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Depositional Facies of Toronto Limestone

Member (Oread Limestone , Pennsylvanian ) ,

Subsurface Marker Unit in Kansas
1

ABSTRACT Limestone Member of the Oread Limestone ,

The Toronto Limestone Member at the base of the included in the Shawnee Group of Virgilian
Oread Limestone (Pennsylvanian ), averages about 10 feet age . Because the Toronto Limestone is a
in thickness . It is exposed in southeastern Nebraska and marker unit in the subsurface , many petroleum
northwestern Missouri and can be traced across eastern

Kansas, grading southward into shale in northern Okla-
geologists a

re interested in it
s depositional his

homa . A thin Osagia algal oncolite zone , which i
s the tory . The principles applied in this study can

strand -line record o
f a transgressing se
a
, occurs a
t

the also b
e applied in the search fo
r

facies changes
base o

f the unit over much o
f northern and central

in exploring fo
r

stratigraphically trapped o
il
.

Kansas . A 4
.

to 8 - foot skeletal lime wackestone with a
n

open -marine fauna covers the oncolite zone and extends
The Shawnee Group is said to contain the

into Oklahoma and Nebraska . This facies contains three most complete record o
f

so -called megacyclo

subfacies which are products o
f

local conditions during thems o
r cycles o
f cyclothems in the Upper

the inundative (standing -level ) phase o
f a sea and not Pennsylvanian o
f

the Midcontinent (Moore ,

migrating facies tracts o
f
a transgressing se
a
. From cen

1950 , p . 1
1
) . The five limestones recognized b
y

tral Kansas northward a 1
-

to 4 - foot lime mudstone with

a molluscan fauna occurs a
t the top o
f the Member . This Moore , 1936 , 1950 ) in the Oread megacyclo

is a shallow subtidal t
o tidal - fl
a
t

deposit accumulated them are widespread and distinctive . The lower
during regression . The Toronto Limestone facies d

o

not
three limestones are characterized b

y
lithologic

fi
t

into a phase scheme representing definite
stages o

f

types and faunas thought to be diagnostic o
f

transgression and regression . The stratigraphic relation
ships are similar to those in the Recent carbonate

sequence individual cyclothems ( Fig . 1 ) . Each cyclothem

o
f the Great Bahama Bank and suggest that a eustatic is viewed a
s being partly to completely de

change in sea level was the controlling mechanism
dur veloped and differing in composition from asso

ing the deposition o
f

the Toronto Limestone . ciated cyclothems . The lower limestone (Toron

to ) is about 5 to 15 feet thick , yellowish -brown ,

INTRODUCTION argillaceous , and irregularly bedded . The mid

Thin , sheetlike limestones enclosed in shales thick , bluish -gray , dense , and generally a single
dle limestone ( Leavenworth ) is only 1 to 2 feet

are the outstanding feature o
f

the Pennsylvanian bed ( Toomey , 1964 ) . The upper or third lime

( Missourian and Virgilian ) section exposed in stone ( Plattsmouth ) is light -gray , wavy -bedded ,

Kansas and adjoining parts of Missouri , Ne
and comparatively thick ( 10-30 feet ) . The

braska , and lowa . Some o
f

these limestones can fourth and fifth limestones ( Kereford and Clay

b
e traced with certainty fo
r

distances u
p

to sev- Creek ) are less distinctive and probably con
eral hundred miles o

n

the outcrop and can b
e

tinuous only from central Kansas northward .

correlated from the outcrop into the subsurface

fo
r

similar distances (Moore , 1950 , 1964 ; Mor

A diagnostic feature of the Oread mega

gan , 1951 ) . This study is concerned with recog
cyclothem is a black fissile shale (Heebner ) in

nition of sedimentary facies and reconstruction
the third cyclothem ( Moore , 1936 ; Evans , 1967 ) .

o
f

the depositional environment o
f

the Toronto The lower (Toronto )

cyclothem is termed com
plete because it contains a

n ascending succession

o
f

sandstone , shale , coal , and shale beneath it .Manuscript receivedJune 2 , 1969,

Acceptedfor publication August 2
7 , 1969. The middle ( Leavenworth ) and upper (Platts1 Based on Ph.D. dissertation in 1965, Dept. Geol . , Rice

l'niversity , Houston, Texas. mouth ) cyclothems both lack sandstones o
r2



4 Kansas Geol . Survey Bull . 197, 1969
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FIGURE 1
.
– Stratigraphic position o
f Oread Limestone and Oread megacyclothem . Section a
t

left shows general rela

tionship o
f

Oread Limestone to other rock units [ letters m , n , o , and are four megacyclothems recognized b
y

Moore ( 1950 ) ] . Oread megacyclothem ( O ) o
n right ( arabic numerals o
n

far right refer to cyclothems recognized

b
y

Moore ( 1950 ) within Oread megacyclothem ) . Stratigraphic concepts o
f Douglas Group after Ball ( 1964 ) .

Lansing and Shawnee interpretation after Jewett , O'Connor , and Zeller ( 1968 ) .
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7

coals and are , therefore , said to be “ compressed ” fusulinids , and K. J. Mesolella , of the same firm ,
(Moore, 1936 ) . Only through detailed strati- suggested improvements in the manuscript . En
graphic and petrographic studies of the in couragement and monetary support were pro
dividual limestones can the validity of the mega- vided by the State Geological Survey of Kansas
cyclothem concept be evaluated . through the efforts of D. F. Merriam . P. H.
This report on the Toronto Limestone de- Heckel , of the Kansas Survey , read the manu

lineates the sedimentary facies and reconstructs script and made helpful suggestions. The study

the general depositional history of the limestone . was made possible through donation of some

The results of these studies suggest a eustatic outcrop descriptions
, rock samples , and thin

change in se
a

level as the cause o
f

the cycle . sections b
y

Shell Development Company . Spe
cial thanks are due J. M

.

Parks , formerly with
the Shell Development Company , who initiated

ACKNOWLEDGMENTS the work and encouraged me to continue the

I am grateful to E
.

G
. Purdy , from whom I study . I am grateful to Mrs. Marthann David

learned many o
f

the principles o
f

Recent fo
r

editing the manuscript and to Mrs. Carol
carbonate deposition in British Honduras a

s Erwin for typing , both o
f

whose help made

a field assistant in 1961-62 . I thank Carey publication possible .

Croneis , who served as chairman o
f

the disserta
tion committee , and R

.

R
.

Lankford and T
.
E
.

REGIONAL STRATIGRAPHY
Pulley , who were members o

f

that committee .

D
.

F. Toomey , Pan American Petroleum Corp SURFACE SECTIONS

oration , suggested the study and aided in the The Oread Limestone , basal formation o
f

field work and petrographic studies . Discus- the Shawnee Group , contains seven members
sions with S. M. Ball , Pan American Petroleum ( Fig . 1 ) . In spite of the seemingly monotonous
Corporation , made me aware o

f many o
f

the alternations o
f

shale and limestone bodies , each
intriguing problems of Kansas geology , and h

e

member o
f

the Oread has distinct lithologic
accompanied me to several key outcrops . J. K

.

features . In areas where one member has under
Evans , Pan American Petroleum Corporation , gone a facies change , the change can b

e

detected

gave field assistance and “ brainstormed ” many b
y

using th
e

other members a
s

key lithologic

o
f

the problems with me . G
.

A
.

Sanderson , Pan markers .

American Petroleum Corporation , identified the Figure 2 is a schematic cross section illus
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FIGURE 2
. -Restored cross section of Douglas Group and lower part of Shawnee Group . Datum is base of Toronto
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l
. , 1960 ; Toomey , 1964 ; Evans , 1967 ;

and Troell , 1965. Douglas reconstruction from Ball , 1964 .
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to

as

a

trating lateral continuity of some of the marine Snyderville , and Toronto members of the Oread
members of the Oread ( i.e

.
, Toronto Limestone , have been identified widely in the subsurface

Leavenworth Limestone , Heebner Shale , and o
f

Kansas a
s much a
s

300 miles west o
f

the out
Plattsmouth Limestone ) northeastward from crop belt (Moore , 1950 , p . 12-13 ; 1964 , p . 3

3
3

Oklahoma into Kansas , Missouri , and lowa . 334 ) . The Heebner Shale is highly radioactive
The Kereford Limestone Member of the Oread and , as a key bed , can b

e traced widely in the

is confined to central and northern Kansas , subsurface b
y

use o
f gamma -ray logs (Moore ,

Missouri , and Nebraska . Some of th
e

more con- 1950 , p . 1
3 ; Morgan , 1951 , p . 3 ) .

spicuous lateral changes in the Oread are in the Figure 3 is a regional map showing the
marginal -marine continental Snyderville areal extent o

f

Oread strata . The five members
Shale section . The Snyderville increases in o

f

the Oread Limestone listed above can b
e

thickness toward southern Kansas and changes traced a
s fa
r

northwest a
s borehole F , far

from bluish -gray and gray to green and red west as borehole H , and a
s far southwest a
s

shale and becomes increasingly sandy toward the borehole I ( Moore , 1950 , f
ig . 6 , p . 14 ; Morgan ,

south . The Toronto , Leavenworth , and Platts- 1951 , exhibit 3 , p . 9 ) . Moore notes that a single

mouth limestones grade laterally into marginal- black shale unit is present in each o
f

his sub
marine terrigenous clastics in Osage County , surface sections a

t

the position o
f

the Heebner
Oklahoma . The Leavenworth persists farther except in a southwestern Kansas well where

south than the Toronto . The black Heebner shale another radioactive ( black ) shale occurs , pre

changes to bluish -gray shale bearing a diverse sumably a few feet higher in th
e

section (bore
invertebrate fauna , and it thickens abruptly in hole I , Fig . 3 ) .

Oklahoma (Evans , 1967 ) . The Plattsmouth Lukert ( 1949 ) published two cross sections
Limestone persists a

s
a thicker body of carbonate revealing some Oread stratigraphic relationships .farther south than does the Toronto Limestone , One section extends from southern Osage

but it lenses out in a clastic section in extreme County , Oklahoma , westward to northeastern
northern Oklahoma ( Fig . 2 ) . The clastic sec- Garfield County . This cross section ( ibid . , p

l
.

tion , termed the “ Vamoosa Formation , " is 2 ) shows that the Plattsmouth Limestone ,

equivalent to Douglas and Shawnee rocks and Heebner Shale , and Leavenworth Limestone
can b

e traced southward to the northern flanks can b
e traced in the subsurface a
t

least one and

o
f

the Arbuckle Mountains (Oklahoma Geol . possibly two townships farther to the east in

Survey & U.S. Geol . Survey , 1954 ; Ball , 1964 ) . Oklahoma than can the Toronto Limestone .

Except fo
r

the Heumader Shale and Kere
Results o

f

both outcrop and subsurface
ford Limestone , members o

f

the Oread Lime studies o
f

the Oread show wide lateral con
stone are recognized also in Nebraska and lowa
where several features o

f

the stratigraphy are
tinuity for the Toronto , Leavenworth , and

Plattsmouth limestones and the Heebner Shale ,

noteworthy . Although the units from the
but the Toronto Limestone is not as widespread

Toronto through the Plattsmouth can b
e recog

a
s

the other members .

nized in Nebraska , the shale intervals are thin .

In fact , the shales have thinned so considerably PALEOGEOGRAPHIC SETTING
that the Lecompton Limestone ( Fig . 1 ) lies
only a few feet above the Oread . The “Weep- Regional stratigraphic analysis o

f

the Shaw

ing Water Limestone , ” as the Toronto is termed nee Group ( Rascoe , 1962 ) suggests that the

in Nebraska , is lithologically similar to out- early Virgilian sea entered the Anadarko basin
crops o

f the Toronto in Missouri . In Adair and the Kansas shelf from the Dalhart basin

County , Iowa , outcrops o
f the Leavenworth area o
f

the Texas Panhandle ( Fig . 3 ) . Accord
Limestone , Heebner Shale , and Plattsmouth ing to Rascoe ( 1962 , p . 1364-1365 ) more than
Limestone are present , but a calcareous quartz two -thirds o

f

the Shawnee Group ( Topeka ,

sandstone is present in the stratigraphic position Deer Creek , Lecompton , and Oread ) in south

o
f

the Toronto . The Snyderville Shale is rela- western Kansas is composed o
f carbonates

tively thick in Oklahoma , Kansas , and Nebras- which extend into the mouth o
f

the Dalhart

ka , but thins into lowa . This thinning is basin . Toward the Apishapa -Sierra Grande
thought to b

e due to lack o
f
a major source o
f uplift , th
e

carbonates change to interbedded
terrigenous sediment and a slower rate o

f

sub- limestones and shales and then , bordering the
sidence . uplift , into arkosic clastics . Some of the arkosic

sediments Aanking the Amarillo -Wichita uplift
SUBSURFACE SECTIONS are assumed to b

e coeval with the Shawnee

The Plattsmouth , Heebner , Leavenworth , Group . Adkison ( 1963 ) describes the Heebner
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Shale as black and the other Oread shales as indicate a shelf environment of deposition for
gray . He recognized crinoids , brachiopods , and these limestones . Adkison stated that the Oread
fusulinids in the Oread limestones in the sub- ( and indeed the entire Shawnee Group ) is prin
surface of south - central Kansas , which would cipally limestone , which suggests slowly subsid
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surface correlations o

f

Oread Limestone have been made .
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non

a

to

was

ing and possibly shoaling conditions in the area ous shale of probable brackish -water or

of the Central Kansas uplift ( Fig . 3 ). The marine origin . Constituent compositions of the
Shawnee Group shelf limestones of Kansas Toronto cyclothem facies are tabulated in Table
grade into silty gray shales interspersed with 2 and plotted in Figure 5 .

thin limestones and sandstones in the Anadarko Figure 6 is a schematic cross section showing
basin . The Oread Limestone , however , is distribution of the facies of the Toronto and
widely distributed over the basin (Rascoe, 1962 , contiguous strata . The datum is a shaly or
p . 1365 ). marly zone which is less than one foot thick .

Both Shaw ( 1964 ) and Irwin ( 1965 ) drew This horizon is recognized from Elk to Leaven
distinctions between oceanic , coastal deposition worth counties , Kansas , and is thought to be
(marginal ) and nonoceanic , epicontinental correlative with a shaly bed in Nebraska . En

( epeiric ) deposition . Marginal seas inundate crusting bryozoan oncolites and horn corals are
only the periphery of the continents today , common in this interval in the Elk -Coffee

whereas epeiric seas spread inland fo
r

many County region o
f

Kansas .

hundreds o
f

miles during the Pennsylvanian
Period . Principal differences between the two SKELETAL WACKESTONE FACIES
settings are the extreme shallowness , wide areal

Most o
f

the Toronto Limestone from
extent , and low bottom slopes in epeiric seas . southern Kansas southeastern Nebraska
These geographic relationships acted to restrict
water circulation and are thought to have re ( Table 2

; Fig . 6 ) is a skeletal wackestone with

duced wave action and diurnal tides . a varied but fragmented biota . This facies can
b
e divided into three subfacies on the basis o
f

The widespread Toronto Limestone
deposited in a

n epeiric se
a

extending a
t

least
biotic composition : ( 1 ) mixed biota subfacies ,

( 2 ) Osagia subfacies , and ( 3 ) molluscan sub
450 miles from the Dalhart basin to south

facies .

western Iowa . The outcropping portion o
f

the
Toronto represents sedimentation in a basin

Approximately the lower half o
f

the Toronto

margin setting ( Fig . 3 ) .

from southern to northeastern Kansas is a light
gray ( fresh ) to buff o

r

brown (weathered ) ,

thin- to thick -bedded limestone . This interval
FACIES

the mixed biota subfacies — yields a diverse biota
The term “ sedimentary facies ” is used here ( Fig . 8 , E ) . Osagia oncolites , mollusks , fusu

to indicate gross fabric type ( Dunham , 1962 ) linids , “Cryptozoön " oncolites ( Fig . 7 , D ) ,

and constituent composition o
f
a rock (lime- fenestrate bryozoans , brachiopod shells , and

stone ) sequence which records different depo- crinoid parts a
re

each present in amounts
sitional environments . ranging volumetrically from 5 to 20 percent o

f

Detailed studies o
f

Toronto Limestone ex- the biota ( Table 2 ) . Seventeen genera o
f

posures ( Fig . 4 ) revealed key lithologic types , brachiopods a
re recognized in this subfacies

gross rock types , and stratigraphic relationships . (Troell , 1965 ) . Four genera o
f

mollusks , three
Fossils collected a

t outcrop localities o
f pelecypods , one of gastropods , and two o
f

( Table 1 ) , and the limestone beds were sampled sponges can b
e identified . Corals , including1

to obtain specimens fo
r

thin sections . About solitary lophophyllids and a colonial tabulate
500 thin sections were examined ; 140 o

f

these ( Syringopora ) , a
re consistent components , but

were point -counted . These thin -section data are not abundant .

were subjected to a factor analysis b
y

means o
f

At the base of the mixed biota subfacies a
t

a computer , and the results were integrated Localities 2
0 , 9 , 13A , 22 , 11 , and 1
2
( Fig . 6 ) is

with data from the other thin sections , field

a shelly zone consisting primarily o
f Osagia

observations , and analyses o
f

shales . coated skeletal grains , fusulinids , and small
Five facies and five subfacies are recognized brachiopods ( Fig . 8 , G ) . This interval , which

in the Toronto cyclothem : ( 1 ) skeletal wacke- is only a few inches thick , is a marker bed that

stone (with mixed biota , molluscan , and Osagia is much more fossiliferous than the rest o
f

the

subfacies ) ; ( 2 ) brachiopod facies ( with brachio- mixed biota subfacies . The rock types o
f this

pod packstone and brachiopod marl subfacies ) ; shelly zone a
re in the wackestone to packstone

( 3 ) fenestrate bryozoan -echinoderm wackestone class . The mud matrix contains terrigenous
facies ; ( 4 ) Osagia grainstone facies ; and ( 5 ) si

lt
. The Osagia oncolites are small beanshaped ,

lime mudstone facies . A sixth facies , fossilifer- coated grains . A
s

observ in thin section , they

ous shale , is transitional with the Toronto Lime- have a shell -fragment nucleus and a
re coated b
y

stone . These facies are enclosed b
y

unfossilifer- thin , crinkly , concentric , dark calcareous lami

2

were

9
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Table 1. – List of localities . C = core localities ; remainder a
re outcrop localities . Numbers given in order from

south to north along cross - section list in Figure 4 .

18. NW / NE / 4 sec. 7 , T 28 N , R 10 E , OsageCounty,

Oklahoma. Exposure in bar ditch a
t corner in county

road about 5 miles south o
f

state line .

19. SW 1
4

NE 4 sec. 1
2 , T 3
5

S , R10 E , Chautauqua
County, Kansas. Exposure in road gutter near base o

f

hill 1.5 miles northeast o
f Elgin .

c - 5 . NW / NE / sec. 12 , T35 S , R 10 E , Chautauqua
County, Kansas. Shallow core drilled west o

f

road.

17A. NW X
4

SW 1
4

sec. 2
3 , T 3
4
S , R11 E , Chautauqua

County, Karsas. Exposure o
f Plattsmouth Limestone,

Heebner Shale, Leavenworth Limestone, and Snyderville
shale in road cut on north side o

f

hill . No Toronto
Limestone present.

17. NE 4 NW 4 sec. 4 , T 3
4
S , R 11E , Chautauqua

County, Kansas. Exposure in road ditch a
t

corner along
county road.

29. NE 4
4

se
c
. 1
2 , T 3
3
S , R 1
1
E , ChautauquaCounty ,

Kansas. Exposure o
n hillside along east side o
f county

road, beneathmassivesandstones.

8 . CEL se
c
. 3
6 , T 3
2
S , R 1
1
E , ChautauquaCounty, Kansas.

Kansas. In ditch o
n

left side o
f

road atop small hill
immediately south o

f larger hill capped b
y

Plattsmouth
Limestone.

on on

2
2
.

sas.

cut on

20. CSE 4 sec. 2 , T 22 S. R 15 E , Coffey County, Kansas,

Exposure in small quarry about 200 yards north o
f

cast-west county road.

C - 7 . CSL sec. 3
2 , T 2
0
S , R 1
7
E , Coffey County, Kansas.

Shallow core locality.

9 . W 1
2

se
c
. 2
4 , T 1
8

S
.
R 1
7
E , Franklin County, Kansas,

Exposureson west side o
f

U.S. Highway 5
0

o
n cither

side o
f

intersectionwith county road.

13C. WL NW 4 sec. 32 , T15 S , R18 E , Franklin County,

Kansas. Road cut on county road just south o
f

inter
section.

13B. S
W CSE % se
c
. 1
4 , T 1
4
S , R 1
8
Е , Douglas County,

Kansas. Road cut cast- west road cast side of
due south extension o

f

Lone Star Lake.

13A. NW 1 sec. 1
4 , T 1
4
S , R 1
8
Е , DouglasCounty, Kansas.

Exposureaboveand west o
f

dam a
t

Lone Star Lake and
along road south o

f

dam site.

26. NW / 4 se
c
. 2
8 , T 1
4

S
.
R 2
0
E , DouglasCounty, Kansas.

Exposure in quarry adjacent to county road.

27. SWC NW 4 sec. 2
7 , T 1
4
S , R 2
0
E , Douglas County ,

Kansas. Exposure in quarry several hundred yards west

o
f

curve on county road.

28. Same location a
s
L - 2
7
. Exposure is road cut o
n county

road a
t

curve a
t

north edge o
f

hill .

16. SW % NE 4 sec. 2
7 , T 1
4
S , R 2
0
E , Douglas County,

Kansas. Exposure in ditch along road o
n north slope

o
f

hill .

C NW 4 sec. 2
1 , T 1
2
S , R 1
9
E , DouglasCounty, Kan

Exposure in road cut along Interstate 7
0 , just cast
o
f county road overpassoutside city o
f

Lawrence.

1
1
. NW 4 se
c
. 3
6 , T12 S , R 19 E , Douglas County, Kansas,

Exposure in city o
f

Lawrence a
t

road cut northwest o
f

University o
f

Kansas campus.

1
2
. CSL NW 4 sec. 8 , T 11S , R 2
1
E , LeavenworthCounty ,

Kansas. Exposure in road cut along State Highway 1
6 ,

1 mile west o
f Tonganoxie.

C - 9 . CNL sec. 2
6 , T9S , R 21 E , LeavenworthCounty, Kansas.

Shallow core locality.

10. NW 1
4

NW 1
4

sec. 2
2 , T8S , R 22 E , Leavenworth

County, Kansas. Exposure in road cut atop hill o
n

State
Highway 7

.

Leavenworthtype locality.

C - 1
0
. C S line sec. 2
2 , T 5
5
N , R 37 W , BuchananCounty ,

Missouri. Shallow core locality.

15. NE / NW 4 sec. 31 , T 58 N , R35 W , Buchanan
County, Missouri. Exposure bluff above abandoned
Huemader'sQuarry.

15A. NW margin sec. 3
0 , T 5
8
N , R 3
5

W , BuchananCounty ,

Missouri. Exposure in bluff adjacent to Missouri River
near Andrew County line .

S
W y se
c
. 1
9 , T 5
8

N , R35 W , Andrew County , Mis
souri. Exposure in strcam cut along Andrew -Buchanan
County line , just south o

f

road.

14B, C N line sec. 5 , T 1
0
N , R 1
2
E , CassCounty, Nebraska.

Exposure in road cut o
n

west side o
f Cedar Creek, 1.7

miles east o
f Weeping Water.

1
4
. NW 4 sec. 15 , T 12 N , R 10 E , Cass County, Nebraska.

Quarry o
n

PawneeCreck, about 0.5 south o
f

confluence

o
f

Pawnee Crock and Platte River. Exposure o
f

Cass
Limestone, Lawrence Shale, Toronto Limestone, Snyder
ville Shale, LeavenworthLimestone, Hoebner Shale, and
lower part o

f

PlantsmouthLimestone. Cretaceous
glomeratedirectly o

n

Plattsmouth.

14A. SW 1
4

NW 4 sec. 1
5 , T 1
2

N , R 1
0
E , Cass County ,

Nebraska. Exposure in Johansen's Quarry Pawncc
Creek, west o

f

South Bend.

2
1
. Central portion se
c
. 6 , T 1
2
N , R 1
4
E , Cass County ,

Nebraska. Exposure along railroad tracks northeast ot
Plattsmouth.

33. NE 1
4

NE 1
4

sec. 1 , T 7
5

N , R30 W , Adair County ,

Iowa. Exposure in valley walls o
f

small tributary o
f

Middle River.

32. S
W

1
4

NW 4 se
c
. 7 , T 7
5
N , R 2
9

W , Madison County .

lowa . Small outcrop adjacent to road bridge on south
side o

f

cast-west- trending stream,
cut

C - 4 . S
E / NW se
c
. 8 , T 3
2
S , R 1
2
E , ChautauquaCounty,

Kansas. Shallow core locality.

7.5. SW 1
4

sec. 1
6 , T 1
3
S , R 1
2
E , E
lk County, Kansas.

Exposure in road ditch o
n

east side o
f county road on

north slope o
f

hill , 1.5 mile south o
f Longton.

7
B
. CNW 1
4

sec. 3
3 , T 3
0
S , R 1
2
E , Elk County, Kansas.

Near junction o
f
a creck and north -trending tributary o
f

same.

7A . C sec. 3
3 , T 3
0
S , R 1
2
E , Elk County, Kansas. Road

cast-west road, 1 mile northwest o
f Longton.

7 . NE 4 SW 1
4

sec. 2
7 , T30 S , R 12 E , Elk County,

Kansas. Exposure in bar ditch o
n west side o
f county

road, about 1 mile north o
f Longton.

6.5. E line S
E
4 NW 4 se
c
. 6 , T 3
0
S , R 1
2
E , Elk County,

Kansas. Exposure in tutbank o
f

stream, 100 yards west
of road.

6 . NW 4 NE 4
4

sec. 1
2 , T 2
9
S , R 1
2
E , Elk County,

Kansas. Exposure in road at intersectionof two
county roads.

6
A
. SE 4 S
E
% 4 sec. 1 , T 2
8
S , R 1
2
E , Elk County, Kansas.

Exposure in road cut o
n south side o
f

east-west trending
road.

5 . S.L. NE 4 sec. 3
6 , T 2
8
S , R 1
2
E , Elk County, Kansas.

Exposures in bar ditch a
t

break in slope along cust- west
road and in trench silo a few yards south o

f

road.

4 . CSL sec. 2
9 , T 2
7
S , R 1
3
E , GreenwoodCounty, Kansas.

Exposure in bar ditch near base o
f

hill o
n castwest road.

C - 2 . NW % SW 4 sec. 5 , T 2
7
S , R 1
3
E , GreenwoodCounty,

Kansas. Shallow core locality.

3
A
. SW A NW 1
4

sec. 4 , T 2
7
S , R 1
3
E , GreenwoodCounty,

Kansas. Exposure in cutbank o
f stream Hibbard's

farm.

3 . CSL S
W

1
4

sec. 3
3 , T 2
6
S , R 1
3
E , GreenwoodCounty,

Kansas. Exposurealong streamadjacent to county road.

1 . CNL NW 1
4

sec. 3
5 , T 2
5
S , R 1
3
E , WoodsonCounty,

Kansas. Exposures in road cut along U.S. Highway 5
4

and in quarry about 200 yards due south o
f

road cut ;

Toronto type locality.

C - 2
4
. CSL sec. 8 , T 2
5
S , R 1
4
E , WoodsonCounty, Kansas.

Shallow core locality.

3
0
. S.L. Scc. 3
5

and 3
6 , T 2
4
S , R 1
4
E , WoodsonCounty,

Kansas. Outcrop study.

C - 2
1
. SW % S
E

4
4

sec. 3
1 , T31 S , R 15 E , WoodsonCounty,

Kansas. Shallow core locality.

C - 23. ON Y SW 14 se
c
. 4 , T 2
3
S , R 1
5
E , Coffey County,

Kansas. Shallow core locality.

25. CL secs. 3
4

and 3
5 , T22 S , R 15 E , Coffey County,

Kansas. Road cut o
n

U.S. Highway 7
5 , 0,5 mile south

o
f Gridley turnoff.

in

15B.

on

con

on
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nae . Encrusting foraminifers commonly are amounts in the mixed biota subfacies , are lack
found within the dark calcite laminae , and ing in the Osagia subfacies . Only seven brach
sinuous Girvanella tubes, produced by boring , iopod genera a

re present in the Osagia subfacies
frequently occur in th

e

colony . Shell debris and compared to 1
7 in the mixed biota subfacies .

quartz si
lt

also are bound into the oncolites . No corals were identified from the Osagia sub
The nuclei of these coated grains commonly facies . Most o

f

the mollusks in the Osagia sub
have been bored . These characteristics are seen facies are Osagia -coated and were tabulated a

s

in oncolites in modern seas (Ginsburg , 1960 ) . Osagia , hence the percentage of mollusks ap

The skeletal wackestone facies contains pears to b
e lower than it actually is .

more Osagia oncolites ( Fig . 8 , F ) in northwest- In central and southern Kansas between
ern Missouri and southeastern Nebraska than Localities 9 and 6

.5
( Fig . 6 ) the upper Toronto

it does in central Kansas ( Fig . 5 , 6 ) . This contains several rock types , but the most abun
abundance is emphasized b

y

recognition o
f

the dant and persistant is a wackestone ( Fig . 7 , B ,

Osagia subfacies in this region ( Table 2 ) . Fusu- D ) with abundant mollusks , “ Cryptozoön ” o
n

linids , fenestrate bryozoans , brachiopod shells , colites , and Osagia oncolites . This is the mol
mollusks , and echinoderm parts each contribute luscan subfacies o

f

the skeletal wackestone

between 5 and 1
0 percent to the biota o
f

this facies . Thirteen genera o
f brachiopods , two

subfacies and Osagia oncolites make u
p

almost pelecypod genera , several gastropods , and lopho

4
0

percent .

phyllid corals were identified in this subfacies .

Faunal diversity is lower in the Osagia sub
facies than in the mixed biota subfacies . BRACHIOPOD FACIES

Epimastopora , Tubiphytes , and platy algae The skeletal wackestone facies of the Toron

( Eugonophyllum ) , which are found in minor to is underlain b
y

a brachiopod facies in Ne

Table 2.- Volumetric composition o
f

Toronto Limestone facies . *

Brachiopod Fenestratebryozoan- Osagia
packstone echinoderm grainstone
subfacies wackestonefacies facics

n = 8 n = 32 n= 2

Skeletalwackestonefacies
Mixedbiota Molluscan Osagia
wackestone wackestone wackestone

n = 55 n = 19 n = 6

Lime
mudstone
facics

n = 1
1

.2
5

1.3

Epimastopora

Platy algae

Tubiphytes

Osagia

Algal mat

“ Cryptozoön "

A pierrinella

Fusulinids
Other foraminifers

Fenestrate bryozoans

Ramose bryozoans

Encrusting bryozoans

Brachiopod shells

Brachiopod spines

Mollusks

Echinoderm pls . and cl
s
.

Echinoid spines

Trilobites
Ostracodes

Unknown skeletal

0
0

0
5
0
0

4.6

1.7

1.6

7.5

.6
.4

35.1

4.3

8.3

18.7

.4
.2
.5

15.9

< .1
< .1
.2

18.2

0

2.1

.2

3.4

.2

19.1

.4
9
.6
.8

5.7

23.8

.3
.3

.3

21.9

0
0
0

86.1

0
0
0
0

.1

2.5

0
0

.5
.1

2.1

3.1

0
0
0

5.4

19.8

2.5

7.5

.4

9.6

.8

6.8

.2
.2

6.6

.4

14.4

6.3

.2
.1
.1

21.4

0
0
5

15.0

0

14.7

.3

6.2

9

7.4

1.6

.8

2.7

.1

20.6

5.0

.1
0
.4

23.7

0
0
0

36.9

0
0

5

8.4

5

6.1

0
0

8.1

1.2

12.6

4.5

.2
0
.2

21.0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

19.2

7.5

0

7.5

13.2

63.8

Total skeletal
Lime mud

46.1

47.8

4.1

.1
.1

47.1

48.2

4.6

.1

Calcite spar

73.2

0

26.5

.3
0

33.3

65.7

1.2

< .1
.4

30.3

67.8

1.6

35.7

61.7

1.4

.4
< .1

2.7

90.6

2.2

5
.9

< .1Intraclasts
Terrigenous silt < .1 < .1

Mean values. Figures below dashedline are percent o
f

rock. Those aboveare percent o
f

skeletalgrains, recalculated to 100percent.
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to

braska and grades laterally into a brachiopod OSAGIA GRAINSTONE FACIES
facies ( Fig . 7 , A ) in southern Kansas . This facies is developed locally in northern
In southern Kansas ( Loc . 6

.5 , Fig . 6 ) , the Woodson and southern Coffee counties , Kansas .

Toronto Limestone is a brachiopod packstone Almost 9
0 percent o
f

the grains have Osagia
that changes a shale facies southward . coatings ( Table 2 ; Fig . 5 ) . Other conspicuous
Brachiopod shells and spines account fo

r

4
0 per components are echinoderm plates , fenestrate

cent o
f

th
e

biota . Echinoderms ( 1
9 percent ) , bryozoans , and mollusks . Large , vertically o
r

mollusks , and fenestrate bryozoans ( each 8 per- iented burrows with pelecypods (Wilkingia , pre
cent ) are the only other abundant remains . viously called Allorisma ) in a living position
Eight brachiopod genera are present . A con- have been observed in this facies . Generally , the
spicuous component in this subfacies is the e

n

limestones o
f

this facies a
re grain -supported and

crusting foraminifer Apterrinella , which com- cemented with sparry calcite .

prises 3 percent o
f

the biota and occurs attached

to brachiopod shells . The following mollusks LIME MUDSTONE FACIES
were observed : the small , elongate burrowing
pelecypod Nuculana , the pelecypod "Aviculo- A

t

northern Kansas and Nebraska outcrops ,

pecten , " and specimens o
f

the gastropod Eu- a lime mudstone facies is developed a
t the top

phemites . Large , disarticulated valves of the o
f

the Toronto Limestone ( Fig . 8 , D ) . Only 3

sedentary , attached pelecypod Myalina (Ortho- percent of skeletal grains occur within this facies
myalina ) are found in the Toronto Limestone a

t ( Table 2 ) . Fossils observed include sponge

it
s

southernmost occurrence ( Loc . 18 , Fig . 6 ) . spicules , ostracodes , several gastropod genera ,

In Nebraska ( Loc . 14 , 14A , 21 , Fig . 6 ) , the and eight pelecypod genera , the most notable
lower Toronto is a shelly , fossiliferous limy shale o

f

which is Myalina . Intraclastic conglomerates

o
r

marl . This brachiopod marl subfacies rests have been found locally within the facies ( Fig .

disconformably o
n unfossiliferous red shales o
f

8 , B ) . In Douglas County , Kansas ( Loc . 22 ,

the Lawrence Formation ( Fig . 1 ) , but grades Fig . 6 ) , pelletoidal grainstones occur ( Fig . 8 ,6 ,

upward into the overlying skeletal wackestone A ) .

facies . Fossils in this subfacies are well preserved A
t

Localities 1
1 and 2
2 (Douglas County ,

and include 1
0 genera o
f brachiopods , crinoid Kansas ) , the contact between the lime mudstone

parts , fenestrate and ramose bryozoans , lopho- facies and th
e

underlying fenestrate bryozoan
phyllid corals , and fusulinids . echinoderm wackestone facies is irregular , wavy ,

and sharp . Bedding within the mudstone facies

FENESTRATE a
t

these localities is thin , irregular , and discon
tinuous .

BRYOZOAN -ECHINODERM
WACKESTONE FACIES

FOSSILIFEROUS SHALE FACIES
This facies extends from southern Kansas

to northwestern Missouri . It is generally a bur- The fossiliferous shale facies is present main
rowed wackestone with almost 5

0 percent skele- ly in southern Kansas and northern Oklahoma ,

ta
l

grains ( Table 2 ; Fig . 5 ) . Echinoderm frag- but also occurs in northern Kansas and Missouri

ments , fenestrate bryozoans , Osagia oncolites , ( Fig . 6 ) . It is characterized b
y rapid lateral

and brachiopods , in that order , a
re

th
e

most variation in fauna and lithologic character . In

abundant grain types ( Fig . 8 , C ) . O
f

lesser southern Kansas , green shales above a thin coal

abundance are mollusks , " Cryptozoon " oncolites , deposit are interbedded with limestone beds o
f

and fusulinids . Fossils collected from this facies the Toronto . Progressive lateral replacement of

include eight genera o
f brachiopods and lopho- limestone beds b
y green fossiliferous shale in a

phyllid corals . southerly direction is indicative o
f

facies change

Figure 5 .-
-

Histograms showing rock a
n
d

biotic composition of five facies and five subfacies in Toronto Limestone
Member . Biota percentages recalculated o

n

basis o
f

1
0

most abundant skeletal types . Histograms a
t

left show com
position in terms o

f

mud (MU ) , spar ( SP ) , and skeletal grains ( S
K
) . Histograms o
n right illustrate composition

o
f

skeletal grains in terms o
f

1
0

biotic constituents . P
A
= platy algae ; TU = Tubiphytes ; Oa = Osagia ; Cy = " Cryp

tozoon ” ; A
P
= Apterrinella ; FB = fenestrate bryozoans ; BS = brachiopod shells ; Mo = mollusks : EF = echinoderm frag .

ments - mainly crinoids ; and Os = ostracodes .

A , O sagia grainstone facies ; B , Brachiopod packstone subfacies : C , Fenestrate bryozoan -echinoderm wackestone
facies ; E , Skeletal wackestone facies , mixed biota subfacies ; F , Skeletal wackestone facies , molluscan subfacies ;

G , Lime mudstone facies .
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4.
from limestone to fine clastics . Rapid faunal
change and lithologic variation are seen in the
fossiliferous shale beneath the Toronto Lime
stone . In Chautauqua County , these shales con
tain about si

x genera o
f brachiopods , several

gastropod genera , burrowing pelecypods ( in

cluding Nucula and Nuculana ) , crinoid colum
nals , and bryozoans . Several discontinuous

horizons with abundant Myalina occur in the
shales a

t

some outcrop localities . Fusulinids are
abundant in the limestone tongues o

f

the Toron

to and in the shales just beneath them in Elk
County . A

t

least seven genera o
f brachiopods ,

crinoid columnals , echinoid spines , lophophyllid

corals , bryozoans , gastropods , and pelecypods

( including scattered myalinids ) are associated

with the fusulinids . A
t

Localities 6
.5 and 7 ( Fig .

6 ) , a Myalina - rich shale overlies a blue -gray
shale above the coal ; fusulinids are extremely

abundant in the shale above the Myalina shale .

A
t

Locality 5 , fusulinid - rich shale and unfossilif
erous shale overlie a blue -gray shale sequence

capped b
y

a
n oxidized horizon ; coal is present

beneath the blue -gray shale . In Greenwood
County , at least five genera o

f brachiopods , cri
noid parts , lophophyllid corals , fusulinids , and
gastropods occur in the shale above the coal . In

places ( a
s a
t Locality 6A in Elk County ) , cur

rent -rippled sandstones and sandy shales bearing

Nuculana , Myalina , and plant fragments are
intercalated into the section .
The shale subjacent to the Toronto Lime

stone in northern Kansas and Missouri contains

si
x genera o
f brachiopods , crinoid parts , bryozo

ans , and pelecypods , including Myalina .
UNFOSSILIFEROUS SHALE FACIES

This facies includes gray , green , and red
shales . It is developed above ( Snyderville Shale

Member ) and below ( top o
f

Lawrence Forma
tion ) the Toronto Limestone Member ( Fig . 6 ) .

Generally , these shales lack invertebrate fossils ,

but locally they contain plant fragments and
charophyte oögonia .

DEPOSITIONAL ENVIRONMENT

TERRIGENOUS SEDIMENTS

Facies changes in the Toronto Limestone to

marine , brackish -water , and continental shales

from southern Kansas to northern Oklahoma

suggest that most contemporaneous clastics were

derived from land areas in southern Oklahoma ,

Arkansas , and the southwestern portion o
f

the

Ozark dome . This source is indicated not only

b
y

the lithologic changes and the thickening o
f

the Snyderville Shale section to the south ( Fig .

2 ) , but b
y

directional features in the partially
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a

a

equivalent Vamoosa Formation in northern in the Toronto cyclothem is interpreted as hav
Oklahoma . Hicks ( 1962 ) has shown that cross- ing been deposited in a nearshore embayment

stratafication readings in sandstone channels of somewhat similar to Atchafalaya Bay and bor
the Vamoosa suggest prevailing westward and dering a deltaic complex possibly similar to , but
southwestward movement in northern Osage on a lesser scale than , the modern birdfoot delta

County , Oklahoma , but a northwestward trend of the Mississippi River .
is evident in northern Creek and southern Osage The fossiliferous shale facies is the most
counties , Oklahoma. Thus , a depocenter for variable of al

l

the Toronto facies in terms o
f

terrigenous influx presumably la
y

in the west- biota . Fusulinid -rich shales occur near lenticular
central portion o

f Osage County o
r

farther west edges o
f

limestone facies , and brachiopods (Neo

( Fig . 11 ) . A delta o
r

deltaic complex probably chonetes , Crurythyris , Linoproductus , Derbyia ,

existed in western Osage County during deposi- and Antiquatonia ) , crinoids , and bryozoans a
re

tion of the Toronto Limestone , and perhaps a common in the shales farther removed from the
shift in the distributary pattern allowed carbon- limestone tongues . Shale beds containing abun
ate deposition to encroach into northern Okla

dant myalinids a
re commonly intercalculated

homa for short periods o
f

time . Oklahoma e
x
-

with the brachiopod shales . Lack of a diverse
posures o

f

the clastic sequence equivalent to the fauna in the myalinid concentration suggests
Toronto Limestone are thought to be the upper brackish -water conditions , and , considering the
reaches o

r

subaerial topset plain o
f
a delta . This sessile habit o
f

this pelecypod , a niche analogous

is based upon th
e

convergence o
f

channels in to that o
f

the modern bay oyster o
f

the Gulf
Osage County , the association o

f

unfossiliferous
Coast (Crassostrea virginica ) is envisaged . Bra

red and green shales with th
e

channels , and th
e

chiopods , bryozoans , and crinoids lived adjacent
absence o

f

coals , which , if present , would suggest to the gregarious myalinid populations o
n
a bot

interdistributary marsh environments ( Fisk , tom , which in areas , o
r

a
t times , was subjected

1960 ) .

to normal -marine waters . Whether the salinity
Some o

f

the channel bottoms in the Lawren- differentation was due to a bathymetric barrier

ce -Snyderville section in Osage County contain to saline waters , circulation pattern , o
r

climatic
marine fossils such a

s brachiopods and bryozo- Auctuation is open to question . The situation
ans . These occurrences are best explained b

y may have been analogous to the fluctuation in

invasions o
f

dense marine waters along channel salinity during alternating several - year - long
bottoms . This is caused b

y

less dense , low - salin- periods o
f drought and normal rainfall in bays

it
y

water Aowing over saline water o
f greater along th
e

upper Texas Gulf Coast . During
density . In northern British Honduras , saltwater normal years , the salinity o

f

the bays is low
has been observed a

s far a
s

5
0

miles upstream ( brackish -water ) and the macrofauna is almost

in the New River during th
e

dry season ( Pusey , exclusively molluscan , but during periods o
f

1964 , p . 3
6
) ; the occurrence o
f

red mangroves extended drought the salinity o
f

the lower parts

a
t

least 5
0

miles upstream in the Rio Hondo o
f

the bays may approach the values o
f

the open
River of British Honduras indicates that salt- Gulf and allow Gulf organisms , including small
water penetration is not short - lived . I have seen corals , to invade these areas ( T

.
E
. Pulley , per

thriving marine benthonic faunas near river sonal communication , 1961 ) .

mouths in southern British Honduras where
bottom salinities are marine ( 30 ° / 00 ) , but su

r In essence , quiet -water deposition is th
e gen
eral picture for the fossiliferous shale facies o

f

face waters are brackish ( 10-15 ° / 00 ) . the Toronto , as indicated b
y

the presence o
f

The relationship o
f

the marine shale beds , mud and the well -preserved , unworn condition
laterally equivalent to the Toronto Limestone , o

f

the fossils . Brackish waters are indicated b
y

within the Vamoosa delta in northern Oklahoma
the accumulations o

f great numbers o
f myalin

( Fig . 11 ) is interpreted a
s being similar to ids , and normal -marine conditions are evidenced

modern Atchafalaya Bay and surrounding en- b
y

the brachiopods , fusulinids , crinoids , corals ,

vironments situated immediately between the and bryozoans . The lenticular development o
f

Chenier Plain and the birdfoot delta of the Mis
the variable - salinity faunal assemblages indicates

sissippi River . Little sand reaches the Bay be

a complex facies pattern , such a
s

is found in

cause coarse sediments are trapped in the At deltaic environments in the modern Gulf of

chafalaya delta in Grand Lake about 5
0 miles

Mexico ( Donaldson , 1966– ; Lankford and She
inland ( Fisk , 1956 , p . 6 ) . Silt and clay are d

is

charged into Atchafalaya Bay and are swept b
y . Donaldson, A
.

C
. , 1966, Deltaic sands and sandstones: in

Symposium o
n RecentlyDevelopedGeologic Principles and Scdi

longshore currents westward a
s

far as the Sabine
Wyoming Geol. Assoc. , 20th Ann . Conf . , p . 31-62. (Guidebook,

River . The brackish -water to marine shale facies limited availability. )

mentation o
f

the Permo- Pennsylvanian o
f the Rocky Mountains:
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A B

.

C

D

FIGURE 7. - Representative photomicrographs of Toronto Limestone Member . A
ll photographs in plane light in true

vertical orientation . A , Brachiopod facies , packstone subfacies . Thick shells near bottom are sedentary pelecypod Mya

lina . Overlying Myalina are flattened brachiopod shells , crinoid segments , rhomboporid bryozoans and brachiopod
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pard, 1960 ) . A bay with variable salinity ad- aerial exposure . The brachiopod marl of Neb
jacent to a delta complex is suggested as the raska is a subtidal open -marine accumulation
environment of deposition for these beds . whose well -preserved shells suggest lack of

scavenging organisms in a low energy environ
CARBONATE SEDIMENTS ment .

The Osagia -rich zone is at the base of the
Limestone facies of the Toronto cyclothem mixed biota subfacies where brackish -water

were deposited in areas where the rate of clastic
influx was negligible and clear water ( Irwin, ulopecten ” pelecypods ) or nonmarine (unfos

shales ( with linguloid brachiopods and “ Avic

1965 ) or autochthonous ( Shaw , 1964 ) sedi
siliferous ) shales occur beneath the limestone .

ments could dominate .
This zone was deposited at the strand line as

The brachiopod facies at either end of the marine waters of the Toronto sea transgressed
Toronto outcrop a

re proximal to marine shale ( Fig . 13 ) .

( Fig . 6 ) . The association o
f

the brachiopod

facies with marine shales is thought to b
e
a con

The bulk of the mixed biota subfacies is the

sequence o
f

increased nutrient supply in areas record o
f deposition in open -marine , clear , in

marginal to greater terrigenous influx . Emery termittently agitated water with little terrigen

and Stevenson ( 1957 , p . 693 ) relate high con
ous influx . This is indicated b

y

the varied biota ,

centrations o
f

nutrients in modern estuaries and including fusulinids , solitary and colonial corals ,

lagoons to nearness to land where runoff provides
fenestrate and encrusting bryozoans , numerous

a continuous supply o
f

nutrient -rich waters . brachiopods , and crinoid debris . This diverse

The brachiopod facies with it
s fusulinids , fauna

suggests optimum ecologic conditions ,

bryozoans , and crinoids accumulated below such a
s normal salinity and good water circula

wave base under shallow -marine , subtidal con tion , with abundant food supply .

ditions seaward o
f

areas where marine shales Organic crusts o
r

mats bearing some

were deposited . Algae may have been largely semblance to modern algal mats were seen a
t

excluded from th
e

brachiopod facies b
e
-

three localities (Loc . 6A , 1 , 22 , Fig . 4 ) in the

cause o
f

the high turbidity . Recognition o
f mixed biota subfacies ( Fig . 7 , C ) . The mats in

the pelecypod Myalina only in the southernmost the Toronto are made u
p

o
f alternating thick

exposure o
f

the facies suggests proximity to micrite layers and thin red algal layers . The
brackish water to the south , inasmuch a

s Myalina mats are lenticular , several inches thick , and
apparently occupied a niche and had a habit only a few feet in length . Penecontemporaneous

similar to that of th
e

modern brackish -water bay buckling of th
e

laminae is indicated ( Fig . 7 , C )

oyster Crassostrea virginica that is abundant in b
y

a tubular encrusting organism , Tubiphytes

the low -salinity bays o
f

the Texas Gulf Coast . Maslov , which is apparently in growth position

Presence o
f angular and rounded lithoclasts o
f

attached to the roof o
f

the cavities . The mats
calcilutite and worn fusulinids in a packstone resemble blue -green algal mats common o

n
the

calcarenite a
t th
e

top o
f

the brachiopod facies tidal Aats o
f Florida Bay and the Bahamas

a
t Locality 7 ( Fig . 4 ) is evidence of early sub- (Ginsburg and Lowenstam , 1958 ; Monty , 1967 ) .

re

spines . Myalina found only near southern limit o
f brachiopod facies . Locality 1
8
.

x4 . B , Skeletal wackestone
facies , molluscan subfacies . Calcite -replaced gastropod o

n right . Fragment o
f Ergonophyllum ( green codiacian

alga ) below and slightly left o
f gastropod . Other grains are crinoid parts , mollusk fragments , and fusulinids .

Swirled pattern a
t top is due to burrowing organisms . Bioclastic nature o
f particles sugg ts slow depositional

rate . Locality 3
. X 4. C , Organic mat . Tubiphytes Maslov in growth position inside large cavity . Innermost

lamina (dark layer ) , above cavity , is composed o
f

threadlike filaments similar to those in some re
d

algae . Thicker
layers a

re pelletal micrite and sparry calcite overlain b
y

darker thin re
d

algal layer . Growth o
f Tuliphytes inside

cavity suggests that the oganism may not be a green alga , but a hydrozoan , as suggested b
y

Newell , e
t

a
l
. , ( 1953 ,

p . 112 ) . Presence o
f encrusting bryozoans , fenestrate bryozoans , encrusting foraminifer Tetrataxis , and Tubiphytes

o
n

o
r

within th
e

mat suggests a subtidal depositional environment . Locality 1 , mixed biota subfacies . X3 . D
.

** Cryptozoon " oncolite . Specimen consists of alternating re
d
? algal layers and sparry calcite with encrusting bryo

zoans , fenestrate bryozoans , encrusting foraminifer Tuberitina , and probable hydrozoan Tubiphyres intercalated into
colony . Hemispherical shape of specimen surrounded b

y

and infilled with mud is evidence o
f growth o
n muddy

bottom . Rotation during growth is indicated b
y

overturned laminae a
t

bottom continuous with upper part o
f

colony which is in growth position . Toronto “ Cryptozoon " appears to have formed in a shallow , subtidal environ
ment . This oncolite type is commonly referred to a

s
“ Ottonosia Twenhofel " but more closely resembles Cryptozoon

kansusensis Johnson ( se
e

Johnson , 1963 , p . 70 and 1
9
8
) . (Term " Cryptozoon " is in quotation marks to signify

usage in a descriptive sense and to avoid confusion with Cryptozoon Hall , a blue -green algal stromatolite ) .

Locality 1 , molluscan subfacies o
f

skeletal wackestone facies . “ Cryptozoön ” is thought to have formed in a shallow
subtidal environment . Locality 1 , molluscan subfacics . X3 .

a
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A B

C D

OP

E F

G

FIGURE 8. —Representative photomicrographs of Toronto Limestone Member . Plane light in true vertical orienta
tion , A. Pelletoidal grainstone with lime wackestone intraclast ; winnowed zone within lime mudstone facies.
Locality 1

1
.

x10 . B , Ostracode lime mudstone intraclasts with lime mud matrix : lime mudstone facies . Origin
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However , Ginsburg and Lowenstam ( 1958 ) re
-

the bottom more agitated than in the mixed
port that in Florida Bay , algal mats may occur biota environment . This is indicated b

y

fewer

a
s much a
s

6 feet below th
e

low -tide level . brachiopod genera and lack o
f

corals . Clear
Monty ( 1967 ) reports that algal mats occur a

t

water is indicated b
y

the Osagia oncolites , con
depths u

p

to 1
0

feet in the Bahamas . The sidered to be o
f

blue -green algal origin . The
spotty distribution o

f Toronto algal mats is differences between the mixed biota and Osagia

taken to indicate shallow , subtidal conditions . subfacies indicate perhaps that salinities , circu
Many o

f

the skeletal grains are broken and lation , o
r

food supply was not optimum in the
have Osagia coatings o

n
them . The predomi northern part of th

e

skeletal mud facies . Recent
nantly clastic texture o

f

the skeletal grains sug- molluscan biofacies patterns in Florida Bay are
gests a slow depositional rate relative to bio determined b

y

relative variations in salinity
logical activity ( scavenging , burrowing , en- ( Turney , 1964 ) 3 ; thus , salinity variation in the
crusting , etc. ) , and the Osagia coatings suggest Toronto sea is a plausible explanation for the
some bottom agitation . restricted fauna in the Osagia subfacies .

Although the presence o
f lime mud in the The high percentage o
f lime mud in th
e

mixed biota subfacies seemingly argues against molluscan facies indicates a quiet to intermit
bottom agitation , it is possible that much of th

e
tently agitated depositional environment fo

r

lime mud was formed a
t

the bottom through most o
f this subfacies . Conditions were appar

skeletal disintegration and decomposition . Gra- ently open -marine , as indicated b
y

corals , bryo
dation in particle size from sand and coarser- zoans , brachiopods , and echinoderms . Very
sized skeletal grains to mud -sized carbonate shallow water near the southern limit o

f

this
suggests that much o

f the lime mud in the subfacies is evidenced b
y

fusulinid grainstones
Toronto Limestone was produced b

y

break- with scour -and - fil
l

cross -bedding a
t Locality 6A

down o
f

skeletal material . Feeding activity b
y

( Fig . 4 ) . In summary , clear , well - lighted , open
predators and scavengers , bacterial attack o

n

marine waters are suggested for the skeletal
organic material in shell structure , and boring wackestone facies .
activity b

y sponges and green and blue -green All three subfacies o
f

the skeletal wacke
algae could have produced the mud . Carbonate stone facies contain 15-37 percent Osagia onco
muds in British Honduras are thought to have
originated largely from skeletal disintegration oped b

y

trapping a
n
d

binding o
f

fi
n
e

carbonate

lites ( biota means ) . The coatings were devel

through bacterial decayand abrasion_ (Purdy , and quartz sil
t
. Th
e

only organisms in modern1963 ; Pusey , 1964 ; Matthews , 1966 ) . Thus the trap and bind in this manner are blue
percentage o

f

carbonate mud in the Toronto
green algae , and a

n analogy between the Penn
may not be an accurate index to relative current sylvanian and Recent forms seems reasonable .

strength . It is known that fine sediments are Ginsburg * ( p . 22 ) states that modern blue -green
less readily eroded than coarser material after
deposition (Hjulström , 1939 ) . In addition to

algae may extend to depths o
f

120 feet in
Recent seas , and algal scums are present to

small grain -size , it is likely that the carbonate
muds contained mucilagenous organic matter

depths o
f

100 feet . Many o
f

the Osagia nuclei

that would have further impeded bottom
erosion . South Florida Carbonate Sediments: Guidebook for Field Trip

The depositional environment o
f

the Osagia 4 Ginsburg, R
.

N
. , 1964, South Florida carbonatesediments:

subfacies seems to have been more restricted and
Guidebook for Field Trip No. 1 , Geol. Soc. America, 7

2 p .

( Guidebook, limited availability. )

seas that

3 Turney, w . J. , 1964, Florida Bay molluscan fauna: in

No. 1 , Gcol . Soc. America, p . 15-19.

o
f pebbles explained b
y

subaerial exposure o
f

Ostracode lime mud indurated b
y

dessication , followed b
y

re

working o
f

mud cracks o
n
a tidal A
a
t

b
y

flooding . Similar lithologic types occur on modern supratidal Hats in th
e

Bahamas ( Roehl , 1967 ) . Locality 2
6
.

x4 . C , Fenestrate bryozoan echinoderm facies . Both fenestrate bryozoans
and echinoderm segments a

re present . X 4.
5
. D , Lime mudstone facies over skeletal wackestone facies . Grains a
re

ostracode valves and gastropod shells . Locality 1
4
.

x4 . E , Skeletal wackestone facies , mixed biota subfacies . Brach
sopod and pelecypod shell fragments , fenestrate bryozoans , and fusulinids . Skeletal grains grade with decreasing size
into mud , suggesting that mud was formed b

y

comminution o
f

skeletal material . Locality C - 7 . x4 . F , Skeletal
wackestone facies , Osagia subfacies . Molluscan remains coa ted with detrital carbonate mud constitute Osagia oncolites .

Locality 14A . X4 . G , Skeletal wackestone facies . Basal detrital zone of Toronto Limestone Member at Locality

1
1
.

Larger shell is the brachiopod Neochonetes , above which is fragment o
f brachiopod Derbyia . Also present a
re

fenestrate bryozoans , fusulinids , and crinoid parts . Dark coatings o
n grains are Osugia , a blue -green algal encrusta

tion . Speckled appearance of matrix due to quartz si
lt
. Brachiopods named above , fusulinids ,Osagia coatings , and

quartz si
lt

characterize this lithologic marker zone . X5 . ( A
n

illustration o
f

th
e

Toronto Osagia grainstone facies
from Locality 2

0

is shown b
y

Dunham in his classification o
f

limestones ( 1962 , p . 118 , p
l
. 6 , fi
g
. C ) . ]
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have been bored , apparently by algae . Bathurst the abraded condition of the Osagia nuclei ,
( 1967 , p . 459 ) reports that boring algae a

re not presence o
f the Osagia coatings , and lack o
f

found living below 150 feet in modern seas . mud in intergranular areas . The diverse skeletal
The common occurrence o

f Osagia oncolites in nature o
f

the nuclei o
f

the coated grains sug

the skeletal wackestone facies suggests environ- gests open -marine conditions . Algal " biscuits "

mental conditions near the optimum , where cccur in a bed above the Osagia grainstone
light intensity was high . This seems to indicate ( Fig . 9 , A , B ; Fig . 10 ) . They are practically
that the Osagia grains formed in the upper part identical in size , shape , and microstructure to

o
f

th
e

photic range fo
r

blue -green algae and in Recent forms from southern Florida and the
depths a

s great as perhaps 5
0

feet . It is also in Bahamas (Ginsburg , 1960 ) and Alacran Reef ,

agreement with the ( ) to 40 - foot depth -range Yucatan ( Fig . 9 , C , D ) . Ginsburg and Lowen
found b

y Purdy ( 1963 ) for the skeletal mud stam ( 1958 , p . 312 ) report algal biscuits in less
facies in the Great Bahama Bank . than 1

0

feet o
f

water in Florida and the
The presence o

f

echinoderms , bryozoans , Bahamas . The Osagia facies is viewed a
s

a

corals , fusulinids , and brachiopods in the fene- shoal -water deposit with the offshoal muddy
strate bryozoan -echinoderm wackestone facies is sediments containing algal biscuits accumulat

indicative o
f open -marine waters . The domi- ing in water depths o
n the order o
f

less than

nance o
f filter -feeding organisms in this facies 2
0

feet . The depth figure is based o
n analogy

implies a slow rate o
f

sedimentation . The frag- with modern occurrences in Florida and th
e

mented condition o
f

th
e

skeletal grains indicates Bahamas .

the rate o
f

sedimentation did not exceed the The dominance o
f
a molluscan fauna indi

rate o
f burrowing and scavenging b
y

deposit
cates restricted depositional conditions fo

r

the

feeders . Osagia -coated grains are common in lime mudstone facies . The pelecypod Myalina
the facies and are suggestive o

f relatively clear , is not abundant , but is widespread and suggests
well - lighted , and a

t least periodically , agitated brackish water . The presence o
f

mud - pebble
conditions .

beds and winnowed calcarenite zones is evi
Fusulinids in the fenestrate bryozoan -echino

derm facies are subcylindrical and may have

been symbiotic with the crinoids . The stream
lined nature o

f

the test seemingly could have
withstood considerable water turbulence . These
fusulinids ( Kansanella ) contrast with robust
forms ( Triticites ) that occur in the mixed biota
and Osagia subfacies .

Suspension -feeding bryozoans , crinoids , and
solitary corals are more abundant in the fene А B

strate bryozoan -echinoderm wackestone facies

than in the other Toronto facies . These organ
isms suggest relatively clear , open -marine waters
with a

n

abundant supply o
f suspended food .

Thus it appears that o
f

a
ll

the Toronto facies ,

the fenestrate bryozoan -echinoderm facies was
deposited in areas closest to open -marine circu
lation . Considering depth o

f deposition , the
ubiquitous Osagia oncolites in this facies suggest

C D

depth o
f deposition o
n the order o
f

the skeletal

wackestone facies , approximated to b
e u
p

to 50 FIGURE 9 .
-- Algal " biscuits ” from Toronto Limestone

feet o
r

so . Although the algae may b
e

a
n index

and modern lagoon . A , top view o
f algal biscuit ;

B , underside o
f algal biscuit ; both from Toronto Lime

to maximum depth , they imply little a
s

to mini stone Member (Loc . 20 , Fig . 4 ) . C and D , top and
mum depth . In the case of the fenestrate bryo- bottom views respectively o

f

Recent algal biscuits from

zoan -echinoderm facies , as well as fo
r

the major
lagoon behind Alacran Reef o

n Campeche Bank , Yuca

portion o
f

the skeletal mud facies , water depths
tan (collected b

y

Walter C
. Pusey , III , from subtidal

lagoon in less than 2
0

feet o
f

water ) . Umbilical open

had to b
e sufficient for marine conditions to b
e

ings o
n undersides o
f both Toronto and Recent speci

maintained b
y

circulation , so mens indicate that biscuits originated b
y

encrusting

depths approaching 30-50 feet appear reasonable . laminae that were
deposited o

n projections above th
e

The Osagia grainstone facies accumulated
bottom . Ginsburg (1960 ) reports identical blue -green
algal biscuits from Florida and the Bahamas in marine

in clear but agitated waters a
s suggested b
y

subtidal waters less than 1
0

feet deep . All photos XI .

that average
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adence fo
r

a
t

least periodic subaerial exposure Lime deposition began with a rapid marine
and occasional high kinetic energy that are transgression . Rapidity is indicated b

y

the gen
typical in the supra- and intertidal zones o

f

the eral absence o
f a thick marine clastic interval

Bahamas ( Roehl , 1967 ; Shinn , Ginsburg , and a
t the base o
f

the Toronto over most of central
Lloyd , 1965 ) and northern British Honduras Kansas ; the thin Osagia oncolite zone a

t the

( Ebanks , 1967 ) . The remainder o
f

the facies is base o
f

the section probably represents intertidal
similar to th

e

shallow , nearshore , brackish- deposition . Where clastic deposition was able
water ostracode -lime mud facies o

f

northern to keep pace with rising sea level , as in southern
British Honduras ( Pusey , 1964 ) . Kansas , the Toronto Limestone grades into

marine and brackish -water shales and sand
FACIES PATTERNS THROUGH TIME stones , which are o

f

deltaic origin .

Environmental factors directly influencing
Deposition o

f

the Toronto Limestone began
the Toronto facies included : ( 1 ) the rate o

f

following a period o
f regression and emergence detrital influx ; ( 2 ) salinity that is related to

after deposition o
f the Amazonia Limestone

Member of the Lawrence Formation and per
circulation within the basin ; ( 3 ) nutrient ele
ment supply ; and ( 4 ) water agitation , which is

haps part o
f

the shale above it ( Fig . 1 , 2 ) . related to bathymetry and hydrography .

Widespread unfossiliferous red shale and bluish Figure 1
2

is a reconstruction o
f

the environ
gray silty shales bearing plant fragments , charo

ment during the inundative phase o
f Toronto

phyte oögonia , and smooth - shelled ostracodes
indicate nonmarine to brackish -water deposi- thicker accumulation o

f

th
e

Osagia and mixed

sedimentation . The wide distribution and

tion just prior to Toronto sedimentation . The biota subfacies and the fenestrate bryozoan
coal and shale beneath the Toronto Limestone

echinoderm facies point toward deposition dur
represent marshland deposition similar to the

ing maximum extent o
f

the marine waters . The
peat formation in the Chenier Plain o

f Louisi
ana (Gould and Morgan , 1962 , p . 292-326 ) .

upper half o
f Figure 1
2 depicts the se
a
- to - land

facies transition envisaged for southern Kansas
The marshland probably formed to the north o

f

and northern Oklahoma . Decreasing salinity

a relatively large deltaic complex ( Fig . 11 ) .

and increase in terrigenous influx toward the

5 Gould, J. R
. , and Morgan, J. P
. , 1962, Coastal Louisiana land are thought to have given rise to the purely

Texas, Geol. Soc. America, p . 287-341. ( Limited availability. ) skeletal composition o
f

the Toronto Limestone
swampsand marshlands: Guidebook o

f

Gulf Coast and Central

FIGURE 10. - Photomicrograph o
f algal “ biscuit ” from Toronto Limestone Member (Loc . 2
0 , Fi
g
. 4 ) . Cross -polar

ized light . Dark laminations are mud -sized sediment . Light laminations a
re sparry calcite , presumably having

replaced blue -green algal laminae . Nucleus is shell . Contrary to biscuits shown in Figure 9 , this biscuit has under
gone repeated overturning , indicated b

y

concentric laminations . Bar a
t

bottom represents 2 mm .
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and the change to shale . Similar seaward A depositional surface close to sea level is
(marine ) to landward (brackish -water ) changes indicated by the shale and coal section beneath(

can be seen today in the sediments in northern the Toronto Limestone . Marsh or swamp depo
British Honduras ( Pusey , 1964 ) , in which sition similar to that on the Chenier Plain of

skeletal grains ( green algae , foraminifers , and southern Louisiana is suggested for these beds.

mollusks ) predominate . This pattern contrasts The thin strand -line deposits at the base of the
markedly with sediments seen in a seaward Toronto suggest that the marshland was trans
(marine ) to landward ( hypersaline ) traverse in gressed rapidly ( Fig . 13 ) . Low coastal topog

th
e

Bahamas ( Purdy , 1963 ) , where nonskeletal raphy and a relatively rapid change in se
a

level
grains ( oolites , pellets , and grapestones ) are seem likely . Once the sea level had risen and
most abundant . The lower half of Figure 1

2

is the land had been inundated , facies tracts were

a reconstruction o
f

facies relationships in established ( Fig . 11 ) , and the main portion o
f

northern Kansas where influx o
f terrigenous the Toronto Limestone was deposited . Next ,

detritus was lacking . It was in these areas that lowering of sea level allowed littoral o
r tidal

O sagia oncolites and tidal - fat sediments became H
a
t

sediments to be deposited regressively in

prominent . northern Kansas and Nebraska , while tidal - fat ,

Lack o
f widespread regressive facies ( lime marginal subtidal , and delta - influenced sedi

mudstone , Osagia grainstone , and molluscan ments were being deposited in southern Kansas

subfacies ) a
t the top o
f the Toronto Limestone and Oklahoma . A period of exposure and non

is suggestive o
f nondeposition o
r

erosion . A
l

deposition followed a
t which time channels

though there is some evidence o
f

erosion locally were cut through the Toronto Limestone in

a
t

the top o
f the Toronto , indications o
f wide- Missouri ( Fig . 2 ) and in Douglas and Elk

spread erosion o
n
a regional scale are lacking counties in Kansas . During the low se
a
- level

The pattern seems to b
e
a product o
f deposition stand , continued subsidence (whose rate was

o
r nondeposition and not postdepositional ero- balanced o
r

exceeded b
y

the rate o
f

clastic

sion . Lack o
f intertonguing between the influx ) kept the depositional surface above

Toronto Limestone and the overlying Snyder- se
a

level ( in the present outcrop position ) so

ville Shale suggests a
n hiatus between the two that flood -plain sediments were deposited .

lithosomes . Another transgression then took place in which

In summary , the Toronto Limestone and a marginal -marine and strand - line veneer o
f

coeval shales comprise a thin stratigraphic in fossiliferous shale preceded th
e

open -marine

terval deposited during transgression , a rela carbonate deposition o
f

the Leavenworth Lime

tively thick interval deposited during maximum stone ( Toomey , 1964 ) . The fact that the Leav

transgression , and a regressive section that may enworth Limestone is more widespread than

b
e locally thick but is generally thin and

the oronto Limestone a
t both the northern

discontinuous . and southern ends o
f

the outcrop belt and the

presence o
f

a
n open -marine skeletal lime mud

POSTULATED CAUSE OF which is blanket - like in distribution over the

CYCLIC DEPOSITION
region ( Toomey , 1964 ) suggests that the se
a

level was higher during deposition o
f

the
Considering th

e

origin o
f

th
e

Toronto cyclo- Leavenworth a
s compared with th
e

Toronto
them , several stratigraphic observations seem ( Fig . 13 ) .

important : ( 1 ) a widespread shale section with

a coal , largely brackish -water and nonmarine ,

These observations can b
e accounted for b
y

three different types o
f

mechanisms to explain
overlain b

y
( 2 ) a thin strand - line zone a
t

the

base o
f

the Toronto Limestone , succeeded b
y
a

cyclothems summarized b
y

Wells ( 1960 ) : ( 1 )

relatively thick inundative section which is

compaction o
f sediments , ( 2 ) tectonic move

capped b
y

shallow -marine and tidal - fat sedi- ments , and ( 3 ) eustatic
changes in sea level .

ments ; ( 3 ) local channeling o
f the Toronto The

compaction theory is rejected for the Toron

Limestone prior to deposition o
f

the Leaven- to section because compaction would have had

worth Limestone ; ( 4 ) a shale section above the to b
e spasmodic over a wide region . Differing

Toronto that is largely devoid o
f

marine fossils tectonic rates , which is a more likely explana

except in th
e

upper few inches ; and ( 5 ) wider tion , would have involved th
e following sequence

areal distribution o
f

the Leavenworth Lime o
f

events : ( 1 ) sudden depression o
f

the basin ,

stone , as compared to the Toronto , and more initiating the Toronto transgression ; ( 2 ) depo
blanket -like nature o

f

the Leavenworth facies sition exceeding subsidence so that the basin

( Toomey , 1964 ) . filled with limestone to sea level and the sea

a
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regressed across the area ; (3 ) continued sub- sufficient to allow circulation to maintain nor
sidence and outpouring of clastics exceeding mal -marine conditions ; hence , water depths on

th
e

rate o
f

basin subsidence and allowing the the order o
f

5
0

feet are thought to be a reason
nonmarine Snyderville Shale to accumulate ; and able estimate . Serious objections to this hypothe

( 4 ) accelerated subsidence , allowing rapid trans- si
s

are the reversal o
f

tectonic movement that

gression and deposition o
f the Leavenworth . would b
e required to explain normal -marine

A eustatic change in se
a

level as an explanation conditions in the Toronto facies and th
e

chan

fo
r

the above observations o
n

the Toronto neling o
f

the Toronto Limestone prior to

would involve the following events acting Leavenworth deposition . The eustatic theory is

along with continued gradual subsidence : ( 1 ) the most plausible explanation for the Toronto

rise in se
a

level , initiating the Toronto cycle ; -Leavenworth sequence . Consider the strati

( 2 ) deposition o
f

the bulk of th
e

section when graphic relationships o
f

Recent sediments in th
e

se
a

level was high ; ( 3 ) lowering o
f

sea level area o
f

the Frazier Hog Cay o
f

the Great

and regression o
f

carbonate facies accompanied Bahama Bank noted b
y

Laporte and Imbrie

b
y channeling , and deposition o
f

clastics in the ( 1964 , p . 252 ) . Since the Bank was flooded ,

basin ; and ( 4 ) another sea -level rise to allow approximately 7000 years ago (Scholl and
rapid transgression and deposition o

f

the Leav- Stuiver , 1967 ; Curray , 1965 ) , roughly 5 to 10

enworth Limestone . feet o
f

sediment has accumulated . Immediately

The issue to b
e

settled here is whether there above the hard -rock Pleistocene foor is a thin
was a variation in the rate o

f

subsidence o
r
a veneer o
f molluscan calcarenite , the record o
f

Auctuation in the sea level . The subsidence initial flooding o
f

the bank b
y

the eustatic rise

theory is unlikely because o
f

th
e

requirement in se
a
- level . The superjacent section , at least

that basin depth could not exceed the thickness two to three times thicker than this thin mol

o
f

th
e

limestone , since the Snyderville Shale luscan layer , includes oölitic calcarenite o
n

the

along th
e

outcrop is thought to b
e

nonmarine . Bank margin interfingering with grapestone cal
The fauna o

f

the Toronto Limestone is marine , carenite bankward . The rate o
f transgression

and it is contended that water depth had to be was rapid enough ( Laporte and Imbrie , 1964 ,
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FIGURE 1
3
.
- Summary diagram illustrating cyclic relationships in lower part of Oread megacyclothem . Relation

ships diagrammed fo
r

the Toronto to Heebner interval a
re

based o
n

detailed studies b
y

Troell ( 1965 ) for Toronto
Limestone , Toomey ( 1964 ) fo

r

Leavenworth Limestone Member , and Evans ( 1967 ) for th
e

Hecbner shale . Platts
mouth relationships a

re conjectural inasmuch a
s

it has not been studied in detail . Deltaic deposition , postulated

fo
r

th
e

southern extent o
f Snyderville in this report , has been interpreted (Brown , 1967 ) fo
r

sandstones ( Elgin )

in the Kanwaka Shale ( F
ig . 2 ) . During periods of low se
a

level , th
e

Kansas shelf was exposed and fluvial sedi
ments were deposited , c.g. , the Snyderville Shale .
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p . 252-254 ) so that the "... dominant portion encrusting bryozoans occur within some "Cryp

of the Bahamian post -Pleistocene stratigraphic tozoön ” coatings and are developed on shell
record is related to local conditions at the site fragments . Colonial syringoporid corals were
of sedimentation rather than to a particular found in small discontinuous lenses at only one
transgressive phase of a depositional cycle .” exposure .
The thinness of the transgressive deposits and Many of the skeletal -grain nuclei of Osagia
the thicker deposits of the slowly rising or are bored , almost certainly by blue -green algae .
standing sea -level stage in the Recent record is In some cases , the nuclei are completely riddled
found not only in the carbonate sediments of with borings ; also many noncoated grains are
the Bahamas but also in the terrigenous clastic bored . Borings analogous to these have been
deposits of th

e

Chenier Plain in Louisiana reported from modern shallow -water carbonate

(Gould and McFarlan , 1959 ) .
sediments ( Pusey , 1964 , p . 67 , p . 82 ) . The

Thus , a study o
f contrasting Recent sedi presence o
f

bored grains in the Toronto Lime
mentary environments has shown that trans stone is suggestive of shallow water depositional
gression rates accompanying a eustatic change conditions and a slow depositional rate . I

n

in se
a

level are too rapid fo
r

deposition to keep addition , the process o
f algal boring may have

pace ; hence , the major portion o
f

the strati- been very important in the breakdown o
f shell

graphic record is deposited during th
e

slowly material not only to sand and coarser -sized frag
rising o

r

inundative phase . Stratigraphic rela- ments but also to mud -sized particles a
s well .

tionships in the Toronto cyclothem duplicate The Toronto Limestone is made u
p

o
f in

Recent stratigraphic records sufficiently so a
s

to dividual beds ranging from several inches to

suggest that the eustatic -control theory is plau- several feet in thickness . The lime mudstone
sible ( Fig . 13 ) . Carboniferous glaciation in the facies exhibits cut -and - fi

ll
-type bedding , and

Southern Hemisphere has been cited a
s the similar bedding was found locally in the mol

cause o
f

the eustatic change in se
a

level (Duff , luscan subfacies . For most other facies , how
Hallam , and Walton , 1967 , p . 38 , 41 , 112 ) . ever , the bedding surfaces are mainly planar .

The origin of the planar bedding is in question .

CONCLUSIONS A thin shale zone containing encrusting bryo
zoans and lophophyllid corals is present in th

e

Generally , the Toronto Limestone is a mud middle portion o
f the Toronto (datum zone for

supported admixture o
f particulate skeletal restored cross section , Fig . 6 ) . Ecological co
n

material derived from a diverse biota . Grain - siderations o
f growth habit and feeding type

supported clean calcarenites occur only locally suggest a slow rate o
f deposition fo
r

this inter

in the outcrop belt , which extends from north- val rather than a rapid influx o
f

clastics . A
s

ern Oklahoma across Kansas to northwestern noted above , algal coating (Osagia ) and algal
Missouri and southeastern Nebraska . Inverte boring suggest that rate o

f

sedimentation was
brates which are important contributors in slower than the rate o

f coating and boring .
terms o

f

skeletal grains include : mollusks ( pel- Thus , it may b
e that th
e

bedding surfaces in
cypods and gastropods ) , brachiopods , crinoids , the Toronto are records o

f minor disconformi
echinoids , bryozoans ( fenestrate , ramose , and ties caused b

y

pauses in carbonate deposition .

encrusting ) , and fusulinids . Small mobile and Carbonate facies within the Toronto Lime
encrusting foraminifers , platy algae , and the

not parallel belts that migrated in

dasyclad Epimasto pora are persistent com
ponents , but are

processive fashion with the transgression and

n
o
t

abundant . Encrusting , regression . The oscillation of the strand was to
o

sediment -fixing organisms important in the for rapid fo
r

deposition to keep pace , probably a

mation o
f

the limestone accretionary

forms referred to a
s Osagia and " Cryptozoon . '

consequence o
f

a
n almost flat depositional sur

Qölites have not been found in the Toronto face and a
n abrupt change in sea level . The

bulk of Toronto Limestone sedimentation took
Limestone , and mud pellets , although pre

place following a rapid transgression . Facies
served in places , are rare . Thus , in general tracts were developed after transgression in re

terms , the Toronto may b
e termed a “ skeletal sponse to terrigenous influx , salinity patterns ,

lime wackestone . " nutrient -element distribution , and energy rela

The role of secretionary colonial organisms tionships . The faunal composition indicates
was minor in th

e

genesis o
f Toronto sediments . open -marine waters offshore and more brackish

Encrusting foraminifers are present on some of waters nearshore . Although depth did not

th
e

skeletal grains and in some coated grains ; directly control the facies pattern , a minimal

stone are

are
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mean depth of 50 feet is envisaged fo
r

th
e

more sive record is thin , and thicker sediments ac
marine facies , so that circulation could maintain cumulated under slowly rising o

r

inundative
normal -marine salinities . conditions . These relationships are similar to

Because facies o
f

the Toronto Limestone d
o

those in the Recent carbonate sediment section

not fi
t

into a phase scheme with the facies o
n

the Great Bahama Bank and in the Recent
representing particular stages o

f transgression clastic record in the Chenier Plain o
f

southern

and regression , either pulsating subsidence o
f

Louisiana . These similarities would suggest a

th
e

basin o
r
a eustatic change in sea level must eustatic change in the sea level as a controlling

b
e invoked to explain th
e

cycle . The transgres- mechanism fo
r

th
e

cycle ( Fig . 13 ) .
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