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Editor’s Remarks

Geological modeling is new and exciting = perhaps one of the most exciting and promising facets of
geology. It is obvious from the reference list that this work is new because most citations are papers less
than three years old. It is exciting because the geologist can now delve into some fundamental problems and
for the first time can bring the field into the laboratory so to speak. This series of computer programs by Dr.
W.C. Krumbein represents a report on use of Markov chains for experiments in geology.

Although examples cited are mainly stratigraphic, Markov process models are being used in hydro-
logical, meteorological, and volcanological studies. Undoubtedly other geological applications will be
found now that computer programs are available. As Dr. Krumbein points out, Markov chains are "the
simplest of stochastic process models and they afford a point of entry into a large class of probabilistic
mechanisms that can be useful in geology.” Here then is a beginning.

For those who would like to experiment with these computer programs, the Kansas Survey will make
card decks available for a limited time for $15.00. A complete list of available programs and data decks
can be obtained by writing Editor, Computer Contributions. Programs are available in FORTRAN 11,
FORTRAN 1V, and ALGOL, that will run on the Burroughs B5500, CDC 3400, GE 625, and IBM 1620, 7040,
7090 and 7094 computers.

The Kansas Survey, in addition to distributing information through the regular Computer Contribution
series, makes available reprints of interest. A list is included on the inside back cover, and they are
available upon request. To help disseminate information, the Survey is also co-sponsoring a series of
colloquia on timely subjects. Two have already been held - one on classification procedures (Computer
Contribution 7) and the other on trend analysis (Computer Contribution 12). A complete list of computer
publications is available by writing the Editor.

Because of wide interest in quantitative methods (i.e. computer applications) in the earth sciences,
preliminary plans are being made for the formation of an international interest group. Although only in the
formative stage, this group probably will be within the framework of an existing organization. Interest and
need, however, are obvious because the Kansas Survey presently is distributing information worldwide in
response to requests. Programs are being adapted for use in Australia, Bolivia, Brazil, Canada, Czechoslo-
vakia, Great Britain, India, Israel, Japan, Libya, Mexico, New Zealand, Poland, South Africa, and
Sweden.

Computer use in geology now is truly international. It has and is affecting change in the earth
sciences! Part of the change can be seen in this publication. The use of Markov chains in geological
modeling, undreamed of just a few short years ago, is well demonstrated here, and it is hoped new vistas will
be opened and insight gained from their application.
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ABSTRACT

Probabilistic models provide a mechanism for computer simulation of a wide variety of geological
processes. This paper emphasizes first-order Markov chains because of their intuitive appeal and rapidly
growing applications. Examples are based on stratigraphic analysis, but other uses of the model are discussed
briefly.

First-order Markov chains are among the simplest stochastic process models, and they afford a point
of entry into a large class of probabilistic mechanisms that can be useful in geology. This paper is designed
to stimulate experimentation with these models, in part by providing relatively simple computer programs
that cover four aspects of such analysis. These programs, listed in the Appendix, include one for testing the
presence of a Markov property, a second for raising the transition probability matrix to successive powers in
order to estimate the equilibrium states (i.e., the fixed probability vector) of a system, and a third for using
the transition matrix in simulation studie.. A fourth program for simulating independent-events processes
(non=Markovian) can be used with the fixed probability vector of a Markov chain to obtain some interesting

comparisons among different ways of structuring a sequence of observations or events.,

INTRODUCTION

The expanding literature on stochastic models
in geology demonstrates growing interest in applica-
tion of probabilistic mechanisms to studies in stratig-
raphy, sedimentation, paleontology, geomorphology,
petrology, and other aspects of earth science. These
mechanisms may be incorporated into conceptual
geological models in various ways, and the present
tendency in large part is to invoke Markov processes,
implemented by transition probability mairices or
expressed as random walks,

Interest in these models, especially among
computer-oriented graduate students, is such that it
seems desirable to encourage experimental modeling
of a variety of geological processes, both to increase
familiarity with the Markov process, and as an
introduction to other classes of stochastic process
models.

Four computer programs in current use at
Northwestern University are used to illustrate experi-
ments that have been performed. Although it is
necessary in discussing these experiments to siress
methodology, the intent here is also to raise ques-
tions regarding geological implications of structuring

—]-/This work was supported by Contract Nonr-1228
(36), ONR Task No. 388-078, Office of Naval
Research, Geography Branch. Reproduction inwhole
or in part is permitted for any purpose of the United
States Government,

observed data as Markov chains. An important
objective of this paper is to emphasize the point
that if a process has Markov properties, this mainly
means that preceding events have some influence on
succeeding events. Such knowledge is important in
explaining statistical "driving forces" that control
simulation output, and with further analysis this
knowledge can lead to better understanding of the
real-world geological process that gives rise to the
observed phenomenon.

Acknowledgments.-l am indebted to numer-
ous statisticians and geologists for aid in under=
standing Markov processes and for various strati-
graphic, sedimentary, and other examples. W.R.
James kindly permitted adaptation of his program
for estimating the fixed probability vector, which
is listed as STOCHEX in the Appendix. T. A.
Jones was helpful in developing the Markov test
which is listed as TESTMARK in the Appendix. Mrs.
Betty Benson of the Vogelback Computing Center at
Northwestern University wrote the final versions of
all programs, and adapted MARCHAIN (for Markov
transitions) to NO MEM for independent-events
trials with fixed probability vectors.

STOCHASTIC PROCESSES

Markov chains belong to the large class of
stochastic process models. A stochastic process may
be defined (Bartlett, 1960, p. 1) as "some possible
actual, e.g. physical, process in the real world,
that has some random or stochastic element involved
in its structure.” It is informative to consider the



position occupied by Markov models within the
conceptual spectrum that includes classical deter-
ministic models at one extreme, and purely random
(independent-events) models at the other. If a given
geological process operating through time or space
(e.g. the development of drainage basins by stream
processes or the rounding of pebbles by shore agents
along a beach) is thought of as a system comprising a
particular set of states, then in a classical deter-
ministic model the state of the system in time or
space can be exactly predicted from knowledge of
the functional relation specified by the underlying
differential equations. At the other extreme, in the
purely random model, the state of the system at any
instant or point in time or space is wholly indepen=-
dent of its state at any other instant or point, and
depends only on underlying fixed probabilities, as in
the simplest case of tossing a coin.

Within this spectrum the first-order Markov
model is characterized by the condition that the state
of the system at time t., point X, or event E_is

dependent upon the state at time t_ys point Xr—l ’
orevent E_,. Thus in the conceptual range from

complete dependence to complete independence, the
simplest Markov model occupies an intermediate
position of partial dependence. There is, however,
an element of probability in Markov models that pre-
cludes exact prediction of future events, and in this
respect the Markov model has some resemblance to
the completely random model.

The degree of dependency of a given state
upon previous states is commonly expressed in terms
of the "memory" involved in the process. In the
classical path-dependent deterministic model the
state at instant t_depends upon all previous states;

hence the process is conceived as having a long
memory. On this basis a first-order Markov process
has a short memory and a purely random process has
no memory. The terms dependency, predictability,
and memory clearly represent gradations rather than
mutually exclusive categories. Thus, some models
normally classified as deterministic are path-
independent, and permit exact prediction of future
states although no specified path is involved in
moving from one state to the other. Similarly, a
stochastic process model may have a deterministic
core, with a specified kind of randomness superim=
posed upon it. Some models, however, can be
developed either in a deterministic or probabilistic
framework, as for example thermodynamic models
(Ishida, 1966). Coleman (1964, p. 526) points out
that in many situations a deterministic approach
yields a simpler mathematical model than the sto-
chastic approach. In such models coefficients of the
deterministic form may simply be mean values of the
probability distributions in corresponding stochastic
models,

It would appear from these statements that

the choice between deterministic and stochastic
process models is partly one of convenience. Where
the underlying physical process can be expressed as
a differential equation, and where emphasis is
placed on mean values rather than probability
distributions, the deterministic approach has the
advantage of greater mathematical simplicity.
Where the underlying process is complex and is
subject to influences that cannot be exactly eval-
uated, however, the probabilistic approach may be
more flexible, in that changes of state can be
rigorously examined in terms of their relative prob-
abilities of occurrence. An example of this situa-
tion is seen in cyclical sedimentary sequences,
where an underlying pattern of rock succession can
be discerned, but in which the actual sequence of
rock types can only be predicted in terms of rel-
ative probabilities.

Markov process models, as well as other
kinds of stochastic process models, are being applied
in a variety of earth-science fields. The examples
in this paper chiefly concern stratigraphic sections,
but other applications are cited as an introduction
to the rapidly expanding literature. Leopold and
Langbein (1962) described development of long
stream profiles as a random walk. Their model can
be expressed as a first-order Markov chain with an
absorbing state, the latter introduced to terminate
a given simulation. In the same paper and also
discussed in Leopold, Wolman, and Miller (1964,
p. 217; 416) are examples of random walks in
development of drainage basins and stream junctures.
Scheidegger (1966) described stream orders and
branching processes in a Markov framework, and
Pattison (1965) and Loucks and Lynn (1966) give
excellent introductions to setting=up Markov process
models in hydrology. Pattison, for example, used
first-order and sixth-order Markov chains in the
study of hourly rainfall rates; Loucks and Lynn are
concerned with daily stream flow, and their paper
gives additional references in hydrology and
meteorology. Heller and Shinozuka (1966) afford a
good example of contrast between purely random
and Markov models in fatigue studies of material
specimens, Wickman (1966) suggests that some
volcanoes display Markov properties in their
eruption patterns. Agterberg (1966) applies multi-
variate Markov models to two basaltic rock series
to extract trend factors from major oxide data.

Harbaugh (1966) presents a combinatorial
probabilistic model with Markov elements for
simulating geological processes, This is the most
comprehensive simulation model introduced into
geology, and it permits direct "geological experi-
mentation" on a computer by simulating processes
of sediment dispersal, development of sedimentary
facies, faunal migration, basin filling during
tectonic subsidence, etc. The paper is accompanied
by a complete listing of the simulation program
(see Harbaugh and Wahlstedt, 1967, for a FORTRAN



listing). Harbaugh's computer output is supplied as
maps and stratigraphic cross sections.

TRANSITION PROBABILITY MATRICES

Simulation of stratigraphic sections affords a
point of entry into the most simple Markov process
model, the regular Markov chain. Vistelius (see
Vistelius, 1949; Vistelius and Feigel'son, 1965; and
Vistelius and Faas, 1965) appears to be the first to
have used a Markov chain for describing and ana-
lyzing sedimentary cycles, Griffiths (1966) reviews
Vistelius' earlier work and provides an excellent
discussion of transition probability matrices, the
generation of tree diagrams from them, and use of
such matrices to determine an "equilibrium state"
representing proportions of each rock type in the
sedimentary cycles.

Carr and others (1966) furnish an additional
example. They measured thickness and number of
transitions among sandstone, shale, and limestone in
the Chesteran Series (Upper Mississippian) of Indiana,
to obtain a matrix of transitions from one lithology
to another, as well as thickness frequency distrib-
utions of each of the three rock types. Then, by
selecting an initial state (sandstone, say), a thick-
ness is taken randomly from the sandstone thickness
distribution. Next, the succeeding rock type is
selected in accordance with the probabilities in the
transition matrix. Say it is shale. Next, a thick-
ness is taken at random from the shale thickness
distribution, and the succession is generated step by
step in this fashion.

Alternatively, the transition matrix may be
set up in such a way that it takes thickness into
account. Figure 1 illustrates several procedures on
a fictitious stratigraphic section composed of sand-
stone, shale, and limestone, designated as A, B,
and C, respectively. If any rock types show varia=-
tions (such as a change in shale color or of sandstone
texture), these may be designated as "multistory
lithologies" as the term is used by Carr and others
(1966). In Figure 1, for example, the second shale
from the bottom, and the topmost sandstone, are in
this category.

In setting up the probability matrix for
transitions from one lithology to its successor,
observations of the changes displayed are made along
the right-hand side of the section in Figure 1. Thus,
starting at the bottom, the first transition is from
sandstone (A) to shale (B). This is indicated by a
tally mark in the upper right matrix in accordance
with the following rule: the rows of the matrix rep-
resent the given state and the columns represent the
state to which the transition proceeds. Transition
AB is accordingly indicated by a tally mark in
column B of row A. The next transition is from B to
C, which gives a tally mark in column C of row B.
If the transition occurs in a multistory rock, as in the
change from B to B (about 30 feet from the bottom of

the section) this means that state B shows a transition
to itself, and the tally mark is placed in column B
of row B,

The uppermost matrix on the right of Figure
1 shows the tally marks for rock transitions. In this
procedure thickness of each rock type also is
recorded, to build up thickness-frequency distribu-
tions. When a sufficient sample is taken, tally
marks in each row are counted, and the total is used
to compute transition probabilities for that row.
Once the transition matrix and the thickness dis-
tributions are obtained, simulation experiments are
performed as described by Carr and others (1966, p.
1163), as mentioned earlier.

The left=-hand side of the stratigraphic
section in Figure 1 shows alternative ways of con-
structing transition matrices, using fixed vertical
intervals for observation. An important considera-
tion here is the magnitude of the interval. If a
10-foot interval is used, transitions shown in the
second matrix on the right of Figure 1 are obtained.
In only one instance (the top sand) are two suc-
cessive 10-foot marks in the same kind of lithology,
so that only a single tally occurs in the main
diagonal. Moreover, some lithologies are missed
entirely, as for example the thin limestone near the
top.

If the measuring interval is reduced to 5
feet, the number of transitions from a given state
into itself increases, as shown by the increased
number of entries in the main diagonal. Finally,
for an interval of 1 foot (which is carried out only
for the bottom 20 feet as an example), the number
of transitions from a given state into itself becomes
more pronounced, With an infinitesmally small
vertical interval, the matrix tends to have prob-
ability 1.0 in the diagonals and 0.0 elsewhere, for
any sample of finite length. Thus, in the limit, the
most likely transition is from a given state to itself
- i.e., for the system to remain in its present state.

It is evident that judgment is required
regarding the appropriate interval to use. If it is
too large, some lithologies are entirely missed; if
too small, the probability of leaving any one state
in a given sample of observations becomes imprac-
tically small, Experiments with a variety of strati=-
graphic sections suggests an interval of from 2 to
10 feet.

Table 1 shows a transition probability matrix
on the left, and a tally matrix on the right, based
on 309 transitions measured at fixed vertical inter=
vals of about 8 feet from sections in the Chesteran
Series (Upper Mississippian) of southern Illinois. In
performing a simulation experiment with the matrix
on the left, one starts in a random state or arbi-
trarily with sandstone, say, and draws random
numbers to select the succeeding transitions. Inas-
much as the probability for state A returning to
itself is 0.74, the chances are good that state A
will be succeeded by itself one or more times before



the system moves to states B or C. The simulation
experiment adds 8 feet of rock for each transition,
so that if the first several events are A, A, A, B, C,
B, B, A, ..., the simulated section will have 24
feet of sand, followed by 8 feet of shale, followed
by 8 feet of limestone, followed by 16 feet of shale,
and so on. The thicknesses of individual rock occur-
rences are thus controlled by transitions from a given
state back into itself. The off-diagonal elements
control the changes from one lithology to another, as
well as the relative proportions of each rock type in
the simulation.
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Inspection of the tally numbers in the right-
hand matrix of Table 1 shows that the total number
of transitions is greatest for shale, and the matrix
on the left shows that the largest probability for
transitions from a given state into itself occurs with
sand, The implication is that the total thickness of
shale in the section is greater than the total thick-
ness of sand, but that the individual sandstone
occurrences are, on the average, thicker than the
shale beds.

These remarks indicate an interesting dif-
ference between alternative ways of structuring
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Figure 1.- Fictitious rock section, showing ways of structuring transition matrices.



Table 1.-Transition probability matrix and tally matrix for 309 Chesteran transitions. Vertical interval

= 8 Feet.

Transition Probability Matrix*

A B C
Sand (~ n
(A) 0.74 0.23 0.03
Shale
(B) 0.10 0.61 0.29
Lime
(C) 0.05 0.38 0.57

Corresponding Tally Matrix

A B C Totals

Sand — n

(A) 59 18 2 79
Shale

(B) 14 86 41 141
Lime

Q) 4 34 51 89

— -

Totals 77 138 94 309

*The probabilities in each row are forced to add to 1.00. Thus, 0.74 is rounded slightly downward, and

0.05 is rounded upward.

stratigraphic data for transition probability matrices.
If the matrix is based on fixed vertical intervals,
simulation output includes not only the succession of
lithologies, but also the thickness of each occurrence.
If the matrix is based on transitions from one rock
type to another, the matrix controls the lithologic
succession (and occurrence of multistory events), but
thickness represents independent events based on
random drawings from the corresponding thickness
frequency distributions. Interesting and informative
simulation experiments can be performed by struc-
turing the same stratigraphic unit in these two ways.

Figure 2 shows part of a computer simulation
with MARCHAIN, involving 500 transitions from the
left matrix of Table 1. The simulated section, 4000
feet thick, required 6 seconds of machine time. The
total run yielded summary values shown in Table 2.
Relative frequencies of the various possible transi-
tions, as realized in this particular simulation experi-
ment, are shown in matrix form at the bottom of the
table, Deviations between these entries and the
corresponding input transition probabilities of Table
1 are not extreme for a sample of 500,

Table 3 summarizes data on which the
transition mairix was constructed, and affords addi-
tional checks on simulation output. Observational
data consisted in noting lithologic composition of
two Chesteran sections at fixed vertical intervals of
8 feet, which yielded 311 equally spaced observa-
tions on the state of the system. Sandstone (state A)
occurred 79 times, arranged as 20 individual groups
separated by shale or limestone. Inasmuch as each
observation represents an 8-foot interval, total sand-
stone thickness was estimated as 79 x 8 = 632 feet,
and the average sandstone thickness was computed as
632/20 = 31,6 feet. On the basis of similar esti-
mates for the other rock types, remaining columns of

Table 3 were prepared. Comparison of Tables 2 and
3 shows satisfactory agreement on the whole,
although the percentage of limestone in the sample
of 500 transitions is somewhat high, mainly at the
expense of sandstone, which is low.

These results, supplemented by similar
analyses of other sections, indicate that a single
matrix can be used in Markov simulation to include
the thickness factor, although other questions arise
in structuring the transition matrix in this manner.
The most important relates to the vertical interval
selected for measurement, inasmuch as this influ-
ences the extent to which thin beds may be missed.
On the other hand, there is no need for multistory
lithologies in order to have entries in the matrix
diagonals, In fact, multistory lithologies can be
considered as separate states, such as state C]

representing thinbedded limestone, and state C,
thickbedded limestone.

TREE DIAGRAMS AND FIXED PROBABILITY
VECTORS

Griffiths (1966) presents an excellent dis-
cussion on construction, from transition probability
matrices, of diagrams that show probabilities as-
sociated with each state through a succession of
cycles. Such tree diagrams are illuminating for
studying the probable sequences of beds after any
given number of events or transitions. An intro-
duction to tree diagrams and their construction is
given in Kemeny, Snell, and Thompson (1957,
Chap. 1V, Sections 7, 13). Figure 3, in the
Appendix, shows a portion of such a tree.

Griffiths (1966) and Carr and others (1966)
also illustrate the interesting fact that if the



transition probability matrix contains only positive
elements (i.e., if it is a regular Markov chain),
probabilities associated with each successive branch-
ing of the tree diagram can be had directly by
raising the transition probability matrix to the cor-
responding power. Moreover, for regular chains, as

matrix at its 43rd power:

successively higher powers are computed, the orig- A
inal probability transition matrix approaches a matrix
in which each row becomes a fixed probability B
vector, that does not change during succeeding
higher powers. As an example, the transition prob- C
ability matrix of Table 1 (left) yields the following
pa
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Table 2,-Results of simulation experiment with matrix of Table 1.

Rock Type Number of Thickness
Occurrences (Feet)
Sandstone 28 944
Shale 75 1736
Limestone 67 1328
Totals 170 4008

% of Total Average % of Total
Thickness Bed Beds
Thickness
(Feet)
23.5 33.7 16.5
43.4 23.1 44,1
33.1 19.8 39.4
100.0 100.0

Relative frequencies of transitions realized in a
500-transition simulation experiment

A B C
A 0.77 0.18 0.05
B 0.08 0.65 0.27
C 0.07 0.32 0.61
When rounded to two decimal places (0.23, 0.45, vector. Zeller (1964) used random numbers to

0.32), stability is reached at the 16th power, Com=-
puter program STOCHEX in the Appendix was used
to obtain this equilibrium matrix.

In general, the fixed probability vector
represents the equilibrium state of the system, but its
interpretation depends upon the structure of the
transition probability matrix. For the matrix of
Table 1, where relative rock thickness is expressed
by diagonal entries, the stratigraphic unit in its
equilibrium state has approximately 23 percent sand,
45 percent shale, and 32 percent limestone. These
proportions do not differ greatly from percentage
thickness of each rock type in column 4 of Tables 2
and 3. Experiments with matrices based on transi-
tions from one lithology to another yielded fixed
probability vectors related to percentage of occur-
rences of each rock type rather than percentage
thickness,

The fixed probability vector can be used as
an independent-events model for generating simu-
lated stratigraphic sections without memory implica-
tions involved in the Markov model. As stated
earlier, each event in a purely random model is
independent of preceding events, which means that
any tendency for sandstone to be succeeded by shale
(which may have a high probability in the observed
section) now depends only on relative probabilities
of sand, shale, and limestone in the fixed probability

generate stratigraphic sections in this manner, with
thickness dependent upon drawing the same rock
type one or more times in succession. Computer
program NO MEM can be used for such simulations.
An alternative would be to use the thickness fre-

vency distribution of each rock type to assign a
thickness to each individual state, with repetitions
shown as multistory events. In this latter model
both rock succession and thickness represent inde-
pendent-events processes.

TESTS FOR THE MARKOV PROPERTY

A question of basic importance has been
deferred to this section, after some properties of
transition probability matrices were discussed. It is
possible to generate transition matrices from any
succession of events. These need not proceed at
fixed intervals of time or space, but can be com-
pletely sporadic. One could note successions of
thundershowers during a given time span, using
amount of rainfall per shower to define a convenient
number of states in the system. Here each shower
is a discrete event, with no necessarily fixed time
interval between successive showers. Similarly, a
transition probability matrix could be generated by
noting the sequence of 1's, 2's, ..., é's in suc-
cessive rolls of a die, regardless of the time



Table 3.-Observed data: State of section examined at vertical intervals of 8 feet.

Rock Type Number of Thickness
Occurrences (Feet)
Sandstone 20 632
Shale 52 1112
Limestone 39 744
Totals 111 2488

% of Total Average % of Total
Thickness Bed Beds
Thickness
(Feet)
25.4 31.6 18.0
44,7 21.4 46.8
29.9 19.1 35.2
100.0 100.0

interval between rolls. Wave runup on a beach can
be considered as a succession of discrete events, with
the several states defined by distance of runup. The
time interval between successive runups is related to
the period of the wave involved, so that commonly
events do not occur at fixed time intervals. A suc-
cession of glacial varves, with states defined by
varve thickness, is an example of a discrete series

in which each event is associated with a fixed time
interval of one year.

The fact that transition probability matrices
can be prepared from any succession of events does
not necessarily mean that the original physical
process is a Markov process. By structuring the
sequence of events into a transition probability
matrix, however, the model has become Markovian,
Thus, a transition probability matrix prepared from a
sample of N successive rolls of a six-sided die does
not alter the fact that rolling dice is an independent-
events process. Nevertheless, the matrix can be
used for simulation experiments (which now follow
probabilities in the matrix, and hence states are no
longer completely independent); and the transition
matrix itself can be raised to its N-th power to
reach an equilibrium state. The resulting fixed
probability vector for a six-sided die will gener-
ally not have probability 0.1667 for each state, but
will have probabilities related to the particular sam-
ple that was drawn. Such a "die-rolling" experi-
ment yielded the following fixed probabilities at P™:
0.194, 0.149, 0,174, 0.161, 0.151, and 0.173.
These are near the theoretical values, but they
indicate that it is the finite observed sample (in this
case 583 "rolls") and not the theoretical population
probabilities that controls the equilibrium propor-
tions,

It is evident that an important substantive
question in setting up Markov models is whether the
process under study actually has the Markov property.
Markov processes range from relatively simple first-
order regular Markov chains to complex models with
memories that extend backward for two or more steps.
Moreover, as mentioned, models may have discrete

states and discrete time (or space); or they may
operate in continuous time (or space) with either
discrete or continuous states. Statistical criteria
are available for testing some alternative ways of
structuring a set of successive events, and here we
consider only a test of the null hypothesis for an
independent-events process as against the alter-
native of a simple first-order Markov chain. Com-
puter program TESTMARK is designed for this
simplest situation as an introduction to a relatively
complex subject.

Anderson and Goodman (1957) and Billing-
sley (1961) discuss the application of the Chi-
square distribution to this problem, and we shall
describe the procedure used by Anderson and
Goodman, on which TESTMARK is based, Con-
ditions of the test are that the transition probability
matrix is stationary, and that events occur at
equally spaced intervals of time. An example is
afforded by arrays in Table 1, based on equal
vertical distances for observations of state. Sub-
stitution of space for time is valid for an ergodic
matrix, and probabilities remain constant during
simulation runs. The test is conducted by using
both the probability matrix and the tally matrix in
Table 1. The sample statistic is computed as
follows:

m R R
-2 |oge>\ =2 iZ. ng Ioge(pz-/]. /pj)
J .

where the quantity (-2 |oge A) for m states is
asymptotically distributed as Chi-square with
(m - 1)2 d.f., ng,; is the number of tally marks in
the ij-th cell, Py js the transition probability in
the same cell, and p . is the marginal probability

for the column. The null hypothesis tested by this
statistic is that events at successive points in space
or time are statistically independent, as against the
alternative hypothesis that the observations are from



a first-order Markov chain.
In using the data in Table 1 for this test, the

p . values are first computed by adding tally numbers
PJ p Y M

for each column in the right-hand matrix, and con=
verting these to proportions. Thus, the sum of the

first column is 77, and 77/309 = 0.25, which is ﬁ].

For the upper left element (27 = 11), the computa-
tions are as follows: the number " of tallies on the

right is 59. The probability ’SH for this cell is 0.74,

and fo] (for the first column) is 0.25. Hence, we
compute 59 Ioge (.74/.25) = 64,22, These com-

putations are performed for each matrix element, and
summed algebraically. The sum is doubled and
compared with tabled values of Chi-square distribu-
tion for the a chosen and appropriate degrees of
freedom.,

Data in Table 1 give the value -2 |oge>\ =

159.6, which is larger than the tabled value (9.49)
fora =0.05 and 4 d.f, Thus, the hypothesis of an
independent-trials process is rejected. The die-
rolling experiment mentioned earlier, when subjected
to the same test, gave the result -2 |oge)\ =24.8,

which is less than the tabled value (37,65) for
a=0.05and 25 d.f. Hence, for the die-rolling
results the hypothesis of an independent-trials process
was not rejected.

A different approach to examining sets of
data for the Markov property is based on autocor-
relation techniques. Grant (1957, p. 325) for
example, in discussing criteria to distinguish residuals
from the main trend in map data, used the following
relation to determine whether a set of residuals is
autocorrelated:
+uy lol<1

i 7P

where € is the 1-th residual and €11 is the next

preceding residual. The uy values represent a

random variable distributed normally with mean zero,
and independent of €1 1r €panr seer and of CIRY

Uy _gr ++++ The null hypothesis is that p, the pop-

ulation correlation coefficient, is zero in the model,
so that if the hypothesis is accepted, residuals are
not autocorrelated., For present pur ses, if the null
hypothes:s is rejected, (i .., ifp , presumably
there is a Markov property in the equally spaced
sequence of numbers.

The autocorrelation procedure is applied
directly to the sequence of observed values, whereas
the Chi-square test, as noted, is based on the
transition proboblhi'y matrix supplemented by the
tally matrix. In the Chi-square test the data are
first structured as if they had a first-order Markov

property, so that if the null hypothesis of an inde-
pendent-trials process is rejected, the transition
probability matrix can be used directly in MAR-
CHAIN for simulation experiments.

It is to be emphasized that this Chi-square
test applies rigorously only to regular first-order
Markov chains, although Anderson and Goodman
(1957) give tests for higher order chains. Computer
program TESTMARK in the Appendix is based on this
first-order test only, and it will not accept transi-
tional probability matrices with zero entries along
the diagonal or in off-diagonal elements. The
program is offered in its present form for convenience
only; interested readers will likely wish to gen-
eralize the tests,

PROBLEMS IN STRATIGRAPHIC SIMULATION

Although it is generally accepted that
cyclical sedimentary deposits have Markov prop-
erties, the 5|mp|e first-order Markov chain has some
limitations in simulating real-world cyclical
sequences. One is that the transition probability
matrix, with a one-step memory, includes no
mechanism for the occurrence of stratigraphic
marker beds or groups of characteristic beds at par-
ticular positions in the simulated sections. Such
beds not only occur prominently in natural cyclical
sequences, but provide an important basis for
stratigraphic correlation.

A set of simulations, each based on the same
first-order Markov transition probability matrix,
compare favorably with the natural section and with
each other in their percentages of lithologic types,
bed thickness, and other gross attributes, but the
occurrence of any particular beds in a given interval
is wholly dependent upon the transition probabilities.
The chance of having several prominent limestones
of approximately equal thickness in equivalent parts
of two or more simulations is small.

The development of a model which simulates
stratigraphic sections that have well-defined marker
beds, such that successive simulations can be
"stratigraphically correlated" requires a more
complex memory system than is present in the simple
Markov chain, Several avenues are open, such as
developing a Markov model with nonstationary
transition probabilities, or using a combination of
the simple Markov model with stationary transition
probabilities, and a "feedback matrix" that intro=-
duces fairly regularly spaced marker beds. Thus,
for a cyclical sequence in which several prominent
limestones occur at roughly 200-foot intervals, the
complete model would require a memory extending
backward in time or space such that the probability
of obtaining a moderately thick limestone increases
rapidly as each 200-foot segment of section is
simulated, with the probability decreasing to its
stationary value again as soon as the marker bed is
deposited. Some fairly ingenious (if empirical)



models can be developed to generate such sections,
and they provide stimulating exercises for students.
The problem of introducing stratigraphically
correlatable beds into a simulation is perhaps most
effectively handled (within the framework of a first-
order Markov chain) by expressing the transitions as
lateral shifts of some specified attribute, such as the
successive positions occupied by a strandline sand
during transgressive-regressive cycles, In such a
model several "monitoring positions" can be set up
which follow the lateral shifts and produce two or
more stratigraphic sections that are directly correla-
table. For this adaptation it is more effective to use
transition rates (qtj) obtained from the transition

probabilities (pi,j) by transformation. The transition

rates convert the Markov process from one with dis-
crete states and discrete time (or space) into a
Markov process with discrete states but with contin-
vous time (or space). Models of this sort were
experimentally developed in the spring of 1966 at
Princeton University, where | had the privilege of
working with Professor J.W. Tukey and his Statistical
Techniques Research Group. A computer program
written by Paul Tukey implemented the experiments.
This modification of the simple chain used here will
be presented in a later paper.

CONCLUDING REMARKS

There are many phenomena in geology where
the state of a system at time t._1 exerts a dominant

influence on the state at time ter although earlier
events, at time tr-2’ fr-3’ eeey May also exert some

influence. The Markov chain can be extended to
such longer memory events, as in the cited reference
to Pattison (1965), who used events as far back as
t._g to develop a sixth-order Markov chain.

A main reason for confining this paper to first-
order Markov chains is that the principles underlying
the discrete-time, discrete-state Markov process are
adequately brought out by the simplest model.
Kemeny and Snell (1960), or an equivalent reference
book, is a useful adjunct here.

An important byproduct of experimentation
with Markov processes is that the student or re-
searcher begins to see his observations in a new
framework of a set of states that succeed each other
in some patterned way. This insight commonly leads
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APPENDIX

The four programs listed here are written in a
modified version of FORTRAN |V, which is used with
the CDC 3400 computer. Normally there is little
difficulty in making these programs compatible with
standard FORTRAN 1V. All programs are fairly
short, and are kept as separate programs partly for
greater convenience in making such modifications as
the user may wish. For readers who prefer an all-
inclusive program, the four short programs can be
combined readily, especially inasmuch as two of
them, MARCHAIN and NO MEM, are similar.

The four programs are listed in the order of
their normal use. That is, after the transition prob-
ability matrix has been compiled, it (and sometimes
the tally matrix on which it is based) is used with
TESTMARK. If the Markov property is present, the
transition probability matrix is normally used with

MARCHAIN for a simulation run (say 500 transitions).

The transition probability matrix is then used with
STOCHEX to obtain the fixed probability vector, and
if desired, this vector can be used as input to NO
MEM.,

If TESTMARK does not reject the hypothesis
of an independent-events process, the matrix being
tested can be used with STOCHEX to find the fixed
probability vector for simulation with NO MEM.

Although the preceding remarks are based on
the assumption that observed data are used to gen-
erate the transition probability matrix, there is no
reason why completely arbitrary matrices cannot be
used as input. Harbaugh (1966), for example, sug-
gests that geological experimentation can be con-
ducted with probabilities that are "reasonable" for
the processes to be simulated. By using a range of
values it is possible to compare the simulation output
derived from various assumptions regarding the geo-
logical phenomenon under study.

Virtually all programs in the geology program
library at Northwestern University have an under-
lying similarity in their organization, and in the
kinds of data formats used. These similarities involve
the use of project numbers, four title cards, and at
least one major control card. Programs also are
arranged so that several data decks can be placed
one behind the other, rather than using the program
separately for each set of data.

The following comments apply to all four
programs that follow in this Appendix:

A. Title Cards.-Provision is made for 4
title cards, so that the specific problem can be
completely documented. These are of the following
form:

Card 1. Enter the digit 1 in column 1, and leave
column 2 blank. The initial digit is a
carriage control, so that titles are re-
peated as new segments of output are
printed. Cols. 3 to 70 inclusive may be
used for any appropriate title.
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Cards 2, 3, 4. Enter a zero in column 1, leave
column 2 blank, and proceed as with
the first card.

Examples of titles for TESTMARK are given
in Tables A-1 and A-2,

B. Control Cards.-These furnish the com-
puter with specific details regarding a particular
problem, such as size of matrix or vector to be read
in, number of simulations required, a choice of out-
put format where this applies, and format of the
data cards. The control card for each program is
described in detail with each program listed.

C. Input Matrices and Vectors.-The pro-
grams listed here are designed to accept input
matrices up to 20x20 in size, and (for NO MEM) a
row vector up to 1x20 in size. Input is read in by
rows, and input cards contain the following items:

Cols. 1-6 Project number (example 010275)

Cols. 7-10  Row number of matrix (example
0007)

Cols. 11-70  Input fields of any convenient

size. Where probabilities are
entered to two or three decimal
places, fields can be kept
uniform, say from 3 to 6 digits
each. The tally matrix of Table
1, which has whole numbers,
had its first card punched as
follows:

010275 159 18 02
in which the project number is
a field of A6, the matrix row
number is A4, and the ng, ; are

in 3F3.0. All entries are right-
justified. The transition prob-
ability matrices are usually
punched to 2 or 3 decimal
places. IN NO INSTANCE IS
IT NECESSARY TO INCLUDE
MARGINAL TOTALS IN THE
INPUT MATRICES OR VECTORS.
D. Computing Center Lead Cards.-The
sequence of cards used with FORTRAN 3400 source
decks at the Vogelback Computing Center are as
follows:
JOB CARD, with Computing Center Account
Number
SOURCE DECK FOR PROGRAM
SCOPE CARD
LOAD CARD
RUN CARD
These cards are not included in the program listings,
inasmuch as various computing centers follow
different procedures.

Program TESTMARK

The underlying equation on which this
program is based was given in the section on tests



for the Markov property. Input for the program has
four title cards, one control card, and either one or
two matrices. The first matrix is the "tally matrix"
discussed in connection with Table 1 of the text,
whose elements are Ny number of transitions in

the original observational data. The second matrix
is the transition probability matrix derived from the
tally matrix, as illustrated in Table 1 of the text.
Two choices are available to the program

user. In the first choice both matrices are read in
(WITHOUT MARGINAL VALUES), and in the second
choice the tally matrix alone is used, and the pro-
gram computes the transition probability matrix. In
either choice, the program computes marginal totals

of the tally matrix, and computes FA’j for each column.
It then extracts the Ny, ; and f’i,j from successive 1j

positions in the two matrices (i.e., the input tally
matrix and the computed or input transition prob-

ability matrix). The ratio p, ,/p ; is computed and
Y pLJ pj

transformed to its natural logarithm. This is then
multiplied by its corresponding Ngjs and the products

are arranged into a square matrix whose subscripts
have the same values as the input matrix. This is
called the N LOG P matrix in the printed output,
and its elements are

[ntj |°9e(|3tj/'3j) 1.

The N LOG P matrix is summed and multi-
plied by 2 to give the statistic for testing with Chi-

square for (m - 1)” d.f., and the critical @ chosen.

The N LOG P matrix is convenient for locating the

particular elements that contribute most strongly to

the final statistic. For example, in Table A-1 the
only positive elements are along the diagonals, and
for this example these control the large positive

value obtained. For the 3 x 3 matrix used, m = 3,

and hence d.f. =4, for which the critical value of

Chi-square at a = 0,05 is 9.49, as described in the

text.

In operating TESTMARK, the first 4 cards are

TITLE CARDS, already described. The CONTROL

CARD is next, with the following form:

Cols. 1-6 Project number, A6, This is for
record only and is not read in.
Columns may be left blank if
desired.

Size of input matrix or matrices,
13, (i.e., 004 means four rows
and four columns).

Choice code, 11. Choice 1
means that both the tally matrix
and transition probability matrix
are read in, Choice 2 means
that only the tally matrix is read
in.

Cols. 7-9

Col. 10

14

Cols. 11-45  Format statement for tally matrix,
7A5. If the matrix is 4 x 4, say,
with whole numbers not exceed-
ing 999, the format would be
(10X, 4F3.0). Note that the
first 10 columns of the input
matrix are not read,

Format statement for transition
probability matrix if choice 1 is
used. This normally differs from
the tally matrix because prob-
abilities are entered to 2 or 3
decimal places. Thus, the for-
mat statement corresponding to
the preceding example, when 3
decimal places are used, is
(10X, 4F3.3).

Tables A-1 and A-2 are examples of the two
choices of output for the matrices in Table 1 of the
text, The printout is rounded to 2 decimal places,

Cols. 46-70

which means that occasionally the computed ﬁij

matrix may not always add to 1.00 for each row.
Refer to the footnote to Table 1 in the text and note

that in Table A-2 the computed Isij in the top and

bottom rows do not add to 1.00. This particular
example is used to show that the effect of these dif-
ferences on the final output, 2(SUM OF N LOG P
MATRIX) differs only in the first decimal place.
Program TESTMARK is listed in Table A-3.
Some remarks about this program, and some changes
that are recommended as student exercises, are ap-
propriate here. In the first place, the program will
not accept tally matrices with zero entries for any
Ny including the diagonals. The assumption of the

test is that each element is positive. Occurrence of
a few zeroes, however, especially in large matrices,
can be handled by testing each element against

zero. |If zero is present, skip this element and
proceed to the next. Statistical limitations imposed
by zero elements can be met approximately by
omitting one d.f. for each zero. Thus if two zeroes
occur in a 6 x 6 matrix, the degrees of freedom would

be (m - 1)2 =2 =(6 - 1)2 =2 =23, These remarks
are tentative only, and if zeroes occur in the diag-
onals, the test may fail by not rejecting the null
hypothesis of an independent-trials process even if a
Markov property is present.

In its present form TESTMARK does not have a
Chi-square library built into it, nor does it print out

the (m - 1)2 d.f. The latter can readily be taken
care of by simply picking the matrix size from the
control card, subtracting 1 from it, and squaring the

remainder. Similarly, where the E"Lj matrix is com=

puted, rounding difficulties are usually avoided if
the printout is carried to 3 decimal places.



TABLE A-I
KRUMBE IN PRCIECT 01 0275
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TABLE A-3

PROGRAM TESTMARK
FOR WeCeKRUMBEINY GEOLOGYeoseeJAN 1967000 eBETTY BENSON

DIMENSION T(20520)9P(20520)sLAMBDA(20520)
DIMENSION S(20)sHTOT(20),VTOT(20)
DIMENSION TITL(40)sFMTL(T7)sFMT2(7)sLET(20)sMING(3)

REAL LAMBDA

DATA (IBL=1H 1}y (MARG=2RMG)

DATA (MING=24H(XR2sX00F6409F1240) )

DATA (LET=2R As2R Bs2R Cs2R Ds2R E»2R F92R G92R He2R [92R J
. 2R Ke2R L92R M92R Ns2R Os2R P3s2R Q2R Rs2R S»2R T)

READ TITLESs CONTROL CARD
2 READ 100,TITL
100 FORMAT (10A8)
IF (EOF+60) 50,3
50 STOP
3 PRINT 100sTITL
READ 101sNsKRISsFMT1sFMT2
101 FORMAT (6XI33s11:7A5457A5)
MING(1)=MING(1l) eANDe 77777777777777008B
NTEN=(N/10)%64 $ NUNIT=MOD(N»10)
MING(L1)=MING(1)eOReNTENORSNUNIT

READ TALLY MATRIXs COMPUTE ROW-COLUMN SUMS

DC 4 I=1eN
4 READ FMT1le(T(IsJ)sJ=1sN)

TOT=040

DC 5 I=1sN
5 HTOT(I)=VTOT(I)=0.0

DO 7 I=1,N

DO 6 J=1sN

HTOT(1) = HTOT(I) + T(IsJ)
6 VIOT(J) = VTOT(J) + T(I1sJ)
7 TOT = TOT + HTOT(I)

PRINT TALLY MATRIX AND MARGINAL SUMS
PRINT 130s(LET(J)9sJ=19N)»IBLIMARG
DO 15 I=1,N
15 PRINT MINGSLET(I)s{T(IsJ)sJd=1sN)sHTOT(I)
PRINT 132
PRINT MINGsMARGs (VIOT(J)»J=1sN)sTOT

READ OR COMPUTE PROBABILITY MATRIX
GO TO (10+8) KRIS
DO 9 I=1uN
READ FMT2s(P(1sJ)sJ=1sN)
MESSG=8H (INPUT)
GO TO 12
10 DO 11 I=1sN
DO 11 J=1sN
11 P(Isd) = Tlled) / HIOT(I)
MESSG = 8HCOMPUTED
12 PRINT 121sMESSG

0
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16

13

25
26

104
107
108
109
110
121
130
132

TABLE A-3, CONT.

DO 16 I=1sN
PRINT 107sLET(I)s(P(IsJd)sJd=1sN)
COMPUTE P(J)S
DO 13 JU=1,N
S(J) = VIOT(J) /7 TOT
PRINT 1089(S{J)sJ=1sN)

COMPUTEs PRINT N LOG P AS MATRIX
SUM=0,0
PRINT 100,TITL
PRINT 109
DO 26 I=1,N
DO 25 J=1sN
LAMBDA(IsJ) = ALOGI(P(IsJ)/S(J)) #* T(IsJ)
SUM=SUM+LAMBDA(I,J)

PRINT 104sLET(I1)s (LAMBDA(IsJ)sJ=1sN)
PRINT OUT FINAL ANSWER
SUM=2%SUM
PRINT 110,SUM
GO TO 2

FORMAT (3XR2s2X+16F8e3 / TX94F843)

FORMAT (XR29X3s20F642)

FORMAT (// 5X#P(J) ROW VECTOR¥*/ 5Xs15(1H=)/ 4Xs20F6e2)
FORMAT (//7Xs#*#N LOG P MATRIX* / 7Xsl&(1lH=-)/)

FORMAT (//7Xs%¥2(SUM OF N LOG P MATRIX)=%F9,43)

FORMAT (// S5X*TRANSITION PROBABILITY MATRIX¥,A15/ 5X329(1H=)/)
FORMAT (//5X*¥TALLY MATRIX INPUT®* / 5X918(1H-) //4Xs22(4XR2))
FORMAT (X)

END
0oocss CARDS

18



Program MARCHAIN

This program accepts as input a transition
probability matrix of dimensions up to 20 x 20. The
matrix is read into the program by rows, and number
of transitions to be included in the simulation is
specified on a control card. At the end of the
simulation run the computer tallies the transitions
and prints out a transition probability matrix gener-
ated by the simulation, for direct comparison with
the input matrix. It also lists percentage occurrences
of each state in the simulation.

The program is illustrated with the same
sample used in TESTMARK in order to carry the same
problem throughout the text and examples. The
main input to MARCHAIN is the transition prob-
ability matrix, and the user has two choices of out-
put, to be illustrated later. The input consists of
four TITLE CARDS, described earlier, and a CON-
TROL CARD as follows:

Cols. 1-6 Project number, Aé. This is for
record only and is not read in.

Size of input matrix, 14. For a
3 x 3 matrix this is simply 0003.

Number of transitions insimulation
run, 14, Normally 500 or 1000
are called for, i.e., 0500 or
1000.

Starting state. In the present
version the user specifies this by
using the code A=1,B=2,...
, 5=19, T=20. Ifcode Ois
used, the initial state is selected
at random from a uniform dis-
tribution. Carr and others (1966)
use a random start based on the
fixed probability vector.

Type of output desired. Two
forms of output are available.
These are coded as 1 =
POSITION OUTPUT and 2 =
LITHO OUTPUT. (See further
remarks below).

Format statement. This is vari-
able. The first 10 digits are not
read in (they include the project
number and the row number of
the input matrix), so that the
format statement for a data card
with four fields of 6 digits with
2 decimal places is (10X, 4F6.2).

The control card is followed by the transition
probability matrix, which is read in by rows. For
this example, the format statement is (10X, 3F3.2).
This input matrix is printed out directly after the
titles, as shown in Table A-4,

An essential part of the program is a pseudo-
random number generator, called RANFSET(T),
similar to equivalent random number subroutines in
all computing centers. The series is commonly

Cols. 7-10

Cols. 11-14

Cols. 15-18

Cols. 19-22

Cols. 23-70
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started by the time on the Computing Center clock,
which is printed out for reference.

As Table A-4 shows, probabilities in the
matrix are first cumulated from left to right, for use
of the random numbers, Thus, in the example shown,
the starting position is designated as state A, and if
the random number falls in the range 0.000 to
0.740 inclusive, the transition is AA, If the ran-
dom number lies in the range 0.741 to 0.970, the
transition is AB, with the range 0.971 to 1.000
leading to the transition AC. If AB is drawn, the
drawing shifts to the second row of the matrix, and
the next transition now is determined by the cumu-
lative probabilities in the second row of the matrix.

The two forms of output are illustrated in
Tables A-4 and A-5. If choice 1 is used, the
simulation proceeds from left to right, with the
first state (A) occupying the bottom line of the
graphic output, and each succeeding state (up to 20
maximum) occupying succeedingly higher positions.
This is called "position output." The output scheme
is easily visualized, and each row of output,
defined by the enclosing dashed lines, contains
100 transitions (the example in Table A-4 is cut
short to fit the page, and has about 70 transitions).

The second choice of output is called
"litho output" and is arranged as a stratigraphic
column, with the first transition at the bottom, so
that the order of deposition is upward along the
column. This is choice 2 on the control card, and
it requires a series of symbol cards to represent the
rocks involved, one for each type. These are
arranged in the order A, B, C, etc. of the input
matrix. As many as 20 lithologies can be accom-
modated. The format of these cards is as follows:

Cols. 1-16 The name of the rock,

Cols. 17-22 Symbol selected.
This gives a standard width of 6 spaces for the
column. The symbol cards are inserted just behind
the control card and ahead of the input matrix.
They are printed directly after the titles in the out-
put of Table A-5. If choice 1 for position output is
used, these cards are not accepted by the program,
inasmuch as the position routine is built into the
program.

The last part of output for MARCHAIN
consists of a count of each kind of transition, shown
in the bottom parts of Tables A-4 and A-5. These
counts are converted to probabilities for comparison
with the input matrix. Finally, the number and
percentage of counts in each state is indicated. It
should be mentioned that the initial state is not
included in the counts, so that in calling for 500
transitions, there are actually 501 occurrences of
the states. The output matrices and percentages
are based on the 500 transitions in the simulation.
Note that each simulation is a separate experiment,
and that the output counts for each state tend to
vary from one simulation to another.

Tablz A-6 lists the MARCHAIN program.



TABLE A-4

KRUMBE IN PRTOJUECT 01 0275

CHFSTER NATAs B=FA0T INTFRVALS
3 STATESe SANDSHALF 9| IME
P(IeJ) MATRIX wASFD ON 3309 THANSITIONS

TRANSTITCH PRUSARILITY MATRIX [NPUT

Lda i d b LA B P A T X T T T R L P T Y T T T

A B C
A Oe74U Qe300 a3
R e300 VeblN Jec9)
C 06050 0e380 Ven70

CUMULATED pROEARSTILITY MATRIX
Qa4 Vea7D 1,uUnN
0ea100 Qa710 |,000
Qa9 Oeq:40 1 000

aOxX P

CLoCK= Q4Ue971

THANSTTLOMSE 5C0
START= A

C CCcce C C ¢ cCL € cceec C cC CccC
HoHRs HBHH Bbg 5 8o B3 H B 3] B RBBR BB B
ARALAAA AAN AANAAAA AAANA AA

O O B an T - P " D - Gy, T o WD D WD T T W U P W W U T R W WD W D S D G R D WP Y R R G TR e P G e W S D Gn D D R WP R SR D B R P W ¢

TRANSTTIon MATRIX COUNITS FROM SuUTRUT
RE 34 )

1 137 “4

)2 57 37

PHOBABILITY MATRIX FROM JUTPJIT
A i4 v

Qe /27 Na?PRBY1 LOOND

0e1194 0,592 1,309

De)TT Da3hY 11,958

Oo®X >

CUUNTS PIERCENT
A 121 2420
B ?73 G e D)
C 196 31620
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TABLE A-5

KRUMAE IN PROJFECT i 275

CHESIFR 1alTAs s=Fn0T7T INTERVALS

3 STATESs  SAND§SHA F el IME

P(IeJ)

R

MATRIX BASFH 2N 300 TRANZITIANS

SYMICLS

A SANDSTONF e gh 30 ¢4 34 30
K SHALF ———————
C  LIMESTONE Ll

THANS{TISN PROBASZILITY MATRTA [mnPUT

£ 3 .

Vo740 Dald 3D ai)3N)
DeiNO Qahl) 14290
0e15) N300 Oab70)

ClAULATED DRaBARBILITY YATRIX

Qe 7gt) Ve 70 1,000
0e100 VallD 14000
De30 Qe 3) 14000

CLoCK= 9400990

TRANSTTINNS= 500

START= A

2]

SV0
499
4986
a7
496
495
494
493
4932
491
490
489
488
441
4486
4185

PP T TP PPRPITLIOO

LLLLLL
LLLLLt

. -
-
—mm--e
L2 2 22 2
L2222 2]
L2222 2
LR 2 X X
LE-3 22 4 ]
X2 2 2 4]
- an T e ™ o
- W o -

2 2 2 3 2
L2 3 0 320



TABLE A-5, CONT.

TRANSTITICN MATRIX CCOUNTS FROM CUITPRuUI

- " o D 00 W T Gy W TR D WP W D WS WS NP G W W P an G OW P - Y ap

97 29 0
20 14% 02
! 53 Hh

PRCHBARBILTITY MATRIX FRCM SUTPUT

A o) C

A D776 Ne?23? a0
B 0.088 0a639 ).273
Cc UeUb4 06358 Q.581
CouUnNTs PERCENT

A 125 20eNn0O
B 221 4% e s l)
Cc 148 2960

TIME IN MINUTES 000459 ASSEMHBLYs 000,12 EAECJTE

22

30
24
[
27
26
2h
L)
23
ol
¢l
20
19
[ Re]
L7
lo
14
L4
13

—
o I\

~NWHFHF I~ O

O

TELOOXT O

>PP>reprPpPpPPEPIOCTOTOCOO

LLLLLL
LLLLLL

LLLLLL
LLLLit

LLutiL
(N
LLLtLl
LLLLLL

LLLLLL

LLLLLL
T2 222
2L e
b4 b3t 0 3
4 dh ok e 4
$arde e e
apdherdt i
L2223 2
g de it
40 de b 3
apde it it
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TABLE A-6

PRk )GRAM MARCHAIN
DECEMBER 1966
FOR WeCe KRUMBEINeeoesoeeee BETTY BENSON
DIMENSION X(20+20)sTRANS(20520)¢TITL(36)9sINGA(20+100)9sPILLAR(2000)
DIMENSION LSYM(20)s KRISTIE(100)sLNAME(20s2)
DIMENSION LET(20)sKOUNT(20)9PC(20)sFMT(6)

INTEGER PILLAR
DATA (LET=1HAs1HB9+1HCs»1HD s IHE 9 1HF 9 1HGs 1HHs 1HI 9 1HJ 9 IHK9 1HL » 1HM s 1HN»
e 1HOs1HPs1HQ91HR1IHS»1HT)

LTYPE=1 FOR 'POSITION' QUTPUT

LTYPE=2 FOR LITHO

READ CONTROLS
READ 100.TITL
FORMAT (6X9414456A8)
IF (EOF96C) 354
sToP
CONTINUE
PRINT 100sTITL
READ 101sNsNDRAWs ISTARTsLTYPE»FMT
FORMAT (9A8)
IF (LTYPEeEQel) GO TO 1
READ 1199 ((LNAME(I9J)sJ=192)sLSYM(I)sI=1eN)
PRINT 120 (LET(I) s (LNAME (I 9J) sJ=192)sLSYM(I)sI=1sN)
CONTINUE

READSPRINT MATRIX

DO 5 1I=1sN
READ FMTe(X(I9J)sJ=1sN)
PRINT 102
PRINT 1145 (LET(J)sJ=1sN)
DO 6 I=1,N
PRINT 103sLET(I)e(X{IsJ)sJ=1sN)

INITIALIZE« e« CONVERT TO CUMe MATRIXs PRINT
DO 8 I=1sN
KOUNT(1)=0
DO 8 J=1lsN
TRANS(I9J)=0
DC 7 I=1sN
DO 7 J=24N
X{Isd) = X(IsJ)y + X(IsJ=-1)
PRINT 104
DO 9 I=1sN
PRINT 103,LET(I)s(X(IeJ)sJ=1sN)

SET (AND PRINT) STARTING STATE
T = TIMEF(0Q) $ CALL RANFSETI(T) $ PRINT 1117
PRINT 116 sNDRAW
IF (ISTART«GTe0) GO TO 23
ISTART= T#1000.
ISTART = MODI(ISTARTsN)+1
I=ISTART $ PRINT 105sLETI(I)

MAKE SPECIFIED NOe. OF DRAWS

DO 50 L=1sNDRAW
IF (LTYPE+EQe2) GO TO 14
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13

10
14

11
12

17

15

25

40
49
50

28

30

18

20
21

19

102
103
104
105
106
107

108
109

TABLE A-6, CONT.

INITIALIZE EVERY 100 DRAWS FOR IYPE 1
IF (MOD(L»100) «EQel) 13514
LL=0
DO 10 M=1,N
DO 10 J=1,100
INGA(M»J) = 1H
LL=LL+1
RANDA = RANF (-1)
DO 11 J=1sN

IF (RANDA o+LEe X(IsJ)) GO TO 12
TRANS(I»J) = TRANS(IsJ) +1.0
KOUNT(J) = KOUNT(J) +1

I=J
GO TO (15+17) LTYPE
PILLAR(L)=J
GC TO 50
INGA(JsLL) = LET(J)

PRINT OUT EVERY 100 DRAWS ON TYPE 1
IF (LLeLTe100) GO TO 50
PRINT 113 & PRINT 115
DO 40 M=1sN
MREV=N+1-M
PRINT 1069 (INGA(MREVsK)sK=15100)
PRINT 115
CONTINUE

PRINT OUT SINGLE LITHO-TYPE PILLAR

IF (LTYPE +EQel) GO TO 30
DO 28 L=1sNDRAW
LREV=NDRAW +1 -L
J=PILLAR(LREV)
PRINT 118sLREVsLET(J)sLSYM(J)

PRINT OUT END MATRIXs KOUNTS
PRINT 107
DO 18 I=1sN
PRINT 108s(TRANS(IsJ)sJ=1sN)
PRINT 112
PRINT 114s(LET(J)sJ=19sN)
DO 21 I=1sN
DO 20 J=1sN
TRANS(IsJ) = TRANS(I+J)/KOUNT(I)
PRINT 103sLET(I)»(TRANS(IsJ)sJ=1sN)

PRINT 109

DRAW=NDRAW

DO 19 I=1,N

PC(I) = 100e¢ * KOUNT(I) / DRAW
PRINT 110LET(I)sKOUNT(I)sPC(I)
GO TO 2

FORMAT (//10X935HTRANSITION PROBABILITY MATRIX INPUT/10Xs35(1H-))
FORMAT (4XA4,420F643)

FORMAT (//10X28HCUMULATED PROBABILITY MATRIX/10X928(1H-))

FORMAT (//1H(929Xs#START= %Al)

FCIMAT (10Xs100A1)

FORMAT (//10Xs36HTRANSITION MATRIX COUNTS FROM QUTPUT/10Xs37(1H=-)/

e 1H))
“ORMAT (8X»20(F5609X))
FORMAT (//10X6HCOUNTSs4XTHPERCENT/10X6H-—=——~ Y UXTH-~—==—— )
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110
111

112
113
114
115
116
117
118
119
120

FORMAT
FORMAT

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

TABLE A-6,CONT.

(3XA1lsI110sF1242)

(//730X*CLOCK=%#F1043)

(/10X*PROBABILITY MATRIX FROM OUTPUT* / 10X30(1H=))
(1H=-)

(8Xs20(3XA3))

(10Xs100(1H-))
(//710X*TRANSITIONS=%,516)

(X)

(50XI533XA193XA6)

(2ABsA6)

(1HO 9 39X*SYMBOLS*//(20XA192X92A89XA6))
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Program STOCHEX

This program accepts as input a transition
probability matrix Pof dimensions up to 20x20. The
matrix is read in by rows, and the programraises the

matrix by successive powers up to _F_’SO. At this point
it checks the columns to see whether the equilibrium
state has been reached. If so, the program stops.

If not, it uses the 10th power of the matrix (which
has been stored without rounding), and raises this
matrix to successive tenth powers of the original

P10 p10 _ 520

matrix, (i.e., P
500 . . . . . .
P is obtained. The test is applied again, and if
stabilization has not occurred, it uses the stored
P]OO and raises this to the 50th power, yielding

E5OOO. At this point the program stops whether
stability has been reached or not.

The program input for STOCHEX includes 4
title cards, the control card described below, and
the transition probability matrix, The control card
is fairly simple and has the following fields:

CONTROL CARD.

Cols. T1-3 Size of matrix, 13. Thus, 003
represents a 3 x 3 matrix.
Test criterion, F6.4, This is
usually entered as 1.0000, and
if the test is satisfied by the

} and so on, until

Cols., 4-9

time l_’50 is reached, the pro-
gram stops. |f one wishes to
force the program through all the
loops, a criterion value of
0.9999 can be used.

Format statement, 6A8. This is
variable, but follows the gen-
eral form for Marchain. Note
that this control card does not
carry the project number.

Cols. 58-80  Blank.

Table A-7 shows two pages of output for the
transition probability matrix of Table 1 in the text.
The first page of Table A-7 has the titles and the
input matrix, with the first four powers of P. The

Cols. 10-57
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second page shows the last several powers in the
first loop, with stability having been reached at the
43rd power. The end of the output, shown at the
bottom of Table A-7 shows that the criterion has
been satisfied. The HI/LO column ratios are
obtained by taking the largest and smallest values in
each column of the matrix, and when these satisfy
the criterion to 5 decimal places, the program
terminates. Had one of the HI/LO values been,
say, 1.00010, the next loop would have been
entered. Program STOCHEX is listed in Table A-8,

Successive powers of the transition prob-
ability matrix, as they are printed out by STO-
CHEX, have several interesting features, as
Griffiths (1966) points out. We may illustrate one
of these by preparing a simple tree diagram showing
how the probability of being in a particular state
varies with successive events, depending upon the
starting state. The diagram in Figure 3 starts in
state A, and the first set of branches to the right
show the probabilities of remaining in state A as
against moving to state B or to state C. These values
are taken from the top row of the original matrix in
Table A-7.

Each of the three states has stationary prob-
abilities associated with itself and with the other
two states, so that the second set of branches on
the right has probabilities taken from the corre-
sponding row of the original matrix. [f the prob-
abilities along each branch are multiplied, however,
the values listed at the branch ends are obtained.
These sum to 1,0000, and the probability of being
in A, B, or C (given that the start was in state A)
add to exactly the values in the top row of the
power 2 matrix in Table A-7.

If the starting state had been B, the prob-
abilities of the three lithologies after two steps
would be the values in the second row of the power
2 matrix, Griffiths (1966) develops this theme
more fully, and shows that a study of the successive
branches is illuminating for evaluating the prob-
ability that the system is in some particular state
after n events in its approach to the fixed prob-
ability vector, which is the "equilibrium state" of
the system.



SAND SHALE LIME
Py Py Py Pc
— .74 —— A = 0.5476 .5476
—— 74 —— A—}— .23 —— B = ,1702 .1702
L 03— C = .0222 .0222
— .10 —— A = ,0230 .0230
A 23 B 61 B = .1403 .1403
L— .29 —— C = .0667 .0667
— .05 —— A = ,0015 .0015
.03 o .38 B = .0114 L0114
L .57 —— C = .0171 .0171
1.0000 .5721 .3219 .1060
Start 1 2

(0)

Figure 3.-Diagram showing probabilities of being in particular states after two steps, starting with state A
(Sandstone).

TABLE A-7
KRUMSE TN PROEJECT O 32705
CHESTER DATAy H=Fao] [4IERVALS
3 STATESe  SANUsSHALFE|LTHE

P(IeJ) MATRIX pa%FED 3ol 309 TRANSITIONS

ANLLMLIM POWER S50
STARTIANG MATH] X CrIGiNAL MATRIX)
a i A A A 4
A1 Qe740Y Des 300) NDe)300
A2 00el00V) Nebyj N0 Oe 2900
A 3 Del50U a3 DeH 10
PCWER 2
A a4 2 A 3
Al Q577! Vedrld Nel040)
A2 Oely9dn Nei)S 3 Ve 3457
A 3 0-1\)3.’ 0,‘*’))" ().“,3?‘-{')
PoAE 2 3
A HoA Al
Al Qeb69e e J60552 el 709
A2 041784 Dets ! 3 Qe 3aTH
A 3 Velb4ga et 3 He3HH3
WOHFR 4
Al AN 2 A 3
Al 0,3864 e 3950 0al1B0
A2 0.19564 Neab 22 Ne341U
A 3 0.1732 Yo dtrnG Ne3603
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TABLE A-7, CONT.

CWER aed
Al a7 A 3
Al 0.2335 A Y/ 1Y) Ne3lku
A2 0,7335% 0445V Ded]lHt
A 3 00,2335 o430 Ve 3 bs
PUWF R 49
Al h 2 AR |
A1l 0e233% QDo Nedlnsk
A2 De2313% NeltasQ Oa3lbe
A 3 De2335 Ne44Ry Ned]lBG
POWF R 50
A1 A 2 A3
Al 0.2335 0 e 4430 Ne3ltis
A2 ()‘233‘3 04430 NDe3lbé
A 3 UV.233% CelttsAC () e 3184

KRUMBE I[N PrCJECT N1 Dea’75
CHESTER NATHs B=Fn0T INTE=VALS
3 STATESs  SAKD s SHALF o THE

P(Ted) MATRIX SASFD 2N 309 TRANSITIONS

STOP CRITERICH= 1«00

HI/ZLl CoLuMy kAT ISS
(FOHCED T 9 UECIMAL PLACES FOR TEST)

1 100000
el 1 o 1000)
31 .00000
TIME IN MINUTES G0N.449 ASSEMRLY s 000,08 FAECUTE

TABLE A-8

PROGRAM STOCHEX

ADAPTED FROM WeReJAMES PROGRAM STOCHFIX
FOR WeCeKRUMBEINs DECel9660ee0eseeBETTY BENSON

#%% INPUT & TITLs 1 MASTER CARDs NO NINES CARD
STOCHFIX EXTENDEDs TO GO THRU 3 LOOPSs STARTING WITH ORIGINAL
MATRIXs 10TH-POWER MATRIXs AND 100TH-POWER MATRIX

DIMENSION TITL(36)sFMT(6)sP(20520)sR(20920)95(20920)9SAVE(20520)
DIMENSION MPOW(3)sAMARG(20) sVOYR(20) s LABEL(3)

DATA (MPOW=50+500+5000) » (IA=1HA)
DATA (LABEL=8HORIGINALs»8HPOWER 10+8HPOW. 100)

READ CONTROLSs ORIG MATRIX

1 READ 1000s TITL
IF(EOF+60)293
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15

27
28
29

20

16

17
30

32

33

34

35

18

TABLE A-8,GONT.

STOP

READ 1001sNsCRITsFMT
DO 5 I=14N

READ FMTs(P(IsJ)sJ=1sN)
LOOP=1

PRINT 1000sT1ITL
PRINT 1002 sMPOW(LQOOP)

INITIALIZE THIS LOOP

PRINT 1003sLABEL(LOOP)s(IAsJsJ=19N)

DO 6 I=1yN

PRINT 100491AsIs(P(Isd)sJd=1sN)
DO 15 I=1sN $ DO 15 J=1sN
S(IsJ)=P(IsJ)
LARK=LINC=10%%*(LOOP-1)

DO 30 L=2450

DO 29 K=1»N

DO 28 1=1sN

A=04,0

DO 27 J=1sN
A=A+P (1 9J) %S (JyK)

R(IsK)=A

CONTINUE

LARK=LARK+LINC

PRINT 1005sLARKs(IAsJsJ=1sN)
DO 20 I=1sN

PRINT 1004s1AsIs(R(IsJ)sd=1sN)
DO 16 I=1sN $ DO 16 J=1sN
S({IsJ)=R(1sJ)

IF (LeNEe10) GO TO 30

DO 17 I=1sN $ DO 17 J=1sN
SAVE(IsJ)=S(IsJ)

CONTINUE

DQ 33 JU=1»sN

AHI=ALO=S(1+J)

DO 32 1=24N

IF (S(I1sJ)eGTeAHI) AHI=S(1sJ)
IF (S(1sJ)eLTeALO) ALO=S(I,J)
CONTINUE

VOYR(J)=AHI/ALO

IVOY = (leE5 * VOYR(J)) +e5
VOYRI(J) = 1IVOY / 14E5

PRINT 1000,TITL

PRINT 1008sCRIT

PRINT 1007 (IsVOYR(I)sI=1sN)

DETERMINE WHETHER NEXT LOOP SHOULD BE EXECUTED

IF (LOOPJEQe3) GO TO 1

DO 34 I=1»N

IF (VOYR(I) GTe CRIT) GO TO 35
CONTINUE

GO TO0 1

LOOP=LOOP+1

PO 18 1=1»N $ DO 18 J=1sN
P(IsJ)=SAVE(IsJ)

GO TO 14

RAISE TO SPECIFIED POWER

COMPUTESPRINT HILO RATIOS

PREPARE TO DO NEXT LuLP
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1000 FORMAT(9AS8)
1001 FORMAT (139F6e436A8)
1002 FORMAT(////20Xs#*MAXIMUM POWER*,5Xs14)
1003 FORMAT (///20X#STARTING MATRIX#¥,10X1H(sAB8s%* MATRIX)* //
o (10X910(AlsI297X)) )
1004 FORMAT(3Xs Al91292Xs10(Fbels4X) / (8Xs10(Fbebs4X)))
1005 FORMAT (///15X%¥POWER*I5//(10Xs10(Al1+12+7X)))
1007 FORMAT (///20X#HI/LO COLUMN RATIOS*/
e 20X*(FORCED TO 5 DECIMAL PLACES FOR TEST)#//(20X129F945))
1008 FORMAT (///20X#STOP CRITERION=%F9.4//)
END
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Program NO MEM

This program represents a slightly modified
version of MARCHAIN, adapted for independent-
trials experiments. The only difference between the
two programs is that whereas a transition probability
matrix is used as input for MARCHAIN, the input for
NO MEM is a single row vector of probabilities that
add to 1.0. It is designed mainly for use with the
fixed probability vector derived from STOCHEX by
raising the transition probability matrix to the power
at which it stabilizes. This fixed probability vector,
as stated in the text, represents equilibrium propor-
tions among the states of the system. Interesting
comparisons can be made between the output of say
500 simulations from MARCHAIN with a transition
probability matrix, and 500 independent-events
drawings from the fixed probability vector. Usually
thickness of the rock layers will be noticeably
thinner in NO MEM, although relative total thick-
nesses will be about the same.

In addition to use of NO MEM for compari-
sons with MARCHAIN output, NO MEM can be
used with a row vector of probabilities from a process
that has no memory (i.e., that does not disclose a
Markov property by the test in TESTMARK). For
‘example, by feeding in a row vector with six data
words, each 0.1667 (forced to add to 1.0000 by
using the value 0.1666 for two words at random),
simulation will represent successive rolls of a six-
sided die, in which the probabilities of each state
(A=1, B=2, etc.) are equal.

Program NO MEM operates internally by the
simple expedient of generating a matrix with as many
rows as there are columns in the fixed probability
vector. It thus goes through the same operations as
MARCHAIN, except that all rows are the same, and
hence the "transitions" depend only on the fixed
probabilities. Some readers may find it interesting
to modify the internal structure of the program so that
it draws successively from the single row vector.

Input for NO MEM starts with 4 title cards,
followed by one control card, and by the fixed
probability vector. The same two choices of output
are available as in MARCHAIN, which means that
if the lithologic section is desired, rock symbol cards
representing each state must be inserted between the
control card and the fixed probability vector input.
The form of the control card for NO MEM is:

Cols. 1-6 Project number, Aé. This is for
record, and is not read in.

Size of input vector, 14. This is
simply the number of states in
the fixed probability vector.
Thus for a vector with six states
the entry is 0006.

Number of random drawings in
simulation run, 14. Normally
500 or 1000 are called for, i.e.,
0500 or 1000.

Cols. 7-10

Cols. 11-14
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Cols. 15-18  Leave blank, unless a specific
starting state is desired. In
that case, the remarks under
the control card for MARCHAIN
apply.

Type of output desired. Code

= "position output" and code
2 = "litho output". For the
second choice, rock symbol
cards are required for each
state .

Format statement, 6A8. The
format for a fixed probability
vector with six states punched
to 3 decimal spaces is
(10X, 6F3.3), where the 10X
omits the first ten columns that
usually have project number
and other information.

Tables A-9 and A-10 give examples of NO

MEM output, which has the same general form of

MARCHAIN output. As with the other program,

summary values are presented at the end of the run.

The program itself is listed in Table A-11.

Interesting comparisons can be made between

MARCHAIN output from a transition probability

matrix, and NO MEM output from the corresponding

fixed probability vector obtained with STOCHEX.

Table 2 of the text summarizes one simulation

experiment (500 transitions) from MARCHAIN, and

Table A-10 gives part of the output from NO MEM.,

Total output of 500 draws was summarized in terms

of the occurrences of each rock type, and their

average thicknesses. The following summary com-
pares these values. It is clear that the output from

NO MEM contains many more separate occurrences

of each rock type, so that the average thicknesses

are significantly smaller. The average percentage
thickness of each lithology in the total simulations
are roughly the same, however, as is shown by the
summary at the bottom of Table A-10 and the fourth
column of Table 2 in the text.

Cols. 19-22

Cols. 23-70

MARCHAIN EXPERIMENT

Rock Type Number of Average
Occurrences Bed
Thickness
Sandstone (A) 28 33.7 ft.
Shale (B) 75 23.1
Limestone (C) 67 19.8



NO MEM EXPERIMENT

Rock Type Number of  Average
Occurrences Bed
Thickness
Sandstone (A) 91 11,3 ft.
Shale (B) 116 14.1
Limestone (C) 102 13.1
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These results are typical of comparative
experiments with transition probability matrices
structured as first-order Markov chains, as
against the use of the fixed probability vector
that arises from the transition matrix. It is
sometimes useful to compare such outputs with
the observational data, especially when the test
for the Markov property is indecisive or marginal.



TABLE A-9

KRUMBE IN PREJECT 01 02715

CHESTER DATAs 8=FO0T [NTFRVALS

3 STATESe SANDsSHALE oL IME

P(TIeJd) MATRIX BASED SN 309 TRANSITIONS

FIXED PRIQABILITY VECTOR INPUT

A ] C
0e230 DatBH0 14320

CUMIJLATED PRCBARBILITY VECTCR

CLOCK= 550669/

NRANS= 500

cccce C cC cC cc C CcC cccc C C
HRBHH R " B 13 HHE 13 4883 SR8 B 88 B B BBBY B33
A AA AA AAAA A A A A 4 A A

FIXED wRABASILITY CCOUNTS FrRSYM CUTpUT
11% 220 165

PROBRABILITY VFCTOR FRCM CUTPUT
A R C
0.23':_} De&4D 00330

COUNTS PERCENT
A 115 23.00
R 220 44400
C 165 33,00
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TABLE A-10

KRUMBE IN PRCJECT 01 0275

CHESTER NATA,

3 STATES,

P(Isd)

8=F00T

INTERVALS

SAND e SHALE s TME

MATRIX BASFD CN 309 TRAMNSITICNS

A

n
c

SANDSTCNE

SHALE
LIMESTCNE

SYMBCLS

3h 3¢ Sk 34 44 32

LibLbtl

FIXED PROBARILITY VECTCR INPUT

A

B8

C

0230 0e450 04320

CUMULATED PRCBARILITY VECTCR

047230 046R0 1,080

NDRAWS=

500

CLCCK=

550715
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500
499
498
497
496
4995
494
493
492
491
490
489
488
487
486
4485

OO0OPTOTPPTPOOOOT PXO

- e Y an W e
45 3 30 3 30 3

LeLLeL
LLLLLL
LLLLLL

LLLtbL
B it

2 3¢ 3¢ 3¢ 30 3¢
- -

LLLbkLL

3 3k 3k 4 3k 42

LLLLLt
LLLLLL



TABLE A-10,CONT.

3(.) B -
29 C  LLLLLL
28 c LLLLbL
el C LLLLLL
Z6 R -
25 € LLbbiL
24 B S
23 A Y T
22 A 26 30 3 4h 4t
21 A 53 40 34 38
20 A Py
19 € LLLLLL
13 A i
Iy A W
16 C L
b A it
1 B ceem--
13 A Bt
12 b - = -
ll B - - o
10 ¢ Lieblt
9 B -
6 B - > - -
’ B - ep W " -
6 A 338 3 30 44 4
B} A PRy
< A 330 2539 3% 3¢
3 B

2 B

1 B

FIXED PRORASILITY COUNTS FRSM CUTPUT

123 205 167

PROBARILITY VECTCSR FROM SUTRPUT
A i3 C
De?256 Ne410 14334

cotmnrs PERCFNT
“ 124 25460
¥ /“()‘3 41.0”
c 167 34040

TIME IN MINUTES ONN.h] ASSEMBLYs 000412 EXECUTE
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TABLE A-II

PROGRAM NO MEM
C FEB 1967
C FOR WeCe KRUMBEINeeeoeoeseoeoe BETTY BENSON
DIMENSION X(20+20)sTRANS(20920)sTITL(36)sINGA(202100)sPILLAR(2000)
DIMENSION LSYM(20)s KRISTIE(100)sLNAME(20+2)
DIMENSION LET(20)sKOUNT(20)sPC(20)sFMT(6)

C
INTEGER PILLAR
DATA (LET=1HA»1HBslHCs1HDs1HE 9 1HF 91HGs 1HHs 1HI s 1HJ 9 1HK 9 1HL 9 1HM s 1HN
¢ 1HOs1HPs1HQ9s1HRs1HS»1HT)
C LTYPE=1 FOR 'POSITION' QUTPUT
C LTYPE=2 FOR LITHO
C
C READ CONTROLS
2 READ 100,TITL
100 FORMAT (9A8)
IF (EOF»60) 3y4
3 STOP
4 CCITINUE
PRINT 100,TITL
READ 101sNsNDRAWSISTARTSLTYPESFMT
101 FORMAT (6Xs414496A8)
IF (LTYPEeEQel) GO TO 1
READ 119 ((LNAME(IsJ)sJ=192)sLSYM(I)sI=1sN)
PRINT 120 (LET(I)s{(LNAME(I9J)9oJ=1+2)sLSYM(I)sI=1sN)
1 CONTINUE
C READYPRINT FIXED PROB4VECTOR
READ FMTs{X(19J)sJ=1eN)
DO 5 I=2eN $ DO 5 JU=1sN
5 X(IeJd) = X(1sJ)
PRINT 102
PRINT 114 (LET(J)sJ=1sN)
PRINT 1039(X(1leJ)sJ=1sN)
C
C INITIALIZEee«CONVERT TO CUMULATIVE VECTORs PRINT
DO 8 I=1sN
KOUNT(1)=0
DO 8 J=14N
8 TRANS(I+J1)=0
DO 7 I=1sN
DO 7 J=2,N
T X(Ied) = X(IeJ) + X(1sJ=-1)
PRINT 104
PRINT 1039 (X{1sJ)sJ=19N)
C
T = TIMEF(0Q) $ CALL RANFSET(T) $ PRINT 1117
PRINT 116 sNDRAW
I=1
C MAKE SPECIFIED NQe. OF DRAWS
DO 50 L=1sNDRAW
IF (LTYPE<.EGQe2) GO TO 14
C INITIALIZE EVERY 100 DRAWS FOR TYPE 1
IF (MOD(L»100) «EQel) 13914
13 LL=0

DO 10 M=1sN
DO 10 JU=1s100
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10 INGA(MsJ) = 1H
14 LL=LL+1
PANDA = RANF (-1)
LO 11 J=1sN
11 IF (RANDA oJLEe X(IsJd)} GO TO 12

12 TRANS(IsJ) = TRANS(IsJ) +10
KOUNT(J) = KOUNT(J)} +1
1=J

GO TO (15+17) LTYPE
17 PILLAR(L)=J
GO TO 50
15 INGA(JsLL) = LET(J)
PRINT QUT EVERY 100 DRAWS ON TYPE 1
25 IF (LLeLT#100) GO TO 50
PRINT 113 $ PRINT 115
D0 40 M=1,N
MREV=N+1-M
40 PRINT 1069 (INGA(MREVsK)sK=1+100)
49 PRINT 115
50 CONTINUE
PRINT OUT SINGLE LITHO-TYPE PILLAR
IF (LTYPE «EQel) GO TO 30
DO 28 L=1sNDRAW
LREV=NDRAW +1 -L
JEPILLAR(LREV)
28 PRINT 118sLREVSLET(J)sLSYM(J)

PRINT OUT END VECTORs KOUNTS

30 PRINT 107

PRINT 108+ (KOUNT(I)sI=1,N)

DRAW=NDRAW

DO 18 I=1,N
18 PC(I) = KOUNT(1) / DRAW

PRINT 112

PRINT 114s(LET(J)sJ=1sN)

PRINT 1039(PC(I)sI=1sN)

PRINT 109
DO 19 I=1sN

19 PRINT 110sLET(I)sKOUNT(I)sPC(I)
GO 10 2

102 FORMAT (//10X30HFIXED PROBABILITY VECTOR INPUT/10Xs30(1H-))
103 FORMAT (8Xs20F643)
104 FORMAT (//10X28HCUMULATED PROBABILITY VECTUK /10X»c5(LiH=-))
106 FORMAT (10Xs100A1)
107 FORMAT (//10Xs36HFIXED PROBABILITY COUNTS FROM QUTPUT/10X»s3((LlH=)/
« 1H))
108 FORMAT (7X+2016)
109 FORMAT (//10X6HCOUNTS s4XTHPERCENT/10X6H-—=——~ »4XTH====—== )
110 FORMAT (3XAl,11052PF1242)
111 FORMAT (//30X*CLOCK=%F1043)
112 FORMAT (/10X*PROBABILITY VECTOR FROM OUTPUT* / 10X30(1H-))
113 FORMAT (1H=)
114 FORMAT (8Xs20(3XA3))
115 FORMAT (10Xs100(1H=))
116 FORMAT (//10X*DRAWS=%16)
117 FORMAT (X)
118 FORMAT (50XI553XA15s3XA6)
119 FORMAT (2A85A6)
120 FORMAT (1HO»39X*SYMBOLS*//(20XA192Xs2A83XA6))
END
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KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT

Title (If subroutine state in title):

Four short programs, TESTMARK, MARCHAIN, STOCHEX, and NOMEM (no subroutines)

Computer: CDC 3400 Date: Final versions February, 1967

Programming language: ~FORTRAN IV (3400)

Author, organization: ~ W.C. Krumbein, Department of Geology,

Northwestern University, Evanston, llinois.

Direct inquiries to: Author, or

Name: D.F. Merriam Address: Kansas Geological Survey,

University of Kansas, Lawrence

Purpose/description: These programs are used (1) to test for the Markov property, (2) to simulate

stratigraphic or other sequences from a transition probability matrix, (3) to estimate equilibrium

state of system, and (4) to simulate independent-events processes.

Mathematical method: Mainly randomized drawings from a Markov chain transition probability matrix,

or operations on the matrix.

Restrictions, range: The programs accept matrices up to 20 x 20.

Storage requirements:

Equipment specifications: Memory 20K 40K 60K K

Automatic divide: Yes No Indirect addressing Yes No

Other special features required

Additional remarks (include at author's discretion: fixed/float, relocatability; optional: running time,
Yi Op

approximate number of times run successfully, programming hours)
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COMPUTER CONTRIBUTIONS

Kansas Geological Survey
University of Kansas

Lawrence, Kansas

Computer Contribution

1. Mathematical simulation of marine sedimentation with |BM 7090/7094 compufers, by W

Harbaugh, 1966. . . . : w2 S 00
2. A generalized two-dimensional regressron procedure, by J.R. Dempsey, 1086 < 150,50
3. FORTRAN IV and MAP program for computation and plotting of trend surfaces for degrees 1

through 6, by Mont O'Leary, R.H. Lippert, and O.T. Spitz, 1966 . . B0 75
4. FORTRAN [l program for multivariate discriminant analysis using an IBM 1620 computer, by

J.C. Davis and R. J. Sampson, P66 s T LS 050
5. FORTRAN IV program using double Fourier series for surface frfhng of |rregu|ar|y spoced

data, by W.R. James, 1966 . . G S 7h
6. FORTRAN IV program for estimation of cladistic relohonshlps usmg the IBM 7040 by R.L.

Barkcher i 1966 cvibanli it S, 00
7. Computer applrcorlons in the earth sciences: Colloqurum on c|055|f|cot|on procedures,

edited by D.F. Merriam, 1966 . . . b AS100
8. Prediction of the performance of a solution gas drive reservoir by Muskat's Equchon, by

Apolonio Baca, 1967 . LS00
2 FORTRAN IV program for mathematical simulation of marine sedimentation with IBM 7040

or 7094 computers, by J.W. Harbaugh and W.J. Wahlstedt, 1967 . . . $1.00
10. Three-dimensional response surface program in FORTRAN |1 for the IBM 1620 computer, by

R.J. Sampson and J.C. Davis, 1967. . . v 80,75

11.  FORTRAN |V program for vector trend analyses of directional dofa, by W.T. Fox, 967::.5.. $1.00
12.  Computer applications in the earth sciences: Colloquium on trend analysis, edited by

D.F. Merriam and N.C. Cocke, 1967 . . . Hh e S 1500
13. FORTRAN [V computer progrom for Markov chain expernmenfs in geology, by W C
Krumbein, 1967. . . : e SO0

Reprints (available upon request)

Finding the ideal cyclothem, by W.C. Pearn (reprinted from Symposium on cyclic sedimentation, D.F.
Merriam, editor, Kansas Geological Survey Bulletin 169, v. 2, 1964)

Fourier series chcrrac’renzohon of cyclic sediments for s’rrohgrcphlc correlchon, by F.W. Preston and
J.H. Henderson (reprinted from Symposium on cyclic sedimentation, D.F. Merriam, editor, Kansas
Geological Survey Bulletin 169, v. 2, 1964)

Geology and the computer, by D.F. Merriam (reprinted from New Scientist, v. 26, no. 444, 1965)

Quantitative comparison of contour maps, by D.F. Merriam and P.H.A. Sneath (reprmfecl from Journal of
Geophysical Research, v. 71, no. 4, 1966)

Geologic model studies using frend—surche analysis, by D.F. Merriam and R.H. Lippert (reprinted from
Journal of Geology, v. 74, no. 5, 1966)

Geologic use of the computer, by B P Merrlcm (reprinted from Wyoming Geological Association, 20th
Field Conf., 1966

Computer aids exploration geologists, by D.F. Merriam (reprinted from the Oil and Gas Journal, v. 65,

no. 4, 1967)
Comparison of cyclic rock sequences using cross-association, by D.F. Merriam and P.H.A. Sneath
(reprinted from Essays in Paleontology and Stratigraphy: R.C. Moore commemorative volume, edited

by C. Teichert and E. Yochelson, Dept. Geology, Univ. Kansas, 1967)
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