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Editor’s Remarks

The Colloquium on Classificational Procedures hopefully will be the first of a series of such meetings
on timely subjects in computer applications in the earth sciences. Interdisciplinary in nature, the colloquium
is designed for maximum involvement by all participants. A colloquium, by definition, is a mutual discourse
or a conversation, especially a somewhat formal one; a conference. That is exactly what we wish this
meeting to be - a meeting of colleagues of approximately the same professional status to exchange ideas in
an area of common interest.

The colloquium is structured to allow the latest scientific results to be incorporated into the presenta-
tions. Therefore, in some instances oral presentations may not match the written ones. This is the way of
the computer.

In essence, presentations are to serve as a focal point for discussion, or a point of departure for
different views; a framework on which to build or tear down. Many of the ideas will be new, others old,
and some will be disguised. Regardless of presentations, however, maximum benefit of the meeting will
be gained by those who actively participate.

The program treats many aspects of classification - problems, techniques, pilot studies, and proposed
yet essentially untried solutions. The speakers bring to the meeting a diversity of backgrounds and experience.
They are well qualified to lead discussions in their specialities. Hopefully, everyone will benefit from their
interaction with these leaders.

Initial planning of the program included only those associated with the Survey or University of Kansas.
Response to the announcement was surprisingly gratifying and in the future the scope of the meetings in
general should be widened to include participants from other institutions.

Many people have helped with the arrangements for this Colloquium. Dr. Floyd W. Preston has been
foremost in creating a favorable atmosphere in which the hosting organizations, Kansas Geological Survey,
Department of Chemical and Petroleum Engineering, and Department of Entomology at The University of
Kansas, could function. His efforts and encouragement are most appreciated. All of the papers presented in
this Computer Contribution 7 have been read, typed, and edited by Mrs. Nan Carnahan Cocke assisted by
Mrs. Alberta E. Bonnett. Mr. John C. Davis and Dr. Richard A. Reyment also assisted in reading some of
the manuscripts.

Indeed, conferences of this type seemingly serve a definite purpose and fill a particular need. By
co-sponsoring the Colloquium, the Survey is fulfilling yet another obligation to industry and the profession,
that of disseminating information of current and immediate interest and providing the avenue of exchange of
information between people with mutual problems.

Those giving formal presentations are:

Ernest E. Angino, Chief, Geochemistry Section, Kansas Geological Survey, The University of Kansas

T. P. Burnaby, Lecturer in Geology, The University of Keele (UK)

G. Dalke, Research Assistant, CRES, The University of Kansas

J. C. Davis, Geologist, Kansas Geological Survey, The University of Kansas

J. C. Griffiths, Head of Department, Geochemistry and Mineralogy, Pennsylvania State University, and
Consultant to the Kansas Geological Survey, The University of Kansas
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The University of Kansas
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INTRODUCTION

Several years ago, the Kansas Geological Survey assumed several commitments that, at the time,
seemed innovative and imaginative, and presaged a completely new role for us. The first commitment was to
a major effort in high-speed data processing and computation. [t stemmed from recognition that we were
becoming immersed in large quantities of information, that much staff time was committed to retrieval of this
information, and that analysis of information was lagging. As a consequence, we have been in the forefront
of program development for data storage and retrieval systems, and studies of applications of computer tech-
niques to stratigraphic, structural, petroleum hydrologic, and economic problems. For example, we have
used trend-surface studies for structural and stratigraphic analyses. The methods of power spectrum analysis
are being applied to a variety of problems. Simulation models are beginning to figure prominently in our
work and Geological Survey publications bear titles dealing with such subjects as coefficients of association,
factor and vector analysis, and cross-associations of nonnumeric sequences.

A second commitment was to foster an interdisciplinary environment for study of earth science
problems in recognition of the conclusion that although the problems of the separate disciplines are different,
the patterns of solution are often the same. In implementing this commitment, we have already established a
Computer Applications Laboratory in collaboration with the Department of Chemical and Petroleum Engine-
ering in order to establish an interdisciplinary environment for study of engineering and scientific problems
related to natural resources. Furthermore, we have worked closely with scientists from many other disciplines
in examining tests for similarity in information and have looked at statistical methods involving correlation
functions, factor analysis, analysis of variance, and other techniques. These studies, in turn, have led to
greater interest in validity tests of techniques of analysis and the design of data collection systems, and the
problems of classification.

This Colloquium on Classificational Procedures is a further implementation of our commitments, for it
deals with an important problem of a distinctly interdisciplinary nature - a problem that depends for its
solution upon computer techniques. Great significance should be attached to the fact of sponsorship by
geologists, entomologists, chemical engineers, and petroleum engineers. Each of these disciplines is con-
cerned with problems of organization of information, clustering, tests for similarity, pattern recognition,
validation of techniques - all of paramount importance in classification. Recognition of the interdisciplinary
character of such problems can be seen in the disciplines represented by the principal contributors to the
colloquium: included are geologists with structural, stratigraphic, and paleontological leanings, electrical
engineers, chemical and petroleum engineers, entomologists, biometricians, and geographers. The partici-
pants have been concerned with applications of pattern recognition, multivariate analysis, power spectrum
analysis, factor analysis, orthogonal coefficients, quadratic discriminant functions, and the like to problems
of oil exploration, paleontology, taxonomy, radar investigations, stratigraphic analysis and other areas of
interest. In such a Colloquium they see opportunity to transfer the results of investigations from one discipline
to another. Furthermore, the surpassing importance of these interdisciplinary discussions, in the framework
of continuing education, can be recognized in the affiliations of other conferees. Major petroleum company
research laboratories, universities, oceanographic research groups, and state and federal geological surveys,
both in the United States and abroad, are represented. Hopefully, then, this Colloquium will strongly en-
hance our commitments to computation, giving new insights to earth science problems in an interdisciplinary
environment .

Lawrence, Kansas William W. Hambleton,
November 12, 1966 Associate Director
State Geological Survey of Kansas.
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PROGRAMMING THE DISCRIMINANT CLASSIFICATION

FUNCTION FOR SMALL COMPUTERS

John C., Davis

Kansas Geological Survey

INTRODUCTION

Many classification techniques have been
developed which may be applied to geological
problems. Most of these procedures originated in
other fields, particularly in biology and psychology,
and have only recently been used in earth sciences.
The geologic profession has not been statistically
oriented and geologists have not utilized the services
of statisticians to the same extent as biologic and
behavioral scientists. Consequently, biometricians
and statistical anthropologists are not uncommon,
but a geo-statistician is still a rare individual.
Most are concentrated at a few major universities
and research centers in the United States.

Most of these centers of concentration are
equipped with extensive computing facilities, which
has lead to some undesirable side effects. Because
programming in general tends to follow a corollary
of Parkinson's Law, which states that any given
program will expand to fill all the available core
of the available computer, geologic programs have
become larger, more sophisticated, and increasingly
complex. In many cases, they are so large and
complex that they can only be run at the centers
where they originated. Needless to say, this has
not helped the spread of statistical techniques
throughout the profession.

There has been remarkable progress in the
development of geologically oriented computer
programs since 1956, with little complementary
progress in the application of computers in the
profession, at either the industrial or academic
level. This can be blamed partly on a lack of
computer and statistical training in all but the most
recent graduates. This lack of use can also be
blamed on inadequate physical facilities needed for
routine operation of most geologic programs avail-
able today.

The educational factor is gradually being
solved by retraining programs and symposia such as
this. The equipment factor can be attacked either
by wider dissemination of large computers or by
compressing existing programs to the point that they
can be used on existing hardware. Considering the
expense of establishing and maintaining computer
centers, the second alternative is the only practical
solution for the majority of smaller universities and
industrial offices.

A variety of compact programs have been
developed and published by the Kansas Geological
Survey for small computers. These include a trend-
surface program (Sampson and Davis, 1966), dis-
criminant analysis program (Davis and Sampson,
1966), a time-series package, and a response
surface or "hypersurface" program. These were
developed for an IBM 1620 computer having 20K
bits core storage. This is one of the most common
machines available and is probably the smallest
computer routinely used for scientific computation.
Programs operable on this machine should be useable
on most other computers having equivalent software.
Computers having this or equivalent configuration
are available at most small colleges, at banks and
EDP firms in many small cities, and at district or
regional offices of many oil companies. Machines
of this size also are very common overseas.

Response to these initial small computer
publications has been gratifying, suggesting that
field geologists will use computers and statistical
techniques if the means for their use are readily
available. These same geologists rapidly lose
interest if their work must be done at a distant
computing center with the attendant possibilities
of mistakes and delay. Computers seem to be a
remote and rather academic sort of thing until the
geologist actually processes his own data and
obtains results from his own work,

Most statistical techniques being utilized
by geologists can be programmed for small computers.
TKis sometimes involves being content with less-
than-optimum speed, simplified output, or multi-
pass programming, but this is a small price to pay
if the alternative is no programming at all. Be-
cause these programs must be highly efficient in
terms of core requirements, they are best written
by a professional programmer under the supervision
of a geologist. The multiple discriminant analysis
program published by the Kansas Geological Survey
(Davis and Sampson, 1966) is outlined as an illus-
tration of small computer programming.

MULTIVARIATE DISCRIMINANT ANALYSIS

Samples of unknown origin may be classi-
fied into previously defined populations by use of a
multiple discriminant function. A number of these
functions are available, including simple linear



discriminants, curvilinear discriminants, and dis-
criminants of more than two populations. Programs
have been written for all of these. Most familiar to
geologists are the programs of the BMD biomedical
collection from UCLA (Dixon, 1965) and Casetti's
ONR program published by Northwestern University
(1964). Discriminant functions have been used to
distinguish marine from fresh water sandstones,
barren ground from uranium ore, to define tectonic
seftings of sandstones, depositional environments of
limestones, structural distribution patterns of vol-
canics, and to examine controlling parameters in
sandstone cementation. Discriminant functions have
been applied by numerical taxonomists working on
protozoa, ostracodes, echinoids, molluscs, frogs,
coyotes, and humans. This list is by no means in-
clusive. Other applications are given in Krumbein
and Graybill (1965, p. 365-367), and Miller and
Kahn (1962, p. 277). The list of successful appli-
cations is sufficiently impressive to suggest that
discriminant analysis is one of the most powerful
statistical techniques available to the geologist.

A multivariate observation may be consid-
ered as a point in multi-dimensional space, just as a
two-variate observation may be represented as a
point defined by the intersection of an X and Y
axis in a plane. A multivariate sample has the form
of an ellipsoidal cloud of points, whose dimensions
are defined by the amount of variance within each
of the parameters. A second sample from a different
population presumably would appear as another
distinct cluster of points. Some of the variables may
overlap, causing the two clouds to merge in certain
directions, but in other directions the two should be
statistically separable if the two populations are
truly different. The problem of simple discriminant
analysis involves finding the linear combination of
variables that defines a multi-dimensional plane
efficiently separating the two clusters. This is done
by a least-squares procedure similar to that used in
multiple regression. The distinciness of the two
clusters can be analyzed by measuring the "distance”
between their multivariate means. Once this dis-
tinctness has been established and the separatory
plane computed, additional unknown samples can be
assigned to their proper group by computing their
multivariate "location."” If they fall on one side of
the discriminant plane, they are assigned to the
population cluster that also occurs on that side. If
they fall on the other side, they are classified with
the second population.

The discriminant function has the form

R=xaA+XbB+XCC +""+ka'

Constants in this equation may be found by solving
a series of simultaneous equations of the form
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where SSA. . .SSK are variance estimates obtained

bK pooling the sums of squares of the two populations.
The covariances SSjp. .« ‘SS(K-])K are obtained by

pooling sums of cross products. The differences be-
tween the means of variables from the two samples

are AA,..AK. By pooling the two groups in this
manner and equating the resulting simultaneous
equations to the mean differences, a plane is com-
puted which bisects the space between the clusters.
Because the plane is fitted by least squares, devia-
tions from it are a minimum for all points. [f the
space between the clusters is bisected, probabilities
of assigning samples from Group 1 to Group 2 or
those from Group 2 to Group 1 are equal.

When programming a procedure such as dis-
criminant analysis on a small computer, several steps
must be taken to obtain as compact a program as
possible. The most obvious suggestion is to never
store data in core even if it is required more than
once in the program. Data should be rerun or sent
to auxillary storage facilities. Sums of squares and
cross—-products are generated and summed as read in,
and are stored in a series of small matrices. A dis-
criminant analysis program for twenty variables
requires two 2 X 20 matrices for storing sums and
sums of squares, and a 20 X 20 matrix for storing
cross—product sums. After final summation, the sums
of cross-products are converted into covariance
estimates and re-inserted into the matrix. This
matrix is actually set up as a 20 X 21 matrix and the
final column is filled with the differences between
variable means of the two populations. Sums and
sums of squares from the two small matrices are used
to calculate variance estimates which are inserted
into the diagonal position of the large matrix. The
matrix is then in a form identical to the simultaneous
equation set, This process requires approximately
20 FORTRAN statements.

Matrices should be inverted by methods which
do not require establishment of an identity matrix.
This may be done by procedures such as the Gauss-
Jordan method or similar pivotal condensation
techniques. Golden's (1965) version of the Gauss-
Jordan inversion requires approximately 20 addi-
tional FORTRAN statements and involves about

K3/3 multiplications or less than 2,700 in the case
of twenty variables. Computations are, of course,
performed sequentially and do not require inordinate
amounts of computer space.



The discriminant function is now essentially
complete, since the last column of the inverted
matrix is the discriminant coefficient array. The
discriminant values (Rl and R2) and discriminant

index (RO) can be calculated by multiplying each

coefficient by the mean value of that variable from
each group, and by the combined group mean:

ZA] ZB] ZK]
R] =)\° T+>\b —-n——+....+)\k T
1 1 1
N )ZA]+):A2 ZB]+ZB2 . o ):K]+ZK2
0 "a n¥n, b n R 3 ni¥n,

R, =z A2 4 DBas .o ZK2
a2 tN"2 K

2 _Z
) n2 ny

The "distance"” between the cluster means
may be calculated by inserting the mean differences
into the coefficient array, giving Mahalanobis'
generalized distance.

2.\ Ak B o} X
D% A AR + M AB + A AC +....4 24K,

Various error measures also may be calcu-
lated. For example, a test for the significance of
the two multivariate means may be devised from
Mahalanobis' distance.
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Computation of these additional measures is
very straightforward once the discriminant coeffi-

cients have been found. Additional program features

may be desirable. For example, this program con-
tains a ten-statement option which allows additional
data cards to be submitted to the computer. Vari-
ables for each additional observation are placed in
the discriminant function and the discriminant value
is calculated for the observation.

The remainder of the program consists of in-
put/output instructions and F ORMAT statements.
Wherever possible, formats should be uniform so
every input/output command does not require a sep-
arate F ORMAT statement .

No doubt many desirable options and addi-
tions could be made. However, the program, as
described, consists of 101 FORTRAN statements
which essentially fill the entire available core of a
20K IBM 1620. In fact, the program will not com-
pile with IBM FORTRAN, nor with conventional
PDQ FORTRAN, It will compile with a version of

PDQ FORTRAN which does not have reread (IBM
User's Group Program 2.0,031). This illustrates the
importance of adequate soffware when working near
the mechanical limits of a computer., What may be
excessive or impossible with one programming system
may be entirely feasible with another.

When the program has been trimmed to the
absolute limit and still will not compile, a program-
mer may resort to segmenting. Some types of pro-
grams may be packaged into a series of compatible
independent programs, producing output that may be
utilized by other programs in the package. The
Survey has in preparation a time-trend analysis
package of this type. It consists of Fourier, poly-
nomial, and sliding-averages data smoothing pro-
grams, and a cross-correlation, cross-association,
auto-correlation analysis program. Data may be
treated by any of the preparatory programs before
being submitted to the analysis program. The pre-
paratory programs also may be used independently
for function analysis and curve simulation.

Certain programs cannot be segmented into
meaningful independent programs. The IBM 1620
trend-analysis program by Sampson and Davis (1966)
is of this type. The program is arbitrarily terminated
at the end of matrix computations, the matrix is
retained in core in a COMMON field, and the first
part of the program is replaced with a new program
which is entered as a second pass. This procedure is
not annoyingly unwieldy, as data must also be re-
entered at this time for computation of residuals and
error terms. The process of segmentation theoret-
ically can be extended indefinitely. For example,
Sampson contemplated reducing the rotating factor
analysis procedure by Manson and Imbrie (1964) for
operation on the 1620. It was estimated that the
small computer version would require six program
passes. In this case, the advantages of local pro-
cessing have obviously become outweighed by
programming complexities!

By a process of condensation and, where
necessary, segmentation, many of the current
computational techniques can be made available for
more widespread use. Compact programming should
be encouraged, because it will result in the routine
application of numerical techniques by project
geologists, field workers, and students. These pro-
cedures will increase the versatility of their users
and free them from much routine data assimilation.
As the benefits of computer applications become
increasingly apparent throughout the profession,
the demands for more sophisticated hardware and
numerical techniques will correspondingly increase.
Progress in quantitative geology will then no longer
be restricted to a few practitioners.
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HOMOGENEITY OF COVARIANCE MATRICES IN RELATION TO GENERALIZED DISTANCES

AND DISCRIMINANT FUNCTIONS

By

R. A. Reyment

Kansas Geological Survey and University of Stockholm

INTRODUCTION

The well known multivariate techniques of
discriminant analysis and generalized distances
were originally developed in response to certain
taxonomic problems. The discriminant function was
devised to solve a classification problem. This
concerns the classification of an individual or
group of individuals, with two or more populations,
to one of which the individual or group of indi-
viduals actually belongs. The basic theory of this
method, therefore, requires that the specimen or
group of specimens genuinely belong to one of the
k populations. It was not designed to demonstrate
relative nearness of an individual, or group of
individuals, to one or more of k populations; this
is not always realized in some applications. The
method of discriminant functions has begun to play
a significant role in taxonomeiric work. The
generalized statistical distance was also introduced
in answer to a question essentially taxonomic in
nature, although in its original context, the prob-
lem was anthropomorphic. However, the step
from the quantitative classification of ethnic groups
of human beings to the classification of fossils is
not overly great. If the problem is one of investi-
gating the relative nearness, hence similarity, of
samples, the procedure of analysis by canonical
variates provides a reasonable approach. This
multivariate statistical procedure may in some
respects be regarded as a generalization of princi-
pal component analysis, which deals with a single
sample from a single population, whereas in analysis
by canonical variates, one is concerned with
samples from two or more populations.

A basic theoretical requirement for all of
these methods is that the covariance matrices be
homogeneous. This means that the variance of, and
the covariances between, the constituent variables
must be sufficiently close to each other so as not
to differ significantly in the statistical sense. In
other words, the assumption of homogeneity in the
sample covariance matrices has the underlying re-
quirement that they be derived from the same
universe. Available tests of significance for
discriminant functions and generalized distances
require mostly the assumption of homogeneity of
covariance matrices to be validly applicable.

A criticism that has been leveled against the pro-
cedure used for testing the homogeneity of variances
and covariances (cf. Anderson, 1958, p. 247-268)
is that it is not robust, which means that it is sensi-
tive to departures from the multivariate normal dis-
tribution. This is naturally a rather undesirable
property for a test of this kind, but provided this is
realized and kept in mind, there is no insurmountable
problem involved.

Figure 1 gives a schematic presentation of
how one could assemble a computer program for
discriminant analysis and generalized distances in
which the homogeneity of covariance matrices
occupies a decisive place. The decision for which
sequence of computations will be required centers
around the answer to this question. The problem
of testing the significance of a heterogeneous D
has not yet been fully worked out for the Anderson-
Bahadur procedure. The statistically somewhat less
attractive method developed by the writer (Reyment,
1962) is, however, related to a test of significance
and if it were considered necessary to test the
significance of a generalized distance for means
from populations with heterogeneous covariance
matrices, the computer program would have to in-
clude a certain degree of duplication of steps. The
presentation here given has been kept at a level that
does not presuppose special knowledge of multivariate
statistical analysis.

DISCRIMINATION

In the present connection, we shall only be
concerned with comparisons between two groups,
although comparisons may, and are readily made,
for three and more groups. For two groups, the
so-called likelihood ratio should be employed for
discrimination where, in terms of the natural log-
arithms,

In\ = InP](I) - |nP2(I).
Here | denotes the information available for an
individual and the probability of | on the hypothesis
that this individual belongs to group (1) or group (2)
is P](I) (i=1,2). A comparison of P](I) and P2(I) is

necessary for classifying the individual. In an un-



complicated situation, the classification could be
defined in the following terms: if A > 1, the
individual is to be assigned to group (1), if A< 1,
the individual is assigned to group (2). The most
obvious complication is provided by differences in
the relative abundance of the two categories. |t
has also been shown that appreciable differences in
the sizes of the samples used for setting up a dis-
criminant function and in finding the related

D2 and T2 have an influence on these values.

That is, these are not independent of sample size.
Moreover, where the covariance matrices

are not homogsneous and the sample sizes are equal

(N] = N2), D2 and T2 found by the "ordinary"

procedure will be hardly different from the values
yielded by a theoretically more rigorous method.
The effects of heterogeneity in the variances and
covariances become apparent when N; and N,
become substantially different.

The discriminant function and the corres-
ponding generalized distance are closely related.
Thus, if we consider a p-variate random vector
variable X, the population mean of which for
group (1) is pq and the population mean for group

(2) is py, an expression for InX in the multivariate
case may be written as

() =S ™'X = 1/2657 - wpsTlgp) (1)
Here, the covariance matrix of X for group (1) is
S] and that for group (2), 52. If S] and 52 are
statistically the same, S, =5, =5.

The linear discriminant function is defined
as z which is the linear combination of variables

in X,
z=(] - p'Z)S_] X )

The difference in the means of z for groups (1)
and (2) is:

W) -ps™! @ -pp =D 3)

The variance of z for either population is D2 and
the ratio of the difference of means of z to the

standard deviation thereof is D2/D, the general-
ized statistical distance between the two entities.
The test of significance of the generalized distance
is given by the T2 of Hotelling

N, N
T2 = J: D2 (4)
(N] + N2)

which has the critical region,

72 > (N]+N2-2)p

—_ Fp, N]+N2—p-1(a) (5)
N]+N2-p-1

with significance level a. Here, p is the number of
variables and F is the variance ratio

If the observation vectors x(1) and x(2)
are correlated, there will be complications, which
should be taken into account.

There are several possible theoretical approaches
in discriminant analysis, including that of canonical
variates, that is, by means of an equation formed by
the coefficients of the eigenvectors corresponding to
one of the eigenvalues obtained from the diagonaliza-
tion of the two-component covariance matrices. The
method often used of performing a quasi-regression
analysis has the advantage that the considerable
body of theory available in this connection may be
applied directly to the discriminatory problem and,
for example, one may test the significance of any
desired coefficient of the discriminant function.

The problem of discriminating when the co-
variance matrices are not equal (Z] # 22), may be

viewed in several lights. Perhaps the most intriguing
way known to the writer is that of Dempster (1964),
who considers the shadow property of the ellipsoids

of scatter. Anderson and Bahadur (1962) considered

a distance for the case of unequal covariance matrices
of the following kind,

b'y

©)
b'5yb) /% + G'Lp)?
where b is of the form:
-1 .
IfZ] + (1—t)22| y with Kt<1 7)

Here, y is the vector of differences in means, b an
analog of the vector of coefficients of the discrimi-
nant function and Z] and Z2 are the covariance

matrices. When I, =1L, twice the maximum of (6)

is the Mahalanobis' distance between populations.
The estimation may be made iteratively by finding
t from:

0=b' [+, - (1-PL1 b (8)
and solving

(L, + (1-DI)b = y )
for b. In the above equation, the vector b is the

vector of discriminator coefficients.

The method suggested by the author (Reyment,
1962) is based on a generalization of the Scheffe
univariate test for differences of means when the
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Figure 1.- Schematic flow diagram for generalized distance and discriminant function subroutines.

variances are unequal. Computations are essentially y; = Xi(]) - xi(z) : (10)
simple and consist mainly of producing a set of
"new" variables, Yir from two sets of "original" The required generalized distance is then derived from
variables, the vectors x.(]) and X§2), randeamly the covariance matrix of y, T, by means of the
[ i form;la: ]
ordered: — 21T~
DZ,, =2d'T"d ()



Experience shows that Dﬁ ; varies considerably for
M g

random pairings of x* '/ and x(z), and in practice

it is advisable to take the average of several cal-
culations for different pairings of the data. It is

possible also, by analogy, to relate this distance

to a vector of coefficients, but nothing is known

about the properties of such coefficients from the

statistical point of view.

COMPUTER APPLICATION

The application of the procedures outlined
in the foregoing may be readily grouped into a
single computer program where the main program
computes the basic statistics and carries out the
homogeneity test, the appropriate generalized dis-
tance and discriminant function calculation being
available as a subroutine.

In numerical taxonomy and various other
fields, one may be faced with the problem of separa-
ting two samples, each consisting of just a few
individuals, with each individual having a large
number of measured variables. In zoology such a
situation may arise in the study of insects, and in
geology this problem may occur in the analysis of
recent marine sediments in connection with which
a large number of variables are measured, but for
various reasons, the number of stations sampled may
be small. It is not here intended to take up the
topic in detail but, owing to the growing signifi-
cance of the problem, it might be useful to mention
that several solutions are available in the literature,
the most applicable of which seems to be that of
Dempster {)1 960). It is based on a substitute for

T2, but does not appear to have been extended to
the case when the covariance matrices are not
equal.

ANALYSIS BY CANONICAL VARIATES

Problems involving several groups of "species"
will now be considered. For three groups, there
will be three distances between the sample cen-
troids, i.e., between the first and second groups,
between the first and third groups, and between
the second and third groups. It is thus possible to
analyze the multi-group case in terms of a two-
group situation and this has been done in several
biologic and geologic publications; however, this
becomes very complicated when there are numerous
groups. The technique of canonical analysis has the
basic requirement that the covariance matrices of
the groups are homogeneous.

Input quantities may be readily obtained
from an appropriate analysis of variance and co-
variance table. If one considers the discriminant
function:

w = tx (12)

where t is the vector of discriminant coefficients and
x the observational vectors, the analysis of variance
of wis

Among groups t'At
Within groups t'Bt
Total t'Ct

Here, A is the matrix of "among-groups" variances
and covariances, B is the matrix of "within-groups"
variances and covariances, while C is the matrix
of "total" variances and covariances.

For w to be as effective as possible in sorting
out the groups,

RZ = pPAL/HCE (13)

has to be maximized. This is done by solving the set
of linear equations:

(A - R%C) = 0. (14)
A nonzero solution will be obtained if RZ is a root of
the equation:
|A-rk| =0 (15)
Equation (15) will have p roots, R?, R%. ..

.. .R? (p < q, where q is the number of groups and p

the number of variables). The corresponding solutions
of (14) are vectors, B for eeeeit The set of

canonical variables, represented generally by,

w., =1t x
i i

(16)
are mutually uncorrelated. A measure of separation
of the groups is given by
2 2 2
= (1-R7)(1-R5).....(1-R 17
B = (1-RP(1-RS) ( p) (17)
which is the same as the ratio of the determinants of
matrices B and C; B = det B/det C.
This statistic derives from the theory of the
generalized analysis of variance. The significance
of B is gauged from the chi-squared test

-(n - 1/2[p+g+11) log B

with pq degrees of freedom. If this is significant,
the largest eigenvalue may be extracted from the
total chi-squared by subtracting

~(n = 1/2lp+q+11 ) log, (1-R2),

(18)

(19)

which leaves an approximate chi-square with
(p-1)(g-1) degrees of freedom. This should be con-
tinued for as long as significant values of chi-
square are obtained.

The canonical analysis procedure may be
readily programmed and only requires a read-in



routine, coupled to a subroutine for the eigenvalues
of a square nonsymmetric matrix of the form A=1 B,
Analysis by canonical variates would appear to be a
method of considerable applicability in problems of
classification,

FUTURE WORK

One of the major problems in quantitative
work in geology, particularly multivariate studies,
concerns the interpretation of results. In some types
of studies, this may not pose too difficult a ques-
tion, if the underlying model is straightforward and
the figures issuing from the computer are readily
traceable back to the input data. This is usually
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FACTOR ANALYSIS OF A POOLED CROSS-PRODUCT MATRIX

By

John Imbrie

Columbia University

Other papers in this Symposium employ var-
ious multivariate techniques, including factor anal-
ysis, to the problem of constructing a meaningful
classification. The purpose of this paper is quite
the reverse: to employ a classification of geological
samples as the basis for a meaningful R-mode factor
analysis.

Consider the hypothetical data on two vari-
ables (x and y) and 26 samples given in Table 1 and
plotted on Figure 1. Assume that we are interested
in evaluating the relationship between x and y. If
it is known, on any a priori basis, that the samples
should be classified into two groups (Group A and
Group B), then it is a simple matter to evaluate the
statistical relation between the two variables. The
samples from Group A come from a reaction realm in
which variables x and y tend strongly to be linearly
related. The same can be said of Group B. Clearly,
however, the constants of the linear functions are
quite different in the two realms.

Table 1.--Raw data for hypothetical problem: Two
groups of 13 samples per group.

Group A Group B
I 4 x oy
4 5 8 5
5 5 9 5
3 4 7 4
4 4 8 4
5 4 9 4
2 3 6 3
3 3 7 3
4 3 8 3
1 2 5 2
2 2 6 2
3 2 7 2
T 1 5 1
2 1 6 1

Before outlining the pooled cross-product
factor model, it will be helpful to review, ina
somewhat unorthodox manner, the steps by which a
standard R-mode factor analysis would be conducted
on the data in Table 1 if membership in the two
groups were unknown (or ignored):

10

STEP 1:  Define the raw data in Table 1 as
the 26 x 2 matrix X.
STEP 2:  Express the elements in each

column of X as deviations from the column mean.
Define the resulting matrix as Z.

STEP 3:  Calculate Z'Z, the minor product
moment of Z. Define this result as T, the matrix of
cross-products calculated on deviations from the
mean of the total sample.

148 36

44

T

In the example,

36

STEP 4:  Transform T into the correlation
matrix R. This transformation can be compactly
symoblized by defining a diagonal matrix D, in which

each element is the square root of the corresponding
diagonal element in T. Then

_ -1 -1
R = Df T D1L
1.00 .45
In the example, R =
.45 1,00
STEP 5:  Factor R.

Note that in the example above, R contains
a low correlation coefficient (r = 0.45), reflecting
the nearly random relationship exhibited by the 26
points in Figure 1. If such a correlation matrix were
used as the basis of a factor analysis, the number of
factors, as well as the difficulty of interpretation,
would be needlessly large. I[s there a way of
simplifying the factor analysis?

One simple solution to this problem is to
factor a correlation matrix derived from a pooled
cross—product matrix -- i.e., a matrix formed by
summing cross-product matrices calculated separately
for each group. As the constituent cross—product
matrices are calculated with respect to the joint
mean of each group, inter-group differences are sur-
pressed and the resulting factor analysis will more
clearly reflect intrinsic relationships among the
variables.

The algebraic outline of the method may be
presented as follows:

STEP 1:  For each group of samples, form a
matrix of cross-products of deviations from the group
mean. For Group A, call this Wa; for Group B, Wb;



and so on. For the example above,

22 18
W = Wb =
° 18 22
| Group A Group B
5 k
}_
Y B
1 1 1 1 1 1 | | J
6] 5 10
X

Figure 1.--Plot of data in Table 1.

STEP 2: Given g groups, form a pooled
within-group cross—-product matrix

W=W +W +...+W_,
a b g

REFERENCES

44 36

For the example, W =
36 44

STEP 3:

where each element is the square root of the corre-
sponding diagonal element of W. Then calculate the
pooled correlation matrix

Form the diagonal matrix Dw’

R =D "wp_ I
w w w
1.00 .82

R =

For the example, "

.82 1.00

STEP 4:  Factor R_ .

w

Note that the correlation coefficient in the
pooled correlation matrix (0.82) is significantly
higher than that in the correlation matrix for the
entire sample (0.45). Under the assumptions of the
method here outlined, the higher value correctly
reflects the strength of the linear relationship be-
tween x and y -- a relationship that can be studied
apart from differences in the linear functions char-
acteristic of the sampled reaction realms.

The matrices W and T are identical to those
calculated in multiple discriminant function anal-
ysis (see, e.g., Cooley and Lohnes, Chap. 6).

Cooley, W. W., and Lohnes, P. R., 1962, Multivariate procedures for the behavioral sciences: New

York, John Wiley & Sons, Inc., 211 p.
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CLASSIFICATION OF MAP SURFACES BASED ON THE STRUCTURE

OF POLYNOMIAL AND FOURIER COEFFICIENT MATRICESl/

W. C. Krumbein

Northwestern University

ABSTRACT

Current methods of trend analysis utilize mainly the polynomial and Fourier models, both of which are
derived from the general linear model. The coefficient matrices associated with the map models are coven-
tionally structured diagonally for polynomials and in blocks for Fourier surfaces. It is possible, however, to
consider the elements of such matrices as occupying points in a "coefficient space” defined by coordinate axes
representing the coefficient subscripts. This space may be subdivided in various ways to yield configurations
by diagonals, blocks, circles, hyperbolas, etc. Each of these classifications gives rise to a set of ranked
map surfaces (sequential or cumulative) that can be used with both map models for expressing and analyzing
map data in different ways, and for screening out selected components for map comparisons.

INTRODUCTION

Trend analysis of contour-type maps is cur-
rently based mainly on applications of the poly-
nomial and Fourrier models. Both stem directly from
the general linear model, but the structure of a
single map observation is different in the two models,
and the kinds of fitted surfaces obtained from a
given set of data generally differ in the patterns of
their contour lines. These differences have been
described elsewhere (Krumbein, 1966) to demonstrate
that both the kind of information and the amount of
information (in terms of least-squares criteria) may
differ markedly for the two models used on the same
set of map data.

The purpose of this paper is to examine the
structure of the coefficient matrices associated with
the models, rather than with the structure of a
single map observation. Conventional practice is to
use a standard form of the coefficient matrix for
each model, but these are only two interchangeable
members of a larger series of matrix structures.

Each structure defines an ordered set of maps, which
can be produced sequentially or cumulatively.
These maps generally present different kinds of sur-
faces depending on the particular coefficients
specified by the structure, although some combina~
tions overlap. The resulting maps are useful for
substantive analysis, and as screening devices for

v Research conducted on this subject is supported
by ONR Task No. 388-078, Contract Nonr-1228
(36), Geography Branch of the Office of Naval
Research. This preliminary paper will be embodied
in a Technical Report now in preparation by the
author at Northwestern University.
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examining selected map components under the two
models.

This report emphasizes two aspects of the sub-
ject. The first is a classification of polynomial and
Fourier coefficients into several classes, and the
second is an illustration of a screening procedure
that brings out some basic similarities in the Fourier
and polynomial models. Gridded data are used for
convenience.

CONCEPT OF A "COEFFICIENT SPACE"

The coefficients associated with the polynomial
model are commonly shown in diagonal arrangement
(Oldham and Sutherland, 1955), in which each
succeeding polynomial surface (linear, quadratic,
etc.) occupies a diagonal in the matrix of coeffi-
cients. James (1966) developed a block arrange-
ment for Fourier coefficients, in which successive
blocks (Fourier surfaces) contain wavelengths of
diminishing magnitude.

Although map coefficients are commonly
shown as occupying small squares in coefficient
diagrams, they may be considered as occupying
points on a plane with coordinate axes defined by
the coefficient subscripts, i and j. The origin lies at
the upper left, with i increasing vertically downward
and | increasing to the right. In the general linear
mode! each coefficient B occupies a single point.

For example, [323 has coordinates (i, j) = (2,3), and

hence lies at point i =2, | = 3. The mean value,
B 0o has coordinates (0,0), and lies at the origin;

all other coefficients lie at points defined by integer
values on the plane, including zero.
The structuring of the coefficient matrices as



the polynomial model the diagonals arise from a 0,12, ..., m.

system of contours on the plane defined by the re- Figure 1 (upper left) shows the diagonal
lation (i + |) = const., where the constant takes on arrangement conventionally used for the polynomial
the successive values 0, 1, 2, ..., k. In the block model, in which the diagonal contours represent the
arrangement the coefficient plane has a series of usual sequence of linear, quadratic, and higher
contours defined by the relation, max (i, ) = const.,  ordered surfaces. The upper right diagram, repre-
where the constant also assumes successive values senting the block arrangement used for Fourier

00 01 02 03 04

10 11 ] 12‘ 2 13 3 14'
20 21' 22 230 214'L
30 31- 32‘ 33 34.

max (i, |) = const.
40 41 42 43 b 40 41 42 43 44

00 01 02 (O o3 04

20

40— L ! U

Figure 1.- Four arrangements of "coefficient space." Upper left, diagonal; upper right, block; lower left,
circular; and lower right, hyperbolic.

13



coefficients, has reverse L-shaped contours with
values that define the successive blocks.

Although diagonal contours for polynomials,
and L-shaped contours for the Fourier model seem
"natural", there is no reason why these structures
cannot be interchanged, yielding a block arrange-
ment of the polynomial coefficient matrix and a di-
agonal arrangement of the Fourier coefficient matrix.
In fact, these two structures do not exhaust the
possibilities, in that a variety of ranked surfaces can
be defined by other combinations of i and j. For

. 2 .2
example, the relation, (i” +{”) = const., produces
a set of concentric circular contours on the plane,

with radii (i2 + i2)]/2, and the product of the co-
ordinates, (ij) = const., produces a series of hyper-
bolas, including the degenerate form (ij) = 0, which
coincides with the axes passing through the origin.
These arrangements are shown in the lower part of
Figure 1.

It may be noted in Figure 1 that the several
sets of contours pass through all the points on the
plane that satisfy the contour equations. For ex-
ample, in the diagonal arrangement the contour
value 2 passes through points 20, 11, and 02. These
are the three coefficients whose subscripts sum to the
value 2. In the block arrangement the contour of
value 2 passes through points 20, 21, 22, 12, 02, in
all of which the largest subscript is 2. In the circu-
lar case the contour of value 2 passes through point

11, which is the only coefficient in which i2 +i
2. The radius of this circle is 1.41, the square root
of 2. Finally, in the hyperbolic case the contour of
value 2 passes through points 21 and 12, whose pro-
ducts are 2,

COMPARISON OF RANKED SURFACES FOR
POLYNOMIAL AND FOURIER MODELS

The preceding discussion is based on the
coefficients in the general linear model (and also in
the polynomial model), in which one coefficient
occupies each integer valued point on the coefficient
plane. The situation is somewhat different for the
Fourier form of the general linear model, in which
from one to four individual coefficients may have the
same subscripts owing to the combinations of sines
and cosines involved.

If we designate the equivalent of B;; in the

general case by Fii for the Fourier model, the

number of individual coefficients associated with
each pair of subscripts in a 5 x 5 array is as shown in
Table 1.

As Table 1 shows, the mean value is a single
coefficient, and the components with i or | equal to
zero each have two coefficients, whereas all other
components have four. This difference in the number
of coefficients associated with each (i, j) for the
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Fourier model means that fitted surfaces of a given
rank normally have different numbers of coefficients
in the successive surfaces for the two map models.
There is an outstanding exception in ij = 0, however,
which will be developed in an example. The
coefficient plane of Figure 1 is also seen to have
from one to four Fourier coefficients projected onto

a given (i, ) point.

Table 1.- Number of coefficients in Fourier model
for 5 x 5 array.

Fij (cos cos) (cos sin) (sin cos) (sin sin) Total
ces 5 oss 5 scs3 88y
FOO 1 0 0 0 1
FOl 1 1 0 0] 2
Fop 1 1 0 0 2
FlO 1 0 L 0 2
Fll 1 1 1 1 4
F12 1 1 1 1 4
F20 1 0 1 0 2
F2l 1 1 1 1 4
F22 1 1 1 1 L
25

Table 2 presents a classification of the
ranked least-squares map surfaces based on the coef-
ficients intersected by the various contour systems.
The first column shows the rank of the surface, and
the next four columns show the coordinates of the
points involved, listed directly as the coefficient
subscripts. The starred items represent the Fourier
coefficients as Fiir of which there are only 9 in a

5 x 5 grid. These starred items, and those unstarred,
represent the 25 individual ij of the polynomial
model. The several columns on the right indicate
the number of individual coefficients in each ranked
surface, yielding a total of 25 for each model.

ILLUSTRATIVE EXAMPLE

The preceding topics, covered very briefly
here, are developed in greater detail in an ONR
technical Report (footnote 1), It seems appropriate,
however, to include at least one example of the
kinds of maps obtained by the rankings of Figure 1
and Table 2. The example contrasts the block and
diagonal structures for the same set of data analyzed



by both the polynomial and the Fourier model. In
addition, it illustrates a map screening technique
used under known environmental conditions, which
has interesting implications when applied to sub-
surface data where the controlling conditions, and
hence an optimum grid orientation, must be inferred.

Figure 2 shows the areal pattern of the geo-
metric mean diameter in mm. of sand on a Lake
Michigan beach at Evanston, lllinois. The beach
has a high storm berm and a lower berm that de-
veloped during declining storm conditions. This
lower berm was topped by waves during its formation,
so that shallow temporary lagoons developed land-
ward of it. Sand samples were taken on a grid
during ensuing quiet weather to study possible re-
versals in the particle size patterns that normally
occur on foreshores. As anticipated, the mean grain
diameter increases lakeward on the upper storm
foreshore with a reversal to smaller sizes in the
temporary lagoonal areas, and then increases rela-
tively rapidly across the lower foreshore to the water
line.

The map of Figure 2 was computed with
James' (1966) double Fourier series program, which

produces a continuous symbol map from which the
contours were traced. The machine-computed sur-
face agrees very well with a hand-contoured map.
The original grid had a spacing of 25 feet between
samples along shore, and a 10-foot spacing across-
shore. In order to provide better visualization of the
pattern, the grid is expanded landward by a factor
of 2.5, to obtain a square map. This is not unlike
increasing the vertical scale on a cross-section to
bring out details that are otherwise overly crowded,
as would be the case of contours near the water line.

The data matrix was analyzed by both the
Fourier and polynomial models to obtain two sets of
25 coefficients each. These coefficients were then
used under the several rankings associated with the
coefficient structures of Table 2, to obtain a wide
range of experimental maps. Four of the maps are
selected for presentation here, inasmuch as they
illustrate the diversity of patterns obtained even
with relatively low-rank fitted surfaces.

Figure 3 shows the four examples. The upper
left map is the linear surface containing ranks 0 and
1 of the conventional diagonal grouping of poly-
nomial coefficients. It is also the map of rank 0 + 1

Table 2. - Polynomial and Fourier surfaces ranked by four schemes of coefficient classification for a 5 x 5 grid.

[ ] No, of Individual Coefficients
Rank of Diagonals Blocks Cgrcles Hyperbolas Polynomial Fourier
Surface L max (1,3) | 3% + 5 1] D] B] C| H|| D| B] C] H

0 00* oo 00" 00;01%,02%, I 1| 2f 1| of 2| 2| 12| 9
03,04,10%,
20%,30,40
1 017,10" 01%,10°,11°| 017,10 | 11" 21 3| 2| 1l 4| & 4| 4
2 02%,11%,20" | 02%,12%,20"| 11" 12%,21% 3| 5| 1| 2f e| 16| 2| @
217,22
3 03,12%,21%, | 03,13,23, | lone 13,31 41 6l ol 2ff 8] ol of o
30 30,31,32
L 04,13,22%, | 04,14,40, | 02%,20" | 14,22%,41 s 4 2] 3|l 41 ol 4| 4
31,40 41
5 14,23,32, | None 12°,21% | None LI of 21 off ol o] g| o
41
all higher | 24,33,34, |24,33,34, | 227,03,04, 23,24,32, 61 6l17] 8f ol o] 4| o
surfaces 42,43 ,44 42,4344 13,14,23, | 33,34,42,
24,30,31, | 43,44
32,33,34,
40,41,425
43,44
25| 25 25 |25 25( 25| 25] 25
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in the circular case. The upper right map has the
same ranking (i.e., diagonal 0 + 1, and circular
0 + 1) for the Fourier model. These maps have coef-
ficients Boor BO]’ and [3]0 for the polynomial map,
and FOO’ FO]’ and F]O (i.e., ccoor €017 SSp1
cc 1or and sC1gr TS shown in Table 1). The Fourier

map thus has 5 coefficients as against three for the
polynomial.

o
.239

203

o2

TOTAL CORRECTED
SUM OF SQUARES
= 0.6176

.198
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o2

.210 ®.233 e.223
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WATER LINE

£
(o] 25 along beach
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N

Figure 2.- Map of geometric mean diameter in mm
of sand on Lake Michigan beach at Evanston,
Illinois. Note across-beach scale exaggera-
tion.

The two lower maps of Figure 3 are interest-
ing in that they represent the Block arrangement
(rank 0 + 1) for both models, each having coeffi-
cients with subscripts 00, 01, 10, and 11, Thus they
both show the influence of the lowest-rank cross-
product component with subscripts 11, The Fourier
map on the lower right is the conventional Block
(0 + 1) map which contains wave lengths of M and N
respectively; introduction of the F,; coefficients

produces parts of two elliptical areas in the upper
center, and develops an additional ellipse in the
lower right, where the observed grain size is largest.
The polynomial map in the lower left is also a Block
(1 +2) map. Introduction of the quadratic cross-
product term has the effect mainly of fanning out the
linear contours of the upper left map. These maps
deserve much more discussion, but space consid-
erations limit presentation to the maps themselves, to
show how different groups of coefficients under both
map models change the aspects of the surface when
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diagonals and blocks are interchanged in the poly-
nomial and Fourier models.

The last example concerns the hyperbolic
structure of the coefficient matrix, in which ij =0
involves 9 coefficients in both map models. These
coefficients include all the grid-paralle! components,
which in both models account for 84.86% of the
total sum of squares. Under these conditions, it can
be predicted that both the polynomial and Fourier
maps should be essentially the same though not identi-
cal, because one model has periodical or cyclical
over'rones and the other has not. Figure 4 shows two
surfaces fitted to the data of Figure 2. The upper
map contains all the grid-parallel components (ij =
0 in Table 2), and the lower map has all cross-
product components (ij>0), with the mean added
simply to keep the values positive. If the mean
value (0.29 mm,) is subtracted from the lower map,
it becomes in effect a map of all residuals on the
grid-parallel surface.

These maps were produced by the computer,
using the Fourier coefficients. The corresponding
polynomial map, hand drawn on values computed for
each grid point, agrees exactly at each computed
value, within normal rounding error. This agree-
ment in sum of squares reduction and in map pattern
suggests the usefulness of the hyperbolic structure
(ij = const.) as a map screening device, equally
suitable for both map models. That is, by separating
the map components into grid-parallel and grid-
angle portions, the additive aspects of the under-
lying data, in contrast to the interaction aspects,
can be conveniently extracted from the coefficient
matrices.

The grain size data used here were obtained
on a grid oriented with respect to the known
environmental and energy framework of a beach
deposit. Normally, the main response of beach
features is toward essential parallelism with the
shoreline, or normal to it. That is, from a row-
column analysis-of-variance viewpoint, the model
is dominantly additive, with interaction effects
generally playing a minor role. In the present case
the additive elements account for 84.85% of the
corrected sum of squares of the data (total =0.6176),
as against 15, 15% for the interaction effects.

In situations where the orientation of the
grid with respect to the controlling geologic con-
ditions is not known a priori, as in many subsurface
structure, thickness, and facies studies, the original
map is usually oriented N=S and E-W. If the grid-
parallel components are then screened out, they may
represent merely the departure of the principal
"grain" of the map from the arbitrarily chosen grid
axes, This aspect of map analysis, as well as the
use of combination Fourier-polynomial models,
will be developed in the enlarged report mentioned
earlier.
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CONCLUDING REMARKS

It becomes increasingly apparent, during the progress of a science, that what appear initially to be
distinctly different phenomena, each characterized by its own attributes, are simply different classes of some
broader, underlying whole. With further advance the classes become part of a continuous spectrum that
permits examination of seemingly diverse phenomena (or models) within a basic, unifying framework. Map
analysis appears to be no exception.
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APPLICATION OF COLOR-COMBINED MULTIPLE POLARIZATION
RADAR IMAGES TO GEOSCIENCE PROBLEMS*

By
David S. Simonett

University of Kansas
ABSTRACT

When a number of remote sensors are used in concert they give images no one of which need give a
secure diagnosis, but together these images may lead to unmistakable identification of natural or cultural
objects. In order to analyze a number of such images simultaneously (an exceedingly difficult task, if done
manually), an Image Discrimination Enhancement Combination and Sampling (IDECS) System has been
developed by Engineering personnel of the University of Kansas primarily to work with multifrequency, poly-
polarization radar images. This paper briefly describes the operation of the system in producing color com-
bined radar images on a color television set, in producing differentiated and other modes of image enhance-
ment, and in deriving probability density functions from the images. Examples are given of the way in which
color combined multiple polarization radar images improve discrimination of lithologies and crops over that
of a single radar image. Finally, a number of future modifications intended for improved texture discrimina-
tion, and data space sampling are described briefly.

INTRODUCTION basis to NASA that three radar wavelengths -- 3.7,
15 and 16 cms.-- appear to be technically feasible

During the last three years there has been a for spacecraft use. The concept behind simultaneous
notable surge of interest in the use of remote sensors,  data acquisition with multi-frequency radars is that
especially those mounted on spacecraft, as a means this would represent the microwave equivalent of
for mapping and grappling with geoscience and re- multi-band spectral reconnaissance. The different
source-oriented problems. Much of this interest has information content of the three widely spread
been stimulated by feasibility studies conducted frequencies in the microwave region should give us
under contract to the National Aeronautics and much more secure identification of objects of geo-
Space Administration. Many studies have adopted science interest than the use of a single frequency.
as a working premise, the idea that when a number The same kind of reasoning lies behind a parallel
of remote sensors are used in concert, they give recommendation that multiple polarization data be
data no part of which is diagnostic, but which to- obtained in each frequency. In each frequency
gether may be unmistakable. This concept, for three polarizations are involved and thus a matrix of
which R.N. Colwell (1961) uses the phrase "multi- nine combinations of frequency and polarization is
band spectral reconnaissance, " underlies much of possible. It will immediately be recognized that
this research. this presents a classic multi-discriminant problem

As a portion of the NASA-sponsored feasi- which would be impossible for the unaided individual
bility studies in the use of radar, in which we are to handle effectively or even to comprehend a small
engaged at the University of Kansas, Center for portion.
Research in Engineering Science (CRES), a number When a single radar image is used, it has
of papers have been produced using single frequency been our experience that instrumental aids to dis-
radars or, at the most, two black and white radar crimination can be helpful in image interpretation
images of different polarizations obtained simulta- and analysis. When two or more images need to be
neously. Dellwig and Moore (1966) and Morain and considered simultaneously it soon becomes apparent
Simonett (1966) report on results of geologic and that the eye and the mind are unable to accommo-
geographic interest using these black and white date the complexities contained in two or more
images and employing manual inspection of the data-planes. Simple devices (such as change-
images. detection systems which alternately present one

A number of universities and government image to the left eye and the other to the right eye)
agencies have jointly recommended on a preliminary have proven inadequate to develop quantitative

understanding of image differences, and it has been

necessary to develop more flexible equipment. This

* This paper was supported by "NASA Contract NSR paper describes some of the approaches we have
17-004-003. developed at CRES particularly in the color
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combining of multipolarization radar images an an
aid in discrimination and sampling of multiple
images.

ATTRIBUTES NEEDED IN AN IMAGE
PROCESSING SYSTEM

Ideally, an image processing system needs to
be able to combine in various ways a number of
images, to be able to use color as a means of aiding
discrimination, to enhance selected areas or edges
for improved identification or discrimination, and to
be able to sample portions of the data for statistical
and other manipulations.

In geologic terms for example, we are
interested in being able to:

1. discriminate lineaments both natural and
artificial and separate them from non-lineament
background, in such a manner as to speed up dis-
crimination of an operator over that of the manual
use of several images.

2. improve identification and discrimina-
tion of lithologies and,

3. improve segregation of data into
manageable sets and subsets which have meaning
within a geologic reference scale

4. derive relations which we are unable to
obtain manually because the mind cannot compre-
hend vector-space with two or three images

SENSOR

<§¢~= SCHMITT TRIGGER

5. rapidly delineate anomalous details as a
means for focusing energy on areas of geologic in-
terest.

It is to be recognized that such an instrument
may speed identification, but not necessarily, for if
discrimination is improved, the additional informa-
tion also needs to be processed.

The instrumental setup | propose now to
describe is one of several developed under the
direction of Dr. R. K. Moore of the Electrical
Engineering Department, University of Kansas, This
data handling system was designed specifically to
enable geologists and geographers to cope with the
differences in information content available in
multiple frequency, poly-polarization radar images.

THE IDECS DATA HANDLING SYSTEM

The Image Discrimination Enhancement
Combination and Sampling (IDECS) Data Handling
System developed for geoscience research is illus-
trated in Figure 1. A systems diagram for the
IDECS Data Handling System is given in Figure 2.

The first operation in the IDECS Data
Handling System is the scanning of up to three
images in a three-channel flying-spot scanner (FSS).
The elecirical analogs of images placed on the faces
of the FSS are fed individually or collectively to a
matrixing unit and the output of the matrix are

Figure 1.-The IDECS (Image Discrimination, Enhancement, Combination and Sampling) Data Handling
System developed at the University of Kansas.



presented to the three (red, blue, and green) elec-
tron guns of the cathode ray tube in a color tele-
vision (CTV). By this means, combinations of
images can be reproduced in various colors to aid
their geoscience interpretation, A black and white
television (BWTV) is also used to present the output
from any one of the red, blue or green channels
from the matrix unit. Both the CTV and BWTV are
synchronized with the FSS by synchronizing their
rasters (see Figure 2). An alternative tri-color
oscilloscope (TCO) may also take the outputs from
the matrix or directly from the A, B, and C chan-
nels of the FSS. This device has very high color
fidelity, but poorer resolution than the CTV. It
may, however, be used for scanning images and
handling radar scatterometer data. No further dis-
cussion of this unit will be given in this paper. The
output of either the red, blue or green channels
from the matrix unit or the A, B, C channels of the
FSS may also be fed into a pulse-height analyzer to
produce probability density functions and other
statistical manipulations. The A, B, and C channels
of the FSS may also be sampled with a data space
sensor (DSS) or a Schmitt trigger and the outputs
from these devices in turn may be fed to the CTV to
selectively enhance the data sampled by the DSS
and Schmitt trigger. Finally, a differentiation unit
is included which enables one or more images to be
differentiated and presented in different colors to
the CTV. The detailed operation of each of these
separate sections may now be described.

Flying=Spot Scanner

The present FSS is a three-channel instru-
ment. Future modifications include the addition of
further channels.

Matrix Unit

The matrix unit adds portions of three input
signals from the FSS to form three output signals.
The three outputs are produced by multiplying each
input signal by a constant and summing the products.
For example, signals x(t), y(t), z(t) are multiplied
respectively by Ay;, Ay Agqys (where the first

subscript denotes a row and the second subscript
denotes a column) to give the output x(f)A” +

y(t)A2] + z(’r)A3]. The second and third outputs are

produced similarly with the summation over the
second and third columns of constants. The matrix
constants may be adjusted in discrete steps of 0.1
through the range -1g Amn > 1. The operation of

the matrix unit can be represented mathematically by
the multiplication of a  1x3 matrix by a 3 x3
matrix. The prime use of the matrix unit is as an

aid in interpretation of imagery by fractional over-
laying of imagery. The procedure is to place con-
gruent, multifrequency or multipolarization radar
images on the faces of each of the three cathode ray
tubes of the FSS. The outputs of the flying-spot

3-Channel Flying Sync &lnterlace
Spot Scanner Generator Black & White
(FSS) (SYNCQ) Television
(BWTV)
A B C
. . 0 Video 5 Color |
Matrix Unit e Television
Amplifiers G
(CTV)
to A, B, Cor ’roR,téorG ’roA,EandC foA,B?‘cde
Matrix Unit Matrix outputs FSS outputs FSS outputs
Tri-Color Pulse Height Differentiation Sde Spacse
Oscilloscope Analyzer Unit ::dsogc(lr?n?'ﬂ)'
i
(Tco) (PHA) (BU) Trigger (ST)

Figure 2.- Systems diagram of the IDECS data handling system.
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scanner are then applied to the inputs of the matrix
unit and the outputs of the matrix unit are connected
to the video amplifiers of the CTV. Matrix con-
stant switches are then set to obtain the desired
enhancement of imagery. Because it is possible to
adjust the polarity of the image, it becomes feas-
ible to use three colors with a two-image display as
well as three colors with a three-image display.
Through using the polarity switches to give positive
and negative images in the different colors it be-
comes possible to level-slice and clip out the upper
or lower portions of an image.

Using this system it is also possible to mix a
differentiated and unaltered signal, allowing many
variations in the amount and degree of differentiated
and unaltered signal to be applied to the CTV. A
number of color images obtained with this system are
presented and discussed in the oral presentation of
this paper. However, for purposes of reproduction
it has been possible to use only black and white
illustrations.

Differentiation Unit

It is often difficult to determine the rate of
density change in multiple radar images either in
black and white or in color reproduction. The
density change can be abrupt or gradual depending
on the rate of variation of radar scattering para-
meters of the area being examined. Color com-
bination tends to point out some density differences,
but this is often not emphatic enough for rapid
evaluation. Also, for some combined images, some
of the subtle differences at points of abrupt density
changes are not immediately evident.

To overcome some of these problems, a
differentiation unit has been devised for edge
enhancement. This unit consists of three indepen-
dent differentiation circuits. On each circuit the
time constant can be adjusted over a wide range
thereby detecting lines of different widths. The
circuit is modified so that both positive and nega-
tive derivitives give a positive output. By using
three independent differentiating circuits we can
simultaneously enhance three input photographs in
contrasting colors on the CTV. Also, it is possible
to hook the derivitive circuits in sequence so that
we can take multiple derivitives of the same signal.

Data Space Sensor

The data space sensor (DSS) allows the
operator to arbitrarily choose a certain joint photo-
graphic density value from two images and these
points can be indicated by an enhancement of an
image presentation. It measures the value of joint
probability density functions at particular points for
a two image system. Figure 3'shows an oscilloscope
trace of the trajectories due to simultaneously
scanning two photographs and presenting these on an
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oscilloscope. The length of time the trajectory is in
a small area on the oscilloscope is proportional to
the probability that the joint photographic density is
within the values defined by the small area. The
DSS consists of a fiber optics rod which is physically
held over the face of the oscilloscope. The area
sampled is defined by the cross-sectional area of the
rod and the magnification of the two-dimensional
trajectory densities on the face of the oscilloscope.
A photomultiplier tube connected to the rod has an
output whenever the trajectory is in the sampled
area. Since the output of the photomultiplier is
proportional to the time spent in the sampled data
space it measures the joint probability. The unique
application of the DSS makes use of the fact that the
output of the photomultiplier is obtained synchro-
nously with the presentation of information in a
flying-spot scanner system. This output, therefore,
can be used to emphasize or enhance in a special
color the image that is being presented at a particular
time on the CTV.

O Radar Image A - Increasing return

Radar Image B - Increasing return

0 —|
Figure 3. - Joint-probability density plot produced by
scanning two radar images simultaneously.

Schmitt Trigger

The Schmitt Trigger (ST) is a device which
can select any position in the dynamic range of a
single radar image for selective enhancement on the
CTV in color. All areas with values above or below
that selected are assigned one color. Each of a
number of images can be scanned in turn clipping at
the same level so that later comparisons may be
made.

Because the ST clips at a finite level certain
areas (say lithologies) may be displayed as solid color



on the CTV if all components of the probability den-
sity function of the area (lithology) lie above or
below the selected clipping level. In other cases,
areas which cannot be distinguished from one another
on the basis of average gray scale (such as would be
obtained with a microdensitometer trace) may be
discriminated because the skirts of the probability
density function of one natural object may lap across
the zone where the ST is clipping while another may
not. It therefore becomes possible to discriminate
between two closely similar regions on the basis of
the degree to which they acquire a speckled char-
acter on the CTV arising from the presence of small
numbers of high intensity returns or low intensity
returns, as the case may be. It becomes apparent,
then, that the ST is a device which samples in a
broader area of data space than the DSS unit, but
that at the same time it may add to our ability to
discriminate. At the time of the writing of this
paper only one Schmitt Trigger was in operation. By
the time of the symposium, however, we will have
Schmitt Triggers which can slice in such a manner as
to produce oblongs or squares in data space. Figures
4 and 5 may be compared to see the nature of the
color combinations and enhancement possible.

FUTURE CAPABILITIES

The IDECS system as now operative gives
some textural discrimination. However, this is not
specifically a portion of the design, but arises
incidentally from operation of the Schmitt Trigger
and Data Space Sensor. A modification to the
system is planned which will enable both improved
texture discrimination and measurement of accutance
This will be achieved by changing the sweep in the
flying spot scanner to give various modes of spiral
and circular trajectories.

Another technique of potentially great
discriminant power is now under development, which
will represent a significant expansion of capabilities
of the Data Space Sensor and Schmitt Trigger. This
device, for which both the theory and circuit de-
sign have been completed, is intended to sample in
n-space and produce a binary color-coded output in
the form of a color coded image. On this image
discrete classes should be distinguishable. This
latter development forms the basis for Mr. Dalke's
presentation at this colloquium and is described in
detail by him.
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IMPLEMENTATION OF PATTERN RECOGNITION TECHNIQUES AS APPLIED

TO GEOSCIENCE INTERPRETATION

by

George W. Dalke

University of Kansas

INTRODUCTION

Statistical decision theory with a Bayes
strategy provides a powerful technique for selecting
one of a set of possible hypotheses in a statistical
environment. The formulation requires a statement
of conditions of profit and loss (either economic,
strategic, or scientific) relative to the possible
hypotheses, and selections are made in such a way
to maximize the average profit.

For a problem in which a meaningful set of
data is provided and the desired results are precisely
formulated as a set of testable hypotheses, decision
theory provides a mathematically optimum solution
(relative to the strategy). However, neither of
these conditions are fulfilled in most geoscience
problems.

In many of these problems the final results
desired are simply a description of the nature of
the earth's surface at a particular location. This
description may take the form of a distribution map
of the location which groups points into interesting
categories. Clearly, formulation of a set of hypo-
theses from which a typical distribution map could
be constructed would be prohibitively complex.
Further, unless the analysis of the location is simple,
the investigator may use somewhat subtle techniques
and previously obtained collateral information to
deduce the nature of the location. These techniques
and information are generally referred to as "in-
sight" and "experience" and are probably too
complex to include in the decision-making process.

Although statistical decision theory cannot
compete with the trained investigator on the level
indicated in the previous statements, there is a
growing application for which the investigator is
unable to use his special talents. This refers to the
great amounts of data that are being obtained re-
motely from aircraft and satellites. This data may
either be too extensive for the investigator to grasp
or may be in such an unfamiliar form that the inves-
tigator's insight and experience cannot be used.

This report discusses a unique approach to
this problem that is in the early stages of investiga-
tion at CRES (Center for Research in Engineering
Science, University of Kansas). This approach uses
statistical decision theory to select and transform
the essential properties of input data into a form
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suitable for interpretation by the trained investigator.
There is a logical twofold effort involved in this
study: applying decision theory to geoscience sample
data, and the investigation of effective techniques
for displaying information.

Some of the display techniques are described
in "Application of color-combined, multiple polari-
zation radar images to geoscience problems" by D.
Simonett in this issue of Computer Contributions.

This report will outline the concepf of the infegrated
system and the technique for including statistical
decision theory.

STATISTICAL DECISION THEORY WITH A BAYES
STRATEGY AND A DECISION SYSTEM

A generally accepted model for a decision
system (shown in Figure 1) consists of a Receptor and
Categorizer with abstractly specified collections of
elements that envelop all possible inputs and outputs
of the devices.

Object space is the set of all objects that
can stimulate the receptor. Each object or category
of objects is denoted 5 where k is an index used to

identify a particular object or category. Decision
space is the set of all interesting features of object
space. Each feature or category of features is
commonly referred to as an hypothesis and is denoted
SJ where J is an index used to identify a particular

hypothesis. Measurement space is the set of all
possible outputs of the receptor, each of which is
denoted by the n-dimensional vector x = (x] y e X

).

n

In operation, a particular object is exposed
to the Receptor and certain members of decision space
are indicated by the Categorizer.

The internal structure of a receptor is shown
in Figure 2. A receptor consists of a set of tests,
each of which performs a measurement on an imput
object. The measurement resulting from the ith test
is a number x,. For convenience we represent the
ordered set of measurements (x] P ,xn) as the

components of a vector x.

The output x is not uniquely determined by
specification of the object k for two reasons. The
first is that the receptor can be affected by extraneous
signals such as thermal noise. The second is that,



Receptor

Object

space
Figure 1.- Model for a decision system.

in practical cases, the index k refers not to a par-
ticular object at some juxtaposition of space and
time, but rather to a group of objects that we wish
to consider identical and which, nevertheless,
affect the receptor differently. We therefore con-
sider x as a random variable of a statistical process
governed by a joint probability density function
which depends on the class of objects to which the
input object belongs. These conditional probability
density functions are represented as p(x | sk). The

set of these probabilities for all values of k com-
pletely specifies the operation of the receptor.
The function of a categorizer is to examine
an input measurement x and indicate an output
decision, SJ . The general formulation for this

process is called a decision rule and is denoted as
d(SJ |x). Precisely stated, the decision rule is a

function giving the probability that the output is
J when the input is x. The internal structure of
the categorizer depends intimately on the strategy
and assumptions concerning a particular type of
decision. Some common decision techniques are:

1. Classification by hyperplane

2. Multivariate discriminant classification

3. Maximum likelihood estimators

4. Linear perceptrons.
These techniques are equivalent for certain classes
of problems and some are equivalent for all classes
of problems. In addition to these techniques, some
of the strategies used to obtain the "best" decision
rule are:

1. Minimum mean square error

2. Minimum false identification

3. Minimum false dismissal

4. Maximum a posteriori probability of correct

classification.

Each of these techniques and strategies are special
cases of statistical decision theory with a Bayes
strategy, which is described in the next section.
All of the above techniques require an a priori
assumption of the form of the probabilities,
p (x Isk). To avoid this necessity, a solution for

quantized measurement vectors will be presented
that requires no statistical assumptions.

Measurement
space
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Categorizer

Decision
space

FORMULATION OF AVERAGE RISK

We define a loss function L(SJ, sk) as the
loss associated with deciding SJ when the object
category is Sk By convention a "profit" is desig-

nated as a negative number in constructing the loss
function.
The function o(sk) is a probability function

designating the a priori probability of occurrence
for each input object or object category.

The expected value of the loss for a given
decision rule is called the risk and denoted R(d).
The risk is given by

R =2 = § L(S;,5)d(S ;I x)plx |5 )o(s )d"x

SJ S X
using the shorthand notation
§ d"x = § ) dx.dx,...dx
) X1 % X 1772
r 1 "2 "n
I =1 1L r
0 0 0 0

Any decision rule, d, that causes R(d) to
take its minimum value is a Baye's decision rule.
Although a decision rule is a probability function,
it is easily shown that for simple loss functions there
always exists a Baye's decision rule that is determinis-
tic. Non-random decision rules are generally

test 1 " %
1
test 2 — Xy
S — x
k
test n >~ X
n

Figure 2.- The internal structure of a receptor.



advantageous in the design of equipment and will
be the only ones considered below.

BAYE'S SYSTEM FOR QUANTIZED MEASUREMENTS

Consider a system for which each component,
;s of the measurement vector can take on only

Thus,

a measurement vector, x has a lower bound 0 and an
upper bound r, where m has components . The risk

certain discrete values, say 0, 1, 2, ..., e

for such a system is:

"
Rd)=I £ )Z_ L(SJ,sk)d(SJl x)p (x |sk)a(sk)
S, s, %x=0
J %k
where, as before, d refers to a particular decision

rule and o to a particular a priori distribution.
We define R(d,x) as follows:

Rd,x)=I X L(SJ,SX)d(SJ | x)P(x Isn)o(Sk)
S5 5

If we choose to consider no functional constraints

on the decision rule, then R(d) is a minimum when
each R(d,x) is a minimum. In order to consider
individual measurements we take x to be a subscript-

ed quantity x. wherei=1,2, ..., uand
n
u=T T,

. i
i=1

The algorithm for calculating a non-random Baye's

decision rule is:

(1) Form the matrix P =@, .)and L= (L, ),
ki Jk
where
Pki = P(>x(i Isk)ck; and

LJI( = L(Sk,SJ).

(2) Define R by the m x u matrix (where m is the
number of hypotheses and u is defined above)

R=0LP

(3) Examine each column of R. If the smallest
element in the ith column is R, and its

location in the column is J', then the set of
(J') is the Baye's decision rule and

U,
R=% R' isthe total average risk.

i=1

This completes the required algorithm. For further
study a good presentation of statistical decision
theory is presented in Statistical Communication
Theory, David Middlefon, McGraw HilT, T9&0.
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DATA AND DISPLAY FORMAT

Convenient and sufficiently general repre-
sentations for input data and display information are
matrices. For uniformity the data and information
are registered so that corresponding elements on any
of the input or output matrices refer to the same point
on the earth's surface. Using this convention requires
that the size of the matrices be determined by the
"largest" input which makes it necessary to designate,
say with the symbol @, unused matrix locations for
some inputs.

INPUT DATA

The following list refers to some typical input data:
1. Image data
a. Spectra-zonal photographs (IR and visible
light)
b. Radar imagery (cross and like polarization,
various frequencies and resolutions)
2. Linear data
a. Scatterometry radar data (various frequen-
cies, polarizations, and inclination angles)
b. Field investigation data (any feasible set
of measurements)
3. Point data
a. Field investigation data.
Point and linear data can generally be directly
entered into the required matrix formulation. For
image data a flying spot scanner system can be used
to set up the required matrix (Some present f.s.s.
systems will reduce 70 mm photographs to a 1024x
1024 matrix with a photographic density resolution
of 64 gray levels.)
For a typical problem there may be a number
of matrices for each type of data input, that is, there
may be n, image matrices, n, linear matrices and n

point matrices. The total number of matrices is
n=n +n + n, which is the dimension of the measure-

ment vector for the recognition system.
DISPLAY

It was pointed out that for a typical image
input the size of the system matrices may be 1024x
1024. This is prohibitively large for an investigator
to readily interpret. However, if the matrix elements
are presented as intensities proportional to the value
of the elements, then the display matrix will appear
as an image. Actual systems under investigation use
an image-forming display such as a cathode ray tube,
or more generally, a color television tube. The
matrix representation is simply an abstraction to aid
system development and to allow simulation of the
system on digital computers.

A color display system has two advantages.



First, the use of colors has a number of advantageous
subjective properties. The human eye is able to
integrate complex color patterns and allow the brain
to form a simplified generalization for the patterns.
Whereas changes in intensity are highly resolved by
the eye for nearby points, there is little discrimina-
tion for distant points. The use of colors, on the
other hand, gives little nearby discrimination but
allows similarities of distant points to be sensed.
The second advantage of a color display
is that each point on the display is able to present
three dimensional information to the observer. For
a suitably constructed system, these dimensions
consist of an intensity and two independent color
variables. A more detailed discussion of the pro-

perties of colors is given in CRES Technical Memo-
randum 61-4 (Dalke, 1964).

UTILIZING QUALITIES AS DATA

One conventionally imagines input data
from some point to be measurements of a dynamic
range of possible values, such as "the scattering
cross section of the point at x-band is -10.4db"
or "the moisture content of the soil at the point is
0.03%" where subsequent measurements could be
-10.3db. or 0.05%, and so on. Some of the most
important data concerning a point, however, may
not be of this form. For example, to say a particu-
lar point is "limestone" is important information but
we generally do not consider a dynamic measurement
such that a value of 3.4 indicates limestone and 3.7

indicates basalt. In the former case two measurements
that are close to the same value indicate a similarity
between the points, whereas in the latter "closeness"
is not particularly meaningful.

We designate properties of a point that
have no associated numerical designations as quali-
ties. Some of the important data about regions and
indeed the desired results of some investigations are
the qualities of the points in a region placed in
their geometric context. An extremely useful pro-
perty of the quantized measurement decision rule is
that any set of mutually exclusive qualities can be
used as an input dimension.

Because of the subjective nature of color
and intensity, the display for the general processing
system discussed in this report will use certain se-
lected colors to indicate qualities and will use
intensity to enhance the displayed information.

DESCRIPTION OF PROCESSING SYSTEM

A simplified flow diagram for the processing
system is shown in Figure 3.

This system is a straightforward implementa-
tion of the techniques presented previously in this
report. In order to describe the operation of the
processor an example problem will be considered
and the results of two computer simulated problems
will be given.

The required circuitry for a real-time version
of the processor is presented in Appendix D of CRES
Technical Report 61-16 (Dalke, 1966). Computer

Ni Image
Matrices
Nl Line S - = =
Matrices S e
—_— ‘:- - e
Processor :’_“, Rpetal
-t - ="
NP Point - - =
Matrices Display

Specification
of desired
information

Figure 3.- Simplified flow diagram for the processing system. The processor contains a decision system to trans-
late input data to a form suitable for display and contains enhancement devices to aid the interpretation

of the displayed information.
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programs simulating the operation of the processor
have been prepared although the lineprinter out-

put is an unsatisfactory representation of the color
display described in this report.

EXAMPLE PROBLEMS

Problem 1.- Three 70 mm photographs
selected from a set taken by an ltek nine lens
multispectral camera in a flight over Phoenix,
Arizona were processed relative to the hypotheses:

(1) cultivated area of type A, (2) residential area,
(3) streets, (4) cultivated area of type B, (5) unim-
proved roads, (6) multilane highways, (7) cultivated
area of type C, and (8) no decision.

Comparison with standard regions identified
on enlarged photographs indicated points were
correctly classified about 70% of the time. The
computer printout for this problem is shown in
Figure 4. A complete description of this experiment
is given in CRES Technical Report 61-16 (Dalke,
1966).
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Figure 4.-Computer output for problem 1. The numbers refer to the code for the hypotheses indicated in the

text. The number 2 was deleted from the printout to simplify interpretation. The inked lines indicate
roughly the boundaries of the regions on the original photographs.
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Problem 2.- An x-band scatterometry radar
system measured fhe scattering cross=section of the
terrain for like and cross polarization and inci-
dence angles of 0°, 30°, 45°, and 70°, in a flight
over Pisgah Crater, California. The data were
processed relative to the hypotheses: (1) sloping
alluvial deposits, (2) flat silt and clay deposits,

(3) through (8) aa and pahoehoe lave with various
structural differences, (9) and (10) two types of
igneous rock outcrops. Points were classified
correctly 97% of the time. The quality of the data,
however, was too poor to attach any particular
significance to these rather remarkable results.

A complete description of this experiment will soon
be published as CRES Technical Report 61-17
(Dalke, 1966).

Problem 3.- We consider the hypothetical
example for which field data has provided accurate
selection of certain given hypothesis at isolated
points in a large region. The problem is to take
remotely obtained data (radar and optical images)
for the region and generalize the data from the
isolated points to the entire region in a statistically

REFERENCES

optimum fashion . This problem can be performed
on the processor. An interesting display of the
results would be to code each of the hypotheses

in a particular color and use the intensity to register
a confidence level for the generalized results.

The points for which the field data were obtained
will be the assigned color and will be the brightest
points on the display. Points that are considerably
different will be dark and will, therefore, have

less effect on the observer's interpretation.

CONCLUSIONS

The subjective nature of much of geoscience
interpretation makes the application of decision
theory techniques difficult. The processor described
in this report utilizes decision theory for the inter-
mediate problem of preparing data so that it is
suitable for interpretation and utilizes techniques
for effectively presenting the transformed data. This
concept of operator involvement in a processing
system may best be suited for effectively utilizing
the power of decision theory and the capabilities
of the experienced investigator.

Dalke, George, 1964, Color theory: CRES Technical Memorandum 61-4, 16 p.

Dalke, George, 1966, Automatic processing of multi-spectral images: CRES Technical Rept. 61-16, 61 p.

Dalke, George, in press, Automatic processing of scatterometry data and application to Pisgah Crater:

CRES Technical Rept. 61-17.
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A FACTOR ANALYTIC SCHEME FOR GROUPING

AND SEPARATING TYPES OF FOSSILS

By

Max Pitcher
Continental Oil Company

ABSTRACT

Fossil groups such as fusulinids, when described quantitatively, can be compared and classified by an
n-dimension vector analysis. Nine species from four genera of fusulinids are grouped by a factor analytic
scheme. When compared to a traditional classification specific and generic fields emerge on the two dimen-
sional factor plots. Boundaries of groups are arbitrary. Generic relationships can be studied from the factor

plots. The close similarity of Pseudoschwagerina to Triticites is shown and the gradational nature of Dun-
barinella glenensis between Dunbarinella and Triticites can be inferred. Three species of the fusulinid

genera Dunbarinella show specific separations when factored alone.
A modified factor score, calculated by post multiplying the transpose of the normalized raw data
matrix by the square of the rotated factor matrix with sign retained, ranks the influence of different mor-

phologic variables on generic and specific separation.
INTRODUCTION

Attempts to use only quantitative data in
identifying and classifying organisms presupposes
those data to embrace all of the distinguishing char-
acters necessary for the identification and classifi-
cation of the organisms. Not all organisms can thus
be described. Fusulinids, however, are amenable to
the use of numeric methods for their identification.
For a routine description of a fusulinid some twenty
to thirty characters are measured, and relatively
few of the distinguishing criteria are not included in
these numeric data. Several of these measurements
described various growth stages of the foraminifer.
Some of the characters not usually measured quanti-
tatively are position and intensity of septal fluting,
shape of the spirotheca near the poles (various
intensities of concavity and convexity), chomata
intensity, and development and position of cuniculae.
Chomata intensity and development of cuniculae are
generic characters in Triticites-Schwagerina and
Schwagerina-Parafusulina respectively, but the
former are criteria of specific differences, If these
characters are not used, the analysis may give
spurious results., Fortunately those characters which
are not numeric in nature may be correlated with
those that are; nonnumeric characters are not in-
cluded in the analysis.

A simple bivariate analysis is not able to
cope with the complex descriptive data. A multi-
variate scheme such as factor analysis (Imbrie, 1963)
is well suited to separate morphologic groups by a
simultaneous consideration of several parameters.

Data for this study was taken from M. L.
Thompson's American Wolfcampian Fusulinids (1954).
Representative samples were taken from his data to
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compare the results of a strictly numeric analysis
with Thompson's identifications. The species and
numbers of individuals chosen are: Dunbarinella
fivensis - 8; D. americana - 6; D. glenensi -7;
Triticites creekensis - 7; T. rockensis - é; Schwag-
erina vervillei - 7; S. longissimoidea - 8; Pseudo-
schwagerina needhami = 4; P. texana - 1. Raw
data from Thompson's tables were standardized by a
percent maximum transformation obtained by divid-
ing each value of a parameter by the maximum
recorded for that parameter. The 55 samples were
compared to each other by a COS 6 similarity coef-
ficient and factored in the Q-mode. Nine cent-
roid factors were extracted and seven rotated by the
Varimax criterion. Only four are considered signif-
icant. Figure 1 is the resultant rotated factor matrix,
and communalities. Figure 2 is a plot of representa-
tive species of each genus on two of the factors.

Acknowledgments.-I acknowledge the
guidance of John Imbrie under whose direction this
work was completed.

METHODS

Raw data from Thompson’s tables were tabu-
lated with samples on the rows and variables down
the columns. To exaggerate the spread of the
statistics, the minimum value of each variable was
subtracted from each value of the variable so that
there was at least one zero in each column. Then
the percent of the maximum was obtained by di-
viding each value by the maximum of that variable.
The data matrix was transposed so that the samples
were in columns and variables in rows.

The transposed matrix was then subjected to
a factor analysis. All of the analyses are in the Q-



mode. Nine centroid factors were extracted and
seven rotated. Figure 1 is the rotated factor matrix.
Figures 2-6 are plots of representative species from
the genera on several combinations of factors. As
shown in Figure 3, when all of the 55 samples are
plotted on a two dimensional display, the fields
merge. Notice how adding a third dimension re-
duces the overlap of D. glenensis and T. creekensis
(Fig. 4). The groups circled with dotted [lines
indicate species as identified by Thompson. Those
circled with solid lines are quantitatively misclassi-
fied within the dimensions shown. Because it is so
difficult to illustrate the group relations in four
dimensions, only representative species are plotied
on some of the figures.

There is considerable overlap on the plot of
factor | and Il (Fig. 3), but the areas of concentra-
tions are well defined for each genus. Generic
fields can be delineated. One of the purposes of
such plots is not only to separate groups, but to see
morphologic relationships. The plots show the close
morphologic similarity of Psuedoschwagerina and
Triticites, thus reflecting the possible phylogenetic
relationship of the two genera. Dunbarinella and
Triticites are well separated.

The use of several species from so many
genera seemed to be too much variation for the
system to extract specific groups, therefore three
species from the genus Dunbarinella were factored.
Four factors were extracted, but the first three ex-
plain most of the data. Figure 7 is the resultant
rotated factor matrix. Figures 7 and 8 are plots of
the specimens along the factors. The circled groups
are Thompson's species. Only one specimen does
not agree with the original classification. The
boundaries of the species as shown would be difficult
to choose without some g priori determination of
their affinites, but their relative position facilitates
morphologic comparisons. The author knows of no
method available to extract groups that are not
arbitrary. Grouping decisions can be tested, how-
ever, by a multivariate scheme such as discriminatory
analysis.

In Figure 7, specimen 11 falls within the D.

lenensis group and inFigure 8 within D. americana.
It was placed by Thompson with D. fivensis. If a
specimen remains within a group as fﬁey are plotted
on various factors, it adds validity to its classifica-
tion. If it changes affinity with the varying dimen-
sions, its classification is dubious, The latter is
true for specimen 11,

FACTOR SCORE

It is often difficult to evaluate the critical
parameters causing separation in a Q-mode analysis.
The end member compositions in the oblique pro-
jection scheme (Imbrie) and the R-mode analysis are
attempts to summarize the interrelations of the vari-
ables. None of these schemes, however, is capable
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of summarizing outstanding contributions within
factors of a particular Q-mode analysis. A factor
score (Harman, 1960) is a more useful tool.

The factor score used for this study is simpli-
fied from that described by Harman (1960). It is
obtained by relating the data matrix to the rotated
factor matrix. Variables that are abnormally high
are combined with high factor loadings so that the
resultant product highlights those variables that
contribute most to the sample separation. The factor
score is computed in the following way:

1) Normalize each variable of the data
matrix by subtracting the mean and dividing by the
standard deviation.

Thus: [Zii] normalized = [Zli']

(Nln) (Nln)
2) Transpose the Z' i matrix =
1 T 1
(20N = 12
(n,N)

3) Square the elements of the rotated
factor matrix, but retain the sign of the individual
loadings.

byl — +b,12 = 5]
(N, m) (N, m) (N, m)
4) Complete the matrix product
[Zlii] . [Bii] = [Fif] =
(n,N) (N,m) (n,m)

factor score matrix

Figure 9 is a factor score matrix for the Q-
mode factor analysis of 55 samples and 27 variables.

INSPECTION OF FACTOR SCORE MATRIX

The factor score is read with the sign of the
maximum factor loading carried to the same factor of
the factor score. For example, most of the high
loadings on factor Il of the rotated factor matrix are
positive (Fig. 1). A high positive number for a
variable on the factor score thus indicates a greater
than average reading for those samples with a high
loading on factor Il. Factor Il is negative; there-
fore, high negative values on the third factor of the
factor score are most significant.

Even though this is an averaging scheme, the
statistical consistency is shown by examining some of
the interrelated variables. Figure 1 shows Psuedo-
schwagerina and Triticites to have high loading on
factor I, The following is an analysis of the mor-
phologic traits of these genera from the factor score.

Factor Il (Factor Score)



1. Variable 3 is the ratio; length over
width. If the width is shown to be high, the ratio
should be low., The loading of variable 2 is + 8,213
and variable 3 is -=4.173. This is indicating the ro-
bust nature of Tricites and Psuedoschwagerina.

2. A high loading of variable 3 indicates
the large proloculus in Psuedoschwagerina and
Triticites as opposed to the small proloculus in
Dunbarinella.

3. The high volution height of volutions
1-6 is correlated with the high width of variable 2.

4. Variables 22-27 show the Pseudoschwag-
erina and Triticites have a thicker spirotheca than
Dunbarinella.

Factor Il (Factor Score)

Dunbarinella fivensis has the highest nega-
tive loading on the third factor of the rotated factor
matrix. Its distinctive characteristics are shown b
the high negative loadings of variables 11-16 on fKe
third factor of the factor score. The dimminution in
value of the form ratio from volutions 1-6 indicate
that the early growth stages are the most distinct.

REFERENCES

Factor IV (Factor Score)

Dunbarinella glenensis is dominant on factor
IV of the rotated factor matrix. An examination of
high negative loadings in the factor score matrix on
factor 1V shows D. glenensis to be long, wide, and
have a large proloculus, This would bring it mor-
phologically more similar to Triticites. This relation=

ship is also shown by the gradational loadings of the
factor matrix between D. glenensis and T. creekensis.

CONCLUSIONS

Factor analysis and factor scoring are useful
tools in studying the interrelationships of fusulinid
species. Exact separation of specific groups is
arbitrary, but generic and specific "fields” are
clearly defined. The factor score aids in isolating
critical variables that contribute most to sample
separation.

The author has successfully separated grapto-
lite populations using similar methods (in press).
With very close stratigraphic control of measured
fossils it may be possible to discern minute evolu-
tionary changes within species which will allow very
close stratigraphic correlations.

Harman, H. H., 1960, Modern factor analysis: University of Chicago Press, 337 p.

Imbrie, John, 1963, Factor and vector analysis programs for analyzing geologic data: Technical Report No.
6 of ONR Task No. 389-135, Contract Nonr 1228(26), Office of Naval Research, Geography

Branch, 83 p.
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Samples 1

1 0.5636
2 0.5291
3 0.5416
4 0.4571
5 0.7521
6 0.4094
7 0.2914
8 0.5235
9 0.2254
10 0.2467
11 0.3341
12 0.3355
13 0.4858
14 0.6225
15 0.3207
16 0.2958
17 0.2329
18 0.2524
19 0.1521
20 0.2087
21 0.2396
22 0.4461
23 0.2346
24 0.1757
25 0.1824
26 0.4202
27 0.0786
28 0.3661
29 0.5206
30 0.4311
31 0.4973
32 0.6928
33 0.4946
34 0.4574
35 0.5778
36 0.5346
37 0.7344
38 0.7980
39 0.8434
40 0.6822
41 0.5878
42 0.6973
43 0.5330
44 0.7523
45 0.6750
46 0.6607
47 0.6451
48 0.5763
49 0.7115
50 0.6894
51 0.4510
52 0.3727
53 0.4042
54 0.3943
55 0.4356

Variance 13.9597

0.1771
0.3736
0.1922
0.2538
0.2733
0.1709
0.4233
0.3209
0.1386
0.2448
0.2816
0.2568
0.2149
0.2231
0.5139
0.4280
0.4913
0.5366
0.5673
0.3512
0.5857
0.6194
0.8755
0.8759
0.8920
0.8422
0.9116
0.8094
0.6415

0.6433
0.6556

0.5190
0.7075
0.8034
0.5434
0.4273
0.3531
0.2788
0.3334
0.4051
0.6502
0.3686
0.6217
0.4094
0.5221
0.5689
0.6586
0.5779
0.4935
0.5051
0.7412
0.7811
0.7564
0.8257
0.6342

17.0690

-0.6675
-0.5710
-0.6946
-0.6757
-0.3869
-0.6521
-0.6657
-0.4916
-0.9192
-0.8997
-0.5164
-0.6212
-0.7782
-0.5068
-0.6367
-0.4454
-0.2676
=0.3447
-0.2116
-0.4238
-0.2640
-0.3081
-0.2151
-0.0990
-0.1396
-0.1430
-0.1600
-0.3082
-0.3686
-0.3864
-0.1404
-0.2950
-0.3584
-0.2720
-0.4689
-0.5696
-0.4666
-0.4221
-0.2976
-0.5385
-0.3606
-0.5167
-0.4194
-0.3857
-0.4809
-0.3949
-0.2570
-0.1911
-0.3930
-0.2084
-0.2955
-0.3792
-0.2755
=0.2540
-0.3862

11.3828

MATRIX OF ROTATED FACTORS

4

-0.3212
=0.4151
-0.3468
-0.3502
-0.4130
-0.5025
-0.4515
-0.2289
-0.1803
-0.1790
-0.5960
-0.2006
-0.1704
-0.0458
-0.3176
~-0.6922
-0.7615
-0.6515
-0.7208
-0.7214
-0.6805
-0.4812
-0.3187
-0.3935
-0.3015
-0.2348
-0.3128
-0.2938
-0.1836

-0.2762
-0.2567

-0.1214
-0.2334
-0.1383
-0.1975
-0.3324
-0.2172
~0.1955
-0.2211
-0.1960
-0.1981
-0.1778
-0.2768
-0.2044
-0.1485
-0.2099
-0.2507
-0.3907
-0.2649
-0.4060
-0.1277
-0.1920
-0.2207
-0.1906
-0.2786

7.1026

-0.1796
-0.0604
0.0930
0.0765
-0.0040
0.0618
-0.1495
-0.4836
0.0308
0.0563
-0.2090
-0.1744
-0.0674
-0.1935
-0.1812
0.0679
0.0478
0.0785
-0.0225
-0.2523
-0.0991
0.0401
0.0347
0.0008
-0.1060
-0.0979
-0.0215
0.0380
-0.1498

-0.1297
-0.1010

-0.1595
0.0302
-0.0457
-0.0559
-0.0856
-0.0344
-0.0655
-0.1055
-0.0869
-0.0816
-0.1574
0.0876
0.0647
-0.0057
0.0951
0.0717
0.0555
0.0377
0.0188
-0.0792
-0.0732
-0.0153
-0.1487
-0.0767

0.7908

0.1962
0.0069
-0.0937
-0.1537
-0.0250
0.0620
-0.0571
0.0058
0.0649
-0.0196
0.1527
-0.0412
0.1590
0.0749
0.0435
0.0990
0.0677
-0.1306
-0.1112
0.1126
0.0080
-0.0228
0.0201
-0.0338
-0.0365
-0.0441
-0.0623
0.0246
-0.2117
0.0104
0.1184
0.0395
-0.1505
-0.1177
0.2460
0.1226
-0.0290
-0.0812
-0.0837
0.0901
0.0733
-0.0351
0.1180
0.2227
0.1017
0.0906
-0.0132
0.2518
0.0372
0.1389
0.2584
0.2120
0.3069
0.1075
0.2878

0.8758

0.0411
0.0820
-0.0654
-0.2177
-0.0357
-0.2490
0.0115
-0.0507
-0.0521
0.0071
0.0513
-0.0610
0.1172
0.3288
0.0457
-0.0817
0.0341
-0.0676
-0.1763
0.0438
0.0033
-0.0605
-0.0325
-0.0395
0.1267
0.0483
0.1053
-0.0353
-0.1796

-0.3439
-0.4000

-0.2235
-0.1332
-0.1329
-0.1129
-0.1451
-0.0800
-0.2019
-0.0719
-0.0488
-0.1132
0.0418
0.1169
-0.0099
0.1130
0.0104
0.0289
0.1066
0.0062
0.1176
-0.0496
-0.0010
-0.1427
-0.0413
-0.0689

0.9224

Commu-
nality

0.9702
0.9283
0.9547
0.9294
0.9625
0.9442
0.9369
0.9076
0.9554
0.9658
0.8825
0.6406
0.9605
0.8475
0.9100
0.9693
0.9552
0.9228
0.9533
0.9452
0.9431
0.9150
0.9720
0.9654
0.9680
0.9753
0.9760
0.9737
0.9516
0.9604
0.9469
0.9280
0.9695
0.9813
0.9644
0.9467
0.9374
0.9826
0.9832
0.9759
0.9623
0.9484
0.9584
0.9779
0.9807
0.9775
0.9849
0.9331
0.9774
0.9721
0.9319
0.9800
0.9749
0.9734
0.9121

52.1032

Figure 1.- Rotated factor matrix for 55 fusulinid specimens from 4 genera and 9 species. Samples 1-6 D.
americana; 7-15D. fivensis; 16-22 D. glenensis; 23-28 T . creekensis; 29-34 T. rockensis; 35-

425 verV|||e| 43-505
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longissimoidea; 51-54 P. needhami; 55 P. texana.
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Figure 3. - Two dimensional plot of factor loadings of 55 fusulinid specimens. Dotted fields indicate Thomp-
son's identification. Solid circles indicate specimens quantitatively misclassified in dimensions illust-
rated.
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MATRIX OF ROTATED FACTORS

1 -0.42153 -0.27021 0.78960 0.24790 0.93563
2 -0.29603 -0.50164 0.74580 0.14361 0.91612
3 -0.26347 -0.41128 0.80505 0.03995 0.88828
4 -0.39292 -0.46608 0.69919 0.05570 0.86358
5 -0.14128 -0.39889 0.86607 0.06992 0.93404
6 -0.19162 -0.37859 0.80219 0.25695 0.88958
7 -0.59256 -0.57951 0.37863 0.28686 0.91261
8 -0.61903 -0.37274 0.50176 0.28748 : 0.85654
9 -0.51218 -0.17628 0.67527 0.30318 0.84131
10 -0.63313 -0.32448 0.60814 0.17282 0.90584
11 -0.26724 -0.42100 0.51633 0.64314 0.92889
12 -0.65728 -0.47512 0.52707 0.12336 0.95078
13 -0.49084 -0.20343 0.77274 0.23356 0.93399
14 -0.50028 -0.16344 0.68321 0.28531 0.82517
15 -0.64315 -0.57819 0.44736 0.04219 0.94986
16 -0.23721 -0.76279 0.50609 0.19203 0.93112
17 -0.14348 -0.88053 0.31865 0.18073 0.93011
18 -0.14552 -0.84883 0.38120 0.08224 0.89377
19 -0.23210 -0.90476 0.14800 0.14820 0.91634
20 -0.36604 -0.64113 0.22704 0.57691 0.92941
21 -0.37465 -0.83922 0.23817 0.20596 0.94380
22 -0.28446 -0.74665 0.47813 0.07840 0.87315

Figure 6. - Rotated factor matrix for 22 fusulinid specimens belonging to 3 species of Dunbarinella. Samples
1-6 D. americang; 7-15 D. fivensis; 16-22 D. glenensis.
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Figure 7. - Two dimensional factor plot of 3 fusulinid species of Dunbarinella.
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CLASSIFICATION OF SUBSURFACE LOCALITIES OF THE REAGAN SANDSTONE
(UPPER CAMBRIAN) OF CENTRAL AND NORTHWEST KANSAS

Roger L. Kaesler

University of Kansas

and

Marcus N. McElroy
Humble Oil Company

INTRODUCTION

The purpose of this paper is to present an
application of the methods of numerical taxonomy
(Sokal and Sneath, 1963) to clustering of subsurface
geological localities. The principal advantage of
the method is that it allows the geologist to consider
simultaneously all quantifiable lithologic, structural,
and paleontological features (characters) that he
obtains from the study of cores or well cuttings.
Furthermore, results of cluster analysis are presented
as convenient graphs or dendrograms. Graphic
presentation obviates the assimilation and evaluation
by the investigator of large bodies of quantitative
results,

The method used has two inherent disadvan-

tages which necessitate that it not be used indiscrim-
inantly. First, a dendrogram is a two-dimensional
representation of a complex, multidimensional con-
figuration expressed by the matrix of correlation
coefficients or distance coefficients (hereafter called
the similarity matrix). Its use results in some dis-
tortion of similarities, particularly in high-order
clusters such as are used in this study. Extent of the
distortion may be measured by a correlation coef-
ficient of the similarity matrix with the cophenetic
values from the dendrogram (Sokal and Rohlf, 1962;
Rohlf, 1963q).

A second disadvantage of the method is that
a dendrogram gives a hierarchical classification.
Thus, it forces a transitional entity into the cluster
with which it is most similar. Few phenomena in
nature are hierarchically structured, and uncritical
use of the nested clusters shown on a dendrogram can
give a false impression, particularly in the very
important cases where transition exists. Sokal and
Sneath (1963, p. 171-174) gave a detailed discus-
sion of the kinds of distributions that may appropri-
ately be given nested classifications. In spite of
this shortcoming of most kinds of data, many investi-
gators have obtained meaningful results by applying
these methods to the solution of geological problems
(Bidwell and Hole, 1964; Bonham-Carter, 1965;
Rucker, 1965; Kaesler, 1966; Maddocks, in press).
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The investigator can often largely overcome
the two disadvantages of the method used here by
comparing the dendrogram with the similarity matrix
in search of discrepancies and transition. Neverthe-
less, we believe that until more is known about the
effects of distortion of similarities and the importance
of transition, application of the methods of numerical
taxonomy to clustering of subsurface geological
localities should be regarded as reconnaissance
geology.
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DESCRIPTION OF REAGAN SANDSTONE AND
CHARACTERS USED

Lithology of the Reagan Sandstone and its
stratigraphic relationships with adjacent rock units
were discussed in detail by Scott and McElroy (1964)
and McElroy (1965). The following brief description
of the unit was taken primarily from a summary by
McElroy and Kaesler (1965).

The Reagan Sandstone, which is present only
in the subsurface in Kansas, has been determined to
be Late Cambrian (Dresbachian) in age on the basis
of meager fossil evidence. lts type section is in
southern Oklahoma, and it is a lithostratigraphic
equivalent of the Lamotte Formation which crops out
in southeastern Missouri.



The Reagan is fairly uniform in composition
throughout central Kansas. It is predominantly a
quartzose sandstone, but locally it is feldspathic
near the base. The Reagan becomes dolomitic near
its top and grades into the overlying Arbuckle Group.
Glauconite is an important accessory mineral in the
northern one-third of western Kansas, but elsewhere
it makes up less than 2 percent of the rock. Cement-
ing materials include quartz, calcite, glauconite,
hematite, and siderite. Unlike composition, grain
size and sorting of the Reagan are highly variable
over short distances.

In its type locality the Reagan overlies a
very thin arkosic unit which lies directly on Pre-
cambrian igneous and metamorphic rocks. In places
in the Kansas subsurface, however, the arkose or
"granite wash" is as much as 100 feet thick. It is
not regarded as being genetically related to the
Reagan, but in places the contact between the two
is transitional .

From each of eighty wells in western Kansas,
seventeen characters were used, which included, for
the Reagan Sandstone and adjacent units, thickness-
elevation data, lithologic data, and relationships to
structural geology. To facilitate handling, quanti-
tative data were coded in equal intervals from 0 to
9 (with the exception of mean grain size, coded 0 to
6). Qualitative and semi-quantitative data were
coded as appropriate. All information used in this
study is on open file with the Kansas Geological
Survey and may be examined upon request.

Character 1. Elevation of top of Pre-
cambrian, Range -4595 to -1110 feet (reference
sea level); coded 0 to 9.

Character 2. Thickness of Arbuckle
Group (above Reagan). Range 0 to 994 feet thick;
coded O to 9.

Character 3. Thickness of Reagan Sand-
stone. Range 6 to 175 feet thick; coded 0 to 9.

Character 4, Thickness of sub-Reagan
arkose. Range O to 49 feet thick; coded O to 9.

Character 5. Amount of quartz in Pre-
cambrian rocks. Coded O for schist;

1 for volcanics and granite gneiss;

2 for Precambrian sediment, except quartz-

ite;

3 for Precambrian quartzite.

Character 6. Amount of biotite in Pre-
cambrian rocks. Coded O for Precambrian quartzite;

1 for Precambrian sediment, except quartz-

ite;

2 for volcanics and granite gneiss;

3 for schist.

Character 7. Amount of feldspar in Pre-
cambrian rocks. Coded O for Precambrian quartzite;

1 for schist;

2 for Precambrian sediment, except quartz-

ite; .
3. for volcanics and granite gneiss.
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Character 8. Relative distance from
nearest known fault. Measurements were in inches
from faults on the map by Cole (1962), scale 1 inch
= 10 miles. Range 0.1 to 3.4 inches; coded 0to 9.

Character 9. Percent quartz in Reagan
Sandstone. Range 80 to 100 percent; coded 0 to 9.

Character 10.  Percent glauconite in
Reagan Sandstone. Range O to 9 percent; coded 0
to 9.

Character 11, Percent dolomite in Reagan
Sandstone. Range O to 20 percent; coded 0 to 9.

Character 12.  Mean grain size of Reagan
Sandstone. Range 5 to -2 phi; coded 0 to 6.

Character 13.  Roundness index (Dapples,
Krumbein, and Sloss, 1953; Russell and Taylor, 1937;
Pettijohn, 1956). Range 0.01 to 1.00; coded O to 9.

Character 14,  Sorting measure (McElroy
and Kaesler, 1965). Range 130.1 to 4; coded 0 to 9.

Character 15,  Percent feldspar in Reagan
Sandstone. Range O to 10 percent; coded 0 to 9.

Character 16.  Topography of Precambrian.
Coded 1 for Precambrian topographic low;

2 for intermediate;

3 for Precambrian high.

Note: This character is a measure of local topo-
graphic configuration of the Precambrian surface

and is not the same as elevation of the Precambrian
surface (Characterl).

Character 17,
associated fault,
Coded O for well on downthrown side of fault;

1 for no fault association;

2 for well on upthrown side of fault.

Ideally, the 80 wells used in this study
should have been chosen at random. In practice
this was not possible. Hopefully oil wells are
rarely drilled at random but rather are aimed at
specific targets—-structural or stratigraphic traps
containing petroleum. The wells used in this study
are ones that penetrated Precambrian rocks and are
as widely distributed areally as possible.

Relative movement of

RESULTS

A Q-type matrix of distance coefficients
was computed from the data after standardization by
characters. Figure 1 is a dendrogram prepared from
the distance coefficient matrix by the unweighted
pair-group method using arithmetic averages
(UPGMA; Rohlf, 1963b). The correlation coeffi-
cient between the original distances and the co-
phenetic values (distances implied by the dendro-
gram) is 0.730. This value, which represents the
amount of distortion in the dendrogram, is only
slightly smaller than results reported by Sokal and
Rohlf (1962) for numerical taxonomic work.

Figure 2 shows the location of the 80 wells
used in this study and some of the major structural
features of Kansas. Clusters of wells at the 1.4
phenon level in Figure 1 are shown on the map by
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Figure 1.-Dendrogram prepared by the unweighted pair-group method using arithmetic averages (UPGMA)
based on distance coefficients computed from standardized, coded characters taken from 80 wells in
western Kansas. Map symbols: + indicates wells 1, 14, 12, 6, 26; ® indicates wells 2, 13, 3, 4,
22, 28,7,15,9, 17,10, 49, 52, 37, 19, 21, 61, 27, 51, 23, 24, 25, 30, 36, 62, 43, 40, 42, 58
56, 69, 70, 73, 20, 53, 54, 38, 60, 31, 32, 33, 34, 41, 44, 55, 59, 67, 63, 64, 65, 68, 8, 16,
11; X indicates wells 47, 50, 74; o indicates well 39; A indicates wells 5, 29, 45, 18, 46, 48, 72,

71,66,57m indicates wells 35, 75, 78, 79, 80, 76, 77. All wells listed in order of appearance on
dendrogram .
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similar patterns. The Cambridge Arch, Pratt Anti-
cline, Salina Basin, and Sedgwick Basin are pre-
Desmoinesian post-Mississippian structures; the
Ancestral Central Kansas Uplift and the Southwest
Kansas Basin are pre~Mississippian post-Devonian in
age (Merriam, 1963, p. 178).

Merriam (1963, p. 179) emphasized the
difficulty with which pre-Mississippian structural
deformation is recognized in Kansas. In spite of this
difficulty, evidence exists for the presence of the
Cambridge Arch during sedimentation of the Aubuckle
Group; and the Ancestral Central Kansas Uplift was
also "mildly active at this time" (Merriam, 1963, p.
212; see also Scott, 1966). Merriam (1963, p. 211,
212) and other workers also recorded the presence of
a syncline east and southeast of the Ancestral Central
Kansas Uplift, which syncline was formed before St.
Peter Sandstone was deposited in the area.

This evidence of pre-Ordovician, post-
Precambrian deformation is cited because we believe
the method used in this study provides evidence of
the same structures. Fifty-four wells used in this
study form a single, large cluster. These wells are
shown in Figure 2 as solid circles. All but five of
these are located within the boundary of the Ances-
tral Central Kansas Uplift, and those five are not
far outside the boundary. It would be a mistake,
however, to draw far-reaching conclusions from this
configuration because most of the wells used in the
study were drilled on the uplift.

Geographic location of wells belonging to
other clusters may be more meaningful. The wells
indicated by a plus sign all lie within the boundary
of the Cambridge Arch, although they are not the
only wells located there. Seven of the nine wells
indicated by a solid triangle are located at the
southern end of the Uplift, and all nine are located
toward the flanks of the structure. The small
cluster with wells indicated by an X also lies to the
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APPLICATION OF DISCRIMINANT FUNCTIONS AS A

CLASSIFICATION TOOL IN THE GEOSCIENCES

John C. Griffiths

Pennsylvania State University

ABSTRACT

Simple linear discriminant functions have been used to classify populations of rocks and minerals into
oil-bearing and barren sediments, uranium ore-bearing and barren sediments, loess and loess-like alluvium,
beach and dune sands, Circumoceanic and Oceanic Island types of basalts, refractory and nonrefractory
quartzites; multiple discriminants in which there are three or more classes have also been used to differentiate
glacial till, delta and beach sands, and to subdivide potentially promising mining areas into six dollar-value

classes on the basis of their geological environments.

These discriminants may be used either as empirical tools for classification or as one step in an attempt
to understand what geological factors lead to differentiation of the classes.
Selection of the variables to achieve optimal discrimination is best performed by means of components

analysis in the Q mode.
INTRODUCTION

Classification is one of the earliest and
simplest steps in ordering the complex of events in
the "real world”; it is always superimposed on the
world of events whether it is considered a "natural”
or "artificial " classification. Defining, classifying
and naming objects are early steps in the procedure
known as the scientific method and they form the
basis of language and communication. Classification
requires a set of criteria for assigning objects to
classes; the criteria are usually properties of the
individual objects and, if properly constructed and
used, the ciasses which result are mutually exclusive
and exhaustive. [f the classes so constructed are
characterized by names the nomenclature of the
classes forms a nomial scale; that is, there is no
necessary relationship between the classes other than
those dependent on the exhaustive and mutually
exclusive requirements. Quite frequently the classes
are ordered so that a granite -gabbro sequence of
classes is characterized by change from light to dark
color and, similarly, a granite-rhyolite sequence of
classes is based on a change in grain size. In this
case the arrangement of the classes leads to an
ordinal scale and the ordered ranking may be of
interpretive value (Barnard, 1935).

More refined classification leads to class
relationships which may be related to interval or
ratio scales as in the classification of frequency of
grain sizes where grain size is a continuous variable
of interval or ratio scale in measurement level,

Natural, as contrasted with artificial, clas-
sifications usually contain some systematic content,
i.e. the natural classification exhibits relations
which are not evident until after the classification
has been accomplished (Hempel, 1952), a typical
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example being the periodic classification of the
chemical elements.

One of the more common misuses of classifi-
cations arises when a series of objects are arranged
in classes and the classification so constructed is
presumed to be a fact rather than an artifact; in
other words, the search for order represented by
classification is a function of the human instinct and
whether it is representative of "natural order” among
the items classified is debatable. The rectangular
classification of igneous rocks after Rosenbusch (see
Johannsen, 1939, p. 119ff.) or that of the sedimen-
tary rocks after Krynine (1948) are useful for ident-
ification and naming rocks and also for putting rocks
in rectangular draws but their originators believed
that the arrangements and relations among the classes
have some interpretive or predictive content. Many
bitter controversies have arisen over problems of
nomenclature and classification because of con-
fusion in the degree of achievement of these two
independent objectives.

The simplest form of classification consists of
a subdivision of the population of individual ele-
ments into two classes; the classes should be mutually
exclusive and exhaustive and the criteria forming
the basis of assignment of individuals to classes
should be chosen so that these requirements are
fulfilled. Fisher (1936) proposed the discriminant
function as a statistical tool for subdividing a set of
objects or individuals into two such classes on the
basis of their properties. The discriminant function
is selected so that it is the most effective linear
compound composed of the weighted properties of
the objects to enable the two classes to be distin-
guished.

To set up a discriminant it is necessary, then,
to define two classes which are mutually exclusive



and exhaustive and to select appropriate criteria
(properties of the objects to be classified) which will
- permit the assignment of each object to one or other
of the two classes. In practice, the classes chosen
are usually exhaustive but possess various degrees of
overlap so that they are not mutually exclusive; the
discriminant function is first established by using
objects which are clearly assignable to each of the
two classes and, after a suitable function is found,
objects with unknown class affinities are assigned by
means of the discriminant function. If the two
classes are not mutually exclusive the assignment of
an unknown to a class, resulting from the application
of a discriminant, has an associated probability of
misclassification (Rao, 1952, p. 296).

Various refinements and extensions are
possible in establishing a discriminant function; for
example, it is possible to test whether a discrimi-
nant based on say five properties is as effective as
one based on a lesser number of properties (Rao,
1952, p. 252ff.). Again it is possible to extend the
discriminant to encompass more than two classes
using a multiple discriminant function (Rao, 1952,
p. 307ff.). In fact the discriminant index, conven-
tionally symbolized as Z, may be two valued, lead-
ing to a simple discriminant function, many valued,
as in multiple discrimination or, if Z is a continous
variable, the discriminant index is equivalent to the
dependent variable in a multiple regression equation
(see for example, Griffiths, 1961).

An alternative way of looking at a discrimi-
nant function is to consider the simple linear dis-
criminant as the multivariate analogue of the uni-
variate Student's test and a multivariate equivalent

is Hotelling's T2 statistic (Miller and Kahn, 1962,
p. 248), There are also examples of the use of non-
linear discriminants both simple and multiple
(Hodges, 1950, Mcintyre, D. D., 1962, Harries,
1965). Discriminant analysis is, then, one tool
among the varied multivariate procedures which may
be used in the classification of objects (Anderson,
1958). Application of a discriminant function as a
classification procedure may be based on the simple
requirement of finding some objective means of sub-
dividing a population into two or more sub-popu-
lations without expecting more than the subdivision
as an outcome; or, as is more usual, it may be one
step in attempting to elucidate the relationship
among groups of objects with the objective of
attempting to interpret the relationships both among
the discriminated classes and among the properties
which permit the discrimination.

DISCUSSION OF SELECTED EXAMPLES

Use of a discriminant function as a classifi-
cation tool in the geosciences is quite common (see
list of references) and ranges over a wide variety of
subject matter problems, some of which are discussed
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below because they illustrate different uses of dis-
criminants and the different roles they may play in
different situations,

Simple Discriminants

Perhaps the first example in the geosciences
was an attempt to distinguish oil-bearing from barren
sediments (Emery, 1954; Emery and Griffiths, 1954).
In this case the two sub-populations are exhaustive
and appear to be mutually exclusive but in fact they
are not; the discriminant function was constructed on
the basis of six petrographic properties but only three
were effective in discriminating the two classes (see
Griffiths, 1963, p. 643). In this example the dis-
criminant actually succeeded in separating the two
classes but a more detailed examination showed that
the basis for separation depended on the fact that
the oil-bearing samples, taken from one Berea oil-
sand core, were much more homogeneous than those
of the barren sandstones representing several horizons
in the stratigraphically equivalent Pocono sandstones
(Griffiths, 1966, in press). Here the discriminant,
while successful in achieving its immediate objective
of separating the classes, also led to an understand-
ing of the reasons for the separation.

Subsequently this investigation was extended
by mapping changes in value of the discriminant
index over the barren Pocono sandstones of Penn-
sylvania and it was demonstrated that the index
could be used in this case to indicate the change in
favorability from barren sandstones in the east to
potentially more favorable sandstones in the west
(Shadle, 1957, Griffiths, 1963, p. 645).

A second example in which a discriminant
was used to separate two classes, loess and loess-
like alluvium, is described by Millette (1955); here
the two sub-populations could again be considered
exhaustive in terms of the area sampled but they
were hardly mutually exclusive. Nevertheless the
discriminant could be used to successfully separate
the two classes.

Hulbe (1957) attempted to differentiate
some beach from dune sands by measuring the size
and shape of their contained quartz grains; from a
geological point of view the conclusions are inter-
esting because a univariate comparison of the size of
the grains was inconsistent; the long "a" axis of the
quartz grains in the beach sand were smaller than
those in the dune whereas the intermediate "b" and
short "c" axes were larger. This suggests that
attempts to use size are likely to yield unstable
comparisons. On the other hand, when the three
axes were combined into a discriminant function the
two classes were clearly separated and the relation-
ship between the short "c" and long "a" axes were
the controlling factors. In other words, the shape
of the quartz grains may differentiate beach from
dune sand independently of their sizes; if this con-



clusion is affirmed by more extensive analysis then
the relationship among long and short axes may be
shown to be invariant across absolute changes in
grain size. The process leading to the development
of a dune sand from a beach sand is one of selective
sorting, and on the basis of these findings it is
apparently a process which selects on the basis of
shape rather than size. From the statistical point of
view this illustrates an example in which, while the
means are not consistently different, the discriminant
succeeds because of a suitable interaction among the
variables.

An example of the application of a discrimi-
nant to the differentiation of uranium-bearing from
barren sediments indicates some of the difficulties
which may arise in the use of this tool (Griffiths,
1957); here the two sub-populations were assigned
on the basis of the presence or absence of ore but
the real comparison required was between rock which
was minable and that which was not. The petro-
graphic properties sufficed to discriminate but the
exact implications were not clear. Two difficulties
arise; first the difference between ore and barren
rock is not mutually exclusive unless the definition
of the classes is refined. Secondly the two sub-
populations were apparently not homogeneous; for
example an ore-bearing sediment in the Shinarump
formation is a gravelly sandstone and the barren
rock is coarser in size. Similarly the ore-bearing
rock in the Salt Wash member is a very fine grained
sandstone whereas the barren sandstones were some-
what coarser. In such cases local differences may
suffice to differentiate the two classes and in a
regional sense the two sub-populations exhibit a
wide range in variation of the values of the proper-
ties and a very considerable overlap. If the sam-
pling had been paired on a local basis then the
differences would probably have sufficed to yield a
meaningful discriminant.

Chayes (1965) proposes to use a discriminant
function as an objective means of classifying igneous
rocks plotted in a ternary diagram in terms of three
normative end-members; since the three bases of
classification sum to a constant a two term discrimi-
nant is adequate and optimal for the separation of
the phases. He has also applied discriminant analysis
to distinguish between Circumoceanic and Oceanic-
Island types of basalt in terms of their differing
chemical composition (Chayes and Velde, 1965).

Multiple Discrimination

Multiple discrimination was first applied by
Barnard (1935) and an extensive investigation of the
cranial characters of five different tribes in India is
described by Mahalanobis et al (1949). McIntyre
(1962) used this procedure in an attempt to differ-
entiate three associated environments, a glacial
till, fluvioglacial delta and a beach on the bais of
the shapes of some of their contained minerals
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(quartz, garnet, and hornblende); this investigation
is of especial interest because the covariance
matrices of the three classes appeared to be heter-
ogeneous and so MclIntyre used quadratic discrimi-
nant functions as recommended by Fisher (1936) to
separate the three classes. He q(so attempted to
apply sequential analysis by discriminants to obtain
a cleaner separation.

Harries (1965) also applied a multiple dis-
criminant function procedure coupled with Bayesian
decision functions to assign areas (called cells) on
the basis of their geological properties to different
dollar value classes in an attempt to subdivide a
region into potentially promising targets for mining
exploration. In this case the discriminant scale is
ordered in a similar manner to that used by Barnard
(1935).

A number of other examples of the application
of discriminant functions to geoscience problems are
listed in Miller and Kahn (1962), Krumbein and
Graybill (1965) and in the list of references in the
present article,

SELECTION OF VARIATES FOR DISCRIMINATION

Selection of the variates to be included in
the discriminant function has usually been based on
empirical testing of the contributions of each suc-
cessive variate or sets of variates to the power of the
discriminant; two approaches may be used in anal-
ogous fashion to the construction of a multiple re-
gression equation. First it is possible to commence
with as many independent (X) variates as possible
and then to test successively the contribution of the
last variate or last set of variates to the power of
the discriminant. Alternately it is possible to build
up the discriminant by commencing with one variate
and upon adding a second test the additional con-
tribution of each succeeding variate. Unfortunately
these procedures do not lead to unique results since
the order in which the variates are added plays a
role in the results. In extreme cases a variate may
be rejected when first tested and subsequently, if
introduced at a later stage, may contribute signifi-
cantly to the regression or discriminant function.
This arises because the X variates interact and then
are not strictly independent.

In order to obtain a more objective and con-
sistent result it is possible to subject all variates,
dependent and independent simultaneously, to a

components analysis and then use the results of this

analysis to build the regression equation or discrimi-
nant function. In general if the objective is to
explain one variate, the dependent or Y variate, by
the X or independent variates, the R mode is used
for the component analysis (Griffiths, 1963, 1966);
the component with the largest loading in the Y
variate is selected and the first X is the independent
variate loaded most heavily on this component. No
other X will explain more so this is the optimal



choice; similarly the component with the next
highest loading in the Y variate is examined

for its X with highest loading and this is

the second independent variate to be included in the
regression .equation. This second X variate is, on
the basis of the component analysis, independent of
the first and no other variate will contribute more to
explaining the variation in the dependent variate.
This escalation upwards may be continued building a
stepwise regression equation which is the best that
may be designed from the available matrix of obser-
vations.,

A similar procedure may be used to build the
"best" discriminant function by using a Q mode
components analysis (Imbrie, 1963) as the basis for
selection of components and variates (see for ex-
ample, Griffiths, 1966).

These procedures will generally suffice to
evade the equivocal character of applying multiple
regression and discriminant analysis to a matrix of
observations. It also permits the investigator to
decide whether a regression equation or discriminant
will be effective at all on the basis of the information
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ABSTRACT

The comparison and correlation of oil-field brines by means of pattern analysis has proven to be
feasible. The use of Stiff and Piper diagrams to represent graphically the chemical characteristics of a par-
ticular brine provides a rapid, simple, and convenient method of simultaneously comparing and characterizing
the chemical composition of several brines. Pattern analysis emphasizes clearly the chemical differences
between brines from different formations. The techniques of pattern analysis should prove extremely valuable
in water-quality studies for tracing sources of brine pollution.

INTRODUCTION

An understanding of the chemical composition
of oil-field brines is vital to research on (1) forma=
tion of oil-field brines (2) stream pollution by brines,
(3) treatment of water used for water-flooding pro-
jects, and (4) classification of brines as to origin.
For example, one of the more obvious uses of water
analysis is in the determination of the source of
water infiltrating petroleum and natural gas wells,
For this purpose it is necessary that both the water
of the oil-producing formation and contaminating
water be analyzed. By comparison of water analyses
from a given formation with that of water from
other geologic formations in the area, the source
of the infiltrating or contaminating water sometimes
can be identified.

One of the difficulties associated with re-
search of oil-field brines is that of selecting a prac-
tical classification for the identification of brine
types. Obviously, all the brines are high in sodium
and chloride; hence an attempt to identify and
catogorize several different brines by merely "look-
ing” at the gross chemical analysis is often a frus-
trating and time-consuming job.

Several systems have been proposed or are in
use in studies of brine chemistry. Three of these
are: (1) the hypothetical-combination system, (2)
the Palmer system, and (3) the ionic system (Reistle,
1927). The ionic system, which reports the concen-
tration of each component in parts per million (ppm)
has been satisfactory in studies of oil-field brines.
For describing, identifying, or differentiating any
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two waters, the system cannot be misleading; how-
ever, as noted above, it is not practical to differen-
tiate several brines using this technique. Utilization
of this system has other drawbacks, but they will not
be discussed here.

The main objective of this study was to
examine the feasibility of identifying brines by means
of the patterns (pattern analysis) generated by utiliz-
ing different graphical techniques to present the
chemical data for each brine. Chemical data for
brines from the Kansas City Group of Pennsylvanian
age and the Arbuckle Group of Ordovician age were
examined by several graphical methods to test the
"uniqueness" of the pattern developed for each brine.

PROCEDURE

The graphic patterns used were the Stiff
(1951) diagram, and the Piper (1953) quaternary
cation-anion, trilinear-cation, and trilinear-anion-
percentage diagrams. Digital computer programs
for handling these diagrams (Morgan et al., 1966)
were developed by the University of Kansas Com-
putation Center and the U.S. Geological Survey
office in Lawrence, Kansas. These programs,
written in FORTRAN 1V, manipulate the brine data,
make the necessary calculations, and produce the
Stiff and Piper diagrams.

The Stiff diagram is a means of graphically
representing a single chemical analysis of a water
sample. It allows similarities and differences in the
concentration of constituents to be seen at a glance
and can be used for visual comparison of analyses.

Chemical data are read into the computer in
parts per million and instructions in the program



convert the constituent values in parts per million to
equivalents per million (epm). The constituent
values used on the diagram are then compared by the
computer with a set of scale values that have been
previously read in, and a scale is selected by the
program so that all concentrations fall within the
range of the diagram. Identification and scale in-
formation are printed, and the Stiff diagram is pre-
pared in the form shown in Figure 1. Horizontal
dashed bars represent the different components, with
cation values projecting to the left and anion values
to the right of a central, vertical zero line. The
program continues from analysis to analysis until all
data are graphed.

EQUIVALENTS PER MILLION
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Figure 1.-Stiff diagram showing pattern developed
by the average concentrations for each
chemical component of brines from the
Arbuckle Group (light dashed line--70
samples) and Kansas City Group (heavy
solid line--78 samples). Each horizontal
unit in equivalents per million equals 25.
Total scale equals 500 epm.

The quaternary or Piper diagram shows the
chemical composition of a water in terms of cations
and anions as a percentage pattern with all analyses
from a single souce or formation on a single graph.
The computer output is an adaptation of the normally
diamond-shaped diagram. Concentration values are
converted from parts per million to equivalents per
million and the percentages of the concentrations are
calculated. The values in equivalents per million
are plotted with the percentages of each component
arranged as shown in Figure 2. Trilinear plots of cat-
ion and anion percentage concentrations are shown
in Figure 3.
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RESULTS AND DISCUSSION

Of the graphical schemes attempted, the
Stiff and Piper plots gave the best separations of the
brine data studied. The advantage of these methods
is that they present clearly in one pattern an idea
of the major element composition of a brine. One
of the distinctive features of a Stiff diagram is the
tendency for a pattern of a particular brine to
maintain its characteristic shape with either dilution
or concentration (Stiff 1951). As a consequence,
the "type" pattern of a given brine indicates the
total salt concentration as well as the chemical
composition.

The Stiff plot drawn from the average analysis
of 78 Kansas City and 70 Arbuckle brine samples
(Fig. 1) permits the immediate comparison of the
relative concentration of 10 chemical components
for the brines, although only eight constituents were
used in this study (Fig. 1). Note that components
of negative and positive valence are grouped sep-
arately.

We have followed Stiff (1951) and developed
the Stiff pattern by connecting the end points of
each horizontal bar representing the appropriate
concentration in equivalents per million for each
component. The pattern thus developed clearly
shows that the brine from the Kansas City Group
has a considerably higher concentration of calcium
(Ca) and magnesium (Mg) than that from the Arbuckle
Group.

Both, of course, have high sodium (Na) and
chloride (Cl) concentration values but the greater
salinity of the Kansas City brine is emphasized.

Both brines are low in sulfate (504-—) and bicarbon-

ate (HCO3-.) Similar plots for individual samples

show the same pattern regardless of where the samples
were collected (i.e. on a comparable scale, each
brine can be differentiated and identified).

When the data for the individual brine
samples are plotted on a Piper diagram, the pattern
shown in Figure 2 is produced. In this pattern the
rather high chloride concentrations common to brine
from the Kansas City Group, cause a very tight
clustering near the top of the graph. No overlap of
data from the Arbuckle Group is present. Again
in terms of the chemical parameters plotted a clean
separation of the two brine types is noted. The
Piper diagram also indicates the higher calcium and
magnesium content of brines from the Kansas City
Group.

For some studies, it is of interest to measure
the difference in anionic and cationic character of
a particular brine. A means of obtaining this infor=-
mation is to have the anion and cation components
plotted separately on a trilinear diagram. Such a
plot is shown for the anion content of brines from
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Figure 2.-Piper quaternary cation-anion pattern illustrating sharp separation of the two brine types. Open

and closed dots represent samples from Kansas
only a portion of the diagram is illustrated.

the Kansas City and Arbuckle Groups (Fig. 3). In
the pattern developed on this diagram, the high
chloride content of the Kansas City brine is again
emphasized, but, in addition, the higher bicarbonate
content of the Arbuckle brine is now clearly shown.
Concomitantly, the low concentration of sulfate in
both brines is also shown. The separation pattern
developed on the trilinear diagram is exceptionally
clear. Similar separations have been observed on
patterns developed on a trilinear plot of the cat-
ionic components,

The separation of the two brine types by the
means of the graphical procedures used is extremely
good. Brine data from more than two formations can
be handled in the same manner, and the patterns
developed on the Stiff and Piper graphs can be used
to illustrate chemical differences between brines
from different formations. If the amount of brine
data is large, then an arithmetic mean of the chemi-
cal parameters for each formation can be calculated
and the mean figures treated in the manner described
in this paper.

In this way the chemical characteristics of
many formations can be compared simultaneously.
Brines can be easily classified as calcium-magnesium-
rich, sulfate-rich, or bicarbonate-rich brines.
Examination of the patterns presented on the diagrams
used herein, clearly shows that brines from the Kansas
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City and Arbuckle Groups, respectively. Note that

City Group have a much higher chloride, magnesium,
and calcium content, but a lower bicarbonate and

sulfate content than those from the Arbuckle Group
(Figs. 1-3).

Costs for preparing Stiff and Piper diagrams
by computer for the 148 analyses (assuming that the
data cards were previously prepared) are less than
$60. Estimated costs for equivalent manual work
are between $500 and $750. Data storage is an
added consideration and advantage of these analyses.
Once the information is on tape, it is readily avail-
able for future uses and need not be recompiled.

CONCLUSIONS

The comparison of oil-field brines by means
of pattern analysis is feasible. The use of Stiff and
Piper diagrams to represent graphically the chemical
characteristics of a brine provides a rapid, simple,
and convenient method of comparing and character-
izing the chemical composition of several brines
simultaneously. As Stiff (1951) points out, pattern
analysis also allows the correlation of brines from
one area to another, as the pattern would tend to
maintain its basic shape upon either concentration or
dilution of a given brine. It should be possible by
analyzing patterns developed on the diagrams
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described to detect the presence of "foreign" water
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Figure 3.-Trilinear plot showing separation pattern
of the two brines using the anionic con-
tent. Open circles represent samples from
the Kansas City Group, solid dots from the
Arbuckle Group. The A in the Kansas
City pattern represents 40 overprints. The
letters B, C, and F represent 2, 3, and 6
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0 corner of the trilinear plot was needed to

100 compare these brines. Normally, the

whole field is printed out.
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CLASSIFICATION IN QUANTITATIVE OIL-EXPLORATION DECISION MAKING

by

John W. Harbaugh
Stanford University

INTRODUCTION

Decision making in oil exploration, when
viewed simply, can be separated into two principal
types of operations: (1) classification of prospects,
and (2) assessment of prospects according to a prob-
abilistic decision-making system. Most oil-explora-
tion decisions are made subjectively and qualitatively
with intuition and experience greatly influencing
decisions. Human intuition and experience are
valuable, of course, but decision makers tend to be
inconsistent in moving toward a goal unless their
decision-making methods are disciplined and rigo-
rous. In oil exploration, most decision makers have
not used rigorous methods because of the large
degree of uncertainty in oil exploration. This is
unfortunate, because quantitative probabilistic
decision-making systems, with their ability to deal
rigorously with uncertainty, appear potentially
capable of improving efficiency when the objective
is to maximize profits. Even a very small improve-
ment in efficiency (one percent or less) would have
substantial effect on the industry.

The concept of a quantitative scale of
probability is inherent in most rigorous methods in
dealing with uncertainty. Probability can be ex-
pressed on a scale range from zero to one, in which
zero represents impossibility and one represents
complete certainty, with all gradations between.
Of course, probability can also be expressed in
percent, 100 percent representing complete certain-
ty and so on.

PROBABILISTIC CORE OF AN OIL EXPLORATION
SYSTEM

C. Jackson Grayson (1960) has provided a
clearly written introduction to the art of quantita-
tive decision making. Through the use of quanti-
tative probability estimates, it is possible to make
exploration decisions that are objective and that
are consistent with one's operating policies. | have
incorporated many of Grayson's ideas in a program
for IBM 7090/7094 computers, which has been used
to calculate data shown in subsequent tables.

In the forthcoming examples, the general
objective has been to maximize profits, consistent
with risk-taking ability. Given this objective,
the first step is to prepare a "payoff table" which
lists possible events (such as dry hole, million-
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barrel discovery, etc.), versus possible acts (such
as don't drill, drill with 100 percent working
interest, etc.). An example of an abbreviated
payoff table is shown below .*

Table 1.- Abbreviated payoff scale.

POSSIBLE ACTS

3'8 Don't Drill with 100 Farmout with
t0 drill  percent working 1/8 override
o3 interest

© 3 Dry Hole $0 -$50, 000 $0

=9 300,000 $0 $425,000 $71,000
23 1,000,000 $0 $918,000 $141,000
524,000,000 $0 $1,138,000 $171,000

* Assumptions: Dry hole cost is $50,000; completed

well costs $70,000, discount rate is 6 percent, pre-
sent price of oil is $3.00 per barrel; and producing

rate is 30,000 barrels per year.

Clearly, this table indicates that the most
favorable event would be t2 obtain a 4,000,000
barrel discovery, and that the most favorable act,
if a 4,000,000 barrel discovery is to be made, is to
drill the prospect with 100 percent working interest.
However, so far, no consideration has been given
to the probabilities of the different events. Desirable
as a 4,000,000 barrel discovery is, it is more probable
that a dry hole will result.

The next stage is to assign probability values
to the possible events. This is illustrated in the
output from the computer program, in which a pay-
off table (Table 2) has been printed out. In addition,
however, the financial consequences for each event
and act have been multiplied by the probability
estimate for that event. This yields an expected
monetary value for each act, and it is this value
that is of prime importance in making decisions.
Note, in Table 2, that the expected monetary value
of the act of drilling with 100 percent interest is
only $15,000, whereas the payoff, if a 4,000,000
barrel discovery were made, would be over a million
dollars. But, the probability estimate of a 4,000,000
barrel discovery is very small (0.002 or 1 in 500),
whereas the probability estimate of a dry hole
(0 barrels) is large (0.60).

In calculating the payoff table (Table 2),
an additional refinement has been made by making



Table 2. - Output from prototype single-well decision program relating possible acts and possible events in
the form of a payoff table in thousands of dollars. Producing rate is assumed to be 30,000 barrels per
year, discount rate is 6 percent, dryhole cost is $50,000, and producing well cost is $70,000. For
example, act of choosing 100 percent working interest has an expected monetary value of $15,000.

TRIAL, DISCOUNT RATE = 6 PERCENT, DRYHOLE=COST 50,000 , COMP =70,000

PAYOFF TABLE IN THOUSANDS OF DCLLARS

POSSIBLE ACTS

POSSIBLE EVENTS PROB WORKING INTZREST

TOTAL PROD 1000'S BBLS 100 PERCENT 75 PERCENT 50 PERCENT
[ +600 -1 -37 =25

3c. .150 -7 -5 -3

€0. -100 51 38 25

9C. .070 107 80 53

150. «040 211 158 1C5

3G0. 020 425 318 212

6C0. -010 712 534 356

10CcC. 005 918 688 459

2000. +003 1099 824 549

40CC. 002 1133 852 569

EXPECTED MONETARY vALUS 15 11 7

varying assumptions as to the future price of oil and
assigning probability estimates to them. If the
assumptions are made that (a) the probability that
oil prices will remain stable is 0.50, (b) that oil
prices will rise by 2 percent a year is 0.25 and

(c) that oil prices will decline by 1 percent a year
is 0.25, then the expected future price of oil

(Table 3) fifty years hence will be $3.94 per barrel
if today's price is $3.00 and so on. Estimates of the
future value of oil are implicit in every oil explora-
tion decision, whether estimated quantitatively or
not.

The payoff table (Table 2) fails to take into
consideration the risk policy of the investor. For
example, a small operator's risk~taking ability is
generally much less than that of a major oil company.
The individual firm's risk policy is conveniently
expressed in terms of the utility concept advanced by
Daniel Bernoulli, and expanded into the individual

utility concept by Von Neumann and Morgenstern
Z]ﬂ7;

The utility concept provides a means of des-
cribing the consequences of a given event and act
in terms of its utility to the individual operator.
This may be done by developing a function (con-
veniently represented by a curve) which relates
consequences in dollars to utiles. Utiles are arbi-
trary units and are a measure, positive or negative,
of the consequences to an individual operator. The
utility curve of a hypothetical oil operator is shown
in Figure 1. Using this curve, the values in the
payoff table (Table 2) may be converted to utiles
and the expected utility value of each act calculated
and presented in tabular form (Table 4). This pro-
vides an objective means of choosing the most
appropriate act by selecting the one that yields the
highest expected utility value.

FARMOUT FARMOUT ,BACK AFTER PAYOUTY
25 PERCENT 1/9 OVERRIDE 1/16 CVERRIOCE 25 PCT w.l. 50 PCT w.l.

~12 [¢] 0o o [}
-1 9 - o ]
12 17 8 12 25
2¢ 25 12 ;6 53
52 40 20 52 105
1ce 7L 35 106 212
17¢€ 112 56 178 356
228 141 70 229 459
274 166 83 274 549
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171 85 284 569

3 Lo < 11

OBTAINING PROBABILITY ESTIMATES FOR
PROSPECTS

23

It is obvious that obtaining the quantitative
probability estimates for various outcomes of indi-
vidual prospects is a vital part of a quantitative
oil-exploration decision system. This is basically
a problem in classification. At the moment, it is
the Achille's heel, because we have not yet learned
very much about applying rigorous classification
methods to geologic data. In view of this challenge,
my remarks below are directed toward suggesting
avenues that may be profitable to follow.

Step I: Selecting Data

The first step in developing such an objective
classification system is to select the types of data
that bear on the problem of oil exploration. These
data may be segregated into (1) geologic data,

(2) production data, (3) economic data, and (4)
psychological data. These categories may, in turn,
include the following forms of data:

Geologic Data:

Formation tops (which in turn yield structural data)
Lithology (from electric logs)

Petrology (lithology, and core analysis data, in-
cluding porosity and permeability)

Oil field water chemistry

Geophysical data (particularly seismic data that can
be interpreted structurally)

Lithology and structure of basement rocks.
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Figure 1.- Graph of utility function in which losses (shown with negative signs) and gains in terms of dollars
are related to their utility values expressed as utiles. Curve is hypothetical and would pertain to a
single individual or single organization. Shape varies from one utility curve to the next reflecting
differences in risk-taking ability. In general, negative part of curve shapes more steeply than the

positive part.

Production Data:

Well-test data (drill stem test data, shut-in pressures,
production test data, etc.)

Presence of shows, mud-log records, etc.

Oil gravity and oil chemistry data.
Economic Data:

Lease prices

Lease expiration dates

Drilling costs

Road-building and other drill site costs
Current oil and gas prices

One's utility function (economic influences that
bear on it)
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Psychological Datas

Degree of "hotness" or "coldness" of exploration
activity.

Reputation of firm (bears on ability to turn deals,
secure favorable farmouts, etc.)

Degree of optimism or pessimism as far as general
economic future is concerned, including outlook
toward future oil and gas prices.

Government regulatory climate

One's utility function (psychological influences that
bear on it).

Step Il: Analysis of Data to Obtain Numerical
Parameters for Classification Systems

The second step is to devise analytical
methods for obtaining numbers or coefficients that



Table 3.-Output from oil-exploration decision program listing expected oil prices for next 100 years using
assumptions given.

Trial, discount rate = 6 percent, dryhole=cost 50,000, comp = 70,000
Expected future prices for next 100 years making following assumptions

Present price of oil is $3.00 per barrel

Probability that prices will remain stable is .50
Probability that prices will rise by 2,0 percent is .25
Probability that prices will fall by 1,0 percent is .25

Year Price Year Price Year Price Year Price Year Price Year Price
2 $3.01 19 $3.20 36 $3.53 53 $4,04 69 $4.76 85 $5.78
3 $3.02 20 $3.21 37 $3.55 54 $4.08 70 $4.82 86 $5.86
4 $3.02 21 $3.23 38 $3.58 55 $4.12 71 $4.87 87 $5.93
5 $3.03 22 $3.24 39 $3.60 56 $4.16 72 $4.93 88 $6.01
6 $3.04 23 $3.26 40 $3.63 57 $4.20 73 $4.98 89 $6.09
7 $3.05 24 $3.28 41 $3.66 58 $4.24 74 $5.04 20 $6.18
8 $3.06 25 $3.30 42 $3.69 59 $4.28 75 $5.10 91 $6.26
9 $3.07 26 $3.31 43 $3.71 60 $4.33 76 $5.16 92 $6.35

10 $3.08 27 $3.33 44 $3.74 61 $4.37 77 $5.23 93 $6.43
11 $3.09 28 $3.35 45 $3.77 62 $4.42 78 $5.29 94 $6.52
12 $3.10 29 $3.37 46 $3.81 63 $4.46 79 $5.36 95 $6.62
13 $3.12 30 $3.39 47 $3.84 64 $4.51 80 $5.42 96 $6.71
14 $3.13 31 %3.41 48 $3.87 65 $4.56 81 $5.49 97 $6.81
15 $3.14 32 3.43 49 $3.90 66 $4.61 82 $5.56 98 $6.90
16 $3.15 33 $3.46 50 $3.94 67 $4.66 83 $5.63 99 $7.00
17 $3.17 34 $3.48 51 $3.97 68 $4.71 84 $5.71 100 $7.10
18 $3.18 35 $3.50 52 $4.01

serve to describe the different factors in numerical
terms. The immediate purpose of using numerical
descriptive methods is to reduce complex relation-
ships to sets of numbers or coefficients which can,
in turn, be used for numerical taxonomy purposes.
Techniques are available for numerically describing
surfaces (such as structure contour maps, lithofacies
maps, etc.), fault and fold systems, and for repre-
sentation of quantitative and qualitative relation-
ships which may be thought of as existing in a kind
of multidimensional space. Some techniques are
available at present; others remain to be developed.

The techniques that are most advanced at the
moment are those which may be used to analyze
surfaces, such as structure contour maps, isopach
maps and lithofacies maps. These techniques in-
clude trend-surface analysis (using power series)
and harmonic analysis (using double Fourier series).

Power=-series trend-surface analysis is useful
in describing gross or regional configuration of
structural surfaces and of stratigraphic contour maps,
such as lithofacies maps. The coefficients of terms
in the power series of various degrees provide a
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numerical description of the gross configuration of
surfaces and may be used for classification purposes.
Power-series trend surfaces are fitted to satisfy the
least-squares criterion. Residual values, obtained
by subtracting trend-surface values from actual
data, are also useful in discerning relationships
between oil accumulation and structural features
(Merriam and Harbaugh, 1963). Specialized
applications of power-series trend analysis include
mapping of structural closure with respect to in-
clined oil-equipotential surfaces resulting from
hydrodynamic conditions (Harbaugh, 1964). Through
the use of such techniques, it may be possible to
discern relationships which bear strongly on oil
entrapment but which are not readily apparent when
more traditional, subjective methods of interpreta-
tion are used.

In spite of many previous applications of
power-series trend-surface analysis in geology (see
bibliography in Merriam and Harbaugh, ]964{,
additional work is needed to (1) devise numerical
means of describing the configurations of residuals,
(2) assess the significance of the shape of confidence



Table 4.~ Output from prototype simple program listing consequences of possible acts versus possible events
in terms of utiles in accordance with the utility function of Figure 1. The act with the greatest
positive utility value to the operator is to attempt to farmout the prospect and come back in for a 50
percent working interest after payout. On the other hand, this table shows that even though the acts
involving direct working interest have positive expected monetary values (Table 1), they have negative
expected utility values to this operator because of his risk position and he should avoid them if he is

unsuccessful in farming out the prospect.

TRIAL, DISCOUNY RATE = 6 PERCENT, DRYHOLE=COST 50,000 , COMP =70,000

PAYOFF TABLE CONVERTED TO UTILES

POSSIBLE ACTS

POSSIBLE EVENTS PROB WORKING INTEREST

TOTAL PROD 1000°S BBLS 100 PERCENT 75 PERCENT 50 PERCENT
o +600 -9 -9 -8
30. 150 -3 -2 -1
60. <100 1 1 0
90. 070 5 3 1
150. +040 15 9 5
300. «020 45 30 15
600. +010 83 61 35
1000. «005 98 81 50
2000. +003 101 93 63
4000. 002 101 95 66
EXPECTED UTILITY VALUES -2.5 -3.3 =3.6
POSITIVE UTILITY CURVE COEFFICIENTS
013224976300 000368628871 =.000000389139
MNEGATIVE UTILITY CURVE COEFFICIENTS
+3177820859000 +008827790840 -000052212437

FARMOUT
25 PERCENT 1/8 OVERRIDE 1/16 OVERRIDE

FARMCUT ,BACK AFTER PAYOUT
25 PCT W.l. 50 PCT MW.l.
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surfaces (Krumbein, 1963), and (3) devise more
effective methods of deciding on the number of
terms to be included in the power series. Finally,
it should be pointed out that there are many other
types of series potentially useful in trend-surface
analysis. These include Taylor's series and
McLaurin's series, and power series (using positive
data) that use powers which are represented by
decimal fractions rather than by integers (as in
conventional power series analysis).

Double Fourier series analysis offers an
effective means of analyzing and numerically des-
cribing complex surfaces that are oscillatory in
their configuration (Preston and Harbaugh, 1965).
Fourier series, which may be fitted so as to satisfy
the least-squares criterion, provide a means of
smoothing and of obtaining residuals similar to
that of power-series trend analysis, but, in addition,
they permit the underlying harmonics in the data to
be isolated and identified. The amplitudes of the
harmonics of various period lengths may be repre-
sented by arrays of Fourier coefficients, or the
contributions of the individual harmonic terms may
be represented in somewhat more compact form by
power spectrum values. Complex surfaces can be
effectively represented by double Fourier series.
This means that complexly folded (and even faulted)
oil-field structures may be represented by double
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Fourier series and in turn, permits objective, quan-
titative comparison between different structures.

A second, principal geologic use of double
Fourier series is description and extrapolation of
stratigraphic features, such as rhythmic linear sand
bodies (Off, 1963), and carbonate banks and reefs
whose geographic distribution may be complex but
is characterized by underlying periodicities.

Power-series hypersurface analysis is similar
to power series trend analysis except that an additional
dimension (or dimensions) is involved. The technique
may be effectively used to study the distribution of
a geologic vqriab{e in three-dimensional space, as
for example, the distribution of permeability values
in a reef reservoir, or distribution of oil-gravity
values with respect to depth and geographic location
(Harbaugh, 1965). Power-series hypersurfaces are
fitted so as to satisfy the least-squares criterion,
The spatial distribution of residual values obtained
by subtracting hypersurface values from observed
values may be particularly revealing. The coeffi-
cients and other numerical properties of power-series
hypersurfaces are also potentially useful in numerical
classification systems.

Step Ill: Applying Numerical Classification Methods

Once methods of numerically describing
geological relationships are available, it is possible




to bring numerical classification methods to bear
on the problem. Some of the methods of numerical
classifications are already at hand (Sokal and
Sneath, 1963; Cooley and Lohnes, 1962), and
include factor analysis, discriminant-function
analysis, the selective use of transformations to
aggregate points into clusters in n-dimensional
Euclidean space (Jizba, 1964), and maximization
of the distance between point clusters (Sebestyen,
1962). These techniques are part of the general
realm of pattern recognition techniques, whose
applications in automated oil well-log analysis
have been discussed by Daskam. The numerical
classification methods would be background for
the third stage where they could be used objectively
to classify oil prospects in terms of success prob-
abilities. The principal problem in the use of
numerical classification systems is to devise trans-
formations which will yield classifications that
are found useful in practice. In other words, the
idealized objective in numerically classifying oil
prospects is to devise a system which will tend to
distinguish prospects that are eventually proven to
be productive, from those that turn out to be un-
productive. The usefulness of numerical taxonomic
system in distinguishing cherts or jasperoids that
form potential host rocks for ore deposits, from
those that are not, has already been demonstrated
by Howd (1964). Consequently, there appears to
be no inherent reason why numerical taxonomic
methods should not be equally valid when applied
to petroleum prospect data, particularly through
the use of methods that are capable of using both
qualitative and quantitative data, such as the
general classification program of Tanimoto and

Loomis (1960).
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Step IV: Development of Learning Model for
Estimating Exploration Prospect Success
Probabilities

The fourth step would consist of developing
a computer learning system for objectively appraising
the probabilities of success for individual oil pros-
pects. The proposed system would be conditioned
by experience. Accordingly, it is proposed to build
into the system a method by which performance is
improved by experience, using some of the numerical
adaptive learning techniques that are currently being
developed at Stanford University (Fralick, 1964;
Hu, 1963; Koford, 1964; and Specht, 1964) and
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large area.
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TWO-DIMENSIONAL POWER SPECTRA FOR CLASSIFICATION OF LAND FORMS
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ABSTRACT

The methods of two-dimensional power spectrum analysis are suggested for the numerical description

of land forms and possibly for their classification.
LAND FORM DESCRIPTION

Description of land forms has always been of
interest to geologists and geographers. Early des-
criptions, though useful, were verbal and representa-
tions of the viewer's visual experience. For communi-
cation purposes and for efficiency of information
transmittal, most of the verbal descriptive phrases
are neglected and maps are used to convey the
essential characteristics of the land form. The
failure of verbal descriptions to adequately repre-
sent the surface even when the descriptions are
voluminous is evident if one performs the simple
experiment of transmitting the description to a
competent geologist or geographer and asks that the
description be the basis for construction of a two-
dimensional picture or a scaled three-dimensional
model of the prototype. Of course, carefully
drawn maps would allow adequate surface recon-
struction., The problem with map representation is
that no really general methods exist for map com-
parison. Surface classification becomes a highly
arbitrary, subjective process. If map comparison
merely implies point to point differencing of the
dependent variable portrayed at each coordinate
location on two maps being compared, then these
differences can be plotted to give a difference map
which then becomes but an additional map with
the same interpretation and generalization diffi-
culties of the first map. This is not to say that such
maps are without meaning or utility. Indeed, for
certain purposes, difference maps for first, second,
third, and even higher orders of differences are
very useful. However, it is not our purpose to
consider the many possible derivative maps but
rather to suggest one possible means for map or
rather surface characterization. Those who are
concerned with the concepts and problems of map
generalization are referred to the excellent dis-
cussion of this subject by Tobler (1966).

QUANTIFICATION OF SURFACE
GENERALIZATION

The objectives of land form numerical
characterization influence the means used for

characterization. [f one is interested primarily in

the grossest simplification of the land surfaces in

terms of slope and direction, then one might seek

to extract the "linear trend." For such a characteri-
zation, the model which one would use is the simplest
form of the "general linear model" of Krumbein and
Graybill (1965). The observed elevation at coordinate
location XYi is S(xi,y.) and is considered to be com-

osed of a trend T(x.,y.) and a random component,
P iy . po!
€& o uncorrelated with X, or ¥j- This model is

re;;rese nted by:

S(Xi’yi)zT(xi’yi)+ eili m
The linear trend is given by
T(xi,yi) =Ag+ Ax. + A2yi (2)

where the coefficients AO’ A] , A2 are most generally

determined from the data by the method of least
squares. Higher order trends may be extracted by the
same methods if there exists suitable evidence that
the appropriate generalization of the surface should
be these higher order surfaces. The method of trend-
surface analysis has been used by geologists and
geophysicists for almost a decade to generalize obser-
vations represented by maps or to examine deviations
of the observation from the generalized surface.

Conventional trend surface analysis uses
power series polynomials of the form:

n=N  m=M nom
T(xilyi) =n£0 nz:=0 m,nxi Yi @)

As a method of surface characterization, this method
suffers from the limitation that for such polynomials,
the coefficients Am of low order do not remain

constant as higher order polynomial terms are added
to the series.

This well known limitation of such series is
overcome by use of orthogonal polynomials. Such
polynomials are described by Oldham and Sutherland
(1955). One member of the class of orthogonal poly-
nomials that has been used with increasing frequency



has been the Fourier series extended to two dimen-
sions. Bhattacharyya (1965) has applied the series
to magnetic data and Tsuboi (1959) used the series to
study gravity anomalies. Bennion (1965) and Bennion
and Griffiths (1965) used Fourier series as one method
of describing two-dimensional variation in reservoir
rock properties. The same methods have been shown
by Harbaugh and Preston (1965) to be useful for
describing surface variation in mineral content and
description of land forms. Computer programs for
double Fourier series and additional examples of
fitting of land surfaces are given by Preston and
Harbaugh (1965). More recently, James (1966) has
shown how the coefficients of the Fourier series can
be computed when data are not equally spaced on a
rectangular grid. Krumbein (1966) has compared the
relative merits of orthogonal polynomials of the
power series and Fourier series type for purposes of
surface interpolation and extrapolation. He states
that a power series representation is superior for
extrapolation and the Fourier series for interpolation.
The Fourier series, because it has fewer extrema

for a given number of terms, gives the better fit to
the surface in the region fitted. However, beyond
the region fitted, extrapolation is not reasonable
because the pattern within the measured boundary

is replicated exactly outside the boundaries.

The use of such orthogonal polynomials for.
surface representation implies the possibility of
using the coefficients of the polynomials as a set of
numerical descriptors of the surface. Such coeffi-
cients could then be used in the various classifica-
tion techniques well known to numerical taxonomists
and summarized by Sokal and Sneath (1963). Indeed,
such a proposal was made by Fara and Scheidegger
(1961) using one-dimensional Fourier series for
characterization of porous media. The coefficients
were stated to be numerical descriptors of a porous
medium represented in one dimension by a Fourier
series. This method was applied by Preston and
Henderson (1964) to electric log analysis. Coeffi-
cients obtained by fitting a one-dimensional Fourier
series to resistivity logs of certain limestone forma-
tions could be used in a discriminant function analy-
sis to discriminate one formation from another. The
method still needs further work to test its generality.
It would seem logical to extend this same type of
analysis to coefficients of two-dimensional Fourier
series fitted to geologic and topographic surfaces.

If surface representation alone is the pri-
mary goal, then the Fourier or other orthogonal
polynomial series suffices and the coefficients for
such series can be obtained by the method of least
squares.

SPECTRAL ANALYSIS OF SURFACES

The above methods are based upon the
"general linear model." An important assumption
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inherent in the model when applied to surfaces is
that, as mentioned in equation (1), the surface is
considered to be composed of a random component,
€ and a series of terms either (a) representing

7
integral powers of the independent variables
(power series) or (b) representing harmonics of the
fundamental wave lengths (measured intervals in
the two independent directions). For some surfaces,
this assumption may be perfectly valid either theo-
retically or even from the pragmatic viewpoint of
empirical surface fitting. However, another model
does exist that is not so restrictive in this sense.
This mode!l considers the observed surface S(x.,y.)
to be a random variable. vl

Statistically, a random variable may be either
discrete or continuous. We shall concern ourselves
only with continuous random variables. A continuous
random variable has a continuous range of variation
but its value at any time (if it is considered to be
time variant) or at any location in space (if it is
considered fo be space variant) is not given by any
deterministic relation. Instead its value at any
time (for time variant systems) or space coordinates
(for space variant systems) must be described by a
probability distribution. It is this probability
distribution function that is the essential charac-
teristic of the random variable. Most of the
literature of the application of statistical random
functions is in terms of time variant systems and
therefore the method is often considered to be an
aspect of time-series analysis.

One cannot perceive by visual inspection
whether an oscillatory series has been generated by
a random variable or by a function having discrete
harmonics. However, it is well recognized in the
theory of time series analysis that harmonic analysis,
which is appropriate for ’rKe phenomenon with discrete
harmonics, yields misleading results when applied to
a phenomenon whose generating process can be con-
sidered a random variable. This circumstance was
first indicated by Bartlett (1948). Later Weiner
(1949) developed a comprehensive theory for the
description of such time series. More recent expo-
sitions of the theory and applications are by Bendat
and Piersol (1966) and Blackman (1965). The most
extensive use of this methodology has been in the
statistical theory of communication. Blackman and
Tukey (1958), Lee (1960), and Davenport and Root
(1958) are definitive texts in this field. The
method has also been applied in economic time
series analysis by Granger and Hatanaka (1964).
Recently an excellent bibliography by Wold (1965)
has appeared on all aspects of time series analysis
and stochastic processes. Very little work has been
done applying the concept of a random variable to
spatially variant data. A pioneering effort was that
of Pierson. A computer program for this analysis has
been prepared by Esler and Preston (1966). Simul-
taneously, similar work is being done by Tobler (1966).



In the Fourier harmonic analysis methodology
the numerical description of the surface is the set of
coefficients for the Fourier series. In the power
spectrum approach the characterizing relation is the
"spectrum" which more properly should be considered
to be a "variance spectrum." However, for histori-
cal reasons, the term "power" spectrum is applied
because of its use in the determination of the
electrical frequency variation of energy (or power)
dissipation within alternating current circuits.

Although a sizeable body of theory exists
for the analysis of time series (here considered
analogous to "distance" series) where such a series
is available as a continuous signal or as a contin-
vous analytical function, we shall concern our-
selves only with the data that represent discrete
equally spaced sampling.

COMPUTATION OF TWO-DIMENSIONAL
SPECTRA FOR SURFACES

The power spectrum is obtained by first ex-
tracting from the data an auto correlation function
and then obtaining the power spectrum by computing
the finite Fourier transform of the auto correlation
function. The fact that the power spectrum is in-
deed this transform of the auto correlation function
is well known (Lee, 1960; Weiner, 1949).

The data are considered to be an array
S(xi,y.), here shortened because of the equal spacing

of the data to S(i,j). The auto correlation function
Q(p,q) for such an array S(i,j) is computed at the
lags p and q. The terms p and q represent the
displacements between pairs of values of x; and y.

respectively where i =1,2,...n,, j=1,2,..m,
The auto correlation function Q(p,q) is computed
from:

Qp,q) = _ an nZ- S..S.. .
" (ep)mefal) jefal i1 TP

for: (4)

p=0,1,2,..., 71

q=-1, ~(r-1),...,1
°ng o {zm-lal np

O ) R

for: ®)

p,9,=0,1,2,...,7

Because the data are taken on a finite grid,
approximations must be made in the above equations
at grid boundaries. The following weighting relations
are therefore assumed. Weighted values of Q(p,q)
are designated wQ(p,q).

wQ(p,q) =2Q(,q) p=1to (r-1)
q==(r-1) to (v-1)
wQ(0,q9) =Q(0,9)  q=-(r-1) to (v-1)
wQ(r,q) =Q(r,q)  q=-(r-1) to (r-1)
WQ(pIT) = Q(P:T) p= 1 to (T_])
wQ(p,-7)=Qp,-7) p=1to (v-1)

wQ(0,7) =1/2 Q(0,7)

wQ(0,-1) =1/2 Q(0,-7)

wQ(r,7)=1/2 Q(r, 1)

wQ(T,-1) =1/2 Q(7,-7) (5)

The unsmoothed estimates of the power spec-
trum are then given by:

-

T

r L
q=-1 p=0
r=0,1,2,...7

s=-1,-(v-1),...,-1,0,1,...7

Q(p,q)cos Z(rp+sq)

1
SR(r,s) =
2 (6)

The boundary conditions used in the smoothing
process are:

SR(-1,b) =SR(1,b) b=-1to T
SR(T+1,b) =SR(7-1,b) b=-tto T
SR(a, 1) =SR(a,T-1) a=0to T
SR(a,-1-1) = SR(a,-1+1) a=0to T
SR(-1,7+1) = SR(1, 7-1)

SR(m+1, v+1) = SR(r-1, 7-1)

SR(w+1, -1-1) = SR(1-1, -7+1)

SR(-1, -7-1) = SR(1, =7+1)

Because the data are taken at discrete,
equally spaced points, the spectrum can only be
computed at discrete lags r,s. The resulting function
would, if plotted, represent a spike or comb type
function. In reality, what is wanted however is
the representation that in a statistical sense is the
envelope of this comb function. One method for
obtaining a closer approximation to this smooth,
continuous function is to employ a smoothing func-
tion (often called a filter) to the raw spectrum.
Considerable effort has gone into the appropriate
and optimal designs of such filters for time series.
The one used here is that developed by Pierson (1960)
as the two-dimensional generalization of the Tukey-

)

von Hann filter (see Blackman and Tukey, 1958, p. 98).

The weighting function is as follows:

Weighting Function Values
at point S(Xi’yi)

7i-1 Yi Yi+

0.25 0.50 0.25
Xi-1 0.25 0.0625 0.125 0.0625
x. 0.50 0.125 0.250 0.125
X;H 0.25 0.0625 0.125 0.0625
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The smoothed spectrum will then be given

by:
SS(r,s) = 0.0625L SR(r-1,s-1)+SR(r-1,s+1)
+ SR(r+1,s=1+SR(r+1,s+1) ]
+ 0.125 [SR(r-1,s}+SR(r+1,s)
+ SR(r,s=1)+SR(r,s+1) 1
+0.250 [SR(r,s) 1

The final values for the smoothed power
spectrum, SS(r,s), represent the contributions to the
total variance made by frequencies between
2u(r-1/2)/21A and 2n(r+1/2)/27A in the r direction,
and 2n(s-1/2)/2tAt and 2w(s+1/2)/2t/t in the s

direction.

(®)

REMOVAL OF LINEAR TREND

Often data will contain a linear trend that
will badly distort the power spectrum. Such a trend
can easily be removed, however, by using standard
least-squares techniques. This involves subtracting
a plane of the form Z(i,|) = ai+bj+c from the data
points Si .withi=1,2,...m,j=1,2,...n.

Pierson (i960) has shown that the constants a, b,
and ¢ can be determined by the matrix equation:

mn(n+1) (2n+2)  n(+1)m{m+1) mn(n+1) | |a
6 4 2
n(p+)m(m+1)  mn(m+1) (2m+2) mn(n+1) | |b
4 6 2
mn(n+1) mn(m+1) mn. c
2 2 1
n m
I I D,
i:] i:
n m
N S
=1 =1
n m
I I D @)
i=l j=1

Solving for a, b, and ¢, and subtracting Z(i,j) from
the data matrix will then yield a new data matrix
Si i better adapted to the power spectrum analysis

me"rhod.
CHOICE OF PARAMETERS

The accuracy and usefulness of the power
spectrum depends largely on the choice of certain
parameters, such as the sampling interval At and the
maximum value of lag 7. Proper choices fori these
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parameters will minimize aliasing and distortion, as
well as maximizing the number of degrees of freedom
and the resolution.

Bendat has suggested that the sampling inter-
val At should be given by:

1
2f

Cc

N =

(10)

where fc is the lowest frequency of interest in the

record along either of the two axes. This gives two
points per cycle at the cutoff frequency fc. Bendat

recommends that, wherever possible, more points be
used in practice for improved results. An accurate
correlation function can be formed by taking

1

A= am
4f
c
If the power spectrum is of prime concern, a spacing
of
_ 2
At = £ (12)

is sufficient. Values of At as close as possible to
1/2 fc are, of course, most economical, as fewer

points are needed.

The maximum value of lag T should be limited
by the smaller of the two dimensions, say m, of the
data matrix. Several limits have been suggested for
T in the one-dimensional case. For instance, Granger
and Hatanaka (1964) recommend use of T < m/3.
Blackman (1965) recommends the use of 1< m/10, as
does Crowson (1963), who performs a very thorough
error analysis. With the larger number of data points
in the two-dimensional problem, a value of T < m/4
should provide adequate results.

Another important aspect to consider in the
choice of T is the equivalent resolution bandwidth,
B/ desired for the power spectrum calculations,

Bendat has determined Bc to be given by:
B = 1
c
TAt

For a given At, Bc will decrease as T increases.

(13)

The degrees of freedom, f, of each spectral
estimate in the one-dimensional case has a Chi
square distribution, where f is determined by

_ n 1
f=2 ('-F Z) (14)
Pierson (1960) has expanded this formula to two
dimensions fo give:

f=1.58(; -1/2)(':_ -1/2) (15)

Equation (15) may give an underestimate of the true
number of degrees of freedom. Values of 1/4 instead



of 1/2 may therefore weight equation (15) more
properly.
PORTRAYAL OF SPECTRAL ANALYSIS

The final portrayal of the spectral analysis
would be that used to portray the function SS = f(r,s)
where r and s are the two independent (orthogonal)
variables. This could be presented as a three-
dimensional model or as a computer produced map
for machine or computer contouring. However, these
representations contain within them the very pitfalls
the spectral analysis procedure is trying to avoid.
A more appropriate representation would be as a
two-dimensional array of variables, analyzable by
existing techniques of numerical classification.
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DISTRIBUTION-FREE QUADRATIC DISCRIMINANT
FUNCTIONS IN PALEONTOLOGY

By
T. P. Burnaby

University of Keele
ABSTRACT

It is often supposed that conventional methods of multivariate analysis lack robustness with respect to
departures from the usual assumptions, i. e., parent populations are multivariate normally distributed with
identical dispersion matrices. However, recent work by P. W. Cooper has shown that, subject to mild

restrictions, the D2 generalized distance statistic is robust, almost to the extent of being distribution-free,
when used as a discriminant function to assign an unknown vector x to one of seveial parent populations. The
main requirement is that the determinants of the dispersion matrices of the distributions of the parent popu-
lations should be equal. It is natural to inquire whether it is possible to select a simple type of variate
transformation which will bring the determinants as near to equality as possible. A method for doing this is
described, and illustrated using paleontological data. The possibility of implementing a completely non-
metric approach to the problem is also discussed.

INTRODUCTION V_Vk is identical with the covariance matrix Ly o

An observation vector x, of p rows and 1 estimated by §k - [sii] such that

column, originates from one of K populations. We N
wish to determine the value of k, where 1€ k< K, S5 = n-1""1 (xi —?i) (xi - >Ti)

such that the statement "x is a member of the k’rh
population” has the highest possible probability of 9
truth, We shall assume equal prior probabilities for anobis' D7) between a vector x and the mean point
each of the K populations, and equal costs of mis-
classification. -1
Practical applications may require greater Qk(>_<) = (x - l_J_k) 'Wk (x - gk)
generality. Thus for example, x may consist of p
measurements on an unidentified fossil specimen,

The generalized squared distance (Mahal-

y of the kth population we shall denote by

(M

and we wish to assign it to the kfh species from a i
genus for which K - 1 species have been described:
since there is always a nonzero probability that the
fossil may belong to a hitherto-undescribed species,
there must exist (at least) one population for which

no data is available with regard to the location of

its mean vector. It would clearly be misleading to
assume equal prior probabilities, and equal costs of
misclassification, in this case.

I Mo

Pl = o) - o)
. Xi = Uy xi Uik
We shall consider unskewed, unimodal,

multivariate distributions having frequency densities
of the form

-1/2 1/2
dF = A 1w, 17/ f Q&) / Ty - e (2)

where f,_is a functional form integrable over p-
dimensional space. Thus for example, for the multi-

NOTATION variate normal frequency density function, we would
have
x, X denote scalars, x, x' , X denote a dFk = (2“)-]/2p|£k| -1/2 exp[-l/ZQk(ﬁ)] dx]dx2

column vector, a row vector, and a square p x p

matrix respectively. Let u; be the mean vector of .« edx
pe y Y P

the k' population in p-dimensional space, estimated  The corresponding density functions for the multi-
-1n variate Pearson Types Il and VII distributions are
by X =n Zg(_.k . Let the dispersion matrix of the  given in Cooper 2/1963). Together with the multi-
th =11 -1 variate normal, they form a continuous family, Type
k" population be W, with inverse v_vk . If the Il being platykurtic with finite range, and Type VIl

second moment of the population distribution exists, leptokurtic with infinite range. The normal is the
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least leptokurtic distribution with infinite range.
The complete family of Type Il distributions passes
through the rectangular into U-shaped distributions,
but these last we shall not consider further.,

We shall now define a general quadratic dis-
criminant function by the expression

Gkﬁ) = Gka(?S) + bk (3)
the constants a, and bk being determined so that for
any vector x, the statement "x is a member of the

kth population” has the smallest probability of error
for that value of k for which the value of Gk@) is

minimized, given that the prior probabilities of the
K populations are equal.

PROPERTIES OF QUADRATIC DISCRIMINANT
FUNCTIONS

It is well known (Anderson, 1958) that when
fi s the multivariate normal frequency density

function, the quadratic discriminant function Gk(g)

is given by
G ) = (e -u) 'Lyt mg) + Inigl

and that this discriminant is optimal, in the sense
that the total probability of misclassification is
minimized by assigning x to the population for which
the value of Gk(ﬁ) is least. If the L, are all identi-
cal, we have, for the hth and kfh

Gp,k = Gplx) - G &)

2x'% -](L_Jk -y,) + a constant depending

populations

on y and Y whence we get

Gh,k =cg Fooxy ey oot cpxp
so that in this case the difference of the two quad-
ratic discriminants is identical to the linear discrimi-
nant function, and this is optimal in the sense stated
above.

It has been shown by Cooper (1965) that when
the distributions for all K populations have the same
functional form f, the quadratic discriminant function
defined in (3) above, is optimal for the following
situations:

(M

f is the frequency density function for the multi-
variate unimodal Pearson Type Il distribution.

(2) L not identical: f is the f.d.f. for

the multivariate Pearson Type VII distribution with
finite second moment.

(3) Asfor (2), but fis the f.d.f. of the
Type VI distribution without finite second moment.,

!

L) not identical in the K populations:
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In this case, I is replaced by Wk , where \_/_V|:] is

a scaling mairix transforming the distribution from

an ellipsoidal into a spherically symmetrical shape.
(4)  For any unimodal unskewed multivariate

distribution whatever, having scaling matrices V_\/I<

not identical for each of the K populations, but
having equal determinants, i . e.IV_Vhl =IW, | for

all h, k. In this case, the constants a, and bk in

(3) are the same for all K populations and can there-
fore be omitted. The matrices W\ need not be

estimable by computing variances and covariances;
but provided they can be estimated by some other
method, and their determinants can be shown (or
assumed) to be equal, the only remaining information
needed is the set of estimates ) of the population

means y_ . The optimality of the discriminant pro-

cedure then depends only upon the precision of
estimation of the Y and V_\/‘< . The actual error of

misclassification that will be achieved with fresh
observation vectors x can be estimated by a method
due to P. A. Lachenbruch (M. Hills, 1966). This
consists in treating each individual from each of the
K samples as an "unknown" and classifying it by
using the remainder of the data to compute the
Gk(l)-

LINEAR VS, QUADRATIC DISCRIMINANT
FUNCTIONS

It is often assumed that the simplest method
of setting up discriminant functions is to take the K
populations two at a time and to compute a linear
discriminant function for each of the 1/2K(K - 1)
pairs of populations of the form

Ch,k = %'e * ¢

This yields a set of 1/2K(K - 1) hyperplanes having
equations of the form G, | = 0 which partition the

observation space into K distinct regions, one for
each population.

However, the identification of the vector x
involves computing 1/2K(K - 1) linear discriminant
function values, which requires a total of 1/2pK(K -
1) multiplications. On the other hand, to compute
K values of the quadratic discriminant function
requires no more than 1/2pK(p + 3) multiplications

(write x'W ]_>5 as x'T'Tx = z'z where T is triangular.
See for example Rao, 1952, 1965), so that the labor
of computing the linear and quadratic discriminant
function values for a given x is the same if K =p + 4,
For larger K, the quadratic discriminant requires

less arithmetic.



SELECTING A VARIATE TRANSFORMATION

Cooper's result, showing that the quadratic
discriminant function is optimal for a very wide class
of distributions provided that the determinants of the
dispersion matrices are equal, makes it natural to
consider whether it is possible to select a variate
transformation which will have the effect of bringing
a set of data having unequal determinants as near as
possible to the desired condition.

We consider the variate transformation

9. This can be generalized as follows:

y =X
y = [(x+92)91 - 11 /8, i, # 0
y = In(x+ 92) if 9] >0 (4)

9, can take any value from +1 to -1,

(Values outside this range are permissible but are

seldom needed: Tukey, 1957.) The value of 92 must
be such that (x + 92) is always greater than zero,

but experience suggests that the value chosen is not
critical (Box and Cox, 1964). If there is no like-
lihood of zero or negative variate values in the data,
it will usually be sufficient to take 8, =0. We

shall assume that the values of (U'k + 92) are in all

cases large in comparison with their standard devi-
ations, so that we have

var y. var x. approximately
- 2(6,-1)
= (Ui + 92) 1 "/ var X;
dyi dy.
cov(yi ,yi)= — —L cov (Xi , Xi) approximately

dui olui

0,-1 0.-1
= (ui + 92) 1 (ui + 92) 1
cov (xi ,xi)

whence it follows that, to the first-order approxi-
mation, the matrix of correlation coefficients re-
mains unchanged under transformation.

Let Zk be the covariance matrix of the

transformed data y for the ki.h population. Then we

have b
2 -
1ZJ = 15) v (v + 6,717 (%)

i=1

Bearing in mind that the ratios of the determinants,
rather than their absolute values, are what matters
(the variance ratio being the univariate analogue),
we adopt a logarithmic least-squares procedure to

ik "
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minimize the dispersion of the K values of log lel
From (5) we get
P
log IZkI = log | I+ 2(9] - 1) log [.n] (Uik + 92)]
I:
Write dj = 1/2 log | 7|

and m, = log [il

and we require to minimize the sum of squares

- -2
kz:] [d) + (0 -m,_-d - (8; - Im]

by differentiating with respect to 9] and equating to

zero., We obtain
K — —
T mk(mk - dk) - Km(m - d)
9] _ k=1
K
k=1

which is simply the slope of the regression of dl<

upon m subtracted from unity:
cov (m,d)
9 _—

1 -

1 var m

(6)

To apply this result, the first step is to check
whether values of 8, different from zero are likely

to be needed. Provided that the data does not
contain any negative or very small values, it should
be safe to take 92 = 0 throughout. We next compute

the means and covariance matrices of the untrans-
formed data, and compute 8 from equation 6). If

the value found for 9] does not lie somewhere be-

tween -1 and +1, there is likely to be something
wrong; either a computational error or data which
are genuinely heterogenous with respect to within=-
sample variance. If the value of O] seems reason=

able, we may put y =xgl, ory=1lnxif 9] is al-

most zero, and compute the means and covariance
matrices of the transformed data. As a check, we
can now re-compute 9] using the transformed means

and covariance matrices: its value should now of
course be approximately 1,0,

If there are only two populations, it is pos-
sible to find a value of 9] which will bring the

determinants of the two covariance matrices to
exact equality: it is (to the first order)



d, -d
o, = 1- 21 7)
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A NUMERICAL EXAMPLE

As an illustration, we shall determine the
appropriate value of 9] for some unpublished data

relating to seven samples of measurements of fossil
shells of Upper Carboniferous fresh-water bivalves.
Each sample is from a single locality and horizon
and is believed to consist of conspecific individuals:
the five species represented are members of twc
closely related genera (Carbonicola and Anthracosia).
Six shell measurements were made upon each speci-
men, all linear dimensions in mm,

In Table 1 are shown, in successive columns,
(1) the number of specimens per sample, (2) the pro-
duct of the mean values for the six measurements,
(3) the determinant of the dispersion matrix, (4) the
logarithm of the product of means, and (5) half the
logarithm of the determinant of the dispersion ma-
trix, Columns (4) and (5) thus give the values of
m and dk . We obtain

cov (m,d) 8.4841  _ 0.9330
var m 9.0937
9] = 1.0-0.9330 = 0.0670

Since this value is quite close to zero, it seems
reasonable to choose the transformation y = 1n x.
Table 2 shows the same quantities as Table 1,
but computed from the natural logarithms of the data
\}:alues instead of from the untransformed values. We
ave

cov (m,d) -0.3095  _  _5.1035
var m 2,9893
8, = 1.0+0.1035 = 1.1035

showing that the logarithmic transformation is over-
correcting the heterogeneity of dispersion of the
raw data, although only very slightly. The ratio of
the largest to the smallest determinant has been

reduced from about 2.0 x ]04 to around 4,0 x ]0],
which corresponds to a univariate variance ratio of
roughly 1.8, as compared with about 12.2 for the
untransformed data.

In Table 3, the means, standard deviations,
and correlation matrix for the first of the seven
samples (Anthracosia concinna) are shown computed
from the untranstformed and from the transformed
data. Although the untransformed standard devia-
tions are rather large in proportion to their means
for this sample, the correlation matrix is little
changed on transforming the data.
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DEGREES OF FREEDOM LOST THROUGH
TRANSF ORMING DATA

In selecting a transformation, we are treat-
ing 9] as an unknown parameter whose true value

may not exactly coincide with the value estimated
from the data. Box and Cox (1964) examine the
question of what reduction in the degrees of freedom
of the covariance matrices should be made in order
to allow for this fact. They conclude that one de-
gree of freedom should be deducted from the total for
the error variance for each 8 parameter fitted. Al-
though their method of determining 0 is not the same
as the one described here, there will probably be no
harm in adopting a similar rule. In the case of the
example considered in the previous section, the loss
of one degree of freedom deducted from the overall
total for the seven samples is small enough to ignore.

SKEWNESS

We have assumed throughout, as does
Cooper, that the parent distributions are unskewed.
However, the use of a transformation will not leave
the symmetry of the distributions unaffected, and it
would be very useful to be able to test whether the
same transformation that serves to minimize hetero-
geneity of variance is also the one best calculated
to minimize skewness. Box and Cox (1964) have
investigated this point in some detail, mainly with
reference to the univariate case, although the
methods appear to be capable of extension to at
least the simpler multivariate cases. It is interesting
to note that in practice, it often turns out that the
same transfromation does indeed minimize both
skewness and heterogeneity of variance.

However, one migKf expect that in general,
a multivariate procedure would be more robust with
respect to skewness than the corresponding univariate
procedure. If we consider skewness with respect to
a single odd-order cumulant only (say the 3rd) then
it will be possible to select an orthonormal transfor-
mation which will remove skewness from all the
marginal distributions except one. (It is of course
possible to suggest pathological distributions, having
probability density contours which are non-ellipsoidal,
for which this would not be true.) Thus, skewness
of this type can affect only one of the p dimensions
of a multivariate distribution.

Among the commoner causes of skewness in
practice are the presence of rogue observations and
heterogeneity of the populations sampled. It is
consequently unwise merely to ignore it. | have
elsewhere (Burnaby, 1966) described a projection-
matrix technique for dealing with heterogeneous
multivariate data.

NONMETRIC METHODS
There appears to be no reason why quadratic



Table 1.- Upper Carboniferous bivalves: untransformed data.

(1) (2) (3) (4) (5)

n "(ujk) 18,1 I d,
4. concinna 21 6.8629,,3 2,206510-3 3.8364 -1.%282
C. fallax 21 535791 ¥ 3.2515)5=3  4.7289 -1.2387
anthracosia sn. 30 1.3954106 5.2525101 61447 0.7561
Ce cristagalli &4 18 2.1612, 46 4.4907, 1 6035347 0.5202
U. cristagalli 2 11 2o 5’/65106 1.5010101 6.4110 0.5571
C, cristagalli 3 27 2,6650106 290971101 6.425% 0.56608
Y. pseudorobusta 35 5.4427107 721155, 53 75369 1.9261

sxplanation of Table 1. n = number of specimens per sample; n(udk) = product of
mean values for six shell measurements (for details ses Uable ) l§kl = sample
estimate of 6x 6 covariance matrix determinant; m, = common log of entry in

column (2); d, = half the common log of entry in column (3).

Table 2. - Upper Carboniferous bivalves: data transformed y = In x.

(L) (2) (2 (4 (5)

n "(ujk) 18, 1 my dy
Ao, concinna 21 3.9224 4.720315-11 0.5936 -5.16302
C. fallax 21 19.6553 10265010-12 1.2935 -5.94930
Anthracosia sp. 20 122.835 2.710910-11 2.1084 -5.283444
C. cristagalli 4 18 152.906 10055810-11 2.1844 -5.48821
Lo cristagalli 2 11 159.263 5.094410—12 2.2021 -5,75471
Co cristagalli 3 27 171.060 3.484810—12 2.2331 -5.72891
C. pseudorobusta 35 464,377 8.059410-12 2.6669 -5.54685

fxplanation of Table 2. As for Table 1, except that all means and covariances

have been computed from the data after transformation to logarithms.
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Table 3.- Measurements of 21 specimens, untransformed and transformed data,

Anthracosia concinna: sample of 21 specimens, untransformed data.

Variate L H CP DP CA A

Means (mm) 17,29 7:907  1.940 3,062 3,095 2.730
St. devs. 5,205 2,471  0.4491 0.8909 1l.451 0.893%5

Correl. 1.0000 0,9819 0.6215 0.8966 0.9448 0,7789
matrix 1.0000 0,.6465 0.9296 0.9628 0.7738
1.0000 0.6303 0.,6167 0,4258

1,0000 0,8633 00,7221

1.0000 0.6706

1.0000
The same sample: data transformed y = 1ln X
Variate L H CP DP CA A
Means 2,811 2,027 0,638 1.083% 1.043 0.956

St. devs. 0,2814 0.2847 0.2283 0.2711 0.4087 0.%207

Correl. 1.0000 0.9774 0.6448 0.,8941 0,9210 0.7955
matrix 1.0000 0.6712 0,205 0.9423 Q0,.7687
1.0000 0.6922 0.5880 0.503%4

1,0000 0.8206 0.6830

1.0000 0Q,6746

1.0000

Explanation of Table 3 The six shell measurements are:-

T
L DMax overall length, parallel to long axis of profile.
H DHMax overall height, perpendicular to L.
CP Radius of posterior extremity of shell (900 arc).
DP Humping of postero-dorsal shell margin.
CA Radius of anterior shell extremity (90O arc).
A Distance of umbo from anterior extremity, parallel to L.
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discriminant functions should not be constructed
using the ranks of the observed variate values
transformed to equivalent normal scores. It would
be necessary to re=score the vector x to be identified
for each of the K populations: this would make the
procedure somewhat laborious. However, by assign-

ing nonintegral ranks to the elements of x, the neces-

sity for re-computing the dispersion matrix for each
new x for each sample could be eliminated. | have
not attempted any trials with actual data.

CONCLUSIONS

Until recently, quadratic discriminant func-
tions have been rather neglected in favor of the
linear discriminant, probably on account of the
latter's apparent simplicity. As we have seen, how-
ever, the quadratic discriminant does not necessarily
entail more arithmetic, if the number of parent
populations is not small, Cooper’s studies, demon-
strating the use of the quadratic discriminant in a
wide variety of situations involving nonnormal
distributions, point to the desirability of adopting
the quadratic form as the basic concept and of re-
garding the linear discriminant merely as a conven-
ient computational device for use in special circum-
stances.
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The distance interpretation of the quadratic
form is of special importance in evolutionary studies
in paleontology, as pointed out by Lerman (1965a,
b). The amount of within-population variance is
the natural unit of measure for comparing small
morphological changes affecting the mean values of
p different characters in a group of fossil organisms.
The rate of change of the generalized distance per
unit of geological time should help to throw light on
the evolutionary process: for example, the question
of whether the speed of evolutionary advance in
complexity of biological organization is limited by
the nature of the genetic mechanism, or by factors
external to the organism itself.

The effective implementation of the gen-
eralized distance depends to a large extent upon the
possibility of establishing an effectively constant
metric for data exhibiting a very marked hetero-
geneity of variance. The present contribution
illustrates a relatively simple method of approaching
this problem. More sophisticated techniques, such
as those studied by Box and Cox (1964), are now
beécoming available, although at present these re-
quire very much more computational work, and have
not so far been tested in multivariate problems.
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APPLICATION OF PATTERN RECOGNITION TECHNIQUES
TO GEOSCIENCE INTERPRETATION

By
Gerry L. Kelly

University of Kansas

ABSTRACT

Everything in nature has certain spectral characteristics which can be used to distinguish one entity
from another or to obtain information about shape, size, or other physical properties if proper sensing devices
are utilized for measurement. The pattern recognition process is the examination of the data obtained in
measurements of the environment to determine invariant patterns. The pattern recognition process basically
groups together similar events from the organized environment. The criteria used to determine the similarity
of various patterns within a particular pattern group will in general depend upon the interests of the
investigator.

Geoscientists usually are confronted with vast amounts of data to be analyzed. It becomes exceed-
ingly difficult to determine the salient features of the data unless some automatic method is utilized.
Pattern recognition techniques can be particularly helpful to geoscientists who have several different cate-
gories to distinguish. A particular pattern recognition method may be implemented with actual "hardware”
or simulated on a digital computer.

One type of pattern recognition process is when the statistics of sample patterns are known in advance.
The sample patterns, sometimes called the training set, are used to develop discriminant functions which can
be used to classify patterns not in the original training set. Another type of pattern recognition process is
when no a priori knowledge is known about the categories being considered. In this case measurement space
is partitioned into similarity sets on the basis of conditional and marginal probability density functions

obtained from the data.
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CLASSIFICATION OF CONTOUR MAPS

by
Owen T. Spitz

and
Daniel F. Merriam

Kansas Geological Survey
ABSTRACT

Comparison of contour maps and their classification have been of interest for some time. Until
recently, however, most of the work has been of a qualitative nature, and only with advent of the com-
puter have more rigorous and sophisticated methods been available.

Considerable effort now is being directed toward pattern discernment and representation. Geologists,
long accustomed to reading maps, are especially involved with map interpretation. This use has been
based mainly on visual inspection and for the most part has been highly subjective.

Trend analysis is a quantitative method of evaluating spatial data and essentially allows a large-
scale component to be separated from remaining small-scale components. Thus, a complex situation can
be broken down into simple components, which are then analyzed. For purposes of comparison or classifi-
cation, the (1) raw data, (2) trend component, or (3) residual information have been used with varying
degrees of success.

The comparison and classification of maps entail using numerical descriptors. Mirchink and Bukhartsev
(1959) compared the distribution of features on one map to another by examining the absolute depth (the raw
data) of the two surfaces at many localities. Coefficients of power-series polynomials of well-fitted third-
degree surfaces were used by Merriam and Sneath (1966) to group structural maps. A comparison of residual
values from trend analyses of structural data were made by Merriam and Lippert (1966). Nothing, to our
knowledge, has been published using the matrix of a trend analysis, although this technique was suggested
by Miller (1964). Other possible numerical descriptors would include coefficients of orthogonal polynomials
(Spitz, 1966) and Fourier coefficients. To simplify the problems of size, shape, and orientation for com-
parison, structural data on several horizons in different parts of Kansas were used. The availability of this
data presented a unique opportunity for such a study.
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COMPUTER CONTRIBUTIONS
Kansas Geological Survey
University of Kansas
Lawrence, Kansas

Computer Contribution

1. Mathematical simulation of marine sedimentation with [BM 7090/7094 compufers,

bl WiHarbatahl fI966 500 L &0 B0 i Lo e e PEEE o ww 51500

2. A generalized two-dimensional regression procedure, by J.R. Dempsey, 1986. . .« « $0.50
FORTRAN 1V and MAP program for computation and plotting of trend surfaces for degrees

1 through 6, by Mont O'Leary, R. H. Lippert, and O.T. Spitz, 1966 . . . . . $0.75
4. FORTRAN Il program for multivariate discriminant analysis Using an IBM 1620 computer,

by J. C. Davis and R. J. Sampson, 1966. . . . . e e ol G I R
5. FORTRAN IV program using double Fourier series for surface Fl’rfmg of |rregu|arly spaced

data, by W. J. James, 1966 . . . . . y i s 5075
6. FORTRAN |V program for estimation of cladistic relatlonshlps using the IBM 7040, by

R. L. Bartcher, 1966 . . . . . $1.00
7. Computer Applications in the Earth Sciences: Colloquuum on classificational procedures,

D. F. Merriam, editor, 1966 A et RS e e St e e B, T, e 6
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