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lllustrated by a Study of Oil-Gravity Variations

In Southeastern Kansas

[ ABSTRACT

l A method for fitting four-variable trend hyper-
surfaces by least squares has been programmed for

' the IBM 7090 computer. The program fits first-,
«wcond-, and abbreviated third-degree hypersurfaces
to irregularly spaced data. The program automati-
cally contours the intersection of each hypersurface
with a block whose top, bottom, and four sides rep-
re<sent  planes located in three-dimensional space.
This permits the four-variable or four-dimensional
hvpersurfaces to be visualized. The program also

' automatically plots original data and residual values
in a series of horizontal slice maps. The theory and

l aperation of the program are discussed and illustrated
in detail.

The program has been used to interpret variations

. in crude oil gravity from place to place and in dif-

| ferent Paleozoic stratigraphic horizons in southeastern
Kansas. Hypersurfaces were fitted to API oil gravity

" as a function of geographic location and depth below
the surface. The four variables involved are (1)
API gravity, (2) well depth, (3) north-south geo-
graphic coordinates, and (4) east-west geographic
roordinates.

The trend hypersurfaces, distribution of residual
values, and other considerations suggest that oil-
sravity variations in southeastern Kansas have been
affected by both well depth and environment of
deposition.  The tendency for API gravity to increase
with depth is complicated by regional effects that
may reflect differences in environment of deposition.
The result is an overall increase in API gravities in a
west-northwest direction.  Of interest is a tendency
for residual API gravity “highs” and “lows™ to be
clustered in certain geographic areas even though oils
from different stratigraphic zones are involved. This,
in turn, suggests that the depositional environment
may have affected oil gravities in a given locality
much the same way from one geologic period to the
next.

Google

The computer program described in this report
may have a number of geological applications, and
can be used readily by anyone having access to an
IBM 7090 or 7094 computer.

INTRODUCTION

This report deals with a method for using an
IBM 7090 or 7094 computer for fitting four-
variable trend surfaces to geologic data. One
of the purposes of this report is to emphasize
the potential usefulness of this method in in-
terpreting certain types of geological informa-
tion. Krumbein (1956, 1959) has outlined
the principles of three-variable trend surface
maps and Peikert (1962, 1963) has illustrated
the techniques of four-variable trend surfaces
in interpreting specific gravity variations in
intrusive igneous rocks. A second purpose
is to demonstrate the use of the method with
an example based upon variations of API
gravity of crude oil in southeastern Kansas.
A third purpose is to present the details of the
theory and operation of the computer pro-
gram. It is suggested that the program might
profitably be used in oil exploration and in
other geological problems. The program is a
modification of a program developed pre-
viously by the author (Harbaugh, 1903).

Geologists have long been concerned with

trends.  Some geological trends are readily
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¢raphic coordinates, and (4) east-west geographic
coordinates.

The trend hypersurfaces, distribution of residual
values, and other considerations suggest that oil-
aravity variations in southeastern Kansas have been
affected by both well depth and environment of
deposition.  The tendency for API gravity to increase
with depth is complicated by regional effects that
may reflect differences in environment of deposition.
The result is an overall increase in API gravities in a
west-northwest direction.  Of interest is a tendency
for residual API gravity “highs” and “lows” to be
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in turn, suggests that the depositional environment
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The computer program described in this report
may have a number of geological applications, and
can be used readily by anyone having access to an
IBM 7090 or 7094 computer.

INTRODUCTION

This report deals with a method for using an
IBM 7090 or 7094 computer for fitting four-
variable trend surfaces to geologic data. One
of the purposes of this report is to emphasize
the potential usefulness of this method in in-
terpreting certain types of geological informa-
tion. Krumbein (1956, 1959) has outlined
the principles of three-variable trend surface
maps and Peikert (1962, 1963) has illustrated
the techniques of four-variable trend surfaces
in interpreting specific gravity variations in
intrusive igneous rocks. A second purpose
is to demonstrate the use of the method with
an example based upon variations of API
gravity of crude oil in southeastern Kansas.
A third purpose is to present the details of the
theory and operation of the computer pro-
gram. It is suggested that the program might
profitably be used in oil exploration and in
other geological problems. The program is a
modification of a program developed pre-
viously by the author (Harbaugh, 1963).

Geologists have long been concerned with
trends. Some geological trends are readily
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shown on maps by contour lines. For example,
a structure contour map portrays a three-
dimensional surface in which two of the di-
mensions are ‘“‘geographic” and are repre-
sented by the length and breadth of the map.
The third dimension is the elevation of the
surface represented by the contours. Thus,
the surface may be said to be embedded in
three-dimensional space.

It should be pointed out that, from a mathe-
matical viewpoint, the terms “variable” and
“dimension” may be used somewhat inter-
changeably. A surface that occupies three-
dimensional space may be considered to repre-
sent a mathematical function involving a total
of three variables. We can readily graph
mathematical functions of two or three vari-
ables, using two or three dimensions. On the
other hand, we can also deal mathematically
with functions of four or more variables, but
we have difficulty in graphically representing
spatial relationships in four or more dimen-
sions.

FOUR-DIMENSIONAL SURFACES

One of the objectives of this report is to
emphasize that geologists commonly deal with
relationships which may be thought of in a
four-variable or four-dimensional sense. Con-
sider the problem of the distribution of pores
in a rectangular block of rock. All rocks are
porous, and, therefore, at every point within
this block, some particular value of porosity
exists, Because porosity is a variable, and
because we may regard a variable as a di-
mension, in a sense we are dealing with four
dimensions if we consider the spatial distribu-
tion of pores in the rock.

Visualizing the fourth dimension poses a
problem. We can, however, represent a fourth
variable in three-dimensional space by simply
plotting the particular values of the variable
at the points where they occur in a three-
dimensional coordinate system. In Figure 1,
the three axes of a coordinate system are
represented by the variables w, x, and y. The
fourth variable, z, cannot be graphically rep-
resented by an axis, but can be represented
by values at different points, the two points,
z, and z,, being shown for illustration’s sake.

Google
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Ficure 1.—Method of representing four variables in
three-dimensional space. Three variables (w, x, and
y) may be represented by values referred to three
coordinate axes. Fourth variable (z) can be repre-
sented as series of values at specified points in three.
dimensional space.

Suppose that we are faced with the problem
of representing porosity trends in this block
of rock. If the porosity varies in a regular
manner, it might be represented by a surface.
However, an ordinary surface embedded in
three-dimensional space is inadequate because
four variables are involved. Consequently we
need a four-dimensional surface. A surface
of four or more dimensions may be termed a
hypersurface, the prefix “hyper” pertaining to
above or beyond. Thus, a hypersurface is
“above” or “beyond” an ordinary surface in a
mathematical sense.

TRENDS AND THE LEAST-SQUARES
CRITERION

In dealing with data that are irregular
(“noisy”), we are commonly faced with the
problem of establishing trends. For example,
if observations of two variables are plotted on
a two-dimensional diagram as a series of
points (Fig. 2), the general trend of the points
may be represented by a line. The trend line
may be fitted by eye, but this is not particu-
larly objective because one person might place
the line differently than the next person.

The problem is to obtain the best fit of the
line to the points. The most generally used
criterion of best fit is that of least squares. In
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Fictre 2.—Least-squares fit of line to points. Line
has been fitted so that sum of squared deviations
imarked with d’s) of y with respect to x is mini-
mized.

fitting a line by least squares. the objective is
to fit the line so that the sum of the squared
deviations of one variable. with respect to the
other, is the least possible (Fig. 2). Thus, a
least-squares fit is unique because only one
position of a line will yield the least possible
sum of squared deviations. However, it should
be borne in mind that it makes a difference
which variable is being minimized. In Fizure
2, the trend line has been drawn so that the
deviations of y with respect to x have been
minimized. The line would have been fitted
slightly differently had the objective been to
minimize the deviations of x with respect to
y. The reason for the difference is that we
are not dealing with an ordinary functional
relationship in which it makes little difference
whether we express y as a function of x, or
vice versa. Instead, we are dealing with a cor-
relation in which we seek the best estimate of
one variable in terms of the other, either y
with respect to x, or x with respect to y.

The least-squares criterion is not confined
to the fitting of straight lines. Curved lines
described by mathematical functions can also
be fitted by least squares. Furthermore, the
least-squares criterion is applicable to the fit-
ting of planes (Fig. 3), curved surfaces em-
bedded in three-dimensional space. and hyper-
surfaces.

EQUATIONS AND THE LEAST-SQUARES
CRITERION

Lines, surfaces, or hyvpersurfaces that have

Google

been fitted by least squares may be described
by equations. For example, the equation de-
scribing a straight line may be generally
written

y=A+ Bx

where x and y are variables, and 4 and B are
constants. In this equation, y is the dependent
variable, x is the independent variable, 4 is
the intercept value of the line on the y axis,
and the coefficient, B, represents the slope of
the line. It is understood that the algebraic
sign, plus or minus, is incorporated within
these constants. In fitting a straight line by
least squares, the problem is to calculate the
values of A and B so that the sum of the
squared deviations is the least possible. In
fitting curved lines, surfaces, or hypersurfaces
by least-squares methods, the objective is the
same, namely, to obtain the constants of the
equations so that the sum of squared devia-
tions is minimized.

The degree of an equation containing a de-
pendent variable and one independent variable
is related to the maximum values of the ex-
ponents. For example, a second degree equa-
tion may be written

y = A+ Bx 4 C»?

in which x and y are variables and 4, B, and
C are constants. Similarly, a general equation
of the third degree involving one dependent
and one independent variable may be written

y = A 4 Bx & Cx 2+ D+®.
Z

Fict e 3.— Least-squares fit of plane to points,



At this point it is convenient to introduce a
general classification of equations and their
graphic representations according to degree
and number of variables. Figure 4 presents
a series of equations and their graphs in which
degree is listed by column and number of
variables by row. For example, in equations
of the first degree, two variables yield a

1ST DEGREE

2 VARIABLES

2ND DEGREE

Kansas Geol. Survey Buil. 171, 1964

straight line, three variables a plane, and four
variables a first-degree hypersurface.

The terms within each equation of Figure 1
may be classed according to whether they are
linear, quadratic, or cubic. The linear com-
ponents are those of the first degree, and in-
clude the intercept, 4, and terms to the first
power. The quadratic components include

3RD DEGREE

———

STRAIGHT LINE PARABOLA
v=A + Bx v=A+BxeCx? vy=A+Bx+Cx®o Dx®
n z z 2
(0]
= |
o |
: : '
a |
< Y= - xX-S S S —x
™ \ PLANE I\Y PARABOLOID |\nmoeeaee SURFACE
Y 2+A+Bx+Cy Z+A+Bx+CreDx? Y zeA+Bx+CreDx?
+Exv « Fy* +Exv e Fy? « Gx®+ Hxly
'wl'wl
INTERSECTION OF PLANES
WITH HYPERSURFACES ARE
o)
(0]
D
> n
i _

Z=A+BweCxe Dy

\ SECOND-DEGREE

Y HYPERSURFACE Y HYPERSURFACE
2 *A+BueCxeDy ¢Ex®¢Fuy 2 *A+Bwe Cx+ Dy + Ex®eFwy
*Gxy o Huxe In? o Uyt oGy o Hux o Iwt o Jy?
oKx®e Lw® oMy *o Nxy

«Oxv?+ Py®we Qrw?
+Rwex ¢ Swx? « Twxy

Ficire 4.—Relationship between number of variables and degree of generalized equations and their geo-

metric equivalents.
three, or four) by rows.

Degree (first, second, and third) is listed by column and number of variables (two,
Variables are denoted by w, x, y, and z, and constants (with algebraic sign

implicitly included) by A through T. Two variables are represented geometrically by straight or curved
lines, three variables by surfaces, and four variables by hypersurfaces.

Google
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terms containing up to two variables to the
first power, or one variable to the second
power. Thus, in the equation of the three-
variable second-degree surface of the general
form (Fig. 4), the linear terms are 4 4 Bx,
and the quadratic terms are Dx* 4+ Exy +
Fy2. In Table 1 the terms of the general
equations of Figure 4 are classified according
to whether they are linear, quadratic, or cubic.

VISUALIZING FOUR-DIMENSIONAL
SURFACES

Four-dimensional surfaces (hypersurfaces)
may be visualized. Consider the way in
which four variables (w, x, y and z) may be
represented by a coordinate system in three-
dimensional space (Fig. 1). Three of the
variables (w, x and y) may be represented as
dimensions with respect to three reference
axes arranged perpendicular to one another.

TisrLE 1.—Generalized equations classified acccrding to degree and number of variables.
variable has bee

The fourth variable, z, may be represented at
individual points in space. To these points
in space we may fit, by least squares, a plane
or curving hypersurface which represents the
best estimate of z in terms of the other three
variables, w, x and y. We may visualize such
a four-dimensional hypersurface as a series of
infinitesimally thin, three-dimensional surfaces
nested together. 1f the hypersurface is inter-
sected by planes, as for example on the top,
bottom, and four sides of a block (Fig. 1),
the intersections of the hypersurface with the
planes of the block may be portrayed by con-
tour lines drawn on the surfaces of the block.
A first-degree hypersurface (Fig. 4) might be
likened to a ceries of parallel planes or series
of slices, each infinitesimally thin. Higher-
degree hypersurfaces may be thought of as
formed by an infinite number of nested. cury-
ing surfaces rather than planes.

The dependent
n omitted here.

. (lassification of terms in equation
Number Descrivti
| escriptive o o S,
of Degree title ‘
variables Linear ‘ Quadratic ‘ Cubic
First Straight line A+ Bz |
2 Second | Parabola A+ Bz + Cr?
Third | Third-degree | A + Brx + Cr? + Drd
First Plane A4+ Bz +Cy \
3 Second | Elliptic pa- A+ Br+Cy + Dr*+ Ery + Fy?
raboloid or
hyperbolic¢ l
paraboloid :
" Third | Third-degree | A + Bz + Cy + De?+ Ery + Fy?| +Gr®*+ Hr?y +
f surface Try2+.Jy?
| First First~degree A+ Bw+ Cx + Dy .
hypersurface N
4 Second | Second-degree | A + Bw + Cx + Dy | +Ezt+ Fuy + Gry |
hypersurface + Hwr + Tw?+Jy?
Third | Third-degree | A + Bw +Cx 4+ Dy | + Ex*+ Fuwy + Gry + Krd+ L3+ My?
hypersurface + Huwr + lw?+Jy? +Nx2y+ Ory? +
Py2w + Que? +
Rw?r + Swr? +
Twxy

l

listed here for the sake of completeness.

Google

Note: Cubic terms with coefficients N through T have been arbitrarily omitted in this study but are
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OIL-GRAVITY VARIATIONS

One of the purposes of this report is to
illustrate the use of four-variable hypersurfaces
with an example. The example chosen deals
with variations in crude oil gravity in south-
eastern Kansas. Here the problem is to
interpret the geologic significance of differ-
ences in oil gravity from place to place, and
from zone to zone stratigraphically. As an
introduction to the problem, the measure of oil
gravity is discussed first, followed by a dis-
cussion of oil-gravity variations in other
regions.

MEASUREMENT OF OIL GRAVITY

API' gravity is the most widely used
measure of the properties of crude oil. API
gravity is a function of the density per unit
volume, and its relationship to specific gravity
is shown by the following formula:

111.5
Degrees APl = —
Sp. Gr. at GO°F

—131.5

1. American Petroleum Institute standard.
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It should be noted that API gravity increases
when specific gravity decreases, and vice versa.
Thus, an oil with a high API gravity has a
lower specific gravity than an oil with a low
API gravity.

Certain other properties of crude oil are
generally related to API gravity, including
viscosity (which increases with decreasing API
gravity) and gross chemical composition.
API gravity is a rough measure of the pro-
portions of hydrogen and carbon in crude oil;
oils of high API gravity (low specific gravity)
are richer in hydrogen than those of lower
API gravity. It is believed that the API
gravity of an oil is related to the conditions
under which the oil originated, including the
character of the organic source materials from
which it was derived, the chemical and min-
eralogical composition of the rocks in which
it is contained, and the physical conditions,
such as temperature and pressure, under which
it has “matured” and been stored.

OIL-GRAVITY VARIATIONS IN
OTHER REGIONS

Oil-gravity Variations in the Gulf Coast

There are a number of references in the
literature to oil-gravity gradients of a regional
nature, or changes in oil gravity that may be
correlated with changes in depth of burial.
For example, Barton (1937) presented con-
vincing evidence that the specific gravities of
crude oils in the Gulf Coast region generally
decrease with depth. When a particular Ceno-
zoic stratigraphic interval is traced downdip,
specific gravity of the oil decreases and API
gravity increases. Barton suggested that the
general decrease in specific gravity with depth
reflects the evolutionary processes by which
crude oils that were originally napthenic have
been gradually converted into paraffinic crudes
as an effect of temperature, pressure, and
time. He suggested that these changes may
be analogous to those in the refining of crude
oil, in which the high temperatures and high
pressures that prevail for a very short time
in the refinery are capable of bringing about
drastic changes in the chemical composition
of petroleun. Underground. the increases in
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temperature and pressure that have accom-
panied deeper burial are much less severe than
those encountered in the refinery, but Barton
pointed out that the far greater amount of time
available geologically may have compensated
for less severe temperature and pressure con-
ditions.

Barton’s views on Gulf Coast crude oils
were challenged by Haeberle (1951) and
Bornhauser (1950), who stated that while an
increase in API gravity (decrease in specific
gravity) can generally be correlated with an
increase in depth, the increase in API gravity
is not necessarily a simple function of depth
of burial, but instead, could be a result of
facies changes. As the Cenozoic strata of the
Gulf Coastal Region of Texas and Louisiana
are traced downdip, they generally exhibit a
progressive change from continental facies, to
shallow-water marine, and, finally, to deep-
water marine facies. In other words, if one
wished to ignore changes in depth of burial
entirely, one could make an almost equally
strong case for control of oil gravities by
facies alone. Thus, the deep-water marine
sediments, consisting mostly of shale, yield
oil of highest API gravity, whereas near-shore
sediments, which contain larger proportions
of sand, yield oil that is lower in API gravity.
Due to the imbricate, wedge-like aspect of
the strata of the Gulf Coast, a well tends to
pass downward from near-shore sediments to
deeper-water sediments. Thus, the oil-gravity
changes encountered in different reservoirs in
a single well, or the changes of oil gravity in
a series of wells in which a given stratigraphic
horizon is followed downdip, both tend to
exhibit changes in oil gravity that could be
interpreted as facies-controlled or depth-con-
trolled. Obviously, in the Gulf Coast we are
dealing with a problem in which correlations
are simple enough to establish, but cause and
effect relationships are more obscure.

Oil-gravity Variations in Wyoming
Hunt (1953) studied the variations of API

gravity in crude oils in Wyoming, where the
geology is more complicated than in the Guif
Coast. He came to two principal conclusions:

Google

(1) There is a strong correlation of API grav-
ity and other measures of the composition of
crude oils with environment of deposition of
the reservoir rocks in which the oils occur.
Relatively low API gravity oils are associated
with Paleozoic sediments, formed under quiet,
stable conditions of moderate to high salinity,
in which carbonates and sulfates were abun-
dant. High API gravity oils tend to be associ-
ated with Mesozoic sediments, formed under
conditions of moderate tectonic activity, in
which dark shales predominate, with discontin-
uous sandstones and a few thin beds of lime-
stone. Thus, environment of deposition,
including the character of organic source ma-
terials, seems to be the most important factor
affecting API gravity in Wyoming. (2) There
is, however, a relationship between depth of
burial and API gravity in Wyoming, provided
that the oils are separated into two major
groups, Paleozoic and Mesozoic. Hunt found
that there is an overall increase in API gravity
with depth of occurrence of oils in Paleozoic
rocks and similarly with oils in Mesozoic rocks.
However, the deepest Paleozoic oils are of a
lower APl gravity than are the shallowest
Mesozoic oils. Hunt’s (1953, p. 1865) plot
of API gravity versus depth of oil in the Paleo-
zoic Tensleep Formation suggests that there
is an almost linear increase in API gravity
with depth. Hunt concluded that depth of
burial cannot be ignored, but that it is of
secondary importance.

Oil-gravity Variations in Western Canada

Hitchon et al. (1961) showed that there
is an apparent progressive increase in API
gravity downdip east of the Canadian Rockies
in Mississippian, Pennsylvanian, Permian,
Triassic, Jurassic, and some Cretaceous and
Devonian strata. However, there is no regu-
lar increase in API gravity downdip in certain
other Devonian and Cretaceous strata in the
region. The cause of geographic variations
in API gravity in western Canada is poorly
understood. Hitchon et al. (1961, p. 296)
suggest that in some stratigraphic units, high
API gravities tend to occur in tectonic basin
areas and low API gravities in shelf areas.
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Colorado Shale Oil-gravity Variations

Smith (1963) pointed out that the specific
gravity of oil produced from the Green River
oil shales in Colorado decreases systematically
with increasing depth of burial. Smith fitted
by least squares a series of second-degree
(parabolic) curves relating specific gravity to
depth in individual bore holes. He stated that
the decrease in specific gravity is associated
with a progressive decrease in oxygen content
with depth, which in turn may have resulted
from loss of carboxyl groups from organic
molecules due to increase of heat and pressure
with increasing depth.

PREVIOUS STUDY OF OIL-GRAVITY
VARJATIONS IN SOUTHEASTERN
KANSAS AND VICINITY

A research committee of the Tulsa Geologi-
cal Society, consisting of Neumann and others
(1947), conducted a study of variations in
crude oil in southeastern Kansas and adjacent
northeastern Oklahoma. They concluded that
the environment of deposition and the original
character of the oil’s organic source material
probably determined the kind of oil in each
pool. For example, they found that the oil
in the “Bartlesville sand” of Osage County,
Oklahoma, could be divided into six classes
on the basis of distillation fractions. Pools in
the “Bartlesville sand” containing particular
classes of oil have distinct geographical group-
ings. Neumann’s committee suggested that the
area in which a particular class of oil occurs
reflects a particular set of depositional condi-
tions which prevailed in that area. They
found little evidence that the oil migrated over
appreciable distances. and they concluded that
the oil formed mostly from organic materials
deposited close to the places where the oil now
occurs.

Recent findings by Baker (1962) support
the conclusions of Neumann’s committee.
Baker compared the distribution of traces of
hvdocarbons in non-reservoir facies close to
the shoestring sand reservoirs in the Pennsvl-
vanian Cherokee Group (“Bartlesville sand”
or “Burbank sand”™). in the Thrall (Thrall-
Aagard) field in Greenwood County. Kansas.
and in the Burbank field in Osage County.
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Oklahoma. Baker found that the propor-
tions of hydrocarbons (expressed as the ratio
of saturate hydrocarbons to aromatic hydro-
carbons) in the non-reservoir facies tend to
parallel those of the crude oil produced in the
adjacent oil fields. He found that traces of
hydrocarbons extracted from the non-reservoir
facies encountered in a core in the Burbank
field have significantly higher saturate to
aromatic ratios than hydrocarbons from non-
reservoir facies close to the Thrall field. Bur-
bank crude also has a higher saturate to
aromatic ratio than Thrall crude. It is pre-
sumed that differences in the crude oils reflect
differences in trace hydrocarbons extracted
from associated, non-reservoir rocks. Con-
sequently, both trace hydrocarbons and crude
oil appear to have a similar source witkin a
given locality.

OIL-GRAVITY DATA IN SOUTHEASTERN
KANSAS USED IN THIS STUDY

Oil-gravity data used in this study were
taken from a report by Everett and Weinaug
{1955) and include API gravity measured at
60° F, well location, depth to producing zone,
and name of producing zone. The oil-gravity
data were studied in a rectangular area (Fig.
5) about 65 by 70 miles in dimension, which
embraces Chautauqua, Cowley, and Elk coun-
ties, and parts of Greenwood, Butler, Wood-
son, Wilson, and Montgomery counties. The
location of wells for which API gravity was
determined is shown in Figure 5 and the wells
are numbered by Everett and Weinaug (1955,
p- 211-221) as follows: 8, 13 to 22, 30 to 35.
41 to 44, 55 to 93, 95 to 104, 107 to 137.
145 to 222, 224, 227 to 230, 232, 234 to 250.
386 to 397, 400, 404 to 106, 411 to 419, 121
to 426, 428, 4441 to 447, 449 to 453. Data
on wells listed by Everett and Weinaug that lie
outside the area of this study were not used.
A total of 244 API gravity values were used.
The geographic distribution of wells yielding
oil-gravity data is somewhat uneven, due
largely to the uneven distribution of oil fields
within the area (Fig. 6). In addition. the
distribution of the gravity values according to
well depth is also somewhat uneven. Accord-
ingly. the data points used in this study are
not randomly distributed in space.
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FictRE 5.—Map of part of southeastern Kansas showing location of oil wells yielding oil-gravity data used
in this study.

Classification of Oil-Producing Zones
Yielding Qil-Gravity Data

Oil is produced from various stratigraphic
zones in the area of this study in southeastern
Kansas (Table 2). The names of some of the
zones are local drillers’ terms that are not
official geological names. Jewett (1954, p.
76-90) provides a glossary of names of oil-
producing zones in eastern Kansas, and the
approximate stratigraphic position of the zones
is given in a columnar chart by Jewett (1959).
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Distribution of Qil Gravities on a Zone-
by-Zone Basis in Southeastern Kansas

The distribution of API gravities in six
stratigraphic zones in part of southeastern
Kansas is shown on maps in Figure 7. The
stratigraphic position of each zone is given in
Table 2. The maps show that (1) in detail,
areal variations in API gravities are erratiz,
but (2) that broad scale trends are present.
API gravities of oils in the Arbuckle Lime-
stone and Kansas City Group (Fig. 74, 7E)
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Ficure 6.—Maps showing outlines of oil fields in part of southeastern Kansas (modified from Goebel, Hilp-

man, Beene, and Noever, Pl 1, 1962).

(A4) Oil fields in which oil occurs principally in lenticular sands
or in shoestring sands, and in which accumulation of oil is mainly stratigraphically controlled.

(B) 0Oil

fields in which oil occurs principally in carbonate reservoir rocks and in which structural control of oil

accumulation is important.

generally increase toward the west, and API
gravities in the “Mississippi lime” and “Mis-
sissippi chat” and “Layton sand,” (Fig. 7B,
7D, 7F) generally increase toward the north-
west. API gravities in the “Bartlesville sand”
(Fig. 7C) are more erratic, and gross changes
across the area are not apparent.

Considering the oil-producing zones in gen-
eral, there is a down-dip increase in API grav-
ity, the regional structure being a west-dipping
homocline (Fig. 8).

Thus, the question arises, is the increase in
API gravity toward the west due to increasing
depth, or is it related to geographic position?

Some other aspects of the geographic distri-
bution of API gravities are worth noting. The
distribution of API gravities in the “Bartles-
ville sand” (Fig. 7C) appears to parallel the
“Sallyards shoestring” trend (Fig. 64). Bass
et al. (1937) have interpreted this trend,
as well as other shoestring sand deposits. to be
ancient offshore bars formed at the shifting
margin of a Pennsylvanian sea. Perhaps
variations in environmental conditions during
Pennsylvanian time are responsible for much
of the variation in oil gravities in the “Bartles-
ville sand.”
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Within the area, the “Bartlesville sand” has
the highest average API gravity, with values
ranging from a little less than 36° API to
greater than 40° API (Fig. 7C). However,
the range of gravity variations is greater in
oil obtained from the “Mississippi lime” and
the “Mississippi chat” (Fig. 7B). Some geol-
ogists have speculated that oil in the “Missis-
sippi chat” and “Mississippi lime” has been
derived from shale in the overlying Cherokee
Group, which contains the “Bartlesville sand”
and other oil-producing sands. However, the
contrast of API gravities in the “Mississippi
lime” and “chat” with those in the “Bartles-
ville” suggests that the oils may be of differing
sources.

HYPERSURFACES FITTED TO OIL-
GRAVITY DATA IN SOUTHEASTERN
KANSAS

First-, second-, and abbreviated third-degree
trend hvpersurfaces have been fitted to oil-
gravity data in southeastern Kansas, and the
results are appraised statistically and geologi-
cally below. A glossary of statistical terms
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TaBLE 2.—Local terms and stratigraphic position of oil-producing zones in area of study.

|

Oil-producing zone i Group Stage 1 System

[
Admire Gearvan

Admire ! Permian

Topeka Limestone 3
‘ Shawnee
*‘Peacock sand” ‘

**Hoover sand” ‘ ‘ Virgilian

“Stalnaker sand”’ - 7\’_])(“1}.']::.\‘ o

Lansing - o 7-\' 7L:msix; 7\ N

“*Layton sand” - 72; o ,‘ Missourian ‘

T}{:llsas City lime” - - Kansas City " i Pennsylvanian

“Wayside sand” i Marmaton ;

**Peru sand” f‘ J

“*Cattleman sand” Desmoinesian
*Bartlesville sand”* ! Cherokee f |

“Burgess sand”’
““Mississippi chat”’ i .
— o Mississippian

**Mississippi lime”’ | ! Meramecian
Viola Limestone 1 “ Middle
_— — i Ordovician !
*Simpson sand”’ | Simpson
’; : - Ordovieian
Arbuckle Limestone | Arbuckle Lower

i Ordovician
|

* NoTE: “Bartlesville sand” is a general name given certain lenticular oil-producing sands that vary
slightly in age and stratigraphic position from place to place.

used but not explained otherwise is provided logarithmic transformations of original data
later in this report. were not deemed necessary in this study.
The characteristics of the frequency dis-
tributions of trend and residual values are
STATISTICAL APPRAISAL important in analysis of variance to determine
confidence levels because more or less sym-
metric frequency distributions of trend and
Frequency distribution of original oil- residual values are desirable. The histograms
gravity data and of first-, second-, and third- (Fig. 9) of residual values (Fig. 9C, E, G)
degree trend and residual (deviation) values is reveal moderate skewness, partly reflecting the
shown in a series of histograms in Figure 9. skewness of the original data. The distribu-
The original data (Fig. 94) are somewhat tions of the trend values (Fig. 9D, F, H) are
skewed so that the mean is displaced to the also somewhat skewed. However, it is con-
left, or low side, of the median. The distribu- cluded that the frequency distributions are not
tion of natural logarithms of the original data sufficiently skewed to invalidate use of analysis
(Fig. 9B) is more symmetrical, although of variance.

Frequency Distribution of Values

Google
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(See Fig. 5 for location of township and range.)
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Confidence Levels of Trend Components

Analysis of variance may be used to deter-
mine the statistical significance of trend sur-
faces (Dawson and Whitten, 1962, p. 8; and
Allen and Krumbein, 1962, p. 522-523). In
this study, the objective has been to determine
the degree of confidence for each component
of the hypersurfaces, or, in other words, to
determine whether the linear, quadratic, and
cubic components are statistically significant
or could be due to chance alone. The degree
of confidence is spoken of as the “confidence
level,” and may be expressed in percent. On
this basis, absolute certainty is 100 percent.
and absolute uncertainty is O percent. A
confidence level of 99 percent for a particular
component would indicate 99 percent certainty
that the component represents a real effect and
not chance.

Table 3 includes the basic data for calcula-
tion of confidence levels by analysis of vari-

Merriam, 1960). Contour values in feet. (See Fig. .
5 for location of township and range.) ance. The data include (a) sum of squares
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Ficure 9.—Histograms of frequency distributions of original API gravity data, logarithmically transformed

data, and trend and residual values.
frequency class.
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Numbers beneath histograms refer to midpoint values within each



Kansas Geol. Survey Bull. 171, 1964

TaBLE 3.—-Analysis of variance of oil-gravity trend hypersurface data.

Source S“m .(’f
squares
Total, 244 data points. . . ... ... .. 333,019.5
Due to linear component. ... .. .. .. 330,624 .2
Deviations from linear. . ... ... ... 2,395.3
Due to quadratic component... ... .. 252.6
Deviations from quadratic..... ... .. 2,142.7
Due to abbreviated cubic component 189.1
Deviations from abbreviated cubic... 1,953.6

that are apportioned among the linear, qua-
dratic, and abbreviated cubic components, re-
spectively, (b) sums of squares associated with
the deviations or residuals, and (¢) number
of degrees of freedom associated with the
components and the deviations. These data,
in turn, permit (d) calculation of the mean
square of the components and deviations and
(e) calculation of Snedecor’s F. Finally, (/)
the confidence level in percent is obtained by
reference to tables of F (Snedecor, 1956, p.
246-249).

The number of degrees of freedom is estab-
lished in reference to (1) the number of de-
gress of freedom associated with the total
number of data points (n—1), and (2) num-
ber of terms containing variables in the equa-
tion belonging to each component. Thus. there
are three degrees of freedom associated with
the three linear terms Bw, Cx and Dy, six
degrees of freedom with the six quadratic
terms Ex*, Fwy, Gxy, Hws, Iw®, and Jy*,
and three with the cubic terms Kx%, Luw?,
My?®. The number of degrees of freedom at
each level is obtained by successively sub-
tracting the degrees of freedom associated with
each component from the degrees of freedom
associated with the data points.

The confidence levels associated with the
three trend components of the oil-gravity data
are extremely high, all being in excess of 99.9
It is concluded that the effect as-
sociated with each component is real and not

percent.

fortuitous.
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Degrees of Mean Snedecor's  Confidence
freedom s(quare ! level
243 e e
3 110,208.1 10,054.0 99 94
240 100 ........ ...
6 42.1 4.6 99.94+,
234 9.1 ...
3 63.0 7.5 99 9+,
231 85 .

Percent Total Sum of Squares
Represented by Hypersurfaces

The percent of total sum of squares is a
measure of how closely the hypersurfaces
(Table 4) fit the observed data and is calcu-
lated according to an equation given in Ap-
pendix A. A percent of total sum of squares
of 100 percent would represent a perfect fit of
the observed data. There is a general relation-
ship between the confidence level associated
with a component, and the percent of total
sum of squares associated with that component.

TaBLeE 4.—Percent of total sum of squares repre-
sented by hypersurfaces fitted to oil-gravity data.

Linearsurface. .. ........ ... .. ...... 32.0¢,
Linear + Quadratic surface. . ... ... .. 49.7¢,
Linear + Quadratic + Abbreviated

Cubie surface. . ... ... ... L 63 07,

If there is a marked increase in percent of
total sum of squares when a new component
is included. a high confidence level is generally
associated with that component (Table 3) and
vice versa.

Calculation of Weighted Averages of Oil
Gravity

Spatially weighted averages (Table 5) of
APl gravity have been calculated for each
hypersurface by the method described in Ap-
pendix A. The resulting averages are close to
the arithmetic mean. Little advantage is
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gained in this case by calculation of spatially
weighted averages.

INTERPRETATION OF TREND
HYPERSURFACES

Trend hypersurfaces fitted to APl gravity
data are shown in block diagrams (Fig. 10)
in which contour lines portray the intersections
of sides of the blocks with the hypersurfaces.

TaBLe 5.—Averages (API degrees) of oil-gravity
values in southeastern Kansas.

Arithmeticmean................... ... 36.79°
Average value within first-degree

hypersurface....................... 35.87°
Average value within second-degree

hypersurface. . .............. ... . ... 36.33°
Average value within third-degree

hypersurface. .. .................... 36.96°
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Ficure 10.—Hypersurfaces (4-C) fitted to API gravity data with respect to depth below surface and zeo

graphic location.

Google

Block D shows gencralized geologic structure.

Equations of hypersurfaces are listed.
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First-degree Hypersurface

The first-degree hypersurface (Fig. 104)
represents the observed data moderately well,
accounting for about 32 percent of the total
sum of the squares (Table 4). The confidence
level (Table 3) is in excess of 99.9 percent,
signifying that the first-degree trend hyper-
surface represents a real effect and cannot be
due to chance alone.

The first-degree hypersurface may be lik-
ened to an east-southeast-dipping homocline,
reflecting trends in the original data, namely
that (1) at a given depth there is a general
increase in API gravity toward the west-
northwest, and (2) at any particular locality,
there is a general increase in API gravity with
depth. The first-degree hypersurface makes
clear that differences in API gravity are not
segregated in any uniform manner according
to depth or to stratigraphic zones because the
planes within the first-degree hypersurface dip
toward the east, whereas the strata dip gen-
erally toward the west (Fig. 8; 10D).

Second-degree Hypersurface

The second-degree hypersurface (Fig. 10B)
reveals trends that differ considerably from
the first-degree hypersurface. The second-
degree hypersurface might be likened to a
complex syncline that plunges toward the east-
southeast on one side, but the direction of
plunge and shape of the hypersurface are
aradually reversed, as is revealed by contours
on the south-facing or front side of the block.
We are dealing with a series of complex,
nested surfaces within the hypersurface, and
the shape of any particular surface, as for
example the 37° API surface, is that of a
saddle-shaped hyperbolic paraboloid. The
second-degree hypersurface represents a per-
cent of the total sum of the squares of about
50 percent (Table 1), and the confidenve level
associated with the quadratic component is in
excess of 99.9 percent (Table 3).

Interpretation of the geologic significance
of the second-degree hypersurface is somewhat
difficult because the surface is more complex
than the first-degree hypersurface.  The in-
creased complexity reflects the improved fit of
the hypersurface and emphasizes that oil-grav-
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ity values vary in a complex manner within
the area.

Third-degree Hypersurface

Although the third-degree hypersurface
(Fig. 10C) is still more complex than the
second-degree hypersurface, there are marked
similarities between the two. Surfaces within
the third-degree hypersurface may be likened
to an eastward-plunging, complex syncline
that gradually becomes a saddle-shaped struc-
ture. The percent of total sum of squares
represented by the third-degree surface is
about 63 percent (Table 4), and the contribu-
tion of the abbreviated cubic component (the
cubic cross product terms have been omitted)
is real, since a confidence level of more than
99.9 percent is associated with it (Table 3).

The third-degree hypersurface also reflects
the increase in API gravities toward the west.
but it suggests that the increase is by no
means a simple increase in that direction.
Furthermore, it appears to bear a relationship
to the low API gravities in the Arbuckle, or
lowest oil-producing zone, as indicated by the
westward deflection of the contour lines near
the bottom of the south-facing side of the
block (Fig. 10C).

Spatial Distribution of Residual Values

The generalized spatial distribution of posi-
tive and negative second-degree residual oil-
gravity values is shown in a series of “slice
maps” (Fig. 114), and distribution of positive
residuals is shown in a block diagram (Fig.
11B). The residual values were obtained by
subtracting trend values from observed values.
The spatial distributions of first- and third-
degree residual values are almost the same as
the second-degree residuals and are not shown
here. Considering the positive residuals
within the block extending from 1200 to 3600
feet (well depth), there are three main places
where positive values congregate: (1) in the
extreme southeast corner of the block, (2) in
the extreme northwest corner of the block, and
(3) in a broad and very irregular zone that
extends from northeast to southwest across the
block. The negative residuals are aggregated
between the positive residuals.
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the area. The coincidence between residual
oil-gravity highs and residual structural lows
may not be fortuitous, and perhaps similar re-
lationships occur in other areas.

The tendency for oil-gravity residual values
from different stratigraphic zones to be ag-
aregated into the same clusters may reflect
long-persisting ancient geographic and en-
vironmental conditions. For example. during
part of Pennsylvanian time. limestone marine
banks that formed in southeastern Kansas
(Harbaugh. 1960, p. 229.232) tended to be
stacked one upon another in the same general
localites. in spite of occurring in different
stratigraphic units. It is presumed that the
marine banks were a localized response to
environmental conditions that included water
depths. waves. currents. and sources of ter-
restriallv derived sediment. These environ-
mental conditions, in turn. probably reflected
large-scale ancient geographic conditions, such
as the configuration of land and sea. Tt is
speculated that oil-gravity residual clusters in
southeastern Kansas may also partly reflect
ancient geographic and environmental features
that may have persisted during much of the
Paleozoic Era. For example, the ancient
geography may have influenced the distribu-
tion of marine organisms, including the
phytoplankton, and in turn. influenced the
characteristics of crude oil formed from
organic material incorporated into the sedi-
ments. However, these suggestions are tenta-
tive and additional study is needed before final
conclusions are drawn.

SUMMARY OF INTERPRETATIONS OF
OIL-GRAVITY VARIATIONS IN
SOUTHEASTERN KANSAS

1. There is broad correlation between well
depth and API gravity: API gravities tend to
increase with depth.

2. Factors other than depth appear to have
a strong influence, however. These factors
might generally be classed as depositional en-
vironment factors.

3. The first-degree hypersurface (Fig, 104)
makes clear that oil-gravity variations are not
controlled by progressive changes hetween
stratizraphic zones. because planes within the
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first-degree hypersurface dip opposite to the
strata (Fig. 10D).

4. Similar environmental factors may have
influenced oil gravities in different strati-
graphic zones in the same general localities.
This is suggested by aggregation of residual
values in distinct clusters in three-dimensional
space.

5. The tendency for residual values to be
clustered suggests that depositional conditions
affecting oil gravities in a given locality may
have remained more or less the same during
much of the Paleozoic. If this is the case.
residual clusters could represent responses to
long-persisting ancient geographic features.
such as shore lines, sediment source areas, and
organism communities, which affected the
depositional environment at any particular
place for long intervals of time.

6. It is suggested that both depth of burial
and depositional environment have influenced
oil-gravity values. Of the two, perhaps depo-
sitional environmental factors are the most
important.

GLOSSARY OF STATISTICAL TERMS
USED BUT NOT EXPLAINED ELSE-
WHERE IN THIS REPORT

Analysis of variance.—A technique in which
the variation within a set of data is separated
into different components, permitting differ-
ences between and within components to be
compared. Ordinarily, the estimate of vari-
ance is:
S(x—x)*
V==
n—1

where V' = variance,

n — number of data values,
x = observed data values,
& = arithmetic mean,

o = standard deviation.

However, in this study, analysis of variance
was used to determine the significance of trend
hypersurfaces, and mean square values were
used instead of variance estimates.

Degrees of freedom.—Pertains to the number
of opportunities in which variation may occur.
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For example, a set of data containing ten data
values has nine degrees of freedom. Similarly,
a set with one data value contains zero degrees
of freedom, because no variation is possible.

Snedecor’s F.—The ratio of two variances, or
the ratio of two mean squares.

Frequency distribution.—Pertains to the man-
ner in which a set of data values are distrib-
uted according to frequency of occurrence.

Lorgarithmic transformation.—Involves use of
logarithms of data values rather than the raw
data values themselves.

Mean square.—Refers to the sum of squares

divided by the number of degrees of freedom:

sum of squares

mean square — .
degrees of freedom

Residual values (deviations).—Obtained by

subtracting trend values from observed values.

Skewness.—Pertains to the degree of asym-
metry in a frequency distribution.

Sum of squares.—The sum of squared values.

Trend values.—Values estimated on the basis
of a trend line or surface. For example, if a
trend line is fitted to pcints on an X-Y dia-
gram, for each value of Y there is a corre-
sponding estimate of X.
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DESCRIPTION OF COMPUTER PROGRAM FOR FITTING FOUR-VARIABLE
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General Statement

Details of the computer program used in
fitting. contouring, and evaluating four-vari-
able trend hypersurfaces are presented in
Appendix 4. Appendix B is a complete listing
of the computer program in which cards or
lines are identified by number, and Appendix
C consists of reproductions of examples of
output from the program.

This program is written in a computer lan-
cuage called BALGOL, which is one of sev-
eral “dialects” of the computer language
termed ALGOL-58. A language such as
BALGOL is termed a “source language.” The
program is placed initially on punched cards
and then read into the computer where it is
translated into machine language which the
computer can utilize directly. The translation
is accomplished by using another program,
termed a compiler, which is usually recorded
on magnetic tape and which translates, or
compiles, the source language.

The program described here has been writ-
ten primarily for use on either an IBM 7090
or 7091 computer, coupled with an IBM 1401
computer. The program could be used, with
shight modifications, on the Burroughs 220
computer. The Kansas Geological Survey
will make the program available, in punched-
card form. for a limited time at a cost of
$10.00. IBM 7090 and 7094 computers are
currently in widespread use in the United
States and access to one of these machines is
available at a number of both university and
commercial computer centers. Persons wish-
ing to use the program on the IBM 7090 or
7094 should send four magnetic tapes to the
Computation Center, Stanford University,
Stanford. California. so that the BALGOL
compiler system can be recorded on the tape.
When this has been done, the program de-
scribed in this report. as well as many other
BALGOL programs, may be readily used on
virtuallv any IBM 7090 or
Peter Carah wrote that part of the program

7091 computer.

for plotting of z values and residual values in
the “slice maps,” and the matrix inversion
procedure was adapted from the Stanford
University Computation Center program li-
hrary.
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The program is extremely fast and econom-
ical when run on the IBM 7090 or 709+
computer. The program compiles from the
BALGOL source deck in 30 seconds. Time
required for execution of the program varies.
depending upon the number of data points
and dimensions of the hypersurface blocks
and plotted maps. As an example, 60 seconds
7090 time were required for execution using
oil-gravity data described in this report. in
which 244 data points were handled, three
hypersurface blocks about 5 x 814 x 9 inches
in dimensions were contoured, and 24 “slice
maps” were plotted. In addition. about 6
minutes 1401 time were required for printing
of the output.

Major Steps in Program

The theory and operation of the program
are explained in detail on subsequent pages.
However, as an introduction, the principal
steps in the program are outlined below:

(1) Read into computer numerical data
that control certain operations of the
program, such as dimensions of block
contoured by computer.

(2) Read in data values, four values (u,
%, ¥, and z) for each data point.
(3) Obtain sums for matrix and for column

vector used in solution of normal equa-
tions.
{-4) Calculate constants of equations of hy-
persurfaces by matrix inversion.
Employing equation constants thus ob-
tained, calculate trend value at each
data point and subtract this value from
actual z value at that point to obtain
residual value. Each hypersurface of
ziven degree will have its own trend
and residual values at specified data
points.
Calculate statistical properties of hy-
persurfaces, including error measure.
percent of total sum of squares, and
apportionment of the sums of squares
according to linear, quadratic and ab-
breviated cubic components.
17) Calculate hypervolumes within hyper-
surfaces by evaluation of triple integral
between limits of block. Divide hyper-

(3)

(6)



Harbaugh—Four-Variable Trend Analysis Study of Oil-Gravity in Kansas 27

volume by ordinary volume to obtain
average value of z within block.
Contour intersections of hypersurface
with planes that intersect block. The
number of planes and their intersect
values are specified on the control
cards. Any number of horizontal and
vertical planes may be contoured. It
is generally convenient to contour the
top. bottom, and four sides of the
block whose limits have been specified
in making previous calculations. Con-
touring is accomplished by substituting
progressively changing values of w, x,
or y corresponding to the location in
space of each point for which a printed
character is printed. Values of w. x,
or y are substituted in equation describ-
ing surface, z value for each point is
determined, and character to be printed
(number, blank space, letter, or other
symbol; Table 7) is selected, depending
on value that z assumes at each point
(Appendix C, Part 2).

If desired, the original data values and
residual values from the three trend
hypersurfaces are sorted according to
depth and location and are then auto-
matically plotted in a series of hori-
zontal “slice maps” on which the values
are plotted within specified depth inter-
vals (Fig. 11: Appendix C, Part 3).

5

(9)

Input to Program

After the computer program has been fed
into the computer, data cards follow. Three
kinds of data cards are used in conjunction
with this program: (1) alphabetical and
numerical information used for identification
purposes, (2) numerical information used to
control the operation of the program, and (3)
numerical values pertaining to data points.
These data are described on subsequent pages.
Detailed rules for preparation of data cards.
as well as other information concerning
BALGOL, are contained in the manual entitled
Burroughs Algebraic Compiler: A Represen-
tation of ALGOL for Use with the Burroughs
220 Data-Processing System, which may be
obtained from the Burroughs Corporation. De-
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troit, Michigan. The rules for data cards are
very simple, however, and the most important
are: (1) a 5 must be punched in column 1
of each data card, (2) columns 2 to 80 of
each card are available for data, and (3)
there is no specified format for the data values
except that at least one blank column must
separate numbers.

Alphanumeric heading.—The first data con-
sists of 72 characters of alphabetic and nu-
merical (alphanumeric) information. Typi-
cally, this information might include the name
of the area being studied, the name and age
of the geologic formation or formations in-
volved, and the name of the person preparing
the data. When the program is executed, this
information is reproduced at the top of each
of the map pages (Appendix C) and elsewhere
in the output pages, thus providing positive
identification. Dollar signs should be placed
in columns 2 and 75 of the data card, and
the 72 alphanumeric characters (including
blank spaces) are placed between the two
dollar signs, in columns, 3 to 74.

Control cards.—(1) First control card:

(a) A 5in column 1 of each card.

{b) An integer specifying whether the
data point values are type integer
(2222) or type decimal (4444).

(c) An integer specifying the number

of data points.

An integer specifying the length.

in tenths of an inch, of the y di-

mension of the block that is to be

contoured by the computer’s print-

ing machine. (Fig. 13).

(e) An integer specifying the x dimen-
sion of the contoured block in
tenths of an inch.

(d)

(f) A decimal-point number specifying
the x intercept of the right side of
the block. The value must be ex-
pressed in x-coordinate units.

A decimal specifving the v inter-
cept of left side of block.

A decimal specifving the y inter-
cept of front of block. The value
must be expressed in y-coordinate
units.
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Wp

X xrb

Ficvre 13.—Diagram showing coordinate-axis inter-
cept values (Xr, XI, Yb, Yt, Wb, and Wt) for six
planes that form surfaces of block intersecting hyper-

surface.

(Intercept values must be in same units as

w, x, and y values of data points.)

(i) A decimal specifying the y inter-
cept in the back of block.

(j) A decimal specifying the w inter-
cept of bottom of block. The value
must be expressed in w-coordinate
units.

(k) A decimal specifying the w inter-
cept of top of block.

(1) A decimal specifying the reference
contour value.

(m) A decimal specifying the contour
interval.

(n) An integer specifying the vertical,
or w, dimension, in tenths of an
inch, of the block that is to be
contoured.

(o) An integer specifying whether
trend and residual values are to be
written, written and punched, or
neither written or punched as fol-
lows:

0 Do not print or punch
1 Print only
2 Print and punch

{p) An integer specifying whether raw
data and residual values are to be
plotted as follows:

0 Do not plot
1 Plot
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(2)

(3)

(4)

(5)

Kansas Geol. Survey Bull. 171, 196£

Second control card (for horizontal

contoured surfaces) :

(a) AS5incolumnl.

(b) An integer specifying the number
of horizontal surfaces to be con-
toured; punch 0 if none are to be
contoured.

{c) Decimal numbers specifying inter-
cept values of horizontal surfaces.
expressed in w-axis coordinate
units.

Third control card (for vertical sur-

faces intersecting x axis) :

(a) A5 in column 1.

(b) An integer specifying the number
of surfaces to be contoured; O if
none are to be contoured.

(c) Decimal numbers specifying x-axis
intercept values of the surfaces.

Fourth control card (for vertical sur-

faces intersecting y axis):

(a) A Sincolumnl.

{b) An integer specifying number of
surfaces to be contoured; O if
none are to be contoured.

(c) Decimal numbers specifying y-axis
intercept values of surfaces.

Fifth control card (controls residual

plotting; use only if integer specifying

whether data values are to be plotted
is 1 on first control card):

(a) A5incolumn l.

(b) A decimal specifying the w inter-
cept value of the top “slice” in
which the original z values and
residual values will be plotted.
This number will have a smaller
numerical value than in (d) below
because the numbers increase go-
ing downward.

(c) A decimal specifying the thickness
in vertical (w-axis) units of each
of the “slices.”

(d) A decimal specifying the w inter-
cept value of the top of the bot-
tom “slice.”” This number will
necessarily be greater than the
number in (b) above.

Values for data points—Four values for

each data point are needed. These are fed in,
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in groups of four, in the order w, x, y and z.
The values may be either wholly decimal-point
numbers or wholly integers, but may not be
a mixture of both decimal and integer num-
bers. The w, x, and y values are coordinate
values in arbitrary units, which may have a
dimensional sense (feet, miles, fractions of
inch, etc.), but could also represent any quan-
titv that one wishes. For most geological pur-
poses, it is convenient to express the w values
in feet (well depth for example) and the x
and y values in either miles or in fractions of
an inch scaled from a map. The z values may
be in any convenient units. If the integer on
the first control card that specifies the type of
data values is 2222, all values are to be in
integer form, if 4444, all values in decimal-
point numbers. Please note that a maximum
of 950 data points may be handled without
modification of the program. However, more
data points could be handled by changing the
array dimensions on lines 8, 12 and 19, Ap-
pendix B.

In obtaining the w-, x-, and y-coordinate
values, it is most convenient to place the
origin either at the upper left rear corner of
the block or at some point that is farther to
the left, higher, and farther to the rear. In
a conventional geological application, the w-
coordinate values might be well depths, with
positive values that increase downward, and
the x- and y-coordinate values might represent
distances scaled from an origin along east-
west and north-south directions, respectively.
Negative values are acceptable. Cards are to
be punched as follows:

(a) A5 incolumn 1.

(b) w, x, y, and z values, in that order
(any number of values per card, but
numbers will be read in groups of
four).

Solutions of Normal Equations to
Obtain Constants of Equations

Each hypersurface is described by an equa-
tion whose constants are such that the least-
squares criterion is satisfied. The method
employed involves matrix inversion and is
basically the same for each hypersurface,
regardless of the number of terms in its equa-
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tion. For illustrative purposes, only the first-
degree hypersurface is considered in detail
below.

First-degree hypersurface.— The equation
for a first degree hypersurface is

(Eq. A)
Z rena = A + Bw + Cx 4 Dy.
The constants 4, B, C and D of this equation
are to be calculated so that the sum of the
squared deviations is the least possible. The
deviation at a particular point is that difference
between the observed and calculated value.
which may be expressed as
de\'iation = Zobs — Ztrend-

Because the z,,ma value is given by equation
A, we may rewrite equation as follows:

(Eq. B)
deviation = z,,, — (A + Bw + Cx -+ Dy). or
deviation = z,,,, — 4 — Bw — Cx — Dy.
Proceeding further, we may express the sum
of squared deviations as a function, F, of 4,
B, C, and D, by writing

(Eq. C)
sum of squared deviations = F (4, B, C, D,).

Combining equations B and C, we obtain
F (A, B, C, D) =3 (zy— A —
Bw — Cx — Dy)2.

From this point on we will consider z to be z,,...
If F (A, B, C, D) is to be minimized, it is
necessary that

dF/0A = 0F /OB = OF /0C = dF /0D = O.

The partial derivatives are

-a—A—=ZZ(z—A—Bw-Cx—Dy)(—l) =0
g% = Z2z-A-Bw-Cx-Dy)(-w) =0
g_g=22(z-A-Bw-cx-Dy)(—x) =0
%:ZZ(Z—A—BW—Cx-Dy)(—y) = 0.

Multiplication of each expression and summa-
tion over the individual terms of these four
equations vields four other equations. which
are
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~-Zz +An +BIw +CZx +DZy =0
-Zzw + AZw + BEwZ + CZwx + DZwy =0
-Zzx + AZx + BZwx + CZxZ +DZxy =0
~Zzy + AZy + BEwy + CExy +DZy? = 0

where n — number of data points.

We may rearrange these equations by plac-
ing the terms containing z on the other side to
obtain four normal equations whose solution
will permit us to obtain the four unknown

constants, A, B, C, and D:

An +BZw +CZx +DZy = Zz

AZw + BZw? + CZwx + DZwy = Zzw
AZx + BZIwx + CEx2 + DZxy = Zzx
AZy + BZwy + CZIxy + DZJy2 =Zzy .

If a solution exists for these four linear equa-
tions, they may usually be solved by matrix
algebra methods. We may restate the four
normal equations by writing a single matrix
equation, as follows:

n Zw Zx Zy A Zz
Zw sz Zwx Zwy B Zzw

x Zwx sz Zxy C i Zzx

y Zwy Zxy Zyz D Zzy

In this equation, the ABCD-vector multiplied
by the wxy-matrix is equal to the vector con-
taining z. In applying this equation, observa-
tional data provide the wxy-matrix and the
z-vector, allowing the ABCD-vector to be
determined. This may be done by multiplying
the z-vector with the inverse of the wxy-matrix,
so that

A n ZIw Ix Zy Zz

B Zw ZWZ Zwx Zwy Zzw
C ) Zx Zwx sz Zxy Zzx
D Zy Zwy Zxy Zyz Zzy

Second- and third-degree hypersurfaces.—
Second- and third-degree hypersurfaces are
fitted in essentiallv the same manner as first-
degree hvpersurfaces, and the underlying

theory is the same. There are more terms
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in the equations describing second- and third-
degree surfaces, and therefore more normal
equations are needed. The matrix equation
for combined linear, quadratic, and part of
the cubic terms is shown in Table 6. First-
degree hypersurfaces involve only the linear
terms (outlined by dotted lines in Table 6).
second-degree hypersurfaces involve linear
plus quadratic terms (outlined with dashed
lines), and third-degree hypersurfaces involve
all the linear plus quadratic plus cubic terms.
It should be pointed out that the cubic terms
are not complete in that the cubic cross-
product terms have been arbitrarily omitted
to cut down on the number of steps in the
program.

Steps in computer program in solving nor-
mal equations.—The summation to obtain the
values for z-vector and the wxy-matrix (Table
6) is accomplished in a FOR loop (lines 55
to 129, Appendix B). Inasmuch as many ele-
ments in the matrix are duplicates of others,
it is not necessary to calculate all of them by
summation. Those that are duplicates are
simply assigned (lines 130 to 194, Appendix
B). Because the matrices and column vectors
are altered each time they are used in solving
the matrix equation, new matrices and new
column vectors are assigned using FOR loops
(lines 195 to 201) to preserve the original
matrices and vectors.

In the program, solution of matrix equa-
tions is accomplished by procedure SOLV
(lines 20} to 252) and binary external pro-
cedure INPROD (lines 753 to 755) which has
been declared (line 203) ahead of procedure
SOLV. Each time procedure SOLV is called.
the identifiers and the dimensions of the ma-
trix and the two vectors are specified (lines
253, 255, and 257. Thus, the same matrix-
equation solving technique is used regardless
of whether the equation pertains to first-,
second-, or third-degree hypersurfaces.

The numerical values of the elements of the
wxyy-matrix and the z-vector (Table 6), ob-
tained by summation, are part of the output
of the program (Appendix C, Part 1). Ordi-
narily these values are not of direct interest,
but it may be helpful to scan them to insure
that the memory capacity of the computer is
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not being exceeded, particularly if very large
numbers for data values are involved. The
equation constants are part of the output of
the program (Appendix C, Part 1).

Calculation of Trend and Residual
Values

Trend and residual values are calculated for
each data point employing a FOR loop (lines
259 to 275, Appendix B). The trend values
are calculated successively for first-, second-,
and third-degree hypersurfaces, using the ap-
propriate equation constants calculated pre-
viously. The residual (or deviation) value at
each data point is obtained by simply sub-
tracting the trend value from the observed
value. If the trend value is algebraically
smaller than the observed value, the residual
is positive, whereas if the trend value is alge-
braically greater, the residual is negative.

The w-, x-, and y-coordinate values, observed
z values, and first-, second-, and third-degree
trend and residual values are printed out in a
table of ten columns (Appendix C, Part 1).

Calculation of Statistical Measures

Error measure.—FError measure (lines 276
to 281 is defined as the sum of the squared
residual values, divided by the number of data
points, less one, which may be expressed as
follows:

E(Zohs - ztn-mi) 2

EM =

n—1
Error measure is thus a measure of the degree
to which the calculated trend approaches the

observed data values. A perfectly fitted trend
would have an error measure of zero.

Sum of Squares—The sums of squares as-
sociated with the linear, quadratic, and ab-
breviated cubic trend components, and with
deviations from these components are calcu-
lated (lines 286 to 297, 305). These values
may be used to determine confidence levels
associated with the components by analysis
of variance.

Percent of total sum of squares.—Another
measure of the degree to which the trend

Google
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approaches the observed data is the percent of
total sum of squares (lines 298 to 304). The
percent of total sum of squares may be de-
fined algebraically as:

2
zzZ _ zztrend)
trend n
2
5,2 Ezzobs) ]
z - ——
obs n

The percent of total sum of squares may vary
from only a few percent to almost 100 percent.
A value of 100 percent would indicate a
perfect fit of the trend to the observed data.

100

Calculation of Hypervolumes and
Average 3 Value

The program provides for calculation of
four-dimensional hypervolumes within the
hypersurfaces between specified limits. If
four-dimensional hypervolume is divided by
three-dimensional volume, an average value
of z is obtained in which the spatial locations
of the z data values weight or influence the
average. A spatially weighted average calcu-
lated in this manner, may in some cases, be
more meaningful than the conventional arith-
metic mean, particularly where the data values
are very irregular and contain extremes. A
suggested geological application would be in
calculating average porosity values in lime-
stone oil reservoirs, where porosity values
obtained by core analysis may be highly
erratic.

To explain the principle of this method.
analogies have been drawn between calculation
of weighted averages where two, three, and four
variables are involved (Fig. 14). Consider
the problem of obtaining a weighted average
of z, where z is a function of x. We may
represent the function by a curve (Fig. 144).
and if we wish to calculate the average value
of z between limits x, and x,, we find the area
beneath the curve between these limits and
then divide by the distance between x, and x..
Inasmuch as z is expressed as a function of
x, the area beneath the curve is obtained by
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evaluating the integral of the function between
the limits z, and x,. Thus, the average of z
is the average height of the curve above the x
axis between the limits.

Consider now the problem of calculating a
weighted average of z where three variables
are involved, and z may be expressed as a
function of x and y. Whitten (1962) has
discussed the theory of the method in detail.
Inasmuch as three variables are involved, a
surface (Fig. 14B) rather than a line repre-
sents z as a function of x and y. We may
think of the weighted average value of z as
being the average height of the surface above
the x-y plane between the specified limits. x,
to x,. and y, to y,. To obtain the weighted
average we calculate the volume between the
surface, the x-y plane, and the four planes
specified by x,, x,, y,, and y,. We then divide
this volume by the area in the x-y plane within
the limits. The volume is obtained by double
integration and evaluation of the integral be-
tween the limits.

We may now consider the problem of ob-
taining a weighted average where four vari-
ables are involved, and z may be expressed
as a function of w, x, and y and is represented

by a hypersurface. The volume within a
four-dimensional hypersurface is a four-
dimensional hypervolume. When the hyper-
volume is divided by three-dimensional vol-
ume, a weighted average of z is obtained. The
principles are the same as with a lesser number
of variables. The hypervolume is obtained by
evaluation of the triple integral (Fig. 14C)
between the three pairs of limits, w, to w,,
x, to x,, and y, to y,.

Hypervolume within a first-degree hyper-
surface.—The mathematical steps in obtaining
hypervolume within a first-degree hypersur-
face are outlined below. Hypervolumes
within higher-degree hypersurfaces are ob-
tained in the same way, except that the equa-
tions have more terms.

The hypervolume within a hypersurface is
given by the indefinite triple integral

S‘dw de S‘ z dy ,
where z is a function of w, x, and y:
z = flw,x,y).

For a first-degree hypersurface, the function is

z = A + Bw + Cx + Dy .

A B c
2 VARIABLES 3 VARIABLES 4 VARIABLES

l—— LenoTH oF —
X, LINE BENEATH Xg
CURVE

Z » f(X)

AREA BENEATH CURVE
LENGTH OF LINE

Xe
1 (X)dx

AVE Z - AVE Z»

AVE Z - AVE Z »

_—
Xg— X,

Z = 1(X.Y)

VOLUME BENEATH SURFACE
AREA BENEATH SURFACE

X Yo
f ax f 1(X,Y)dY
% o,

(Xe- X)(%-Y,)

\_“...

Z s f(W,X,Y)

HYPERVOLUME WITHIN BLOCK
VOLUME OF BLOCK

Xe Ye
dw /dx / f((W. X.Y)dY
" xI Yl

(Ws - W, ) (Xg= X,)(Yg - Y}

AVE Z -

AVE Z -

Ficure 14.—Diagrams and generalized equations showing how spatially-weighted average values may be
obtained by integration and division where two (A), three (B), and four (C) variables are involved.
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Substituting in this function, we obtain the
indefinite triple integral

S‘de‘de‘lA + Bw + Cx + Dy)dy.
Integrating with respect to y, we obtain
S‘dw {X[Ay + Bwy + Cxy + }Dyz] dx } dw.

In turn, integrating with respect to x, we ob-
tain

2

y{Axy + Bwxy + 1Cx%y + %nyz} dw ,

and finally, integrating with respect to w, we
obtain

Awxy + %szxy + -}wazy + %Dwxyz

We may determine the actual hypervolume by
evaluation of the definite integral between
specified limits. The general form of the
definite triple integral, where z is a function
of w, x, and y, may be written

w, X, Y2
S dw S‘ dx S‘ dy ,
Yy * Y

in which the limits represent the values of
w, x, and y at the edges of the block in which
the hypervolume is to be calculated (Fig.
14C). Thus, the hypervolume is obtained
when the equation above is evaluated between
these limits by substituting the following val-
ues for 1w, x, and y {(lines 355, 358, 301):

2 1
X:XZ—XI
=Y, ™ N
\NZ=\NZ—W2
2 1
222
Xy T %

2 2 2

yzyz—YZ'

The hypervolume between these limits (lines

301 to 3065) is given by

Go
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Volume = A[(w2 = wyx, - x) Ny, = Yl)]

+ 3B[(wZ = wlx, =3y, = v))]
+ 3Clw, = wxs - x2)y, - y)))

+ 3D[(w, = w))(x, = x)(57 =y

Hypervolume within second- and third-
degree hypersurfaces.—The volume within a
second-degree hypersurface (lines 355, 356,
358, 359, 361, 362, 367 to 372) is given by
the equation: :

Volume = Al(w, - w)x, = x )y, = ¥,)]
+ Y2 B(w2 - wlix, - x))y, - v))]
+ V2 Cliw, = w))x5 = xD)y, = y))]
+ Y2 Dl(w, - w))(x, - )y - yD)]
+ 13 El(w, - w))(x3 = )y, = )]
+ 3 Fl(w, = w))(x, = x)(y; =y;)]
+3 Gl(wy = w})x, =Xy, = v))]
+ V4 H(w, - w2 - x2)yZ - yD)]
+ V4 I[(wzz - wlz)(x; - xlz)(yz -yl

+ )4 J[(w_f_ - wlz)(x?_ - xl)(yzZ - y{")]

The expression for hypervolume within a
third-degree hypersurface (lines 351 to 3063,
374 to 379) is not given here. Cubic cross-
product terms have been omitted in the pro-
gram for the third-degree hypersurface. cutting
down substantially on the number of arith-
metic operations in evaluating the expression.

Contouring of Intersection of
Hypersurface with a Plane

A hypersurface can be visualized by passing
through it and contouring the values
of the hvpersurface where they intersect the
In this program, planes are contoured
one at a time (Appendix C, Part 2) and may
he pasted together later to form a rectangular

block (Fig. 15).

planes

planes.
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(C) Add algebraically to the reference con-
tour value.

For example, if the contour value is 100, and
the contour interval is 10, then the contour
value represented by the algebraically lower
edge of the band printed with B’s is 60. The
reference contour value is marked by the edge
of the band of $’s which faces the band of A’s.

Plotting of Original Data and of
Residual Values

In this program, all plotting of data points

Kansas Geol. Survey Bull. 171, 196-f

is done automatically. It is possible to do this
because the location of each data point is
specified by the coordinate values w, x, and 5.
Plotting of points on an ordinary map is
usually no problem because the location of
any point can be specified by two coordinate
values, x and y. But, plotting of points in
three-dimensional space poses a problem. In
this program (lines 690 to 750) points are
plotted by dividing the three-dimensional
block (Fig. 114) into a series of horizontal
slices (Appendix C, Part 3), each slice being
of specified constant thickness. Data points

TasrLe 7.—List of characters that correspond with contour intervals of printed contour maps. Empty places
in column indicate that no character is printed.

Number of contour
intervals above (+)
or below (—)
reference contour.

Character printed
(or blank) in band,
of which lower edge

denotes contour value.

Number of contour
intervals above (+)
or below (—)
reference contour.

Character printed
(or blank) in band.
of which lower edee

denotes contour value.

—40 T
-39
-38 S
—-37
—36 R
—35
—34 Q
—-33
—-32 P
—31
-30 (0]
—29
—28 N
—27
—26 M
—25
—24 L
—23
—22 K
—21
—20 J
-19
—18 1
—-17
—16 11
—15
— 14 G
—13
—12 K
—11
— 10 I
-9
— 8 D
- 7
— bt (
— D
~— 4 B
— 3
- 2 A
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within a slice are projected onto a plane and
plotted as points on an ordinary map. The
number of maps plotted equals the number of
slices. This approach does not completely
avoid the difficulty of plotting points in three-
dimensional space because differences in eleva-
tion of points within a slice are ignored.
However, it is a practical approach to a
problem that has no simple solution.

In the program the values must be sorted
before they are plotted. First. the values are
sorted according to the w-coordinate values,
which in a subsurface geological application
would be according to depth. The values are
then assigned to appropriate slices, sorted ac-
cording to y-coordinate values, and finally
sorted according to x-coordinate values. The
data points within each slice are plotted at
the approximate locations specified by their
x- and y-coordinate values. The number
printed for each point is located so that its
richt edge generally corresponds with the
actual map location of the data point. Spaces
between points are left blank. Of course,

Google

small errors are introduced because the num-
bers are confined to the printer’s columns and
rows, which are spaced 1/10 and 1 6 of an
inch apart, respectively. Additional errors may
be introduced where the points are very close
together so that the printed numbers tend to
overlap. Because all the characters in each
line or row are printed simultaneously. printed
characters cannot overlap. To avoid this
mechanical problem, the location of each
printed point is shifted to the right where it
would tend to overlap the number representing
the data point immediately to the left. At
least one blank space is left between numbers.
except where a minus sign is present. All
numbers are truncated to integers to save space
in printing.

As noted previously, thickness of the slices
and the w-coordinate values of the upper
surfaces of the uppermost and the lowermost
slice must be specified in the input data. In
the program, the original data values are
plotted first, followed successively by the first-,
second-. and third-degree residual values.
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APPENDIX B

LISTING OF COMPUTER PROGRAM FOR FITTING HYPERSURFACES

Each line has been arbitrarily numbered for identification at left edge of the line. In
actual practice identification numbers are confined to columns 73 to 80 on the punch cards,
and 2 is necessary in column 1.
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Kansas Geol. Survey Bull. 171, 1964

COMMENT PROGRAM 159 FITS ATH DIMENSIONAL 1STs 2NDs AND 3RD DEGREE
VOLUMES BY LEAST SQUARES TO IRREGULARLY=SPACED DATA POINTSe VOLUMES

CALCULATED BY TRIPLE INTEGRATION AND HORIZONTAL SURFACES ARE CONTOURED.

JeWe HARBAUGHs GEOLOGY DEPTes STANFORD $

INTEGER XP()s 19 Jo Ko Lo OPs Ns VERTy HORe CVi)s ELs MoW S

INTEGER ARMINe ARPLS » YDIM¢ WDOIM » LYy LX » DIGITSe N2 S

INTEGER PLTAR» PRINT» 1Yy IXe C= TEMPs LINE

ARRAY PRINT(3¢50)e LY(950)s IX(950) » DIGITS(50) S

ARRAY PLTAR(12)2002 VALUY9!ES ORI'9¢G DATA? 9 1STDEG?
TREE RE'» 'SIDUAL Y9 ?2NDDEG? ¢ 'REE RE*» 'SIDUAL Y9 *3RDDEG? »
'REE RE'»YSIDUAL!)S

INTEGER 12 $ ARRAY 12(9%0)S

ARRAY ARMIN(40) = (0 090p0p0 0508098 090Cg0 290Dl gt So0ESyl 190F0,

NGl Tt T 000 S0 J0 g0 HatRkbgl S galtst S90tMIgs 09 0NS

00 1900040 150Dt 0,0Q0 0 190RIGI BytSigt 1y¢TE) §

ARRAY ARPLS(GO) = (18050 0501090 0502090 2583098 0904090 1505050 0,
6000 Ng 0700 0903050 090900 $p008 gt 1508050 HotRtgs Pplamingld 0y
Tolol totalot Sobmipl VolWipt 190X0pt 0gtYlgt 2) 8

ARRAY X(950910)eT(13913)9 R(13)9s XP(950s4)s TA(6956)s T10(12012)
T13€(15915)9 R&4l4a)s R10C10)s R13(13)s Qla)s S(10)s F(13)s 2(132)»
CVI132)s LEV(20)s LEX(20)e LAY(20) S

FORMAT FORM(SKS(BSPRINT(39198¢18 DIGITS(1)S)eW)S

QUTPUT PLOT(PLTAR((145(C=1)9=3¢5)9 PLTAR((165(C=1))~2e5)»
PLTAR(145(C=20)) $

FORMAT PLFT(3A6sWoeW) S

FORMAT RESLEV( #LOWER LEVEL OF SLICE = #yX8s29% UPPER LEVEL #,
#0F SLICE = ®9 X8e2s WeW)S

OUTPUT RESOUT ( FWSTEPe FW)S

STARTse :

INPUT ALPHUAL9A20A39A&9AS9A69ATIABIA99A100A10AL2) $

READ (SS ALPH) S

INPUT PREF( OPo N» YDIMs» HORs XR9o XLo YBs YTe WBoe WTe RFy CON¢

WDIMs PUNCHOPs RESIDOP)S

READ (S$ PREF)S

INPUT ELVS(ELsFOR 1 = (19190EL) S LEV(I))S READ ($SS ELVS)S

INPUT LXVSILXeFOR I = (1919LX) $ LEX(I))S READ ($S LXVS)S

INPUT LYVS(LYeFOR I = (1s1oLY) S LAY(I))S READ ($S LYVS)S

IF RESIDOP EQL 1 S{INPUT RPLOTCON(LOWSTEP¢HIGH}S READ(SSRPLOTCON))S

YDAM = YDIM $ HAR = HOR §

IF OP EQL 2222 $
BEGIN

INPUT DATI(FOR I =(191oN) S FOR J =(19194) S XP(19J))S

READ (33 DAT!) s

FOR I s(191sN) S FOR J =(19194) $ X(I9J) = XP(1eJ) S
END S

IF OP EQL 4444 S

BEGIN
INPUT DATDI(FOR 1 =(101sN) S FOR J s(l9olsh) S X(IsJ)) §
READ ($$ DATD) §

END S

FOR K =(151513) $ FOR L =9151913) S T(KeL) = 0e0 S

FOR K =(191913) $ R(K) = 060 $

COMMENT CALCULATE VALUES FOR 13 X 13 T MATRIX ELEMENTSy EXCEPT FO-

THCSE VALUES THAT ARE DUPLICATES OF OTHERSsWHICH WILL BE ASSIGNED $

FOR I =(191N) $

BEGIN

Tlle2) = T(192) + X(Isl) S

T(193) = T(193) + X(192) S

Tlle4) = Tileb) + X(1+3) S

Ti195) = T(195) +(X(192)eX(]92))S
Tlle6) = T(106) +(X(Iel)eX(193))S8
TCleT) = T(1e7) +(X(I02)eX(I93))8
TC1eRY = TU108) +(X(Te1)1aX(T021)8

Google
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o4
(1]
[ )
o7
68
69
T0
n
T2
73
T4
3
76
L
78
79
80
)}
82
L 3 ]
84
as
86
87
L 1
89
90
91
2
93
9%
95
96
97
98
99
100
101
102
103
104
108
106
107
108
109
110
1
112
113
114
115
116
117
118
119
120
121
122
123
124
128
126

TE(209) = T(109) +(X(T01)eX(2p1))S
Ti1e10)= T(1010)e(X(T03)eX(103))S
TE2e5) = T(205) +(XCIol)alX(I02)eX(102))) S
T0206) = T(206) +(XUT01)a(X(102)eX(203))) S
T(297) = T(2e7) +(X(I01)e(X(T02)eX(203))) S
T(208) = T(298) +(X{I02)a(X(101)aX(102)
T(299) = T(299) +(X(I91)e(X(T01)eX(3sl)
Tt(2010)= T(2010)4¢X(Io1)e(X(I03)eX(103)
T(3e5) = T(305) #i{X(102)e(X(202)eX(102)
T(397) = T(307) +(X(102)e(X(102)0X(T03)))
Ti(3910)e T(3910)4(XtL92)e(X(T03)eX(103)))
T(ar10)s T(hel0)4(XIT08)atX(T03)eX(I03)))
T(595) = T(5e5) ¢ ((X(102)eX(T02))0(X(102)eX(102)))
TUB96) = T(506) + (IX{Iol)eX(TI02))etRl102)eX(103)))
T(SeT) = TU(S5e7) + ((X(102)aX(T102))al(X(202)eX(103)))
T(508) = T(%98) ¢ (UIX(I01)eX(102))alX(T02)0X(202)))
T(S599) 3 T(599) + ((XC(Io1l)aX(Z01l))a(X(TI02)0X(202)))
T(5+10)= T{(5910)4+ ((X{102)eX(T02))a(X(103)aX(L03)))
T(696 )= T(696 )+ ((X(191)aX(201))a(X(103)eX(203)))
)
)
)
)
]
]

)
)
)
)"
)
"
13

T(6sT )= TU(6sT )4 ((XUI02)aX(202))e(X(T03)eX(203))
T(698 )= TUi698 )4+ (IX(191)eX(T01))e(X(202)eX(203))
T(6910)s T(6910)+ ({XUI912)aXU203))a(X(293)eX(203))
TCTe10)s  TUT7010)+ ((XET02)eXI203))etX(103)eX(103))
T899 )= T(899 )4 (IX(Io1)aX(T01))e(X(T01)eX(202))
T(699 1= T(699 )¢ (IXUT01)eX(T02))a(X To2)eX(203))
T(999 )= T(999 )4 ((X(I101)aX(T01))a(X(Lo2)eX{2r1)))
T(9910)m T(9910)4 (UX{201)aXiTr1))a(X(I03)aX(I93)))
T(10010)=T(10910)4+ ((XCIo3)eX(T03))a(X(103)aX(103)))
TO 85113sTC Sel1)+0EXCT02)aX(102))a(X(T102)a(X(T02)aX(102)))
TU 5012)8TC 8912)¢0UX{T01)aX(Io2) Vel X{T01l)etX(102)aX(202)))
TC S5913)8T( 501304 0(X{T02)eX(102) )0 (XCI03)a(X(103)aX(103)))
TU 6911187l 6911040 (X(292)eXUT102))alX(T02)0(X(T02)0X(203)))
T 6912)8TC 6912040 (X(T02eX(TI01))alX(I0o1)o(X{TIs2)aX(193)))
TC 6013)=T( 6913240 (XUTI01)eX(T03))alX(TI03)elX{I03)eX(103)))
TO 7o11)T( 7911)4C(X(1902)eX(102))0lNlL02)aX(102)aX(103)))
T 7012)=T( Te12)+0UXEIo1)eX(Io1))alX{202)atX(ls2)0X(203)))
1} ]
1} ]
3]
3]
3]
»
"
)

VOOV AVNLNLNLLLLLLE

TO 7913)aT0 T913)40UX{T92)eX(I03))al(X(T03)elXCIn3)eX(103)
TC 8912)=T( 8o11)4+0UXII01)IaX(I22))0lXtT02)atX{T02)eX(102)
TC 8512)=T( 891214 0tXCT92)aX(I01))a(Xtlsl)e(X(To1)eX(202)
TU 8913)=T( Bo13)+ (X (Tr1)eX(In2))a(XlT03)al(X(T103)eX(103)
T 9911)=TC 99214 0(XIT01)eX(T01))a(X(T02)e(X(102)aX(102)
T 9912)8T( 9012)40(XIT01)eXtT01))atXTo1)e(X(T01)eX(T01)
TE 9913)=T( 9913)4+0iX(191)aX(I01))alXUTIs3)a(X(T03)aX(I03)
T€10921)2T(10021)+((X{192)aX(102))0lX(1s2)alX(103)eX(1s3))
T(10012)2T(10912)40(X{201)aX{I01))alX{Isl)e{X{I0s3)aX(103))))
T(10913)mT (10013040 {X(103)eX(103))0(X(103)etX(103)eX(143))))
TC11011)=T(21921)40(X(T02)0(X(T02)eX(I92)))alX(T102)elX(102)eX(1s2))))
TO11912)=T(2129212)40(XCT01)a(X(T01)aX(T02)))alX(lo2)al(X(I02)eX(102))))
TE22013)2T(212013)40(X{T02)a(X(T92)eX(T02)))alX{T93)alX(193)eX(193))))
(BB}
IARD
IRRE]

- A P W W W WP WP WP wP WP P W W
[ X N N N N N N N N N K N N X _N X N ]

T012012)=T (1201204 0UX(T01)0(X(TIL2)aX(T92)))alXl{To1)alX(T0ol)aX(]sl
T0129013)=T(212913)40(XET92)a(X{T92)aX(T0o1)))a(X(T03)elX(103)eX(Is3
TC13013)=T(13s13)4((X1T93)e(X(I93)aX(103))3a(X({I93)alX(I93)eX(]s3

R{1 ) = R(1 + X(1sk) $
R(2 ) =2 R(2 ) + (X(IsbdaXt{Tel)) s
R(3 ) = R(3 ) ¢ (X(1ea)eX(192))
R{(& ) = R(4 ) + (X(Iek)eX(193)) s
RIS ) = R(5 ) 4+ (X(1lsa)e(X(T92)eX(Is2))) S
R(6 ) = R(O ) + (X(I1ob)a(X(T0ol)aX(I0e3))) §
RUT ) = RUT ) 4+ (X{UT0d)etX(192)eX(I03))) S
R(B8 ) = R(B ) + (X{Ish)a(X(Iol)eX(Is2))) $
RI9 ) = R(9 ) 4+ (X(Ish)elX(Inl)aXlInl))) S
R(10) = R(10) 4 (X(TIsadalX{I03)eX(I03))) $
RE11) = R(11) + ((X(Ist)eX(T02))a(X{T02)eX(102))) §
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127 R(12) = R(12) + ((X(Ioh)oXl]ol)io(X(lolloX(lol)’l $
128 RU13) = R(13) + ((X(1oa)eX(T103))ealX(103)aX(Is3))) S
129 END S

130 T( 1s1 ) = N S

131 T( 291 ) = Tl 192 ) 8 TCU 191l1) = T( 345 ) S
132 TL 292 ) = T( 109 ) 8 TC 1012) = T 209 ) S
133 T( 293 ) = T( 148 ) $ TC 1913) = T( 4410) S
134 T 294 ) = T 196 ) S Tl 2011) = TC 598 ) S
135 Tl 391 ) = Tt 103 ) 8 TG 2912) = TC 999 ) 8
136 Tl 292 ) = T 198 ) S TC 2013) = T( 6910) S
137 T( 393 ) = TL 145 ) S Tl 3511) = T( 595 ) S
138 T( 394 ) = T( 107 ) S TG 3912) = TL 899 ) S
139 T 396 ) = T( 297 ) S Tt 3913) = T(10e7 ) S
140 T( 398 ) = T( 2¢5 ) 8 TC 4911) = T( 57 ) S
181 TL 2,9 ) s T( 298 ) S TO 4912) = T( 699 1 S
142 Tt 491 ) = T 104 ) S T( 4913) = T(10510) S
143 T 492 ) = T( 196 ) S T(11el ) = T( 1911) S
184 Tl 453 ) = T 197 ) 8 T(1192 ) = T( 2911) S
145 Tl 494 ) = T( 1910 S T(1193 ) = T 3911) S
146 T( 495 ) = Tl 3¢7 ) S T(lle4 ) = T( 4911) S
147 T 496 ) = Tl 2910) S T(11e5 ) = T( 5911} $
148 T( 497 ) = T( 34100 S T(1196 ) = T( 6911) S
149 T 498 ) = T 207 ) S TG1197 ) = TC Tell) S
150 Tl 499 ) = Tt 296 ) S T(11+8 ) = T( 8911) 8
151 T( 5S¢l ) = T( 15 ) S TC1199 ) = T( 9e11) S
152 Tl 5¢2 ) = Tl 295 ) 8 T(11910) = T(10s11) S
153 T( 593 ) = T 395 ) S T(12e1 ) = T( 1912) S
1% T( 594 ) = Tl 3+7 ) S T(1292 ) = T( 2412) 8
155 TU 691 ) = T( 196 ) S TC1293 ) = T( 3512) 8
156 T( 692 ) = TL 246 ) 8 Tl1204 ) = T( 4912) S
157 TU 693 ) = Tl 297 ) 8 T(1295 ) = T( 5912) S
158 T( 694 ) = T( 29100 S T(12+6 ) = T 6912) S
199 T 695 ) = T( 546 ) S TU1297 ) = T( Tel2) S
160 T( 791 ) = TC 107 ) S T(12+8 ) = T( 8s12) S
161 T( 742 ) = T( 257 ) S T(1299 ) = T( 9912) §
162 T( Te3 ) = T( 397 ) S T(12910) = T(10412) S
163 Tt 794 ) = T( 39100 8 T(13s1 ) = T( 1913) S
164 T( 795 ) = T( 57 ) 8 T(1392 3} = T 2513) $
165 T( 746 ) = Tl 697 ) S T(1393 ) = T( 7410} $
166 T( 77 ) = T( 54100 S T(1304 ) = T( 4913) S
167 T( 798 ) = T 596 ) S T(1395 ) = TC 5,13) S
168 T( 7+9 ) = T{ 648 } $ T(1396 ) = T( 6913) S
169 T( 891 ) = Tl 198 ) S T(1397 ) = T( 7913} S
170 T 892 ) = T( 298 ) 8 T(1398 ) = T( 8513) S
171 T( 893 ) = Tl 245 ) S T(1399 ) = TC 9913) 8
172 T 894 ) = T( 297 ) S T(13910) = T(10e13) $
173 Tt 895 ) = T( 598 ) S T(12+11) = T(11,12) 8
176 T 896 ) = T( 698 ) S T(13911) = T(11913) S
175 T( 8e7 ) = T( 596 ) S T(13512) = T(12913) S
176 T( 858 ) = T( 599 ) 8 T(39+13) = T(7910) $
177 T( 8010) = T 607 ) S

178 T( 901 ) = T 199 ) S

179 Tl 992 ) = T( 299 ) S

180 T( 993 ) = T( 248 ) §

181 TC 994 ) = T 206 ) S

182 T( 9985 ) = T( 599 ) S

183 Tl 996 ) = T( 699 ) S

184 T( 97 ) = T( 698 ) 8

105 T( 998 ) = T( 849 ) S

186 T(10s1 ) = T( 1910) S

187 T(10s2 ) = T( 2410) S

188 T(10+3 ) = T( 3,10) $

189 T(10s4 ) = T{ 4910) S

Google



Harbaugh—Four-Variable Trend Analysis Study of Oil-Gravity in Kansas 43

190 T(10e5 ) = T( S5910) S
191 Ti10e6 ) = T( 6910) S
192 T(2097 ) = T( 7910) S
1939 T(10e8 ) = T( 697 ) S
194 T(1059 ) = T( 9010) $

195 FOR I =(19194) S FOR J =(19194) STA(IeJ) = T(leJ) §

196 FOR 1 =(191913)5 FOR J =(191913)8T13(1sJ)= T(1eJ) $

197 FOR I ={19s14120)S FOR J =(191+10)ST10(TeJ)= Ti(LeJ) $

198 COMMENT ASSIGN 49 109AND 13 PORTIONS OF COLUMN VECTOR R TO NEW VECTORSS
199 FOR 1 =(1s19s4) $ R4(I) = R(I) S

200 FOR 1 ={141913)S R13(1) eR(I) $

201 FOR T =(1+1010)8 R10(I) =RII) S

202 COMMENT SOLVE LINEAR MATRIX EQUATIONS OF GENERAL FORM Ts = R S

203 EXTERNAL PROCEDURE [INPROD() $

204 PROCEDURE SOLV(NSA(9)sB()sY()SSINGULAR)S

205 BEGIN

206 COMMENT THIS 1S THE METHOD OF CROUTWITH INTERCHANGES.
207 TO SOLVE AY=B FOR Y»GIVEN A AND B,

208 COMMENT EXTERNAL PROCEDURE INPROD 1S CALLED BY SOLVe
209 SO INPROD MUST BE AVAILABLE WHEN SOLV 1S CALLED. S
210 COMMENT SINGULAR 1S THE LABEL OF THE STATEMENT TO WHICH
211 SOLV() EXITS IF A() IS SINGULARS

212 COMMENT REAL Al(9)eBl)oY()S
213 INTEGER l9IMAX9sJsKsNS

214 FOR K=(1s19N)S

213 BEGIN

216 TEMP = OS

217 FOR 1=(KelsN)S$S

218 BEGIN

219 XX = A(IsK) = INPROD(191sK=1sA(10)sA(sK))S
220 A(TeK) = XX s

221 IF ABS(XX) GTR TEMP §

222 BEGIN

223 TEMP = ABS(XXH §

226 IMAX = 1

229 END

226 ENDS

227 IF TEMP EQL 0,408

228 GO SINGULARS

229 COMMENT WE HAVE FOUND THAT A(IMAXsK) IS THE LARGEST PIVOT IN COL K
230 NOW WE INTERCHANGE ROWS K AND IMAXS

231 1F IMAX NEQ KS$

232 BEGIN

233 FOR J = (191sN)S

234 BEGIN

23%% TEMPsA(KJ)S ALKsJ)mA(IMAX9J)S A(IMAXJ)=TEMP
236 ENDS

237 TEMP=B(K)SB(K)=B(IMAX)SB(IMAX)=TEMP

238 ENDS

239 COMMENT NOW FOR THE ELIMINATIONS

240 DENOM = A(KeK) S

241 FOR I=(K+lys1sN)S

242 AlloK) = A(TsK)/DENOM S

243 FOR J = (K+1lp1lpN)S$S

284 A(KoJ) = A(KoJ) = INPROD(19s19K=19A(Ke)sA(sJ)) s
243 B(K) = B(K) = INPROD(19s19K=19A(Ks)sB())

246 ENDS

s FOR I=(1o1oN)S Y(I) = A(I41)S

248 COMMENT NOW FOR THE BACK SUBSTITUTIONS

249 FOR K = (Ns=1s1)$

250 Y(K) = (B(K) = INPROD(K+1sK+1sN=KsA(Ko)sY()))/A(KIK) $
251 RETURN

282 FND SOLVIIS
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SOLVL 48 Tale)e RLl)s Q) S MATE) S
MAT6ee
SOLV(103T10(s)sR10()s S() S MATIO)S
MAT1040
SOLV(13ST13(s)sR13()s F() S START)S
COMMENT SUBSTITUTE WeX AND Y VALUES IN EQUATIONS OF FITTED SURFACES ¢
FOR I =(1s19N) S
BEGIN
X{195) = QU1) + (Q(2)eX(I0l) )4+ (QU3)eX{I92)) + (Q(4)eX(Is3)) S
X(106) = X(10b) = X(19¢5) S
X{(IoT) = SC1) + (S(2)eX(Js1))4+ (S(3)aX(192)) + (S(H)eX(1+3)) +
(S(S)e(X(T192)eX(T02))) + (S(6)e{X(191)eX(103))) +
(SITYe(X(T92)eX(T93))) 4+ (S{B8)e(X{I91)gX(192))) +
(S(9)g(XCI01)aX(T01))) 4+ (S{10)atX(Is3)eX([93))) S
X(198) = X(Ioh) = X(197) S
X(109) = F(1) &+ (F(2)eX(I01))+ (F(3)eX(I02)) 4 (F(&)eX(Is3)) +
(F(5)e(X(T902)eX(102))) + (FU6)alX(192)eX(I03))) +
(FUT)e(XUT02)eX(103))) + (FIB)a{X(TIo1l)eX(192))) +
(FU9)a(X(T0l)eXUIsd))) ¢ (FULODa(X(193)aX(I03))) +
CCFU11)eX(T02))0(XUT02)aX(T02))) ¢ ((F(12)aX({T01))a(X{In1)eX(T01)))e
(CFU13)eX(103))0(X{T03)eX(193))) S
X(1910) = X(I94) =« X(I99) S
END $
EM1 = EM2 = EM3 = 0,0 $
FOR 1 =(1s1eN) $
BEGIN
EM1 = EM1 +(X(I96)eX(196))S
EM2 = EM2 +(X(198)eX(1+8))S
EM3 = EM3 +(X(1910)eX{1510))$
END S
El = EM1/(N-1) S
E2 = EM2/(N=1) S§
E3 = EM3/(N-1) S
SMLN = LNSQ = SMQD = QDSQ = SMCB = CBSQ = SMZ = 2SQ = Q0 §
FOR I =(1s19N) S

BEGIN
SMLN = SMLN + X(1s5) S
LNSQ = LNSQ + (X{I95)eX(195))S
SMQD = SMQD + X(Is7) $
QDSQ = QDSQ + (X(IsT7)eX(Is7))$
SMCB = SMCB + X(1+9) S
CBSQ = CBSQ + (X(199)eX(199))S
SMZ = SMZ 4+ X(ls4) $
ZSQ = ZSQ + (X(Ile4)eX(I94))8
END $

ZOR s 2SQ = ((SMZ4SMZ)/(N~-1)) $

PTS1 = 10040((LNSQ=((SMLN«sSMLN)/(N=-11))/20R)S

PTS2 = 100,0((QDSQ=((SMQD«SMQD)/(N=1)))/Z0R)S

PTS3 = 100,0((CBSQ=((SMCBeSMCB)/(N=1)))/2Z0R)S

IF PTS1 LSS 040 & PTS1 = 10040 + PTS1 $

IF PTS2 LSS 040 $ PTS2 = 100,0 + PTS2 $

IF PTS3 LSS 040 $ PTS3 = 10040 + PTS3 S

QDON = QDSQ - LNSQ $ CBON = CB2Q - QDSQ S

QUTPUT ERMA(EL »E2 $E3 sPTS1sPTS2sPTS3)S

FORMAT FMTR(#ERROR MEASURE LINEAR TREND SURFACE = %¢X31429WeWs
*ERROR MEASURE QUADRATIC TREND SURFACE = #¢X2842sWeWs
#ERROR MEASURE CUBIC TREND SURFACE = #9X3242sWeWs
#PERCENT TOTAL SUM SQUARES LINEAR SURFACE = #9X25¢29WoeWy
#PERCENT TOTAL SUM SQUARES QUADRATIC SURFACE = #*3X22s29WeWy
#PERCENT TOTAL SUM SQUARES CUBIC SURFACE = #4X26029WsW)S$S

OUTPUT VAR(LNSQs EM1s QDSQe QDONy EM2 CBSQs EM3y CBON ) s

FORMAT FVAR(®*SUM OF SQUARES DUE LINEAR COMPONENT = #4X3042sWarWe
#S5UM OF SQUARED DFVIATIONS FROM LINFAR = ®oX2842sWeWse
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#SUM OF SQUARES DUE LINEAR + QUADRATIC COMPONENT = #3X1842»
WoWe®SUM OF SQUARES DUE TO QUADRATIC ALONE = #9X28e2sWeWe
#SUM OF SQUARED DEVIATIONS FROM LINEAR + QUADRATIC = #,
X16e29WeWy
#SUM OF SQUARES DUE LINEAR+QUADRATIC4+CUBIC = #4X24629WrWy
#SUM OF SQUARED DEVIATIONS FROM LINEAR+QUADRATIC+CUBIC = %,
X126290WeWs
#SUM OF SQUARES DUE CUBIC ALONE = #9X35429Ws W)S$
AZM = R{(1)/N S
OUTPUT ALPHA(AL19A29A39A49A59sA69ATIABIAT9A1090A119A22)S
OUTPUT ODS1(FOR I =(191sN) S FOR J =(141910)% X(IsJ}) $
FORMAT FMTA{12A69W3sW) $
OUTPUT CO3(FOR J =(19l94) & Q(J))
CO6(FOR J =(191910)S S(J))»
Cl10(FOR J =(1s1913)8 F(JU))S
FORMAT CF3(We*EQUATION COEFFICIENTS %oWoRLINEARy Z = #9X12459%¢#%,
X120 T o%#W +#9X12To%X +#9X12e79%YRoWoW)
CFO(BLIN + QUADy Z 2R3X125sR+%3X12T7o%#W +%9X126To%X +#9X12479
RY +#9X1289%#X2 +%9X12480%WY +#9X1289%XYRoWsW9B10s
4R eX1268s%WX 4+89X1289%W2 4+#9X12,89RY2%9WoW)
CF1O0(#LIN + QUAD + CUB» Z = %4X12459o%+#3X1267s%W +%9X124To%X 4%y
X120T79%Y +R9X1289%X2 4#9X12,89%NYHsWoWIBL1O0s#+R9X]124BoRXY +%,
X1208o%WX +%9X12,89%W2 4% 9X12489%#Y2 +%9X12489%X3 +%#9X1268¢
W3 +89X12,89%YINpWIW) S
FORMAT HED(Wo*WCOORD %y
#XCOORD YCOORD Z=-VALUE 1ST=TRD 1ST-RSD 2ND=TRD 2ND-RSD*y
# 3RD=TRD 3RD=RSD*sWsW) $
FORMAT FMT1(#58%, XT741le 9XBels W) S
FORMAT FMT2(#5%#, XTele 9XB8ely C) $
FORMAT FMTAP(#8S#, 12A6s #$%, W) S
WRITE (3$S ALPHAs FMTA) S
FORMAT JUIM(#13 X 13 (XeY) MATRIX VALUES #sWeW) $ WRITE (33 JIM)S
OUTPUT TRAY(FOR I=(1919131S FOR JU=(1elsl3) $ T(lsJ))S
FORMAT FTRA(Ws13F1Ce3sW) S
WRITE (33 TRAYsFTRA) S
FORMAT JOE(Ws#]1 X 13 COLUMN VECTOR VALUES*9WiW)$ WRITE ($% JOE)S
OUTPUT RAR(FOR I =(151913)$ R(1))$ WRITE (8% RARy FTRA) $
WRITE ($$ CO39 CF3) $ WRITE ($S CO6s» CF6)S WRITE (3% C10» CF10) §
WRITE ($$ ERMAy FMTR ) $ WRITE '$$S VARy FVAR) $
WOl = WB -~ WBTS WD2 = (WBeWB) = (WTeWT) §

WD3 = (WBe(WBaWB)) = (WTo(WTeWT)) $

WDA = ((WBeWB)e(WBeWB)) = ((WToWT)e(WTWT)) $
XDl = XR = XL 8§ XD2 s (XReXR) = (XLeXL) $

XD3 = (XRe(XReXR)) ~ (XLa(XLeXL)) S

XD& = ((XReXR)o(XRoXR)) = ((XLoeXL)o(XLoXL)) $
YD1l = YB = YT § YD2 = (YBeYB} = (YToYT) §

YD3 = (YBe(YBeYB)) = (YTe(YTaYT)) $

YD& = ((YBeYB)e(YBaYB)) = ((YToYT)alYT4YT)) $

AR = WD1le(XDleYD1l) S
VLN & ((Q(1)eWD1)s(XD1oYD1)) + (((065)0Q(2))e(WD2s(XD1eYD1)))
+(0(0e5)e Q(3))e(WD1o(XD2sYDL1)}) + (((0e5)e Q(4))e(WD1s(XD1laYD2)))$
VAD = ((S(1)eWD1)o(XD1aYD1)) + (€(045)¢S(2))e(WD2e(XD1sYD1)))
+(0(0eB8)0 SU3))a(WD1a(XD2sYD1))) 4+ (((065)e S(4))e(WD1e(XD1lsYD2)))
+000063333)¢ S(5))e(WD1e(XD3oYD1))) +(((0625)e5(6))e(WD2e(XD1sYDZ)))
+(0(0625)0S(T))1e(WD1a(XD2sYD2))}Y + (((0025)eS(B))e(WD2e(XD24YD1)))
+(0(063333)¢S5(9))e(WD3e(XD1aYD1)))
+000063333)6S5(10))e(WD1a(XD1aYD3))) $
VCB = ((F(1)eWD1)e(XD1eYD1)) + (((0e5)aF(2))a(WD24(XD1leYD1))) +
(4(0e5)eF(3))e(WD1o(XD2eYD1))) 4+ (({0a5)eF(4))e(WD1e(XD1eYD2))) +
C0(003333)eF(8))e(WD1e(XD3aYD1))}) + (((0e25)eF(6))elWD24(XD1aYD2))) +
(0(0e25)eF (7)) e(WD1o(XD24YD2)}) + (((0425)aF(B))a(WD2e(XC2,YD1I))) +
(((063333)¢F(9))e(WD34(XD1aYD1)) )+ ((€0e3333)4F(10))e(WD1le(XDla¥YD3))) +
(000625)eF(11))e(WD1e(XD4aYD1))) + (((0425)aF(12))0(WCLa(XD1aYD1))) +
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379 ((‘OoZS)oF(13$)o(HDlo(XDloYDb))) $
380 AZl = VLN/AR = V@D $

381 AZ3 = VCB/AR 3
382 OUTPUT VOL(VLNs VQDs VCBsAZMy AZls AZ2s AZ3s AR) S
383 FORMAT FMVL(We#VOLUME WITHIN LINEAR SURFACE =#988sX1262sWeWe

386 #VOLUME WITHIN LIN+QUAD SURFACE s#:B69X12e29WoWse

385 #VOLUME WITHIN LIN+QUAD+CUB SURFACE =%#9B29X12e2eWsWy
386 #ARITHe MEAN Zs = SUM OF Z VALUES/ N m #9X11la2oWoWy
387 #AVERAGE Z VALUE» LINEAR SURFACE =#9B869X1242sWeWs

388 #AVERAGE Z VALUEs» LIN+QUAD SURFACE =#9B49sX12429WeWs
389 ®AVERAGE Z VALUEs LIN+QUAD+CUB SURFACE =#9X12420WoeWy
390 #VOL OF BLOCK IN CUBED UNITS#5Bl1lsX12s29WsW) S

391 WRITE ($$S VOL» FMVL) §

392 WRITE (SS ALPHA» FMTAP)S

393 WRITE (88 HED) $

394 IF PUNCHOP EQL 1 $ WRITE ($$S ODSls FMT1)S

395 IF PUNCHOP EQL 2 $ WRITE ($$S ODSls FMT2)S

396 COMMENT CALCULATE DX AND DYs AND SUBSTITUTE PROGRESSIVELY INCREAS+NG
397 VALUES OF X AND Y MAP VALUES IN FITTING EQUATIONS AND CONTOUR $
398 VERT = (0,603)eYDIM S WDIM = 10,603} eWDIM §

399 DW = (WB - WT)/WDIM $ KY = (YB = YT)/YDIM §

400 OX = (XR = XL)/HOR $

401 DY = (YB = YT)/VERT $

402 OUTPUT CNDATA(XLe XRs YTs YBs RFe CONs LEVIK)I)IS

403 FORMAT CONDAT(®#X VALUE LEFT EDGE OF MAP = #)X94l

404 * X VALUE RIGHT EDGE OF MAP =& ¢X8el»

405 - Y VALUE TOP EDGE OF MAP = #9X8¢lsWy
406 #Y VALUE BOTTOM EDGE OF MAP = #9X74l0
407 b REFERENCE CONTOUR VALUE = #4X9e1>

408 - CONTOUR INTERVAL = #¢yX13429W»

409 #ELEVATION OF MAP DATUM = #,X11lelsWeW) $

410 OUTPUT LXDATACLEX(K)s WTs WBs YBs YTs CON) $
411 FORMAT LXFMT(#VERTICAL PROFILE PARALLEL TO W-Y PLANE AND INTERSECTING*

6412 s% X AXIS AT #9X10e19Wo

413 #W VALUE TOP EDGE OF PROFILE a# sXTelsBT7s
414 #W VALUE BOTTOM EDGE OF PROFILE =% +XT7elsBés
415 #Y VALUE LEFT EDGE OF PROFILE =# 9XT7eloWs
416 #Y VALUE RIGHT EDGE OF PROFILE =% 9X7419B10s
417 #CONTOUR INTERVAL = #,X6s2sWsW) §

418 OUTPUT LYDATA(LAY(K)s WTs WBs XLs XRe CON) $
419 FORMAT LYFMT{®#VERTICAL PROFILE PARALLEL TO W=X PLANE AND INTERSECTING#*

420 o% Y AXIS AT #9X1041sWs

421 #W VALUE TOP EDGE OF PROFILE a#yXT7eleB79

422 #W VALUE BOTTOM EDGE OF PROFILE =% ¢XTeleBé4y
423 #X VALUE LEFT EDGE OF PROFILE =%y XTelsWs
424 #X VALUE RIGHT EDGE OF PROFILE =#yXTel9B10s
425 #CONTOUR INTERVAL = #9X6029WeW) $

426 W = 1 S

427 CALZlaee

428 1 =18 K =18

429 IF W GEQ 4 $ GO PROFILEX $
430 IF wW EQL 1 $

431 BEGIN

432 LAB3es

433 WRITE ($% ALPHAs FMTA) §

434 FORMAT OHED1 (#CONTOURS OF LINEAR TREND VOLUME #*#,W ) §
435 WRITE (%8 ZHED1 ) $

436 WRITE ($% CNDATA»CONDAT) $

437 BQ = Q(1) + (QE2)eLEVI(K)) + (Q(3)4XL) &
438 BQl = Q(3)eDX §

439 CALZ3 40

440 BQ2 =(Q(4)e(YT4+(DYel))) + BC S

44] FOR A ® (140s1,0eHARY §
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442 Z(A) = BQ2 + (ABQOL1) S

43 GO CONTOUR §$

(YY) END S

445 1F W EQL 2 S

446 BEGIN

447 LABAse

448 WRITE (S8 ALPHAFMTA) $

449 FORMAT ZHED2(#CONTOURS OF LINEAR 4+ QUADRATIC TREND VOLUME #*,W)$
450 WRITE ($S ZHED2 ) $

451 WRITE ($S CNDATAsCONDAT) $

452 BS1 = S(3).DX H

453 BS2 = S{5)el(2XLeDX} S

6454 BS3 = S(5)e(DXeDX) ]

455 BSS = S(B)a(LEVIK)eDX}) §

456 CALZAqe

457 BSY = YT +(DYel) S

458 BS4 = S(7)e(BSYeDX) §

459 BS = S(1) + (S(2)eLEVIK)) + (S(3)eXL) + (S(4)eBSY) ¢
460 (S(5)el(XLeXL)) + (S(6)e(LEVIK)aBSY)) + (S(T)e(BSYeXL)) +
461 (S{B8) e (LEVIK)eXL)) + (S(9)e(LEVIKIeLEVIK)})) +

462 tSt10)e(BSYEBSY)) §

463 BSA = BS1 + BS2 4 BS4 + 8S5 §

464 FOR A =(1¢091409HAR) $

465 Z(A) = BS + (AeBSA) + (BS3elAeA)) S

466 GO CONTOUR s

467 END §

468 IF W EQL 3 S

469 BEGIN

470 LABSee

471 WRITE ($S ALPHAs FMTA) $

472 FORMAT ZHED3 (#CONTOURS OF LINEAR + QUADRATIC + CUBIC TREND #»
473 #VOLUME #sW) $

474 WRITE (S$SS ZHED3) S

475 WRITE (3S CNDATASCONDAT) §

476 BT1 = F(3)eDX H

477 BT2 = F(5)e(2XLeDX) S

478 BT3 = F(5)e(DXeDX) S

479 BTS = F(B8)s(LEVIK)eDX) $

480 BT6 = Flll)e(3XLe(XLeDX)) S

481 BT7T = F(11)e(3XLe(DXeDX)) $

482 BT8 = F{11)e(DXe(DXeDX}) s

483 BTAA = BT3 + BT7 §

484 CALZSee

485 BTY = YT +(DYel) S

486 BTG = F(T)e(BTYLDX)

487 BT = F(1) +(F(2)eLEVIK)) + (F{3)eXL) ¢ (F(4)eBTY) +
488 (F(5)e(XLaXL)) + (F(6)e(LEVIK)sBTY))+ (F(T)e(BTYsXL)) +
489 (F(B8)e(LEVI(K)eXL)) 4+ (FUI)e(LEVIK)eLEVIK))) +

490 (FU10)e(BTYeBTY)) + (FU1l)a(XLo(XLeXL))) +

491 (F(12)e(LEV(K) o (LEVIK)4LEVIK}))) + (FU13)e(BTY(BTYaBTY))) $
492 BTA = BTl + BT2 + BT4 + BT5 + BT6 §

493 FOR A =(1s091409HAR) §

494 Z(A) = BT + (AeBTA) + (BTAAe{AsA}) + (BTBalAslAsA))) S
495 GO CONTOUR $

496 END S

497 CONTOURse
498 FOR J ={(191sHOR) §

499 BEGIN

500 IF 2(J) LSS RF $

501 BEGIN

502 CV(J) = ARMIN(MOD(FIX({(RF=Z(J})}/CON)»40) +1) $
503 GO THERE $

504 END §
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505
506
507
508
509
510
511
512
513
514
519
516
517
518
519
520
521
522
523
526
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
561
5642
543
564
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
867
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CV(J) = ARPLS(MOD(FIX((Z(J)=RF)/CON}s40)+1}) S

THEREse END S
OUTPUT ODCV(FOR J =(1514HOR) $ CVIJ))S
FORMAT FTCV(132A1lsW) S

WRITE ($$ ODCVHFTCV) §$
I =1+1S
IF (W EQL 1) AND (1 LEQ VERT) $ GO CALZ3 S
IF (W EQL 2) AND (I LEQ VERT) $ GO CALZ4 S
IF (W EQL 3) AND (1 LEQ VERT) $ GO CALZ2S S
K=K+1Ss
IF (W EQL 1) AND (K LEQ EL) $ (1 = 1 S GO LAB3) S
IF (W EQL 2) AND (K LEQ EL) $ (I = 1 S GO LABA) S
IF (W EQL 3) AND (K LEQ EL) $ (I = 1 S GO LABS) §$
W= W+18S GO CALZYL S
PROFILEX s
Wels
CALX1lee
] =18$SKs=1ts
IF W GEQ # $ GO PROFILEY S
IF WEXR 1S
BEGIN
LABX3 ¢

WRITE ($$ ALPHAy FMTA) S WRITE ($$ 2HEDLl) $

WRITE ($$S LXDATAs LXFMT) S

BXA2 = Q(4)eKY S

BXAl = Q(1) +(Q(2)eWT) ¢ (QI3)eLEXIK)) + (Q(h)eYB) $
CALX3e0

BXA3 = BXAl ¢+ (Q(2)e(DWel)}) S

FOR A =(14091409YDAM) $

Z(A) = BXA3 = (AeBXA2) S

GO KONTOURL s

END S
IF WEQL 2 S
BEGIN
LABX& oo

WRITE ($SS ALPHA» FMTA) S WRITE ($$ ZHED2) $

WRITE ($$ LXDATAs LXFMT) S

BXO = S(1) +(S(3)eLEXIK)) + (S(&)eYB) + (S(5)e(LEX(K)eLEX(K))}) +
(SIT)e(LEXIK)eYB)) ¢ (SL10)e(YBeYB)) $

BX1 = S(4)eKY §

BX3 = S(7)e(LEX(K)eKY) §

BX4 = S(10)e(2YBeKY) $

BX5 = S(10)e(KYeKY) S

BTX1 8 S(2) 4+ (S(6)eYB) + (S(B8)eLEX(K)) $

CALX&4 g0

BTX = WT +(DWel) S

BX2 #(S(6)el(BTXeKY))

BTQ =(BTX1eBTX) + (S(9)e(BTXeBTX)}) 4+ BXO $

BTX2 = BX1 + B8X2 + BX3 ¢ BX4 §

FOR A =(1609140sYDAM) §

Z(A) ==(AsBTX2)+(((AsA)eBX5} + BTQ)S

GO KONTOUR1 $

END $
IF w EQL 3 S
BEGIN

LABXS 4 e

WRITE ($$ ALPHAy FMTA) $ WRITE ($$ ZHED3) $

WRITE ($$ LXDATAs LXFMT) $

BDO = F(1l) + (F(3)eLEX(K)) + (F(4)aYB) + (F(5)e(LEX(K)eLEX(K)]))
+ (FUT)e(LEXIK)aYB)) + (FU10)a(YBaYE)) 4+ (F(11)e(LEX(K)o
(LEX(K) oLEX(K))) )+ (F(13)e(YBe(YBoYB))) 3

BD1l = F(2) + (F(6)eYB) + (F(B)sLEX(K)) $

BD2 = (F(4)aKY) §
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568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

BD4 = (FI7)o(LEX(K)eKY)) §
BD5 =2(F(10)e(YBeKY)) §

BD6 = F(10)1e(KYeKY) $

BD7 =3(F(13)e(YBelYBeKY)))S
BD8 =3(F(13)e(YBe(KYeKY))}S
BD9 ® F(13)e(KYs(KYeKY)) §
CALXS 40

BOX = WT +(DWel) S

BD10 = BD2 + (F(6)e(BDXeKY))+ BD4 + BD5 + BD7 §
8011 = BD6 + BD8 $
BD12 =(BD1BDX)+ BDO +(F(9)e(BDXeBDX)) + (F(12)0e(BDXe(BDOXsBDX)))S

FOR

A =(1:0901409YDAM) S

Z(A) = BD12 = (AeBD10) + ((AsA)}eBDI1l) = ((AsBD9)elAsA)) S
GO KONTOUR1 s
END $
KONTOUR1 46
FOR J = (1s1sYDIM) S
BEGIN
IF 2(J) LSS RF $

CVIJ) = ARMIN(MOO(FIX((RF=2(J))/CON)940) +1) $
GO HERE 8

END $

CVI(J) = ARPLS(MOD(FIX((Z(J)=RF)/CON)oaQ)+1) $

HEREe o
OUTPUT OCDX(FOR J =(1s1s YDIM) S CV(J)) S

END s

WRITE ($$ OCDXs FTCV) S

l=l+1s

IF (W EQL 1) AND (I LEQ WDIM) $ GO CALX3 $

IF (W EQL 2) AND (1 LEQ WDIM) $ GO CALX4 S

IF (W EQL 3) AND (1 LEQ WDIM) $ GO CALXS5 §
KsK+1s

IF (W EQL 1) AND (K LEQ LX) $ (I = 1 $ GO LABX3)S
IF (W EQL 2) AND (K LEQ LX) $ (I = 1 S GO LABX4)S
IF (W EQL 3) AND (K LEQ LX) S (I = 1 $ GO LABXS)S
Wa W+ 18 GO CALXY $

PROFILEYse

Wels

CALY1leo

I =18$SKs=1Ss
IF W GEQ 4 S GO PLOTRESID $
IF WEQL 1 s

BEGIN
LABY3 e
WRITE (S$S ALPHAs FMTA) S WRITE (3% ZHED1) $
WRITE ($$S LYDATAs LYFMT) S

8L1
BL2

= Q1) +(Q(3)eXL) + (QUA)eLAY(K)) S
= Q(3)eDX S

CALY3 40

BL3
FOR

=({WT +(DWel))eQ(2)) + BL1 S
A ® (1¢0901000HAR}) §

Z(A) = BL3 +(AeBL2) S
GO KONTOUR2 $

END §
IF W EQL 2
BEGIN
LABY4&ee

WRITE ($$ ALPHAy FMTA) $ WRITE ($S$ ZHED2) $
WRITE (SS LYDATA» LYFMT) S

BNl

= S(1) + (S(3)eXL) + (S(4)eLAY(K]) + (S(5)e(XLaXL)) +

(SET)e(LAY(K)oXL)) + (S(210)e(LAY(K)IoLAY(K}))) §

BN2
BN3

= S(3)eDX $
= S(5)el(2e(XLeDX)) §

Google
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670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

END

BN4 = S(5)e(DXeDX)
BNS = S{T)e(LAY(K)oDX) $

BN6 = BN2 + BN3 + BNS S
CALYAqe

BTX = WT +(DWel) S

BN8 ={S(8)a(BTXeDX))+ BNG6 S
BN9 = BN1 + (S(6)e(BTXeLAY(K))) + (S(8)e(BTXeXL)) +
(S(9)e(BTXeBTX)) 4 (S(2)eBTX) §$

FOR A =(14091409HAR) S
Z(A) = BN9 + (AeBNB) + ((AeA)eBN4) S
GO KONTOUR2 $

IF W EQL 3 S

BEG

END

IN

LABYSee
WRITE (SS ALPHAs FMTA) S WRITE ($S ZHED3) $
WRITE ($$ LYDATAs LYFMT) S
+ (F(3)eXL) + (FlA)eLAY(K)) ¢+
(FIB)e(XLoeXL)) 4 (F(T)a(LAYIK)oXL)) + (FU{10)e (LAY(K)oLAY(K)})
+(FL11)etXLolXLoXL))) ¢ (F(13) e (LAY{(K) e (LAY(K)oLAY{(K)))) $

BRO

BR1
BR2
BR3
BR&
BR6
BR?
BR8
BR9

= F(1)

= F(3)eDX S

2(F(5)e(XLeDX)) §
F(5)e(DXeDX) S
F(T)elLAY(K)eDX) S
3(F(11)e(XLo¢XLaDX)))
3(F(11)e(XLo(DXeDX)))
F(11)e(DXe(DXeDX)) $
BR1 + BR2 + BR4 + BR6 $

BR10 = BR3 + BR7 $
CALYSee
BDX = WT + (DWel) S
BR11l = BR9 + (F(8)e(BOXeDX)) §
BR12s(BDXel F(2) + (FL6)eLAY(K)) + (F(B)eXL) + (F(9)eBDX}) +
(F(12)4(BDXeBDX))) )4+ BRO §
FOR A =(14091609HAR) $
Z(A) = BR12 + (AeBR11) ¢ ((AsA)eBR10O) + ((AsA)e{AeBR8)) $
GO KONTOUR2 $

KONTOUR2¢ e
FOR J =(1s1+HOR) $

BEG

THER s o

WRITE
1 =1
IF (W
IF (w
IF (W
K = K
IF (W
IF (W
IF (w
W= W

IN

IF 2Z(J) LSS RF §
BEGIN
CV(J) = ARMIN(MOD(FIX((RF=Z(J))/CON)s40) +1) $

GO THER $

END $
CV(J) = ARPLS(MOD(FIX((2(J)=RF)/CON}os40)+1) §
END S
OUTPUT ODCY(FOR J =(1s19HOR) $ CV(J))S

(ss
+ 1
EQL
EQL
EQL
+ 1
EQL
EQL
EQL
+ 1

ODCYsFTCV) §
) AND |
) AND (
) AND (

I LEQ
1 LEQ
1 LEQ

—OWN - W

) AND (K LEQ
2) AND (K LEQ
3) AND (K LEQ
$ GO CALY1l s

PLOTRES1Des
IF RESIDOP NEQ 1 $ GO START s
OUTPUT QUT(FOR I =(1»19K) $ PRINT(251)) $
FOR I =(1s19sN) $

Google

WDIM) $ GO
WDIM) $ GO
WDIM) $ GO

Kansas Geol. Survey Bull. 171, 196-£

s
S

CALY3 S
CALY4 S
CALYS5 §

1 $ GO LABY3)S
1 $ GO LABY4)S
1 $ GO LABYS)S
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694 BEGIN

695 1Y(1) = X(]e3)/0Y S

696 IX(L) = X{Is2)/DX 3

697 END S

698 FOR C =(492910)8

699 BEGIN

700 FOR FW = (LOWs STEPs HIGH)S

701 BEGIN Js= 0 8

702 FOR 1= (1s19N)S

703 BEGIN IF (X(Is1) GEQ FW) AND (X(Is1) LSS(FW+ STEP))S
704 BEGIN J = J + 1 8 12(J) = 1 $ ENDS ENDS

705 N2 = JS

706 FWSTEP = FW + STEP S

707 WRITE ($S ALPHASFMTA)S WRITE ($$ PLOTy PLFT) $ WRITE(SSRESOUT oRESLEV)S
708 FOR LINE =({1»1sVERT) $

709 BEGIN

710 K=0$

711 FOR 1 =(1s1sN2)8

712 BEGIN

713 J=12(1) 8

714 IF 1Y(J) EQL LINE S

715 BEGIN

716 KesK+1S

nz PRINT(19K) = IX(J) S

718 PRINT(29K) = X(JsC) §

719 DIGITS(K)= 0e4343:L0G((QQQ= ABS(X(JsC))) +(QQQ LSS 140
720 11+ 2 S

721 END S

T22 END S

723 FOR § =(2919K) $ FOR J =(19191~1)$

724 BEGIN

725 IF PRINT(1e1) LSS PRINT(1sJ) S
726 BEGIN

727 FOR L = 192 S

728 BEGIN

729 TEMP = PRINTI(LoJ) S
730 PRINT(LsJ) = PRINT(LII) S
731 PRINT(LoL) = TEMP S
732 END S

733 TEMP = DIGITS(J)S DIGITS(J)=DIGITS(I)S
T34 DIGITS(1) = TEMP $

735 END S

736 END S

737 FOR I = (2+19K) S PRINT(3e1) = 0 3

738 PRINT(351) = PRINT(141)= DIGITS(1) §
739 FOR I = (291¢K) $

740 BEGIN

741 1F PRINT(3sI~1) LSS O §

742 BEGIN

743 PRINT(3s1) = PRINT(3sI-1) §
T4b PRINT(3s1=1) = 0 $

745 ENDS

746 PRINT(3s1) = PRINT(1s1) + PRINT(3s1) = PRINT(1sI-1)
747 - DIGITS(I} §

748 ENDS

749 WRITE (3S OUTs FORM) $

750 END S

751 END S ENDS

792 GO START 8 FINISH $

753 1 (6 7 06

754 J oX)®PEe2 9 17607517447 VIX0TE T TTIXITS &490 ThaB' 14 00 90 14 10 90
795 JTl(ep!- 740G 04¢9 476 75 6 '06705'-4476 75 T4 549

756 FINISH $

Go 3]-:
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APPENDIX C

EXAMPLES OF OUTPUT FROM COMPUTER PROGRAM

Google



Part 1
Example of output from program, listing

(1) values of elements in matrix and column
vector, (2) equation coefficients, (3) statis-

Go 3]@

tical measures of hypersurfaces, (4) hypervol-
umes and spatially weighted averages of =
within hypersurfaces, and (5) table of values
for data points, listing original data, and trend
and residual values.
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S-VARIABSLE MELATIONS

13 x 13

2.64,
S.84,
Ta4s,
.75,
2.5,
2.27,
31.07.
Llode,
l.45,
S.2c0
2.0t
.87,

3.3C,

1X.7) RATRIX

Ce

03

03

(-3

O¢

0«

.69,
1.43,
1.48,
2.7,
s.07,
$.92,
S.e7,
3.36,
3.a7,
1.21.
E TN
1.0,

T.e5%,

3
03
0e
o4

-1}

03

1 2 1) COLUMN vECTOR

8.9,

{LUATION COEFFICIENTS
36.3059%¢

[WLIFTH

0y

L3

.11,

LiN ¢ QuaD, 2 =

«0322395)ux o

LIN & QUAD ¢ (LB,

ENRDR FEASURE
FRAQR PEASURE
EAROR MEASUAL
PERCENT TCTaL

PIRCENT TUTAL

PERCENT

sSur OF
sSuw OF
su» OF
su» of
su» Ot
Suw OF
Sur OF

SUR OF

vOLumME
vCLUNE
VOLURE

ARITH.

=.07020920ZY o

03

OIL CRAVITY, WELL DEPTH,

VALUES

Teb4, 02
l.63, 04
3.51, 03
3,09, 03
2.05, 04
3,67, 04
1.58, 0«
$.07, Os
3.38, 0%
1.77, 0s
1.32, 05
8,20, 06
L.15, 0%

VALUES

2.67, 04

3T7.90548¢

.

.73,
2.27,
3.09,
$.26,
1.8,
1.21,
1.77,
S.87,
3.92,
3.30,
9.8,
1.64,

2.2%

3.9,

206627144 ¢

45,0206

LINLAR TREND SURFACE =
QUACRATIC TREND SUREACE

CUBIC TREND SURFACE «

or

03

04

«08125%Tw o

«00094850W2 o

3.5%1, O3
6.07, 04
2.03, 0«
1.58, &«
1.32, 02
2.40, 05
V.07, O+
3.16, 0>
1.22, 0o
9.73, O
9.04, 05
2.73, 07

6.69, 0%

.24, 08

CEOv LOC

2.2,
5.92,
s.67,
1.2,
2.03,
3.18,
2.97,
1.24,
1.04,
T.43,
1.30,
473,

T2,

8.42,

=2 3049529% o

e 9616497Tw ¢

«01009325W2

SUM SQUARES LINEAR SURFACE

TCTAL SUM SQUARES CUBIC SURFACE =

SQUARES DNUE LINEAR COPPONENT =
SQUARED
SQUARES
SQUARES
SQUARED
SQUARES
SQUAREL

SQUARES

wiTHIN
LRI

WITHIM  LIN®QUADSCUB SURFACE o

PEAN I, «

AVERAGE 2 vALUE,

AVERACE ¢ vALuE,

AVERACE I WALUE,

wiL OFf

wConaL

17.

sLOCK N

XCCORD

[}

1o

1.

20.0

17.

*

15.2
17.3
1.5
1c.0

.0
2.0
24.0
23.5
23.7
2805
22.0
21.0

bue¢

LEINEAR SURFACE -

LINeQUAD SURFACE

OUF CUBIC ALONE =

SUM OF I VALULES/ N

LENFAR SURFACE +

LINOQUAD SURFACE -

LiINeQUADCUS

CUBEC UNITS

SURFACE

DEVIATIONS FROF LINEAR =

OUVE TO QUADRATIC ALONE «

SUM SQUARES QUADRATIC SURFACE =

LINEAR ¢ QUADRATIC COMPONENT

OEVIATIONS FROF LINEAR ¢ QUADRATIC =
DUE LENEARSQUADRATICeCUBIC =

%379.17

e7826.u4

99533.01

36.79

3%.A7

36.33

36.9e

2692.80

~1.0362317K o
«20109L50Y2
e 39403451 ¢

+0390)34nu2 o

DEVIATEONS FRO” LINEARGQUADRATICeCUBIC =

IN SE KANSAS

04 3.09, 03 l.e8,

05 S.e7, O~ 3.30,

04 1.58, O~ 6.07,

03 L.77, O« S.e7,

05 9,87, O~ 3.16,

06 2,97, 05 1.24,

05 9.73, 04 2.40,

06 2.40, 0> 1.22,

07 1.24, Ou 8.20,

0% 1.1%, 0> 2.97,

06 6.4%, 03 1.09,

08 3.02, 07 2.10,

06 8,07, V. 1.80,

05 1.09, 05 95.39,

-+090041808Y

~.6831682Y o

8.0e
nn
4949
62,%

3ive24.2)
2395, 3¢
330876.35
252.02
2142.08
331065,
1933.50

189.09

121679081972 o

~4.3748048Y o

+0001446223 o

YCOORD 2-vVALUE 1ST-TRD 1ST-R5D 280-THD 2NU-HSD IRD-THD 3IAD-dSO

39.4 38.7
37.4 34.9
34.8 3%.7
3603

31.2
7.0
6.
36.3
36.9
3%.4
31.0
3.7

2.2
.4
“1.5
-2.0
=3
“.h
1.7
9.1
3.6
1.1

37.5
3.6
35.3
3%.3
3¢6.5
34.0
371.3
31.0
39.8
31.0
Ju.a
3¢.9
3n. T
39.1
3.4

04 1.e5,
05 3.7,
o6 3.36,
06 5.92,
0% 1.22.
06 l.es,
0% l.24,
O¢ 8,20,
06 1.07.
0s  s.18
06 S.T1,
o8 3.03,
08 1.97,
0% 9.40,
0319961652

=+01570535X2 ¢

o

Gr

5.28, 03 2.0%,
1.21, 05 .16,
1.77, 0a 1.32,
3.30, O+
9.73, 04 9.04,
7.45, 0% 1.30,
1,15, 05 6.45,
2.97, 03 1.89,
3.18, 06 .71,
2.25. 05 .28,
6.26, 05 6.39,
9.01s 07 1.16,

Letle On 4,44,

1.93, 05 1.7,

~.0330416TwY o

~.0009)207u) ¢

04 3.87, Oo
05> 1.07, 08
03 8.20, 06
1.64, O7
05 2.73, OF
06 «.73, 08
05 3.02. OV
06 2.10, Os
06 3.0), 09
03 9.01, o7
06 1.1, 08
08 8.78, 10

0o $.70, OB

05 1.e3, 08

~s094T743522Y

~+0308%394uY

~.CTL%%833Y)

3.39,
Te43,
1.15,
2.25,
6.8,
5.02,
8.07.
1.80,
1.97,
1.61,
“obs,
s.70,

1.2,

Oo

o~

o4

a

o¢
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Part 2

Examples of contours drawn on sides of
block intersecting third-degree hypersurface.

Kansas Geol. Survey Bull. 171, 1964

Reference contour line is formed by edge of
band of § signs facing band of A’s.

CRUDE OIL GRAVITY RELATED TO DEPTH AND LOCATION IN SOUTHEAST KANSAS

CONTOURS OF LINEAR ¢ QUADRATIC ¢ ﬂ.lc TREND VOLUNE

R VALUE LEFT EOGE OF RAP = X VALUE RIGHT EOGE
¥ VALUE BOTTON EDGE OF MAP =
ELEVATION OF NAP DATUN =

33333333333333333)
333333333333333333333
22222222222222222

33333333333330)
222222222222222222
22222222222222222222
22222222222222222
22222222

mnn
lllllllllllll
miuunnnn
11111l1111111111
nmutinuunn
uitnnuunnn
1iininuan
11111111111111112
itnnminn
1111111111111
111111111
innunl
1uiinan
uiinnn
1111111111
niannn
1111
mnuuununnn
ninnnun
innuann
1111411311111
utiun
11111
ununuan
umunmnn
1111
tannn
[ERRERRRELY
uminunn
minn
111111111
mamn
(31 RYREY
i

(3334
383888888088

AAA,

$988888880888
$885588888888
888898008388
588838585088
$8535808838¢
lll!l'il.’l

38983

888848
$538883083s
$8888% C.l

222
2222222
22222222222
22222222222
22222222222
22222222222
2222222222
22222222222
2222222222
2222222222
2222222222
2222222222
222222222
222222222
222222222
222222222
222222222
222232222
22222222
22222222
22222222
2222222
22222222
22222222
22222222
2222222
2222222
2222222
2222222

33
3333333
33333333333
33333333333
3333333333
3333333333
3333333333
333333333
333333333
333333333
333333333
333333333
3333333
333333333
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Part 3

Examples of slice maps where data values
have been plotted by computer. Map below
contains original data values and map on p. 58

contains second-degree residual values. Lines
were added by hand to show left and top
boundaries of each map. Origin is in upper
left corner of each map where lines intersect.
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2 VALUES ORIG DATA

LOWER LEVEL OF SLICE = 24,00 UPPER LEVEL OF SLICt = 18.00
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2ND ORDER RES IDUAL
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