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EXECUTIVE SUMMARY

The prediction of aquifer response to changes in water demand continues
to be of increasing importance for groundwater management. Values for aquifer
parameters must be determined in order to establish these demand-response
relationships. A classic method for determining these aquifer parameters is
to conduct a pumping test on an aquifer and take measurements of water-level
declines versus time. These values are compared to standard aquifer type-
curves to determine the type of aquifer being evaluated and the values of the
parameters. The methodology outlined in this publication allows the user to
analytically compare the pumping-test data with a general solution for a
leaky~confined aquifer using modern numerical curve-fitting techniques that
offer a bias-free solution and an estimation of solution accuracy. The values
obtained may then be used to predict the demand-response behavior of the

tested aquifer in the future.

DISCLAIMER

The author, editor, and Kansas Geological Survey give no
express warranties, nor any warranty of fitness for a
specific purpose with respect to the computer programs
and program segments contained in this report. 1In no
event will the author, editor, or Kansas Geological
Survey become liable to any party for consequential
damages, including but not limited to time, money, or
goodwill arising from the use, operation, or modification
of the computer programs or program segments contained
herein.
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AN AUTOMATED NUMERICAL EVALUATION OF LEAKY AQUIFER PUMPING TEST DATA: AN
APPLICATION OF SENSITIVITY ANALYSIS

Patrick M. Cobb, Carl D. McElwee, and Munir A. Butt1

ABSTRACT

The Kansas Geological Survey is pursuing an effort to automate some of
the more common type-curve solutions for aquifer tests. This document dis-
cusses the results of the work done on the leaky artesian aquifer as defined
by Jacob and Hantush (1955). The text covers the basic theory of the aquifer
type, the numerical solution of the leaky artesian well function, W(U,r/B),
and the methodology of achieving the "best fit" parameters. 1In keeping with
our attempt to produce a user quide, we have included listings of all programs
developed in this effort and examples of their use, Several fiqures are
included that show examples of "best fit" solutions and their corresponding
type-curve values. These comparisons indicate the generally satisfactory
results produced by the regression algorithms documented here. The program
documented here for leaky artesian aquifer drawdown functions in an acceptable
fashion and could serve as the core for an analytical well-field simulator
capable of handling that type of aquifer.

INTRODUCTION

This report is a detailed summary of the development and testing of a
numerical algorithm designed to analyze leaky-aquifer pumping-test data by
automated-fitting techniques, using sensitivity theory. It is the immediate
successor to similar work done for a simple confined aquifer (McElwee,
1980a). It represents part of the effort of the Kansas Geological Survey to
produce some practical tools for hydrologists.

The program discussed in this paper solves the parameter evaluation
problem for an elementary leaky-artesian aquifer system as posed by Hantush
and Jacob (1955). The situation considered in this work is not the most
general configuration (see Hantush, 1960; Neuman and Witherspoon, 1969a);
however, the limited number of available data sets tend to be applicable to

this simple scheme. The limitations of the theory used here are outlined by

1Geohydrology Section, Kansas Geological Survey.




Neuman and Witherspoon (1969b). The methodology used in the present study
involves sensitivity analysis and a least-squares fitting technique to analyze
the time-drawdown data while satisfying the equations developed by Hantush and
Jacob (1955). These techniques will be outlined in the text. More informa-
tion may be found in McElwee (1980a, 1980b), McElwee and Yukler (1978), and
Cobb and others (1978).

Because of the limited number of available data sets for this aquifer
confiqguration, this technique is being published after extensive but not
exhaustive testing. However, we have tested it for several hypothetical data
sets and for seven real data sets readily available to us. At this point, we
feel quite confident in the algorithm's capabilities. We hope that setting
this algorithm out for public scrutiny will cause testing of new data sets and
more thorough verification of the program. Using the available data sets, we
have been able to establish that, for fairly smooth data sets {those that
conform generally to the shape of the leaky type curves), the model has excel-
lent convergence properties. Initial estimates of the storage coefficient,
transmissivity, and leakage coefficient may be in the range of plus or minus
three orders of magnitude of the correct value and still obtain successful
convergence,

This method of pumping-test analysis does not remove the requirement of
having an experienced hydrologist evaluate the local hydrogeology and pumping-
test data to identify the aquifer type. However, once it is decided what
aquifer configuration is being observed, this program will, in a quick and
unbiased fashion, give an accurate assessment of the leaky-aquifer parameters
within the limits of the theoretical approximations. After using this model
for the pumping-test analysis, the hydrologist should always look at the root-

mean-square {(rms) deviation in drawdown and the "best fit" drawdowns calcu-




lated by the program. The experimental and theoretical drawdowns should not
differ greatly anywhere and the rms deviation should be less than a few tenths
of a foot for us to have confidence in the analysis., If this is not the case,

one is probably not dealing with a simple leaky aquifer.

THEORY AND ANALYTICAL SOLUTION TO THE LEAKY-CONFINED-AQUIFER PROBLEM

The aquifer system defined by Hantush and Jacob (1955) (Fig. 1) is com-
posed of a level, isotropic, homogeneous, porous medium of infinite areal
extent. The lower aquifer boundary is assumed to be impervious, and the upper
boundary to be a leaky confining bed. A source bed overlies the leaky confin-
ing bed., Water is derived from the aquifer by elastic expansion of the water
and compression of the aquifer matrix as pumping occurs. Leakage through the
semiconfining bed is assumed to be proportional to the drawdown in the semi-
confined aquifer. No water is removed from storage in the semiconfining unit

and no drawdown occurs in the source bed.

land surface
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cone of depression _J potentiometric surface
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Figure 1. Definition of the problem (from Walton, 1970).




These assumptions lead to the following differential equation (Jacob,

1946)

2
1 % (13 s _ (5,385 L re
3r2 r or B2 T 3t

s(r,t) is the drawdown at any distance from the well at any time,

r is the radial distance measured from the well,

S is the storage coefficient of the artesian aquifer,

K and K' are the respective permeabilities of the artesian aquifer and
the semiconfining bed,

b and b' are the respective thicknesses of the artesian aquifer and the
semiconfining bed,

T = Kb is the transmissivity of the artesian aquifer,

K'/b' is the leakance of specific leakage of the semiconfining bed,

B = T/(K'/b'),

0 is the well discharge.

With appropriate boundary conditions, an analytical solution can be obtained.
Hantush and Jacob (1955) give several solutions to equation (1) for

different ranges of u (defined below) and r/B. In this program three equa-

tions are solved numerically in order to cover the broadest possible range of

u and r/B. The equations are listed here, along with the appropriate ranges

of u and r/B.

2) o/4nT ® [ exp(-y-z/y)dy/y
u

2]
1l

[=4
1

rZS/4Tt, z = r2/4B2, u > 1.0, any value of r/B




3) s = Q/4nTb[2K0(r/B) - °°exp(-y—Z/y)dy/y]
p

p = Tt/SB2, r2BZ2 > u < 1.0

4) s = Q/4"T‘{2K0(r/B) - Io(r/B) L -Ei(-r2/4B2u)

+ exp(—r2/4B2u) [0.5772 + 1n(u) - Ei(~-u)

—u+u (Io(r/B)—1)/(r2/4B2)

2 E Y™ nome)

> 2.,m n-m]}

(r2/4B Y u

-u
n=1 m=1 ((n+2)!)

(r/B)2 Cu <

where Ei(x) is the exponential integral, and I and K, are the modified zero-
order Bessel functions of the first and second kind, respectively. The
numerical computational routines involving these functions were checked by
generating the table published in Walton, 1970 (p. 146). This table could be

produced accurately to the fourth decimal place.

NUMERICAL SOLUTION OF THE LEAKY-CONFINED-AQUIFER PROBLEM
Integral functions of the form
[>-]

f f(x)e_xdx
0

may be approximated by the method of Laguerre integration:

f f(x)e-xdx =
0 i

It~

w,f(x,)
1 1




where the wi's are weighting factors and the xi‘s are the abscissas and cor-
respond to the zeros of Laguerre polynomials. The method of solution and
values of w; and X; are catalogued in Abramowitz and Stequn (1968).

To perform the integrations in equations 2 and 3, a transformation of
variables must occur in order to make the limits of integration compatible
with the Laguerre Polynomial method. This transformation is a straightforward
substitution of the form y = x + n, where n takes the value of u for equation
2 and p for equation 3. The integrals take the form

[

G(r/B,n) = f exp{-n—rz/[4B2(x+n)]}/(x+n) ® exp(-x)®dx
0

and are solved numerically by the appropriate substitutions in the Laguerre
integration formula.

The function G{(r/B,n) was evaluated by Laguerre integration of order
15. We considered the possibility that G(r/B,n) might not be accurately
approximated for all possible values of r/B and n. The roots of the Laguerre
polynomial should sample the function to be integrated properly for desired
accuracy. A scaling transformation was incorporated to change the range of
abscissas over which the evaluation occured. The transformation was of the
form x = ay such that:

f(y) = £f(x/a)

and

-]

| nhix) ® exp(-x) ® dx/a =1 ) w.h(x,),
a . i i
0 i
where h(x) = f(x/a)exp(t/a).
Results of numerical experiments indicate that the value of the scaling

transformation ranging from 1.0 to 10.0 has no effect upon the integral when




it is used simply to solve the drawdown equation, However, in the regression
algorithm, a slight economy in number of iterations occurs when the scaling
transformation is set equal to 5,0 (parameter AA in the function list, Appen-
dix IV). This is a result of improvement in the evaluation of the higher-
order decimal places.

The numerical solution of the exponential integral, Ei(x), is described
in detail in McElwee (1980b, p. 3). Solutions for the modified Bessels func-
tions of the first and second kinds, zero order, Io(x) and Ko(x), were carried
out in the manner of polynomial approximations. Abramowitz and Stequn (1968)
catalog several forms for each function. Each form is suitable for a particu-
lar range of x. The solutions appear in the function 1list (Appendix IV) as
Function AIO(RB) and AKO(RB).,

The double summation in equation (4) is solved numerically by Function
SUM(U,RB) and Function IFACT(L) (see Appendix IV}, A truncated summation is
performed, since only a finite number of terms are required to approximate a
convergent function. Numerical experiments showed that n=5 (LIMIT=5 in

SUM(U,RB} yields a very accurate value for the summation.

SENSITIVITY ANALYSIS
Parametric sensitivity analysis is a method of examining the stability of
a mathematical representation of a dynamic system with respect to variations
in the values of the system's physical parameters. The theoretical basis of
this technique is outlined by Tomovic (1962), while the application to hydro-
logic problems has been examined by Vemuri and others (1969), McCuen (1973),
and Yukler (1976).

In formulating the sensitivity analysis of the leaky-confined-aquifer




problem, the following functional is useful:

F(h__,h  ,h _; S,T,L,Q) =0

xx'yy’ t;
2 2
where h = 2—27 h = E—E, h, = 32
KX k2 YY g2t a3t

h = hydraulic head

S = storage coefficient

T = transmissivity

L = inverse leakage coefficient (L = 1/B)
Q = pumpage

and whose solution may be written as h = h(x,y,t;s,T,L,Q). Variations of any
single parameter such as T produces a new formulation
F(h;x,h;y,hz;S,T+AT,L,Q) =0

where AT is the incremental change in T and h* is the perturbed head. The
solution to this expression is of the form h* = h*(x,y,t;S,T+AT,L,Q). The
stability of the system to small changes in the parameter T may be expressed
by

fh _h* -n

AT ~ AT

If the limit to this expression exists as AT approaches zero, it may be

written as

Uy (%,¥,t:S,T,L,Q) =% = lim —ﬁ%.
AT»0
Similarly
Us(x,y,t;S,T,L,Q) =-%§ = lim %g
AS+0
and
h . h
UL(lelt;SITILIQ) =% = lim %-L-'
AL+»O




which are respectively the sensitivity coefficient with respect to changes in
S and the sensitivity coefficient with respect to changes in L.

The equation of drawdown is assumed to depend analytically upon the
parameters S, T, and L; and S, T, L, and Q are independent of each other.
Because of these assumptions, the function, h*(x,y,t;S,T+AT,L,Q), which is
perturbed in the parameter T, may be expanded in a Taylor's series (Tomovic,
1962), and if AT is small, all non-linear terms can be neglected

h*(x,y,t;S,T+AT,L,Q) = h(x,y,t;S,T,L,0Q) + UTAT

ah

where U, = —.
oT

T Thus, new hydraulic heads, resulting from incremental changes

in T, can be computed directly if the unperturbed head is known and UT can be

computed. Similar expressions may be derived for perturbation with respect to

S and L
h*(xIYIt;S+ASITILIQ) = h(XIYIt;SITILIQ) + USAS

h*(x,y,t;S,T,L+AL, Q) h(x,y,t;s,T,L,Q) + ULAL-

For this technique to be useful, it is only necessary to be able to

compute U U and U

gt Ups L’ since h(x,y,t;S,T,L,Q) may be computed by previously
discussed technigques. This requirement may be satisfied by analytical or
numerical techniques. 1In this work, it was found convenient to obtain US and
UT by direct analytical means and UL by a numerical method.

Recall that the basic equation describing the solution to the leaky

confined aquifer is
o) 1 L2r2
5) s === [ — exp(-y- ——) dy, u = o L=2B
u

By applying Leibnitz's rule for differentiating an inteqral (Hildebrand, 1962)

it is easy to obtain the sensitivity coefficients with respect to S and T:




ds r2 L2r2
Uy =53 = - —2— (= exp(-u - 1))
16mT2t
3 ® 2.2 2 2.2
s 1 L°r r-Ss 1
UT =37 = " 2 f — exp(-y - n yd 9 [G-exp(-u - i )]
anr2 g Y y 16T t
2 2.2
L
=g [femtu -] = -2 - 2o
16TT3 ¢

These equations may be easily evaluated by standard numerical techniques on a
high~speed computer.

We computed UL by a direct numerical technique, rather than by formulat-
ing an analytical solution, because of a desire to conserve program simplicity
while retaining computational accuracy. Note that the argument of the expo-
nential within the integral of equation (5) contains the parameter L. Hence,
differentiation would transform the entire function within the integral and

would define

3
U, = £ 33'{exp(-y -L%r2/4y) /y}dy

o ]

f {-Lr2/2y2}exp(—y —L2r2/4y)dy.
u

[

Note that both Us and UT can be expressed in such a manner that, after the
drawdown s is computed, no further numerical integration is required in that

iteration. The sensitivity with respect to leakage, U however can only be

L
computed by numerical integration that would involve the formulation of a more
complex function of Function SS(U,RB) (see Appendix IV). Since a numerical
integration of W(u,r/B) was already operable (see Function W(u,RB), Appendix

IV), the decision was made to generate UL by finite difference approxima-

tion. The approximation

10




3s/9L = {s(L+AL) - s(L-AL)}/2AL
where

[+

s(L#AL) = 9/anT [ exp{-y - r?(LtAL)%/4y}/y ® ay
u
becomes increasingly accurate as AL approaches zero. Satisfactory evaluation
of UL occurred for AL set equal to .01 L. The methodology for computing the

sensitivity coefficients is now complete.

DISCUSSION OF THE LEAKY-AQUIFER SENSITIVITY COEFFICIENTS
Comparison of our results with similar work done by McElwee and Yukler
{(1978) for the fully confined aquifer (specifically figures 3, S, 7, and 8 of
that publication) will allow the reader to gain a better understanding of the
differences and similarities of the time-dependent and space-dependent behav-
ior of the two systems with respect to their principal hydrologic parameters.
The radial dependence of UT is shown in Figure 2, The function diverges

logarithmically near the well. changes sign at some finite value of radi-

UT
us. This demonstrates that, when T is changed, the cone of depression deepens
in some areas and shallows in others.

Figure 3 depicts the time dependence of positive values of UT on varia-
tions in r and T. Note that UT is inversely proportional to T. The curves
represent a transmissivity of 24331 ft2/day and +20 percent of that value at a
radius of 100 feet and of 24331 ft2/day at a radius of 1000 feet. Note that
all curves flatten after three to four days. This describes the steady condi-
tion caused by deriving the discharge Q totally from leakage.,

The radial dependence of Ug is shown in Fiqure 4. This coefficient does

not diverge at the well, nor does its sign change. It is inversely propor-

tional to S. The constancy of algebraic sign indicates that as S changes

11
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Figure 3. Effect of radius and transmissivity on the time dependence of Umpe

there is a general raising and lowering of the cone of depression.

The time dependence of Us is presented in Figure 5. Radial variation is
represented by three curves. Each curve reaches its maximum value for Us at a
time directly proportional to its radial value. At some finite value of time
each curve approaches zero in value, indicating that a steady state is
achieved. The differing nature of the curves is related to the fact that,
until steady state is attained, there is a dual source supplying the pumpage,
namely water released from storage and leakage. The curves roll over as
leakage starts to dominate the source mechanism. Us is zero outside the cone
of depression and at any time t after steady state is attained,

Figure 6 shows the radial dependence of UL. The sensitivity coefficient
U, does not diverge at the well and approaches zero for large values of r.

The time dependence of U, is shown in Fiqure 7 for two values of r. All

curves grow with time until a steady state is achieved where leakage is sup-

plying the entire discharge Q. The set of curves labeled L = ,0004 ft_1 and

13
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Figure 4. Effects of changes in S on the radial dependence of US.

+20 percent of that value is of interest. Observe that at t less than .6
days, U, is directly proportional to L, while for t greater than .6 days, U,
is inversely proportional to L. As indicated before, Q is supplied by a dual

source in the leaky artesian aquifer--water taken from storage in the aquifer

14
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Figure 5. Effects of radius on the time dependence of U..

and water supplied by leakage through the agquitard. This dual source mecha-

nism results in the changing dependence on L.

THE LEAST-SQUARES-FITTING PROCEDURE

The objective of any curve-fitting technique, whether performed manually
or by machine, is to fit as well as possible a theoretical type curve to an
experimental data set, evaluating in the process a corresponding set of physi-
cal parameters. To perform this task successfully, a mechanism is required
for judging the error in the fit. Classical manual curve-fitting relies
basically on the best "eyeball"” fit. The machine method described here allows
the error in fitting to be accurately and meaningfully determined as the rms

error.

15
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Figure 6. Effects of changes in L on the radial dependence of UL'

To apply the parametric sensitivity method to the fitting problem, it is

necessary to define the squared error function

E=) [s (t) - s*(t,)]2

i e i i

where E is the summation over i discrete samples of the squared difference
between the experimental drawdown Se and the updated drawdown s*, which is
computed from the truncated Taylor's Series

* o= + AT + + AL,

s S UT USAS UL

The argument t; represents the ith

value of time. Expanding the squared error
function, taking partial derivatives with respect to the perturbed parameters,
and setting the partial derivatives equal to zero yields a set of three simul-

taneous linear equations that must be satisfied to obtain the best fit. More

specifically, for minimizing E, it is required that

9E _BE _aE 3
9AT ~ 8As ~ JAL

.,0.
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Lo

The linear system of equations that results is

_ 91 r _
) 02L ) U, Ug ¥ u U, AL ) U (s-s_)
i i i i
) UU, ) Ué ) uUs| |2s| = ) Ug(s=s )
i i i i

2
)i U U % U Ug E vz AT z Up(s-s_)
o 4 L] L |

and can be solved explicitly for AL, AS, and AT. The term s is the theoreti-
cal drawdown at time t calculated from the previously updated values of L, S,

and T. The new values of the parameters are simply

L, =L, + AL,
i+ i 1
S, =S, + As,
i+1 i 1
T, =T, + AT ,
i+ 1 1

17




This process continues until the values of ALi, Asi, and ATi simultaneously
satisfy a specified convergence criteria. The goodness of fit obtained at the
termination of the last iteration is indicated by the value of the root mean

squared error 2 (s - s )2
; e
i

n

where n is the number of discrete samples of s.

The success of this methodology is dependent to a degree upon the initial
guesses of the parameters S, T, and L. However, numerical experiments con-
ducted with the most recent version of the program indicate that the initial
guesses may be as much as three orders of magnitude above or below the con-
verged solution values and still obtain convergence,

To satisfy physical reality and to improve numerical stability, the
parameters S, T, and L. must always be positive. Furthermore, the incre-
ments AT, AS, and AL are never allowed to exceed 0.5 or be less than -0.2 of
their respective parameters. These values were derived experimentally. This
mechanism insures that the algorithm executes in a convergent fashion to the

local and possibly global minimum.

CONVERGENCE PROPERTIES OF THE FITTING ALGORITHM

To achieve a converged solution, the typical regression model involving
sensitivity analysis requires initial estimates of the aquifer parameters. If
these estimates vary greatly from the actual values, convergence may not
occur. A desirable property of this type of algorithm would be the existence
of a large "window" in which estimates can be made and convergence can be
achieved in a reasonable number of iterations,

The algorithm presented in this discussion (see Appendices I, II, IV) has

consistently proven its ability to converge to the correct set of aguifer
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parameters for a given data set. These "best fit" values are comparable to
values of the parameters obtained by curve-matching methods, and are achieved
over a spectrum of initial estimates ranging from three orders of magnitude
above to three orders of magnitude below the converged values (see Table 1).
The sources for these data are tabulated in Appendix V. Typical data sets,
with initial estimates in this range, converge in fewer than 40 iterations.
Numerical experiments indicate that convergence tends to occur more rapidly
for underestimated parameter sets. Iterations are reduced as the estimated
parameter values approach the true values. For typical data sets the rms
error tends to be only a few tenths of a foot, while for fairly idealized sets
of data, the rms error is a few hundredths of a foot (see Table 2), Itera-
tions can be reduced by increasing the size of the acceptable error criteria,
but only at the cost of increased rms error.

We have extensively tested the algorithm on some synthetic data formu-
lated by Cooper (1963) for an infinite leaky confined aquifer. Typical
results appear in Table 1. Note that, for all permutations of three orders of
magnitude above and below the correct values, the regression results are
virtually identical, showing that the algorithm's convergence properties are
not parameter specific. The rms error for these data is shown in Table 2
(data set 2a) to be .038 feet.

If the data diverge too much from ideal data, convergence may not
occur. If convergence does occur the rms error may be unacceptable, Although
this algorithm gives a unique solution to any data set for which it can
achieve a converged set of values, it cannot distingquish absolutely between
different types of aquifers. Since the three analytical degrees of freedom
give the algorithm considerable latitude in achieving convergence, an imper-

fect data set from a confined agquifer may be successfully run and a set of
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values for transmissivity, storage, and leakage produced. This fact points to
several cautions. First, only the best data available should be analyzed.
Second, experienced personnel should carefully examine the geohydrology to aid
in classifying the aquifer type. Third, if doubt exists about the validity of
the converged values, the rms error value should be noted, but the individual

"best fit" drawdowns should be compared to the field data for gross diver-

gences.,

APPLICATION OF THE ALGORITHM TO DATA SETS
For testing the leaky-aquifer regression-analysis program we had access
to only a limited number of data sets. The sources of these data are listed
in Appendix V. These data fall into three categories. The first category is

synthetic data, that which is generated from the closed-form integral expres-

Table 1. "Best fit" parameters for various combinations of overestimation and
underestimation of initial values. Values from Cooper (1963).

Type Curve Values: SC = .0001 KB = 13,300 ft%/day  LC = .0005 ft !

Initial-Guess Values Converged Values

r = 100 ft
sc KB LC sc o LC
(£t2/day) (1/£t) (£t2/day) (1/£t)

-7 -7 -5 -4
1% 10 13.3 4.98 x 10 9.789 x 10 13338. 4.9401 x 10
1 x 107" 13.3 x 10° 4.98 x 10" 9.789 x 10”°  13338. 4.9404 x 10~ %4
1 x 1077 13.3 4.98 x 10”1 9.789 x 10”°  13338. 4.9404 x 10°4
1 x 10”7 13.3 x 10° 4.98 x 107" 9.789 x 102  13338. 4.9404 x 10°4
1 x 1077 13.3 x 10® 4.98 x 1077 9.789 x 107> 13338. 4.9403 x 104
1 x 107" 13.3 4.98 x 10~/ 9.789 x 10”°  13338. 4.9402 x 1074
1 x 10”1 13.3 4.98 x 1071 9.789 x 107>  13338. 4.9403 x 104
1 x 107" 13.3 x 10° 4.98 x 10”7 9.789 x 10”2  13338. 4.9403 x 10~4
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Table 2. Comparison of aquifer parameters for typical data sets obtained by
graphical analysis and by automated analysis.

Data
Source Graphical-Analysis Automated Analysis Automated
Code Values Values rms error
T = 182000 gpd/ft 202000 gpd/ft
1 S = .002 002 .007 £t
B = 2500 ft 3300 ft
99000
a . 00097 .038
20000
T = 99400 100000
2* b S = .,0001 .000097 .016
B = 2000 1980
97800
c .0001 .010
1950
T = 99400 99026
2%* S = ,0001 .000099 .046
B = 2000 1967
T = 1500 1800
3 S = .,00020 .00017 125
B = 430 650
T = 49000 44000
a S = ,000090 .000086 «378
B = 4100 3900
4
T = 41000 46000
S = .000080 .000084 .030
B = 4000 4800
T = Transmissivity
S = Storage coefficient

B Leakage coefficient

*The values obtained by graphical analysis represent an average of three sets

of data taken for different values of radius.

analyzed and tabulated for the automated analysis.

Each data set was independently

**Same conditions as (*) except that the automated values represent a simul-
taneous solution of the three data sets.
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sion for the leaky aquifer drawdown (or a numerical model), using a hypotheti-
cal set of aquifer parameters. Second, there is actual pumping test data that
matches the expected shape of the theoretical leaky aquifer type curve for a
given set of parameters. A third type of data used is that in which the time~-
drawdown curve is not clearly of the leaky artesian category, but for which
the site geology suggests that a leaky situation may be occurring. This last
category has typically been analyzed by classical methods for confined aqui-
fers.

Table 2 is a compilation of data sets of the first and second types. The
graphical analysis values are compared with corresponding automated-analysis
values of the same data set. The automated rms error indicates the goodness
of fit between the experimental data and the theoretical type curve. The
"best" rms error indicated is for data set 1, while the worst is for set 4a.
Data set 2 is interesting in that it has been analyzed in two ways. The
graphical analysis simultaneously considered all data from three observation
wells., Set 2* considered each observation well separately and produced three
separate sets of automated values with associated rms errors. Note that the
worst rms error (,038 ft) gives the closest numerical agreement with the
graphic values. Next, at 2**, the three observation-well data sets were
simultaneously analyzed by the automated routine. Numerical agreement between
graphic and automated values is once again very close, but the rms error is
greater yet at .046 ft., This is more than twice as much rms error as the
average rms error of the three observation wells considered separately (=.021
ft). This result tends to indicate that as more data are stacked together for
simultaneous analysis, more "smear" is likely to appear in the automated
analysis of that data. In effect the data are being averaged, but not in a

strictly arithmetic fashion, as is indicated by the comparison of the rms
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average of 2* and the rms of 2**,

In summary, the principal feature of Table 2 is the quite good agreement
between the "best fit" automated values and the type~curve values. All param-
eters have numerical values well within the same order of magnitude and in
fact are not over 35 percent, most being in the 10-20 percent range. The fact
that close numerical agreement between manual and automated values does not
always produce the smallest rms error seems to be related to the sensitivities
of the various parameters.

Table 3 is a comparison of parameter values derived from real data sets
that were first evaluated by the confined artesian type-curve method and then
by the automated, leaky artesian, regression algorithm. Although the rms

errors are satisfactory, there are discrepancies of several orders of magni-

Table 3. "Best fit" leaky aquifer parameters compared with confined type
curve analysis of data.

Data Confined Aquifer Type
Source Curve Values Obtained Leaky Aquifer Values Obtained rms
Code From Graphical Fit From Regression Fit error
T = 44000 gpd/ft T = 42000
5 S = .00046 S = .00044 0.240
B=20 ft B = 8600
T = 42000 T = 9800
a S = .000004 S = ,0045 .036
B=20 B = 65
6
T, = 48000, T, = 19500 T = 25500
b S, = .0000065, S, = .002 S = ,00055 .032
B=20 B = 1180
T = Transmissivity
S = Storage coefficient
B = Leaky coefficient
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tude in the storage values. This is especially true for examples 6a,b.
Analysis 6b has two sets of S and T values derived from the same time-drawdown
data, and the "best fit" S and T are the approximate averages of these

values. These examples demonstrate the fact that non-ideal data can still
achieve convergence in this algorithm. This points to the need to examine the
geology of a site as well as the drawdown curve from an aquifer test. It also
illustrates the uncertainty inherent in evaluating real field data. Some of
this uncertainty is a direct result of inexactness in collection of the

data. A second uncertainty rests in correctly understanding the physical
situation of the local geology and hydrology. For example, besides being
caused by leakage, steady-state conditions may arise from interception of a
river-recharge boundary or from supplying of the total pump discharge by
regional underflow. All three situations would yield a flattened curve, and
each could be matched to some extent by this model, given some values of T, S,

and L.

USING PROGRAM LEAKYFIT

LEAKYFIT is an algorithm that is run in batch mode. Data may be entered
by cards or from a permfile when initiating the job from a remote interactive
terminal. These files are in free-field format, where the data are separated
by blanks or commas. In general, the algorithm is not in machine-dependent
code. Only one statement (see Appendix I), CALL FXOPT (...), is specific to
the Honeywell 66/60 now operating at The University of Kansas. This statement
can be removed by a user implementing this algorithm on a "foreign" machine.
The purpose of this statement is to circumvent program termination caused by
exponential overflows, exponential underflows, and division checks.

There are some pre-assigned parameter values in the algorithm that the
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user may need to redefine from time to time. The size of arrays SE, T, SGS,
R, and RB has been set, so as to handle a maximum of 100 time-drawdown pairs
from a maximum of eight observation wells. If the number of observation wells
(NOW) is greater than B and the number of time-drawdown data pairs (NTDP) is
greater than 100, then the size of arrays needs to be readjusted. The param-
eter ITMAX controls the maximum number of iterations performed by the pro-
gram. It is set at 50, since our experiments show that all the data sets
tested converge in fewer than 50 iterations. However, if convergence does not
occur, this parameter may be increased. The value of ERROR checks for conver-
gence of the parameter updating quantities A UT’ AUS, and AUL. This value
gives good fits with acceptable numbers of iterations. Changing this param-
eter is not recommended. Making it larger reduces number of iterations while
decreasing the accuracy of the fit. Reducing its value has the opposite
effect.

However, the number of time-~drawdown data pairs or the data quality may
not be sufficient to achieve convergence. At this stage, if one wishes to
force the solution of the data, the converge criteria may be relaxed (i.e.,
the value of the ERROR may be increased anywhere from .001 to .01). This
change in ERROR would force the data to converge with a high rms error, and
the converged values of SC, KB, and LC would be the best approximate values of
the limited data given. This strategy is probably advisable only if the user
is convinced that the aquifer is really of the leaky artesian type.

Data input is straightforward., The first free-field format entry con-

sists of the following parameters:

sC = Elastic storage coefficient of confined aquifer
KB = Transmissivity of confined aquifer
LC = Inverse leakage coefficient of the confining bed
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]

Number of observation wells

R = Radial distance from the pumping well to the observation well
Q = Pumping rate

NTDP = Number of time-drawdown pairs

TCL = Thickness of the confining bed if known.

These parameters may have any consistent set of units associated with them.

If TCL is known, the program can compute K', the vertical hydraulic conductiv-
ity of the confining bed. If TCL is unknown, entering zero will cause this
calculation to be skipped.

The second and succeeding free-format fields contain the time-drawdown
pairs, the number of which must be NTDP. Entering one pair at a time reduces
possibilities of mistakes in punching or keying in data. All data read by the
program are echoed as the first part of the output.

As iterations of the fitting algorithm are completed, the standard devia-
tion (rms error) is printed along with the values of LC, SC, and KB., If the
routine completes ITMAX iterations without converging, a message appears
announcing the fact and the program is abnormally terminated. Successful
convergence is similarly announced at termination. The best fit time-drawdown
pairs are printed, followed by the converged values for LC, SC, and KB. If
TCL has been given a positive value, the value of X' is also printed., The
program then terminates.

One other feature that may be occasionally useful is the option IGENDATA
(see Appendix I for a listing of LEAKYFIT). When this statement is set equal
to zero (/0/), LEAKYFIT operates in a normal regression-type mode. Setting
IGENDATA equal to one (/1/) causes the program to terminate after the first
iteration and produces a set of values that define a portion of the theoreti-

cal leaky aquifer type curve, This is useful if the user wishes to check
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point by point the deviation of a converged set of values against the theoret-

ical values.

A TYPICAL BATCH RUN OF PROGRAM LEAKYFIT

SC= 0.00150000
KB= 1.00000000
LC= 0.00150000
NOW= 4
Q= 1.28399999
NTDP = 4
ERROR= 0.00100000
ITMAX= 50
R =
0.30500000E 02 0.61000000E 02 0.12200000E 03 0.24000000E 03
T SE
0.100000E 01 1.1450 0.7450 0.3950 0.1350
0.600000E 01 1.6000 1.1900 0.7900 0.4400
0.435000E 02 2.1950 1.7700 1.3400 0.9600
0.340000E 03 2.4850 2.0100 1.6000 1.1600
THE STANDARD DEVIATION FOR ITERATION NUMBER, 1IS 2.32944140
LC= 0.12000000E-02
SC= 0.12000000E-02
KB= 0.80000000E 00
THE STANDARD DEVIATION FOR ITERATION NUMBER, 2IS 2.19945490
LC= 0.18000000E-02
SC= 0.96000000E-03
KB= 0.64000000E 00
THE STANDARD DEVIATION FOR ITERATION NUMBER, 3IS 2.08265403
LC= 0.14400000E-02
SC= 0.76800000E-03
KB= 0.51200000E 00
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THE STANDARD DEVIATION FOR ITERATION NUMBER, 2118

LC= 0.63876567E-03
SC= 0.19800827E-04
KB= 0.33877176E 00

THE STANDARD DEVIATION FOR ITERATION NUMBER, 221S

THE PARAMETERS CONVERGED IN 22 ITERATIONS.

0.06501416

0.06500053

THE BEST FIT TIME-DRAWDOWN PAIRS FOR THE CONVERGED VALUES OF S,

T, AND L ARE
T SE
0.100000E 01 1.1244  0.7186  0.3471
0.600000E 01 1.6511  1.2354  0.8265
0.435000E 02 2.1758  1.7585  1.3432
0.340000E 03 2.4370  2.0196  1.6038
LEAKAGE COEFFICIENT = 0.00063880
STORAGE COEFFICIENT = 0.00001980
TRANSMISSIVITY = 0.33876759
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PROGRAM TSSLEAK AND ITS USE

This program is simply an interactive time-sharing version of LEAKYFIT.
A listing appears in Appendix II. Prompting statements query the user for
values of storage (SC), transmissivity (KB), leakage (LC), pumping rate (Q),
number of observation wells (NOW), radial observation distance(s) (R), and
number of time-drawdown pairs (NTDP). All data are echo printed, as well as
ITMAX and ERROR, and the user is given an opportunity to correct the input
data. Next, the algorithm asks for time-drawdown pairs. Only NTDP pairs may
be entered. After entry is complete, all pairs are echo printed and the user
is again asked to examine for errors and correct any that are found. Correc-
tion is done by entering the sequential number of the erroneous time-drawdown
pair and the correct values. After reading the corrections, the terminal
again asks if there are any errors in the time-drawdown data. As long as
affirmative responses are given by the user, the program will ask for data
corrections. As soon as a negative response is given, the program proceeds.

At this point, output is identical to that printed by LEAKYFIT (as may be
seen by comparing the sample runs). Values of the rms error, iteration
number, and LC, SC, and KB are printed at the end of each iterative step.
Final convergence status is announced. The successful "best fit" time-
drawdown pairs are printed and the converged values of LC, SC, and KB are
printed. The program then asks if the thickness of the semiconfining bed is
known. If an affirmative response is made, the value of that parameter is

asked, and the value of the leaky permeability K' is printed. The program

then terminates.
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A TYPICAL INTERACTIVE TIMESHARING SESSION WITH TSSLEAK

ESTIMATE FOR STORAGE ?

=0.0015

ESTIMATE FOR TRANSMISSIVITY? L##2/T

=1.0

ESTIMATE FOR LEAKAGE COEFFICIENT ? 1/L
=0.0015

CONSTANT PUMPAGE RATE? L*%3/T

=1.284

NUMBER OF OBSERVATION WELLS ?

=4

OBSERVATION DISTANCE FROM PUMPING WELL? L
=30.5 61.0 122.0 240.0

NUMBER OF TIME-DRAWDOWN PATRS TO BE READ?

=4

ECHO THE INITIAL DATA

SC= 0.00150000

KB= 1.00000000

LC= 0.00150000

Q= 1.28399999

NO. OF OBS. WELLS(NOW) = 4

NTDP= 4

ITMAX= 60

ERROR= 0.00100000

RADTAL DISTANCES OF OBSERVATION WELLS ARE :
30.5000 61.0000 122.0000 240.0000

ARE THERE ANY ERRORS IN DATA INPUT?

ANSWER YES IF ANY ERROR, OTHERWISE NO

=NO

TYPE IN TIME-DRAWDOWN PAIRS IN ORDER OF INCREASING TIME.
=1 1.1450 0.7450 0.3950 0.1350

=6 1.6000 1.1900 0.7900 0.4400

=43.5 2.1950 1.7700 1.3400 0.9600

=340 2.4850 2.0100 1.6000 1.1600

THE PUMP TEST DATA IN TIME DRAWDOWN PAIRS

0.100000E 01 1.1450 0.7450 0.3950 0.1350
0.600000E 01 1.6000 1.1900 0.7900 0.4400
0.435000E 02 2.1950 1.7700 1.3400 0.9600
0.340000E 03 2.4850 2.0100 1.6000 1.1600
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ARE THERE ANY ERRORS IN TIME-DRAWDOWN PAIRS?
ANSWER YES OR NO

=NO

THE STANDARD DEVIATION FOR ITERATION NUMBER, 118
LC= 0.12000000E-02

SC= 0.12000000E-02

KB= 0.80000000E 00

THE STANDARD DEVIATION FOR ITERATION NUMBER, 218
LC= 0.18000000E~02

SC= 0.96000000E-03

KB= 0.64000000E 00

THE STANDARD DEVIATION FOR ITERATION NUMBER, 2118
LC= 0.63876567E-03
SC= 0.19800827E-04
KB= 0.33877176E 00

THE STANDARD DEVIATION FOR ITERATION NUMBER, 2218
THE PARAMETERS CONVERGED IN 22 ITERATIONS.

THE BEST FIT TIME-DRAWDOWN PAIRS FOR THE CONVERGED VALUES OF
L ARE

T SE

0.100000E 01 1.1244 0.7186 0.3471 0.0865
0.600000E 01 1.6511 1.2354 0.8265 0.4510
0.435000E 02 2.1758 1.7585 1.3432 0.9443
0.340000E 03 2.4370 2.0196 1.6038 1.2029
LEAKAGE COEFFICIENT = 0.00063880
STORAGE COEFFICIENT = 0.00001980
TRANSMISSIVITY = 0.33876759

DO YOU WANT TO COMPUTE AQUITARD PERMEABILITY ?
ANSWER YES IF TCL IS KNOWN OTHERWISE NO

=YES

THICKNESS OF CONFINING LAYER ?

=30

AQUITARD PERMEABILITY = 0.00000415
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PROGRAM HANTUSH AND ITS USE

The algorithm titled HANTUSH is an interactive time-sharing program that
solves the drawdown equation for a leaky confined aquifer as formulated by
Jacob and Hantush in 1955, Figure 1 shows the definition of the appropriate
aquifer system. A complete listing of this program appears in Appendix III.
The input parameters for this program are the discharge (Q), the inverse
leakage coefficient (LC), the confined aquifer transmissivity (XB), the elas-
tic storage coefficient (SC), the unit length designation (LU), the unit time
designator (TU), the observation radial distance (R), and the pumping period
(T). The parameter LC is simply the inverse of B as defined by Jacob and
Hantush (1955),

The program introduces itself with a short explanation of its function
and queries the user for the data indicated above. At critical points in the
program all important data are echo printed and the user is given an opportun-
ity to correct any errors. Corrections may be made in several ways. At
points of direct questioning, appropriate responses (YES or NO) will determine
whether or not corrections will be made. 1In other locations, data may simply
be re-entered when the user recognizes an error. The program may be formally
exited by entering zeros for R and T at any read statement, or simply by using
the BREAK key.

An example run is included here as a tutorial. This run was made in TSS
FORTRAN as compiled on the Honeywell 66/60 at the University of Kansas Comput-~
ing Center. Access and run commands shown here may or may not be meaningful
on other systems. All queries (data-reading locations) are indicated by
"equals" signs (=). The user enters the appropriate data string in free
format following the prompt symbol. If the user fails to enter all the nec-

cessary data in the first string, the prompting symbol will continue to appear
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until all requested data have been read. Free format means that data fields
are not of specific size or location, but are entered in a sequential fashion,
each field separated by a blank space or a comma. The responses of the user
are underlined in the example.

The obvious advantage of this program is the accuracy of the value of
W(U,r/B) as compared to interpolating values from tables., This is especially
true if the table is sparse in its value range of U and r/B. Table 4 shows
drawdowns computed from exact and interpolated values of W(U,r/B). These
values are compared to drawdowns computed by the program. Note that for the
exact table values (Table 5), the hand-computed and algorithm-computed values

are virtually identical, while there are considerable differences in the

Table 4, Tables of drawdowns for interpolated* values U, r/B, and W(U,r/B).

Drawdown Interpolated from Table Drawdown Computed by Program
U r/B W(U,r/B) s u r/B w(U,r/B) s
4.41 0.9392 0.0288 0.1146 4.4100 0.9392 0022 0.009
0.,7350 0.9392 0.3194 1.,2708 « 7350 0.9392 0.2896 1,152
0.5625 0.3354 0.5007 1.9922 0.5625 0.3354 0.4760 1.894
1.3496 0.3354 0,1965 0.7818 1.3496 0.3354 0.1236 0.492

*A linear interpolation scheme is used.

Table 5. Tables of drawdowns for exact table values of U, r/B, and W(U,r/B).

Drawdown From Exact Table Values Drawdown From Program
9] r/B wW(U,r/B) s U r/B w(U,r/B) s
0.05 0.2 2.3110 69.883 .05 «20 2.3110 69,884
0.01 0.6 1.,5550 9,405 .01 «5999 1.5551 9.405
0.0001 0.03 7.2122 0.436 .00010 .0300 7.2123 0.435
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interpolated values. The table used is from Walton (1970) and a linear inter-
polation scheme is used. A more sophistocated interpolation scheme might
reduce the discrepancy in computed drawdown.

Another application of this algorithm, which has not been initiated as of
this writing, is its use as the core of a leaky confined well-field simula-
tor. Well-field simulators for confined aquifers are common, but no such

simulator is known to exist for the leaky artesian case.
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A TYPICAL INTERACTIVE TIMESHARING SESSION WITH HANTUSH

THIS PROGRAM CALCULATES THE DRAWDOWN IN A

LEAKY ARTESIAN AQUIFER. THE RADIAL DISTANCE FOR THE
OBSERVATION WELL AND THE PUMPING PERIOD MAY BE CONSTANT
OR VARIABLE. ANY CONSISTENT SET OF UNITS MAY BE USED.

ENTER THE FOLLOWING DATA IN A FREE FORMAT FIELD:
Q = PUMPING RATE (L*%3/T)

LC = INVERSE LEAKAGE COEFFICIENT (1/L)
KB = AQUIFER TRANSMISSIVITY (L*%2/T)
SC = STORAGE COEFFICIENT (UNITLESS)

LU = UNIT OF LENGTH (3 CHARACTERS MAX)
TU = UNIT OF TIME (3 CHARACTERS MAX)
=5.E4

=750

=8.E3

=.003

=FT

=MIN

ARE THERE ANY ERRORS IN THE ABOVE ENTRIES?
IF NOT, ANSWER NO.
=YES

ENTER THE FOLLOWING DATA IN A FREE FORMAT FIELD:
Q = PUMPING RATE (L**3/T)

LC = INVERSE LEAKAGE COEFFICIENT (1/L)
KB = AQUIFER TRANSMISSIVITY (L*%2/T)
SC = STORAGE COEFFICIENT (UNITLESS)

LU = UNIT OF LENGTH (3 CHARACTERS MAX)
TU = UNIT OF TIME (3 CHARACTERS MAX)
=5.E4

=.00133333

=8.E3

=.003

=FT

=DAY

ARE THERE ANY ERRORS IN THE ABOVE ENTRIES?

IF NOT, ANSWER NO.

=NO

THE FOLLOWING PARAMETERS ARE USED IN THIS SOLUTION:
Q= 50000.00

LC=0.00133333

KB=  8000.00

SC=0.00300000

LU =FT
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TU =DAY
ENTER THE FOLLOWING DATA:

R,T

R = DISTANCE TO OBSERVATION WELL (L)
T = LENGTH OF PUMPING PERIOD (T)
TERMINATE BY RETURNING BLANK FIELDS.

ENTER R,T
=100.,.05

U= 0.018750

R/B=  0.13333

W(U,R/B)=  3.213409

THE DRAWDOWN  100. FT

FROM THE PUMPING WELL IS 1.59822 FT
AFTER 0.05 DAY OF PUMPING.

ENTER R,T
=50.,.5

U= 0.000469

R/B=  0.06667

W(U,R/B)= 5.626895

THE DRAWDOWN  50. FT

FROM THE PUMPING WELL IS 2.79859 FT
AFTER 0.50 DAY OF PUMPING.

ENTER R,T
=100.,.5

U= 0.001875

R/B= 0.13333

W(U,R/B)= " 4.259999

THE DRAWDOWN 100. FT

FROM THE PUMPING WELL IS 2.11875 FT
AFTER 0.50 DAY OF PUMPING.

ENTER R,T
=0.,0.

YOU HAVE TERMINATED THE PROGRAM.

IS THIS CORRECT?
=YES
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DISCUSSION AND SUMMARY

In this paper we have discussed the development and application of an
automated-fitting routine to determine the parameters of a simple leaky arte-
sian aquifer using sensitivity theory to implement a least-squares-fitting
procedure. This has allowed the fitting of a theoretical curve to experi-
mental data, yielding not only the aquifer parameters, but also a meaningful
estimate of the "goodness of fit." This is typically a quick and economical
process, usually producing results in less than 40 iterations at a cost of
only a few dollars.

It should be reiterated here that, although the algorithm is very reli-
able for smooth data that are a good approximation to typical leaky-type data,
it can also be used on data that are less than perfect. A converged solution
can sometimes be achieved, and may be meaningful in the sense that the data
may represent a leaky situation not fully corresponding to the model assumed
in this work. Thus, several cautions need to be restated here. First, only
the most accurate and complete data available should be used. Second, the
geohydrology should be carefully examined by experienced personnel to aid in
classifying the aquifer type. Third, if any doubt exists about the validity
of the converged values, the rms error value should be noted and individual
best-fit drawdowns should be compared to the field data for gross deviations.

As data collection becomes more automated, programs such as this become
more attractive for the simple reason that, except for possible preview of
values by the hydrologist, the entire pumping test process may be done by
computers with no intermediate "hard copy."™ Thus, the hydrologist may become

more efficient and at the same time will not be replaced by the computer.
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APPENDIX I. PROGRAM LEAKYFIT

C PROGRAM LEAKYFIT
PARAMETER  DECRES = -.2
PARAMETER  INCRES = .5
COMMON LC, ITERAT, LCOUNT, KB, KBCOUNT
DIMENSION  X(3), SE(100, 8), T(100), SGS(100, 8), R(8), RB(8)
REAL KB, LC, INCRES
PI = 3.1415926
DATA IGENDAT/0/
Q=PUMPAGE (L**3/T)
SC=STORAGE COEFF. (UNITLESS)
KB= TRANSMISSIVITY  (L*%2/T)
LC=MODIFIED COEFFICIENT OF LEAKAGE (1/L)
ERROR= CONVERGENCE CRITERIA FOR MAIN DO LOOP (UNITLESS)
R= RADIAL DISTANCE FROM PUMPING WELL TO OBSERVATION WELL(L)
NOW=NUMBER OF OBSERVATION WELLS .
NTDP=NUMBER OF TIME DRAWDOWN PAIRS TO BE READ .
EPS= CONVERGENCE CRITERIA FOR SUBROUTINE SIMUL (UNITLESS)
ITMAX= MAX NUMBER OF ITERATIONS (UNITLESS)
T= TIME (T)
SE= EXPERIMENTAL DRAWDOWN (L)
TCL=THICKNESS OF CONFINING LAYER (L)
INITIALIZE PROGRAM
N=3
ERROR = 0.001
ITMAX = 50
ITERAT = 0
CALL FXOPT (89, 1, 1, 0)
READ (5, 20) SC, KB, LC, NOw, (R(I), I = 1, NOW), Q, NTDP, TCL
DO 10 I = 1, NTDP
READ (5, 20) T(I), (SE(I, J), J = 1, NOW)
10 CONTINUE
20 FORMAT (V)
WRITE (6, 30) SC, KB, LC, NOW, Q, NTDP, ERROR, ITMAX
30 FORMAT (1H1,'SC=',F20.10/'KB=',6F20.10/'LC=",F20.10/'NOW=
& ',15/'Q=', F20.10/ 'NTDP =', I5/ 'ERROR=', F20.10/
& 'ITMAX=', 110)
WRITE (6, 40)
40 FORMAT ( 1HO,4H R =)
WRITE (6, 50)(R(I), I = 1, NOW)
50 FORMAT (V)
IF (TCL .GT. 0) WRITE (6, 60) TCL
60 FORMAT ( 'TCL=', F20.10)
C ~ ECHO PRINT TIME - DRAWDOWN DATA PATIRS
WRITE (6, 70)
70 FORMAT (1HO,T15,1HT ,T35,2HSE)
DO 80 I = 1, NTDP
WRITE (6, 90) T(I), (SE(I, J), J = 1, NOW)
80 CONTINUE
90 FORMAT (1HO,E15.6,2X,8(F10.4))
IF (IGENDAT .EQ. 1) GO TO 140
LCOUNT = 0
KBCOUNT = 0

OO0 0O0n
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C

C

100
110

I
120

130
140

150

160

CONTINUE

CONTINUE

IF (KBCOUNT .GT. O .OR. LCOUNT .GT. 0) ITERAT = ITERAT-1
LCOUNT = 0

KBCOUNT = 0
NITIALIZE ITERATIONS

ITERAT = ITERAT+1

ZERO OUT SUMMATIONS

SDELS2 = 0.0

SUSCDS = 0.0

SURCDS = 0.0

SUKBDS = 0.0

SUKBUS = 0.0

SURCUK = 0.0

SUSCUR = 0.0

SURC2 = 0.0

SUSC2 = 0.0

SUKB2 = 0.0

ZERO OUT X MATRIX

DO 130 K = 1, N
X(K) = 0.0

CONTINUE

COMPUTE RB

DO 150 I = 1, NOW
RB(I) = R(I)*LC

CONTINUE

DO 200 I = 1, NTDP
DO 190 J = 1, NOW

COMPUTE U

U = (R(J)*R(JI)*SC)/ (4*KB*T(I))
COMPUTE THEORETICAL DRAWDOWN
SG = (Q/(4*PI*KB))*W(U, RB(J))
IF (LCOUNT .EQ. O .AND. KBCOUNT .EQ. 0) GO TO 160
GO TO 100
SGS(I, J) = SG
IF (IGENDAT .EQ. 1) GO TO 200
COMPUTE DIFFERENCE BETWEEN THEORETICAL AND EXPERIMENTAL DRAWDOWN
DELS = SE(I, J)-SG
IF (ABS(DELS) .LT. 1.0E-3) DELS = 0.0
SDELS2 = SDELS2+DELS*DELS
COMPUTE DUMMY COEFFICIENT 'Z'
Z = (U+(RB(J)*RB(J))/(4.%0))
COMPUTE SENSITIVITY COEFFICIENT AND SUMMATIONS
USC = -(Q/ (4.*PI*KB)*(1/U)* ((R(J)*R(J))/ (4.*KB*T(I)))*EXP(-
& 7))
UKB = -SG/KB+(Q/ (4.*PI*KB))*((R(J)*R(J)*SC)/
& (&4.*KB*KB*T(I)))*(1/U)*EXP(-Z)
IF (USC .EQ. O .OR. UKB .EQ. 0) ITERAT = ITERAT-1
IF (USC .EQ. 0 .OR. UKB .EQ. 0) GO TO 230
RBM = R(J)%.99%LC
RBP = R(J)*1.01%LC
WPLUS = W(U, RBP)
IF (LCOUNT .EQ. O .AND. KBCOUNT .EQ. 0) GO TO 170
GO TO 100
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170 WMINUS = W(U, RBM)
IF (LCOUNT .EQ. O .AND. KBCOUNT .EQ. 0) GO TO 180
GO TO 100
180 URC = (Q/(4.0%PI*KB))*(WPLUS~-WMINUS)/(.02*LC)
IF (URC .EQ. 0) ITERAT = ITERAT-1
IF (URC .EQ. 0) GO TO 230
SUKB2 = SUKB2+UKB*UKB
SUSC2 = SUSC2+USC*USC

SURC2 SURC2+URC*URC
SUSCUR = SUSCUR+USC*URC
SUKBUS = SUKBUS+UKB*USC
SURCUK = SURCUK+URC*UKB
SUSCDS = SUSCDS+USC*DELS
SURCDS = SURCDS+URC*DELS
SUKBDS = SUKBDS+UKB*DELS

190 CONTINUE

200 CONTINUE

IF (IGENDAT .EQ. 0) GO TO 220
WRITE (6, 70)
DO 210 I = 1, NTDP
210 WRITE (6, 90) T(I), (SGS(I, J), J = 1, NOW)
IF (IGENDAT .EQ. 1) GO TO 380

C COMPUTE MATRIX TO BE SOLVED FOR SENSITIVITY DELTAS
220 U11 = SURC2*LC
U12 = SUSCUR*SC
U13 = SURCUK*KB
Ul4 = SURCDS
U21 = SUSCUR*LC
U22 = SUSC2*SC
U23 = SUKBUS*KB
U24 = SUSCDS
U31 = SURCUK*LC
U32 = SUKBUS*SC
U33 = SUKB2*KB
U34 = SUKBDS
C SOLVE MATRIX BY DIRECT GAUSS ELIMINATION

X(3) = ((U14%U21-U24%*U011)*(U12*U031-U32*U11)
& -(U14%U31-U34%U11)*(U12%U021-U22%U11))/
& ((U13*U21-U23*U11)*(U12*U31-U32*U11)
& -(U13*U031-U33*U11)*(U12*U21-U22*U11))

X(2) = ((U14*U21-U24%U11)~-(U13*U21-U23*U11)*X(3))/
& (U12%U021-U22%U011)

X(1) = (U14-U13*X(3)-U12%X(2))/U11

GO TO 240

230 CONTINUE
C UPDATE INITIAL GUESS VALUES OF SC, KB, LC

X(1) = INCRES

LC = LC*(1.0+X(1))

X(2) = INCRES

SC = SC*(1.04X(2))

IF (SC.GE.1) SC = 1.0

X(3) = INCRES

KB = KB*(1.0+X(3))

GO TO 260
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240 CONTINUE
C COMPUTE STANDARD DEVIATION FOR EACH ITERATION
SIGMA = SQRT(SDELS2/NTDP)
WRITE (6, 250) ITERAT, SIGMA
250 FORMAT (1HO,'THE STANDARD DEVIATION FOR ITERATION NUMBER,
& 'I5,'IS', F20.10)

C UP-DATE COEFFICIENTS
260 CONTINUE

IF (X(1) .LT. DECRES) X(1) = DECRES
IF (X(1) .GT. INCRES) X(1) = INCRES
LC = LC*(1.0+X(1))
IF (X(2) .LT. DECRES) X(2) = DECRES
IF (X(2) .GT. INCRES) X(2) = INCRES
SC = SC*(1.0+X(2))
IF (SC .GE.1) SC =1
IF (X(3) .LT. DECRES) X(3) = DECRES
IF (X(3) .GT. INCRES) X(3) = INCRES

KB = KB*(1.0+X(3))
C CHECK FOR DELTA CONVERGENCE
IF (ABS(X(1)) .GT. ERROR.
& OR.ABS(X(2)) .GT. ERROR.
& OR.ABS(X(3)) .GT. ERROR) GOTO 270
GO TO 290
270 IF (ITERAT.GE.ITMAX) GO TO 360
IF (URC .EQ. 0 .OR. USC .EQ. 0 .OR. UKB .EQ. 0) GO TO 120
WRITE (6, 280) LC, SC, KB
280 FORMAT (1HO,3HLC=,E20.10/3HSC=,E20.10/3HKB=,E20.10//)
GO TO 120
C WRITE OUT FINAL PROGRAM STATUS
290 WRITE (6, 300) ITERAT
300 FORMAT (1H1,'THE PARAMETERS CONVERGED IN',I5,
& 1X, 'ITERATIONS.')
WRITE (6, 310)
310 FORMAT (1HO,37HTHE BEST FIT TIME-DRAWDOWN PAIRS FOR ,
& 39HTHE CONVERGED VALUES OF S, T, AND L ARE)
WRITE (6, 70)
DO 320 I = 1, NTDP
320 WRITE (6, 90) T(I), (SGS(I, J), J = 1, NOW)
WRITE (6, 330) LC, SC, KB
330 FORMAT (1HO,22HLEAKAGE COEFFICIENT = ,F20.10,
& //22HSTORAGE COEFFICIENT = ,F20.10,
& //17HTRANSMISSIVITY = ,F20.10)
IF (TCL .GT. 0) GO TO 340
STOP
340 AK = KB*TCL¥LC¥*#2
WRITE (6, 350) AK
350 FORMAT (1HO,'AQUITARD PERMEABILITY=',F20.10)
STOP
360 WRITE (6, 370) ITMAX
370 FORMAT (1HO,'THE PROGRAM DID NOT CONVERGE IN ',I5,
& 1X, 'ITERATIONS.')
380 STOP
END
C FILE WURB
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APPENDIX TIT. PROGRAM TSSLEAK

C PROGRAM TSSLEAK
PARAMETER DECRES -.2
PARAMETER INCRES = .5
COMMON LC, ITERAT, LCOUNT, KB, KBCOUNT
DIMENSION X(3), SE(100, 8), T(100), SGS(100, 8), R(8), RB(8)
REAL KB, ILC
CHARACTER *3 CHEKDATA, WRITAQP
PI = 3.1415926
DATA IGENDAT/0/
Q=PUMPAGE (L**3/T)
SC=STORAGE COEFF. (UNITLESS)
KB= TRANSMISSIVITY (L#*%2/T)
LC=MODIFIED COEFFICIENT OF LEAKAGE (1/L)
ERROR= CONVERGENCE CRITERIA FOR MAIN DO LOOPE (UNITLESS)
R= RADIAL DISTANCE FROM PUMPING WELL TO OBSERVATION WELL(L)
NOW= NUMBER OF OBSERVATION WELLS
NTDP= NUMBER OF TIME DRAWDOWN PAIRS TO BE READ .
EPS= CONVERGENCE CRITERIA FOR SUBROUTINE SIMUL (UNITLESS)
ITMAX= MAX NUMBER OF ITERATIONS (UNITLESS)
T= TIME
SE= EXPERIMENTAL DRAWDOWN (L)
TCL=THICKNESS OF CONFINING LAYER (L)
INITIALIZE PROGRAM
N=3
ERROR
ITMAX
ITERAT =
CALL FXOPT (89, 1, 1, 0)
C READ IN THE INITIAL DATA
10 PRINT 20
20 FORMAT ( 'ESTIMATE FOR STORAGE ?7')
READ:SC
PRINT 30
30 FORMAT ( 'ESTIMATE FOR TRANSMISSIVITY? L**2/T"')
READ:KB
PRINT 40
40 FORMAT ( 'ESTIMATE FOR LEAKAGE COEFFICIENT ? 1/L')
READ:LC
PRINT 50
50 FORMAT ( 'CONSTANT PUMPAGE RATE? L#*3/T ')
READ:Q
PRINT 60
60 FORMAT ( 'NUMBER OF OBSERVATION WELLS ?')
READ: NOW
PRINT 70
70 FORMAT ( 'OBSERVATION DISTANCE FROM PUMPING WELL? L')
READ :(R(I), I = 1, NOW)
PRINT 80
80 FORMAT ( 'NUMBER OF TIME-DRAWDOWN PAIRS TO BE READ?')
READ :NTDP
C ECHO PRINT THE INITIAL DATA
WRITE (6, 90) SC, KB, LC, Q, NOW, NTDP, ITMAX, ERROR

[t

oNoNoNeoNoNeoNaNeNeNeNeNeaN el

0.001
60
0

I
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90 FORMAT ( ' ECHO THE INITIAL DATA '/ 'SC=', F20.10/ 'KB='F20.10/
& 'LC=', F20.10/ 'Q=', F20.10/
& ' NO. OF OBS. WELLS(NOW) = ', I3/ 'NTDP=', 110/
& 'TTMAX="', 110/ 'ERROR=', F20.10)
PRINT 100
100 FORMAT ( 'RADIAL DISTANCES OF OBSERVATION WELLS ARE : ')
WRITE (6, 110)(R(I), I = 1, NOW)
110 FORMAT (8(F10.4, 3X))

C CHECK FOR THE DATA INPUT
PRINT 120
120 FORMAT ( 'ARE THERE ANY ERRORS IN DATA INPUT?', /,
& "ANSWER YES IF ANY ERROR, OTHERWISE NO')

READ : CHEKDATA
IF (CHEKDATA .EQ. 3HYES) GO TO 10
C TYPE IN DRAWDOWN-TIME PAIRS IN ORDER OF INCREASING TIME
PRINT 130
130 FORMAT ( 'TYPE IN TIME-DRAWDOWN PAIRS IN ORDER OF INCREASING TIME.')
DO 140 I = 1, NTDP
140 READ:T(I), (SE(I, J), J = 1, NOW)
C ECHO PRINT THE TIME-DRAWDOWN PATRS
PRINT 150
150 FORMAT ( 'THE PUMP TEST DATA IN TIME DRAWDOWN PAIRS ')
DO 160 I = 1, NTDP
160 WRITE (6, 170) T(I), (SE(I, J), J = 1, NOW)
170 FORMAT (E15.6, 2X, 8(F10.4))
C CHECK FOR ANY ERRORS IN THE DATA INPUT
NEWDATA = 0
180 PRINT 190
190 FORMAT ( 'ARE THERE ANY ERRORS IN TIME-DRAWDOWN PAIRS?', /,
& 'ANSWER YES OR NO')
READ : CHEKDATA
IF (CHEKDATA .EQ. 2HNO .AND. NEWDATA .EQ. 0) GO TO 250
IF (CHEKDATA .EQ. 2HNO .AND. NEWDATA.GE.1) GO TO 230
IF (CHEKDATA .EQ. 3HYES) GO TO 210
IF (CHEKDATA .NE. 3HYES .OR. CHEKDATA .NE. 2HNO) PRINT 200
200 FORMAT ( 'YOU HAVE AN ERROR IN DATA ENTRY')
210 PRINT 220
220 FORMAT ( 'ENTER THE LINE NUMBER (I),CORRECT TIME',
&  ',LOCATION (J) AND CORRECT DRAWDOWN')
READ: I, T(I), J, SE(I, J)
NEWDATA = NEWDATA+1
GO 'TO 180
C ECHO PRINT THE CORRECTED TIME DRAWDOWN PATRS.
230 DO 240 I = 1, NTDP
240 WRITE (6, 170) T(I), (SE(I, J), J = 1, NOW)
250 TF (IGENDAT .EQ. 1) GO TO 300
LCOUNT = 0
KBCOUNT = 0
260 CONTINUE
270 CONTINUE
IF (KBCOUNT .GT. 0 .OR. LCOUNT .GT. 0) ITERAT = ITERAT-1
LCOUNT = 0
KBCOUNT = 0
C  INITIALIZE ITERATIONS
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C

280

290

300
310

320

330

340

ITERAT = ITERAT+1
ZERO OUT SUMMATIONS

SDELS2 = 0.0
SUSCDS = 0.0
SURCDS = 0.0
SUKBDS = 0.0
SUKBUS = 0.0
SURCUK = 0.0
SUSCUR = 0.0
SURC2 = 0.0
SUSC2 = 0.0
SUKB2 = 0.0
ZERO OUT X MATRIX
DO 290 K = 1, N
X(K) = 0.0
CONTINUE
COMPUTE RB

DO 310 T = 1, NOW
RB(I) = R(I)*LC
DO 360 I = 1, NTDP
DO 350 J = 1, NOW
COMPUTE U
U = (R(J)*R(J)*SC)/ (4*KB*T(1))
COMPUTE THEORETICAL DRAWDOWN
SG = (Q/ (4*PI*KB))*W(U, RB(J))
IF (LCOUNT .EQ. O .AND. KBCOUNT .EQ. 0) GO TO 320
GO TO 260
SGS(I, J) = SG
IF (IGENDAT .EQ. 1) GO TO 360
COMPUTE DIFFERENCE BETWEEN THEORETICAL AND EXPERIMENTAL DRAWDOWN
DELS = SE(I, J)-SG
IF (ABS(DELS) .LT. 1.0E-3) DELS = 0.0
SDELS2 = SDELS2+DELS*DELS
COMPUTE DUMMY COEFFICIENT 'Z'
Z = (U+(RB(J)*RB(J))/(4.%U))
COMPUTE SENSITIVITY COEFFICIENT AND SUMMATIONS
USC =-(Q/ (4.*PI*KB)*(1/U)*((R(J)*R(J))/ (4. *KB*T(1)))*EXP(~Z2))
UKB = -SG/KB+(Q/ (&4.*PT*KB))*((R(J)*R(J)*SC)/
(4. *KB*KB*T(I1)))*(1/U)*EXP(-Z)
IF (ABS(USC) .LT. 1.E-30 .OR. ABS(UKB) .LT. 1.E-30) ITERAT =
ITERAT- 1
IF (ABS(USC) .LT. 1.E-30 .OR. ABS(UKB) .LT. 1.E-30) GO TO 400
RBM = R(J)*.99*LC
RBP = R(J)*1.01%LC
WPLUS = W(U, RBP)
IF (LCOUNT .EQ. O .AND. KBCOUNT .EQ. 0) GO TO 330
GO TO 260
WMINUS = W(U, RBM)
IF (LCOUNT .EQ. O .AND. KBCOUNT .EQ. 0) GO TO 340
GO TO 260
URC = (Q/(4.0%PT#*KB))* (WPLUS-WMINUS)/ (.02%LC)
IF (ABS(URC) .LT. 1.E-30) ITERAT = ITERAT-1
IF (ABS(URC) .LT. 1.E-30) GO TO 400
SUKB2 = SUKB2+UKB*UKB
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SUSC2 = SUSC2+USC*USC
SURC2 = SURC2+URC*URC

SUSCUR = SUSCUR+USC*URC
SUKBUS = SUKBUS+UKB*USC
SURCUK = SURCUK+URC*UKB
SUSCDS = SUSCDS+USC*DELS
SURCDS = SURCDS+URC*DELS
SUKBDS = SUKBDS+UKB*DELS

350 CONTINUE

360 CONTINUE

IF (IGENDAT .EQ. 0) GO TO 390
WRITE (6, 370)
370 FORMAT (1HO,T15,1HT ,T35,2HSE)
DO 380 I = 1, NTDP
380 WRITE (6, 170) T(I), (SGS(I, J), J = 1, NOW)
IF (IGENDAT .EQ. 1) STOP
COMPUTE MATRIX TO BE SOLVED FOR SENSTTIVITY DELTAS

390 U1l = SURC2*LC
U12 = SUSCUR*SC
U13 = SURCUK*KB
U14 = SURCDS
U21 = SUSCUR*LC
U22 = SUSC2*SC
U23 = SUKBUS*KB
U24 = SUSCDS
U31 = SURCUK*LC
U32 = SUKBUS#*SC
U33 = SUKB2*KB
U34 = SUKBDS

SOLVE MATRIX BY DIRECT GAUSS ELIMINATION
X(3) = ((U14%U21-U24*U11)* (U12%U31-U32*U11)
- (U14*%U31-U34%011)% (U12%U21-U22%U11) )/
((U13*U21-U23+U11)%* (U12%U31-U32*U11)
- (U13*U31-U33*011)% (U12%U21-U22%U11))
X(2) = ((U14%U21-U24%U11)- (U13%U21-U23%U11)%X(3))/
(U12%U21-U22%U011)
X(1) = (U14-U13%X(3)-U12%X(2))/U11
GO TO 410
400 CONTINUE
UPDATE INITIAL GUESS VALUES OF SC, KB, LC
X(1) = INCRES
LC = LC*(1.0+X(1))
X(2) = INCRES
SC = SC*(1.0+X(2))
IF (SC.GE.1) SC = 1.0
X(3) = INCRES
KB = KB*(1.0+X(3))
GO TO 430
410 CONTINUE
COMPUTE STANDARD DEVIATION FOR EACH TTERATION
SIGMA = SQRT(SDELS2/NTDP)
WRITE (6, 420) ITERAT, SIGMA
420 FORMAT (1HO,'THE STANDARD DEVIATION FOR ITERATION NUMBER,'I5,
'IS', F20.10)
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C UP-DATE COEFFICIENTS
430 CONTINUE

IF (X(1) .LT. DECRES) X(1) = DECRES
IF (X(1) .GT. INCRES) X(1) = INCRES
LC = LC*(1.0+X(1))
IF (X(2) .LT. DECRES) X(2) = DECRES
IF (X(2) .GT. INCRES) X(2) = INCRES
SC = SC*(1.0+X(2))
IF (SC .GE.1) SC = 1
IF (X(3) .LT. DECRES) X(3) = DECRES
IF (X(3) .GT. INCRES) X(3) = INCRES
KB = KB*(1.04X(3))
C CHECK FOR DELTA CONVERGENCE
IF (ABS(X(1)) .GT. ERROR .OR. ABS(X(2)) .GT. ERROR.
& OR.ABS(X(3)) .GT. ERROR) GOTO 440
GO TO 460

440 IF (ITERAT.GE.ITMAX) GO TO 550
IF (ABS(URC) .LT. 1.E-30 .OR. ABS(USC) .LT. 1.E-30 .OR. ABS(UKB)
& .LT. 1.E-30) GO TO 280
WRITE (6, 450) LC, SC, KB
450 FORMAT (1HO,3HLC=,E20.10/3HSC=,E20.10/3HKB=,E20.10//)
GO TO 280
C WRITE OUT FINAL PROGRAM STATUS
460 WRITE (6, 470) ITERAT
470 FORMAT (1H1,'THE PARAMETERS CONVERGED IN',I5,1X,'ITERATIONS.')
WRITE (6, 480)
480 FORMAT (1HO,37HTHE BEST FIT TIME-DRAWDOWN PAIRS FOR ,
& 39HTHE CONVERGED VALUES OF S, T, AND L ARE)
WRITE (6, 370)
DO 490 I = 1, NTDP
490 WRITE (6, 170) T(I), (SGS(I, J), J
WRITE (6, 500) LC, SC, KB
500 FORMAT (1HO,22HLEAKAGE COEFFICIENT
& //22HSTORAGE COEFFICIENT = , F20.10,
& //17HTRANSMISSIVITY = , F20.10)
PRINT 510
510 FORMAT ( ' DO YOU WANT TO COMPUTE AQUITARD PERMEABILITY ?', /
& 'ANSWER YES IF TCL IS KNOWN OTHERWISE NO')
READ: WRITAQP
IF (WRITAQP .NE. 2HNO) GO TO 520
IF (WRITAQP .NE. 3HYES) STOP
520 PRINT 530
530 FORMAT ( 'THICKNESS OF CONFINING LAYER ?')
READ: TCL
IF (TCL .LE. 0) STOP
AQP = KB*TCL*LC¥*%2
WRITE (6, 540) AQP
540 FORMAT ( 'AQUITARD PERMEABILITY =', F20.10)
STOP
550 WRITE (6, 560) ITMAX
560 FORMAT (1HO,'THE PROGRAM DID NOT CONVERGE IN ',I5,1X,' ITERATIONS.')
STOP
END
c FILE WURB

1, NOW)

,F20.10,

’
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APPENDIX III. PROGRAM HANTUSH

C

o000 e

el il o]

X

2

100

10

11

200
13

PROGRAM HANTUSH

CHARACTER CHECK*3,LU%3,TU*3

REAL KB,LC

AA = 1.0

THIS PROGRAM COMPUTES THE DRAWDOWN IN A LEAKY AQUIFER AS
DEFINED BY JACOB AND HANTUSH, 1955. ALL INPUT IS IN CONSISTENT
UNITS. A FULLY PENETRATING WELL IN AN ARTESIAN AQUIFER

AND NO WATER RELEASED FROM STORAGE IN THE AQUITARD,

WITH CONSTANT DISCHARGE CONDITIONS ARE THE PRINCIPLE
ASSUMPTIONS.

R= RADIUS OF OBSERVATION WELL FROM PUMPED WELL (L)

S= DRAWDOWN (L)

T= TIME (T)

Q= PUMPING RATE (L**3/T)

LC= INVERSE LEAKAGE COEFFICIENT OF SEMICONFINING BED (1/L)
LC= 1/B

KB= TRANSMISSIVITY OF AQUIFER (L*%2/T)

SC= STORAGE COEFFICIENT OF AQUIFER (UNITLESS)

PI= 3.1415926

WRITE (6,1)

FORMAT (1HO, ' THIS PROGRAM CALCULATES THE DRAWDOWN IN A',
/,'LEAKY ARTESIAN AQUIFER. THE RADIAL DISTANCE FOR THE',/,
'OBSERVATION WELL AND THE PUMPING PERIOD MAY BE CONSTANT',/,
'OR VARIABLE. ANY CONSISTENT SET OF UNITS MAY BE USED.'//)
WRITE (6,2)

FORMAT (1HO, 'ENTER THE FOLLOWING DATA IN A FREE FORMAT FIELD:',/
'Q = PUMPING RATE (L**3/T)',/,

'LC = INVERSE LEAKAGE COEFFICIENT (1/L)',/,

'KB = AQUIFER TRANSMISSIVITY (L**2/T)',/,

'SC = STORAGE COEFFICIENT (UNITLESS)',/,

'LU = UNIT OF LENGTH (3 CHARACTERS MAX)',/,

'TU = UNIT OF TIME (3 CHARACTERS MAX)'/)
READ(5,3)Q,LC,KB,SC,LU,TU

FORMAT (V)

WRITE (6,4)

FORMAT (1HO, 'ARE THERE ANY ERRORS IN THE ABOVE ENTRIES?',/,

'IF NOT, ANSWER NO.')

READ(5,3) CHECK

IF (CHECK.NE . 2HNO) GOT0100

WRITE(6,10)

FORMAT (1HO ,'THE FOLLOWING PARAMETERS ARE USED IN THIS SOLUTION:')
WRITE(6,11)Q,LC,KB,SC,LU,TU

FORMAT (1HO, 'Q=',F10.2,//,'LCc=",F10.8,//,'KB=",F10.2,//,'SC=",F10.8,//
'LU =',A3,//,'TU =',A3,//)

WRITE(6,7)

FORMAT (1HO, 'ENTER THE FOLLOWING DATA:',/,

'RaT')/’

'R = DISTANCE TO OBSERVATION WELL (L)',/,

'T = LENGTH OF PUMPING PERIOD (T)',/,

'TERMINATE BY RETURNING BLANK FIELDS.')

WRITE(6,13)

FORMAT (1HO, 'ENTER R,T')
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300
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READ(5,3)R,T

IF(R.EQ.0..0R.T.EQ.0.)GOT0300

RB=R*LC

U=(R* 7':SC)/ (4 .*KB*T)

WRITE(6,12) U,RB

FORMAT (1HO, 'U=',F10.6,1X,//; 'R/B=",F10.5)
S=(Q/(4.*%PI*KB))*W(U,RB)

WRITE (6,8)R,LU,S,LU,T,TU

FORMAT (1HO, ' THE DRAWDOWN' ,1X,F6.0,1X,A3,1X,/,
*FROM THE PUMPING WELL IS',1X,F10.5,1X,A3,1X,/,
'AFTER' ,1X,F10.2,1X,A3,1X, '0OF PUMPING.',/)
GOTO200

WRITE (6,14)

FORMAT (1HO, 'YOU HAVE TERMINATED THE PROGRAM.',/,
'IS THIS CORRECT?')
READ(5,3)CHECK
IF(CHECK.NE. 'YES')GOT0200
STOP

END

FILE WURB
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APPENDIX IV. FILE WURB, A LIST OF EXPLICIT FUNCTIONS

OO0

oo

OO0 0

570
580

590

600

FOR SOLUTION OF W(U,RB).

FILE WURB
FILE WURB IS A LIST OF FUNCTIONS REQUIRED IN THE
SOLUTION OF THE LEAKY ARTESIAN WELL FUNCTION W (U,R/B).
FUNCTION W (U, RB)
THIS FUNCTION DEFINES THE LEAKY ARTESIAN WELL FUNCTION.
THE THREE FORMS CORRESPOND TO THOSE OUTLINED IN
HANTUSH AND JACOB, 1955.
COMMON LC, ITERAT, LCOUNT, KB, KBCOUNT
REAL LC, KB
IF (U.GE.1.0) GO TO 570
IF (U .LT. 1.0 .AND. (RB*RB) .GT. U) GO TO 580
IF (U .LT. 1.0 .AND. (RB*RB) .LE. U) GO TO 590
W = SS(U, RB)
GO TO 600
W = (2*AKO(RB)-SS(U, RB))
GO TO 600
F1 = (RB*RB*.25/U)
W = 2%AKO(RB)-AIO(RB)*(EI(F1))+EXP(-F1)*
(0.5772+ALOG(U)+EI (U) -U+U*
((ATO(RB)-1)/(RB*RB*.25))-U*U*SUM(U, RB))
RETURN
END
FUNCTION SS (U, RB)
THIS FUNCTION SOLVES THE INDEFINITE INTEGRAL OUTLINED
ON PAGE 231 OF THE TEXT. THE METHOD USED IS
LAGUERRE INTEGRATION AS DISCUSSED IN A & S
(ABRAMOWITZ AND SEGUN, 1968), PAGE 923.
FOR AN EXPLANATION OF THE PARAMETER AA
IN THE CODE BELOW, SEE THE TEXT.

COMMON LC, ITERAT, LCOUNT, KB, KBCOUNT
REAL LC, KB

DOUBLE PRECISION Y(15), WF(15)
DATA AA/1./

DATA Y(1)/0.093307812017/
DATA Y(2)/0.492691740302/
DATA Y(3)/1.215595412071/
DATA Y(4)/2.269949526204/
DATA Y(5)/3.667622721751/
DATA Y(6)/5.425336627414/
DATA Y(7)/7.565916226613/
DATA Y(8)/10.120228568019/
DATA Y(9)/13.130282482176/
DATA Y(10)/16.654407708330/
DATA Y(11)/20.776478899449/
DATA Y(12)/25.623894226729/
DATA Y(13)/31.407519169754/
DATA Y(14)/38.530683306486/
DATA Y(15)/48.026085572686/
DATA WF(1)/0.239578170311/
DATA WF(2)/0.560100842793/
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610

620

630

640

650

660

DATA WF(3)/0.887008262919/

DATA WEF(4)/1.22366440215/
DATA WF(5)/1.57444872163/
DATA WF(6)/1.94475197653/
DATA WF(7)/2.34150205664/
DATA WF(8)/2.77404192683/
DATA WF(9)/3.25564334640/
DATA WF(10)/3.80631171423/
DATA WF(11)/4.45847775384/
DATA WF(12)/5.27001778443/
DATA WF(13)/6.35956346973/
DATA WF(14)/8.03178763212/
DATA WF(15)/11.5277721009/
B = (RB ) )

WU =20

DO 630 I =1, 15
IF (U .LT. 1.0) GO TO 610
= 1/(0+Y(I)/AA)
= AFEXP (- (U+B*A%.25+Y(1)/AA))
W=F
(FEW .LE. 0.) GO TO 640
TO 620
= 0.25%RB¥RB*(1/U)
= 1/(UM+Y(1)/AA)
= AFEXP (- (UM+B*A%0.25+Y(I1)/AA))

A
F
FE
IF
GO
UM

A
F
FEW2 = F
IF (FEwW2 .LE. 0) GO TO 640
FW = F*WF(I)
= WU+FW
CONTINUE
SS = (1/AA)*WU
RETURN
CONTINUE
TESTB = EXP(-(B*A*.25+Y(I)/AA))
TESTU = EXP(-U)
TESTUM = EXP(-UM)
IF (TESTB .LE. 0 .OR. U .LT. 1 .AND. TESTUM .LE. 0) GO TO 650
IF (U .GT. 1 .AND. TESTU .LE. 0) GO TO 660
CONTINUE
LC = LC*.05
LCOUNT = LCOUNT+1
RETURN
CONTINUE
KB = KB*10
KBCOUNT = KBCOUNT+1
RETURN
END
FUNCTION AKO (RB)
THIS FUNCTION SOLVES THE MODIFIED BESSELS FUNCTION
OF THE SECOND KIND, ZERO ORDER, A & S, PAGE 379.
IF (RB .GT. 2.) GO TO 670
TJ = (RB/2.)
AKO = -ALOG(TJ)*AIO(RB)-.57721566
+0.42278420%(TJ)**2+0.23069756% (TJ)**4
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670

680

690

700

710
720
730

740

+0.03488590% (TJ)**6+0.00262698% (TJ)**8
+0.00010750% (TJ)**10+0.00000740% (TJ)**12
GO TO 680
™ = (2./RB)
AKO = (1./SQRT(RB))*EXP(-RB)*(1.25331414
~0.07832358*TM+0.02189568*TM**2
-0.01062446*TM**3+0.0058787 2% TM**4
~0.00251540%*TM**5+0.00053208*TM**6)
RETURN
END
FUNCTION AIO (RB)
THIS FUNCTION SOLVES THE MODIFIED BESSELS FUNCTION
OF THE FIRST KIND, ZERO ORDER, A & S, PAGE 378.
TF = RB/3.75
IF (RB .LE. 3.75) GO TO 690
AIO = (1/SQRT(RB))*EXP(RB)*(.39894228
+.01328592*TF#*(-1)+.00225319*TF**(-2)
-.00157565*TF**(~3)+.0091628 1*TF** (-4)
=.02057706*TF**(-5)+.02635537*TF**(-6)
-.01647633*TF**(~7)+.00392377*TF**(-8))
GO TO 700
ATIO = 1.0+3.5156229*TF#%2+3.0899424*TF**4
+1.2067492*TF*%6+0.2659732*TF**8
+0.0360768*TF**10+0.0045813*TF**12
RETURN
END
FUNCTIONS SUM AND IFACT ARE SPECIAL FUNCTIONS
WHICH ARE USED TO SOLVE THE EQUATION BEGINNING
AT STATEMENT 3000 IN FUNCTION W.
FUNCTION SUM (U, RB)
DATA LIMIT/5/

FACT (LH)*1.0
AFACT = TFACT(LF)*1.0
PSUM = ((-1)%¥*(N+M))* (AFACT/ (BFACT*BFACT) )* (RBF#%M)*

(U (N-1))

SUM = SUM+PSUM
IF (PSUM .LT. 1.0E-8) GO TO 730
CONTINUE

CONTINUE

RETURN

END

FUNCTION IFACT (L)

IFACT = 1

IF (L .EQ. 1) GO TO 750

DO 740 T = 2, L

MA = 1
IFACT = IFACT*MA
CONTINUE

N
N+2
=1
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750

760

770

RETURN

END

FUNCTION EI (U)

THIS FUNCTION SOLVES THE EXPONENTIAL INTEGRAL
DEFINED ON PAGE 231 OF A & S.

IF (U .GT. 1.0) GO TO 760

EI = -ALOG(U)-.5772156+.99999139%U-.24991055%U*U
+.05519968*U**3-.00970046%U**4+.00107857*U**5
GO TO 770

EI = (EXP(-U)/U)*(U*U+2.334733%U+.250621)/
(U*~U+3.330657*U+1.681534)

RETURN

END
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APPENDIX V. LIST OF TEST-DATA SOURCES

Walton, W. C., 1970, Groundwater resource evaluation: New York, McGraw-
Hill, page 286, Problem 4.5.

Cooper, H. H., Jr., 1963, [see references], as cited in Lohman, S.W.,
1972, Ground water hydraulics: U.S. Geological Survey Professional Paper
708, page 31, Table II.

Walton, W. C., 1962, Selected analytical methods for well and aguifer
evaluation: 1Illinois State Water Survey Bulletin 49, Urbana, Department
of Registration and Education, page 32, Table 5.

Gutentag, E. D., 1965, Aquifer test in the Ogallala Formation (26-37-~
21d4dd): U.S. Geological Survey, Garden City, Kansas, open file data.,
Gillespie, J. B., 1979, Results of aquifer tests in the Wellington aquifer
near Salina, Kansas: Preliminary report, Lawrence, Kansas.,

Burns and McDonnell Consultants, 1977, Pump test data at Test Well #1,.32
Groundwater resources investigation of the Spratt Site for Sunflower

Electric Cooperative: XKansas City, Burns and McDonnell.
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APPENDIX VI. COMMENTS ON PROGRAM NOTATION

The variables appearing in the matrix equation are defined in the program by

the following notation:

T : KB U, : UKB
S : SC U, : USC
L : LC U : URC

2 U (s -s ) : SURCDS
g e

L U, (s -s ) : SUSCDS

s g e

L U (s -s ) : SUKBDS
g e

LU : SURC2
. L
Ly : SUSCU
. % R
1
Iu :
. LY SURCUK
1
U : S
. SU USCUR
1
z Ué :  SUSC2
i
L Uuu : SUKB
. ST us
1
LU : SU
' 297, RCUK
1
L UU : SUKBUS
. TS
2
U : SUKB2
T
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