DANIEL F. MERRIAM, Editor

A GENERALIZED TWO-
DIMENSIONAL REGRESSION
PROCEDURE

By
JOHN R. DEMPSEY

Northern Natural Gas Company

COMPUTER CONTRIBUTION 2
State Geological Survey

The University of Kansas, Lawrence
1966




EDITORIAL STAFF
Daniel F. Merriam, Editor
Nan Carnahan Cocke, Editorial Assistant

Associate Editors

John R. Dempsey Northern Natural Gas Co. John Imbrie Columbia University
Richard W. Fetzner Sun Oil Company William C. Pearn Socony Mobil Field
James M. Forgotson, Jr. Pan American Petroleum Corp. Research Lab.

John C. Griffiths Pennsylvania State University Max G. Pitcher Continental Oil Co.

John W. Harbaugh Stanford University Floyd W. Preston University of Kansas
Richard G. Hetherington University of Kansas Peter H. A. Sneath University of Leicester
Sidney N. Hockens Phillips Petroleum Co. Owen T. Spitz Kansas Geological Survey

Editor’s Remarks

Quantification is new to the earth sciences. Geologists have long thought in qualitative terms, although other physical sciences such
as physics (geophysics) and chemistry (geochemistry) have been "mathematically oriented" for many years. Scientists use mathematical symbols
and methods for several reasons: (1) for simplification of expression and for manipulation ease; (2) because of the manner in which general,
and not just particular, solutions become apparent; and (3) because of the fundamentalism which underlies different problems and is revealed
in their formulation. Two very important advantages of quantification are repeatibility and objectivity.

Acceptance of quantitative techniques by earth scientists, although slow, is readily apparent today, especially in publications, presen-
tations of technical papers, and symposia. The number of geological publications dealing with various computer applications has increased
since 1962 at an exponential rate. Several organizations are making computer programs available in regular or semi-regular publications,
which, in addition to the Kansas Geological Survey, include: The Institute of Science and Technology at the University of Michigan; Seaver
Laboratory at Pomona College; Office of Naval Research, Geography Branch, through Northwestern University, and Department of Oceanog-
raphy, through the University of Washington; and U.S. Bureau of Mines. Many other organizations, including the Department of Geology at
McMaster University, Department of Geography at the University of Michigan, Department of Mineralogy and Geochemistry at Pennsylvania
State University, National Oceanographic Data Center, Sedimentology Research Laboratory at the University of Reading (England), and U.S.
Geological Survey, have computer programs, along with operational instructions, available on request to interested persons. Undoubtedly,
reports and programs of this type are available through other organizations as well.

The Kansas Survey is the only geological organization now known to be distributing computer program decks as well as data decks.

The programs are written in ALGOL, BALGOL, FORTRAN I, and FORTRAN 1V, and sold for a limited time at a nominal cost. The programs
greI for Burroughs B5500, Elliott 803C, IBM 1620, 7040, and 7090/1401 or 7094/1401 computer systems. A list of available decks is given
elow.

ALGOL BALGOL F ORTRAN 11 FORTRAN IV

Marine Simulation (CC 1) $20.00
2D Regression (CC 2) $10.00 $10.00 $10.00
Trend-3 (SDP 3) $10.00
Match-Coeff (SDP 4) $ 2.00
Correlation and distance

Coeff (SDP 9) $ 5.00 (each)
Time-trend (SDP 12) $ 5.00 $ 5.00
Covap (SDP 13) $15.00
Trend-3 (SDP 14) $25.00 $25.00
Cross-Association (SDP 23) $10.00
Single and $ 5.00

double Fourier (SDP 24) $15.00

Precambrian wells (SDP 25)  List of about 2,600 Precambrian wells $50.00

Trend-4 (SDP 26) % .7.80
Sediment analysis (SDP 28) $10.00
4D Trend (KGS B171) $10.00
Conversion of T&R to
Cartesian coordinates Bull 170-3) $ 5.00 $ 5.00

The number of computer-oriented papers being presented at different international, national, and regional meetings is increasing. In
addition, many societies, such as the American Association of Petroleum Geologists, present symposia on computers within the framework of
their regular meetings. An annual symposium on computers and computer applications in the mineral industries is sponsored jointly by the
University of Arizona, Stanford University, Colorado School of Mines, the Pennsylvania State University, and the Society of Mining Engineers
of AIME. Other institutions such as the University of Michigan and Oklahoma Research Institute are sponsoring computer conferences. In a
program for continuing education, the American Association of Petroleum Geologists have guest lecturers who speak on the "state of the art”
of computers and computer applications in the earth sciences.

This report, "A generalized two-dimensional regression procedure, " by John R. Dempsey is the second in a series of COMPUTER
CONTRIBUTIONS published by the Kansas Geological Survey. This series complements other Survey "regular” publications and allows new
developments in computer methods and computer applications in the earth sciences to be presented in the quickest and easiest manner. The
COMPUTER CONTRIBUTION series is an outgrowth of a very successful trial venture of publishing reseqrcc‘w results in regard to the rapidly
expanding field of computer techniques in the Survey's series of Special Distribution Publications. The objectives of the new series are the
same as those of the Special Distribution Publication series - that is, presenting as concisely and objectively as possible details of computer
programs and their applications by geologists and petroleum engineers. Initial response to the COMPUTER CONTRIBUTION series indicates
international acceptance and use of the information.

Comments and suggestions concerning the COMPUTER CONTRIBUTION series are welcome and should be addressed to the editor.



A GENERALIZED TWO - DIMENSIONAL REGRESSION PROCEDURE

JOHN R. DEMPSEY

INTRODUCTION

Frequently, in the solution of an engineering
problem with the aid of a digital computer, the
investigator wishes to use values in the calcula-
tions that originate from a chart or table of values.
These values may have been derived by discrete
variations of some complicated function or may
have been derived experimentally. In the former
case the trend is usually smooth in nature whereas
the latter may be quite erratic, With the latter,
he normally desires the most general trend of the
tabulated data, but this often negates much of the
experimental inconsistency. However, he must be
very cautious with this assumption,

Several methods are at the programmer-engi=
neer's disposal to represent data for automatic
computation. A few of these are:

(1) Read in the value of the dependent

variable at each step,

(2) Represent a table by matrices and use a

table look-up procedure,

(3) Apply differencing techniques (polynomial

approximation), and

(4) Compute normal least squares.

There are many inherent problems in using any
of the above methods. The first one obviously is
extremely time consuming and expensive, because
the computer is idle while the value of the depen-
dent variable corresponding to the specified inde~
pendent variable is found,

The second method is often satisfactory when
accuracy is desired. |t normally requires a great
deal of computer space, however, and is relatively
slow in the evaluation of the desired value,

Differencing techniques are easily evaluated
once the polynomial has been defined; however,
there are many problems in evaluating the required
differences to specify the polynomial. Some of the
problems are: spacing, boundary conditions, and
error accumulation,

The fourth is probably the best method, at
least from the theoretical and utility standpoints.
The theory states that the function must have a
minimum deviation for any set of discrete data and
for any order, It is also easily evaluated for digi-
tal computation,

Several problems are inherent in the computa-
tion of a normal least squares. One disadvantage
is that a system of simultaneous equations must be
reduced to evaluate the coefficients. The matrix
formed by these equations is of the well-known
Hilbert matrix form. It is extremely ill-conditioned
and fails to converge at higher orders, The numeri-
cal round-off is also a problem during the matrix
inversion. A second major disadvantage of the
normal least-squares method is in the evaluation of
the minimum variance for a set of different orders.
Because the coefficients themselves are not analyti=
cally independent (i.e. they depend on both the
order and set of data), one must evaluate a separate
set of coefficients for each order and then proceed
to evaluate the associated variance.

Due to the many problems inherent to function
approximation by the above techniques, an alternate
technique should be appropriate. The method des-
cribed here or use of the procedure utilizing this
method will eliminate or partly nullify the adverse
conditions described above.

MATHEMATICAL DESCRIPTION

A family of functions may be defined as being
an orthogonal system on (a,b), if for each pair
of distinct members, ¢|<’ ¢i' kA i;

b
@ W, G 6= w9 6g (k=0 kfo ()

where

w(x) = some arbitrary weighting function.
Assuming that the family contains no null functions,
i.e., for any real function there exists nowhere
the following relation:

(@, 9) <0 j=k 2

Using the above criteria (1) and (2), one can
describe a linearly independent system Qi(x) such
as:

C°¢°(x)+C] ¢] (x)+...+Cka(x)=0 (3)
To prove the linear independence of (3) one can
multiply successively (3) by @.(x), i=0, 1, 2, ...
k. Taking the first multiplication as an example,



C2, (0 @ () +C, B, () B () +...+C@ (B, (x) =0

Every product (known as the Kronecker delta),
¢i(x)¢i(x), where i # i, is zero by (1). Using (2),

C.B, (0@ (x) =0 (4)
and, ¢o(x)¢o(x) cannot be zero; therefore C_=0.
Repeating this analogy fori=0, 1, 2, ....,k,

C =Cy=.e.=C =0 (5)

LEAST-SQUARES PROPERTY

It is shown that a system of orthogonal functions
is indeed linearly independent with respect to the
scalar products, To use this system for the approxi-
mation of a real function or discrete sets of data, it
must be proved that the integral or sum of the weight=
ed square of the error does, in fact, exhibit a
minimum over (a,b).

Let f(x) be expanded in a linear combination
of orthogonal polynomials such as

f(x) = AoPo(x) + A]Pl(x) + ...+ AnPn(x) + zAiPi(x) (6)
i=nt+l

However, for practicality the finite series is taken

up to i =n,

nn(x) =

oo n
AP, (x) - Z AP, (x) )
0

where rn(x) = remainder or truncation error,
Rewriting (7) for convenience,

rn(x) = f(x) - Sn (x) (8)
where

Sn(x) = partial sum or finite series through the

nth degree. Repeating the process with which linear

independency was proved,

b
S w()f(x)Py (x)dx = A 9)
a
since

(Fx), P = A (P(x), PGO)+ AL(PL(), PO+ ..

+ AP, PG+ .. (10)

and
(Pi(X), P.(x)) =0 i# (1)
(Pi(X), P.(x)) =C P#

Now let )xn(x) be any arbitrary polynomial of degree
< nsuch that

n

A =S () = 0, () = Z d, ()

and )\n(x) = Sn(x) when all the dk's are zero, i.e.

(12)

no error exists, |f (8) and (12) are combined,

Fx) = A () = 1() = 0,(x) (13)

which describes the error term.
The integral of the square of the error term in
using )\n(x) to approximate f(x) weighted over (a,b)

by w(x) is

5: w(x) [ f(x) - )\n(x)] 2 e gb

a

2
w(x) [ 0= g (] de (10

By expanding (14) to

b 2 b 2
S‘aw(x) [f(x) - )\n(x)] dx - S\O w(x) [rn(x)] dx

-2 f: w(x)r_(x) 0, (x)dx + S: wix) [ 0,00 2 o (15)
it |§ shown that

5 w(x)rn(x) on(x)dx =0 (16)

a

By replacing cn(x) by dePk(x) which now in-

volves scalar products of unlike degree (all terms
in rn(x) are of degree n+ 1 or greater), the following

can now be written,
n

b
5 w(x) 02 (x) dx = dkz

a

(17)

because all scalar products are zero except those
involving polynomials of the same degree, i.e.,

(P09, P N2 = d2 . From (13), (14), (15),

(16), and (17) the following inequality, which
shows the minimum property of the approximation,
can be written

j‘b w(x) [f(x)- )\n(x)] 2 4> fb w(x) [rn(x)] 2 dx

except for the isolated case when all d) 's = 0
and then equality holds,

GENERATION OF APPROXIMATING POLY-
NOMIALS

(18)

Using the approximating function to f(x),

Y =2 (x) =b P (x) + byPi(x) + ... + b P (x) (19)
where P. isan orthogonal polynomial of degree i.

The standard error term used in least-squares minimi=
zation is

=Y ; by Py (x;)
e,

Squaring this term and differentiating with respect
to bk and setting the resulting equations to zero,

(20)

the following set of n simultaneous equations is
obtained:

N N
by ) Py (xR (x) + b]ZPo(xi)P](xi)’f
1



YiPo(xi)

-z

N
+ bnz Po(x)Pn(xi)
1

N N
boz P (x,)P_(x,) + b‘zP(xi)P](xi)w‘
7 ]

N N
+ bnz P(xi)Pn(xi) = zYiPl(xi)
1 1

N N
boz Polx)P(x;) + by Zpl(xi)Pn(xi) * oo
] 1

N, N
+ bnz Pn(xi)Pn(xi) = Z YiPn(xi) (21

1 1
where

N = number of data points.

Applying (1) to the system, everything except
the major diagonal vector and constant vector is
reduced to zero. Thus, the coefficients bo’ b] ; eae

bn can be evaluated independently with only one

division per coefficient.
After the polynomials have been generated,
the evaluation of the coefficients bo’ b] sees ’bn

is relatively simple, Therefore, the automatic

generation of the polynomials themselves, Po(x),

P](x), .. .,Pn(x) would be of great value for digital

computation,

There are many methods of generating orthogonal
polynomials (Hamming, 1962; Sansone, 1959). A
method described by Householder (1953) is suited
for computer usage. In this method, only two poly-
nomials need be known to start the generation
procedure,

To illustrate the generation of an automatic
recursion formula, begin with the generalized

formula,
Pi+](x) = XPi(X) - q|+]PI(X) - Bipl_ ](x)

This formula is multiplied through by Pi(x) which,

(22)

after reducing and applying (1), gives

0=(x~- Gj+])Pi(x)Pi(x) (23)
Thus for a set of discrete data
2
x; [Pi(xi) ]
a = (24)

i+1

-z -0z

[Pi (x;) ] 2

To evaluate B., the above process is repeated
using Pi_](x) instead of Pi(x). This gives (25)

for a set of discrete data points.

(25)

2 ]

NOTE: This illustration was derived for w(x) = 1,
However, the same analogy can be used for

w(x) = f(x). The first two orthogonal polynomials
needed to start the generalized recursion formula

may be generated by any technique, such as
Gram=Schmidt (in Kunz, 1957) or Rushton (1951).

USE OF PROCEDURES "ORTH", "EVAL" AND
"COEF"

The procedure ORTH generates the orthogonal
polynomials to be used in the least-squares fit.
These are normalized on the interval (=1, +1),
Also, two arrays of recursion coefficients which
will enable the calling of EVAL to find any specific
value of the dependent variable are generated in
the process, These must be available when EVAL
is called.

If the regression portion of the program is
desired, KSELCT is set equal to +1 and MAXO
is set equal to the highest order to be included in
the oncjysis, This causes the program to compute

an array of variances 0_2 (Lapidus, 1962)

N
2 1
z (Yk - Yck)
2
o, = k=1

(N=i+1))

(26)
where

Y|< = kfh value of dependent variable used,

Ye, = k' value of dependent variable cal-
culated by use of the orthogonal
function generated by using EVAL with
XC =X,

N = number of data points used, and
i = index equaling the order of the orthogonal
function used to evaluate Yck .
2

The minimum value of 0i2 is then derived, and the

value of i for this value determines the optimum
regression order from an independent statistical
test function,

If the user desires a specific order without
regard to minimum variance, KSELCT is set equal
to zero and MO becomes the order of the least-
squares fit, Intermediate output may be obtained
by setting KOUT equal to 1 (see sample output),

The least-squares polynomial is of the form



Y = b]P](x) + bsz(x) + b3P3(x) +, ,.+b”Pn(x)

where
bi's = least=squares coefficients,

(27)

p;'s = orthogonal polynomials of order i, and

n = order of the analysis.

Because it is difficult to evaluate (27) into
an ordinary polynomial where each coefficient
is multiplying f(x) of only one order, the procedure
EVAL was written to automatically evaluate a form
of (27) at any x. If for some reason, this poly=
nomial of ordinary form is desired, it can be ob-
tained through the use of the procedure COEF.
The technique used in COEF is described in the
Appendix. The equation used for analytic inter=
polation is of the following form:

Y=cl +c22 + c312+c423+ cen

where

C.
1

z

A

+ cnzn (28)

i polynomial coefficient,

(2x = (A-BB))/ (BB-A),

smallest value of dependent array,

BB = largest value of independent array, and
n = order of analysis,
A and BB are available globally from ORTH.

SAMPLE CALL SEQUENCE

ORTH (X, Y,N,MO, B, KOUT,ALP, BET,KSELCT,
MAXO, A, BB, FILENAME)

EVAL (B, MO,ALP, BET,A, BB, XC)

COEF (ALP, BET, B, MO, C)

SYMBOLIC DICTIONARY

(ORTH)
Variable Type S/A 1/0 Units Comments

X R A 1 NA An array of values of the independent variable,
Y R A I NA An array of values of the dependent variable.
N I S | NA Number of discrete data points,
MO | S l NA Order of the orthogonal polynomial to be used

when regression is not used.
B R A @) NA An array of the orthogonal coefficient.
KOUT 1 S 1 NA Switch for the intermediate output (+1 is on,

o is off).
ALP R A ) NA Array of recursive coefficients.
BET R A @) NA Array of recursive coefficients.
KSELCT 1 S | NA Switch to use the regression portion (+1 is on,

o is off).
MAXO | S | NA Maximum order to be used by the regression routine.
A R S @) NA Smallest value in independent data array.
BB R S @) NA Largest value in independent data array.
C R A ) NA Ordinary polynomial coefficients
FILENAME Identifier of the output file,

(EVAL)
Variable Type S/A 1/O Units Comments

B R A I NA Array of orthogonal coefficients.
MO I S ! NA Order of highest approximating polynomial,
ALP R A I NA Array of recursion coefficients,
BET R A I NA Array of recursion coefficients,
A R S | NA Smallest value in independent variable data array.
BB R S I NA Largest value in independent variable data array.
XC R S I NA Value of the independent variable for which the

value of the respective dependent variable is
desired,

Note: The variables B, MO, ALP, BET, A, and BB are output from the procedure ORTH.,




Variable Type S/A 1/O Units Comments
ALP R A I NA Array of recursive coefficients,
BET R A I NA Array of recursive coefficients,
B R A I NA Array of orthogonal coefficients,
MO I S I NA Order of the orthogonal polynomial which is
also order of ordinary polynomial,
C R A ®) NA Array of ordinary polynomial coefficients,

Note: The variables ALP, BET, B, and MO are output from the procedure ORTH,

PROGRAM LISTING

PROCEDURE ORTH (X,Y,N,MO,B,KOUT,ALP,BET,KSELCT, MAXO,A,
BB,C,FILENAME) ;
VALUE X,Y,N,MO,KOUT,KSELCT, MAXO;
REAL ARRAY X,Y,B,ALP,BET,C[11];
INTEGER N,MO,KOUT,KSELCT, MAXO;
FILE FILENAME;
REAL A,BB;
BEGIN COMMENT INSERT FORMATS HERE AND EVAL AND COEF
SOURCES;
REAL PROCEDURE EVAL(B,MO,ALP,BET,A,BB,XC);
VALUE B,MO,ALP,BET,A,BB;
REAL ARRAY ALP,BET,B[1];
REAL A,BB,XC;
INTEGER MO;
BEGIN
INTEGER M,]I;
REAL ARRAY PO[1:MO+ 11;
REAL ZN,SUM,PM;
ZN «— (2XXC - (A+ BB) ) / (BB - A);
SUM < 0;
PO[1]~1;
M «— MO+ 1;
FOR I «<— 2 STEP 1 UNTIL M DO
BEGIN
IF I=2 THEN PM~<0 ELSE PM «—PO[I - 2];
PO[I] < (ZN - ALP[I] ) X PO[I-1] - BET[I ]X PM;

END;
FOR I<«<1 STEP 1 UNTIL M DO
SUM «— SUM + B [I]xPO[I];
EVAL — SUM;

END EVAL;

PROCEDURE COEF (ALP,BET,B,MO,C);
VALUE ALP,BET,B,MO;
REAL ARRAY ALP,BET,B,C [1];
INTEGER MO;
BEGIN
REAL ARRAY P[0:MO+ 1, 0:MO+ 1] ;
INTEGERI,T,K,L;



FOR J <1 STEP 1 UNTIL MO+ 1 DO
FOR K <1 STEP 1 UNTIL (MO+ 1) DO
P[K,J] = 0;
FOR K<1 STEP 1 UNTIL (MO+1) DO
P[K,K] < 1;
FOR K < 2 STEP 1 UNTIL (MO+ 1) DO
BEGIN
L — K-1;
FOR T-—1 STEP 1 UNTIL L DO
P[J,K] «—«P[J-1,K-1] -ALP[K] XP[],K-1] - BET[ K] X

PLJ.K-2];

END;

FOR I <1 STEP 1 UNTIL (MO+ 1) DO
BEGIN

Cl[I] -~ 0;

FOR K«I STEP 1 UNTIL (MO+ 1) DO

C[I]« CI[I] + B[K] X P[L,K];
END;
END COEF;

INTEGER I, 7T, L,KV,MOO,MCOl, MOP ,M;

REAL ARRAY P [1:MAXO+1,1:N]1,SIG 2[1:MAXO],Z[1:N1];

BEGIN

END;

REAL XMAX,XMIN,AN,ANN,AD,BD,BN,PM,EMOP,VMAX, VAR,
PERC,S,R,XN,YN,SUM, EM,EN;

LABEL L1,L2;

FORMAT OUT INFO1 (*RECURRENCE COEFFICIENTS"/),
INFO 2 (* BETA",X12," ALPHA",X11," ORTH COEF",

X7,"POLY COEF"),

INFO3 (4(E 12.5,X5)),
INFO4 (/" ORDER OF BEST APPROXIMATING ORTHOGO",

" NAL FUNCTION = ",I 3/"(BASED ON MINIMU",
" MUM VARIANCE) VARIANCE =", £13.6),
INFO 5 (*HIGHEST ORDER POLYNOMIAL USED IN THIS",
" ANALYSIS=",13),

INFO 6 (/"HIGHEST ORDER OF ORTHOGONAL POLYNOMI",
“ AL=",13,X5/"VARIANCE=",E 13.6),
INFO7 (/" X-DATA",X8," Y-DATA",X8," Y-CALC",X8,
“ DIFF",X10," PERCENT-DIFF" /),
INFO 8 (5 (E11.4, X 4));
EM«M<+-MO+ 1;
EN «— N;
COMMENT LOCATION OF XMAX AND XMIN FOR NORMALIZATION;
XMIN « XMAX— X[11];
FOR I<«2 STEP 1 UNTIL N DO

IF XMIN > X[I] THEN XMIN «—X[I];
IFX[I] > XMAX THEN XMAX «X[I];

A —XMIN;

BB «— XMAX ;

COMMENT NORMALIZATION OF INDEPENDENT VARIABLES;
FOR I«1 STEP 1 UNTIL N DO

Z[I] —(2 x X[I] - @A+ BB))/ (BB-A);

FOR I-1 STEP 1 UNTIL N DO



Ll:

L2;

BEGIN

BEGIN

BEGIN

END;

BEGIN

END

END;

BEGIN

BEGIN

END;

END;

BEGIN

END;

BEGIN

BEGIN

END;

P[1,I]~ 1;

BET[1] <—ALP[1] -~ BET[2] «— O ;
IF KSELCT = 1 THEN M « MAXO + 1;
FOR J <2 STEP 1 UNTIL M DO

AN < ANN <« AD~BN<«~BD <« 0;
FOR I+«1 STEP 1 UNTIL N DO

ANN «—ANN + Z[I] X P[J-1,11%*2;
AD«<—AD + P[J-1,I]1%*2;
ALP[J] < ANN 7AD;

IF 7> 2 THEN

BN<BN + Z[I]1XP[J-1,11X P[J-2,11;
BD-—BD + P[J-2,1]%*2;

BET [J] «— BN /BD;

GO TO L 1;

PM=0;

FOR L-1 STEP 1 UNTIL N DO

IF J>2 THEN PM~<P[J-2,L1;

P[J,L] < (2Z[L] - ALP[J])xP[J-1,L] - BET[]J 1XPM;
END;

FOR J«1 STEP 1 UNTIL M DO

S<—R<10;

FOR L1 STEP 1 UNTIL N DO

S«<S+ Y[L] ¥ P[J,L];

R<—R + P[J,L]*2;

B[J]1-— S/R;

IF KSELCT < 0 THEN MOP< MO ELSE MOP- 1;
SUM <0 ;

FOR I<«1 STEP 1 UNTIL N DO

YN -« EVAL ( B, MOP,ALP,BET,A,BB,X [I1]);

COMMENT INSERT CALL FOR AN EVALUATION PROCEDURE HERE;
VAR YN - Y[I];

SUM < SUM + VAR*2;

EMCP <~ MOP;

SIG2[MCP] <« SUM/ (EN - (EMOP + 1));
IF KSELCT = 1 THEN

IF ( MOP < MAXO) THEN

MOP <« MOP + 1;
GOTO 12;

COMMENT LOCATION OF MINIMUM VARIANCE;

7



VMAX — SIG2[11];

KV «— 1;

FOR I-«2 STEP 1 UNTIL MAXO DO
BEGIN IF VMAX > SIG2[I] THEN

BEGIN
KV<I;
VMAX —SIG2[I];
END;
END/
MOO<KV;
MOP — MOG;
END;

IF KOUT = 1 THEN
BEGIN
WRITE ( FILENAME, INFO1) ;
WRITE ( FILENAME,INFO2) ;
COMMENT CALL POLY COEFFICIENT GENERATOR HERE;
COEF ( ALP,BET,B,MOP,C);
WRITE ( FILENAME, INFO3,FOR I<1 STEP 1 UNTIL (MOO+ 1)
DO[BET[I],ALP[I],B[I],C[I]1]);
IF KSELCT = 1 THEN
BEGIN
WRITE ( FILENAME,INFO4,MOP,SIG2 [ MOP]) ;
WRITE ( FILENAME, INFOS, MAXO);
END ELSE
WRITE (FILENAME, INFO6,MO,SIG2 [MO]);
WRITE (FILENAME, INFO7) ;
FOR I-1 STEP 1 UNTIL N DO
BEGIN
YN - EVAL (B, MOP,ALP,BET,A,BB,X [11]);
VAR ~— YN - Y [I];
COMMENT IF Y[I] EQUALS 0.0, THE PERCENT DIFFERENCE IS SET
EQUAL TO 99999999999;
IF Y[I] # 0.0 THEN
PERC < ABS(VAR) x 100/Y[I]
ELSE PERC < 99999999999;
WRITE (FILENAME,INFOS8,X [I], Y[I],YN,VAR,PERC);
END;
END;
END ORTH;

SAMPLE OUTPUT
RECURRENCE COEFFICIENTS

BETA ALPHA ORTH COEF POLY COEF
0.00000@+00 0.00000@+00 4,53437@+00 4.51639@+00
0.00000@+00 9.67169@-02 1.85892@-01 1.85892@-01

HIGHEST ORDER OF ORTHOGONAL POLYNOMIAL = 1
VARIANCE = 7.986890@-04

X-DATA Y-DATA Y-CALC DIFF PERCENT-DIFF

6.3703@+00 4.6622@+00 4.6286@+00 -3.3572@-02 7.2009@-01
6.3030@+00 4.6055@+00 4.5521@+00 -5.3455@-02 1.1607@+00

8



6.2813@+00 4.5724@+00 4.5274@+00 -4.4971@-02 9.8354@-01
6.3800@+00 4.6312@+00 4.6396@+00 8.3872@-03 1.8110@-01
6.4352@+00 4.6723@+00 4.7023@+00 2.9950@-02 6.4101@-01
6.3795@+00 4.6260@+00 4.6390@+00 1.3033@-02 2.8173@-01
6.3566@+00 4.6081@+00 4.6130@+00 4.9152@-03 1.0667@-01
6.2304@+00 4.4527@+00 4.4697@+00 1.7015@-02 3.8213@-01
6.1787@+00 4.3891@+00 4.4109@+00 2.1844@-02 4.9770@-01
6.1079@+00 4.3246@+00 4.3305@+00 5.9448@-03 1.3747@-01
6.3306@+00 4.5555@+00 4.5835@+00 2.7970@-02 6.1398@-01
6.2019@+00 4.4321@+00 4.4373@+00 5.2562@-03 1.1859@-01
6.1804@+00 4.4152@+00 4.4129@+00 -2.3185@-03 5.2511@-02
SAMPLE OUTPUT

KOUT =1

KSELCT =1

MAXO =7
RECURSION COEFFICIENTS
BETA ALPHA POLY COEF
0.00000@-99 0.00000@-99 5.21666@-01
0.00000@-99 -7.17504@-02 -5.76652@-01
2.08837@-01 -1.01705@-02 1.32841@-01
ORDER OF BEST APPROXIMATING ORTHOGONAL FUNCTION = 2
(BASED ON MINIMUM VARIANCE) VARIANCE = 2.320492@-03
HIGHEST ORDER POLYNOMIAL USED IN THIS ANALYSIS = 7
X-DATA Y-DATA Y-CALC DIFF PERCENT-DIFF
5.1900@-01 2.0000@-02 1.9717@-02 -2.8225@-04 -1.4112@-00
2.5400@-01 5.5000@-01 5.2218@-01 -2.7811@-02 -5.0565@-00
4.2200@-01 1.0000@-01 1.6500@-01 6.5002@-02 6.5002@+01
2.4700@-01 5.7000@-01 5.3997@-01 -3.0023@-02 -5.2673@-00
4.6700@-01 1.3000@-01 9.2054@-02 -3.7945@-02 -2.9189@+01
2.2100@-01 5.8000@-01 6.0807@-01 2.8077@-02 4.8409@-00
4.1100@-01 2.4000@-01 1.8429@-01 -5.5704@-02 -2.3210@+01
2.4000@-01 6.0000@-01 5.5799@-01 -4.2004@-02 -7.0006@-00
3.4100@-01 2.6000@-01 3.2050@-01 6.0508@-02 2.3272@+01
2.2100@-01 6.1000@-01 6.0807@-01 -1.9224@-03 -3.1515@-01
3.4300@-01 2.7000@-01 3.1629@-01 4.6294@-02 1.7146@+01
2.4400@-01 6.1000@-01 5.4767@-01 -6.2329@-02 -1.0217@+01
3.4300@-01 3.0000@-01 3.1629@-01 1.6294@-02 5.4314@-00
2.1100@-01 6.2000@-01 6.3512@-01 1.5123@-02 2.4393@-00
3.5700@-01 3.2000@-01 2.8732@-01 -3.2674@-02 -1.0210@+01
2.2100@-01 6.3000@-01 6.0807@-01 -2.1922@-02 -3.4797@-00
3.3500@-01 3.4000@-01 3.3326@-01 -6.7345@-03 -1.9807@-00
2.2600@-01 6.3000@-01 5.9473@-01 -3.5267@-02 -5.5980@-00
2.7600@-01 3.5000@-01 4.6779@-01 1.1779@-01 3.3656@-01
2.3000@-01 6.3000@-01 5.8414@-01 -4.5858@-02 -7.2791@-00
2.8200@-01 4.4000@-01 4.5336@-01 1.3363@-02 3.0371@-00
1.3700@-01 8.4000@-01 8.5000@-01 1.0005@-02 1.1911@-00
2.8500@-01 4.6000@-01 4.4620@-01 -1.3790@-02 -2.9978@-00
1.1100@-01 8.8000@-01 9.3166@-01 5.1669@-02 5.8715@-00
2.6700@-01 4.7000@-01 4.8977@-01 1.9771@-02 4.2067@-00
1.0400@-01 1.0400@-00 9.5420@-01 -8.5796@-02 -8.2496@-00
2.9400@-01 4.8000@-01 4.2500@-01 -5.4995@-02 -1.1457@+01



16.7900@-02 1.0700@-00 1.0741@-00 4.1043@-03 3.8357@-01
2.3700@-01 4.9000@-01 5.6578@-01 7.5989@-02 1.5467@+01
4.5600@-02 1.1200@-00 1.1512@-00 3.1258@-02 2.7909@-00

SAMPLE OUTPUT
RECURRENCE COEFFICIENTS
BETA ALPHA ORTH COEF POLY COEF

0.00000@+00
0.00000@+00 1. 45519@-12 1.18879@+03
4.07407@-01 0.00000@+00 -1.62644@+02
HIGHEST ORDER OF ORTHOGONAL POLYNOMIAL = 2
VARIANCE = 8.596587@+02

0.00000@+00 1.52839@+03 1.59465@+03
1.18879@+03

-1.62644@+02

X-DATA Y-DATA Y-CALC DIFF PERCENT-DIFF
5.0000@+03 2.6512@+03  2.6208@+03 -3.0368@+01  1.1455@+00
4,5000@+03  2.3701@+03  2.4209@+03  5.0776@+01  2.1423@+00
4.0000@+03  2.1947@+03  2.2049@+03 1.0178@+01  4.6374@-01
3.5000@+03 1.9885@+03 1.9728@+03 -1.5692@+01 7.8911@-01
3.0000@+03  1.7493@+03  1.7247@+03 -2.4567@+01 1.4044@+00
2.5000@+03 1.4767@+03 1.4606@+03 =-1.6170@+01  1.0950@+00
2.0000@+03 1.1759@+03  1.1803@+03  4.3955@+00  3.7379@-01
1.5000@+03 8.6133@+02  8.8402@+02 2.2686@+01  2.6338@+00
1.0000@+03  5.5268@+02 5.7165@+02 1.8973@+01  3.4329@+00
5.0000@+02  2.6343@+02  2.4322@+02 -2.0210@+01  7.6719@+00
SAMPLE OUTPUT
RECURRENCE COEFFICIENTS
BETA ALPHA ORTH COEF POLY COEF
0.00000@+00 0.00000@+00 2.32434@+04 2.33007@+04
0.00000@+00 1.45519@-12 1.93718@+04 1.98310@+04
4.07407@-01 0.00000@+00 - .40644@+02  -1.40644@+02
3.16049@-01  -1.41269@-12 -6.34740@+02  -6.34740@+02
HIGHEST ORDER OF ORTHOGONAL POLYNOMIAL = 3
VARIANCE = 2.100886@+00
X-DATA Y-DATA Y-CALC DIFF PERCENT-DIFF
4,9000@+02 4.2358@+04 4.2356@+04 -1.2163@+00 2.8714@-03
4.4100@+02 3.8339@+04 3.8341@ 04 2.2355@+00 5.8309@-03
3.9200@+02 3.4165@+04 3.4166@+04 4.0903@-01 1.1972@-03
3.4300@+02 2.9873@+04 2.9872@+04 -1.3397@+00 4.4847@-03
2.9400@+02  2.5503@+04 2.5502@+04 -1.2293@+00 4.8203@-03
2.4500@+02 2.1096@+04 2.1096@+04 1.4531@-01 6.8879@-04
1.9600@+02 1.6697@+04 1.6698@+04 1.1670@+00 6.9892@-03
1.4700@+02  1.2348@+04 1.2349@+04 6.1728@-01  4.9989@-03
9.8000@+01 8.0911@+03 8.0902@+03 -9.3292@-01 1.1530@-02
4.9000@+01  3.9636@+03  3.9638@+03 1.4408@-01 3.6351@-03
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APPENDIX
GENERATION OF ACTUAL POLYNOMIALS

The orthogonal polynomials are generated by
the relationship

Pran = (X = o )P = Brg Py M

|

where a. = ALPHA(J) and B. = BETA(J) in the
sample !output. I

NOTE: The subscripts on a and B differ from
those appearing in the mathematical description
because these are written to correspond with the
ALPHA and BETA arrays in the sample output.

The sample output previously described is used
for this example., The data has been normalized
over (=1,+1) by the following relationship,

Z = (2X -(A + BB))/ (BB-A) (2)
where A = smallest value of the independent array
(X=data).
BB = largest value of the independent array,
and

Z = transformed independent variable on the
interval (=1,+1),
First, P] is set equal to 1 to start the recursion

relationship (1)
] = ].O‘

Then
P2 =(Z- a2)P] - BZPO
since
[32 = BETA (2) =0,
P2 =(Z- a2)P] , and
P2 =(Z + 0,0717504),

This gives

11

P3 =(Z- GS)PZ - B3P]

P = (Z + 0,0101705)(Z+0.0717504) -
0.208837 (1.0)

Py = (22 + 0.0819209Z - 0.208107).

Using a linear combination (3) of these
orthogonal polynomials, the actual polynomial
used to approximate the real function can be
obtained

u=g(Z)=b]P] +b2P2+b3P3+ cee

+b P (3)

where

b, = POLYCOEF(J)
u = 0.521666 - 0.576652(Z + 0.0717504) +
0.132841(Z2 + 0.0819209Z - 0.208107)
v = 0.452553 - 0.565770Z + 0.132841Z2
(4)

The first data point is used to test the polynomial
just generated,

X=0,519, Y=0.,02
BB=0.519, A =0.0456
Z =(2(0,519) - 0.0456 - 0.519)/
(0.519 - 0.045¢)
Z=1.,0
Substituting Z = 1 into (4),
u=0,452553 - 0,565770 + 0,132841
u=0,019624

which agrees very closely to the value obtained
by the computer,



KANSAS GEOLOGICAL SURVEY COMPUTER PROGRAM
THE UNIVERSITY OF KANSAS, LAWRENCE

PROGRAM ABSTRACT
Title (If subroutine state in title):

Generalized Two-Dimensional Orthogonal Regression Procedure

Computer: B5500, IBM 7040 Date: April 2, 1966

Programming language: ALGOL (Burroughs), FORTRAN I, IV

Author, organization: __ John R. Dempsey, Northern Natural Gas Company
Direct inquiries to: Author_or
Name: D. F. Merriam Address: Kansas Geological Survey

University of Kansas, Lawrence, Kansas

Purpose/description: To enable selection of "best" fit of a set of observations without regeneration of lower order

coefficients.

Mathematical method: Minimization property of Orthogonal function

Restrictions, range: Number of observations and maximum order depends on dimension statement in

the FORTRAN version

Storage requirements:

Equipment specifications:

Memory 20K 40K 60K K

Automatic divide: Yes No Indirect addressing: Yes No

Other special features required

Additional remarks (include at author's discretion: fixed/float, relocatability; optional: running time, approximate

number of times run successfully, programming hours) _Both FORTRAN and ALGOL versions have been run many

times with no problems.
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COMPUTER CONTRIBUTIONS
Kansas Geological Survey
University of Kansas
Lawrence, Kansas

Daniel F. Merriam, Editor

Computer Contribution

1.  Mathematical simulation of marine sedimentation with IBM 7090/7094 computers, by J. W. Horbaugh 1966 $1.00
2. A generalized two-dimensional regession procedure, by J. R. Dempsey, 1966 . R L $0.50
Special Distribution Publication
3. BALGOL program for trend-surface mapping using an IBM 7090 computer, by J. W. Harbaugh, 1963 . . . $0.50
4.  FORTRAN Il program for coefficient of association (Match-Coeff) using an IBM 1620 compurer, by R, 'L, Kaesler,
F. W. Preston, and D. I. Good, 1963. . . $0.25
9.  BALGOL programs for calculation of distance coefflc |ents and correlahon coefflmenfs usmg an IBM 7090 computer,
by J. W. Harbaugh, 1964 . s $0.75
11, Trend-surface analysis of regional and residual componenfs of geolog|c structure in Kansos, by D. F. Merriam and
J. W. Harbaugh, 1964 . . $0.75
12 F ORTRAN and FAP program for calcu|ahng ond plofhng hme-frend curves usmg an lBM 7090 or 7094/]40] compufer
system, by W, T. Fox, 1964 . $0.75
13.  FORTRAN program for factor and vector ana|y5|s of geologlc data usmg an IBM 7090 or 7094/]40] compufer system,
by Vincent Manson and John Imbrie, 1964 s $1.00
14, FORTRAN Il trend-surface program for the I1BM 1620 by D. Good 1964 . $1.00
15.  Application of factor analysis to petrologic variations of Amerlcus Limestone (Lower Permlan), ‘Kansas and Oklahomo,
by J. W. Harbaugh and Ferruh Demirmen, 1964 . $1.00
23.  ALGOL program for cross-association of nonnumeric sequences usmg a medlum-5|ze computer, by M J Sackln,
P. H. A. Sneath, and D. F. Merriam, 1965 . $0.75
24, BALGOL program and geologic application for smgle and double Fourler series usmg IBM 7090/7094 compufers, by
F. W. Preston and J. W. Harbaugh, 1965 . . $1.00
26.  FORTRAN Il trend-surface program with unrestricted mput for the 1BM 1620 compufer, by R. J Sampson ‘and
VG Doy, 1966 - $0.50
27, Appllcahon of factor onalysls to a factes sfudy of the Leavenworth Limestone (Pennsylvcnlon Vnrglllqn) of Kansas
and environs, by D. F. Toomey, 1966. . - $0.75
28.  FORTRAN Il program for standard-size anu|y5|s of unconsolldated sedlments, by J W Plerce clnd D | Good, 1966 $0.75
Report of Studies
170-3 Mathematical conversion of section, township, and range notation to Cartesian Coordinates, by D. . Good, 1964 . $0.50
Bulletin
171 A computer method for four-variable trend analysis illustrated by a study of oil-gravity variations in southeastern
Kansasy byl oW Harkaogh 1968 o o e e e e e & e $1.00
Reprints (available for limited time)
Pattern recognition studies of geologic structure using trend-surface analysis, by D. F. Merriam and R. H. Lippert
(reprinted from Colorado School Mines Quarterly, v. 59, no. 4, 1964) . . . nocharge
Trend-surface mapping of hydrodynamic oil traps with the IBM 7090/7094 compufer, by W Harbaugh (reprlnted
from Colorado School Mines Quarterly, v. 59, no. 4, 1964) . . . . nocharge
Finding the ideal cyclothem, by W. C. Pearn (reprmted from Symposium on cycllc sedlmenfahon, D. F. Merrlom,
edlfor, Kansas Geological Survey Bulletin 169, v. 2, 1964) . . no charge
Fourier series characterization of cyclic sediments for sfraflgraphlc correlahon, by F W Presfon ond J H Henderson
(reprinted from Symposium on cyclic sedimentation, D. F. Merriam, editor, Kansas Geological Survey Bulletin
169, v. 2, 1964). . . . no charge

Fourier series ona|y5|s in geology, by J W Hcrbaugh and F W “Preston (repnnted from College of Mmes, Arlzona

University, v. 1, = e ket S Sino eharge
Geology and tﬁ‘e computer, byD E. Merrlam (repnnted from New Scnenhst V. 26 no. 444 1965) Ny . no charge

Application of factor analysis to the Upper Cambrian Reagan Sandstone of cenfrol and northwest Kansas, by M. N

McElroy and R. L. Kaesler (reprinted from The Compass, v. 42, no. 3, 1965) . . o s et RO chorge

Quantitative comparison of contour maps, by D. F. Merriam and P. H. A. Sneath (reprinted from Journal of

Geophysical Research, v. 71, no. 4, 1966) . . . . . no charge

; Trend-surface analysis of sfratlgraphlc thickness data from some Namurian rocks east of Srerlmg, Scoflond by W. A.

Read and D. F. Merriam (reprinted from Scottish Journal of Geology, v. 2, pt. 1, 1966) . . . . . . . nocharge
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