suppose that we are faced with the problem

of representing porosity trends in this block
of rock . If the porosity varies in a regular
manner , it might be represented by a surface .

However , an ordinary surface embedded in
three -dimensional space is inadequate because
four variables are involved . Consequently we
need a four -dimensional surface . A surface
of four or more dimensions may be termed a
hypersurface , the prefix "hyper" pertaining to
above or beyond . Thus , a hypersurface is
"above " or "beyond" an ordinary surface in a
mathematical sense .

TRENDS AND THE LEAST-SQUARES
CRITERION

In dealing with data that are irregular
("noisy") , we are commonly faced with the
problem of establishing trends . For example ,
if observations of two variables are plotted on
a two -dimensional diagram as a series of
points (Fig . 2) , the general trend of the points
may be represented by a line . The trend line
may be fitted by eye , but this is not particu
larly objective because one person might place
the line differently than the next person .
The problem is to obtain the best fi

t o
f

the

line to the points . The most generally used
criterion o

f

best fi
t
is that o
f

least squares . In

1
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od
19d

ed

+ X

FIGURE 2.— Least -squares fi
t

o
f

line to points . Line
has been fitted so that sum of squared deviations

(marked with d's ) o
f y with respect to x is mini

mized .

fitting a line by least squares , the objective is

to fit the line so that the sum o
f

the squared

deviations o
f

one variable , with respect to the
other , is the least possible (Fig . 2 ) . Thus , a

least -squares fi
t

is unique because only one
position o

f
a line will yield the least possible

sum of squared deviations . However , it should
be borne in mind that it makes a difference

which variable is being minimized . In Figure

2 , the trend line has been drawn so that the

deviations o
f y with respect to x have been

minimized . The line would have been fitted
slightly differently had the objective been to

minimize the deviations o
f
x with respect to

y . The reason for the difference is that we

are not dealing with an ordinary functional .

relationship in which it makes little difference
whether we express y as a function of x , or

vice versa . Instead , we are dealing with a cor
relation in which we seek the best estimate of
one variable in terms of the other , either y

with respect to x , o
r
x with respect to y .

The least -squares criterion is not confined

to the fitting o
f straight lines . Curved lines

described by mathematical functions can also
be fitted by least squares . Furthermore , the

least -squares criterion is applicable to the fit
ting of planes (Fig . 3 ) , curved surfaces em
bedded in three -dimensional space , and hyper
surfaces .

EQUATIONS AND THE LEAST -SQUARES
CRITERION

Lines , surfaces , o
r hypersurfaces that have

been fitted by least squares may be described
by equations . For example , the equation de
scribing a straight line may be generally
written

y = A + Bx

where x and y are variables , and A and B are
constants . In this equation , y is the dependent
variable , x is the independent variable , A is

the intercept value o
f

the line on the y axis ,

and the coefficient , B , represents the slope of
the line . It is understood that the algebraic
sign , plus o

r

minus , is incorporated within
these constants . In fitting a straight line by
least squares , the problem is to calculate the
values of A and B so that the sum of the
squared deviations is the least possible . In
fitting curved lines , surfaces , o

r hypersurfaces
by least -squares methods , the objective is the
same , namely , to obtain the constants of the
equations so that the sum o

f squared devia
tions is minimized .
The degree o

f
an equation containing a de

pendent variable and one independent variable

is related to the maximum values of the ex
ponents . For example , a second degree equa
tion may b

e

written

y = A + Bx + Cx²

in which x and y are variables and A , B , and

C are constants . Similarly , a general equation

o
f

the third degree involving one dependent
and one independent variable may be written .

y = A + Bx + Cx² + Dx³ .2

Z

di

di

�

X

Y
FIGURE 3

. - Least -squares fit of plane to points .
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At this point it is convenient to introduce a
general classification of equations and their
graphic representations according to degree
and number of variables . Figure 4 presents

a series of equations and their graphs in which
degree is listed by column and number of
variables by row . For example , in equationsFor example , in equations
of the first degree , two variables yield a

1ST DEGREE

2

V
A
R
IA
B
LE
S

3

V
A
R
IA
B
LE
S

4

V
A
R
IA
B
LE
S

x+

Z

STRAIGHT LINE

Y - A + Bx

PLANE

z = A + Bx + CY

1

FIRST -DEGREE
HYPERSURFACE

z = A + BwCx + DY

Z

straight line , three variables a plane , and four
variables a first -degree hypersurface .

The terms within each equation of Figure 4

may be classed according to whether they are
linear , quadratic , o

r

cubic . The linear com
ponents are those o

f

the first degree , and in

clude the intercept , A , and terms to the first
power . The quadratic components include

2ND DEGREE

PARABOLA

INTERSECTION OF PLANES
WITH HYPERSURFACES ARE
CONTOURED

Y = A + Bx + Cx2

PARABOLOID

Z - A Bx + CY + DX2

•EXY + Fy²

SECOND -DEGREE
HYPERSURFACE

z = A + Bw + Cx + Dy + Ex² + Fwy

+GXY + Hwx + Iw² + Jy²

3RD DEGREE

++ ==
Z

THIRD -DEGREE CURVE

Y = A + Bx +Cx² . Dx³

THIRD -DEGREE SURFACE

z - A Bx + Cy + Dx²
• Exy • Fy² + Gx³ +Hx²y

+ IXY² + JY³

THIRD -DEGREE
HYPERSURFACE

z = A + Bw + Cx + DY + Ex² + FwY

+ GXY + Hwx + Iw² + Jy²

+ Kx³ + Lw³ + My + Nx²y

•Oxy² + Py²w + QYw²

+Rw²x + Swx² + Twxy

3

FIGURE 4
. Relationship between number o
f

variables and degree o
f generalized equations and their geo

metric equivalents . Degree ( first , second , and third ) is listed by column and number of variables (two ,

three , o
r

four ) by rows . Variables are denoted by w , x , y , and z , and constants (with algebraic sign
implicitly included ) by A through T
.

Two variables are represented geometrically by straight o
r

curved
lines , three variables by surfaces , and four variables by hypersurfaces .
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terms containing up to two variables to the
first power , or one variable to the second

power . Thus , in the equation of the three
variable second -degree surface of the general

form (Fig . 4 ) , the linear terms are A + Bx ,
and the quadratic terms are Dx² + Exy +
Fy2 . In Table 1 the terms of the general
equations of Figure 4 are classified according
to whether they are linear , quadratic , or cubic .

The fourth variable , z , may be represented at
individual points in space . To these points

in space we may fi
t
, by least squares , a plane

o
r curving hypersurface which represents the

best estimate of z in terms of the other three
variables , w , x and y . We may visualize such

a four -dimensional hypersurface a
s a series o
f

infinitesimally thin , three -dimensional surfaces

nested together . If the hypersurface is inter
sected by planes , as for example on the top ,

bottom , and four sides of a block (Fig . 4 ) ,

the intersections o
f

the hypersurface with the
planes o

f

the block may be portrayed by con
tour lines drawn on the surfaces of the block .

A first -degree hypersurface (Fig . 4 ) might be
likened to a series o

f parallel planes o
r

series
o
f

slices , each infinitesimally thin . Higher
degree hypersurfaces may be thought o

f
a
s

formed by an infinite number o
f

nested , curv
ing surfaces rather than planes .

TABLE 1. -Generalized equations classified according to degree and number of variables .

variable has been omitted here .

VISUALIZING FOUR -DIMENSIONAL
SURFACES

in
Four -dimensional surfaces (hypersurfaces )
may be visualized . Consider the way
which four variables ( w , x , y and z ) may be
represented by a coordinate system in three

dimensional space (Fig . 1 ) . Three of the
variables ( w , x and y ) may be represented a

s

dimensions with respect to three reference
axes arranged perpendicular to one another .

Number
of Degree

variables

2
3

4

First

Second

Third

Third

First Plane

Second Elliptic pa
raboloid or
hyperbolic
paraboloid

First

Descriptive
title

Straight line

Parabola

Third -degree

Third

Linear

A + Bx

A + Bx

A + Bx

A + Bx + Cy

A + Bx + Cy

Third -degree A + Bx + Cy
surface

Third -degree
hypersurface

Classification of terms in equation

First -degree A + Bw + Cx + Dy
hypersurface

Second Second -degree A + Bw + Cx + Dy
hypersurface

A + Bw + Cx + Dy

Quadratic

+ Cx²

+ Cx 2

+ Dx + Exy + Fy 2

+ Ex² + Fwy + Gxy

+ Hwx + Iw² + Jy 2
+ Dx 3

2

+ Ex² + Fwy + Gxy

+ Hwx + 1w2 + Jy²

+ Dx² + Exy + Fy² + Gx3 + Hx ²y +

Ixy2 + Jy³ 3

The dependent

Cubic

3 3

+ Kx ³ + Lw ³ + My³

+ Nx²y + Oxy² +

Py 2w + Qyw² +

Rw 2x + Swx² +
Twxy

NOTE : Cubic terms with coefficients N through T have been arbitrarily omitted in this study but are
listed here for the sake o

f

completeness .
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OIL -GRAVITY VARIATIONS

One o
f

the purposes o
f

this report is to

illustrate th
e

u
se o
f

four -variable hypersurfaces

with an example . The example chosen deals
with variations in crude oil gravity in south
eastern Kansas . Here the problem is to

interpret the geologic significance o
f differ

ences in oil gravity from place to place , and

from zone to zone stratigraphically . As an
introduction to the problem , the measure o

f

oil
gravity is discussed first , followed by a dis
cussion o

f

oil -gravity variations in other
regions .

MEASUREMENT OF OIL GRAVITY

1API gravity is the most widely used
measure o

f

the properties o
f

crude o
il
. API

gravity is a function o
f

the density per unit
volume , and it

s relationship to specific gravity

is shown by the following formula :

Degrees API =

141.5

Sp . Gr . at 60 ° F

1. American Petroleum Institute standard .

131.5

It should be noted that API gravity increases
when specific gravity decreases , and vice versa .

Thus , an oil with a high API gravity has a

lower specific gravity than an oil with a low
API gravity .

Certain other properties o
f

crude oil are
generally related to API gravity , including
viscosity (which increases with decreasing API
gravity ) and gross chemical composition .

API gravity is a rough measure of the pro
portions o

f hydrogen and carbon in crude o
il
:

oils o
f high API gravity (low specific gravity )

are richer in hydrogen than those of lower
API gravity . It is believed that the API
gravity of an oil is related to the conditions
under which the oil originated , including the
character of the organic source materials from
which it was derived , the chemical and min
eralogical composition o

f

the rocks in which
it is contained , and the physical conditions ,

such as temperature and pressure , under which

it has "matured " and been stored .

OIL -GRAVITY VARIATIONS IN
OTHER REGIONS

Oil -gravity Variations in the Gulf Coast
There are a number of references in the

literature to oil -gravity gradients of a regional
nature , o

r changes in oil gravity that may be
correlated with changes in depth o

f

burial .

For example , Barton (1937 ) presented con
vincing evidence that the specific gravities o
f

crude oils in the Gulf Coast region generally
decrease with depth . When a particular Ceno
zoic stratigraphic interval is traced downdip ,

specific gravity o
f the oil decreases and API

gravity increases . Barton suggested that the
general decrease in specific gravity with depth
reflects the evolutionary processes by which
crude oils that were originally napthenic have

been gradually converted into paraffinic crudes
an effect o

f temperature , pressure , and
time . He suggested that these changes may

be analogous to those in the refining o
f

crude

oil , in which the high temperatures and high
pressures that prevail for a very short time

in the refinery are capable o
f bringing about

drastic changes in the chemical composition

o
f petroleum . Underground , the increases in

as
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temperature and pressure that have accom
panied deeper burial are much less severe than
those encountered in the refinery , but Barton
pointed out that the far greater amount of time
available geologically may have compensated
for less severe temperature and pressure con
ditions .
Barton's views on Gulf Coast crude oils
were challenged by Haeberle ( 1951 ) and
Bornhauser ( 1950 ) , who stated that while an
increase in API gravity ( decrease in specific
gravity ) can generally be correlated with an
increase in depth , the increase in API gravity
is not necessarily a simple function of depth
of burial , but instead , could be a result of
facies changes . As the Cenozoic strata of the
Gulf Coastal Region of Texas and Louisiana
are traced downdip , they generally exhibit a
progressive change from continental facies , to

shallow-water marine , and , finally , to deep
water marine facies. In other words , if one
wished to ignore changes in depth of burial
entirely , one could make an almost equally

strong case for control of oil gravities by
facies alone . Thus , the deep -water marine
sediments , consisting mostly of shale , yield
oil of highest API gravity , whereas near -shore
sediments , which contain larger proportions

of sand, yield oil that is lower in API gravity .
Due to the imbricate , wedge -like aspect of
the strata of the Gulf Coast , a well tends to
pass downward from near -shore sediments to
deeper -water sediments . Thus , the oil -gravity
changes encountered in different reservoirs in

a single well , or the changes of oil gravity in

a series of wells in which a given stratigraphic
horizon is followed downdip , both tend to
exhibit changes in oil gravity that could be
interpreted as facies-controlled or depth -con
trolled . Obviously , in the Gulf Coast we are
dealing with a problem in which correlations
are simple enough to establish , but cause and

effect relationships are more obscure .

Oil -gravity Variations in Wyoming

Hunt (1953 ) studied the variations of API
gravity in crude oils in Wyoming , where the
geology is more complicated than in the Gulf
Coast . He came to two principal conclusions :

(1 ) There is a strong correlation of API grav
ity and other measures of the composition of
crude oils with environment of deposition of
the reservoir rocks in which the oils occur .
Relatively low API gravity oils are associated
with Paleozoic sediments , formed under quiet ,
stable conditions of moderate to high salinity ,
in which carbonates and sulfates were abun

dant. High API gravity oils tend to be associ
ated with Mesozoic sediments , formed under

conditions of moderate tectonic activity , in
which dark shales predominate , with discontin
uous sandstones and a few thin beds of lime

stone . Thus , environment of deposition ,
including the character of organic source ma
terials , seems to be the most important factor
affecting API gravity in Wyoming . ( 2 ) There
is , however , a relationship between depth of
burial and API gravity in Wyoming , provided
that the oils are separated into two major
groups, Paleozoic and Mesozoic . Hunt found

that there is an overall increase in API gravity
with depth of occurrence of oils in Paleozoic
rocks and similarly with oils in Mesozoic rocks .

However , the deepest Paleozoic oils are of a
lower API gravity than are the shallowest
Mesozoic oils . Hunt's (1953 , p . 1865 ) plot

of API gravity versus depth of oil in the Paleo
zoic Tensleep Formation suggests that there
is an almost linear increase in API gravity
with depth . Hunt concluded that depth of
burial cannot be ignored , but that it is of
secondary importance .

Oil-gravity Variations inWestern Canada

Hitchon et al. (1961 ) showed that there

is an apparent progressive increase in API
gravity downdip east of the Canadian Rockies
in Mississippian , Pennsylvanian , Permian ,
Triassic , Jurassic , and some Cretaceous and
Devonian strata . However , there is no regu

lar increase in API gravity downdip in certain
other Devonian and Cretaceous strata in the
region . The cause of geographic variations.
in API gravity in western Canada is poorly
understood . Hitchon et al. (1961 , p . 296 )
suggest that in some stratigraphic units , high

API gravities tend to occur in tectonic basin
areas and low API gravities in shelf areas .
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Colorado Shale Oil -gravity Variations

Smith ( 1963 ) pointed out that the specific

gravity of oil produced from the Green River
oil shales in Colorado decreases systematically

with increasing depth of burial . Smith fitted

by least squares a series of second -degree

(parabolic ) curves relating specific gravity to
depth in individual bore holes . He stated that
the decrease in specific gravity is associated
with a progressive decrease in oxygen content
with depth , which in turn may have resulted
from loss of carboxyl groups from organic
molecules due to increase of heat and pressure

with increasing depth .

PREVIOUS STUDY OF OIL -GRAVITY
VARIATIONS IN SOUTHEASTERN
KANSAS AND VICINITY

A research committee of the Tulsa Geologi
cal Society , consisting of Neumann and others
(1947 ) , conducted a study of variations in
crude oil in southeastern Kansas and adjacent

northeastern Oklahoma . They concluded that
the environment of deposition and the original
character of the oil's organic source material
probably determined the kind of oil in each
pool . For example , they found that the oil
in the "Bartlesville sand " of Osage County ,
Oklahoma , could be divided into six classes

on the basis of distillation fractions . Pools in

the "Bartlesville sand" containing particular
classes of oil have distinct geographical group
ings . Neumann's committee suggested that the
area in which a particular class of oil occurs
reflects a particular set of depositional condi
tions which prevailed in that area . They
found little evidence that the oil migrated over
appreciable distances , and they concluded that

the oil formed mostly from organic materials
deposited close to the places where the oil now
occurs .

Recent findings by Baker ( 1962 ) support
the conclusions of Neumann's committee .
Baker compared the distribution of traces of
hydocarbons in non -reservoir facies close to
the shoestring sand reservoirs in the Pennsyl

vanian Cherokee Group ("Bartlesville sand "
or "Burbank sand " ) , in the Thrall (Thrall
Aagard ) field in Greenwood County , Kansas .
and in the Burbank field in Osage County .

Oklahoma . Baker found that the propor
tions of hydrocarbons (expressed as the ratio
of saturate hydrocarbons to aromatic hydro
carbons ) in the non-reservoir facies tend to
parallel those of the crude oil produced in the
adjacent o

il

fields . H
e

found that traces o
f

hydrocarbons extracted from the non -reservoir
facies encountered in a core in the Burbank

field have significantly higher saturate to
aromatic ratios than hydrocarbons from non
reservoir facies close to the Thrall field . Bur
bank crude also has a higher saturate to
aromatic ratio than Thrall crude . It is pre
sumed that differences in the crude oils reflect

differences in trace hydrocarbons extracted
from associated , non -reservoir rocks . Con
sequently , both trace hydrocarbons and crude

oil appear to have a similar source within a

given locality .

OIL -GRAVITY DATA IN SOUTHEASTERN
KANSAS USED IN THIS STUDY

Oil -gravity data used in this study were
taken from a report by Everett and Weinaug

(1955 ) and include API gravity measured a
t

60 ° F , well location , depth to producing zone ,

and name o
f producing zone . The oil -gravity

data were studied in a rectangular area (Fig .

5 ) about 6
5 by 7
0

miles in dimension , which
embraces Chautauqua , Cowley , and Elk coun
ties , and parts o

f

Greenwood , Butler , Wood
son , Wilson , and Montgomery counties . The
location o
f

wells for which API gravity was
determined is shown in Figure 5 and the wells

are numbered by Everett and Weinaug ( 1955 ,

p . 211-221 ) as follows : 8 , 13 to 22 , 30 to 35 ,

4
1 to 44 , 55 to 93 , 95 to 104 , 107 to 137 ,

145 to 222 , 224 , 227 to 230 , 232 , 234 to 250 ,

386 to 397 , 400 , 404 to 406 , 411 to 419 , 421

to 426 , 428 , 444 to 447 , 449 to 453. Data

on wells listed by Everett and Weinaug that lie
outside the area of this study were not used .

A total of 244 API gravity values were used .

The geographic distribution o
f

wells yielding

oil -gravity data is somewhat uneven , due
largely to the uneven distribution o

f

oil fields
within the area (Fig . 6 ) . In addition , the
distribution o

f

the gravity values according to

well depth is also somewhat uneven . Accord
ingly , the data points used in this study are
not randomly distributed in space .
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Oil is produced from various stratigraphic
zones in the area of this study in southeastern
Kansas (Table 2 ) . The names of some of the
zones are local drillers ' terms that are not

-

official geological names . Jewett (1954 , p .

76-90 ) provides a glossary o
f

names o
f

oil
producing zones in eastern Kansas , and the
approximate stratigraphic position o

f

the zones

is given in a columnar chart by Jewett ( 1959 ) .
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FIGURE 5
. -Map of part of southeastern Kansas showing location of oil wells yielding oil -gravity data used

in this study .
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SEDAN

1

•

Ai

Distribution of Oil Gravities on a Zone
by -Zone Basis in Southeastern Kansas

The distribution of API gravities in six
stratigraphic zones in part of southeastern
Kansas is shown on maps in Figure 7

. The
stratigraphic position o

f

each zone is given in

Table 2. The maps show that ( 1 ) in detail ,

areal variations in API gravities are erratic ,

but ( 2 ) that broad scale trends are present .

API gravities of oils in the Arbuckle Lime
stone and Kansas City Group (Fig . 74 , 7E )
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FIGURE 6.-Maps showing outlines of oil fields in part of southeastern Kansas (modified from Goebel , Hilp
man , Beene , and Noever , Pl . 1, 1962 ) . (A ) Oil fields in which oil occurs principally in lenticular sands
or in shoestring sands , and in which accumulation of oil is mainly stratigraphically controlled . (B ) Oil
fields in which oil occurs principally in carbonate reservoir rocks and in which structural control of oil
accumulation is important.

generally increase toward the west , and API
gravities in the "Mississippi lime " and "Mis
sissippi chat " and "Layton sand ," (Fig . 7B ,
7D , 7F) generally increase toward the north
west . API gravities in the "Bartlesville sand "
(Fig . 7C) are more erratic , and gross changes
across the area are not apparent .
Considering the oil -producing zones in gen
eral , there is a down -dip increase in API grav
ity , the regional structure being a west -dipping

homocline (Fig. 8 ) .
Thus , the question arises , is the increase in
API gravity toward the west due to increasing
depth , or is it related to geographic position ?
Some other aspects of the geographic distri
bution of API gravities are worth noting . The
distribution of API gravities in the "Bartles
ville sand " (Fig . 7C ) appears to parallel the
"Sallyards shoestring" trend (Fig . 64 ) . Bass
et al. ( 1937 ) have interpreted this trend ,
as well as other shoestring sand deposits , to be
ancient offshore bars formed at the shifting
margin of a Pennsylvanian sea . Perhaps

variations in environmental conditions during
Pennsylvanian time are responsible for much
of the variation in oil gravities in the "Bartles
ville sand ."

Within the area , the "Bartlesville sand " has
the highest average API gravity , with values.
ranging from a little less than 36 ° API to
greater than 40 ° API (Fig . 7C ) . However ,
the range of gravity variations is greater in
oil obtained from the "Mississippi lime ” and
the "Mississippi chat " (Fig . 7B ) . Some geol
ogists have speculated that o
il

in the “Missis
sippi chat " and "Mississippi lime " has been
derived from shale in the overlying Cherokee
Group , which contains the "Bartlesville sand "
and other oil -producing sands . However , the
contrast o

f API gravities in the "Mississippi
lime " and "chat " with those in the "Bartles
ville " suggests that the oils may be of differing
sources .

HYPERSURFACES FITTED TO OIL
GRAVITY DATA IN SOUTHEASTERN
KANSAS

First , second , and abbreviated third -degree

trend hypersurfaces have been fitted to oil
gravity data in southeastern Kansas , and the

results are appraised statistically and geologi
cally below . A glossary of statistical terms
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TABLE 2.-Local terms and stratigraphic position of oil -producing zones in area of study .
Oil-producing zone Group Stage

Admire

Topeka Limestone

"Peacock sand"
"Hoover sand"
"Stalnaker sand"
Lansing

"Layton sand"
"Kansas City lime"
"Wayside sand"
"Peru sand"
"Cattleman sand”
"Bartlesville sand "

"Burgess sand"
"Mississippi chat"
"Mississippi lime "
Viola Limestone

"Simpson sand"
Arbuckle Limestone

Admire

Shawnee

STATISTICAL APPRAISAL

Frequency Distribution of Values

Frequency distribution of original oil
gravity data and of first- , second- , and third
degree trend and residual (deviation ) values is
shown in a series of histograms in Figure 9.
The original data (Fig . 9A ) are somewhat
skewed so that the mean is displaced to the
left , or low side , of the median . The distribu
tion of natural logarithms of the original data
(Fig . 9B ) is more symmetrical , although

Douglas

Lansing

Kansas City

Marmaton

Cherokee

Simpson

Arbuckle

Gearyan

Virgilian

Missourian

Desmoinesian

Meramecian

Middle
Ordovician

Lower
Ordovician

System

Permian

Pennsylvanian

Mississippian

Ordovician

* NOTE: "Bartlesville sand " is a general name given certain lenticular oil -producing sands that vary
slightly in age and stratigraphic position from place to place .

used but not explained otherwise is provided logarithmic transformations of original data
later in this report . were not deemed necessary in this study .

The characteristics of the frequency dis
tributions of trend and residual values are
important in analysis of variance to determine
confidence levels because more or less sym

metric frequency distributions of trend and
residual values are desirable . The histograms

(Fig. 9 ) of residual values (Fig . 9C , E, G)
reveal moderate skewness , partly reflecting the
skewness of the original data . The distribu
tions of the trend values (Fig . 9D , F , H ) are
also somewhat skewed . However , it is con
cluded that the frequency distributions are not
sufficiently skewed to invalidate use of analysis

of variance .
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Analysis o
f

variance may be used to deter

mine the statistical significance o
f

trend sur
faces (Dawson and Whitten , 1962 , p . 8 ; and
Allen and Krumbein , 1962 , p . 522-523 ) . In
this study , the objective has been to determine

the degree o
f

confidence for each component
of the hypersurfaces , or , in other words , to

determine whether the linear , quadratic , and
cubic components are statistically significant

or could be due to chance alone . The degree

o
f

confidence is spoken o
f
a
s the "confidence

level , " and may be expressed in percent . On
this basis , absolute certainty is 100 percent ,

and absolute uncertainty is 0 percent . A
confidence level o

f

99 percent for a particular
component would indicate 99 percent certainty

that the component represents a real effect and
not chance .
Table 3 includes the basic data for calcula

tion o
f

confidence levels by analysis o
f vari

The data include ( a ) sum of squaresance .
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TABLE 3.--Analysis of variance of oil -gravity trend hypersurface data .

Degrees of Mean
freedom square

Source

Total , 244 data points ..

Due to linear component .

Deviations from linear .

Due to quadratic component ..

Deviations from quadratic .

Due to abbreviated cubic component

Deviations from abbreviated cubic ...

Sum of
squares

333,019.5

330,624.2

2,395.3

252.6

2,142.7

189.1

1,953.6

that are apportioned among the linear , qua
dratic , and abbreviated cubic components , re
spectively , (b) sums of squares associated with
the deviations or residuals , and (c ) number

of degrees of freedom associated with the
components and the deviations . These data ,

in turn , permit (d ) calculation of the mean
square of the components and deviations and
(e ) calculation of Snedecor's F. Finally , (f)
the confidence level in percent is obtained by
reference to tables of F (Snedecor , 1956 , p .
246-249 ) .
The number of degrees of freedom is estab
lished in reference to ( 1 ) the number of de
grees of freedom associated with the total
number of data points (n - 1 ) , and (2 ) num
ber of terms containing variables in the equa
tion belonging to each component . Thus , there
are three degrees of freedom associated with
the three linear terms Bw , Cx and Dy , six
degrees of freedom with the six quadratic
terms Ex², Fwy, Gxy , Hws , Iw² , and Jy² ,
and three with the cubic terms Kx³ , Lw³ ,
My3 . The number of degrees of freedom at
each level is obtained by successively sub
tracting the degrees of freedom associated with

each component from the degrees of freedom
associated with the data points .
The confidence levels associated with the

three trend components of the oil -gravity data
are extremely high , all being in excess of 99.9
percent . It is concluded that the effect as
sociated with each component is real and not
fortuitous .

243

3

240

6

234

3

231

110,208.1

10.0

42.1

9.1

63.0

8.5

Snedecor's Confidence
F level

10,054.0

Linear surface ...

Linear

Linear

4.6

7.5

Percent Total Sum of Squares
Represented by Hypersurfaces

99.9 + %

99.9 + %

The percent of total sum of squares is a
measure of how closely the hypersurfaces
(Table 4 ) fi

t

the observed data and is calcu

lated according to an equation given in Ap
pendix A

.

A percent o
f

total sum o
f

squares

o
f

100 percent would represent a perfect fi
t o
f

the observed data . There is a general relation
ship between the confidence level associated

with a component , and the percent o
f

total

sum o
f squares associated with that component .

Quadratic surface .

Quadratic + Abbreviated
Cubic surface ..

99.9 + %

TABLE 4
.-Percent of total sum of squares repre

sented by hypersurfaces fitted to oil -gravity data .

32.0 %

49.7%

63.00 %

If there is a marked increase in percent of
total sum o

f squares when a new component

is included , a high confidence level is generally

associated with that component (Table 3 ) and
vice versa .

Calculation of Weighted Averages of Oil
Gravity

Spatially weighted averages (Table 5 ) o
f

API gravity have been calculated for each
hypersurface by the method described in Ap
pendix A

.

The resulting averages are close to

the arithmetic mean . Little advantage is

"

1

$
(

C
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gained in this case by calculation of spatially
weighted averages .

INTERPRETATION OF TREND
HYPERSURFACES

Trend hypersurfaces fitted to API gravity
data are shown in block diagrams (Fig . 10 )
in which contour lines portray the intersections
of sides of the blocks with the hypersurfaces .
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TABLE 5
.-Averages (API degrees ) of oil -gravity

values in southeastern Kansas .

Arithmetic mean .

Average value within first -degree
hypersurface .

Average value within second -degree
hypersurface ..

Average value within third -degree
hypersurface .
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FIGURE 10. -Hypersurfaces ( A - C ) fitted to API gravity data with respect to depth below surface and geo
graphic location . Block D shows generalized geologic structure . Equations o

f hypersurfaces are listed .
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First-degree Hypersurface

The first -degree hypersurface (Fig . 104 )
represents the observed data moderately well ,
accounting for about 32 percent of the total
sum of the squares (Table 4 ) . The confidence
level (Table 3 ) is in excess of 99.9 percent ,
signifying that the first -degree trend hyper
surface represents a real effect and cannot be
due to chance alone .

The first -degree hypersurface may be lik
ened to an east -southeast -dipping homocline ,
reflecting trends in the original data , namely

that ( 1 ) at a given depth there is a general

increase in API gravity toward the west
northwest , and (2 ) at any particular locality ,

there is a general increase in API gravity with
depth . The first -degree hypersurface makes
clear that differences in API gravity are not
segregated in any uniform manner according

to depth or to stratigraphic zones because the
planes within the first -degree hypersurface dip
toward the east , whereas the strata dip gen
erally toward the west (Fig . 8 ; 10D ) .

Second -degree Hypersurface

The second -degree hypersurface (Fig . 10B )
reveals trends that differ considerably from

the first -degree hypersurface . The second
degree hypersurface might be likened to a
complex syncline that plunges toward the east
southeast on one side , but the direction of
plunge and shape of the hypersurface are
gradually reversed , as is revealed by contours
on the south-facing or front side of the block .

We are dealing with a series of complex ,
nested surfaces within the hypersurface , and
the shape of any particular surface, as for
example the 37° API surface, is that of a
saddle -shaped hyperbolic paraboloid . The
second -degree hypersurface represents a per

cent of the total sum of the squares of about
50 percent (Table 4 ) , and the confidence level

associated with the quadratic component is in
excess of 99.9 percent (Table 3 ) .
Interpretation of the geologic significance
of the second -degree hypersurface is somewhat
difficult because the surface is more complex
than the first -degree hypersurface . The in
creased complexity reflects the improved fi

t o
f

the hypersurface and emphasizes that oil -grav

ity values vary in a complex manner within
the area .

Third -degree Hypersurface

Although the third -degree hypersurface

(Fig . 10C ) is still more complex than the
second -degree hypersurface , there are marked
similarities between the two . Surfaces within

the third -degree hypersurface may be likened

to an eastward -plunging , complex syncline

that gradually becomes a saddle -shaped struc
The percent o

f

total sum o
f squares

represented by the third -degree surface is

about 63 percent (Table 4 ) , and the contribu
tion o

f

the abbreviated cubic component (the
cubic cross product terms have been omitted )

is real , since a confidence level o
f

more than

99.9 percent is associated with it (Table 3 ) .

ture .
The third -degree hypersurface also reflects .

the increase in API gravities toward the west .

but it suggests that the increase is by no
means a simple increase in that direction .

Furthermore , it appears to bear a relationship

to the low API gravities in the Arbuckle , or

lowest oil -producing zone , a
s indicated by the

westward deflection of the contour lines near
the bottom of the south - facing side of the
block (Fig . 10C ) .

Spatial Distribution of Residual Values

The generalized spatial distribution o
f posi

tive and negative second -degree residual oil
gravity values is shown in a series of "slice
maps " (Fig . 114 ) , and distribution o
f positive

residuals is shown in a block diagram (Fig .

11B ) . The residual values were obtained by
subtracting trend values from observed values .

The spatial distributions o
f

first- and third
degree residual values are almost the same a

s

the second -degree residuals and are not shown

here . Considering the positive residuals
within the block extending from 1200 to 3600

feet (well depth ) , there are three main places

where positive values congregate : ( 1 ) in the

extreme southeast corner o
f

the block , ( 2 ) in

the extreme northwest corner of the block , and

( 3 ) in a broad and very irregular zone that
extends from northeast to southwest across the
block . The negative residuals are aggregated

between the positive residuals .

t
(
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The clusters of residual values reflect varia
tions in the original data . The positive cluster
that trends northeast -southwest across the
block partly reflects high API values in the
"Bartlesville sand" (Fig . 7C ) in the Sallyards
trend (Fig . 6A ) . However , it is interesting
to note that this cluster also includes oil
producing zones that lie both above and
below the "Bartlesville sand ." This is im
portant because it suggests that factors re
sponsible for relatively high API gravities
in this cluster are common to various strati
graphic zones and not just the "Bartlesville "
alone .

B

An interesting comparison can be made
between the areal distribution of structural

residual values and API oil -gravity residual
values . Figure 12 shows the clusters of
structural residual highs and lows produced

when a second-degree , three -variable trend
surface is subtracted from the structure on
top of Mississippian rocks in this same part
of southeastern Kansas (Fig . 8 ) . There are
several structural residual lows which trend in
a northeast -southwest direction across the area .
This northeast -southwest trend coincides more

API GRAVITY ABOVE TREND

API GRAVITY BELOW TREND

API GRAVITY ABOVE TREND

(A)FIGURE 11.-Distribution of second -degree residual values of API gravity in three -dimensional space .
Series of four slice maps , each representing 600-foot depth interval, showing clustering of residual values .
(B) Block diagram showing clustering of positive residual values .

GREATERTHAN
+50 FEET

BETWEEN- 50
and 50 FEET
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1200'

1800'

2400'

3000

3600'

or less with the cluster of positive oil -gravity
residual values (Fig . 11 ) . In addition , there
are residual structural lows toward the south

east and northwest corners of the area , roughly

in the same places where the other two API
gravity residual highs occur. Structural highs

of the Nemaha ridge (Fig . 8 ; 10D) seem
associated with oil -gravity lows , but this may

be due in presence of relatively low -gravity
Arbuckle fields (Fig . 6B ; 7A ) in that part of

اھت

20 MILES

D
E
P
T
H

1
1
3
4

FIGURE 12. -Simplified contour map of residual values
obtained by subtracting second -degree trend surface
fitted to structure on top o

f Mississippian rocks (Fig .

8 ) in area of study .
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the area. The coincidence between residual
oil-gravity highs and residual structural lows
may not be fortuitous , and perhaps similar re
lationships occur in other areas .

may

The tendency for o
il
-gravity residual values

from different stratigraphic zones to be a
g

gregated into the same clusters reflect

long -persisting ancient geographic and en
vironmental conditions . For example , during
part o

f Pennsylvanian time , limestone marine
banks that formed in southeastern Kansas

(Harbaugh , 1960 , p . 229-232 ) tended to be
stacked one upon another in the same general

localites . in spite o
f occurring in different

stratigraphic units . It is presumed that the
marine banks were localizeda response to

environmental conditions that included water
depths . waves , currents , and sources of ter
restrially derived sediment . These environ

mental conditions , in turn , probably reflected
large -scale ancient geographic conditions , such

a
s the configuration o
f

land and sea . It is

speculated that oil -gravity residual clusters in

southeastern Kansas may also partly reflect
ancient geographic and environmental features
that may have persisted during much of the
Paleozoic Era . For example , the ancient
geography may have influenced the distribu
tion of marine organisms , including the
phytoplankton , and in turn , influenced the
characteristics of crude oil formed from
organic material incorporated into the sedi
ments . However , these suggestions are tenta
tive and additional study is needed before final
conclusions are drawn .

SUMMARY OF INTERPRETATIONS OF
OIL -GRAVITY VARIATIONS IN
SOUTHEASTERN KANSAS

1
. There is broad correlation between well

depth and API gravity : API gravities tend to

increase with depth .

2
.

Factors other than depth appear to have

a strong influence , however . These factors .

might generally be classed a
s depositional en

vironment factors .

3
. The first -degree hypersurface (Fig . 104 )

makes clear that oil -gravity variations are not

controlled by progressive changes between
stratigraphic zones , because planes within the

first -degree hypersurface dip opposite to the
strata (Fig . 10D ) .

4
.

Similar environmental factors may have
influenced oil gravities in different strati
graphic zones in the same general localities .

This is suggested by aggregation o
f

residual
values in distinct clusters in three -dimensional

space .
5
. The tendency for residual values to be

clustered suggests that depositional conditions .

affecting oil gravities in a given locality may

have remained more o
r

less the same during

much of the Paleozoic . If this is the case ,

residual clusters could represent responses to

long -persisting ancient geographic features .

such a
s

shore lines , sediment source areas , and
organism communities , which affected the
depositional environment at any particular

place for long intervals o
f

time .

6
. It is suggested that both depth of burial

and depositional environment have influenced

oil -gravity values . Of the two , perhaps depo
sitional environmental factors are the most

important .

GLOSSARY OF STATISTICAL TERMS
USED BUT NOT EXPLAINED ELSE
WHERE IN THIS REPORT

Analysis o
f

variance .- A technique in which
the variation within a set o

f

data is separated

into different components , permitting differ
ences between and within components to be
compared . Ordinarily , the estimate o
f vari
ance is :

x ) 2

where

V = σ²=

Σ ( x

=

n- l

variance ,

n= number of data values ,

x = observed data values ,

x arithmetic mean ,

σ= standard deviation .

However , in this study , analysis o
f

variance

was used to determine the significance o
f

trend

hypersurfaces , and mean square values were
used instead of variance estimates .

Degrees o
f

freedom .-Pertains to the number

o
f opportunities in which variation may occur .
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For example , a set of data containing ten data
values has nine degrees of freedom . Similarly ,
a set with one data value contains zero degrees

of freedom , because no variation is possible .

Snedecor's F.-The ratio of two variances , or
the ratio of two mean squares .

Frequency distribution .-Pertains to the man
ner in which a set of data values are distrib
uted according to frequency of occurrence .

Lorgarithmic transformation .- Involves use of
logarithms of data values rather than the raw
data values themselves .

divided by the number of degrees of freedom :

sum of squares
mean square

degrees of freedom

Residual values (deviations ) . Obtained by
subtracting trend values from observed values .

Skewness .- Pertains to the degree of asym
metry in a frequency distribution .

Mean square . Refers to the sum of squares sponding estimate of X.

Sum of squares .-The sum of squared values .
Trend values .-Values estimated on the basis
of a trend line or surface . For example , if a
trend line is fitted to points on an X-Y dia
gram , for each value of Y there is a corre
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General Statement

Details of the computer program used in
fitting , contouring , and evaluating four -vari
able trend hypersurfaces are presented in
Appendix A. Appendix B is a complete listing
of the computer program in which cards or
lines a

re

identified b
y

number , and Appendix

C consists o
f reproductions o
f

examples of
output from the program .
This program is written in a computer lan
guage called BALGOL , which is one of sev
eral "dialects " of the computer language
termed ALGOL -58 . A language such a

s

BALGOL is termed a "source language . ” The
program is placed initially o

n punched cards

and then read into the computer where it is
translated into machine language which the
computer can utilize directly . The translation

is accomplished by using another program ,

termed a compiler , which is usually recorded

on magnetic tape and which translates , o
r

compiles , the source language .

The program described here has been writ

ten primarily for use on either an IBM 7090

o
r

7094 computer , coupled with an IBM 1401
computer . The program could b

e

used , with
slight modifications , on the Burroughs 220
computer . The Kansas Geological Survey

will make the program available , in punched
card form , for a limited time at a cost of

$ 10.00 . IBM 7090 and 7094 computers are
currently in widespread use in the United
States and access to one of these machines is

available a
t
a number o
f

both university and
commercial computer centers . Persons wish
ing to use the program on the IBM 7090 o

r

7094 should send four magnetic tapes to the
Computation Center , Stanford University ,

Stanford , California , so that the BALGOL
compiler system can b

e

recorded o
n

the tape .

When this has been done , the program de
scribed in this report , as well as many other
BALGOL programs , may be readily used on
virtually any IBM 7090 o

r

7094 computer .

Peter Carah wrote that part o
f

the program

for plotting of z values and residual values in

the "slice maps , " and the matrix inversion
procedure was adapted from the Stanford
University Computation Center program li

brary .

The program is extremely fast and econom
ical when run on the IBM 7090 or 7094
computer . The program compiles from the
BALGOL source deck in 30 seconds . Time
required fo

r

execution o
f

the program varies ,

depending upon th
e

number o
f

data points
and dimensions o

f

the hypersurface blocks
and plotted maps . A

s
a
n example , 6
0

seconds
7090 time were required for execution using

oil -gravity data described in this report , in
which 244 data points were handled , three

in dimensions were contoured , and 2
4 "slice

hypersurface blocks about 5 x 8 x 9 inches

maps " were plotted . In addition , about 6

minutes 1401 time were required for printing
of the output .

Major Steps in Program

The theory and operation o
f

the program
are explained in detail on subsequent pages .

However , as an introduction , the principal
steps in the program are outlined below :

( 1 ) Read into computer numerical data
that control certain operations o

f

the
program , such as dimensions of block
contoured by computer .

( 2 ) Read in data values , four values ( w ,

x , y , and z ) for each data point .

( 3 ) Obtain sums for matrix and for column
vector used in solution o
f

normal equa
tions .

( 4 ) Calculate constants o
f equations o
f hy
persurfaces by matrix inversion .

( 5 ) Employing equation constants thus ob
tained , calculate trend value a

t

each

data point and subtract this value from
actual z value a

t that point to obtain
residual value . Each hypersurface o

f

given degree will have its own trend
and residual values a

t specified data
points .

( 6 ) Calculate statistical properties o
f hy

persurfaces , including error measure .

percent of total sum o
f squares , and

apportionment o
f

the sums o
f squares

according to linear , quadratic and ab
breviated cubic components .

( 7 ) Calculate hypervolumes within hyper
surfaces by evaluation o

f triple integral
between limits of block . Divide hyper
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volume by ordinary volume to obtain
average value of z within block .

(8) Contour intersections of hypersurface
with planes that intersect block . The
number of planes and their intersect
values are specified on the control
cards . Any number of horizontal and
vertical planes may be contoured . It
is generally convenient to contour the
top . bottom, and four sides of the
block whose limits have been specified
in making previous calculations . Con
touring is accomplished by substituting
progressively changing values of w , x,

or y corresponding to the location in
space of each point for which a printed
character is printed . Values of w , x ,

or y are substituted in equation describ
ing surface, z value for each point is
determined , and character to be printed

(number , blank space , letter , or other
symbol ; Table 7 ) is selected , depending
on value that z assumes at each point

(Appendix C, Part 2).
(9 ) If desired, the original data values and
residual values from the three trend

hypersurfaces are sorted according to
depth and location and are then auto
matically plotted in a series of hori
zontal "slice maps " on which the values

are plotted within specified depth inter
vals (Fig . 11 ; Appendix C , Part 3) .

Input to Program

After the computer program has been fed
into the computer , data cards follow . Three
kinds of data cards are used in conjunction
with this program : (1 ) alphabetical and
numerical information used for identification

purposes, (2 ) numerical information used to

control the operation of the program , and ( 3 )
numerical values pertaining to data points .
These data are described on subsequent pages .

Detailed rules for preparation of data cards .

as wellwell as other information concerning

BALGOL , are contained in the manual entitled
Burroughs Algebraic Compiler : A Represen
tation of ALGOL for Use with the Burroughs

220 Data -Processing System , which may be

obtained from the Burroughs Corporation , De

troit , Michigan . The rules for data cards are
very simple, however , and the most important

are : ( 1 ) a 5 must be punched in column 1

of each data card, (2 ) columns 2 to 80 of
each card are available for data , and ( 3 )

there is no specified format for the data values
except that at least one blank column must
separate numbers .

Alphanumeric heading . The first data con
sists of 72 characters of alphabetic and nu
merical ( alphanumeric ) information . Typi
cally , this information might include the name
of the area being studied , the name and age
of the geologic formation or formations in
volved, and the name of the person preparing
the data . When the program is executed , this
information is reproduced at the top of each
of the map pages (Appendix C ) and elsewhere
in the output pages , thus providing positive
identification . Dollar signs should be placed
in columns 2 and 75 of the data card , and
the 72 alphanumeric characters ( including

blank spaces ) are placed between the two

dollar signs , in columns , 3 to 74 .

Control cards.- (1 ) First control card :
(a ) A 5 in column 1 of each card .
(b ) An integer specifying whether the
data point values are type integer

(2222 ) or type decimal (4444 ) .

(c ) An integer specifying the number
of data points .

(d) An integer specifying the length ,
in tenths of an inch , of the y di
mension of the block that is to be

contoured by the computer's print

ing machine . (Fig . 13 ) .

(e) An integer specifying the x dimen
sion of the contoured block in
tenths of an inch .

(f) A decimal -point number specifying
the x intercept of the right side of
the block . The value must be ex
pressed in x-coordinate units .

(g) A decimal specifying the x inter
cept of left side of block .

(h) A decimal specifying the y inter
cept of front of block . The value
must be expressed in y-coordinate
units .
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FIGURE 13.-Diagram showing coordinate -axis inter
cept values (Xr, Xl , Yb, Yt , Wb , and Wt ) for six
planes that form surfaces of block intersecting hyper
surface . ( Intercept values must be in same units as
w, x, and y values of data points .)

( i ) A decimal specifying the y inter
cept in the back of block .

(j) A decimal specifying the w inter
cept of bottom of block . The value

must be expressed in w -coordinate
units .

(k) A decimal specifying the w inter
cept of top of block .

(1) A decimal specifying the reference
contour value.

(m) A decimal specifying the contour
interval .

(n ) An integer specifying the vertical ,
or w , dimension , in tenths of an

inch , of the block that is to be
contoured .

(0 ) An integer specifying whether
trend and residual values are to be

written , written and punched , or
neither written or punched as fol
lows :

0 Do not print or punch
1 Print only
2 Print and punch

(p) An integer specifying whether raw
data and residual values are to be
plotted as follows :
0 Do not plot
1 Plot

(2 ) Second control card (for horizontal
contoured surfaces ) :

(a) A 5 in column 1.
(b) An integer specifying the number
of horizontal surfaces to be con
toured ; punch 0 if none are to be
contoured .

(c ) Decimal numbers specifying inter
cept values of horizontal surfaces ,

expressed in w-axis coordinate
units.

(3 ) Third control card ( for vertical sur
faces intersecting x axis ) :
(a ) A 5 in column 1.
(b ) An integer specifying the number
of surfaces to be contoured ; 0 if
none are to be contoured .

(c ) Decimal numbers specifying x-axis
intercept values of the surfaces .

(4 ) Fourth control card ( for vertical sur
faces intersecting y axis ) :

(a ) A 5 in column 1.
(b) An integer specifying number of
surfaces to be contoured ; 0 if
none are to be contoured .

(c ) Decimal numbers specifying y -axis
intercept values of surfaces .

(5 ) Fifth control card (controls residual
plotting ; use only if integer specifying
whether data values are to be plotted

is 1 on first control card ) :

(a ) A 5 in column 1.
(b ) A decimal specifying the w inter
cept value of the top "slice" in
which the original z values and
residual values will be plotted .
This number will have a smaller
numerical value than in (d ) below
because the numbers increase go

ing downward .

(c ) A decimal specifying the thickness
in vertical (w -axis ) units of each
of the "slices ."

(d ) A decimal specifying the w inter
cept value of the top of the bot
tom "slice." This number will
necessarily be greater than the
number in (b ) above .

Values for data points .- Four values for
each data point are needed . These are fed in ,
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in groups of four , in the order w , x, y and z .
The values may be either wholly decimal -point
numbers or wholly integers , but may not be
a mixture of both decimal and integer num
bers . The w, x, and y values are coordinate
values in arbitrary units , which may have a
dimensional sense (feet , miles , fractions of
inch , etc. ) , but could also represent any quan
tity that one wishes . For most geological pur
poses , it is convenient to express the w values

in feet (well depth for example ) and the x
and y values in either miles or in fractions of
an inch scaled from a map . The z values may

be in any convenient units . If the integer on
the first control card that specifies the type of
data values is 2222 , all values are to be in
integer form , if 4444 , all values in decimal
point numbers. Please note that a maximum
of 950 data points may be handled without
modification of the program . However , more
data points could be handled by changing the
array dimensions on lines 8, 12 and 19 , Ap
pendix B.

In obtaining the w-, x-, and y-coordinate
values , it is most convenient to place the
origin either at the upper left rear corner of
the block or at some point that is farther to
the left , higher , and farther to the rear . In

a conventional geological application , the w
coordinate values might be well depths , with
positive values that increase downward , and
the x- and y-coordinate values might represent
distances scaled from an origin along east
west and north -south directions , respectively .
Negative values are acceptable . Cards are to
be punched as follows :

(a) A 5 in column 1.
(b) w , x , y, and z values , in that order
(any number of values per card , but
numbers will be read in groups of
four) .

Solutions of Normal Equations to
Obtain Constants of Equations

Each hypersurface is described by an equa
tion whose constants are such that the least
squares criterion is satisfied . The method
employed involves matrix inversion and is

basically the same for each hypersurface ,
regardless of the number of terms in its equa

tion . For illustrative purposes , only the first
degree hypersurface is considered in detail
below .

First-degree hypersurface . The equation
for a first degree hypersurface is

(Eq . A)
= A + Bw + Cx + Dy .Z trend

The constants A , B, C and D of this equation
are to be calculated so that the sum of the
squared deviations is the least possible . The
deviation at a particular point is that difference
between the observed and calculated value ,

which may be expressed as

deviation Zobs Ztrend .

Because the trend value is given by equation

A, we may rewrite equation as follows :
(Eq . B)

deviation Zobs (A + Bw + Cx Dy ) , or
deviation = Zobs- A - Bw - Cx - Dy.
Proceeding further , we may express the sum
of squared deviations as a function , F, of A ,
B, C, and D, by writing

-·(Eq . C)
sum of squared deviations F (A, B, C , D, ) .
Combining equations B and C , we obtain

F (A, B, C, D) Σ (Zobs A
BwCx - Dy) 2.

From this point on we will consider z to be zobs.
If F (A, B, C, D) is to be minimized , it is
necessary that

OF/OA OF/OB OF/OC OF/OD = 0.

OF
ƏB

aF
ac

The partial derivatives are
ағ
JA

ағ
JD

= =

are

-

= Σ 2( z - A - Bw

= 2(z - A - Bw

= Σ 2 (z - A - Bw - Cx - Dy ) ( -1 ) = 0

-

-

_____

=

-

Cx - Dy ) ( -w ) = 0

Cx - Dy ) ( -x )

= Σ 2( z - A - Bw Cx - Dy ) ( -y)

= 0

= 0.

Multiplication of each expression and summa
tion over the individual terms of these four

equations yields four other equations , which
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2

- Στ + An + BΣw + CΣx + DΣy

−Σzw + AΣw + BΣw² + CΣwx + DΣwy

−Σzx + AΣx + BΣwx + CΣx²

A

B

-Σzy + AΣy + BΣwy + CΣxy

where n number of data points .
We may rearrange these equations by plac
ing the terms containing z on the other side to

obtain four normal equations whose solution
will permit us to obtain the four unknown
constants , A , B, C , and D :
An + BΣw + CΣx + DΣy

AΣw + BΣw² + CΣwx + DΣwy

2ΑΣΧ + BΣwx + CEx + DΣxy

2AΣy + BΣwy + CΣxy + DΣy ' Σzy .

If a solution exists for these four linear equa
tions , they may usually be solved by matrix
algebra methods . We may restate the four
normal equations by writing a single matrix
equation, as follows :

Σw Σχ Σy

Σw Zw2 Σwx Σwy

Σχ Zwx Ex² Exy

Ey Zwy Exy Zy2 Ezy

In this equation , the ABCD -vector multiplied
by the wxy -matrix is equal to the vector con
taining z . In applying this equation , observa
tional data provide the wxy -matrix and the

z-vector, allowing the ABCD -vector to be

determined . This may be done by multiplying
the z -vector with the inverse of the wxy -matrix ,

so that

n

C

=

n

Σw

Σχ

Σw

Zw2

A

Σχ

B

с

+ DΣxy =

DZy2+

= Σz

= Σzw

= Σzx

=

Σy

Σwx Σwy

ExyΣχεΣwx

Zwy Exy Zy2ΣΥ

Second and third -degree hypersurfaces.
Second and third -degree hypersurfaces are

fitted in essentially the same manner as first
degree hypersurfaces , and the underlying
theory is the same . There are more terms

= 0

= 0

=

-1

ΓΣΖ

= 0

Σzw

0

Σzx

Σz

Σzw

Σzx

Σzy

in the equations describing second- and third
degree surfaces , and therefore more normal
equations are needed . The matrix equation

for combined linear , quadratic , and part of
the cubic terms is shown in Table 6. First
degree hypersurfaces involve only the linear
terms (outlined by dotted lines in Table 6 ) .
second -degree hypersurfaces involve linear
plus quadratic terms (outlined with dashed

lines ) , and third -degree hypersurfaces involve
all the linear plus quadratic plus cubic terms .
It should be pointed out that the cubic terms
are not complete in that the cubic cross
product terms have been arbitrarily omitted
to cut down on the number of steps in the
program .
Steps in computer program in solving nor
mal equations . The summation to obtain the
values for z -vector and the wxy -matrix (Table
6 ) is accomplished in a FOR loop ( lines 55
to 129 , Appendix B) . Inasmuch as many ele
ments in the matrix are duplicates of others ,

it is not necessary to calculate a
ll o
f

them by
summation . Those that are duplicates are
simply assigned (lines 130 to 194 , Appendix

B ) . Because the matrices and column vectors
are altered each time they are used in solving

the matrix equation , new matrices and new
column vectors are assigned using FOR loops

( lines 195 to 201 ) to preserve the original

matrices and vectors .

In the program , solution of matrix equa
tions is accomplished by procedure SOLV

(lines 204 to 252 ) and binary external pro
cedure INPROD ( lines 753 to 755 ) which has
been declared ( line 203 ) ahead of procedure
SOLV . Each time procedure SOLV is called ,

the identifiers and the dimensions of the ma
trix and the two vectors are specified ( lines
253 , 255 , and 257. Thus , the same matrix
equation solving technique is used regardless

o
f

whether the equation pertains to first- ,

second- , o
r

third -degree hypersurfaces .

The numerical values of the elements of the
wxy -matrix and the z -vector (Table 6 ) , ob

tained by summation , are part o
f

the output .

o
f

the program (Appendix C , Part 1 ) . Ordi
narily these values are not o

f

direct interest ,

but it may be helpful to scan them to insure

that the memory capacity o
f

the computer is
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not being exceeded , particularly if very large
numbers for data values are involved . The
equation constants are part of the output of

the program (Appendix C , Part 1) .

Calculation of Trend and Residual
Values

Trend and residual values are calculated for
each data point employing a FOR loop (lines
259 to 275 , Appendix B ) . The trend values
are calculated successively for first- , second- ,

and third-degree hypersurfaces , using the ap
propriate equation constants calculated pre
viously . The residual (or deviation ) value at
each data point is obtained by simply sub
tracting the trend value from the observed
value. If the trend value is algebraically
smaller than the observed value , the residual

is positive , whereas if the trend value is alge
braically greater , the residual is negative .
The w- , x-, and y -coordinate values , observed

z values , and first- , second- , and third-degree
trend and residual values are printed out in a
table of ten columns (Appendix C , Part 1 ) .

Calculation of Statistical Measures

Error measure .-Error measure ( lines 276
to 281 is defined as the sum of the squared
residual values , divided by the number of data
points , less one , which may be expressed as
follows :

(Zobs Ztrend ) 2
EM

n 1

Error measure is thus a measure of the degree
to which the calculated trend approaches the
observed data values . A perfectly fitted trend
would have an error measure of zero .

Sum of Squares .-The sums of squares as
sociated with the linear , quadratic , and ab
breviated cubic trend components , and with
deviations from these components are calcu
lated (lines 286 to 297 , 305 ) . These values
may be used to determine confidence levels

associated with the components by analysis
of variance .

Percent of total sum of squares .-Another
measure of the degree to which the trend

approaches the observed data is the percent of
total sum of squares ( lines 298 to 304 ) . The
percent of total sum of squares may be de
fined algebraically as :

Η

100

Στ
2
trend

Στ2obs

--

- (Στ

trend)2
n

'obs '
n

The percent of total sum of squares may vary
from only a few percent to almost 100 percent .
A value of 100 percent would indicate a
perfect fi

t o
f

the trend to the observed data .

Calculation of Hypervolumes and
Average ≈ Value

The program provides for calculation o
f

four -dimensional hypervolumes within the
Ifhypersurfaces between specified limits .

four -dimensional hypervolume is divided b
y

three -dimensional volume , an average value
of z is obtained in which the spatial locations

o
f

the z data values weight or influence the
average . A spatially weighted average calcu
lated in this manner , may in some cases , be
more meaningful than the conventional arith

metic mean , particularly where the data values
are very irregular and contain extremes . A
suggested geological application would be in

calculating average porosity values in lime

stone oil reservoirs , where porosity values
obtained by core analysis may b
e highly
erratic .

To explain the principle o
f

this method ,

analogies have been drawn between calculation
ofweighted averages where two , three , and four
variables are involved (Fig . 14 ) . Consider
the problem of obtaining a weighted average
of z , where z is a function of x . We may
represent the function by a curve (Fig . 144 ) ,

and if we wish to calculate the valueaverage

of z between limits x , and x2 , we find the area

beneath the curve between these limits and
then divide by the distance between x , and x ..

Inasmuch a
s
z is expressed a
s
a function of

x , the area beneath the curve is obtained by
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3

evaluating the integral o
f

the function between
the limits x , and x . Thus , the average of z

is the average height o
f

the curve above the x

axis between the limits .
Consider now the problem o

f calculating a

weighted average o
f
z where three variables

are involved , and z may be expressed a
s

a

function of x and y . Whitten ( 1962 ) has
discussed the theory o

f

the method in detail .

Inasmuch a
s

three variables are involved , a

surface (Fig . 14B ) rather than a line repre
sents z as a function o

f
x and y . We may

think o
f

the weighted average value of z as
being the average height o

f the surface above

the x - y plane between the specified limits , x ,

tox , and y , to y2 . To obtain the weighted
average we calculate the volume between the

surface , the x - y plane , and the four planes
specified by x , x , y , and y . We then divide
this volume by the area in the x - y plane within
the limits . The volume is obtained by double
integration and evaluation o

f

the integral be
tween the limits .

A

2 VARIABLES

Z
AXIS

AVE Z ·

AVE Z.

LENGTHOF
LINE BENEATH
CURVE

We may now consider the problem o
f ob

taining a weighted average where four vari
ables are involved , and z may be expressed For a first -degree hypersurface , the function is

a
s
a function o
f
w , x , and y and is represented

z = A + Bw + Cx + Dy .

AREA
BENEATH
CURVE

X2

f ( x )dx

X AXIS

X2

Z . f ( x )

AREA BENEATH CURVE
LENGTH OF LINE

Z
AXIS

AREA
BENEATH
SURFACE

AVE Z.

AVE Z.

YAXIS

B

3 VARIABLES

by a hypersurface . The volume within a

four -dimensional hypersurface is a four
dimensional hypervolume . When the hyper

volume is divided by three -dimensional vol
ume , a weighted average o

f
z is obtained . The

principles are the same a
s with a lesser number

of variables . The hypervolume is obtained by
evaluation o

f

the triple integral (Fig . 14C )

between the three pairs o
f limits , w , to w

X1 to X29 and y₁ to y2 .

Hypervolume within a first -degree hyper
surface . The mathematical steps in obtaining
hypervolume within a first -degree hypersur
face are outlined below . Hypervolumes

within higher -degree hypersurfaces are ob
tained in the same way , except that the equa
tions have more terms .

X2
dx

The hypervolume within a hypersurface is

given by the indefinite triple integral

Sax SSz dy

where z is a function o
f
w , x , and y :

= f ( w , x , y ) .

S
r

Z = f ( X , Y )

VOLUME BENEATH SURFACE
AREA BENEATH SURFACE

f ( X , Y )DY

-X
AXIS

JX ,
(X₂- X
₁
) (Y₂- Y, )

X2

Saw S
Z

W
AXIS

W2

с

4 VARIABLES

AVE Z.

AVE Z.

"

Y AXIS

Z = f ( W , X , Y )

dw

Xg

HYPERVOLUME WITHIN BLOCK
VOLUME OF BLOCK

X2
dx
JX ,

(W₂ - W₁ ) (X₂- X₁ ) ( Y₂ - Y₁ )

Y2

S
r.

X AXIS

f ( W , X , Y )dY

X₂ - X ,

FIGURE 14. -Diagrams and generalized equations showing how spatially -weighted average values may be
obtained by integration and division where two ( A ) , three ( B ) , and four ( C ) variables are involved .
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Substituting in this function , we obtain the
indefinite triple integral

SawSdxSIAdw

Integrating with respect to y, we obtain

S dw {S[Ay + B
w
y

+ C
x
y

+

[Ay + Bwy + Cxy + Dy² ] d
x
} dw .

In turn , integrating with respect to x , we ob
tain

S { Ax
y

+ Bwxy + {Cx²y + {Dxy² } d
w ,

and finally , integrating with respect to w , we
obtain

Awxy + Bw²xy + Cwx²y + Dwxy² .

We may determine the actual hypervolume by
evaluation of the definite integral between
specified limits . The general form of the
definite triple integral , where z is a function

o
f
w , x , and y , may b
e written

S

W1

dw

( A + Bw + Cx + Dy ) dy .

W

X

y

S
2

x1

X =

in which the limits represent the values o
f

w , x , and y at the edges o
f

the block in which
the hypervolume is to be calculated (Fig .

14C ) . Thus , the hypervolume is obtained

when the equation above is evaluated between

these limits by substituting the following val
ues for w , x , and y (lines 355 , 358 , 361 ) :

y =
2

2

x2

W = W

2 - W1
x2 X1

Y1

=

=

dx

=

Y2

~
~
~ 2

S

W2

2

x2

Y2

Y1

- 2

W1

2

Y2

The hypervolume between these limits ( lines
361 to 365 ) is given by

2
2

dy

2

12

Volume =

Volume

-

A [ ( w½ − w
₁
) ( x
2
− × ₁ ) ( у
½
− Y
₁
) ]

{ B [ ( w
2
– w } ) ( x2 − × 1 ) ( Y
₂
− ¥ ₁ ) ]

- - -

- -

¿ C [ ( w
₂
− w
₁
) ( x
2
− x } ) ( y½ − y
₁
) ]

2- -

+ { D [ ( w
½
− w
¸
) ( × 2 − × ¡ ) ( y
²
− y } ) ]

Hypervolume within second- and third
degree hypersurfaces . -The volume within a

second -degree hypersurface (lines 355 , 356 ,

358 , 359 , 361 , 362 , 367 to 372 ) is given by
the equation :

= A [ ( w
2
− w
₁
) ( x
2
− x
₁
) ( Y
½
− Y
₁
) ]

+ 1
/2 B [ ( w 2 − w } { } ) ( x
2
− × ₁ ) ( ½ − Y
₁
) ]

-

+ 1
/2

C [ ( w
₂ -

− w
₁
) ( x 2 − x
²
) ( y
2
− v
¸
) ]

-

- - -

+ 1
/2 D [ ( w
₂
− w
₁
) ( x 2 − × ₁ ) ( y
²
− y } ) ]

+ 1
/3 E [ ( w
₂
− w
₁
) ( x 2 − x
³
) ( y
2
− y
₁
) ]

- -
X1

-
+ 1
/3 F [ ( w½ − w
¸
) ( x
2
− x
¸
) ( y
²
− y ) ]

+ 1
/3 G [ ( w
2
− w
²¾
³

) ( x
2
− × ) ( ½ − × 1 ) ]

-W - -

2

+ 1
/4 H [ ( w
₂
− w
₁
) ( x 2 − x
² ) ( y
²
− y } ) ]- -

+ 1
/4 I [ ( w2 − w } ² ) ( x2 − x } { } ( ¥ 2 − y
₁
) ]

- - -

-

+ 1
/4 J [ ( w² − w } ) ( x2 − × ¡ ) ( y² − v ? ) ]

The expression for hypervolume within a
third -degree hypersurface (lines 354 to 363 ,
374 to 379 ) is not given here . Cubic cross
product terms have been omitted in the pro
gram for the third -degree hypersurface , cutting
down substantially on the number of arith
metic operations in evaluating the expression .

Contouring of Intersection of
Hypersurface with a Plane

A hypersurface can be visualized by passing
planes through it and contouring the values

o
f

the hypersurface where they intersect the
planes . In this program , planes are contoured
one a

t
a time (Appendix C , Part 2 ) and may

be pasted together later to form a rectangular

block (Fig . 15 ) .
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Contouring (lines 426 to 689 ) is accom
plished by holding constant the coordinate
value (w , x, or y) that specifies the plane ,
progressively varying the other two coordi
nates values , and solving for z with the equa

tion describing the hypersurface . Values
assigned to the two coordinates are progres
sively changed according to the spacing in
columns and rows of the printed characters
of the computer's printing machine (an IBM
1403 high -speed printer has been used in the
examples shown ) .
After the value of z has been determined

at a particular point on the plane on which
the contours are being drawn , either a blank

space or a certain character, which may be

a number , letter , or other character (Table 7)
is printed . The character printed depends on
the value of z at that point , the reference
contour value , and the contour interval value .

The printed characters have been arranged so
that there is little likelihood of ambiguity .
The steps in calculating the values of contour
lines are as follows :

(A) Determine the number of contour in
tervals represented by the band of
characters or blanks by referring to
Table 7.

(B) Multiply this number by the contour
interval .

FIGURE 15.- Hypersurface block constructed by pasting together surfaces on which contour bands have been
printed by computer's printing machine . Numbers denoting values of edges of bands were put on by hand .
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(C ) Add algebraically to the reference con
tour value.

For example , if the contour value is 100 , and
the contour interval is 10, then the contour

value represented by the algebraically lower
edge of the band printed with B's is 60. The
reference contour value is marked by the edge
of the band of $'s which faces the band of A's .

Plotting of Original Data and of
Residual Values

In this program , al
l

plotting o
f

data points

TABLE 7
. -List of characters that correspond with contour intervals o
f printed contour maps . Empty places

in column indicate that no character is printed .

Number of contour
intervals above ( + )

or below ( - )

reference contour .

-40
-39
-38
-37
-36
-35
-34
-33

-32
-31
-30
-29
-28
-27
-26
-25
-24
-23
-22
-21
-20
-19
-18
-17
-16
-15
-14
13- 12

-

-11
-10

-6
5
4
3
2
1
0

1
1
1

Character printed

(or blank ) in band ,

of which lower edge
denotes contour value .

E
S

R

T

Q
P
O
Z
Z

Р

N

is done automatically . It is possible to do this
because the location o

f

each data point is

specified by the coordinate values w , x , and y .

Plotting o
f points on an ordinary map is

usually n
o problem because the location o
f

any point can be specified by two coordinate
values , x and y . But , plotting o

f points in
three -dimensional space poses a problem . In
this program ( lines 690 to 750 ) points are
plotted by dividing the three -dimensional
block (Fig . 11A ) into a series of horizontal
slices (Appendix C , Part 3 ) , each slice being

o
f

specified constant thickness . Data points

M

L

K

J
I

H

G

F

E

D

C

B

A

Number of contour
intervals above ( + )

or below ( - )

reference contour .

+1
+ 2
+3
+4

+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39

Character printed

(or blank ) in band ,

of which lower edge
denotes contour value .

1
2

3

*

$
0

∞

∞

~
2

3

4
5

6
7

8
9

+
E
X
X

Y
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within a slice are projected onto a plane and
plotted as points on an ordinary map . The
number of maps plotted equals the number of
slices . This approach does not completely
avoid the difficulty of plotting points in three
dimensional space because differences in eleva

tion of points within a slice are ignored .
However , it is a practical approach to a
problem that has no simple solution .
In the program the values must be sorted
before they are plotted . First , the values are
sorted according to the w -coordinate values ,

which in a subsurface geological application

would be according to depth . The values are
then assigned to appropriate slices , sorted ac
cording to y-coordinate values , and finally
sorted according to x-coordinate values . The
data points within each slice are plotted at
the approximate locations specified by their
x- and y -coordinate values . The number
printed for each point is located so that its
right edge generally corresponds with the
actual map location of the data point . Spaces

between points are left blank . Of course,

small errors are introduced because the num

bers are confined to the printer's columns and

rows , which are spaced 1/10 and 16 of an
inch apart , respectively . Additional errors may

be introduced where the points are very close
together so that the printed numbers tend to
overlap . Because all the characters in each
line or row are printed simultaneously . printed

characters cannot overlap . To avoid this
mechanical problem , the location of each
printed point is shifted to the right where it
would tend to overlap the number representing

the data point immediately to the left . At

least one blank space is left between numbers ,
except where a minus sign is present . All
numbers are truncated to integers to save space

in printing .
As noted previously , thickness of the slices
and the w-coordinate values of the upper
surfaces of the uppermost and the lowermost
slice must be specified in the input data . In
the program , the original data values are
plotted first , followed successively by the first- ,

second- , and third -degree residual values .





APPENDIX B

LISTING OF COMPUTER PROGRAM FOR FITTING HYPERSURFACES

Each line has been arbitrarily numbered for identification at left edge of the line . In
actual practice identification numbers are confined to columns 73 to 80 on the punch cards ,

and 2 is necessary in column 1 .
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1 COMMENT PROGRAM 15 , FITS 4TH DIMENSIONAL 1ST , 2ND AND 3RD DEGREE
VOLUMES BY LEAST SQUARES TO IRREGULARLY-SPACED DATA POINTS . VOLUMES
3 CALCULATED BY TRIPLE INTEGRATION AND HORIZONTAL SURFACES ARE CONTOURED .
2

4 J.W. HARBAUGH , GEOLOGY DEPT . STANFORD S
5 INTEGER XP ( ) , I , J , K , L , OP , N. VERT , HOR , CV ), EL, MoW S
6 INTEGER ARMIN , ARPLS , YDIM . WDIM LY , LX DIGITS , N2 S
INTEGER PLTAR , PRINT , IY , IX , C= TEMP , LINE S7

8 ARRAY PRINT ( 3,50 ) , IY ( 950 ) , IX ( 950 ) , DIGITS ( 50 ) S
9 ARRAY PLTAR ( 12 ) =11Z VALUES ORI ' , ' G DATA ' , ' 1ST DEG ' ,

REE RE ' , ' SIDUAL ' , ' 2NDDEG ' , ' REE RE ' , ' SIDUAL ' , ' 3RDDEG ' ,
'REE RE ' , ' SIDUAL ' ) S

10
11
12 INTEGER 12 S ARRAY 12 (950) $
13 ARRAY ARMIN (40 ) = ( A
14 G ' ' ' H ' ,', '0 ' , ' ' , IPI
ARRAY ARPLS ( 40 )

15
16
17
18
19
20

1619
!.!.!

42
43

H

46
47
48
49
50
51

8

59
60
61
62
63

21
22 FORMAT FORMISKS ( BSPRINT ( 3,1 ) S , IS DIGITS ( I ) S ) ,W) S
23 OUTPUT PLOT ( PLTAR ( ( 1.5 ( C - 1 ) ) -3.5 ) , PLTAR ( ( 1.5 ( C- 1 ) ) -2.5 ) ,
24 PLTAR (1.5 ( C-2 ) ) ) S
25 FORMAT PLFT ( 3A6 ,W.W ) S
26 FORMAT RESLEVI #LOWER LEVEL OF SLICE = * , X8.2 , *
27

' 'C '. '.'D ', ' ', ' E '! K!, IL ,
ISI , ۲۰۱ S

S
…………… " • W! IXI 1) S

ARRAY X ( 950,10 ) , T ( 13,13 ) , R ( 13 ) , XP ( 950,4 ) , T4 ( 6,6 ) , T10 ( 12,12 ) ,
T13 ( 15,15 ) , R4 ( 4 ) , R10 ( 10 ) , R13 ( 13 ) , Q ( 4 ) , 5 ( 10 ) , F ( 13 ) , 2 ( 132 ) ,
CV ( 132 ) , LEV ( 20 ) , LEX ( 20 ) , LAY ( 20 ) S

1,50

#OF SLICE = *, X8.2 , WoWIS
28 OUTPUT RESOUT ( FWSTEP , FWIS
29 START ..
30 INPUT ALPH (A1 ,A2 , A3 , A4 , A5 , A6 , A7 , A8 A9 ,A10 , A11 , A12 )
31 READ ( SS ALPH ) S
32 INPUT PREF ( OP , N, YDIM , HOR , XR , XL , YB , YT , WB , WT , RF , CON ,
33 WDIM, PUNCHOP , RESIDOP ) S
34 READ ( SS PREFIS
35 INPUT ELVS ( EL , FOR I = ( 1,1 , EL ) S LEVII ) ) S
36 INPUT LXVS ( LX , FOR I = ( 1,1 , LX ) S LEX ( I ) ) $

READ ( SS ELVS ) S
READ (SS LXVS ) S

37 INPUT LYVS ( LY , FOR I = ( 1,1 , LY ) $ LAY ( 1 ) ) S READ ( SS LYVS )S
38 IF RESIDOP EQL 1 $ ( INPUT RPLOTCON ( LOW STEP ,HIGH ) S READ ( SSRPLOTCON ) ) S
YDAM = YDIM S HAR = HOR $39

40 IF OP EQL 2222 $
41 BEGIN

52
53
54
55
56 BEGIN
57 T ( 1,2 ) = T ( 1,2 ) + X ( I , 1 ) S
58 T(1,3 ) = T ( 1,3 ) + X ( 1,2 ) S
T ( 194 ) = T ( 1,4 ) + X ( 1,3 ) S
T ( 195 ) = T ( 1,5 ) + ( X ( 1,2 ) .X ( I , 2 ) ) $
T ( 196 ) = T ( 1,6 ) + ( X ( I , 1 ) .X ( 1,3 ) ) S
T ( 197 ) = T ( 1,7 ) + ( X ( 1,2 ) .X ( I +3 ) ) S
T ( 1 , A ) = T ( 198 ) + (X ( 91 ) X ( 1.2 ) )S

UPPER LEVEL

INPUT DATI ( FOR I = ( 1,1 , N ) $ FOR J =(1,1,4 ) S XP ( I ,J ) ) S
READ ( SS DATI ) S
FOR I = ( 1,1 , N ) S FOR J = (1,1,4 ) $ X ( I , J ) = XP ( I ,J ) S

END S
IF OP EQL 4444 S
BEGIN
INPUT DATD ( FOR I =( 1,1 , N ) $ FOR J (1,1,4 ) $ X ( I ,J ) ) $
READ ( SS DATD ) S

•

END S
FOR K = ( 1,1,13 ) $ FOR L = 1,1,13 ) $ T ( K.L ) = 0.0 $
FOR K = (1,1,13 ) $ R ( K ) = 0.0 S
COMMENT CALCULATE VALUES FOR 13 X 13 T MATRIX ELEMENTS , EXCEPT FO
THOSE VALUES THAT ARE DUPLICATES OF OTHERS ,WHICH WILL BE ASSIGNED $
FOR I = ( 1,1 , N ) $
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85
86

T (1,9 ) = T ( 1,9 ) + ( X ( I , 1 ) ,X ( 1,1 ) ) S
T (110 ) T ( 1,10 ) + (X (1,3 ) .X ( I1,3 ) )S

71
72
73
74
75

S
S
S

T (2.5 ) = T (295 ) + ( X ( 1,1 ) , (X ( 12 ).X ( 1,2 ) ) ) S
67 T (296 ) = T ( 296 ) + (X ( I , 1 ) , ( X ( I »1 ) .X ( I +3 ) 11 S
68 T (2,7 ) = T ( 2,7 ) + ( X ‹ I , 1 ) , ( X ( I +2 ) .X ( 1,3 ) ) ) S
69 T (298 ) = T (2,8 ) + (X ( 191 (X (11 ) X ( 1,2 } } } S
70 T (2,9 ) = T (2,9 ) + (X ( 1 , 1 ) . ( X ( I •1 ) .X ( I , 1 }} } S
T (2010)= T (2,10 )+ ( X ( I •1 ) . ( X ( I +3 ) . X ( I +3 ) ) ) S
T (3,5 ) = T ( 395 ) + ( X ( 1 , 2 ) . ( X ( I+2 ) .X ( 1,2 ) ) ) S
7 (307 ) = T (3.7 ) + (X ( 1 +2 ) . ( X ( 1 , 2 ) . X ( I +3 ) }} S
T (3,10 )= T (3,10 ) + (X ( 1,2 ) , ( X ( I +3 ) . X ( I , 3 ) 11 S
T (4,10 )= T (4,10 ) + ( X ( 1 , 3 ) . ( X ( I » 3 ) . X ( I , 3 ) ) ) S

76 T (5,5 ) = T (5,5 ) + ( (X ( I+2 ) .X ( I +2 ) ) . ( X ( 1+2 ) • X ( 1 2
77 T ( 5,6 ) = T ( 516 ) + ( (X ( I »1 ) •X ( I +2 ) }. (X ( I+2 ) •X ( 1,3 )
78 T(5,7 ) = T (5,7 ) + ( ( X ( 1,2 ) .X ( 1 , 2 }). (X ( 1,2 ) . X ( 13
79 T (5,8 ) = T (508 ) + ( (X ( 191 ) .X ( 1,2 ) ) . ( X ( I , 2 ) .X (1,2 ) ) ) S
80 T (5,9) = T(5,9 ) + ( (X ( I1 ) .X ( I +1 } }. ( X ( I , 2 ) .X ( 1, 2 ) 11 S
81 T (5,10 ) = T (5,10 )+ ( ( X ( 1,2 ) .X ( I , 2 } }. ( X ( 1,3 ) .X ( I3 ) ) ) S
T1696 )= T (6,6 )+ ( (X ( 1,1 ) .X ( I , 1 ) ) , ( X ( 1 , 3 ) . X ( I+3 ) ) ) S
T (6,7 )= 116,7 ) + ( X (1,1JXCT : 2} }. (X !! , 3 ) .X { 1,3 }} } S
T (698 )= T (698 )+ ( ( X ( 1,1 ) .X ( I +1 } }. ( X ( 1 , 2 ) . X ( [+3 ) 11 S
T (6,10 ) = T16,10 ) + ( (X ( 1,1 ) .XUI , 3 ) ) , (X ( 1,3 ) .X ( 1031 ) , s
T (7,10 )= T (7,10 )+ ( (X ( 1,2 ) .XII . 3 ) ) . (X ( 1,3 ) . X ( 1,3 ) ) ) S
T (8,9 )= T (8,9 )+ ( ( X ( 191 ) . X ( I +1 } ) . ( X ( I »1 ) . X ( 1,2 ) ) ) S
T (6,9 )= T (6,9 )+ ( (X ( 1,1 ) . X ( 1+1 ) ) . ( X ( I +1 ) • X ( 1,3 ) ) ) $
T (9,9 )= T (9,9 )+ ( ( X ( 1,1 ) .X ( 1 +1 ) ) , ( X ( I » 1 ) . X { i +1 ) ) ) S
T (9,10 ) = T (9,10 )+ ( ( X ( 191 ) X ( +1 ) ) . ( X ( I , 3 ) . X (1,3 ) ) ) S
T ( 10,10 ) =T ( 10,10 )+ ( (X ( 1,3 ) X ( I +3 ) ) . ( X ( 1,3 ) . X ( 1,3 ) ) ) $

82
83

T( 5,11 ) =T ( 5,11 ) + ( ( X ( 1,2 ) . X ( I +2 ) ) , ( X ( 1 , 2 ) , (X ( 1,2 ) . X ( 1,2 ) ) ) )
T ( 5,12 ) =T ( 5 +12 ) + ( ( X ( 1,1 ) . X ( I +1 ) ) . ( X ( 1 , 1 ) , ( X ( 1 , 2 ) .X ( 1,2 ) ) ) ) S
TI 5,13 ) =T (

95 TI 6,11 ) =T (
96 TI 6,12 ) =T (

s97 TV 6,13 ) =T (
98 T( 7,11 ) #T (
99 T( 7,12 ) =T (
100 TI 7,13 ) =T (
101 T ( 8,11 ) T (
102 T( 8,12 ) =T (
103 T ( 8,13 ) =T (
104 TI 9,11 )=T (
105 TI
106

•

5,13 ) + ( ( X ( 1,2 ) . X ( 1,2 ) ) . (X ( 1,3 ) . ( X ( 1 , 3 ) .X ( 1,3 ) ) ) ) S
6,11 ) + ( ( X ( 1,1 ) . X ( 1,2 ) ) . ( X ( I , 2 ) . (X ( 1, 2 ) .X (1,3 ) ) ) ) $
6,12 ) + ( ( X ( I , 1 ) . X ( I »1 ) ) . ( X ( I , 1 ) , ( X ( 1 , 1 ) . X (1,3 ) ) ) ) S
6,13 ) + ( ( X ( 1,1 ) .X {1,21 ) . ( X ( 1,3 ) . ( X ( 1,3 ) .X {1,3 } ) ) ,
7,11 ) + ( ( X ( 1 , 2 ) . X ( I , 2 ) ) . (X ( I , 2 ) . ( X ( I , 2 ) . X ( 1 , 3 ) }} ) S
7912 ) + ( ( X ( I » 1 ) . X ( I , 1 ) ) . ( X ( 1 , 1 ) . ( X ( 1,2 ) .X ( 1,3 ) ) ) ) S
7,13 ) + ( ( X ( 1,2 ) .X ( I , 3 ) ) . ( X ( 1,3 ) . ( X ( 1,3 ) .X ( 1,3 ) ) ) ) S
8,11 ) + ( ( X ( I • 1 ) . X ( 1 , 2 ) ) . ( X ( 1,2 ) , ( X ( 1,2 ) . X ( 1,2 ) ) ) ) S
8912 ) + ( ( X ( I » 1 ) . X ( I , 1 ) ) . ( X ( 1 , 1 ) , ( X ( 1,1 ) . X ( 1,2 ) ) ) ) S
8,13 ) + ( ( X ( 1,1 ) .X ( 1 , 2 ) ) . ( X ( 1,3 ) • (X (1,3 ) X ( 1,3 ) ) ) ) S
9,11 ) + ( ( X ( I •1 ) . X ( I , 1 ) ) , ( X ( 1,2 ) , ( X ( 1 , 2 ) . X ( 1,2 ) ) ) ) S

9+12 ) =T ( 9,12 ) + ( ( X ( I +1 ) . X ( 1,1 ) ) . ( X ( I , 1 ) , ( X ( 1 , 1 ) . X ( I , 1 ) ) } } S
T 9,13 ) =T ( 9,13 ) + ( ( X ( I •1 ) . X ( I +1 ) ) . ( X ( 1,3 ) . ( X ( 1,3 ) . X ( 1,3 ) ) ) ) $
T ( 10,11 ) =T ( 10 , 11 ) + ( {X ( 1 , 2 ) . X ( 1 , 2 ) ) . ( X ( 1 , 2 ) . ( X ( 1 , 3 ) . X ( 1 , 3 ) } ) } S
T ( 10,12 ) =T ( 10,12 )+ ( ( X ( I • 1 ) . X ( I , 1 ) ) . ( X ( 1,1 ) , ( X ( 1 , 3 ) .X ( 1,3 ) ) ) ) S
T ( 10,13 ) T ( 10 , 13 ) + ( {X ( I +3 ) . X ( I •3 ) ) . ( X ( 1,3 ) . ( X ( 1,3 ) .X ( 1,3 ) ) ) ) S
T ( 11,11 ) =T ( 11 »11 ) +( ( X ( 1,2 ) , ( X ( I , 2 ) .X ( 1 , 2 ) ) ) . ( X ( 1 , 2 ) ( X ( 1,2 ) . X ( 1,2 ) ) ) )
T ( 11 , 12 ) T ( 11 , 12 ) + ( ( X ( 191 ) . ( X ( 1 , 1 ) .X ( 1 +1 ) ) ) , ( X ( 1 , 2 ) . ( X ( 1 , 2 ) . X ( I , 2 ) ) ) ) S
T (1113 ) =T ( 11 •13 ) + ( ( X ( I , 2 ) . ( X ( I , 2 ) . X ( I +2 ) ) ) . ( X ( 1,3 ) , ( X ( 1 , 3 ) . X ( 1,3 ) ) ) ) $
T ( 12 +12 ) =T ( 12,12 ) + ( ( X ( 191 ) . ( X ( I +1 ) .X ( 1,1 ) ) ) . ( X ( 1,1 ) . ( X ( 1 , 1 ) . × ( I , 1 ) S
T ( 12,13 ) =T ( 12,13 ) +( ( X ( I , 1 ) . ( X ( 1 , 1 ) . X ( 1,1 ) ) ) . ( X (1,3 ) , (X ( 1 , 3 ) . X ( 1,3 ) ) ) ) S
T ( 13.13 ) =T ( 13,13 ) +( ( X ( 1,3 ) . ( X ( 1 , 3 ) . X ( I , 3 ) ) ) . ( X ( 1 , 3 ) . ( X ( I , 3 ) . X ( 1,3 ) ) ) ) S
R ( 1 ) = R (1 ) +

107
108
109

•

113
114
115
116 X ( 194 ) $

117 R ( 2 ) = R ( 2 ) + (X ( 1,4 ) .XI , 1 }}
118 R (3 ) = R (3 ) + ( X ( 1,4 ) .X ( I , 2 } }
119 R (4 ) = R (4 ) + (X (1,4 ) X ( 1,3 )
120 R (S ) = R (5 ) +
121 R (6 ) = R (6 ) +
122 R (7 ) = R (7 ) +
123 R (8 ) = R ( 8 ) +
124 R (9 ) = R (9 ) +
125 R ( 10 ) = R ( 10 ) +
126 R ( 11 ) = R ( 11 ) +

87
88
89
90
91
92
93
94

110
111
112

$
$
$

( X ( 1 , 4 ) . ( X ( I , 2 ) . X ( 1,2 ) ) ) $
(X (1,4 ), ( X ( 1,1 ) . X ( 1,3 ) ) ) $
(X ( 164 ) . ( X ( 1,2 ) . X ( 1,3 ) ) ) $
(X ( 1,4 ) . (X ( 1,1 ) .X ( 1,2 ) ) ) $
(X ( 1,4 ) . ( X ( 1,1 ) .X ( 1,1 ) ) ) $
(X ( I94 ) . ( X ( I , 3 ) . X ( I +3 ) ) ) $
( ( X ( 1,4 ) .X ( 1,2 ) ) . ( X ( 1 , 2 ) .X ( 1,2 ) ) ) $

M.
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127 R ( 12 ) = R (12 ) + ( (X ( I94 ) .X ( I +1 ) ) . ( X ( I , 1 ) . X ( 1,1 ) ) )
128 R ( 13 ) = R ( 13 ) + ( (X (1,4 ) .XII , 3 ) ) . ( X ( I , 3 ) . X ( 1,3 ) ) )

END S129
130 T 1,1 ) = N S
131 T( 21 ) 8

=
8

132 T 2.2 )
133 T( 2,3 )
134 T( 294 )
135 T 3,1 ) =
136 TI 3,2 ) 8
137 T 3,3 ) =
138 T( 3,4 ) =
139 T( 3.6 1
140 TI 3,8 ) =
141 T( 3,9 ) 8
142 T ( 491 ) =
143 TI 4,2 )
144 TI 4,3 ) =
145 TI 494 ) =
146 TI 4,5 ) =
147 T( 496 1 =
148 TI 4.7 ) #
149 TI 4,8 ) 8
150 TI 4.9 ) ·
151 T( 5,1 ) ·
152 TI 5,2 ) =
153 T( 53 ) =
154 T( 594 ) =
T( 6.1 1 1
T ( 6,2 )

157 TI 6,3 )
158 TI 6.4 )
159 T( 6,5 1
160 T( 7,1 ) =
161 T ( 792 ) =
T ( 7,3 ) B
TI 794 ) B
T 7,5 ) 8
T( 796 )
T( 797 ) B
T( 78 ) 1
T ( 7,9 )
T ( 81 ) =
T( 8.2 )
TI 8,3 ) B

172 T( 84 ) B
173 TI 8.5 ) =
174 T ( 86 )
175 T( 807 )
176 T ( 88 )
177

155
156

B
=

162
163

C

#

TI 8.101
178 T( 9.1 1
179 T( 9,2 )
180 TI 9.3 1
181 TI 9.4 )
182 T( 9,5 1
183 T ( 9,6 )
184 T( 9.7 ) .
185 T( 9,8 ) ·
T( 10,1
T ( 10,2 ) 8
T (10,3 ) B
T (10,4 1

1

186 8

187
188
189 3

164
165
166
167
168
169
170
171

B

8

R

B
=

B
B
=

T ( 1,2 ) S
T ( 1.9 IS
T( 18 ) S
T( 196 ) S
T ( 103 ) S
T ( 18 ) S
T ( 1.5 ) S
T ( 197 ) S
T ( 2,7 ) S
T( 2,5 ) S
T ( 28 ) S
T ( 104 ) S
T ( 1.6 S
T ( 107 ) S
T ( 110 ) S
T ( 307 ) S
T( 2,10 ) S
T3010 ) S
T( 27 ) S
T ( 2,6 ) S
T ( 1,5 IS
TI 2,5 ) S
TI 3,5 S
T ( 307 ) S
T ( 196 ) S
T ( 26 ) S
T ( 27 ) S
T( 210 ) S
T ( 516 ) S
T ( 17 ) S
T( 2,7 ) S
T ( 307 ) S
TI 3,10 ) S
T ( 57 ) $
T ( 67 ) S
T( 5,10 ) S
T ( 5,6 ) S
T 6,8 1S
T ( 1,8 ) S
T( 2.8 IS
T( 2,5 ) S
T ( 27 ) S
TI 5,8 ) S
T 6,8 IS
T ( 5,6 IS
T ( 5,9 ) S
T( 697 )
T( 1,9 )
T( 2,9 )
T( 2,8 )
T ( 2.6 1

= T( 5,9 )

$
$
$
$
S
S
ST( 6,9 )

T ( 6,8 )
T( 8,9 ) S
T ( 1.10 ) S
T( 2.10 ) S
T ( 3.10 ) S
T ( 4.10 ) S

8

T( 1911 ) 8 T ( 3.5 S
T( 1.12 ) = T( 29 ) S
T ( 1.13 ) 2 T( 4.10 ) S
T( 2011 ) " T ( 5,8 ) S
T( 2,12 ) = T( 919 ) S
T( 2.13 ) = T ( 6,10 ) S
T ( 3,11 ) 23 T( 5,5 S
T ( 3.12 ) 8 TI 8,9 ) S
T( 3,13 ) = T(107 ) S
T ( 4,11 ) = T( 507 ) S
T( 4,12 ) = T( 69 ) S
T ( 4.13 ) 8 T ( 10,10 ) S
T ( 1191 ) B T ( 1,11 ) S
T ( 11,2 ) " T 2,11 ) S
T (11,3 ) 8 T 3,11 ) S
T( 1194 ) = T ( 4,11 ) S
T(11.5 ) = T( 511 ) S
T( 1196 ) T( 6.11 ) S
T (11.7 ) T 7,11 ) S
T ( 11,8 ) = T 8,11 ) S
T ( 11,9 ) = T( 911 ) S
T ( 11,10 ) = T (1011 ) S
T (121 ) = T ( 1,12 ) S
T (12,2 ) = T( 2,12 ) S
T ( 12,3 ) = T( 3,12 ) S
T(1294 ) = T( 4,12 ) S
T( 12,5 1 = T( 5,12 ) S
T ( 12.6 ) T( 6,12 ) $
T ( 12,7 ) = T( 7,12 ) S
T ( 12,8 ) = T( 8,12 ) S
T (12,9 ) T 9.12 ) S
T ( 12,10 ) = T (1012 ) S
T( 13,1 ) 8 T ( 1,13 ) S
T ( 13,2 ) = T( 2,13) S
T (13,3 ) = TC 7.10 ) S
T (13.4 ) T 4,13 ) S
T(13.5 ) 2 T 5,131 S
T ( 13,6 ) = T ( 6,13 ) S
T (13,7 ) =
T ( 13,8 ) B T 8,13 ) S
T ( 13,9 ) 2 T 9,13 ) S
T ( 13,10 ) = T(10.13 ) S
T ( 12,11 ) = T ( 11,12 ) S
T ( 13,11 ) R T (11,13 ) S
T( 13,12 ) R T ( 12,13 ) S

T( 7,13) S

T (3,13 ) = T ( 7,10 ) S

=
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190 T (10.5 1 · T( 5.10 ) S
191 T (10,6 ) = T ( 6,10 ) S
192 T (10,7 ) = T ( 7.10 )
193 T (10.8 ) = T( 697 )
T (10,9 ) = T( 9,10 )194

195 FOR I =( 1,1,4 ) S FOR J =( 1,1,4 ) ST4 ( I ,J ) = T ( I ,J ) $
196 FOR I =( 1,1,13 )S FOR J = ( 1,1,13 ) ST13 ( 1 , J ) = T ( I ,J ) $

222
223

197 FOR I = ( 1,1,10 ) $ FOR J = ( 1,1,10 ) ST10 ( I ,J ) = T ( I ,J) S
198 COMMENT ASSIGN 4 , 10 ,AND 13 PORTIONS OF COLUMN VECTOR R TO NEW VECTORSS
199 FOR I = ( 1,1,4 ) $ R4 ( 1 ) = R ( I ) S
200 FOR I =( 1,1,13 ) S R13 ( 1 ) =R ( I ) S
201 FOR I =( 1,1,10 ) s R10 ( 1 ) R ( I ) S
202 COMMENT SOLVE LINEAR MATRIX EQUATIONS OF GENERAL FORM TS = RS
EXTERNAL PROCEDURE INPROD ( ) $203

204 PROCEDURE SOLVINSA ( , ) , B ( ) ,Y ( )SSINGULAR ) S
205 BEGIN
206 COMMENT THIS IS THE METHOD OF CROUT WITH INTERCHANGES ,
207 TO SOLVE AY B FOR Y GIVEN A AND B.
208
209

COMMENT EXTERNAL PROCEDURE INPROD IS CALLED BY SOLV ,
SO INPROD MUST BE AVAILABLE WHEN SOLV IS CALLED . $

210 COMMENT SINGULAR IS THE LABEL OF THE STATEMENT TO WHICH
211 SOLV ( ) EXITS IF A () IS SINGULARS
212 COMMENT REAL A {, ) , B ( ) ,Y ( ) S
INTEGER I , IMAX , J , K , NS213

214
215

FOR K=( 1,1 , N ) S
BEGIN

216
217
218
219
220
221

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

TEMP = OS
FOR I=( K , 1 , N ) S
BEGIN
XX = ACI , K )
A( IK ) = XX $

IF ABS ( XX ) GTR TEMP S
BEGIN

BEGIN

END

$
$
$

·

TEMP = ABS ( XXH $
IMAX = I

ENDS
IF TEMP EQL 0.0s
GO SINGULARS
COMMENT WE HAVE FOUND THAT ACIMAX , K ) IS THE LARGEST PIVOT IN COL K
NOW WE INTERCHANGE ROWS K AND IMAXS
IF IMAX NEQ KS

FOR J = ( 1,1 , N ) S
BEGIN

INPROD ( 1,1 , K - 1 , A ( I ),A( K ) ) S

TEMP =A ( K , J ) S A ( K , J ) =A ( IMAX , J ) $ A ( IMAX , J ) =TEMP
ENDS
TEMP B ( K ) SB ( K ) =B ( IMAX ) SB ( IMAX ) =TEMP

249
250
251
252 FND SOLVIIS

ENDS
COMMENT NOW FOR THE ELIMINATIONS
DENOM A(KK ) S
FOR I=( K +1,1 ,N ) S
A(I,K ) A ( IK ) /DENOM S
FOR J = ( K+1,1 , N ) S
A(K ,J ) = A ( K , J )
B (K) B ( K ) · INPROD (1,1 , K - 1 , A ( K ) , B ( ) )

-

→

ENDS
FOR I=( 1,1 , N ) S Y ( I ) = A ( I , I ) S
COMMENT NOW FOR THE BACK SUBSTITUTIONS
FOR K = ( N , -1,1 ) $
Y (K ) = ( B ( K )
RETURN

INPROD ( 1,1 , K - 1 , A ( K ) , A( J ) ) $

INPROD ( K+1 , K+1 , N- K , A ( K ) , Y ( ) ) ) /A (KK )
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253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

282
283
284
285
286
287
288
289

272
273
274
275 END $
276 EM1 = EM2 = EM3 = 0.0 $
277 FOR I =( 1,1 ,N ) $
278 BEGIN
279
280
281

290
291
292
293
294
295
296

SOLVI 4S T4 ( ) , R4 ( ),
MAT6 ..
SOLV ( 10ST10 ( , ) , R10 ( ) ,

307
308
309
310
311
312
313
314
315

MAT10 ..
SOLV (13ST13 ( , ) , R13 ( ),
COMMENT SUBSTITUTE W.X
FOR I = ( 1,1 ,N ) S
BEGIN
X (1,5 ) = Q ( 1 ) +
X ( 196 ) = X ( 1,4 )

( Q ( 2 ) , X ( 1,1 ) ) + ( Q ( 3 ) . X ( 1,2 ) ) + (Q ( 4 ) .X ( 1,3 ) ) S
X ( 195 ) S

X (1,7 ) = S ( 1 ) + ( S ( 2 ) .X ( 1,1 ) ) + ( S ( 3 ) X ( I , 2 ) ) + ( S ( 4 ) X ( 1,3 ) ) +
(S (5 ) , (X ( 1 , 2 ) . X ( I , 2 ) ) ) + ( S ( 6 ) . ( X ( I , 1 ) .X ( 1,3 ) ) ) +
(S ( 7 ) , (X ( 1,2 ) X ( 1,3 ) ) ) + ( S ( 8 ) . ( X ( 1,1 ) , X ( 1,2 ) ) } +
(S (9 ) , ( X ( I • 1 ) . X ( I •1 ) ) ) + ( S ( 10 ) . X ( 1,3 ) . X ( 1,3 ) ) ) $

X ( 1,8 ) = X ( 1,4 ) X(1,7 ) S
X (1,9 ) = F ( 1 ) + ( F ( 2 ) X ( I , 1 ) ) +
( F ( 5 ) . (X ( 1 , 2 ) . X ( 1,2 ) ) ) +
( F (7 ) , (X ( I , 2 ) .X ( I ,3 ) ) ) +
( F (9 ) (X ( I , 1 ) . X ( I , 1 ) ) ) +
( (F (11 ) X ( 1 , 2 ) ) . ( X ( I , 2 ) . X ( 1,2 ) ) ) + ( ( F ( 12 ) .X ( I , 1 ) ) . ( X ( I , 1 ) . X ( 1,1 ) ) ) +
( (F ( 13 ) X ( I , 3 ) ) . ( X ( I +3 ) . X ( 1,3 ) ) ) $

X (19 ) $

( F ( 8 ) . ( X ( 1.1 ) . X ( 1,2 ) ) )
( F ( 10 ) ( X ( 1,3 ) .X ( 1,3 ) ) )• +

X (1,10 ) = X ( 194 )

-

END S
E1 =
E2
E3

-

-

Q() S MAT6 ) S
SS MAT10 ) S
FI) S START ) S
AND Y

EM1 / ( N- 1 ) S
� EM2 / ( N-1 ) S

-

EM1 = EM1 + ( X ( 1,6 ) . X ( 1,6 ) ) $
EM2 = EM2 + (X ( 1,8 ) .X ( 1,8 ) ) S
EM3 = EM3 + (X ( I , 10 ) .X ( I , 10 ) ) $

VALUES IN EQUATIONS OF FITTED SURFACES $

SMLN SMLN + X ( 1,5 ) S
LNSQ LNSQ + ( X ( I , 5 ) . X ( 1,5 ) IS
SMQD = SMQD +
QDSQ = QDSQ +
SMCB SMCB +
CBSQ CBSQ + ( X ( 1,9 ) . X ( 1,9 ) }$
SMZ = SMZ + X (1,4 ) S
ZSQ = ZSQ + (X (1,4 ) . X ( I , 4 ) ) $

END $297
298
299
300
301

ZOR = ZSQ • ( ( SMZ SMZ ) / ( N- 1 ) ) $
PTS1 = 100.0 ( ( LNSQ~ { ( SMLN.SMLN ) / ( N- 1 ) ) }/ ZOR ) $
PTS2 = 100.0 ( ( QDSQ - ( ( SMQD.SMQD ) / ( N- 1 ) ) ) / ZOR ) $
PTS3 = 100.0 ( {CBSQ - ( ( SMCB.SMCB ) / ( N- 1 ) ) ) /ZOR ) S

302 IF PTS1 LSS 0.0 $ PTS1 = 100.0 + PTS1 S
303 IF PTS2 LSS 0.0 $ PTS2 = 100.0 + PTS2 $
IF PTS3 LSS 0.0 $ PTS3 = 100.0 + PTS3 $
QDON = QDSQ - LNSQ $ CBON = CB2Q - QDSQ
OUTPUT ERMA ( E1 E2 E3 PTS1.PTS2 , PTS3 ) $

304
305
306

= * .X31.2.W , W,FORMAT FMTR ( * ERROR MEASURE LINEAR TREND SURFACE
*ERROR MEASURE QUADRATIC TREND SURFACE = * .X28.2 ,W.W �
*ERROR MEASURE CUBIC TREND SURFACE = * , X3 2.2 , W, W�
*PERCENT TOTAL SUM SQUARES LINEAR SURFACE = * , X25.2 , W,W,
*PERCENT TOTAL SUM SQUARES QUADRATIC SURFACE = * ,X22.2 ,W , W,
*PERCENT TOTAL SUM SQUARES CUBIC SURFACE = * ,X26.2 , W, W) S

OUTPUT VAR ( LNSQ , EM1 , QDSQ , QDON , EM2 , CBSQ , EM3 , CBON
FORMAT FVAR ( * SUM OF SQUARES DUE LINEAR COMPONENT = * , X30.2 , W4 , W,

* SUM OF SQUARED DEVIATIONS FROM LINEAR = * .X28.2 ,W,W,

( F ( 3 ) .X ( 1,2 ) ) + ( F (4 ) .X ( 1,3 ) ) +
( F (6 ) (X ( 1,1 ) .X ( 1,3 ) ) ) +

+

= EM3 /(N- 1 ) S
SMLN = LNSQ = SMQD = QDSQ = SMCB = CBSQ = SMZ = ZSQ = 0.0 $
FOR I = ( 1,1 , N ) $
BEGIN

X ( 1,7 ) S
(X ( I , 7 ) . X ( I , 7 ) }$
X ( 1,9 ) $

$

$
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316
317
318
319
320
321

322
323
324
325
326

AZM = R ( 1 ) /N S
OUTPUT ALPHA ( A1 ,A2 , A3 , A4 , A5 , A6 , A7 , A8 , A9 , A10 , All ,A12 ) S
OUTPUT ODS1 (FOR I = ( 1,1 , N ) $ FOR J = ( 1,1,10 ) $ X ( I , J ) ) $

327 FORMAT FMTA ( 12A6 ,W3 W) S
328
329

OUTPUT CO3 ( FOR J = ( 1,1,4 ) S
C06 (FOR J ( 1,1,10 ) $

330 C10 ( FOR J = ( 1,1,13 ) S
331 FORMAT CF3 ( W, * EQUATION COEFFICIENTS * , W, * LINEAR , Z = * , X12.5 , * +* ,

X12.7 .*W +* , X12.7 , * X +* , ×12.7 , * Y * , W, W) ,
CF6 (*LIN + QUAD , Z =* , X12.5 , * +* , X12.7 , * W +* , X12.7 , ** ** , X12.7 ,
*Y +* ,X12.8 , * X2 +* , X12.8 , * WY +* , X12.8 , * XY * , W, W, B10 ,
*** ,X12.8 , * WX +* , X12.8 . * W2 +* , X12.8 , * Y2 * , W, W) ,
CF10 ( LIN + QUAD + CUB , Z = * , X12.5 , * +* , X12.7 , * W +* , X12.7 , * X +* ,
X12.7 , * Y +* ,X12.8 , * X2 +* , X12.8 , *WY* •W•W•B10 , * +* , X12.8 , * XY +* ,
X12.8 , * WX +* , X12.8 , *W2 +* , X12.8 , * Y2 +* , X12.8 , * X3
*W3 +* ,X12.8 , * Y3 * , W.W ) S

+* , X12.8 ,

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

366
367
368
369
370
371
372
373
374
375

* SUM OF SQUARES DUE LINEAR + QUADRATIC COMPONENT = * , X18.2 ,
WoW, SUM OF SQUARES DUE TO QUADRATIC ALONE = * , X28.2 , W.W .
*SUM OF SQUARED DEVIATIONS FROM LINEAR + QUADRATIC = * ,
X16.2.W.W.

*
*SUM OF SQUARES DUE LINEAR +QUADRATIC +CUBIC = * , X24.2 , W, W,
*SUM OF SQUARED DEVIATIONS FROM LINEAR +QUADRATIC +CUBIC =
X12.2 ,W,W,
*SUM OF SQUARES DUE CUBIC ALONE = * , X35.2 , W. WIS

376
377
378

FORMAT JIM ( #13 X 13 (X ,Y ) MATRIX VALUES **W.W ) $ WRITE ( SS JIM ) $
OUTPUT TRAY (FOR I =( 1,1,131S FOR J=( 1,1,13 ) $ T ( I , J }}$

349 FORMAT FTRA(W,13F10.3.W ) S
350 WRITE ( SS TRAY , FTRA ) $
351 FORMAT JOE ( W, * 1 X 13 COLUMN VECTOR VALUES * ,W.W ) $ WRITE ( $$ JOE ) S

OUTPUT RAR ( FOR I = ( 1,1,13 ) $ R ( 1 ) ) $ WRITE ( $$ RAR , FTRA ) S352
353 WRITE ( $$ C03 , CF3 ) $ WRITE ($$ C06 , CF6 ) $ WRITE ( $$ C10 , CF10 ) $
354 WRITE ( SS ERMA , FMTR ) $ WRITE $$ VAR , FVAR ) $
355 WD1 = WB - WBTS WD2 = (WB.WB ) - (WT.WT ) $
356 WD3 (WB . ( WB.WB ) ) - ( WT . (WT.WT ) ) S
357 WD4 = ( (WB.WB ) . ( WB.WB ) ) - ( (WT.WT ) . (WT.WT ) ) $
358 XD1 = XR- XL $ XD2 = (XR.XR ) - (XL.XL ) $·359 XD3 = (XR . (XR.XR ) ) • (XL. (XL.XL ) ) $
360 XD4 = ( ( XR . XR ) . (XR.XR ) } ( (XL.XL ) . (XL.XL ) ) $
361 YD1 YB YT S YD2 = (YB.YB ) (YT YT ) $

YD3 = (YB . ( YB.YB ) ) - ( YT . (YT.YT ) ) $
YD4 = ( (YB.YB ) . (YB.YB ) ) ( (YT.YT ) . (YTYT ) ) $

362
363
364 AR = WD1 . (XD1.YD1 ) $
365 VLN = ( (Q ( 1 ) . WD1 ) . (XD1.YD1 ) ) + ( ( (0.5 ) . Q ( 21 ) . ( WD2. (XD1.YD1 ) }}

+ ( ( (0.5 ). Q ( 3 ) ) . ( WD1 . ( XD2.YD1 ) ) ) + ( ( ( 0.5 ) . Q ( 4 ) ) . ( WD1 . ( XD1 . YD2 ) ) ) $
VQD = ( ( S ( 1 ) .WD1 ) . ( XD1.YD1 ) ) + ( ( (0.5 ) . S ( 2 ) ) . (WD2. (XD1.YD1 } }}
+ ( ( (0.5 ) . S ( 3 ) ) . (WD1 . (XD2.YD1 ) ) ) + ( ( ( 0.5 ) . 5 ( 4 ) ) . ( WD1. ( XD1.YD2 ) }}
+ ( ( (0.3333 ) . S ( 5 ) ) . ( WD1 . ( XD3.YD1 ) ) ) + ( ( ( 0.25 ) . S ( 6 ) ) . ( WD2 . ( XD1.YD2 ) ) )
+ ( ( ( 0.25 ) . S ( 7 ) ) . (WD1 . ( XD2.YD2 ) ) ) + ( ( ( 0.25 ) .S ( 8 ) ) . ( WD2 . ( XD2.YD1 ) ) )
+ ( ( (0.3333 ) . S ( 9 ) ) . ( WD3. ( XD 1.YD1 ) ) )
+ ( ( (0.3333 ) .S ( 10 ) ) . ( WD1 . ( XD1.YD3 } }} $

VCB = ( ( F ( 1 ) . WD1 ) . ( XD1.YD1 ) ) + ( ( (0.5 ) • F ( 2 ) ) . ( WD2. (XD1.YD1 ) }} +
( ( (0.5 ) .F ( 3 ) ) . ( WD1 . (XD2.YD1 }) ) + ( ( ( 0.5 ) . F ( 4 ) ) . ( WD1 . ( XD1.YD2 ) ) ) +
( ( (0.3333 ) . F ( 5 ) ) . ( WD1 . ( XD3.YD1 ) ) ) + ( ( ( 0.25 ) . F ( 6 ) ) . ( WD2 . ( XD1.YD2 ) ) ) +
( ( ( 0.25 ) .F ( 7 ) ) . ( WD1 . (XD2.YD2 }} ) + ( ( ( 0.25 ) .F ( 8 ) ) . (WD2 . (XD2.YD1 ) ) ) +
( ( (0.3333 ) .F ( 9 ) ) . ( WD3 . ( XD1.YD1 ) ) ) + ( ( ( 0.3333 ) . F ( 10 ) ) . ( WD1 . ( XD1.YD3 ) } )
(((0.25 ) .F ( 11 ) ) . (WD1 . (XD4.YD1 ) ) ) + ( ( ( 0.25 ) .F ( 12 ) ) . ( WD4 . ( XD1.YD1 } } } +

**

-

Q (J) ),
S (J) ),
F (J) ) S

FORMAT HEDIW , *WCOORD
*XCOORD YCOORD Z-VALUE 1ST -TRD 1ST -RSD 2ND - TRD 2ND - RSD * ,

* 3RD-TRD 3RD-RSD * ,WoW) $
FORMAT FMT1 ( * 5* , X7.1 , 9X8.1 , W) $
FORMAT FMT2 ( * 5 * , X7.1 , 9X8.1 , C ) $
FORMAT FMTAP ( #5S * , 12A6 , * S * , W) S
WRITE ( SS ALPHA , FMTA ) S

·
·

+
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379
380
381
382
383
384
385
386
387
388
389

395
396
397

420
421
422
423
424
425

(((0.25 ) .F ( 13 ) ) . ( WD1 . ( XD1.YD4 ) ) ) S
$ AZ2 VQD/AR $

390
391 WRITE ( SS VOL , FMVL ) S
392 WRITE ( SS ALPHA , FMTAP ) S
393 WRITE ( SS HED ) S
394 IF PUNCHOP EQL 1 $ WRITE ( S$ ODS1 , FMT1 ) $
IF PUNCHOP EQL 2 $ WRITE ( SS ODS1 , FMT2 ) S
COMMENT CALCULATE DX AND DY , AND SUBSTITUTE PROGRESSIVELY INCREAS +NG
VALUES OF X AND Y MAP VALUES IN FITTING EQUATIONS AND CONTOUR S

WT ) /WDIM S KY = ( YB YT )/YDIM S
398 VERT = (0.603 ) .YDIM S WDIM = 10.6031.WDIM S
399 DW (WB
400 DX = (XR
401 DY = (YB
402 OUTPUT CNDATA (XL, XR , YT , YB , RF , CON , LEV ( K ) ) S
403 FORMAT CONDAT ( * X VALUE LEFT EDGE OF MAP = * X9.1 ,
404
405
406

X VALUE RIGHT EDGE OF MAP =* X8.1 .
Y VALUE TOP EDGE OF MAP = *, X8.1 ,W,
*Y VALUE BOTTOM EDGE OF MAP = * , X7.1 ,
REFERENCE CONTOUR VALUE = * , X9.1 ,
CONTOUR INTERVAL = * ,X13.2 ,W,

407
408
409 #ELEVATION OF MAP DATUM = * , X11.1 W, W) $

AZ1 = VLN /AR
AZ3 = VCB/AR S

433
434

OUTPUT VOL ( VLN , VQD , VCB.AZM , AZ1 , AZ2 , AZ3 , AR ) S
FORMAT FMVL (W.VOLUME WITHIN

#VOLUME WITHIN
*VOLUME WITHIN
*ARITH . MEAN Z ,
*AVERAGE Z VALUE ,
*AVERAGE Z VALUE ,
*AVERAGE Z VALUE ,
#VOL OF BLOCK IN

438
439
440
441

·
·
· XL)/HOR SYT )/VERT $

410 OUTPUT LXDATA ( LEX ( K ) , WT , WB , YB , YT , CON ) S
411 FORMAT
412

LXFMT ( *VERTICAL PROFILE PARALLEL TO W-Y PLANE AND INTERSECTING *
* X AXIS AT * , X10.1 , W,

413 *W VALUE TOP EDGE OF PROFILE =*
414
415
416

*W VALUE BOTTOM EDGE OF PROFILE =* X7.1,84 ,
*Y VALUE LEFT EDGE OF PROFILE =*
*Y VALUE RIGHT EDGE OF PROFILE =*
*CONTOUR INTERVAL = * , X6.2 , W,W) $

OUTPUT LYDATA ( LAY ( K ) , WT , WB , XL , XR , CON ) $
417
418
419 FORMAT LYFMT ( *VERTICAL PROFILE PARALLEL TO W-X PLANE AND INTERSECTING *

426 W = 1 $
427 CALZ1 ..
428 I = 1 $ K = 1 $
429 IF W GEQ 4 $ GO PROFILEX $
430 IF W EQL 1 $
431 BEGIN
432

LINEAR SURFACE * B8 , X12.2 , W,W.
LIN+QUAD SURFACE * , 86 , X12.2 , W,W,
LIN+QUAD +CUB SURFACE =* , 82 , X12.2 ,W ,W,
SUM OF Z VALUES / N = * , X11.2 ,WW .
LINEAR SURFACE * , 86 , X12.2 , W,W,
LIN+QUAD SURFACE * , 84 , X12.2.WOW .
LIN+QUAD +CUB SURFACE =* , X12.2 , W.W .
CUBED UNITS * , 811 , X12.2 ,W�W) S

-

435
436 WRITE ( $$ CNDATA.CONDAT ) $
437 BQ = Q( 1 ) + ( Q ( 2 )

BQ1 = Q ( 3 ) .DX $
CALZ3 ..

* Y AXIS AT # X10.1 ,W,
*W VALUE TOP EDGE OF PROFILE =* , X7.1,87 ,

X7.1,87 ,
•

*W VALUE BOTTOM EDGE OF PROFILE =* X7.1.84 ,
*X VALUE LEFT EDGE OF PROFILE =* , X7.1 , W,
*X VALUE RIGHT EDGE OF PROFILE * , X7.1,810 ,
*CONTOUR INTERVAL = * , X6.2 �WOW) S

X7.1 , W,
X7.1,810 ,

LAB3..
WRITE ( SS ALPHA , FMTA ) $
FORMAT OHED1 ( * CONTOURS OF LINEAR TREND VOLUME * ,W ) $
WRITE ( $$ ZHED1 ) $

BQ2 = ( Q ( 4 ) . ( YT +( DY . I ) ) } + BQ $
FOR A = (1.0.1.0.HARI $

LEV ( K ) ) + ( Q ( 3 ) XL ) $
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|

1

Z (A) = BQ2 + (A.BQ1 ) S
GO CONTOUR S

442
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

END S

502
503
504

IF W EQL 2 S
BEGIN
LAB4..
WRITE ( SS ALPHA , FMTA ) S
FORMAT ZHED2 ( *CONTOURS OF LINEAR QUADRATIC TREND VOLUME * ,W) S
WRITE (SS ZHED2 ) $

WRITE ( SS CNDATA , CONDAT ) $
SBS1 = S (3 ) .DX

BS2
BS3
BS5
CALZ4 ..
BSY = YT + (DY.I ) S
BS4 = S ( 7 ). ( BSY.DX )
BS

= S ( 5 ). ( 2XL.DX )
= S ( 5 ) ( DX.DX )
= S ( 8 ) . ( LEV ( K ) .DX ) S

S ( 1 ) + ( S ( 2 ) .LEV ( K ) ) + ( S ( 3 ) XL ) + ( S ( 4 ) .BSY ) +
(S (5 ). (XL.XL ) ) + ( S ( 6 ) ( LEV ( K ) .BSY ) ) + ( S ( 7 ) . (BSY.XL ) ) +
(S (8) (LEV ( K ) .XL ) ) + ( S ( 9 ) . ( LEV ( K ) .LEV ( K ) ) ) +
(S ( 10 ). (BSY.BSY ) ) S
BS1 + BS2 + BS4 + BS5 $

GO CONTOUR $

BSA
FOR A (1.0,1.0 , HAR ) S
Z (A) = BS + (A.BSA ) + (BS3 . (A.A ) ) S

END S
IF W EQL 3 S
BEGIN

S
S

BTY = YT + (DY.I ) S
BT4 F ( 7 ) . ( BTY.DX )

S

LAB5..
WRITE ( SS ALPHA , FMTA ) S
FORMAT ZHED3 ( *CONTOURS OF LINEAR QUADRATIC + CUBIC TREND *,

*VOLUME * W) S
WRITE ( SS ZHED3 ) S

WRITE ( SS CNDATA ,CONDAT ) S
BT1 = F ( 3 ) .DX $

BT2 = F ( 5 ) . ( 2XL.DX )
BT3 = F ( 5 ) . ( DX.DX )
BT5 = F ( 8 ) ( LEV ( K ) .DX ) $
BT6 = F ( 11 ) . ( 3XL . (XL.DX ) )
BT7 = F ( 11 ) . ( 3XL . ( DX.DX ) )
BT8 = F ( 11 ) . ( DX . ( DX.DX ) )
BTAA = BT3 + BT7 $
CALZ5 ..

GO CONTOUR $
496 END S
CONTOUR ..497

498 FOR J = ( 1,1 , HOR ) $
499 BEGIN
500
501

IF Z (J) LSS RF S
BEGIN

$
S

$

BT = F (1 ) + ( F ( 2 ) LEV ( K ) ) + ( F ( 3 ) .XL ) ( F ( 4 ) .BTY ) +

(F (5 ). (XL.XL ) ) + ( F ( 6 ) . ( LEV ( K ) .BTY ) ) + ( F ( 7 ) . ( BTY.XL ) ) +
(F (8 ).(LEV ( K ) .XL ) ) + ( F ( 9 ) . ( LEV ( K ) . LEV ( K ) ) ) +
( F ( 10 ) . ( BTY.BTY ) ) + ( F ( 11 ) . ( XL . (XL.XL ) ) ) +
(F ( 12 ). ( LEV ( K ) . ( LEV ( K ) .LEV ( K ) ) ) ) + ( F ( 13 ) . ( BTY . ( BTY.BTY ) ) ) $

BTA BT1 + BT2 + BT4 + BT5 + BT6 $

FOR A = ( 1.0,1.0 , HAR ) $
Z (A) = BT + (A.BTA ) + (BTAA (A.A ) ) + ( BT8 . (A. (A.A ) ) ) $

4
4
4 $

CV (J ) = ARMIN (MODIFIX ( ( RF - Z ( J ) ) / CON ) , 40 ) +1 ) S

GO THERE $

END S



48 Kansas Geol . Survey Bull . 171, 1964

505 CV(J) = ARPLS (MODIFIX ( ( Z ( J ) -RF ) /CON }, 40 )+1 ) S
506 THERE .. END $
507 OUTPUT ODCV ( FOR J = ( 1,1 , HOR ) $ CV ( J ) }$
508 FORMAT FTCV ( 132A1 ,W) S
509 WRITE ( SS ODCV ,FTCV ) S
510 I = I + 1 S
511 IF (W EQL 1 ) AND ( I LEQ VERT ) $ GO CALZ3 $
512 IF (W EQL 2 ) AND ( I LEQ VERT ) $ GO CALZ4 $
513 IF (W EQL 3 ) AND ( I LEQ VERT ) S GO CALZ5 S
514 K = K + 1 S
515 IF (W EQL 1 ) AND ( K LEQ EL ) S ( I
516 IF (W EQL 2 ) AND ( K LEQ EL ) S ( I
517 IF (W EQL 3 ) AND ( K LEQ EL ) S ( 1
518 W = W + 1 S GO CALZ1 S
519 PROFILEX ..
520 W = 1 S
521 CALX1 ..
522 I 1 SK = 1 $
523 IF W GEQ 4 S
524 IF W EQL 1 S
525 BEGIN
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

GO PROFILEY S

LABX3 ..
WRITE ( SS ALPHA , FMTA ) S WRITE ( SS ZHED1 ) S
WRITE ( SS LXDATA , LXFMT ) S

GO KONTOUR1 $
END S
IF W EQL 2 S
BEGIN

BXA2 = Q ( 4 ) .KY S
BXA1 = Q ( 1 ) + ( Q ( 2 ) .WT ) + ( Q ( 3 ) LEX ( K ) ) + ( Q ( 4 ) .YB ) S
CALX3 ..
BXA3 BXA1 + (Q ( 2 ) . ( DWI ) ) S
FOR A = (1.0,1.0 , YDAM ) S
Z (A) = BXA3 (A.BXA2 ) S

BTX
BX2
BTQ

1 S GO LAB3 ) S
= 1 $ GO LAB4 ) S
= 1 S GO LAB5 ) $

·

LABX4..
WRITE ( SS ALPHA , FMTA ) S WRITE ( SS ZHED2 ) S
WRITE ( SS LXDATA , LXFMT ) S
BXO S ( 1 ) + (S ( 3 ) .LEX ( K ) ) + ( S ( 4 ) ,YB ) + ( S ( 5 ) . ( LEX ( K ) .LEX ( K ) ) )
(S (7 ). ( LEX ( K ) .YB ) ) + ( S ( 10 ) . (YB.YB ) ) $

BX1 = S (4 ) KY $
BX3 = S(7) ( LEX ( K ) .KY ) S
BX4 = S ( 10 ) ( 2YB.KY ) S
BX5 = S (10 ). (KY.KY ) $

S ( 2 ) + ( S ( 6 ) , YB ) + ( S ( 8 ) LEX ( K ) ) $BTX1
CALX4 ..

GO KONTOUR1 $
END $
IF W EQL 3 S
BEGIN

= WT + (DW.I ) S
=( S ( 6 ) . ( BTX.KY ) ) $
=(BTX1.BTX ) + ( S ( 9 ) . ( BTX.BTX ) ) + BXO $

BTX2 BX1 + BX2 + BX3 BX4 S
(1.0,1.0 , YDAM ) SFOR A

Z (A ) =- ( A@BTX 2 ) + ( { (A.A ) .BX5 ) + BTQ ) S

LABX5 ..
WRITE ( SS ALPHA , FMTA ) $ WRITE ( $$ ZHED3 ) $
WRITE ( $$ LXDATA . LXFMT ) S
BDO F ( 1 ) + ( F ( 3 ) .LEX ( K ) ) + ( F ( 4 ) .YB ) + ( F ( 5 ) . ( LEX ( K ) .LEX ( K ) ) )

+ ( F ( 11 ) . ( LEX ( K ) .
$

+ (F ( 7 ) . ( LEX ( K ) .YB ) ) + ( F ( 10 ) . (YB.YB ) )
(LEX (K ) .LEX ( K ) ) ) )+ ( F ( 13 ) ( YB . ( YB.YB ) ) )

BD1 = F ( 2 ) + ( F ( 6 ) .YB ) + ( F ( 8 ) ⚫LEX ( K ) ) $
BD2 = IF ( 4 ) KY ) S
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I

BD4 = ( F (7 ).( LEX ( K ) .KY ) )
BD5 =2 (F ( 10 ) . ( YB.KY ) ) S
BD6 = F ( 10 ) . (KY.KY ) $
BD7 =3 (F ( 13 ) . ( YB . ( YB.KY ) ) ) S
BD8 -3 ( F ( 13 ) . (YB . ( KY.KY ) ) ) S
BD9 = F (13 ).(KY . (KY.KY ) ) S
CALX5 ..

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

BDX = WT + (DWI ) S
BD10 BD2 + ( F ( 6 ). ( BDX⚫KY ) ) + BD4 + BD5 + BD7 $
BD11 = BD6BD8 $
BD12 (BD1.BDX ) + BDO + ( F ( 9 ) . ( BDX BDX ) ) + ( F ( 12 ) . ( BDX . ( BDX.BDX ) }}S
FOR A = (1.0,1.0 , YDAM ) S
Z (A) 8 BD12- ( A.BD10 ) + ( (A.A ) .BD111 - ( (A.BD9 ). (A.A ) ) $
GO KONTOUR1 $

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

END S
KONTOUR1 ..
FOR J = ( 1.1.YDIM ) SDIM
BEGIN

583
584
585
586
587
588 CV (J) = ARMIN (MODIFIX ( ( RF - Z ( J ) ) /CON ) ,40 ) +1 ) S

GO HERE S589
590 END S
591 CV (J) ARPLS ( MOD ( FIX ( ( Z ( J ) -RF ) /CON ) , 40 ) +1 ) S

HERE .. END $592
593 OUTPUT OCDX ( FOR J =( 1,1 , YDIM ) S CV (J ) ) $
WRITE ( SS OCDX , FTCV ) S594

595 I = I + 1 S
596 IF (W EQL 1 ) AND ( I LEQ WDIM ) S GO CALX3 $
597 IF (W EQL 2 ) AND ( 1 LEQ WDIM) S GO CALX4 S
598 IF (W EQL 3 ) AND ( I LEQ WDIM ) $ GO CALX5 $
599 K = K + 1 S
600 IF (W EQL 1 ) AND ( K LEQ LX ) $ ( I
601 IF (W EQL 2 ) AND ( K LEQ LX ) $ ( I
602 IF (W EQL 3 ) AND ( K LEQ LX ) S ( 1

W = W + 1 S GO CALX1 S
PROFILEY ..
W 1 S

IF Z (J ) LSS RF $
BEGIN

603
604
605
606 CALY1 ..
607 I = 1 SK = 1 S
608
609
610
611
612

IF W GEQ 4 $ GO PLOTRESID $
IF W EQL 1 S
BEGIN
LABY3 ..
WRITE ( SS ALPHA , FMTA ) S WRITE ( SS ZHED1 ) S
WRITE ( SS LYDATA , LYFMT ) S
BL1 =
BL2 =
CALY3 ..

= 1 S GO LABX3 ) S
= 1 $ GO LABX4 ) S
= 1 $ GO LABX5 ) S

END S
IF W EQL 2 $
BEGIN

Q (1) +(Q ( 3 ) XL ) + (Q( 4 ) LAY (K ) ) S
Q (3 ) .DX $

BL3 =( (WT + (DWI ) ) .Q ( 2 ) ) + BL1 S
FOR A = ( 1.0.1.0.HAR ) $
Z(A) = BL3 +(A.BL2 ) S
GO KONTOUR2 $

LABY4..
WRITE ( SS ALPHA , FMTA ) S WRITE ( SS ZHED2 ) S
WRITE ( SS LYDATA , LYFMT ) S
BN1 = S ( 1 ) + ( S ( 3 ) ,XL ) + ( S ( 4 ) LAY ( K ) ) + ( S ( 5 ) . (XL.XL ) ) +
(S (7 ) (LAY ( K ) .XL ) ) + ( S ( 10 ) . ( LAY ( K ) .LAY ( K ) ) ) $

BN2 = S ( 3 ) .DX $
BN3 = S ( 5 ) . ( 2. (XL.DX ) ) S
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631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

BN4 = S ( 5 ) . ( DX.DX ) S
BN5 S ( 7 ) . ( LAY ( K ) .DX ) $
BN6 = BN2 + BN3 + BN5 S

CALY4..
BTX = WT + (DWI ) $
BN8 (S ( 8 ) ( BTX.DX ) )+ BN6 S
BN9 BN1 + ( S ( 6 ) . ( BTX.LAY ( K ) ) ) + ( S ( 8 ) ( BTX.XL )) +
(S (9 ) . ( BTX.BTX ) ) + (S ( 2 ) .BTX ) S

FOR A = (1.0,1.0 , HAR ) S
Z (A) = BN9 + (A.BN8 ) + ( (A.A ) .BN4 ) S
GO KONTOUR2 $

END S
IF W EQL 3 S
BEGIN
LABY5..
WRITE (SS ALPHA , FMTA ) S WRITE ( SS ZHED3 ) S
WRITE ( SS LYDATA , LYFMT ) S
BRO = F (1 ) + ( F ( 3 ) XL ) + ( F ( 4 ) LAY ( K ) ) +

(F ( 5 ). (XL ,XL ) ) + ( F ( 7 ) (LAY ( K ) .XL ) ) + ( F ( 10 ) . ( LAY ( K ) .LAY (K ) } )
+(F ( 11 ) . (XL . (XL .XL ) ) ) + ( F ( 13 ) ( LAY ( K ) . ( LAY ( K ) .LAY ( K ) ) ) ) S

BR1 = F ( 3 ) DX S
BR2 = 2 (F ( 5 ). (XL.DX ) ) $
BR3 = F ( 5 ) . ( DX.DX ) S
BR4 = F ( 7 ) . ( LAY ( K ) .DX ) $
BR6 = 3 ( F ( 11 ) . (XL . (XL.DX ) } }
BR7 = 3 ( F ( 11 ) . (XL . (DX.DX ) ) )
BR8 = F ( 11 ) . ( DX . ( DX.DX ) ) $
BR9 = BR1 + BR2 + BR4 + BR6 $

BR10 = BR3 + BR7 $

$

IF Z ( J) LSS RF $
BEGIN

CALY5 ..
BDX = WT + (DWI ) S
BR11 BR9 + ( F ( 8 ) . ( BDX.DX ) ) $
BR12 =( BDX . ( F ( 2 ) + ( F ( 6 ) .LAY ( K ) ) + ( F ( 8 ) XL ) + ( F ( 9 ) .BDX ) +
(F ( 12 ) (BDX.BDX ) ) ) )+ BRO $
FOR A = (1.0,1.0 , HAR ) $
Z (A ) = BR12 + (A.BR11 ) + ( (A.A ) .BR10 ) + ( (A.A ) . (A.BR8 ) ) $
GO KONTOUR2 $

END S
KONTOUR 2..
FOR J ( 1,1 ,HOR ) $
BEGIN

CV (J ) = ARMIN (MODIFIX ( ( RF - Z ( J ) ) /CON ) ,40 ) +1 ) S
GO THER $675

676 END S
677 CV (J ) = ARPLS ( MOD ( FIX ( ( Z ( J ) -RF ) /CON ) , 40 ) +1 ) S

THER .. END $678
679 OUTPUT ODCY ( FOR J =( 1,1 , HOR ) $ CV (J ) ) S
680 WRITE ( SS ODCY FTCV ) $
681 I = 1 + 1 $
682 IF (W EQL 1 ) AND ( I LEQ WDIM ) $ GO CALY3 S
683 IF (W EQL 2 ) AND ( I LEQ WDIM ) $ GO CALY4 S
684 IF (W EQL 3 ) AND ( I LEQ WDIM) $ GO CALY5 $

K = K + 1 $685
686 IF (W EQL 1 ) AND ( K LEQ LY ) $ ( I = 1 $ GO LABY3 ) S
687 IF ( W EQL 2 ) AND ( K LEQ LY ) $ ( 1 = 1 $ GO LABY4 ) S
688 $ ( I 1 $ GO LABY5 ) SIF (W EQL 3 ) AND ( K LEQ LY )
689 W = W + 1 $ GO CALY1 $
PLOTRESID ..690

691
692
693

IF RESIDOP NEQ 1 $ GO START $
OUTPUT OUT ( FOR I = ( 1,1 , K ) $ PRINT ( 2,1 ) ) S
FOR I =( 1,1 , N ) $
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694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

BEGIN
IY ( I ) X (1,3 ) /DY S
IX ( 1 ) 8 X ( 1,2 ) /DX S

END $
FOR C (4.2,10 ) S
BEGIN
FOR FW ( LOW STEP , HIGH ) S
BEGIN J= 0 S
FOR I= ( 1,1 , N ) S
BEGIN IF (X ( 11 ) GEQ FW ) AND (X (11 ) LSS ( FW+ STEP ) ) S
BEGIN J = J + 1 S 12 ( J ) = IS ENDS ENDS

- JSN2
FWSTEP = FW + STEP
WRITE ( SS ALPHA FMTA ) S WRITE ( SS PLOT , PLFT ) $ WRITE ( SSRESOUT ,RESLEVIS
FOR LINE ( 1,1 , VERT ) S
BEGIN
K=0$
FOR I =(1,1 , N2 ) S
BEGINJ = 12 ( 1 ) S
IF IY(J) EQL LINE S
BEGIN
K = K + 1 S
PRINT (1K ) = IX ( J ) S
PRINT (2K ) = X (J , C ) S
DIGITS ( K )= 0.4343.LOG ( ( QQQ = ABS ( X ( J , C ) ) ) + (QQQ LSS 1.0

1)+ 2 S
END S

END S
FOR I = ( 2,1 , K ) S FOR J =( 1,1,1-1 ) S
BEGIN

END S

IF PRINT (1,1 ) LSS PRINT ( 1,J ) S
BEGIN
FOR L = 1,2 S
BEGIN

END S
END S

FOR I = ( 2,1 ,K ) S PRINT ( 3 , 1 ) = 0 $
PRINT (3,1 ) = PRINT ( 1,1 )- DIGITS ( 1 ) $
FOR I = ( 2,1 , K ) S
BEGIN

BEGIN

TEMP PRINT (L ,J ) S
PRINT (LJ ) = PRINT (LI ) S
PRINT (LI ) = TEMP S

IF PRINT (3,1-1 ) LSS 0 $

·

END S
TEMP DIGITS ( J ) S DIGITS ( J ) =DIGITS ( I )S
DIGITS ( 1) = TEMP S

PRINT ( 3 , 1 ) = PRINT ( 3,1-1 ) S
PRINT (3,1-1 ) = 0 $

ENDS
PRINT ( 3 , 1 ) = PRINT ( 1,1 ) + PRINT ( 3,1 )
DIGITS ( 1 ) S

ENDS
WRITE ( SS OUT , FORM ) S

END S ENDS

GO START S FINISH S
1 ((G 7 ()G

- PRINT (11-1 )

JX ) #PE.2 9 76 75 7447 7X 76 7 77X175 4491 74481 14 9 14 11 91

J7 ( (#PI- 74 G 04 9 76 75 6 1067051-4176 75 74 549

FINISH S



:
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APPENDIX C

EXAMPLES OF OUTPUT FROM COMPUTER PROGRAM



Part 1

Example of output from program , listing
(1) values of elements in matrix and column
vector, (2 ) equation coefficients , (3 ) statis

tical measures of hypersurfaces , (4 ) hypervol

umes and spatially weighted averages of z
within hypersurfaces , and ( 5 ) table of values
for data points , listing original data , and trend
and residual values .
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-VARIABLERELATIONSOIL GRAVITY, WELLDEPTH, GEOGLOCIN SE KANSAS

13x 13 (X,Y) MATRIXVALUES

2.44. 02 5.69, 03

1.45, 05

1.48, 04

2.27. 04

6.07. 04

5.69, 03

7.44, 02

9.73, 02

3.51. 03

2.27. 04

3.09. 03

1.40, 04

1.45. 05

5.20. 03

2.05, 04

3.87, 06

5.92. 05

5.67, 04

3.36. 05

3.87. 06

1.21. 05

3.16. 05

1.07. 08

19.0
16.1
19.8
20.0
17.9
15.2
17.3
1:.5
18.0
25.0
25.0
24.0
23.5
23.7
24.5
22.0
21.0
22.5
23.0
19.1
7.8

7.45. 05

LIN QUAD, Z.

19.5
12.3
34.7
37.6

3.30. 04
1 X 1) COLUMNVECTORVALUES

LIN QUAD CUB, 2 =

8.90, 03 2.11, 05 2.67. 04

(QUATIONCOEFFICIENTS
LINEAK, 2 .

7.44, 02

1.48, 04

3.51, 03

3.09. 03
2.05. 04

XCOORD

5.67, 04

36.30596.

1.58, 04

6.07. 04

3.36. 05

1.77, 04

1.32, 05

8.20. 06

1.15. 05

6.1
7.9
6.0
6.1

8.0

37.90548+

-.07620920XY•

9.73, 02 3.51. 03

2.27. 04 6.07. 04

3.09. 03

5.26. 03

1.58, 04

1.21, 05

1.5
1.5

1.77, 04

3.0
3.4
8.5
8.7

5.67. 04

5.92, 05

3.30. 04

9.57, 04

1.64, 07

2.25. 05

3.56. 04

VOLUMEWITHINLINEARSURFACE.

VOLUMEWITHIN LIN QUADSURFACE=

VOLUMEWITHIN LIN QUADCUBSURFACE.
ARITH. PEANZ, SUMOFZ VALUES/ N
AVERAGEZ VALUE, LINEARSURFACE.
AVERAGE2 VALUE, LIN+QUADSURFACE•

AVERAGEZ VALUE, LIN QUADCUBSURFACE.
VCLOFBLOCKIN CUBEDUNITS

WCOORL

03:23953WX+ .0009485OW2•

45.20266.

EKRORPEASURELINEARTRENDSURFACE·

ERRORMEASUREQUADRATICTRENDSURFACE•

ERRORMEASURECUBICTRENDSURFACE=

PERCENTTOTALSUMSQUARESLINEARSURFACEa

PERCENTTOTALSUMSQUARESQUADRATICSURFACE·

PERCENTTOTALSUMSQUARESCUBICSURFACE

39.4
37.4
34.8
34.3
36.6
35.0
38.7
41.8
41.4
38.5
30.9
37.2
39.6
40.7
40.3
41.0
33.6
39.2
40.2
30.3
30.8

·

26.6
35.7
39.5
41.6

2.05, 04

.01609525WX•

1.58, 04

35.7
34.9

1.32. 05

2.40. 05

9.67, 04

-.9616497W+

35.7
35.7

3.16. 05

35.0
34.7
35.1

1.22. 06

35.0
35.3
36.7
36.7
36.6

9.73. 04

9.04. 05

2.73. 07

6.69. 05

SUMOFSQUARESDUELINEARCOPPONENT.
SUMOFSQUAREDDEVIATIONSFROMLINEAR=

SUMOFSQUARESDUELINEAR QUADRATICCOMPONENT1

SUMOFSQUARESDUETOQUADRATICALONE.

SUMOFSQUAREDDEVIATIONSFROMLINEAR QUADRATIC=

SUMOFSQUARESDUELINEARQUADRATICCUBIC-

SUMOFSQUAREDDEVIATIONSFROMLINEARQUADRATICCUBIC1

SUMOFSQUARESDUECUBICALONE=

36.6
36.4
36.5
36.2
36.0
36.3

1.24. 05

36.3
35.5
34.4
35.4
34.8
38.3
38.5

96579.17

97826.64

99533.01

36.79

35.87

.20109156Y2

36.33

36.96

2692.80

.05903345W2+

3.7
2.5

.3

6.8

2.27. 04

1.8
-5.8

5.92. 05

3.0
4.3
3.8
4.8

5.67, 04

2.9
3.9

1.21. 05

2.40, 05

3.18. 06

2.97, 05

1.24. 06

1.64. 07

7.45, 05

1.30. 06

-8.8

4.73, 08

1.2

5.02. 06

8.42. 05

3.09, 03

37.2
37.0

5.67. 0
1.58, 0

36.5
36.3
36.9
35.6
37.0
36.7

1.77, 04

38.0
37.4
37.1
37.3
38.2
38.4
37.7
38.4
36.4
39.1
39.5
35.2
32.0
34.0
32.9
40.3
40.2

9.67. 04

2.97. 05

9.73.

2.40. 05

��
�

1.24, 06

1.15, 05

6.45. 05

3.02. 07

8.07, 0.

-.0900418Y

9.86

8.82

04

8.04

31.37

49.69

62.36

330624.23

YCOORD2-VALUE1ST-TRDIST-RSD2ND-TRD2ND-RSD3RD-TKD3RD- SD

-.3940345X+ -4.3746648Y•

2395.34

330876.8S

252.62

1.09, 05 5.39. 05

2142.68

331065.94

1953.58

189.09

1.1679081972.

2.2
.4
-1.5

1.48. 04

-.6

3.36. 05

2.3
2.6

6.07. 04

2.8

5.67. 04

3.16. 05

1.24. 06

.0812557M. -.3449529x+
.0662714W. -1.0362317X+ -.6831682Y• .03199614x2+ -.03304167WY• -.09474352XY

2.40. 05

1.22. 06

8.20. 06

2.97, 05

1.89, 06

2.10, 08

1.60, 06

39.1
37.4

37.5
37.6
35.3
35.3
36.5
34.8
37.3
37.0
39.6
37.0
30.4
36.9
36.7

39.6
35.4
41.2
41.9
33.6
31.8
33.1
31.6
38.0
36.0

1.9
-.2
-.5
-1.0

1.45. 05

-2.0
-1.7

3.87, 06

-3.1
-1.0
-6.5
4.1
1.5
5.6

3.36. 05
5.92. 05

1.22. 06

1.64. 07

1.24. 06

8.20, 06

1.07. 08

3.18. 06

5.71, 06

3.03. 09

1.97. 07

.00014462x3.

5.40. 06

5.26, 03

1.21. 05

1.77, 04

3.30, 04

9.73, 04

7.45. 05

1.15, 05

2.97. 05

3.18. 06

2.25. 05

6.26. 05

9.01. 07

1.61, 06

1.93, 05

2.05. 04 3.87, 06 3.30. 04

3.16. 05 1.07. 08 7.45. 05

1.32. 05 8.20. 06 1.15. 05

9.67, 04 1.64, 07

9.04, 05

1.30, 06

6.45. 05

1.89, 06

5.71, 06

6.26. 05

6.39, 06

1.16, 08

4.44. 06

��

�
�
�
��

���

7.17. 05

-.01570835x2+ -.03085394WY

2.73. 07

4.73, 08

3.02. 07

2.10, 08

3.03. 09

9.01. 07

1.16, 08

8.78. 10

5.70. 08

1.45. 08

-.00093207W3+ -.07155833Y3

2.25, 05

6.69. 0:

5.02. 0

8.07. 05

1.80, 06

1.97, 07

1.61, 06

4.44. 05
5.70, 04

1.19, 07

1.21. 06
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Part 2

Examples of contours drawn on sides of

block intersecting third -degree hypersurface .

CRUDEOIL GRAVITYRELATEDTODEPTHANDLOCATIONIN SOUTHEASTKANSAS

CONTOURSOF LINEAR QUADRATIC
X VALUELEFT EDGEOFMAP-
Y VALUEBOTTOMEDGEOFMAP
ELEVATIONOF MAPDATUM=

CUBICTRENDVOLUME
.0
8.8
6.0

4444444
333333333333333333333

333333333333333

22222222222222222
222 2222

22222222222222222222

11111111111111111
111111111111111
1111111111111
111 1111111
111 111111
1111111111
1111111111
11111111111
1111111111111
11111111111111
11111111111111
1111111111111

222
2222222
22222222222

11111111111111111

22222222222

555
555

333
3333333
33333333333

5555

·
44444
44444444

5
555
55555
5555555
55555555

22222222222

33333333333

11111111111111111

555
55555555
55555555

AAA
AAAAAAAA

$8

3333333333

111111
11111111111111111

444444444
444

1111111111111
1111111111111
11111111111
11111111111
11111111111

22222222222

AAAAAAAAA
AAAAAA
AAAA
AAA
AA
A

22222222 222222

2222222222

A
AAA
AAAAA
AAAAAA

3333333333
3333333333

444444444
4444

$35
$$$$
55555
$$$

$$$$$$$$
ssssssssss
$$$$$$s
$$$$$

22222222222

855

4444
44444
4444444

333333333333333333

3333333333

$$$$$$$$

2222222222

AAAAAAAAA▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴
AAAAAAAAAA▴▴▴▴▴▴▴▴AAA
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAA▴▴▴▴▴▴▴▴▴▴A
AAAAAAAAAA▴▴▴▴▴▴▴▴▴AA

AAAAAAAAAAAA

333333333

sssssssss:
$$$$$$
SSSSSS
$555

1111111111
1111111111

2222222222

AAAAAAAAA

333333333

$$$$$$$$$$$$$$
ssssssssssssss
ssssss

22222222222222222

AAAAAAAAAA▴▴▴▴▴▴▴▴▴▴▴AA
AAAAAAAAA▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴
AAAAAAAAAA▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴A

AAAAAAAA

2222222222

1111111

333333333

1111111111111111

1111111111

AAAAAAAAAAAA

2222222222

333333333

1111111111

$$$$$$$$sssssss

X VALUERIGHTEDGEOFMAP-
REFERENCECONTOURVALUE=

sssssssss
3338

222222222

33333333
333333333
33333333
33333333
33333333

AAAAAAAAAAAA

1111111111

$$$$$$$$SS
$$$$$$sssss

.0

33333333
33333333
3333333
33333333
33333333
3333333

1111111

ssssssssssssss

222222222

AAAAAAAAAAA

2222222222222222

222222222

$$$$$$$$$S

1111111111

$$$$$$$$$$$$$$$$

$$$$$$$$$

888888888
88888888
88888888
88888888
BBBBBBBBB
888888888
888888888
888888888
88888888888

555555
$$$$$$$$$sssss

222222222

AAAAAAAAAAAAAA

$$$$$$$$$9

111111111

$$$$$$$$$$
$$$$$$$$
$$$$$$$$$
$$$$$$$$$$$$$$$$

AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAA

222222222

1111

ssssssssss

111111111

AAAAAAAAAAAAA
AAAAAAAAAAAA
AAAAAAAAAAAA

AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAA

22222222

$$$$$$$$SS

11111111

22222222

Reference contour line is formed by edge of
band of $ signs facing band of A's .

CRUDEOIL GRAVITYRELATEDTODEPTHANDLOCATIONIN SOUTHEASTKANSAS

CONTOURSOF LINEAR QUADRATIC CUBICTRENDVOLUME
VERTICALPROFILEPARALLELTOMY PLANEANDINTERSECTINGX AXIS AT
WVALUETOP EDGEOFPROFILE- 6.0
Y VALUERIGHTEDGEOFPROFILE-

111111111

22222222
22222222
2222222

sssssssss

AAAAAAAAAAAAA

22222
22222222
22222222
2222222
2222222
2222222
2222222

22222222222222

$1$$$$1

AAAAAAAAAA

AAAAAAAAAAAA

111111111

55555

AAAAAAAAAA

sssssssss

11111111111111

AAAAAAAAAA

111

111111111
11111111

8888888888888888888888888888
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Part 3

Examples of slice maps where data values
have been plotted by computer . Map below
contains original data values and map on p . 58

CRUDE OIL GRAVITY RELATED TO DEPTH AND LOCATION IN SOUTHEAST KANSAS

Z VALUES ORIG DATA
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contains second -degree residual values . Lines

were added by hand to show left and top

boundaries of each map . Origin is in upper

left corner of each map where lines intersect .
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CRUDE OIL GRAVITY RELATED TO DEPTH AND LOCATION IN SOUTHEAST KANSAS

2ND ORDER RESIDUAL
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