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PREFACE

Much of the material presented in this report is part of a previous work (Olea, 1972),
revised and enlarged during 1974-1975 while the author served as Visiting Research Scientist
with the Kansas Geological Survey. This report describes the methods of universal kriging and
drift as applied to mapping and map analysis by computers. Based on the theory of regionalized
variables developed by G. Matheron, this work contains a detailed derivation of all steps lead-
ing from the theory to its practical use. However, a basic knowledge of geologic exploration,
numerical analysis, and familiarity with statistics is assumed.

The computer algorithms to perform universal kriging and drift analysis are implemented
as FORTRAN IV modules in the SURFACE II graphics system developed by the Kansas Geological Sur-
vey. Operational instructions for the programs are contained in the SURFACE II User's Manual
by Robert J. Sampson (1975). Inquiries concerning these programs should be sent to the Geologic

Research Section, Kansas Geological Survey, 1930 Avenue '"A', Campus West, Lawrence, Kansas 66044.
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ABSTRACT

The theory of regionalized variables has been developed by G. Matheron to allow the draw-
ing of statistical inferences, considering not only sample values but also implicit relation-
ships in the geometry of the sample space. Two aspects of the theory are analyzed in this
report; universal kriging and drift. Universal kriging is an estimation procedure presented
as an alternative for grid generation in the automatic contouring of point observations.
Drift estimations relate to the search for a slowly varying spatial component such as that
usually studied by trend surface analysis. Both universal kriging and drift estimation are
more general, theoretically satisfying, and reliable than the empirical methods which are now
used. In addition, provided the assumptions of the regionalized variable theory are met, the
resulting estimates are unbiased with minimum estimation variance. Most importantly, the
methods yield the variance of the estimation error at every point in the sample space.

Basic concepts of the regionalized variable theory which pertain to automatic contouring
are expressed in this report in terms of classical statistical inference. Because published
accounts of the theory are highly compact, it is necessary to provide extensive derivations
of the steps in its development. These lead from the fundamental assumptions of the theory
to the algorithms required to perform punctual kriging and to estimate the drift, and provide
an explanation of the properties of the estimates. The practical utility of these methods is
shown in an example using data on a subsurface geologic horizon. Additional proofs are con-

tained in appendices.



OPTIMUM MAPPING TECHNIQUES USING REGIONALIZED VARIABLE THEORY

R+ A. OLEA, Kansas Geological Survey and Empresa Nacional del Petrdleo

CHAPTER 1 -- INTRODUCTION
1.1 REeVIEW

Earth scientists usually deal with complex phenomena which are the results of the inter-
action of scores of variables, through relationships which are in part unknown and in part
very complex. The final outcomes that are observed in nature are therefore functions whose
known values do not follow any simple deterministic function over a wide range. However, the
observations exhibit continuity and cannot be regarded as pure random values. Professor
Georges Matheron, a French engineer, applied the name 'regionalized variables'" to these func-
tions. He developed a statistical theory based on a simple assumption of stationarity, which
made intensive use of the correlation between spatially non-independent random variables. The
theoretical model resembles a stochastic process in the sense used by Wiener (1949). The
height of the surface of the Earth, the elevation of a formation top, the amount of precipita-
tion in an area, porosity in a reservoir, and ore content in a mineralized body are all
examples of regionalized variables.

The origins of the regionalized variable theory are rooted in ore estimation problems.

In the early 1950's in South Africa, D. G. Krige realized that he could not accurately esti-
mate the gold content of mined blocks or stopes without considering the geometrical setting of
the samples, such as sample locations and sizes. However, the conclusions of Krige and others
remained as isolated empirical results valid only for gold estimation in the Witwatersrand
mining district. Matheron expanded Krige's empirical observations into a theory of the behavior
of spatially distributed variables which was applicable to any phenomenon satisfying certain
basic assumptions, and which was not limited by their physical nature. Today, this theory has
been used for ore reserve estimation in more than forty types of ore deposits in ten different
countries (Blais and Carlier, 1968). In addition, it has found applications in areas not
related to mining, such as studies of gravimetric anomalies (Huijbregts and Matheron, 1971);
submarine mapping (Journel, 1969); meteorology (Delhomme and Delfiner, 1973); and forestry
(Poissonnet, Millier, and Serra, 1970). Matheron not only generalized Krige's estimation
methods but also developed a theoretical understanding of sampling variability associated

with the physical size of samples, and a complete theory of estimation error. In 1965, he
published the results of more than ten years' work in a highly theoretical (and hence dif-
ficult) book which is the cornerstone of the regionalized variable theory (Matheron, 1965).

He has later refined and enlarged the theory in several papers and in a collection of text-

books; unfortunately, these works are equally difficult to understand (Matheron, 1969a, 1969b,



1970). Most of Matheron's work and that of his students has been published in French, which
has presented an additional translation problem for many researchers.

To honor Krige for this pioneering work and to differentiate his estimation method from
others, Matheron refers to his technique as 'krigeage' which has been translated into "kriging"
in the English-language literature. A later development is called "universal kriging,'" an es-
timation method applicable to a variable which is not spatially stationary, or in other words,
which contains a trend. Matheron, considering that the term "trend" had been misleadingly
used to refer to different phenomena, introduced the word "drift" to denote those slowly
varying components which underlie regionalized variables. A more formal definition of drift
can be found in Section 2.3,

Mapping is the most appropriate way to represent the spatial variation of a regionalized
variable and its drift in two dimensions. In this work I will not present a complete review
of this theory, but will consider a reduced and simplified subset concerned with the specific
problem of map analysis of punctual samples, such as elevations of the top of geologic horizons,
measured in the subsurface. However, I will develop the necessary aspects of the theory from
its beginnings because this theory has been largely overlooked and misunderstood in the American
literature (Watson, 1971, 1972; Whitten discussion, in Krige, 1966).

In addition to the barrier presented by the French language, the theory has been obscured
by an unfamiliar jargon. In the following pages, as necessary, I will introduce many terms
which are not part of traditional statistical nomenclature. In each instance, I will provide
a definition or an explanation of unfamiliar terms or of certain conventional words that have
been given an unusual meaning. The origin of many of these terms is not explained; they are
simply embedded in the literature of regionalized variables. In some places, it might be
better to use a more conventional word or an approach having equivalent implications, with the
aim of reducing the jargon. I have not done so because reading the original references would
then become more difficult. I have instead attempted to provide a guide to these other topics

and details contained in the original sources cited in the bibliography.

1.2 RecioNALIZED VARIABLES

Definition 1.2.1: A regionalized variable is any numerical function with a spatial distribu-

tion which varies from one place to another with apparent continuity, but the changes of which
cannot be represented by any workable function (Blais and Carlier, 1968). This definition
characterizes many variables which describe natural phenomena such as the ore content of a
mineralized body or the wheat production per acre of farmland.

Some common characteristics of regionalized variables are:

1) Localization: A regionalized variable is numerically defined by a value which is
associated with a sample of specific size, shape, and orientation. These geometric characteris-

tics of the sample are called the geometric support. A geometric field is that larger volume



from which the samples are drawn. The geometric field and the geometric support do not
necessarily comprise volumes, but may instead be areas, lines, or time intervals. When the
size of the geometric support tends to zero, we have a point or punctual sample, and the
geometric support is immaterial.

If our samples are 10 cu. cm. of soil from a farmland and we wish to study variation
in soil water saturation, the regionalized variable is soil moisture, the geometric supports
are the 10 cu. cm. volumes, and the geometric field is the soil layer of the farm. A classi-
cal statistical experiment concerning the toss of coins has results which are independent of
whether a penny, dime, franc, or pfennig is flipped. However, it is a common experience that
water content of a soil sample depends not only on the location of the sample but also on the
sample's size, orientation, and shape. A long, vertical, cylindrical core typically will con-
tain more water than a horizontal sample of the same shape and size taken from the surface.

If we test 10 cu. m ., the result will also differ from that obtained from a sample only 10 cu.
cm, in volume. This is a very important fact which is often ignored in ordinary statistics,
where the shape, size, and orientation of a sample are usually not considered. The theory of
regionalized variables does take into account the geometry of the sample. It is no coinci-
dence that this theory has been remarkably successful in ore estimation where small core samples
are used to estimate the ore grade in mine blocks having radically different sizes (Krige, 1966;
Matheron, 1969b). The theory also has significance for automatic contouring, although locali-
zation is immaterial as the samples are points having no volume.

2) Anisotropy: Some regionalized variables are anisotropic; that is, changes in value
are gradual in one direction and rapid or irregular in another.

3) Continuity: The spatial variation of a regionalized variable may be extremely large
to very small, depending on the phenomenon. Despite the complexity of the fluctuations, an
average continuity is generally present.

If we collect soil samples of the same size, shape, and orientation at regular intervals

along imaginary lines, we could find two different series, A and B:

A: 5, 10, 15, 20, 25, 20, 15, 10, 5 % water
B: 10, 25, 15, 10, 20, 5, 15, 5, 20 % water

Individual values in the two series are exactly the same. As a result, the mean, the variance,
and the frequency histograms of A and B are rigorously identical. Any statistical analysis
which does not consider anything other than the mean, variance, and frequency distribution will
not be able to differentiate between such sequences. This example emphasizes the importance
of measuring the spatial continuity of the regionalized variable. This continuity may be ana-
lyzed in several ways, but some kind of correlogram seems to be the most appropriate. In the

regionalized variable theory, this role is assigned to the semivariogram.



1.3 AutomATIC CONTOURING

Any surface which is single-valued for any coordinate X and continuous everywhere may be
graphically represented in the same way that a topographic map is a graphic abstraction of a
part of the Earth's surface. The main element used in these graphic representations is the
isopleth, a line connecting points of equal value. A group of isopleths conveniently spaced
constitutes a representation of the form of a real surface by a map. To understand the mean-
ing of an isopleth, we will consider a topographic map which uses a special type of isopleth
called a contour line. A confour line is an imaginary line on the ground which takes any
shape necessary to maintain a constant elevation above sea level. Each topographic contour
line has a height associated with it. The verb '"to contour'" therefore has an intrinsic
restriction in meaning and should strictly be applied only to topographic maps. However,
because the techniques used to draw isopleths are not related to the variable being mapped,
the word '"contour" is used with the general meaning of construction of isopleth lines. We
will use the terms automatic mapping or automatic contouring to denote the genmeration of maps
by machine.

Maps are the most convenient tool for representing scattered observations of a region-
alized variable. Mapping provides a method which simultaneously reduces three-dimensionally
distributed observations to two-dimensional pictures, and provides a global view of surfaces
which cannot be completely or accurately represented by analytically tractable formulas.

The classic way to produce a topographic map is to send a surveyor to the field to
measure latitude, longitude, and altitude in as many points as possible, uniformly distributed
across the area to be mapped. Subsequently, a draftsman plots the data points and draws the
contour lines at the appropriate positions between the points. A serious disadvantage of this
technique is that resolution is lost because it is necessary to limit the sample points to a
finite collection out of the infinite number which actually constitutes the surface. There-
fore, the draftsman must attempt to 'create" information by inferring between control points;
the results are more-or-less correct depending on the experience of the dﬁaftsman, the smooth-
ness of the real surface and the control-point density. Manual production of contour maps is
subjective, laborious, time-consuming, and the results are often inconsistent.

Today, topographic cartography has solved the problem of discrete sampling by using
aerial photography. Instead of surveying locations and altitudes, pictures are taken from
an airplane. Each picture is a continuous sample or partial view of the actual surface.
Surveying is now secondary and not necessary for contouring, but only to present the map
features in the correct size relationship to each other and to the Earth's surface. Stereo-
matic production replaces manual contouring, and the final map is practically error free.

Nevertheless, there are many other fields where it is theoretically or practically im-
possible to replace discontinuous sampling; the best that can be done is to replace the drafts-
man by a machine. This is the case in subsurface geology, for example, where the objective is

to map the contact between two rock strata which are hundreds or thousands of meters underground.



The best information that can possibly be obtained comes from a finite collection of wells
drilled through the contact. In oceanography there is still no way to photograph the bottom
of the sea over a wide area. Discontinuous information obtained by sounding, by seismic
prospecting, or by sonar is the only way to measure the sea floor, especially under deep
water. In other applications, the surface may be a mathematical abstraction with no real
existence and mapping of discontinuous sampling points seems to be the only way to visualize
the funtion. This is the case when depicting air temperatures, for instance, where the func-
tion does not represent anything physically real in the same sense as the surface of the
Earth.

Of the many applications of automatic contouring, we will later concentrate on the pro-
duction of subsurface maps of rock strata. This is an area where maps of high quality are
critically important. They are used to monitor oil exploration and exploitation as oil occur-
rence is closely related to structural features of potentially producing formations. Because
this report introduces a methodology that yields improved maps, it seems reasonable to offer
an application in a field where improvements are necessary and might be extremely valuable in
the future. This does not mean the methods cannot be equally well applied to any surface
which can be represented by isopleths.

In most general purpose schemes for automatic contouring from -discontinuous samples, the
following steps can be distinguished:

1) The computer reads the raw data to be contoured, map control specifications, titles,
and other extraneous information to be placed on the map.

2) A rectangular array is automatically generated containing estimated values of the
surface at the nodes of a regular grid. This step is usually referred to as 'gridding."

3) The regular grid is used to produce the iscpleths, by interpolation between nodes.

4) The isopleths are drawn by a plotter or an output printer.

Use of a rectangular grid is dictated by considerations of convenience in computation
and data manipulation and appears in most algorithms. The kernel of any contouring scheme is
in the procedure used to generate the grid, as it consumes most of the computing time and the
final results depend on its accuracy. There are some general and obvious criteria on which
the effectiveness of a gridding algorithm may be judged:

1) The resulting isopleth should not contradict the data, i.e., the isopleth should be
exact at least at the control points. Although this point seems obvious, it has been repeatedly
violated.

2) Isopleths should be smooth curves, so they are aesthetically appealing and natural in
appearance.

3) In some instances the requirement has been that the map should closely resemble that
which would be produced by a draftsman using visual interpolation. Such a specification will
not only satisfy 1) and 2), but might also make arbitrary changes where erroneous data are
suspected.

4) Computational time must be reasonable, so that the cost of an automatically contoured

map is competitive with that of a manually contoured map.



Criteria 3) and 4) deserve some elaboration. To try to simulate the human production
rather than to model the surface itself is inadvisable, and attempts to do so represent a
serious defect in several methods.

The impact of economic considerations on mapping procedures has been overestimated. For
some applications, the cheapest is best, regardless of the quality of the final product. How-
ever, in some instances, automatically contoured maps two or three times more expensive than
those produced by manual contouring may be better for the following reasons:

1) Maps may be produced to standardized specifications, both within a single map and
among a series of maps. The variability and inconsistency inherent in manual drafting are
avoided.

2) The possibility of error is significantly smaller using a computer for automatic
contouring.

3) Under certain circumstances, the production of an automatically contoured map can be
significantly faster.

4) It is possible to update maps at a low marginal cost.

5) As will be shown, automatic contouring can be used to evaluate the error or uncertain-

ty which exists in any map made from a finite collection of samples.

1.4 AbVANTAGES OF REGIONALIZED VARIABLE METHODS

Two basic methods will be studied: automatic contouring of the original observations,
and drift analysis. The term "original observations" does not necessarily mean the original
data as it comes from the field. Some minor algebraic corrections may have been made to pre-
pare the data, such as the subtraction of ground elevation. '"Original observations" may also
be derived from more basic data. For instance, the difference between elevations of different
strata may be used to generate an isopach or thickness map. Similarly, the subtraction of a
drift from Bouguer gravity produces a map of gravity residuals (local anomalies).

Methods described in the literature to generate grids for automatic contouring are mostly
moving weighted average techniques. However, differences in the manipulation of formulas and
data allow a separation of these algorithms into two groups:

1) A "true" weighted average, where a point is estimated as the weighted sum of a number
of samples selected according to certain rules.

2) Polynomial interpolation over a reduced neighborhood of data.

Despite the vast amount of effort expended on gridding algorithms (Switzer, Mohr, and
Heitman, 1964; Walters, 1969), all such methods have at least one of the following drawbacks:

1) They are highly empirical. There is no theory which forecasts what will happen using
the methods under all possible circumstances. 'In practice, they [the methods] have been
found in a negative manner; that is, from rejection by users on different grounds as each

obstacle has been overcome'" (Palmer, 1969). In general, it is not possible to predict in



advance whether the results of a given mapping algorithm are going to be "'satisfactory' with
a given set of data.

2) The methods are not necessarily optimal. Although a given algorithm may work per-
fectly with some data as far as can be told, it cannot be stated that there is no other method
which would work even better.

3) Contouring errors which arise from the use of discrete samples cannot be estimated.
These may range from immaterial to substantial. But because contouring methods do not provide
a measurement of the error, reality cannot be distinguished from fantasy. A potential advan-
tage over manual contouring is therefore lost.

4) They lack generality. Weighted average techniques, in particular, assume some geo-
metrical distribution of samples used to estimate a grid point (Switzer, Mohr, and Heitman,
1964). Some, for instance, suppose that the point to be estimated is in the center of gravity
of an equilateral triangle. This criterion either limits the use of the method or introduces
errors because approximations must be made where samples are irregularly distributed or
arranged according to another geometric pattern. The converse problem is again a question of
optimality. If samples are regularly distributed, there are always several geometric figures
which can be chosen for the pattern of moving averages. The point to be estimated might be
regarded as in the center of a square, but the point might also be regarded as in the center
of two concentric circles.

5) Gridding algorithms are chosen arbitrarily, as are the parameters used in a given
method. Suppose some kind of weighted average of nearest points is used. The 'nearest
points" may be defined, for example, as either all those in a two-km. radius neighborhood or
alternatively, the six closest points regardless of distance.' The choice is an arbitrary one.
The method might work better using a four- or eight-km. radius, or perhaps computation time
could be reduced by using only four nearby points without loss of precision. Looking for the
most satisfactory parameters involves contouring the same data several times and making com-
parisons which are usually completely subjective.

6) Most techniques use the data at each individual sample point, but do not consider the
implicit relationships among points. This is a waste of potentially valuable information.

7) The methods presume that the samples are points. However, many spatial variables
have meanings only when associated with areas (population densities) or volumes (ore value).
To ignore the fact that samples may have a physical size and that this size may be different
for different groups of samples introduces errors. A direct comparison of maps obtained
from samples having different physical characteristics is difficult and inappropriate.

8) Some methods fail to satisfy the elementary property that a grid point and a sample
point should be identically the same if they are coincident. This is particularly true with
methods using polynomial interpolation.

Universal kriging provides an answer which overcomes all of these handicaps at one time.
As the technique of universal kriging is not just an algorithm to generate contour grids but

a branch of the theory of regionalized variables, an optimal estimation is guaranteed provided



the data satisfy a set of hypotheses. The estimation will be optimal regardless of the sample
distribution in the sense that the estimation is unbiased with a minimum estimation variance.
Furthermore, universal kriging is an exact interpolation procedure, provides an estimate of
the error at all points, and takes into account the fact that samples can have a volume.
However, we will not take advantage of the latter property as we will deal exclusively with
point measurements.

The drawbacks of trend surface analysis are equally severe. These include the following
points:

1) A trend is the function resulting from the method of least squares; therefore, it is
only a mathematical abstraction without physical meaning. The drift is defined as the expected
value of the regionalized variable.

2) Trend surface analysis is not optimal. Least squares estimators are linear unbiased
estimators with minimum estimation variance only if the observations are outcomes of spatially
distributed random variables which are uncorrelated, have a common variance, and a mean given
by the fitted expression. However, geologic variables characteristically are intercorrelated.

3) Trend surface analysis does not provide a measure of the error of estimation, as it
is not in itself a statistical estimation method but rather a technique for obtaining a trans-
formation of the data. This transform will in general vary at any point depending on the
distribution of data points.

4) Trend surfaces are very unstable away from control points. There are usually severe
edge effects that must be eliminated by visual inspection. However, there may still be
misleading features in intermediate areas of poor control. This is a problem related to the
lack of error estimation. Drift estimation is more stable in areas with critical control and
the estimation variance can be used as a guide for discarding unreliable results.

5) The polynomial degree is the only parameter which must be selected in trend surface
analysis. The least-squares surface is obtained by fitting a medium- to high-order polynomial
to all sample points. In contrast, Matheron's methods fit a low-order polynomial, taking only
those samples inside a circle many times smaller than the entire study area. The exact size
of the circular neighborhood is not arbitrary, but is determined by a statistical analysis of
the continuity of the data. This additional parameter, the neighborhood size, gives the
drift more power and control over the results. The neighborhood size may be regarded as a type
of filter which keeps the absolute sizes of local structures within certain limits.

6) Trend surface analysis uses the information contained in each separate observation,
but wastes all the implicit information which can be obtained from relationships among sample
points. Drift estimation makes use of these relationships.

7) Although we will deal only with point samples, it should be noted that trend surface
analysis cannot consider the fact the samples may represent volumes of different shapes, sizes,

and orientations. Drift estimation can take such factors into consideration.



1.5 INTRODUCTORY EXAMPLES

We will denote by C the sample space of possible outcomes cy- Cl’ C2,
denote subsets of . Suppose an experiment consists of randomly tossing a coin two times;

C3’ etc., will

then the sample space of possible outcomes is C = {c: ¢ = HH, HT, TH, TT}, where T represents
tails and H heads. A subset C1 would be to obtain a head on the first trial and C2 to obtain
tails.

Because it is tedious to handle the symbology of heads and tails, we will redefine the
experiment in terms of real numbers. Let X1 be a single-valued, real-valued function with
domain the sample space C and codomain the space of real numbers A. X1 takes us from the
sample space C to A. Such a function is called a random variable (Hogg and Craig, 1970).

In our example, 4 could be 4 = {xl Pxy o= 0, 1, 2} and the assignment table for the random

variable could be:

) !
X, (c)) = X (HH) = 0 = x]
X.(c.) = X, (HT) = 1 = x2
1727 7 %1 I |
X,(c.) = X,(TH) = 1 = x°
1430 = 4 R |
X.(c.) = X, (TT) = 2 = x>
1(6g) = X =2=x

This random variable Xl can be used to represent the number of tails occurring in our test
sequence, for example.
Another random variable X, could be used to indicate whether two consecutive tosses were

2
the same.

1}
(=}
I
fel

X,(c,) = X, (cq)

NN N =

Xz(cl) = Xz(c4) =1=x
If we consider Xl’ X2 together, 4 is no longer (x1 Pxy o= 1, 2, 3) but the ordered pairs:
A= {(x,x) 0 (%) = (0,1)(1,0)(2,1))

mentioning only those pairs which are possible events.

If A is a subset of A, we can define the probability of the event A as P(A) = P[(Xl,Xz)e Al.
Consider the subset A = {(xl,xz) : (xl,xz) = (0,1), (2,1)}. To compute P(A) we must consider all
events in C for which the random variables Xl and X2 take values (xl,xz) which are elements of A.
In our example, Xl(cl) = 0 and Xz(cl) = 1; Xl(c4) = 2 and X2(04) = 1. Therefore, P(A) = P(C)

when C = {¢c: ¢ = ¢, or c4}.

1
Suppose the probability function P(ci) assigns a probability 1/4 to each of the four ele-
5 = 1), is 1/4 + 1/4 = 1/2.

In a similar way, P(A) can be computed for each ordered pair (xl,xz) of A:

ments of C. Then P(A), which can also be written as P(X1 =1or 2, X
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(x75%,) ’ 0.1 (1,0 @21

PL(X,X)) = (x],X,)] ' 1/4 1/2 1/4

We now have a complete notation for the probability distribution over each element of A.

In this sense, we may speak of the distribution of the random variables X., X, meaning the

12 72
distribution of probability. The function which determines the distribution f(xl,xz) is called

the probability demsity function. In this instance, the probability density function is:

f(0,1) = £(2,1) = 1/4
£(1,0) =1/2
f(xl,xz) = 0 elsewhere

As another simple example, suppose we collect three samples of soil along an imaginary

line across the ground and measure the soil moisture. The sample space is now C = {c: ¢ = c.,

1

i=1,2,3, ..., 8. If W denotes "wet" and D represents ''dry,'" the eight elements of the
sample space are ¢, = DDD, c, = DDW, c, = DWD, ¢, = DWW, c. = WDD, c_ = WDW, c. = WWD, and C8 =

WWW.

1 2 3 4 5 6 7

To specify the outcomes in terms of a space of real numbers A, we may define three vari-
ables Xi’ i=1, 2, 3, where Xi is the state of the ith sample. The Xi's are single-valued,
real-valued functions defined in the sample space C which takes us from the sample space to a

space of ordered triples according to the following rule:

0 if the ith sample of the jth outcome is dry
X.(c.) =
] 1 if the ith sample of the jth outcome is wet

The following table defines the random variables:

X1 X2 XS
c 0 0 0
<, 0 0 1
g 0 1 0
Cy 0 1 1
Cc 1 0 0
e 1 0 1
<, 1 1 0
Cq 1 1 1

Therefore, the space of ordered triples is:
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A = {(xl’xz’xs) : (xl’xz’xs) = (0’0’0)’ (0’0,1), (0’1’0)’ (O’l’l)’
(1,0,0), (1,0,1), (1,1,0), (1,1,1)}

We may assume P(ci) = 1/8 for each event in (; under such conditions P(c) = 1/8 for any

triple in A. Therefore, the probability density function is:

1/8 Xl’XZ’X = 0,1

3

f(x,,x,,x,) =
1’r2ees 0 elsewhere

So far, the example involving coin flipping is essentially the same as the collection of
soil samples. However, because of oversimplifications, these examples may be far from reality
and the results a mere mathematical game. If the coin is not correctly balanced, for instance,
the probability of heads may be 0.4 instead of 0.5 and predictions based on elemental probabil-
ity laws will be incorrect. When we try to consider refinements like this, we realize our two
examples describe very different phenomena which cannot be handled in the same way, using the
same model. Whereas classical statistics is adequate for complex specifications on coin toss-
ing, it is insufficient to describe moisture, ore valuation, population density, rock porosity,
topography, annual precipitation, or the like. In general, conventional statistical approaches
are inadequate for the description of any variable from a natural phenomenon which has a spatial
distribution. The theory of regionalized variables is a possible answer for such phenomena.
This theory is not a completely new branch of statistics, but rather an extension of conven-

tional statistics, particularly time series analysis.
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CHAPTER 2 -- ASPECTS OF THE REGIONALIZED VARIABLE THEORY
2.1 INTRODUCTION TO THE INTRINSIC THEORY

The theory of regionalized variables is very wide and will not be pursued in all aspects
here, since the application of regionalized variables to map analysis requires only a very
restricted part of the whole theory. Discussions will be confined to those topics absolutely
necessary for this purpose at the simplest level of generalization. Hopefully, this presenta-
tion will be a useful introduction to a theory which has been largely ignored in the English-
language literature.

The theory of regionalized variables has two branches, the transitive methods and the
intrinsic theory (Matheron, 1965). The first is a highly geometrical abstraction without
probabilistic hypotheses and has little practical interest. It will be ignored because it is
not necessary for our purposes. The practical counterpart of these geometrical abstractions
is the intrinsic theory, which is a term for the application of the theory of random variables
to regionalized variables.

The initial objective of the intrinsic theory was to make more reliable estimations of
ore grade, thus improving mine exploitation. In this application, the geometric support is a
volume and complex mathematics are required. In our application, the samples will be point
observations and simplifications of the mathematics are possible. For generality, many pub-
lished discussions of the regionalized variable theory are expressed in terms of the most
complex formulas and simplifications do not appear until the end. Since this is not a general
presentation of the intrinsic theory, I prefer to sacrifice generality at the beginning in
order to gain clarity from the outset. I will intentionally avoid the use of integrals. In
addition, I will introduce the very slight limitation that the number of sample points is
finite, thus avoiding the use of Hilbert spaces.

Consider again the example of soil samples collected at regular intervals along an imagi-
nary line. The regionalized variable was soil moisture; the outcomes were DDD, DDW, DWD, DWW,

WDD, WDW, WWD, and WWW. The probability density function obtained previously was:

1/8 X{sXyXg = 0,1

£(x;,X,,X;) =
1772773 { 0 elsewhere

If the probability density function for a regionalized variable is known, random variates
can be generated. A basic assumption in the intrinsic theory is that a regionalized variable

is a random variate (Matheron, 1969b); that is, the observed values are outcomes following
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some probability density function. To simulate heads and tails in a coin-flipping experiment,
for instance, simply generate random variates according to the uniform distribution f(x) = 1/2,
x = 0,1. Suppose in the example of the three soil samples we actually collect DDD. Then DDD
is a particular realization of the regionalized variable moisture, according to the probability
density function f(xl,xz,x3).

Consider now the example of tossing three coins and computing outcomes as ordered triples.
If we suppose the coins are balanced, we can verify that the probability density is exactly
the same as the one obtained for the example of soil samples. However, if we actually conduct
both experiments, theory and reality will match only for coin flipping because the probability
density function predicted for the soil samples is incorrect. Our initial analysis in the soil
moisture example was an abstraction that was far from reality. Unfortunately, there is no
analytical way to take into consideration all the factors, such as soil composition, tempera-
ture, weather, surrounding flora, etc., which determine the moisture content of a soil sample.
Therefore, a statistical approach is still appropriate, but using the simple model assumed in
the example.

This inability to account for all possible variables is not unusual. If the coin is
biased and we want to improve the probability density function used in the example of coin
tossing, it would be impossible to analyze the moment of inertia of the coin, the weight,
and the countless other variables that might be involved. Instead, we run an experiment and
flip the coin, testing it repeatedly under constant conditions, until the probability of the
outcome stabilizes.

The difficulty of this relative frequency approach with a regionalized variable is that
a repeated experiment cannot be run because each outcome is unique. When the moisture content
of a soil sample is analyzed, the initial state of the sample is destroyed, so at the end of
the assay it is not the same soil sample that was originally collected in the field. There
is no other sample in the world with precisely all of the features of this specific sample.

Any other would have come from a different location, and would have a different shape, weight,
and other characteristics.

As a large number of samples is essential to any statistical inference, we will never be
able to determine the probability density function which rules the occurrence of a regionalized
variable, although theoretically we can suppose there is one. Fortunately, the impossibility
of obtaining the probability density function associated with a regionalized variable is not a
serious limitation, as knowledge of the probability function is unnecessary. Most of the
properties of interest depend only on the structure of the regionalized variable as specified
by its first and second moments. A key assumption is one of some kind of stationarity, which
allows statistical inference. Under this assumption, outcomes of different probability density
functions can be used in common to estimate moments. The assumption is analogous to that of
ergodicity in stochastic processes.

Spatial correlation between samples is a fundamental characteristic of regionalized

variables. Imagine we collect soil samples along a line and note that the first one is dry.
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The occurrence of a second dry sample some distance away is independent of the occurrence of
a dry first sample. This is equivalent to trying to guess if heads or tails are more likely
on the twentieth flip of a coin, given that heads were obtained on the first trial. The
difference between these two situations appears when we examine the second or third sample
along the sequence. In flipping coins, the probability of heads will remain constant regard-
less of position in the sequence, because all outcomes are mutually independent. However, the
probability that a second sample taken one meter away from the first will be dry is very high,
and even higher if the second sample is taken only two centimeters away.

We will now try to generalize the example of soil sampling and afterwards demonstrate
the aim of stationarity. Suppose we collect three soil samples along a line and specify the
location of each sample by the x coordinate of its center of gravity. These will define a
line of points if the samples have the same shape, size, and orientation. We have already
defined three random variables Xl, X2, X3 to specify the moisture content of the respective
samples. If we consider the x coordinate of the sample as a fourth variable we may establish

the following identities:

X1 = Y(xl)
X2 = Y(xz)
X3 = Y(xs)

where X1» Xy, Xg are coordinates of the samples along the line and Y is the random variable
>
moisture. Now, define the random vector Y as:

->
Y = (xl’ Xz, XS) = [Y(xl)’ Y(Xz), Y(Xs)]
The use of vector notation makes it easier to extend the experiment. In general, for k samples,

? will be a random vector of the form:
>
Y= [Y(x)), Y(x), Y(xg), --es Y(x)]

If the geometric field is a farm, we can generalize even further if we suppose that each soil
sample has the same size, shape, and orientation but it may come from any point on the farm
and from any depth within the soil. The location of the random variable is now (xi, i Zi)

instead of X;5 i=1, 2, ..., k. Finally, in n-dimensional space, the random vector Y will be:

V= YED, YED, -es YEY]

where ;i = (xi, xi, cees x?) with xi denoting the component in the jth dimension for the ith
sample.

The last generalization is to redefine the probability density function for a continuous
domain. Then, moisture may be regarded as ranging continuously from zero to 100 percent instead
of being simply 'dry'" or "wet."

To gain insight into the structure of a regionalized variable, we may formulate some

hypotheses. A regionalized variable is stationary if the statistics of the random variables
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Y(;i) and Y(;.) are equal (Mix, 1969). That is, the statistics determined for Y(;) are equal
to those for Y(z + ﬁ) for every h. A regionalized variable with finite moments will be called
stationary to the k order if, for the joint probability density function f(?) of the vector

?, we have:
> > - > - - >
£IY) (x)s Yy(xp)s wves Y (X)) = £[Y (x; + ), Yy(xy + h), oun,
- >
Yk(xk + h)]
> . . > > > . L . . .

for all h and any collection of points (xl, Xos eens xk). This condition of stationarity is
the same constraint used in the study of random processes. Since there are several types of
stationarity, some special terminology has arisen to distinguish these. A regionalized

, ... Ifk

is equal to one, the regionalized variable has first-order stationarity. An interesting case

variable is called strictly stationary if it is stationary for any order k = 1, 2

is when k equals two. Under this circumstance, we say the regionalized variable has stationar-
ity of order two or second-order stationarity. But second-order stationarity implies first-
order stationarity as well. Therefore, it must be true that the probability density function
at location X is the same as the probability density function at location X+ ﬁ, for all

values of K.
£[Y(X)] = £[Y(X + )] for all &

Thus, the first-order density function must be independent of X. Since the mean value is a
function that depends only on the first-order density function, the mean must be independent
of the location x. The mean, or expected value, of X is symbolically represented by E[X].

In general, let X be a random variable having a discrete distribution and let u(X) be a func-
tion of X. The sum

Zux) f(x)
X

is called the expected value of u(X) and denoted by E[u(X)].
E[Y(X)] = E[Y(x + I)] = u

From the definition of second-order stationary regionalized variables, it must also be true
that:

- > - > > > >
f[Yl(xl), Y2(x2)] = f[Yl(x1 + h), Y2(x2 + h)] for all h,

. . . > > . .
which is a function only of Xy = Xq. Now, as the mean is a constant, the covariance depends

only on the second-order density function. That is, the covariance is a function dependent

only on X, - §1, which we will call h.

2

cov(§1,§2) = cov(;()2 - ;1) = cov(ﬁ) = E[Y(;l) Y(;Z)] - uz

In general, for a regionalized variable of stationarity of order k, all the moments of order k

or less are invariant under translation. Second-order stationarity is all that is usually
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required in the intrinsic theory. Stationarity is a mathematical way to introduce the restric-
tion that the regionalized variable must be homogeneous and permits us to make statistical
inferences. By assuming stationarity we can essentially repeat an experiment even though sam-
ples must be collected at different points, as all samples are assumed to be drawn from popula-

tions having the same moments.

Lemma 2.1.1: For a stationary regionalized variable, the covariance has the following properties:

1) cov(0) = lCOV(;Z - ;1)|

2) lim cov(h) = 0

K—)oo
3) cov(0) = var[Y(z)]

4) cov(?2 - 21) = cov&1 - §2)
All these properties follow from the definition of cov(ﬁ) or from elementary statistics.

For second-order stationarity, var[Y(;)] must be finite by the definition of stationarity.
Then cov(0) must be finite. However, many phenomena in nature are subject to unlimited dis-
persion and cannot correctly be described when they are assigned a finite variance. Classic
examples include the variance of gold values in South African gold mines (Matheron, 1967a)
and some multiplicative Markov chains (Bartlett, 1966, p. 74).

To avoid this restriction, usually immaterial, the intrinsic theory assumes what is called

the intrinsic hypothesis instead. Let Z(x,h) be a random variable defined by:
Z(Gh) = Y(X + h) - Y(X)

We will say the regionalized variable satisfies the intrinsic hypothesis if for all h the first
and second moments of the difference Y(; + K) - Y(?) depend only on the distance between the

two points X + h and X and not on their individual locations (Matheron, 1971).
E[Z(,R)] = n(®)
E[{zGR) - m@)}] = 2v(R)

The function Y(K) is the semivariogram or intrinsic function. This function plays a very impor-
tant role in the intrinsic theory and it is not used in any other branch of statistics. There-
fore, the semivariogram is a symbol of the intrinsic theory. Since the intrinsic hypothesis is
slightly more general than second-order stationarity and involves no additional analytical com-
plications, we will usually apply the intrinsic hypothesis although second-order stationarity is
all that is usually required in the application to automatic contouring. However, the principal
reason for retaining the intrinsic function is not a reason at all, but merely sentiment. Tradi-

tion dictates that an intrinsic theory without the intrinsic function simply seems incomplete.
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2.2 THE SEMIVARIOGRAM

The semivariogram occupies a central position in the intrinsic theory. First we will

formally define this function and then we will show some properties that will be useful later.

Definition 2.2.1: Let Y(?) be a function whose differences Y(; + K) - Y(;) have first and

second moments depending only on the distance h between locations x and X + h. The semivario-
gram or intrinsic function is denoted by y(ﬁ) and defined by:

YR = /2 E[{iY&E + h) - YX) - E[YZ + 1) - Y132

The following Lemma illustrates important properties of the intrinsic function.

Lemma 2.2.2: Let Y(K) be the intrinsic function for a first-order stationary regionalized
variable Y(;) which satisfies the intrinsic hypothesis. Then

D y® = y(-h)

2) v() =0

Proof: Because Y(;) is first-order stationary, E[Y(; + K) - Y(;)] = 0. Hence,
D y(®) = Y[X+ ) - X]

E[{YX + B) - Y&

ELYGO) - Y& + D)}

VX - & + W)

Y (-h)

Y& - % = E[YR) - YEI] = 0

i}

2) v(0)
Q.E.D.

The only significant difference between second-order stationarity and the intrinsic
hypothesis is that cov(0) may be infinite. In fact, if cov(0) is finite, any regionalized
variable which is second-order stationary satisfies the intrinsic hypothesis and we can prove

the following theorem.

Theorem 2.2.3: Let Y(?) be a second-order stationary regionalized variable. Then

Y(R) = cov(0) - cov(h)

Proof: As Y(?) is first-order stationary, E[Y(§ + K) - Y(?)] = 0. Hence,

Y(R)

1/2 E[{Y(X + B) - YOOI
1/2 E[{YX + m)}%] + 1/2 E[Y ] - E[YGR + B) YD)
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Because the Tregionalized variable is second-order stationary,
ElY2E + 1)) = E[Y2 ()]
y(®) = EY2®] - n® - ENE + R) Y@ + n°

and the equality follows by the definition of cov(ﬁ) and from Lemma 2.1.1 (3).
Q.E.D.

If cov(0) is finite, the equality above is a simple linear relationship which allows us
to translate any formula from terms of the intrinsic function to covariance and vice versa.
The following Lemma expresses another useful relationship between the intrinsic function

and covariance for a second-order stationary regionalized variable.

Lemma 2.2.4: Let Y(ﬁ) be the intrinsic function and cov(ﬁ) the covariance for a second-order

stationary regionalized variable. Then

lim y(h) = cov(0)

>
h >

Proof: By Theorem 2.2.3,

lim y(h) = cov(0) - lim cov(h)

K—»oo _];-roo
but by Lemma 2.1.1 (2), the last term vanishes and

lim y(h) = cov(0)

T o
Q.E.D.

We will prove one more theorem concerning relationships between the intrinsic function and the

covariance which will be useful in the following section.

. Theorem 2.2.5: Let Y'(ﬁ) be a random function defined as the difference:

Y@ = Y@ - Y@

- > A '
where ug is constant and Y(u) is a first-order stationary random function which satisfies the

>
intrinsic hypothesis. Then, the covariance of Y'(u) is:

cov (V) = Y@ - G) + Y - G - Y@ - V)

Proof: By Definition 2.2.1 and because the mean of Y'(ﬁ) is zero as Y(a) is first-order

stationary,
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Y@ - V) = 1/2 E[HY' @) - Y' ()}
But according to the definition of Y'(ﬁ),
Y@ - V) = /2 EHOY@) - Y@ - YO + Y@

Expanding the square of the expression within the parentheses and taking the expected value of

each term gives
YA - V) = /2 BHYA) - Y@ + 1/2 E[Y@) - Y(ﬁo)}z] - EHY@) - YR Y@ - Y@
By Definition 2.2.1,
Y@ - V) = Y@ - G @ - B - BIY@ - YA ) - Y@

The last term is cov(ﬁ,v) + E[Y'(ﬁ)] E[Y'(3)]. However, the product vanishes because E[Y(z)]
is constant. This implies that E[Y'(g)] is null. Hence, replacing and rearranging the expres-

sion yields:

cov - V) = y(@ - Up) + YT - G - Y@ - V)
Q.E.D.

Theorem 2.2.6: Let Y(?l), Y(zz), e Y(;t) represent t random variables taken at regular
intervals a and let h be equal to pZ. If all these random variables are first-order stationary,
satisfy the intrinsic hypothesis, and have the same semivariogram, the following is an unbiased
estimator of Y(E):

k'+k-p-1

— _ - -> > 2
Y(h) - 2(k_p) Jfkl [Y(Xj * Pa) - Y(XJ)]

for k+ k' -1<tandp=0,1, ..., k-1.

Proof: If y(h) is unbiased, E[Y(h)] must be equal to y(h).

BV [ 1 k'+]z(-p-l Y - Y 2]
= E | 55— X. + pa) - .
Y] = B | 555 T [Y(x; + pa) - Y(x;)]
But 1/2(k-p) is a constant which can be taken out of the expectation. Interchanging summation

and expectation,
k'+k-p-1

1 - > > 2
ATED jfk' E[{Y(xj + pa) - Y(xj)} ]

E[Yy(®)] =

However, as E[Y(;j)] is constant,

E[{Y(X; + pd) - Y(§j)}2] = 2y(pa) = 2y(h)

for j = 1, 2, ..., k-1. Therefore,
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EY(M] = v
Q.E.D.

All terms in the summation have some physical meaning. If all the samples are collected along
a line, which is the only case of practical interest, there is a linear relationship between
the interval length E, the number of samples k, and the interval between consecutive samples:

$=ka-a

The parameter § is very important because the estimated semivariogram is not only a func-
tion of the relationship among samples but also of E. Although the intrinsic function is con-
tinuous, in a sequence of discontinuous samples taken at regular intervals Z, we can calculate
the semivariogram only at the integer multiples of 2 we have called p- Finally, the parameter
k' represents the left-most sample in the neighborhood. When the sample sequence is larger
than §, several samples can be taken as the left-most sample in the interval, provided the
sequence to the right of the kth sample is not shorter than §. The semivariogram’is usually
assumed to be given by the average of all those partial semivariograms of moving origin k'.

The semivariogram has all the structural information needed about a regionalized variable,
including the size of the zone of influence around a sample, the isotropic nature of the vari-
able, and the continuity of the variable through space. We will examine each of these proper-
ties in turn.

1) Zone of influence: The semivariogram provides a precise meaning to the notion of
dependence between samples. Mathematically, the influence zone is the n-dimensional sphere

whose radius is the smallest distance t such that:
N
cov(0) - y(L) <¢

where € is any small number (Fig. 2.2.1). T is called the range of the semivariogram (Matheron,
1963). That part of the semivariogram to the right of the range is referred to as the sZll.

In the estimation of regionalized variables, T divides the samples into two categories.
All samples whose distances to the point to be estimated are less than or equal to T provide
information about the point. All samples outside the neighborhood defined by T are independent
observations with respect to the point to be estimated and may be disregarded because they do
not provide any information about the point.

2) Anisotropy: Anisotropy is revealed by different behavior of the variograms for dif-
ferent directions (Fig. 2.2.2). These differences in the semivariogram are seen mainly in the
slope at the origin, in the range, and in the sill, if any. If the regionalized variable is
isotropic, the intrinsic function depends only on the magnitude r of vector h and not on the
direction h of the vector h. Ifa simple linear transformation of coordinates is sufficient

to achieve isotropy, then we say there is a geometric anisotropy (Fig. 2.2.3).
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Figure 2.2.1--Semivariogram, or graph of
semivariance Y versus distance along
vector h. L is the range beyond which
the difference, €, between semivariance
and variance (shown by dashed line) is

considered negligible.

Y()

cov (0)
Figure 2.2.2--Anisotropic intrinsic func-
tion, in which semivariograms for two
A different vector directions h1 and h2
h] differ in slope, range, and sill.
Y(r)
r
l Figure 2.2.3--Geometric anisotropy of the
Y h2 =Y f‘h] intrinsic function. Semivariograms in
2

vector directions h1 and h2 are different,
but can be made equivalent by a change in

scale.

Y| b,/ 7
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v(h) Y(n)

=y
=,

Y(h) v(i)

=

(k)

=

Figure 2.2.4--Idealized semivariograms. a. Parabolic form near origin. b. Linear form near
origin. e¢. "Nugget effect." d. Semivariogram of independent random variable. e. Transi-

tive type semivariogram.
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If h is an n-dimensional vector, the semivariogram may not be a function of all n coordi-
nates. For instance, in three-dimensional layered media the regionalized variable may be a
function of only the third coordinate, depth. That is, the variable is constant on planes
parallel to the other axes. If this is the case, the semivariogram will be a function only
of the third component of h. This is called zonal anisotropy, resulting from zonation of the
regionalized variable.

3} Continuity: The shape of the semivariogram, and in particular its behavior near the
origin, provides information about the continuity and regularity of the regionalized variable.
Figure 2.2.4a has a parabolic form near the origin. This implies excellent continuity. Y(K)
is twice differentiable in h = 0. Figure 2.2.4b shows linear behavior near the origin. This
implies a moderate continuity. Y(K) is continuous but not twice differentiable.

The fact that y(0) = 0 does not forbid lim Y(K) =C, h > 0. In this situation, the semi-
variogram is discontinuous at the origin because of poor continuity of the regionalized varia-
ble (Fig. 2.2.4c). Discontinuities and sporadic occurrences are characteristic of gold deposits,
leading to the expression ''nugget constant" for the constant C.

In Figure 2.2.4d, the regionalized variable is highly erratic and without discernible
pattern. No sample is related to even its closest neighbor. The regionalized variable is a
pure random variable and the same results will be obtained from the intrinsic theory as from
the classical statistics of independent random variables.

Finally, there is a type called a transitive semivariogram (Fig. 2.2.4e). This kind of
semivariogram is characterized by a finite range; in other words, there is a sill. This semi-
variogram indicates moderate continuity within reduced neighborhoods and pure random behavior

over longer intervals.

2.3 THE DRIFT

In regionalized variable theory or any other approach to spatially distributed variables,
the concept of drift is one of the most important properties of the function. Physically the
drift represents the trend of the function over the geometric field. In this sense, the drift
must represent only the major features, and should present a systematic appearance rather than
representing sporadic details. 'Major' and "sporadic" are terms relative to the working scale.
The same feature which can be regarded as part of the drift at the scale of a county might be
a minor, sporadic detail at the scale of a state and perhaps will even disappear when the scale
of study is a country. Therefore, the drift is not unique. The idea of drift brings to mind
the statistical concept of expected value. As observed values of a regionalized variable are
no more than the realizations of a random variable, it seems reasonable to give the following

definition for drift.
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Definition 2.3.1: Let Z(;) be a regionalized variable. Then, the drift m(?) is by

definition:
> >
m(x) = E[Z(x)]
That is, the drift at a point X is the expected value of the regionalized variable Z at point
X (Huijbregts and Matheron, 1971).

The concept of drift provides a means for splitting the regionalized variable into two

components, the drift as defined above, and the residual Y(;).

Definition 2.3.2: Let Z(§) be a regionalized variable with drift m(;). Then, the residual

Y(z) is:

YX) = 2(X) - n(x)

An important property of the residuals is that they have zero mean, which in turn suggests

that they can be used to calculate a semivariogram according to Theorem 2.2.6.

Lemma 2.3.3: Let Y(;) be the residual from a regionalized variable. Then,

it

E(Y(X)] = 0

Proof: By the definition of residual,

E[YX)] = E[zX) - m(X)] = E[zX)] - E[nX)]

but for a given K, m(?) is not a random variable but a constant. Therefore, the expected value
of the drift is the drift itself and as the first term is again the drift, the difference is

identically zero.
Q.E.D

We will use the drift in two different ways. First, in order to be able to make any
estimate of a regionalized variable, it is necessary to know about its continuity. This
information will be obtained from the semivariogram of the residuals. Therefore, one impor-
tant use of the drift will be to provide residuals for semivariogram analysis. In this
instance we must obtain an analytical expression for the drift which is valid for an entire
neighborhood. The other important use of drift is for map analysis; examination of the smooth
changes or general tendencies of the regionalized variable. This is analogous to the objec-
tives of trend surface analysis, the drawbacks of which have already been mentioned in Section
1.4. Drift estimation, in addition to providing a replacement for the ambiguous trend, is an
optimal approach.

Point estimates are required to contour the drift. This leads to the major objection to
drift calculation, which is the greater complexity involved as compared to trend surface cal-

culations. An optimal estimate of the drift must be obtained for each node of the contouring
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grid. Unless the observations are distributed according to a regular pattern, the estimation
algorithm must be repeated for every point. This requires much more computation than in trend
surface analysis, where the least-squares surface is obtained at once for the entire map.
Different algorithms will be devised for estimation of a point and for estimating the coef-
ficients of an analytical expression which is valid inside a restricted neighborhood. In
both instances, two cases will be present depending on whether the covariance or the semi-
variogram for the residuals is the known measure of continuity for the regionalized variable.

From the fact that the drift varies continuously and smoothly, m(?) can at least locally
be approximated by an analytical expression.

Definition 2.3.4: Given a neighborhood of radius r around X <r,

> > >
the drift at any x, |x-X

0’ Ol

can be defined as

m(x) =
i

™3

aifi X
0
where a; are unknowp coefficients and fi(;) are arbitrary functions of X.

In practice, fl(;) have been restricted to sinusoidal functions or integer powers of X.

The decision about the value of n and the form of the function is arbitrarily made in a first
stage. We may choose in conjunction with other considerations the best combination of func-
tions to represent the drift. However, the problem of estimating the ai's remains. Their
estimation is possible under the following assumptions:

1) The expected value of the regionalized variable exists.

2) Either the covariance or the intrinsic function for the residuals is known. Generically,
we will call them correlograms.

3) There are sufficient samples measured without error and statistically dependent on the
point ;0 where the drift is to be estimated. That is, there are enough samples whose distance
to ;O is shorter than the radius r.

The second assumption is critical because, as we will see later, it is necessary to know
the drift in order to calculate the correlogram. This impasse may be resolved by iteration.

We assume a theoretical correlogram and an expression for the drift. We then evaluate the
coefficients in the expression of the drift. Using this drift and the samples, we then compute
an experimental correlogram for the residuals which must fit the theoretical correlogram for the
residuals. If a fit is not achieved, the process is repeated, redefining either a new expres-
sion for the drift or a new theoretical correlogram, or both. To redefine the theoretical cor-
relogram usually implies redefining the neighborhood radius r. That is, the number of samples
available to determine the coefficients of the drift are either increased or decreased. Hence,
the type of expression used for the drift is not arbitrary. It is determined by data, which we
will always consider to be point observations.

We will next consider the optimal estimation of an analytical expression for the drift when

the covariance exists. We will suppose assumptions 1) and 3) hold and that there is a covariance
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for the residuals of the regionalized variable. In this circumstance, we can obtain an analyti-
. > . . s> .
cal expression m(x) for the drift at a given point Xy That is, we can calculate the unknown

coefficients a; in the expression

nx) = aifi )

0

n o3

i

—)
and m(z) evaluated at X = X will be the drift of the regionalized variable Z(x) at location

§0, I;—§0[ <r. Both the ngmber of coefficients, n, and the functions fi(;) are chosen for
convenience. We will assume that it is possible to draw k punctual samples of the regionalized
variable Z(i) at locations Qj’ j=1, 2, ..., k.

We will define k statistics, one for each a;, which are designated as Ai' The statistic
for each a; will be a linear combination of the k samples inside a circle of radius r around ;0.
Definition 2.3.5: The statistic Ai for a; is by definition:

k.
A, = T M2z, for |X,-x.,| <r i=0,1, ..., n
i j=1 i j j =0

We will say the statistics are optimal if:

E[Ai] = a, for i

[}
o
—

-
.
=

E[(A.—a.)z] is minimum of A}  for i
i1 i

i
o
-
[t
.
-
=]

That is, Ai is an optimal statistic if it is unbiased and minimizes the estimation variance of

Ai with respect to all possible weights Xi.

Definition 2.3.6: Let Ai be a statistic of a; as defined in Definition 2.3.5. The optimal
statistic of m(x) is denoted by M(x) and is defined by:
> n i >
M(x) = Z A.f (x)
. i
i=0
Lemma 2.3.7: M(;) is an unbiased statistic for the drift if the statistics Ai in Definition

2.3.6 are unbiased, namely

EMMX)] = m(X)

Proof: By Definition 2.3.6,

EMGO] = B[A £ (D]

> > > . . . S
for any x, such that |x-x,| <r. Interchanging expectation and summation, as f (x) is not a

0
random variable,

n .
EME)] = £ £ E[A, ]

i=0



But Ai is unbiased. Therefore,

EM()] =
1

i -
fl(x) a.
0 i

[ e =]

and by Definition 2.3.4,

EMEX)] = n(X)
Q.E.D.

The problem in drift estimation is the evaluation of the (n+1)k weights Xi. A solution

will be valid only inside the neighborhood r around 10.
we must test our selection. This is a problem which will be discussed when we consider the

Since the choice of r is arbitrary,

practical application of the theory in Chapter 3.

In order to find the weights Xi, we must consider some further theorems and lemmas.

Definition 2.3.8: We will denote by &§(i,s) a function with the following properties:

0 i#s
§(i,s) =
1 i=s
for i, s =0, 1, ..., n. This function, among other uses, will be helpful in proving the

following theorem.

Theorem 2.3.9: Let Ai be a weight in Definition 2.3.5 for As and let fl(i) be one of the

arbitrary functions in Definition 2.3.4 for m(z). Then, As is unbiased if and only if

x) %) = 8(i,s)

[ ne I

j=1

for all s and i, s and i being the first n+l non-negative integers.

Proof: Let us suppose As is unbiased. According to the Definition 2.3.5 for As’ we have

Since summation and expectation are interchangeable, and xi is a constant, we have by Defini-
tions 2.3.1 and 2.3.4

U e I

E[As] =
J

)\J'
1 S

n ™M=

i >
a.f (x.
, ot o)

As Xi is independent of i, the weights can be introduced in the second summation and we can

reverse summations over j and i. Therefore,
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k . .
] 1>
I A aif (xj)

E[A ] =
S 0 le S

i

[ e =]

We can take a; out of the second summation over j because a; is independent of j. Thus,

E[A] =

k
a. I
i j=

1 j=1

™M s

Mo
0 s J
But according to our hypothesis about As’ it is unbiased. Therefore,
E[As] =a_
Thus,

But this is an equality which is also true individually for each a. Hence,

0 i#s

M=

Moty -
j=1 %

Hence, if As is unbiased,

k
z

)\i fi&j) = 8(i,s)
j=1

for i = 0, 1, ..., n. Because we did not select any particular As’ this argument is also
true for s =0, 1, ..., n. Let

k .
T A R X) = 8(3,s)
. s j
j=1
If we multiply the equality by a;,
k PN
a, ¢ M ') = a, 8(i,s)
i s j i
j=1
for all i, i = 0, 1, ..., n. Therefore, the sum is also an equality:
n k N
T oa, I AMfiR)=a
i=0 ' =1 ° J S

Introducing a; under the second summation sign and interchanging summation order gives:

k n N
r % oa £1x)=a
j=1 i=0 *° J S
Taking Ai out of the second summation,
k . n i
T A oz oaflx)=a
j=1 S jo0 I j s
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But by Definition 2.3.4, the second summation is the drift. Hence,

By De

Hence

for i

prove

or

for i

[ ne Il

j F 31 =
As E[Z(xj)] =a_

j=1

Introducing Ai inside the expectation and interchanging summation and expectation we have:

k .
J > -

E['Z AS Z(xj)] = a,

j=1

finition 2.3.5, this sum is As' Therefore,
E[As] =a_

k TN
z A FL(xL) = 8(d,s)
j=1 %

=0, 1, ..., n, implies that As is an unbiased estimate of as. The two implications
Theorem 2.3.9.

Q.E.D.

Therefore, we can use either the relation

E[As] =a

k..
_zl A; fl(Ij) = §(i,s)
J:

=0, 1, ..., n, to imply that the estimate As is unbiased. We will next calculate the

variance of As which we must minimize. The solution is not straightforward, and some theorems

must

first be proven to achieve this goal.

Lemma 2.3.10: Let Ai, j=1, 2, ..., k, be weights in the statistic As of ag and let

> > > >
cov(xj,xjj) be the covariance for the residuals. Then, for any two points xj and X..,

ji
kK k. ..
a.a =z ¢ A A nGEonE.)
i i’s PR &
j=1 jj=1

Proof: We will call the second member T until we prove it is actually equal to a;a_. Sub-

stituting Definition 2.3.4 for m(;),

k k ... n i n ss
T= 53 % AJi A;J Loaf &) Ioa £U(x)
j=1 jj=1 1i=0 37 ss=0 JJ
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As the weights are independent of ii and a ., We may include them within the last two

summations.
k k n TR n .. N
T=3 I I a; Agf ) I a xJSJ £55(X..)
j=1 jj=1 ii=0 )7 ss=0 JJ
Interchanging summations,
n k ii - n .. N
T= I a. I kif x) T a I A;J £75 (X, .)
ii=0 j=1 37 ss=0 jj=1 J)

k ..
oA, £UR) = 8(1,11)
. i j
j=1
Hence,
n k
T = ..Z a;s §(i,ii) ..Z a . §(s,ss) = a;ag
1i=0 ii=0
Q.E.D.

Lemma 2.3.11: Let Z(?) be a regionalized variable having drift m(?) and let cov(ij,;jj) be

the covariance of the residuals of Z(?). Then,
> - > > > >
E[Z(x.)Z(x.. = cov(x.,x..) + m(x. X. .
[z( J) ( JJ)] ( 3 JJ) ( J)m( JJ)
Proof: By Definition 2.3.2,
- > > -> > >
E[Z2(x.)Z(x..)] = E[{Y(x.) + m(x.)HY(x..) + m(x,.)}
[zC J) ( JJ)] [y ( J) ( J) ( JJ) ( JJ) ]
if we expand the product and take the expectation of each term, we obtain
-> - > > > - - > > >
E[Z(x.)Z(x.. = E[Y(x.)Y(x.. + E m(x. . + E[m(x,)Y(x., + E L)Y (x,
[ (xJ) (x”)] [ (J) (JJ)] [m(XJ) (JJ)] [ (J) (x”)] [m(XJJ) (XJ)]
but the drifts are independent of the probability density function of the regionalized variable
and can be taken out of the expectations.
> > > > > > - > - >
E[Z(x.)Z(x.. = E[Y(x.)Y(x.. + L. X.) + OE[Y (%, . + .L)E[Y (X,
[ (XJ) (XJJ)] [ (XJ) (XJJ)] m(x”)m( J) m(xJ) [ (XJJ)] m(xJJ) [ (XJ)]
By Lemma 2.3.3 the last two terms vanish. The remaining expectation is equal to the covariance

-
of the residuals as the mean of Y(x) is zero. Hence,

E[Z(xj)Z(xjj)] = cov(xj,xjj) + m(xj)m(xjj)

Q@.E.D.
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Theorem 2.3.12: Let Ki be the weights in Definition 2.3.5 for As' Then, if As is unbiased

and there is a covariance for the residuals,

k k . ..
cov(AS,Ai) = I oA AiJ cov(;.,;..)
j=1 jj=1 >

Proof:
cov(AS,Ai) = E[(As-as)(Ai—ai)] = E[ASAi-Asai-Aias+asai]
Instead, we can take the sum of the expectations. As ag and a; are constants,

cov(As,Ai) = E[AsAi] - aiE[AS] - aSE[Ai] *aag

Let us study the terms in the summation separately. By Definition 2.3.5, for As’

k
E[AA,] = E[ T

. K
Mozx)  x
; S j -

A zx. 01
1 jje1 1 i3

As we can introduce terms containing j inside the summation over jj, we have

k k ...
E[AA ] =E[Z T )2 Z(;j)2(§jj)]
j=1 jj=1
Because the expectation of a sum is equal to the sum of the expectations, we can inter-

change summation and expectation. Hence,

kK k...
E[AA] = £ T Al E[Z(§j)2(§jj)]
j=1 jj=1
But from Lemma 2.3.11,
S TPV LIRS SN i35 i me
E[AsAi] = I z AS Ai cov(xj,x..) + Iz I A Ai m(xj)m(x..)
j=1 jj=1 0 5e1 55 )

By Lemma 2.3.10, the second term in the sum is equal to aa,. Therefore,

kK k. ..
E[AA]= = £ A0 covx.,X..) +a
s'i s i 3’753

S %
J=13j=1

S

Let us go back and examine the second and third terms in the expression for cov(AS,Ai). As

As and Ai are unbiased, the second term is equal to

I
©
®

aiE[AS]

and similarly,

I
@

aSE[Ai] =



33

Substituting these last three relationships back into the expression for cov(As,Ai),

kK k. ..
cov(A,A) = I 3 A-; )\ij cov&j,}’..)
j=1 jj=1 Y

&.E.D.

Corollary 2.3.13: Let A; be the weights in Definition 2.3.5 for AS. Then, if the residuals

have a covariance, the variance for As is equal to

k k . ..
var(A) = 2 £ M A cov(x.,X..)
S J7
j=13j=1
Proof: Making s = i in Theorem 2.3.12:
k k . .. o
cov(As,AS) = var(AS) = I T A A;J cov(x.,X..)

j=1 jj=1 7

Q.E.D.

This is a basic relationship which will be used to evaluate all the weights Ai. This also
shows why direct evaluation of the drift is theoretically impossible and it can be found only
by successive approximations. In fact, it is necessary to know the residuals of the regionalized
variable in order to calculate the estimation variance of As’ because the covariance of these
residuals is needed. But in order to obtain the residuals, we must know the drift, and this is
what we are attempting to obtain in the first place. The practical implication of this apparent
impasse will be discussed in Chapter 3. Here we will suppose that we already know the residual
covariance. .

We will now return to the problem of optimal estimation of the drift. We have reduced
the problem to one of finding (n+l)k weights Ai for the statistics As of the coefficients ag
in the analytical drift expression. We will regard a solution as optimal if the AS minimize
the estimation variance, provided the AS are unbiased. This problem is typical of those which
can be solved by Lagrange's method of multipliers (see Appendix A).

Theorem 2.3.9 gives us n+l relationships between the Ai to express the property of the
estimates to be unbiased. Corollary 2.3.13 gives us the expression we must minimize. There-
fore, our auxiliary function u is:

u = ; ; Aj Aij cov(;j,;jj) -2 2 ui
j=1 jj=1 i=0 ° j

s

A .
. {AS f (xj) - 8(i,s)}

The partial derivative of u with respect to A; is:
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k .. > s n
=2 3 AJ cov(x,,x..) - 2 I
SO IS Bl -] i=0

i~
u f (xj)

for j =1, 2, ..., k. For a given s, the system of equations will be the k au/ax; derivatives
set equal to zero, plus the n+l restrictions. The unknowns are the k weights A;, j =1, 2,

k and the n+l Lagrangian multipliers.

. n . .
z xi cov(zl,;j) - T f1(§1) =0
j:l i=0
k . n ..
A ocovx, %) - £ o e@) =0
j=1 [ 2’75 i=0 S 2
k n ..
oAl covX.,x) - ol &y =0
jo1 S 337737 T 0, s i
k . n ..
LA cov(?k,§j) -3 u: fl(ik) =0
j=1 i=0

k.
z A f°(§j) = §(0,s)
j=1

k.

z A fl(ij) = 8(1,s)
j=1

k..

z x; £1(X.) = 8(i,s)
j=1 .
KoL

z A fn(xj) = §(n,s)
j=1

The same system can be expressed more easily in terms of matrices, which can be done by a

series of definitions.

Definition 2.3.14: Let cov(;j,zjj) be the covariance of the residuals and let fl(i) be the

arbitrary functions given in Definition 2.3.4 for m(;). The matrix A is, by definition,
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cov (X, %)) cov(x ) ... covELX) £6) lcH IR & Gp
cov(®, %) cov(®,,%) ... cov(x.,%)  £03%) L&) (X.)
2% 2%z 2% 2 2 2
> > > > > > 0~ 1 n
cov(xjj,xl) cov(xjj,xz) cov(xjj,xk) f (xjj) £ (xjj) f (xjj)
cov (X, %)) vk, e cov(XLE) £0 G £l B e
S 0. 0
A= |26 065 R A 0 0 .0
1> 1> 1>
f (xl) f (xz) f (xk) 0 0 0
i i i
f (xl) f (XZ) f (xk] 0 0 0
n. > > >
%) &,) R e 0 0 .0
. -

Definition 2.3.15: Let Ai be the unknown weights of AS and let u: be Lagrange's multipliers.

The matrix Xs, by definition, is shown below, left.

1 B N
)‘s 0
2
)‘s 0
i
)‘s 0
k
)‘s 0
0
Xs = R Bs = §(0,s)
1
“Hs 8(1,s)
-IJ_: 8(i,s)
n
g 8(n,s)

Definition 2.3.16: The matrix of right-hand parts may be defined as a column of k zeroes

and n+l1 functions §(i,s), as shown above, right.
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Notice that although A is the most complicated matrix, it is independent of the coefficient
AS which we wish to calculate. Matrix A is a function only of the geometry given by the loca-
tion of data points. Therefore, A must be calculated only once for all estimates of As' In
addition, if the samples are regularly distributed the matrix A is independent of the point ;0
where we are calculating the drift and depends only on the pattern of the samples, if we dis-
card ;O near the map boundaries. Matrix BS contains n+k zeroes; element k+s+l is equal to 1.0.
To calculate all of the estimates As’ we must solve the system n+l times; the only change from

one system of equations to the other is the insertion of the unique value 1.0 in matrix Bs'

Algorithm 2.3.17: The following procedure may be used to calculate the statistic M(;):

Step 1) Calculate the coefficients in matrix A. Set s = 0.
Step 2) Calculate the coefficients of Bs' Increase s by 1.
Step 3) Solve the system of equations

AXs = BS

Step 4) With the weights li from XS, calculate As using Definition 2.3.5. If s is less
than n, return to step 2); otherwise, continue.
Step 5) The estimated drift M(X) is
M(X) = A £5()
0 S

o3

s
END
The solution is valid only inside a neighborhood (;0, r). It can be shown (Matheron, 1969a)
that the system always has a unique real solution if and only if the n+l1 functions are linearly

independent. Let us study some properties of AS that will be useful.

Theorem 2.3.18: Let AS be the coefficient in Definition 2.3.5. Then,

i
cov(Ai,As) = us

Proof: By Theorem 2.3.12,

K L
cov(A,A) = I T AL M) cov(X,,X..)
j=1 jj=1 * 3 )

But since each Ai satisfies the equation Bu/aki = 0, where u is the auxiliary function we used

in Lagrange's method of multipliers, we can state that:

.. n R
A cov 1.,§.. = I 11ogld 3,
I AT eovGx ) = B ut £

jj=1 ii
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Therefore,

k . n s e
cov(A.,A) = = Al @ it R
i’s oo LT s j
=1 ii=0
As X] is independent of ii, we can 1ntroduce the term under the second summatlon, interchange
the order of summation, and then remove u 1 from the second summation because u is independent
of j. Hence,
LT k ii >
cov(A,,A) = I ut : AJ.f (%)
i’’’s .. s .
1i=0 j=1
But by Theorem 2.3.9 the second sum is equal to §(i,ii). Consequently,

cov(A;,A) = ts(i,il) =

ii

e =

0

Therefore, the covariance of two coefficients As’ Ai is equal to the multiplier u:.
Q.E.D.

Corollary 2.3.19: Let A_ be the statistics in Definition 2.3.5. Then

_ s
var(As) =

Proof: Let s = i in Theorem 2.3.18. Then

cov(As,As) = var(AS) =

Q.E.D.

Next we will consider optimal estimation of an analytical expression for the drift when
the intrinsic function exists. If the residuals of the regionalized variables are second-
order stationary, the relationship given in Theorem 2.2.3 is true. Then, matrix A may be
expressed in terms of the semivariogram because all terms containing covariances can be re-

placed by
cov(h) = cov(0) - y(h)

Therefore, the system of equations in matrix A holds equally well in terms of the semivariogram.
An important difference arises when the covariance does not exist but the intrinsic hypo-
thesis still holds for residuals of the regionalized variable. In this circumstance, the drift
cannot be estimated as perfectly as in the first case. However, by introducing special restric-
tions, we can devise an estimator for the drift which is the same as the previous one except

. > .. . - . .
for an unknown constant over the interval (xo, r). This is not a serious limitation if the
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objective of calculating the drift is to subtract it from realizations of the regionalized
variable to yield residuals which represent the random component of the regionalized variable.
Because we will not use the residuals themselves but their differences, the unknown shift is
cancelled out and the limitation is unimportant. Knowledge of the constant becomes crucial if
the drift is to be contoured. However, this is a case we will analyze separately as it is not
necessary to know an expression for the drift in an entire neighborhood in order to contour
the drift.

To make drift estimation possible when only the intrinsic function is known, the function
f (x) in the expansion of M(x) is set identically equal to 1.0. The coefficient a. will remain

0
an unknown, allowing us to introduce a new restriction:

nx) =

[ e =]

_ aifl X)
1

Definition 2.3.20: Suppose there is a semivariogram but not necessarily a covariance for the

residuals. Except for a constant error, the following is an analytical expression for the drift
. . >
in the neighborhood (xo, r):

Now we can again define a statistic Bi as the linear combination of realizations of the region-
alized variable.

Definition 2.3.21: We will define Bi as the statistic estimating bi:

o
1]
n ™M=

A Z(x.)
j=1 )
Definition 2.3.22: Let B be a statistic for b as defined in Definition 2.3.21. The statistic
M'(x) for m' (x) is, by def1n1t10n.

In order for B to be an optimal estimator, we requlre that it be unbiased and have minimum
estimation varlance with respect to all possible AJ To achieve this, we will introduce an
additional restriction, not concerned directly w1th the B. 's, but with the weights XJ

Because we have assumed that Z(x) is not necessarlly second-order stationary, any linear
combination of realizations does not necessarily have a finite variance for B However, we
will show var(B ) is finite if the sum of the weights XJ over j is zero. In that case, if ;
is constant, it is also true that the drift coeff1c1ent Bs for Z(x) - Z(xo) and for Z(;) are

the same.

0
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Theorem 2.3.23: Let §J, j=1, 2, ..., k be points used to calculate the estimator B as in
Definition 2.3.21 and let the sum of all the weights AJ be zero. Then, if the re51duals satisfy
the intrinsic hypothesis,

k k
cov(B ,B,) = - I AJ AJJ Y(x —x ;)
s’ i
j=1 jj=1
Proof: By Theorem 2.3.12,
k k
cov(Bs,Bi) = I z AJ AiJ cov(x x )
j=1 jj=1
k J > >
when X A7 = 0 it can be proven that Theorem 2.3.12 also holds if cov(xj,xjj) is no longer the
j=1

covariance of the residuals Y(;j) and Y(;jj) but the covariance of Y(;j) - Y(;O) and Y(;j') -

Y(;O) instead. Therefore, we can replace Cov(;j’;jj) with the relationship proven in Theorem
2.2.5.
> > > > > > > >
cov(x.,X..) = Y(X.-x.) + Y(x..-x.) - Y(X.-X..
(5o%55) = YEED + YGRy5Xg) - Y% )
Note that ;0 is a constant. Therefore,
k k k k k
cov(B ,B.) = £ £ A add Y(x Xy+z T M AJJ Y(X..-X o) - I z A AJJ Y(x -x ;)
s’ s i 0 S j3 S
j=1 jj=1 j=1 jj=1 j=1 jj=1
In the first term, AJ and Y(xJ-xo) can be taken out of the second summation. Analogously,
if we reverse the order of summation in the second term, we can take AJJ and Y(x -xo) out of
the second summation. Therefore,
S k .. kLo L k . k k
MvG-x) = A+ o allyvGxp zoal- 1o AJ AJJ Y(x —x ;)
1 SRR B 3i=1 SR B j=1 jj=1

[ ne B

cov(BS,Bi) = ;

But, by the hypothesis that the sum of the weights is zero,

k .. k .
t A= 1 A=o0
ji=l ji=1
and the first two terms vanish.
> > A . . . -+ > > >
Y(xj-xjj) is the semivariogram for the random variables Y(xj) - Y(xo) and Y(xjj) - Y(x

0)'
However,

- - -> - 2 _ - -> 2
Y[{(Y(XJ) - Y(XO)) - (Y(XJJ) - Y(xo))} ] - Y[{Y(XJ) - Y(ij)} ]
Therefore, Y(§j,§jj) is independent of the third arbitrary point ;O and
k k
cov(B B. ) z AJ XJJ Y(x —x )
s
j= 1 ji=1
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> >
Y(xj-xjj) is the intrinsic function for the residuals at locations 15,;jj.

Q.E.D.

Corollary 2.3.24: Let Z(?) be a regionalized variable whose residuals satisfy the intrinsic

hypothesis. Then the estimate Bs has a finite estimation variance if

k .
A =0
j=1 °®

Proof: If we make s = i in Theorem 2.3.23

k ...
cov(B ,B ) = var(B ) = - % g A add y(?.-i..) for s =1, 2, ..., k
s’’s s s s Jj T3j
j=1 jj=1

Since the residuals verify the intrinsic hypothesis, var(BS) is a finite sum of finite terms.
Q.E.D.

Finding the drift M'(;) is analogous to finding M(?) when the covariance is known. The
main difference is that a slightly different set of restrictions must be considered in the
minimization of the estimation of Bs' Our auxiliary function u is now:

k k R k . n . k ..
u= 3 3 A y(’ij,ijj) +2u) 1 M2z ozl flc?c“j) - 8(i,8)]
j=1 jj=1 = i=1 > j=1

and the partial derivatives become

k .. n ..
Moy oy A yg el 2z W HE
J S 1773 S S J
BAS ji=1 i=1
Therefore, the system that must be solved is:
k n i i
I AL y(x,-x,) +u_+ I u. f(x;)=0
1 s 1
j=1 i=1
15 Moy@ 2y« 3 W&y =0
j=1 S 275 i=1 S 2
k n
0 i .12
oA y&X.x) vl 3ot E) =0
j=1 S 13 S 421 S JJ



k . n .

z A Y(; -§.) + uo + X ul fIC; ) =0
j=1 s k 7j s 4-1 S k
k.

T A =0

j=1 ®

K L

z Ai £1(X;) = 8(1,9)

j=1

k =

z x; £(x;) = 6(2,5)

j=1

K =

z xi £1(3;) = 8(i,s)

j=1

koL

z A (X)) = 8(n,s)

j=1 %

If we define three matrices C, W, and Ds’ we can express the same system of equations in matrix
notation.

Definition 2.3.25: Let fl(;) be any function of ; and let Y(;j_;jj) be the semivariogram of

the residuals. C is a matrix defined as:

1 2 > n, >
y(’il,;l) y(‘il,}’z) y&l}k) 1 f (3?1) £G) £
> > 1. 2> n >
YELED  YGREY e YGyX) 1 FR) £GY .. &)
5> > > > > > 1 > 2+ n.>
Y(xjj’xl) v(xjj,xz) y(xjj,xk) 1 f (xjj) £ (xjj] £ (xjj)
1, 2 > n
y(?k,}’l) y(}’k,i’z) y(Ik,Sc’k) TG £E) . G
c= |1 1 .1 0o 0 0 e 0
e £, eS! 0o 0 0 .0
£ G £ &) fz&k) 0 0 0 0
£&) £ Gy £t &) 0o o 0 0
f"&l) £ (Zz) L. &k) 0o 0 0 0
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Definition 2.3.26: Let Ai be the weight of Bs in Definition 2.3.16 and let u: be Lagrange's

multipliers. The matrix ws is defined (below, left) as:

.
Ay o
2
A 0
iJ
Al o
k
A 0
_ 0
Wo= | ¥ b= |0
1
ug §(1,s)
2
uy 8(2,s)
i N
g 8(i,s)
g 8(n,5)
s n,s
L BRi

Definition 2.3.27: Let 8(i,s) be the function in Definition 2.3.8. The matrix DS (above, right)

is a column of k + 1 zeroes followed by n function 8(i,s). Therefore,

CW_=1D
s s

It can be shown (Matheron, 1969a) that the system always has a unique solution if, and only
if, the n functions fl(;) are linearly independent. That is, there must not be a linear combina-

tion
fl + f2 + + f
% x) o, (x) oo * 0O n(x)

which is zero and in which one of the coefficients is not zero. This is nothing more than an
expression of the well-known fact that the coefficients of a plane cannot be estimated if all
samples are along a line and the coefficients of a second-degree surface cannot be found if all
points are on a conic.

The matrices C and Ds are again quite similar to the matrices A and Bs in the case where
the covariance rather than the semivariogram was used

Setting the elements from k + 2 to k + n + 1 to 1 in matrix DS and solving the system of
equations n times for each new Ds’ we obtain the n statistics Bs; the estimate of the relative
drift M'(X) will be:

M'(X) =
i

nm~Mmas
[

i~
Bif x)
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which is exactly the same as M(z) except for the unknown constant a-
MX) = M'(X) + a,

The estimation is valid inside a neighborhood of radius r.

Algorithm 2.3.28: This is an algorithm to calculate M'(i).

Step 1) Calculate the coefficients in matrix C. Set s = 1.

Step 2) Calculate the coefficients for Ds' Increase s by 1.
Step 3) Solve the system of equations CWS = Ds'
Step 4) With the Ai from Ws’ form the sum
k
B = I

j >
s As Z(xj)

j=1
If s is less than n, go to step 2) and repeat.
Step 5) M'(z) is the sum

n
M'(X) = 3 Bsfs(}’)

s=1

END

We will prove one more theorem and a corollary which we will need later.

Theorem 2.3.29: Let Bs be an optimal estimator of bs. If u: is the Lagrangian multiplier in

the matrix WS in Definition 2.3.26,

s
cov(Bs,Bi) =

Proof: From Theorem 2.3.23,

k ..
J 4] >z
cov(B_,B.) = - % I AL A y(x.-x..)
s’7i 3=1 jj=1 s i 3755
The Ai were chosen to minimize Bu/aki in the calculation of Bs using the Lagrange method of

multipliers. Hence,

A y&xX ) = ‘”2 -t Al
jj=1 * JJ ii=1 J
and
Ky o ko ii di >
cov(B ,B.) = E As Wyt E As z LN f (xj)
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The last term vanishes because uo can be taken out of the summation and then the sum of the
weights is zero. In the first term, as AJ is 1ndependent of ii, we can introduce it under the
summation, interchange summation order and remove u L from the second summation because u is

independent of j. Hence,
n .k j
cov(BS,Bi) = E u. 'E (x )
But, by Theorem 2.3.9, the second sum is equal to §(ii,s). Therefore,

_ i .. _ s
cov(BS,Bi) = §(ii,s) = My

nm™MmBs
-

ii
&.E.D.

Corollary 2.3.30: Let u; be the multiplier defined in the matrix WS in the system of equations
for Bi’ Then,

var(Bi) =

Proof: Making s = i in Theorem 2.3.29,

cov(Bi,Bi) = Var(Bi) =
Q.E.D.

We will now consider optimal estimation of the drift at a point if the covariance exists.
Previously presented analyses to estimate the drift inside a neighborhood are time-consuming, as
a system of equations must be solved for each coefficient. When it is necessary to obtain an
expression valid not only for a point but for a neighborhood, these calculations must be per-
formed. This is the case, for instance, in semivariogram analysis where a unique drift expres-
sion for several observations inside a neighborhood is required in order to find the residuals.
However, generating a grid in order to contour the drift requires only the values of the drift
at points. If attention is restricted to just one point instead of an entire neighborhood it
can be proved that the drift can be calculated by solving only one system of equations regardless
of the number of coefficients involved.

Assume that there is an expected value of the regionalized variable. Assume also that the
covariance for the residuals exists. A minimum number of observations at locations ;j around

-
the point x, where the drift is to be estimated is also required.

0

Definition 2.3.31: Let Z(?) be a regionalized variable whose residuals have a covariance. The

statistics M*(;O) of m*(;o) is defined as a linear combination of samples inside a neighborhood
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of radius r around §O.
M* (%) =

A Z(x.)
o1 373

™M=

1

As M*(;O) is a linear combination of random variables Z(;j), M*(;O) is also a random variable.
The desired estimator should be unbiased and have a minimum estimation variance with
respect to all possible Aj‘ In other words, E[M*(;)] = m(z) and Var[M*(%)—m(?)] is a minimum
with respect to all possible Aj‘ This is a problem of restricted maxima and minima which may
be solved using Lagrange's method of multipliers. But first an expression must be found to
relate the variance to the weights. Analogously, the fact of being unbiased in terms of the

weights must be stated. The following lemma is the first step in this direction.
Lemma 2.3.32: Suppose there is a drift m(;o) which can be represented by

i >
a; f (xo)

m(; ) =
0" o0

1

[ =]

according to Definition 2.3.4., Then, if Aj are the weights in the statistic M*(;O),

n k .
EM*X)] = & I a. A £1(X.)
7 i e 13T
Proof: By Definition 2.3.31
> k -
E[M*(xo)] =E[ & A, Z(x.)]
o1 37

Interchanging expectation and summation and removing the constant Xj from the expectation:

k
Epr (X)) = R A E[Z(x))]

->
However, the expected value in the right hand side of the equation is the drift at xj. Hence,

o

E[M*(IO)] = I

A
J

nmos

i >
a; £ (xj)

1 i=0

But Aj can be replaced in the second summation because it is independent of i. Consequently,
if we interchange summation and reverse the product Aj ai,
k

i >
z a; Aj f (xj)

E[M* (X)) =
0 0 j=1

I ™M3

i

&.E.D.
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Theorem 2.3.33: Let the drift m(;O) be continuous so that there is an analytical expression
m&o) = I a, f'(x
1 1

which represents the drift inside a certain neighborhood. Let

- k -
M*(xo) = I A, Z(x.)
j=1 J ]
then,
k i > i~
L A f(x:))=f (xO) fori=0,1, ..., n
j=1 J J
if and only if E[M* (10)] = ch’o).
Proof: Let
k i~ i >
I A, £ (x) = £(x) fori=0,1, ..., n
j=1 J J 0

The equality still holds if each side of the equation is multiplied by a, . Then, if we add f
all possible values of i

[ e =
o

a. Z
l =

A £1x) =

5 oa, £1(x
o, i

)
1 0

i 1 i

But by Lemma 2.3.32, in the left side of the equation we have
n k i~ >
I L A, f(x.) = E[M*(xo)]
i=0 j=1 J )
and the right side is by Definition 2.3.4 equal to m(;o). Hence,

EM* (x)] = m(X,)

Let us suppose now E[M*(io)] = m(§0). By Lemma 2.3.32
n k .
E[M*&O)} = I I oa ) fR)
i=0 j=1 * J )

and by Definition 2.3.4

Therefore, by the hypothesis,
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n k o
T I a, A fi(x.) -
i%j j

n .
T a. fl&o) =0
i=0 j=1 = 1

i=0
However, a; can be taken out of the summation over j in the left side of the equation. Hence
k

a. I [A £5&) - ££& )] =0
o Y1 J J 0

™3

i
But the only way for the left side to always be zero is if:
k

I fi(i’j) - &

)
j=1 0

The two implications thus prove the theorem.

&.E.D.

Let us prove a Lemma which will be used to introduce the restriction that the estimation

must be a minimum with respect to all possible Aj.

Lemma 2.3.34: Let m(;b) be the drift at §0 and let M*(;O) be the unbiased statistic of m(zo)
defined by
k
M*(KO) = I A Z(X.)
j=1 J J

Then, if there is a covariance cov(ij,ijj) for the residuals,

k k

B0} = £ E A Ay covChi X ,) v nGy1°

j=1jj=1

Proof: By Definition 2.3.31,
> 2 k > k >
E[{M*(x)}°] =E[ £ X, Z(x;) I X.. Z(x:.)]
0 j=1 J J ji=1 JJ ]3]

>
Introducing the term AjZ(xj) within the second summation and interchanging summation and expecta-
tion,

k k

. 2 - -> -
E[{M*(x,)}7] j§1 jjil A Ajj E[Z(xj) Z(xjj)]

By Lemma 2.3.11,

Kk Kk
E[{M*&O)}Z] = I T cov&j,;..) + DDA m&j) m&jj)
j=1 jj=1 I =1 35,1
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By Definition 2.3.4

. 12 k k N k k
E[{M*(xo)} 1= % D) A'Ajj cov(xj,xjj) + I ) ijj'
j=1 jj=1 =1 3j=1 2 3

n~s

a.fr %) I a . f.)
o ¥ I 4i=0 JJ

In the last equation it is possible to separate terms containing j from those containing jj and

reverse the order of summation:

> 2 k k NN n k i n k ii >
E[{M*(xo)} 1= 2 L M. cov(xX.,x..) + X a; I Af(x.) & a;; oA LfT(x.))
je1 jje1 333 A KIS e T N PO SR I ii
By Theorem 2.3.33
k i~ i~
I A (x.) =f (xo)
j=1 J J
Therefore,
> 2 k k > > n i > n ii ~>
E[{M*(xo)} 1= £ L A A, cov(x.,X..) + I aif (xo) b} aiif (xo)
j=1 jj=1 I 3 3737 =0 1i=0

and because the last term is equal to [m(zo)]2 we finally obtain

Kk
E[{M*(}‘O)}z] = I I A cov® LX)+ mGE]?
5o1 3301 3793 37%33

Q.E.D.

This result will be used in the following theorem.

Theorem 2.3.35: Let M*(;O) be an unbiased estimator for m(;O) as in Definition 2.3.31. Then,

if there is a covariance cov(§j,;jj) for the pair of residuals Y(zs), Y(;ﬁj)’

kK Kk
var[M*(Sc*o) - m(}‘o)] = I I A cov(X:,X..)
j=1 jj=1 >

Proof: As E[M*(;O) - m(io)] = 0, the expanded expression for the variance is
var[Mc (X)) - m(X)] = E[ME)}’] + E[m(x))}7] - 2E[M* (X)) m(x)]

>
But as m(xo) is a constant which can be taken out of the expectations and because M*(;O) is an
unbiased estimate of m(;o),

var[M (X)) - m(%,)] = E[{(M* (X)) }°] + InZ1° - 2nXp) mx,)

But from Lemma 2.3.34
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k k
var[M*(; ) - m(zo)] = I DD N S cov(;.,;..)

Q.E.D.

Theorems 2.3.33 and 2.3.35 will now be used to find the optimal values of the weights Aj
for the drift estimation. The solution must be such that the A.'s minimize the estimation
variance for the drift, provided the estimator M*(;O) is unbiased. This conditional optimiza-
tion can be satisfied using Lagrange's method of multipliers. The auxiliary function for this

case is

k k n k . .
U= I I A\ cov(X.,X..) - 2 % Wz i c I fl(IO)]
j=1 J]'—"l JJJ J7 3] i=0 j=1 J J
The partial derivatives with respect to the unknowns are:

ou A X.,X 2%
Blj L. cov(xj,xjj) -2

k
=2 I
=1 i=0

A ER(X)
.. i j
JJ

for j =1, 2, ..., k. The solution for the k unknowns Kj plus the additional n + 1 unknown

multipliers My will come from the following system of equations.

k n .

X Xj cov(;1,§j) -z uifl(;l) =0
j=1 i=0

k n .

z Aj cov(zz,;j) - I uiflﬁ;z) =0
j=1 i=0

k - > n i~

I A, cov(X..,x,) - L u.f(x..)=0
j=1 3 33’73 so0 L 9]
DA coviE - 3 wEG - o0
i j cov(xk,xj) - I wE(x) =

k

5O, fo(ij) - fo(;o)

j=1 7

k

Do £RX) = £

-1 J j 0

.
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k . .
T AL fl&j) x

£ (x

K .
oA £ (X)) )
j=1 j i 0

Definition 2.3.36: Let Aj be the unknown weights of M*(ij) in Definition 2.3.31 and let My be

Lagrange's multipliers. The matrix X (below, left) is by definition

~ B
)\1 0
)\2 0
AL 0
J)
A 0
X = k B =
0 -
Ho £7(x0)
1.~
H £
i >
g £(xy)
n >
Yh £ (XO)

The matrix containing the right-hand terms will be defined as B.

Definition 2.3.37: Let fl(io) be the functions in Definition 2.3.4. The matrix B (above, right)

is by definition a column with k zeroes and the functions fl(; A definition of the coefficient

0)‘
matrix is not required as it is the same as in Definition 2.3.14. Therefore, the system of equa-

tions, written as a matrix product, is
AX = B

The covariances in matrix A must not be negative. The system of equations has a unique solution
if and only if the n + 1 functions fl(I) are linearly independent (Matheron, 1969b). That is,
there cannot be a linear combination

0> 1> n > _
% f x) + o f7x) + ...+ o f'x) =0
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except in the trivial case where all coefficients o, are zero.
The relationships resulting from the derivatives of the system of equations allows a much

simpler expression for the variance.

Theorem 2.3.38: Let X and B be the matrices in Definitions 2.3.36 and 2.3.37. Then, the esti-

mation variance for the drift is
var[M* (%)) - m(%,)] = X'B

where XT means the transpose of X.

Proof: As any Aj satisfies the equation au/axj = 0, where u is the arbitrary function used to

derive the system of equations AX = B, then

k n .
T oA, cov(X.,Xx..) = I My £1x.)
JJ=1 J7 1] i=0 J
Therefore, from Theorem 2.3.35
- > k n i >
var[M*(x.)) - m(x,)] = Z A. I u, £ (x.)
0 0 . j .- i j
j=1 i=0

As Aj is independent of i, the term can be introduced under the second summation. Interchanging
the order of summation and removing My from the second summation because Hy is independent of j

yields

var[Ms (%) - nx)1 = I u; A fi(IJ.)

k
z
0 j=

[ e =1

i 1

But from Theorem 2.3.33,

var[M*(;o) - m(;o)] =
i

[ =]

i >
My f(x

)
0 0

However, by Definition 2.3.36 and 2.3.37,

var[M* (%)) - n(Xy)] = X'B

Q.E.D.
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The following algorithm summarizes the practical results obtained for the drift estimation

at one point when the covariance for the residuals is known.

Algorithm 2.3.39: This is an algorithm to calculate the drift and its estimation variance at a

point X where the covariance for the residuals exists and the drift can be represented by terms
of fi(z) inside a restricted neighborhood.

Step 1) Calculate the terms in matrix A in Definition 2.3.14.

Step 2) Calculate the terms in matrix B in Definition 2.3.37.

Step 3) Solve the linear system of equations
AX = B

Step 4) Using the resulting weights A in matrix X in Definition 2.3.36, calculate the
estimate M*(x ) for the drlft as:

™M=

M (;‘)o) =

A Z(X.)
je1 30

1
;j being the locations of k samples within the interval (?0, r) where the approxi-
mation in Definition 2.3.4 is valid.

Step 5) Perform the product XTB. The result is the estimation variance for the drift.
END

Drift estimation at a point where there is only an intrinsic function leads to certain com-
plications. If the covariance does not exist, the drift is no longer a slowly varying function,
but is the realization of a random function. If further complications and assumptions are intro-
duced, the drift can be estimated. However, in physical problems, the drift is meaningful only
if it changes smoothly. Therefore, as this complication has no practical consequences and is
extremely complex, we will omit this analysis. Refer to Matheron (1971) who solves this partic-
ular situation by using "weighting functions." He finds that only the estimation variance depends
on these weighting functions and that the drift estimate does not.

Point estimation of the drift for second-order stationary residuals with a linear semivario-
gram is a special case of the analysis summarized as Algorithm 2.3.39. Let us start by defining

three matrices:

Definition 2.3.40: Let l;J—XJ | be the distance between two locations xJ and xJJ and let £ (X)

be the function of x in Definition 2.3.4. Denote by G the matrix defined as:
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> > > > 1 - 2 > n, -
0 |xl—x2] |x1-xk! 1 £0x)) £9(x)) £1(x))
> > > > 1, 2 > n -
[x,-x, | 0 [%,-x, | 1 £(x,) £7(x,) £0x,)
> > > > > 1> 2
R U BT T N C TG Y £0g5)
> > > 0 1 f1 > fz > ) f“(" )
[, | [x-x, &) O K
G = 1 1 1 0o 0 0 0
1> 1 >
f (xl) £ (x2) f (xk) 0 [ 0 0
2 > 2 > 2 >
£0x)) £0x,) £9(x,) o o0 0 0
i i i
£1(x)) £ (x)) £(x) o 0 0 0
n n_ > n >
£1(x)) £1(x,) £1(x) 0o 0 0 0

Definition 2.3.41: Let )\j and Hy be unknowns and let w be the slope of a linear semivariogram

for the residuals. Then T is the column defined below, left

)\1 7 cov(0)/w
>‘2 cov(0)/w
Ajj cov(0)/w
/\k cov(0)/w
Ho/w 1
T= qQ-

ny/u e

W,y/w £23)

u /o e

_H"MJ _fﬂ(;) _

Definition 2.3.42: Let cov(0) be the covariance for the residuals at lag zero, that is, the

variance of the residuals. Then, if fl(;) is a function of x as in Definition 2.3.4, Q (above

right) is defined as a column containing k terms cov(0)/w, then a 1, and finally the terms £t (;).
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If the residuals are second-order stationary, Theorem 2.2.3 holds. In addition, assume
the intrinsic function is a line through the origin with slope w. Then,
> > > >
cov(x.,x..) = cov(0) - w|x.-x.. for x x < 2r
(x5 %; ) (0) - wlx;-x,,| 1%;.%;5]

where r is the radius of the neighborhood in which m(?) can be represented by an analytical

expression as in Definition 2.3.4.
Replacing this particular expression for the covariance in the system of equations in
Algorithm 2.3.39 and dividing the first k equations by w yields a new system of equations,

GT = Q

>
if it is assumed that fo(x) = 1 in Definition 2.3.4. Let us examine some properties of the
new system of equations.

Theorem 2.3.43: Let the residuals be second-order stationary with a linear semivariogram.
Then if f°(§) = 1 in Definition 2.3.4, the statistic M*(i) for the drift is independent of

the variance of the residuals cov(0) and the semivariogram slope w.

Proof: By Definition 2.3.31, the value of M*(z) depends only on the observations considered
and on the weights Aj. But the weights come from the solution of the equation GT = Q. This
system of equations contains the terms cov(0) and w only on the right side of the first k

equations. If any two k different pairs of equations are subtracted among the first k equa-
tions, we will have an equlvalent system of equations which will yield weights X , and there-

fore, an estimator M*(x) independent of the parameters cov(0) and w.
Q.E.D.

By Theorem 2.3.3, the residuals have mean zero, therefore

ns 2 >
DoY)

j=1

1

cov(0) = 1

. . > . .
where ns is the number of observations and Y(xj) are the residuals. However, a more practical

approach is to obtain an estimate of cov(0) from the semivariogram. This can be done if we can
determine the sill, as we have seen that

Y(h) = cov(0)

for those values of y(h) larger than the range.

Theorem 2.3.44: Let the residuals be second-order stationary with a linear semivariogram.
Then if fo(;) = 1 in Definition 2.3.4, the estimation variance for the drift at ;0 depends on

the residual variance cov(0) and the semivariogram slope w in the following way::

var[M* (X)) - mp)] = uT'Q
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Proof: If we return to the application of Lagrange's method of multipliers which yielded the
system of equations AX = B in Algorithm 2.3.39, there is an auxiliary function u which contains
the covariance. The expression for the covariance may be replaced with the equivalent equation

for a linear semivariogram when the residuals are second-order stationary, giving:

k k . n k . .
u= I I A [cov(0) - w]|X,-X..]]-2¢2 W [ A £ (X - fl(io)]
j=1 jj=1 J 33 3733 i=0 j=1 9 j
0 > k
But £ (x) = 1 implies I Aj = 1. Therefore, as cov(0) is a constant:
j=
k k > > n k i - i~
u=-cov(0) - X T oA AL wx.-x..] - 22 u LA £1(x) - £(x)]
j=1 jj=1 i il =0 j=1 ) j

But u must be minimal with respect to any Aj. Therefore

k n
du > >
a—)\—. = - 2 z A wlx.—xjjl - 2.§

i~
o1 33 j W £1(xg) =0
J ji=1 i=0

Theorem 2.3.35 can be written in terms of the semivariogram as

k k
var[M*(;O) - m(;o)] = I z Ajk.. [cov(0) - w]X,-X,.|]
j=1 jj=1 JJ J 1)
k 0.~
But as I Aj = 1 because f (x) = 1, from the relationship shown above for au/axj
j=1
- - k n i >
var[M*(x,) - m(x,)] = cov(0) + £ A, I u. f(x.) =0
0 0 j=1 J =0 * 3

As Xj is independent of i, the weights can be introduced under the second summation. The
order of summation can be interchanged and ui taken from the second summation because ui is

independent of j. Consequently,

n .
var[M*(x.) - m(x.)] = cov(0) + I w. I A. £r(X.)
0 0 . i .- ] J
i=0 j=1
but from Theorem 2.3.33,
M* (X X )] = 0) + Izl e
var(r () - nG = cov(0) + I wy £ Gy

Finally, from Definitions 2.3.41 and 2.3.42,
> > T
var[M*(xO) - m(xo)] = wlT Q

Q.E.D
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Therefore, even though the point estimate for the drift M*(;O) does not depend on either
the variance for the residuals or on the slope of the semivariogram, the estimation variance
for the point estimate for drift depends on both. The independence of M*(;O) from the slope
of the semivariogram does not mean the drift estimate is independent of the semivariogram.
The semivariogram has another parameter, the neighborhood size, which ultimately determines

the observations to be used in the estimation.

Algorithm 2.3.45: This is an algorithm for point estimation of the drift and its estimation

variance when the residuals are second-order stationary; the semivariogram in any direction is
a line through the origin with slope w for an interval of length 2r; and fo(;) =1 as in
Definition 2.3.4. To estimate the drift and its estimation variance at location ;O’ do the
following steps:
Step 1) Calculate the terms for matrix G in Definition 2.3.40, using all those samples
whose location ;j is inside a circle of radius r and center ;O'
Step 2) If the value of the estimation variance for the drift is needed, introduce the
value of cov(0) in Q in Definition 2.3.42. Otherwise set cov(0) equal to zero
in Q.
Step 3) Solve the linear system of equations
GT = Q

where T is the matrix in Definition 2.3.41.

Step 4) Use the weights Aj in T to calculate the statistic

n M=

M* (;o) =

A Z(x.)
jep 30

1
using all the samples described in step 2). M(;O) is the point estimate for the
drift at location IO.

Step 5) If the estimation variance is not needed or cov(0) = 0 in step 2), then terminate.

. T . . . .
Otherwise, compute the product wWT Q. The result is the estimation variance for

the difference between the real and the estimated drift.

END

2.4 UNIVERSAL KRIGING

The prediction of values of a regionalized variable in areas of sparse control has pre-
occupied researchers for many years. There are almost as many proposed solutions as there are
persons interested in the problem. Solutions differ widely because, although the problem is
universal, practical considerations in different fields of application lead to emphasis on

different approaches. In addition, the backgrounds of the researchers are very diverse.
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Despite the great amount of effort and money spent on the problem of estimation of region-
alized variables, we have already pointed out in section 1.4 that all methods have at least one
serious defect. Universal kriging, in contrast, is the best linear unbiased method to estimate
a regionalized variable. The only objection to universal kriging is that its optimality is ac-
companied by great mathematical complexity which usually (but not necessarily) means higher
implementation and execution costs. The only apparent reason to reject the use of universal
kriging is to save money. This may or may not be a critical consideration, depending on the
reliability required in the estimations. If high reliability is not essential, universal krig-
ing is probably not the best method from a point of view that considers not only the characteris-
tics of the algorithm but also its operational cost. However, there is no reason to reject the
use of universal kriging in a study requiring high precision and accuracy.

The theoretical advantages of universal kriging have been substantiated through statisti-
cal tests using different types of data (Walden, 1972). According to Walden, "the Kriging
algorithm consistently gives the highest surface correlations and the lowest surface error
measures of any method...."

The problem we will solve using universal kriging will be the optimal interpolation or
extrapolation of the value of the regionalized variable Z at location x. It is probably worth-
while to say that universal kriging and the numerical results are, or course, quite different
from the estimation of the drift of Z at location x. Most of the alternative methods to kriging
as an estimation procedure in automatic contouring are a form of trend surface applied to reduced
neighborhoods. A trend surface is a least squares regression on geographic coordinates. The
resulting trend surface polynomials do not have a physical meaning. They are neither drift nor
an estimated surface for the regionalized variable. They are simply surfaces which minimize the
squared difference between the control values and the values defined by a polynomial expansion
of a particular degree. Unless the polynomial equation contains n - 1 terms, where n is the
number of control points, surfaces fitted by polynomial interpolation procedures are not exact
because they fail to coincide with the sample values at control points. However, it is well
known that the perfect fit obtained by such a large number of terms is fallacious. Increasing
the degree of the polynomial equation leads to tremendous and meaningless fluctuations in the
surface between control points (Matheron, 1967b).

Unlike other estimation procedures, universal kriging does not yield an analytical function
which can be evaluated within an interval x.. Universal kriging produces an estimate which is

0

a number, the most probable value for the regionalized variable at X Unless the samples have

been collected on a regular pattern, the estimation procedure must bg repeated as many times as
there are points to be estimated. We will discuss later economizations allowed by regular samp-
ling patterns.

We will study two different cases, depending on whether the covariance of the residuals or
the semivariogram of the residuals are known. In both, we will assume we have sufficient samples

. . . - - . > 3
measured without error and inside a neighborhood of radius r around the point X. to be estimated,

0
2r being less than or equal to the semivariogram range. We will also assume that the samples are
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point observations and that the estimated value has an associated point geometric support. A
greater gemeralization for this application is not necessary, as we will see in Chapter 3.
This restricted, although sufficient, subset of kriging is far easier to understand than the
more general formulations that are usually presented (Matheron, 1969a; Journel, 1969).

We will now consider universal kriging when the covariance of the residuals is known.

Definition 2.4.1: Let Z(;) be a non-stationary regionalized variable whose residuals at the

. . > > . s > > .
control points have a covariance cov(x,y). We define the statistic Z*(x) of Z(x) as a linear

>
combination of the samples inside a neighborhood of radius r around X.

As Z*(;) is a linear combination of random variables Z(ij), Z*(z) is also a random variable.

Optimization of the statistic Z*(;) will be performed by imposing the constraints

E[z*(io) - Z(Io)] =0

E[{Z*(;O) - Z(;O)}z] is a minimum with respect to Aj'

These restrictions imply that the difference Z*(?O) - Z(;O) is unbiased and the variance of this

difference is a minimum. In an attempt to calculate the k unknown weights, we must prove several

theorems and lemmas.

Lemma 2.4.2: Let

m(;) =
i

[ e =]
o

i~
a; £ (x)

be the expression for the drift of the regionalized variable at §0. Then, if Xj are the weights
in the statistic Z*(;),

K )
T a.A. Fr(X.
;A £

E[2* (Xy)] = L
J:

[ e =]

i
Proof: By Definition 2.4.1,

k -
E[z*(%,)] = E[jzlkj 2(x;)]

But we can interchange expectation and summation and remove the constant Aj from the expectation:

e

E[2* (%] = jzl A E[Z(x;)]

. . . >
However, this expected value is the drift at xj. Hence,
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N k n .
E[Z*(xo)] = X A, Z a; £ (x.)

But Aj can be placed in the second summation because it is independent of i. Therefore, if we

interchange summation and reverse the product Xjai,
k i
z aixj f (xj)

E[Z*(Sc’o) =
0 j=1

i

Hm~Ms

Q.E.D.

Theorem 2.4.3: Let E[Z(?O)] be the drift at ;O' Let the analytical expression for the drift
at ;0 be:

n .
> _ i >
m(xo) = .Z a; f (xO)
i=0
and let
k
25 (Xg) = I A Z(x.)
j=1 )
Then,
K i > i~
L A, f(x)=f(x,) for i =0, 1, , N
j=1 3 j 0

if and only if E[2*(K) - Z2(Xp)] = 0.

Proof: Let us suppose E[Z*(?O) - Z(;O)]

L]

0. By Lemma 2.4.2,
n k .
LT oal, £ (x.)

i=0 j=1 *J J

E[Z*(X,)]

We may then interchange summation order and take a; out of the second summation. By hypothesis,
> >
E[2* (xg)] = E[Z(x)]
Hence, from Lemma 2.4.2 and Definitions 2.3.1 and 2.3.4,

k .
i
a; .Z Aj f (xj) =

i -
a, £1(X)
0o =1 i=0 * 0

=]
IS =]

i 0

Therefore,

K , .
I A, fl&j) = fl&o) for i =0, 1, ..., n
j=1
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if E[z*('io) - z&o)] = 0.

Let

1 (%

k .
A fl(_fj) o) fori=o0,1,...,n
j=1

In this case,

k
a. I

i >
i A )

a, £'(x,) fori=0,1, ..., n
1 i 0

Hence, the sum of all these terms can be set equal to:

k
ai )
0 j=

M3

AP = X a, £
i 1 .
Let us examine each term in the equality. On the left side of the equation, by Lemma 2.4.2,

k.
a, I A, £(X,) = E[2*(X)]
o *j=1 7 J 0

I~

i

On the right side of the initial equation, by Definition 2.3.4,

n .
i > >
iio a, f (xo) = E[Z(xo)]
Therefore,
> >
E[Z*(xy)] = E[Z(X,)]
or
> >
E[Z*(xo) - Z(xo)] =0
Hence,
lz(: rOELE) = 3
Pl B D
implies

E[Z*(;O) - z&o)] =0

The two implications prove Theorem 2.4.3.

&.E.D.
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Theorem 2.4.3 is an important result because it provides an alternative expression of the
constraint that the difference Z*(?O) and Z(?O) must be unbiased. Our interest will be in ob-
taining an expression for the estimation variance. The following three lemmas are intermediate
steps in accomplishing this goal.

Lemma 2.4.4: Let m(; be the drift at x. and let Z*(;O) be the statistic of Z(;O) defined by

0) 0

n ™M=

Z*(xo) = Aj Z(xj)

j=1
. . . > > .
Then, if there is a covariance cov(x,y) for the residuals,

Kk
E[{z*(io)}z] = I A cov(E,X )+ mGEp)
jo1 jyop 093 37553

Proof: By Definition 2.4.1,
> 2 k -> k
E[{z*(x)}"] = E[ £ lj Z(Xj)

>
AL Z(x.)]
j=1 jj=1 73 1]

Introducing the term Xj 2(§j) within the second summation and interchanging summation and

expectation,
> 2 k k > >
E[{Z*(xo)} ]= ¢ z ijjj E[Z(xj) Z(xjj)]
j=1 jj=1
By Lemma 2.3.11,
kK k kK k
E[{z*(io)}z] = % L AA. cov(X,X.) + T3 A m&j) n(x..)
521 jje1 393 377537 7 520 e i3
By Definition 2.3.4,
k k k k n . n ..
E[{z*(io)}z] = I I AdLceowv@LX ) v I E AL Ioa £R&) a £E)
5o1 jye1 3793 3’7 521 3321 3733 420 i’ iico i3

In the last equation it is possible to separate terms containing j from those containing jj
and reverse the order of summation:
k k

E[{Z*(X )] = T T M. cov(X.,X..) +
0 j=1 jj=1 1 33 3’733 i

N ~Ms
o
nmom=x

0 "3

By Theorem 2.4.3,

k . .
oA R (X)) = £ (X,
j=1 J J
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Therefore,
> 12 ko k > > n i > n ii >
E[{Z*(xo)} 1= 2 I A, cov(X.,x..) + I a; f (xo) z a f (xo)
j=1 jj=1 I PR A Y 1i=0
Because the last term is equal to [m(xo)]z, we finally obtain
k k
EM{Z*RF] = T I M. cov(R,X..) + [m(x)]°
0 j=1 jj=1 j 17733 0

Q.E.D.

Lemma 2.4.5: Let m(?o) be the drift at location x. and let cov(z,;) be the covariance of the

0
residuals. Then,

> 2 > > > 2
E[{Z(xo)} ] = cov(xo,xo) + [m(xo)]
Proof: From Definition 2.3.2,
E[{ZG Y] = E[YR) + nGy)}]
0 0 0
Expanding and taking the expectation of each term yields:
- 2 _ -> -> > > -> 2
E[{Z(xo)} 1 = E[Y(xy) Y(xp)] + 2E[Y(x)) m(x))] + E[{m(xo)} ]
But m(zo) is a constant and can be taken out of the expectations:
-> 2 _ - - > > 2 >
E[{Z(xo)} ] - E[Y(xo) Y(xo)] * zm(xo) E[Y(xo)] +m (XO)

Because the mean of the residuals is zero, the second term vanishes. For the same reason,

the first term is the covariance of the residuals.
+2_ > > > .2
E[{Z(xo)} 1 = cov(xo,xo) + [m(xO)]
Q.E.D.

Lemma 2.4.6: Let m(;o) be the drift of Z(KO) at x

in Definition 2.4.1. Then,

0 Let Z*(;O) be the statistic for Z(zo) as

-

E[z*&o) z&o)] = I

> > > 2
; Aj cov(xj,xo) + [m(xo)]

1
Proof: Replacing Z*(;O) by its definition and Z(;O) in terms of Definition 2.3.2 yields:

> > k
E[2*(x,) Z(x)] = E[{ T

M ZEZ)Y WGy + mGxp)H]

1
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Expanding and replacing Z(iﬁ) by Definition 2.3.2,

k
E[z*&o) z&o)] = E[ 2

; Aj {Y(xj) Y(x,) + m(x) Y(xj) + m(xj) Y(xy) + m(xg) m(xj)}]

1

We can interchange expectation and summation and take the expectation of each term, remembering

>
that Aj and m(x) are constants and can be removed from the expectations:

e

E[2* (X)) Z(x)] = £ A, {E[Y(X.) Y(X)] + m(xy) E[Y(X.)] + m(X,) E[YR)] + m(x.) m@x.)}
0 0 j=1 j j 0 0 j J 0 0 j
Since the mean of the residuals is zero, the second and third terms vanish, and for the same

reason,

E[Y(Sc’j) Y(x)] = cov(;j,;

0 0

Expanding the sum gives:
k k

> > > >
E[Z*(xo) Z(xo)] = _§ Xj cov(xj,xo) + .§

A m(;o) m(;.)
j=1 j=1 J J

In the last term, m(?o) can be taken out of the summation and m(;j) can be replaced by Defini-
tion 2.3.4:

k

k n .
E[Z*(;O) z&o)] = I A, cov(?.,?o) +m(§0) I A Ioa £1(x.)
j=1 ) j=1 7 i=0 ]
By Theorem 2.4.3,
s fx) = £33
iz 1 ] 0
Therefore,
> -> k > > - n i >
E[Z*(x.) Z(x,)] = I A, cov(X,,x,) + m(x,) I a. f (x,)
0 0 jo1 3 j*%o (A 0

But the last summation is equal to m(zo). Hence,
k

E[z*&o) z&o)] = jfl g cov(ZJ.,KO) + [1m(?20)]2

&.E.D.

Now we will prove a theorem which is basic to the calculation of the unknown weights Aj used in

the statistic Z* &0) )
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Theorem 2.4.7: Let Z*(;O) be a statistic for Z(;O) as in Definition 2.4.1. Then, if there is
. > > . >
a covariance cov(xj,xjj) for the residuals Y(xj),
> > > > k > > k k > >
var[Z*(x,) - Z(x,)] = cov(x,,X,) - 2 T A. cov(X.,x,) + I I A\, cov(x.,X..)
0 0 0’70 j=1 Jj j’>"0 j=1 jj=1 3’733

Proof: As E[Z*(;O) - Z(;O)] is zero, if we expand the square in E[{Z*(;O) - Z(;O)}z] and take
the expected value of each term,

var[z* (X)) - 2] = E[{z*(i*o)}z] . E[{Z(XO)}Z] - 2E[2* (K 2(Ry)]

Replacing appropriate terms from Lemmas 2.4.4, 2.4.5, and 2.4.6,

k k
T _ > - > > > 2 > > > 2
var[Z (xo) Z(xo)] j§1 ijl A.ij cov(xj,xjj) + [m(xo)] + cov(xo,xo) + [m(xo)]
k > > -> 2
-2 A, cov(x.,x,) - 2[m(x.)]
. J j’>70 0
j=1
Therefore,
> > > > k > > k k > >
var[Z*(x,) - Z(x,)] = cov(x,,Xx.) - 2 & A, cov(x.,x.) + I L ALA.. cov(X.,X..)
0 0 0’70 o j’"o e 3’733
j=1 J=1 jji=1
Q.E.D.

The optimal estimator Z*(;) will be comprised of those Aj which minimize the expression in
Theorem 2.4.7, provided the restriction on Theorem 2.4.3 holds. We can satisfy this conditional
optimization using Lagrange's multiplier method. The auxiliary function for this case is:

k k k
u = cov(io,go) - 212 Aj cov(zj,;o) + I L ALAL. cov(;j,;..)
j=1 j=1 jj=1 2
n k i .
-25 w [T A (X)) - fl(xo)]
i=0 ' oj=1 J )

The partial derivatives with respect to each of the unknowns are:

k n .
g—;\‘ =2 cov(X;,Xg) + 2 I A cov®@ X)) - 2w £
i ] jje1 33 37733 120 j
for j =1, 2, ..., k. Therefore, the solution for the kkj and n + 1 s unknowns will come from

the following system of equations.
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k n .
> > i > _ > >

_§ Aj cov(xl,xj) - Wy f (xl) = cov(xl,xo)
j=1 i=0

1; X (-> > Izl fi(-> _ > >
LAy cov XZ’Xj) -2 My x2) = cov(xz,xo)
j=1 i=0

; A cov(; X ) ; u fi(; ) co (; X )

. LX) - . ..) = cov(X..,
j=1 ) 3771 401 Ji 33770
; A cov(§ X ) ; M fi(; ) cov(§ X )
. s . - . = F)

j=1 j k> j=0 k k’70
k

oA 2% = fo&o)

j=1 J J

k

5oA £ (R = fl(ic’o)

j=1 J ]

k i > i -

L A £ (x.)=f (xo)
j=1 J ]

k n - ->

oA fN(x) = £ (X))
j=1 3 J 0

This system of equations is easier to handle using matrix notation. Although we need three
matrices, we do not need to define all of them because the square coefficient matrix is the

same as that used in Algorithm 2.3.17.
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Definition 2.4.8: Below (left) we denote by U the matrix containing the unknowns:

o) L]
by cov(xl,xn)
> >

A cov(xz,x

o

> -> )
)‘jj CDV(ij‘XO

> >
Ak cov(xk,xo)
U= E =
0~
-U, f (xo)
1>
'“1 f (xo)
i
’”i f (xo)
- £ (%)
n
L _

Definition 2.4.9: Let cov(?,;) be the covariance for the residuals and let fl(z) be arbitrary

functions of x. We define the matrix E above right. We have now reduced the universal kriging

problem to one of the solution of a system of simultaneous linear equations:
AU = E

Recall that A is not a function of the location of the k samples. Although E is a function of

s s . > > . . .
the individual points Xj and x., it can be proved that the solution U to the system of equations

O’
remains the same under a change of coordinates. In other words, the same weighting coefficients

0
simplification if the data are collected on a regular pattern. It is not necessary to solve

result if all points ;j and X, are translated the same amount h. This can result in a powerful
the system of equations for every point to be estimated, but only as many times as there are
different patterns of points. This is a significant saving, because it may be necessary to
solve the system only three or four times for most of the map area, plus some special cases
near the map boundaries.

Instead of repeatedly solving a system of equations, it is necessary to recognize spatial
patterns; universal kriging in this form is no more expensive than the most simplified estima-
tion algorithm for regionalized variables. If data are collected on a regular pattern, there
is no reason to consider any algorithm other than kriging. However, if points are irregularly
spaced, the system of equations must be solved as many times as there are points to be estimated.
Computer time and expense then become significant factors in the selection of a contouring

algorithm.
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Algorithm 2.4.10: This is an algorithm to perform universal kriging when the covariance for

the residuals is known.
Step 1) Calculate terms for matrix A in Definition 2.3.14.
Step 2) Calculate terms for matrix E in Definition 2.4.9.
Step 3) Solve the system of equations AU = E.
Step 4) Using the Aj weights in U in Definition 2.4.8, Z*(;O) is found by
N k
G

A Z(X.)
o1 37

1

> . L . >
where xj are locations of k samples-inside the influence zone around Xy

END

The following theorem is not of immediate necessity, but will be useful later.

Theorem 2.4.11: Let Z*(KO) be the optimal estimator for a regionalized variable at location
->
o
residuals. Then,

. . . . > > .
using universal kriging and let that regionalized variable have a covariance cov(x,y) for its

var[Z*(?O) - Z(;O)] = COV(;O’;O) - UTE

Proof: As the Aj‘s satisfy the Lagrangian constraint,

k n .
T A.. COV(X.,X..) = cov(?.,?o) £ T £1(x.)
jj=1 JJ J71] J i=0 J
for j =1, 2, ..., k. We can multiply both sides of this equation by Aj and sum the k equalities.
Then,
k k > > k > > k n i >
z I AA.. cov(X.,X..) = I A, cov(x.,xo) + A My f(x.)
j=1 jj=1 11 37 1] j=1 ] J j=1 J 4=0 J

In the last term, we can introduce Aj under the second summation, reverse the order of the sum-

mation and take ui out of the second summation:

k k k n k .
T % AL, cov(X.,X..) = T A, cov(i.,?o) + I ou IA £ (x.)
j=1 JJ=1 JJ J° ] j=l J ] i=0 j=1 ] J
But, by Theorem 2.4.3 the second summation in the final term is fl(zo). Therefore,
k k n .
T 0% M. cov(X.,X..) = T AL cov&.,'io) + I fl(§0)
j=1 jj=1 3 33 3’733 j=1 3 j =0
From this equality and Theorem 2.4.7, we finally obtain:
Z*—) Z-> _ > > 12( 2 > > + Izl fi(-)
var( (xo) - (xo)] = cov(xo,xo) - o 3 cov(xj,xo) o My xo)
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which, by the definition of the matrices U and E is:

var[2*(Xy) - Z(R)] = cov(Fy,Xy) - U'E

Q.E.D.

Next we will examine universal kriging with a known intrinsic function for the residuals.
If the regionalized variable has second-order stationary residuals, we can replace the covariance
by the semivariogram in matrices A and E in Algorithm 2.4.10 and universal kriging is then ex-
pressed in terms of the semivariogram. This approach is actually different only if we know just
the semivariogram and not the covariance of the residuals. The solution for universal kriging
when we have a semivariogram but not necessarily a covariance for the residuals is fairly straight-

forward, considering previous results, as will be shown now.

Definition 2.4.12: Let Z(z) be a non-stationary regionalized variable whose residuals satisfy

>
the intrinsic hypothesis. The statistic for Zz(x) is, by definition,

n o=

z;(i) =

A Z(X.)
jop 37

1
We say Zg(zo) is optimal if:

E[Z}(Xy) - Z(?ZO)] =0

* —> - -) . . .
var[ZS(xo) Z(xo)] is a minimum of Aj.

Remember that when we did not know the covariance for the residuals, we assumed in the previous

section that the drift would be:

n .
> B i~
m(xO) =a;+ iEl bi f (xo)

a, being an unknown and fo(io) =1, for all x This change introduces a slight modification

0
in Theorem 2.4.3 which we will present in the following form:

Theorem 2.4.13: Let the analytical expression for the drift at X, be:

™3

> _ i >
m(xo) =a;+ 2o bi f (xo)

Then
}\. f. X. = f. X

0) fori=1, 2, ..., n
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if and only if E[Z;(zo) - Z(zo)] is zero.

Proof: Let E[Z;(;O) - Z(;O)] = 0. If we rewrite m(zo) as

> i
m(xo) = I bi f (xO)
i=0
, 0 - _ ->
£ (xo) =1 for all X

The proof follows exactly that given for the first part of Theorem 2.4.3, except at the end,

where for i = 0 we have:

k
fori=0,1, 2, ..., n

ro 93 = 23
jo1 j 0

i > _ >
f (xO) =1 for all X

Therefore, the case of i = 0 reduces to:

The second part of this proof also follows identically to the second part of Theorem 2.4.3,

except for the final step. Therefore,

K . .

T oA ') = f'(x) fori=1,2, ..., n
21 j 0

j

k

I oA =1

j=1 )

if and only if E[Z;(xo) - Z(x)] is zero.
Q.E.D.

This slight modification to Theorem 2.4.3 allows some other modifications in the follow-

ing theorem, which is equivalent to Theorem 2.4.7.

Theorem 2.4.14: Let Z(?) be a random variable which is not second-order stationary but whose

residuals verify the intrinsic hypothesis. Then, if_Zlkj = 1 and the statistic Z;(;O) is un-
biased, var[2*(x,) - 2(Xy)] is finite. =

Proof: As Z;(;O) is unbiased,

var[z8(X) - 2] = B[{ZE (X)) - 2G5}
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Replacing the statistic by Definition 2.4.1,

> > k -+ > k > >
var[Z¥(x)) - Z(xy)] = E[{jzlxj Z(xj) - Z(xo)}{jjilxjj Z(xjj) - Z(xo)}]
k >
However, as X A. =1 and X, is constant,
j=1
- > k - - k
var[Z}¥(x,) - Z(xy)] = E[ Z r{zx.) - Z(xo)} pX A {Z(x ) - Z(x )}]
=17 jj=1’

Introducing Aj[Z(;j) - Z(;O)] within the second summation and interchanging summation and

expectation,

k k

x> _ - - - _ > -> _ ->
var[Z¥(x) - Z(x,)] '51 _Elxjxjj E[{Z(xj) Z(xo)}{Z(xjj) Z(xo)}]
i=1 jj
By Lemma 2.3.11,
kK k kK k
var[z;(i*o)-z&o)] = L E cov&j,ijj) + I DA [m(?ZJ.)
j=1 jj=1 j=1 jj=1

- nx)] &) - mix]

As cov(;j,;jj) is the covariance of the residual differences Y(X&) - Y(;O) and Y(;jj) - Y(;O)’
by Theorem 2.2.5,

-> > > > > -> > >
cov(x,,x..) = y(x.-x,) + yv(x..-x.) - yv(x.-X..
( 3 JJ) v( ; o) *Y( T o) - Y( ; JJ)
In the second term of the right side of the equality, by Definition 2.3.4, we have
k k

> - _ n i > i >
J§1>\J [m(xJ) - m(xo)] = JEI)‘J iz() ai[f (XJ) - f (XO)]

Introducing Aj in the second summation and reversing summation order,

k n k k
zx[m(x)-m(xo)]-Za[zx f(x)-zx f(x)]
j=1 i=0 * j=1 7 =1 )

By the restriction over X and because f (x ) 15 independent of j, the second summation over j

in the right side of the equat1on reduces to f (xo) According to Theorem 2.4.3,

k . .
A X = f‘(Sc*O)
je1 9 j
Therefore,

k
jilkj[m(xj) - m(xo)] =
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Analogously,
k - ->
jzl Ajj[m(xjj) - m(xo)] =0
Consequently, the expression for the variance reduces to:
k k

- > > > > >
var[Z;(xo) - Z(xo)] = JZl JJZl AJA [Y(xj-xo) + y(xjj-xo)

- Y(xj_xjj)]

Separating the right side of the equation,

K k K k
var[z;&o) -z&o)] = I A, y&j-;o) DAt A YR ‘;o) Y
=1 7 =t gy ) =1 7
kK k
SRR S y&J.-?J.J.)
j=1 jj=1

But, because the sum of the weights is one, the first two terms on the right side of the equa-

tion are equal. Therefore,
var[Z*(x..) Z(SZ)]-ZIZ(:AY(SZ X.) 12( lgxx X.-X..)
5% R T B (6 E I BB

which is a linear combination of finite terms. Therefore, var[Z;(?O) - Z(;o)] is finite.
Q.E.D.

Once more, using Theorem 2.4.13 and Theorem 2.4.14, we can find the optimal weights A

in Z*(xo) using Lagrange's method of multipliers. The auxiliary function is now:

k k k k

u=235 A, y(i.-i*o) - I AL Y(X.-X..) - 2ug( . A-1)
je1 303 je1 jje1 3733 TS je1 3
n k . .
-23 wl[Z A 1 - f1(§0)]
i=1 ' j=1 J J

and we have to minimize all the partial derivatives with respect to all the Aj’

k n .
> > i~
= 2y(x -x ) -2 I ALov(x,-x:.) -2u, -2 u, f(x.)
3 0 jje1 I3 T3 I 0 1 j
for j =1, 2, ..., k. The k derivatives plus the n+l restrictions provide a system of equa-

tions to compute the k Aj's, the n ui’s and Mo



k n .
-> i - _ >

le AJ Y(xl—xj) + UO + 121 H f (xl) - Y(XI xo)
K n i
le >\J Y(xz-x ) + uO + 151 M f (XZ) = Y(xz"xo)
]z(:x (X..-X.) + +; X)) = YKL -X)
jo1 3" Pot o M 337 7 79557
k n .

> > i > _ > _->
j§=:1 )‘j Y(Xk-xj) * U ¥ izl s f (Xk) = Y(Xk X
K
T oA =1
j=1 )
K
TA fl(_fj) - fl&o)
j=1 7
k
IRy fz&j) - f2(§€0)
j=1
k i > i >
z Xj f"x.) =f (xo)
j=1
k n > n >
DERWE S CHIEE AN
jo1 j

This system of equations is easier to handle, visualize, and solve by computers if we

define two matrices and use Definition 2.3.25.
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Definition 2.4.15: V will be by definition the matrix (below, left) containing the unknowns:

—  —

> >
>‘1 Y(xl-xo)
> >
}\2 Y(xz—xo)
- >
A.. ..
jj ¥ (%55%o)
> >
M ¥ (%%,
V = uo F = 1
1 -
] £ (xp)
2 -
M, £7(x)
i >
Hi £7(x()
n. —>
Hn £7(xp)

Definition 2.4.16: Let Y(;-;) be the semivariogram of the residuals and let fl(;) be an arbi-

trary function of X. Then, we define the matrix F as above (right). Therefore, the universal

kriging problem is to calculate the vector V in the system of equations:
CV = F

The terms containing (;j-;jj) depend only on the relative locations of samples and the location

->
of the point to be estimated, x It can be proved that the entire system is invariant under

0
-5
a translation in h. This represents a considerable saving in computation for regular patterns

of data.

Algorithm 2.4.17: This is an algorithm to perform universal kriging when the semivariogram for

residuals is known.
Step 1) Calculate the terms for matrix C in Definition 2.3.25.
Step 2) Calculate the terms for matrix F in Definition 2.4.16.

Step 3) Solve the linear system of equations
Cv = F

Step 4) Using the Aj weights in V in Definition 2.4.15, the kriged value Z;(;O) is:
o k
25(xg) = I

A Z(X.)
je1 37

1
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;j being the locations of k samples within an interval (§0,r).
END

Notice that although we used a drift containing an unknown constant, the universal krig-
ing solution is exact as it does not depend on ag- The universal kriging system of equations
is consistent with the condition stated in the introduction that there can be only one sample
per location. If more than one observation was provided for a sample point, it would result
in a singular matrix in Algorithm 2.4.17. Universal kriging is not a smoothing or averaging
procedure: if there is more than one observation taken at any sample point, a unique value
must be selected in advance of kriging.

As we will see in the following theorem, universal kriging not only provides an estima-
tion of the regionalized variable at ;O’ as any other method does, but also is able to provide

a confidence interval.

Theorem 2.4.18: The estimation variance associated with the random variable Z;(;O) - Z(?O)

given by the solution of the system of equations CV = F is:

var(z3 X)) - 2(Xp)] = vIE

Proof: From Lagrange's method,

k

> > > >
T .. X.-X..) = X.-X - -
s 3 Y(J JJ) Y(J o) = o

™M=

1 >
My £1(x.)
i=1 J
for j =1, 2, ..., k. The k equalities are still true if we multiply them by kj. The sum of
the resulting terms in the first member must be equal to the sum of the 3k resulting terms on
the right-hand side of the equalities. Hence,

k k

B L M YR =
i=1 jj=1 J

K
AL y&.&o) - I A -
R je1 3 j

AL
1 i

™M=
n ™M=
[ g =1

LR,
e x5)

and Mg can be taken out of the summation. In the preceding term, A. can be introduced under

the second summation, the summation can be reversed, and Wy taken out of the second summation.

Hence,
kK Kk k K n k .
>
IO AL YRX.) = DA y(Ka-x) - M. I A, - I ow TOA £Y(R)
j=1 jj=1 J 3] J 1] j=1 J 170 0j=1 J i=1 1j=1 J J
and by Theorem 2.4.13,
]>§ gxx y&}c’)-lz(xycii)u Izlufi(Sc’)
j=13j=1 333 37330 453 T30 0 ;41 0
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From this equality and Theorem 2.4.14,

k

k n
T _ > - > > _ > > i >
Var[Zs(xo) Z(xo)] 2.§ Aj y(xj xo) .§ A Y(xj xo) Uyt '? u. £ (xo)
j=1 j=1 i=1
Therefore,
[Z*(x) - Z(x -lgx GoZ) v s T ow £
var S(XO) - (xo)] - j=1 j Y xj -XO) UO i Ui (xo)

But this is exactly the product VTF. Hence,
*+_—> =T
var[Zs(xO) Z(xo)] V'F
Q.E.D.

Although it is generally true that estimation by universal kriging is expensive on a point by
point basis, we obtain with no additional effort an estimation of the reliability of the estimates.
Although estimating the reliability of an interpolated value is an important matter, no other meth-
od provides such a measure of reliability.

Error estimation allows us to estimate confidence intervals about the surface. The statistic
Z;(;O) plus the confidence interval are really the final results of the whole universal kriging
procedure. This agrees with the definition of a regionalized variable, which is considered to be
a continuous random variable. A single, specific value has a probability of occurrence of zero,
and hence is meaningless. When considering continuous random variables, only intervals have a
finite probability of occurrence.

Universal kriging is an exact interpolation procedure. Interpolation is the process of
finding a value of a function among known values by a procedure other than that which created the
known values themselves. Interpolation is exact if the procedure reproduces the known values at
the control points. The following theorem proves that universal kriging is an exact interpola-

tion procedure.

Theorem 2.4.19: Universal kriging is an exact interpolation procedure.

Proof: By Theorem 2.4.13,

LA fi&’j) - fi(;o) fori=1, 2, ..., n.

j=1

> >
If any xjj = Xg» then:
i i~ i i
Xl f (xl) + xz f (xz) L (ij—l) f (xjj) + ... F Ak f (xk) =0

for i =1, 2, ..., n. The only way to satisfy this equality for any fl(;j), k and n is to have:



Therefore, if X, = ;..,
0 i

Z*(x

n M=

0) = Aj Z(xj) = Z(xjj)

j=1

Therefore, universal kriging is an exact interpolation procedure.
Q.E.D.

This theorem expresses another advantage of universal kriging over other regionalized
variable estimation procedures used in automatic contouring. Commonly used techniques which
employ least-squares polynomial surface fitting over a reduced neighborhood are not exact
interpolation procedures and incorrect estimates are obtained even at the control points. How-
ever, as no one uses interpolation procedures to estimate points already known, this seems to
have gone largely unnoticed. However, when a point is later estimated, the tendency is to con-
sider the estimation error free, the best possible, and forget that it is impossible for this
estimate to be optimal if even the estimations at control points are incorrect. According to
the most elementary considerations of statistical inference, away from control points the esti-
mation should be even worse, on the average. The problem is especially serious as none of these
arbitrary interpolation procedures provides an assessment of the possible error.

Universal kriging may be performed assuming a linear semivariogram. When the intrinsic

function for the residuals of a regionalized variable is a linear expression, as
Y(X;-X..) = @|X,-X.. | for |X,-x..| <or
J 0N I 1 J ]3]
Algorithm 2.4.17 can be rewritten in terms of coefficient matrices which are simpler than C and

F. In addition, we will show that the statistic Z;(;O) is independent of the slope w. Let us
define matrix H.

Definition 2.4.20: Let |x X | be the distance between location xJ and the location xO to be
estimated. Let the f(x) s be the arbitrary function in Definition 2.3.20. Then, the column H
is given by the definition at the top of the following page. The system of equations in this

particular instance becomes:
GT = H

with G and T being the matrices in Definitions 2.3.40 and 2.3.41 respectively. The independence

of Z;(io) and w can be easily shown.



£l (%,)

£ (x,)
£ x o)
M (x

o)

Theorem 2.4.21: Let the semivariogram of the residual of a regionalized variable be a linear

function of the distance between two points.
Y(X,-X..) = @|X,-X,,| for |X,.-X..| <o2r
3] J 1 J 3

Then the statistic Z;(?O) is independent of the slope w.

Proof: The solution of the system of equations in Algorithm 2.4.17 does not change if we re-
place the linear expression for the semivariogram and divide the first k equations by w. It

can be easily shown that the new system of equations is:
GT = H

G and T are the matrices in Definitions 2.3.40 and 2.3.41 respectively. But both G and H depend
only on the distances between points and the arbitrary functions fl(z). Therefore, the unknown
weights Aj are independent of w. Because the samples 2(25) are also independent of w, then the

statistic Z;(;O) is also independent of w.
Q.E.D.

The fact that the statistic Z;(;O) is independent of the slope of the semivariogram of
the residuals does not mean that it is independent of the semivariogram. The semivariogram
has a second parameter, which defines a radius r for the neighborhood where the linear approxi-

mation of the semivariogram holds. The neighborhood (zo,r).determines the samples Z(;j),
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j =1, 2, ..., k, which can be used by the statistic Z;(;O). Therefore, Zz(;o) depends on the

semivariogram of the residuals through the radius r.

Theorem 2.4.22: Let the semivariogram for the residuals of a regionalized variable be a linear

expression with slope w. Then the estimation variance is directly proportional to the slope of

the semivariogram for the residuals.

Proof: From Theorem 2.4.18,

var[2X ) - 2] = Vg

But, as the semivariogram is linear, from Definitions 2.4.15, 2.4.16, 2.3.41, and 2.4.20,
vIF = @r'H
Therefore,
e _ > =—T
var[Zs(xo) Z(xo)] wT H
Hence, the estimation variance is directly proportional to the slope of the semivariogram of

the residuals.
Q.E.D.

Algorithm 2.4.23 is a particular case of Algorithm 2.4.17 in which the semivariogram of
the residuals is linear. The new algorithm is based on the two preceding theorems and is a

fundamental result for the next chapter.

Algorithm 2.4.23: This is an algorithm to perform universal kriging and to evaluate the esti-

mation variance when the semivariogram is a linear function in an interval of length 2r.
Step 1) Calculate the terms for matrix G in Definition 2.3.40, using all those samples
whose locations ;j are not farther than r from the location ;0 where we want
to estimate the regionalized variable.
Step 2) Calculate the terms for matrix H in Definition 2.4.20, using the same samples as
in Step 1).

Step 3) Solve the linear system of equations
GT = H
T is the matrix in Definition 2.3.41.
Step 4) With the weights Aj in T, calculate the statistic

k
-> ->
Z;(xo) = E Aj Z(x.)

using all the samples whose locations are inside the neighborhood (zo,r).

> >
Z;(xo) is the universal kriging estimation of the surface at location X
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Step 5) Compute the product BTTH. The result is the estimation variance for the probable
difference between the real and the estimated values of the surface at point ;0'

END

The point estimate and the estimation variance together provide a way of defining an inter-
val around Z;(;O) which can be assigned a specified probability of containing the true value
-
Z(x

polated points from which maps of both the estimated surface and the probable error may be con-

0). These two terms, Z;(;O) and BTTH, are the end results of kriging, as they provide inter-

structed.

2.5 THE SEMIVARIOGRAM OF THE ESTIMATED RESIDUALS
By Definition 2.3.2, a residual is the difference between the regionalized variable and
the drift:
YX) = 2(X) - m(X)

In practice we cannot know the actual drift, but only the statistics M(;) or M'(?). Conse-

quently, we never know the residuals, only the estimated residuals.

Definition 2.5.1: Let Z(;) be a regionalized variable and let its estimated drift be M(?).

Then, by definition, the estimated residual R(i) is:
RK) = 2(X) - M()

as Z(?) and M(;) are random variables, R(;) is a random variable.

Lemma 2.5.2: Let R(?) be the estimated residual in Definition 2.5.1. Then,

E[R(X)] = 0

Proof: From Definition 2.5.1,

ER®)] = EZR) - MZ)]
Taking the expectation of each term,

B[R] = E[Z(R)] - EM(X)]

From Lemma 2.3.7, the right side of the equality is zero because both terms are equal.

Q.E.D.
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In this section we will show the relationship existing between the semivariogram of the
residuals and the semivariogram of the estimated residuals. First, we must demonstrate some

basic lemmas.

Lemma 2.5.3: Let Z(?) be a regionalized variable with drift m(?) and residuals which verify

the intrinsic hypothesis. Then, if Y(ﬁ) is the semivariogram of the residuals,

E[{zGR) - 20] = 2y@) + (mh) - n@®)12

Proof: By Definition 2.3.2,
E[{zG+R) - 2(0)17] = BE[{YG#R) + mGeR) - YA - mGO ]

Collecting the residuals and the drifts, expanding the square and taking the expected value of

each term yields:
E[{Z(+h) - 2(017] = E[YGR) - YOI + ElnG+R) - n(D) 2]
+ 2B[{Y(x+h) - YE} InGx+h) - mX)}]

As the residuals satisfy the intrinsic hypothesis and have a zero mean, as shown by Lemma 2.3.3,
then:

E[{YGR) - Y] = 2y

Because the drift is not a random variable, it can be taken out of the expectation. Then, the

last term vanishes, by Lemma 2.3.3. Therefore,

E[{ZG+R) - 2(0)}%) = 2vy@®) + mG+) - n(®)12

Lemma 2.5.4: Let M(?) be the statistic for the drift according to Definition 2.3.6. Let u;
be the Lagrangian multiplier in Definition 2.3.26. Then, if both X and x+h are inside the

same neighborhood (;,r),

n n . . .
E[MGR) - MGV = T 3 (e GeR) - £ RIEERD - £®] - mGD) - nid)?
i=1 s=1

Proof: Since M(?) and M'(;) are equal except for a constant, the difference M(;+K) - M(z) is

exactly equal to M'(;+K) - M'(;). From Definition 2.3.22,

n . n
E[MGHR) - MGOY'] = B[{ 2 B, £ G+F) - = B, £}
i=1 s=1
Expanding the square and taking the expected value of each term yields:

n . . n n . n
E[MG+R) - MOOY?] = B[ = B, £G+h) T B, £5GeR)] - 28[ 2 B, £ eh) I B, ££3))
i=1 s=1 i=1 s=1

. n
B. £1(x) I B £5(X)]
1 S
1 s=1
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All terms fl(z) can be taken out of the expected values. So, for example,

n . n n n .
E[ Z B, SO B, £®]1= 1 I & £5() E[B.,B ]
i=1 s=1 i=1 s=1 s

But, by Theorem 2.3.29,

n . n n n . .
E[T B. ££(X) £ B_£5®] = I £& £X @ + b.b)
. 1 S . S 1S
i=1 s=1 i=1 s=1

Performing the same operation on the other two terms in E[{M(;+ﬁ) + M(;)}Z] produces:

n . . . .
5 (u; + bibs)[fl (x+h) £5(x+h) - 21 (x+h) £5 (%) + £ X)) £ X))

n
E[MG+R) - ME)Y?] = =
=1 s=1

i
Expressing the sum of the fl(;) as a product:

n . .
I+ b )[EGR) - £ RIEGHR) - £ (0]

n
E[MGR) - ME)}?] = =
=] s=1

i
. i
Separating bibs from us,

n n . . .
E[MG+R) - MY = & = WL (RR) - £ @I GR) - £ X))

i=1l s=1
n i > > i > n S > > s >
+ I [b, £ (x+th) =b. £7(x)] Z [b_ £f7(x+h) - b_ £ (x)]
. i i s s
i=1 s=1
But
IZ]b 1) = nX - a
i=1 0
Therefore,

n n . . .
ELMGHR) - M@ = = 2 WGl - F @ISR - £®0] + mGR - 0601
i=1 s=1

Q.E.D.

Lemma 2.5.5: Let the analytical expression for the drift m(z) be given by Definition 2.3.4.
Let the estimator AS of the coefficient ag be:

k.
with & A = 0.
. S
j=1
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Then, if ;0 is constant and |K| is smaller than r in Definition 2.3.4,

n k .
G - nE1GR) - ()] = = [£GR) - £E] I A ) - n&] nE&)

s=1 j=1
Proof: From Definition 2.3.4,
n
MG - nZHImMGH) - m®)] = & - nGPl I [a; £6&+H) - a, £ @]
s=1
However, by Theorem 2.3.9,
> > > > > > > n > > > n k i 1>
[m(x) - m(x,)][m(x+h) - m(x)] = [m(x) - m(x,)] I [fs(x+h) - fs(x)] T oa, » A fl(x.)
0 077 oo1 i=0 ' j=1 ° J

The term a; can be introduced within the summation over j, the summation order can be reversed

for i and j, and ké can be taken out of the summation over i:

n k .
M) - nEPIMER) - n(@®] = &) - nEpl = [FGH) - £0] 1 A 1

a, £1x.)
s=1 j=1 i=0 J

5 > > .
But the summation over i is equal to m(xj). Therefore, introducing m(x) - m(xo) into the sum-

mation over j:

n > > > k
[£5(x+h) - £2(%)]

n(x) - mxNImG+R) - m()] =
i=1 j=1

N &) - nGpl n,)

Q.E.D.

Lemma 2.5.6: Let M(;) be the estimator of the drift of the non-stationary regionalized variable
Z(;). Then,

E[{zG+R) - 2 HMGR) - M) = E[MGHR) - MO
Proof: Consider the identity
E[{z(x+h) - ZGOHMGRR) - MGDM = E[{Z(R) - 2GR - 2(R) + Z(X)HMGHR) - MGOY]

> . s
where X is a constant. Expanding the expression on the right side of the equality and splitting
the expectations:

E[{Z(x+h) - ZGHMGHR) - MDY = B{zGR) - 2k HMGx+R) - M)}

- E[{z(X) - Z(KO)}{M(%K) - MMM
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Within the second expectation, as M(;+K) - M(;) is equal to M'(§+ﬁ) - M'(;), thus

n n
E[{Z(RX) - ZXR)HMGR) - MGOY] = B[{Z(R) - 2ZpH & B, ££G+R) - T B, £5(0)]
s=1 s=1
Introducing Z(;) - Z(;O) within the summations, reversing the order of summation and expecta-
tion, removing fs(;) from the expectation, and replacing BS by its Definition 2.3.21 produces

the equivalent expression:

=

k
E[{z(X) - z&o)}{M(§+ﬁ) MA@ =z [5G+ - £5 0] E[{z(0) - z&o)} z

SEACH)!
s=1 j s J

1

However, because the weights ki are optimal,

Hence,

n o=

kK.
z A=
S

A Z(Sc*j) - I(x
j=1 J

j > >

Therefore,

n k .
E[{z(X) - Z(§O)}{M(§+K) SMX)I = T [5G - £5 () A;
s=1 j=1

E[{z(X) - z&o)}{z&j) - z&o)}]

But from Lemma 2.3.11 and Theorem 2.2.5,

k .
[£°GeR) - 501 £ AL Y%

E[{zR) - ZGHMGR) - MR =
1 j=1

S

(L e R =]

. y(_):j-;o) - y&-ij) + {nx) - m&o)}{m(ij) - m('io)}]

k .
We will consider each term separately. Because I A; = 0 and Y(;-;o) is independent of j,
j=1

k.
> >

) = y(x-x) I A

1 0 0 5=1 S

n
(=}

k ;o n
E As Y(X--XO) = —.§

uy £ x
1 J i=1

1
=

0) 0

and also
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k . n L
oA yEx) =-2 wrE® -
j=1 S ) i=1 ° 0
k j > > >
Because I As = 0 and [m(x) - m(xo)] m(xo) is independent of j,
j=1
k j > - > -> > > k j
I A [m(x) - m(x,)] m(x,) = [m(x) - m(x,)] m(x,) I A =0
j=1 s 0 0 0 0 j=1 s

Finally, by Lemma 2.5.5,

n k .
DGR - 0] I mG) - Gl nE) = @ - nGlmGR) - n(]
s=1 j=1

Therefore,

n
E[{z(X) - Z(§O)}{M(3c’+i) -ME)} = =

n . . n . .
[E°GeR) - £001- 2wl £15%) + T ul £ @)
. L

1 i=1 i=1

+ ) - mExPI MG - mX)]

Analogously, we can demonstrate that

n
E[{zGoR) - 2RO HMGHR) - MO = 2

n . . n . .
[£5Gx+h) - £50)][- ¢ u fl(io) £ T £1 (x+h)
. . -

1 i=1 i=1

+ InG+B) - mx)IGR) - m(0]

Therefore,

j=]

n . . .
E[{ZGx+R) - zGOMHMGR) - M) = £ [£5h) - £5)] = W o) - £ 0]
s=1 i=1

s G - m®12

> > N . . . .
As fs(x+h) - fs(x) is independent of i, we can introduce this expression under the second sum-

mation sign and reverse summation order. By Theorem 2.5.4,

E[{Z(x+h) - ZGOHMG+R) - MZ)}] = E[{MG+R) - M(X)}?]
Q.E.D.

The following theorem is interesting because it provides a useful relationship between

the semivariogram of the residuals and the semivariogram of the estimated residuals.

Theorem 2.5.7: Let YE(K) be the semivariogram for the estimated residuals R(z) in Definition

2.5.1 and let Y(ﬁ) be the semivariogram of the residuals Y(;) in Definition 2.3.2. Let u: be
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a Lagrangian multiplier resulting from the system of equations in Algorithm 2.3.28. Then,
n n

Y@ = y® - 1 I oul (£ - £ OIS - £0)]
i=1 s=1

Proof: From the definition for the semivariogram and Lemma 2.5.2,

vg®) = 1/2 B[{RGH) - R}

and by Definition 2.5.1,

B = 1/2 B[zGR) - MGR) - 260 + MG

Be expansion, and taking the expectation of each term,

v ®) = 1/2 B[{zG+R) - 2GOY] + 1/2 E[MGHR) - MG - B[zGAR) - 2G0HMGR) - MDY

From Lemmas 2.5.3, 2.5.4, and 2.5.6,
> > n n i3 > > i~ s > > s >
g =vy(h) - 1/2 & T u [f (x+h) - £ ()][£ (x+h) - £7(x]]
i=1l s=1
The practical implications of this theorem for statistical induction are contained in the follow-

ing theorem.

Theorem 2.5.8: Let R(;l)’ R(;z), cees R(;t) be estimated residuals taken at regular intervals
in a neighborhood where the analytical expression for the drift does not change. Then, if the
estimated residuals satisfy the intrinsic hypothesis and the residuals have a common semivario-
gram, the following is an unbiased statistic for YE(K):

k+ké_p_l [R(X. + pa) - R(X.)]2

j=k! ] ]

—_ > 1
YE (pa) = 2(k-p)

for k + k' <tand p=20, 1, ..., k-1.
— - >
Proof: 1If YE(h) is an unbiased statistic for YE(h),
R S >

From the definition of ?E(K),

k+k'-p-1
— > 1 - > - 2
E[y(h)] = 54—=E z R(x.+pa) - R(x,
Interchanging summation and expectation:
1 k+k'-p-1

E[vy ()] = I E[RG;pd) - RG]

2(k-p) j=k*
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But the expectation is twice the semivariogram of the estimated residuals. Hence,

k+k'-p-1 N
Eo2vg(h) = v ()
j=k

E [-Y—E (ﬁ) ] = 2(k-p)

Q.E.D.

Theorem 2.5.9: Let YE(K) be the semivariogram of the estimated residuals at t locations at

regular intervals a. Then, if h is p times the distance 2 between consecutive samples:
k+k'-p-1 n n . . .
> > 1 > > > > > >
Y@ =y - 5= = I [ +pa) - FEEOIE R 4pa) - £2(X)]
2(k-P) s 4op gm1 S j j j j

for k +k'<tandp=20, 1, ..., k-1.

Proof: Let us consider the identity

k+k'-p-1 N
z Yg ()
j=k!

> 1
Ye® = g

From Theorem 2.5.7,
k+k'-p-1 n n . . .
Y@ = YR - ot E o WG - EEDIES R AR - £53)]
E 2(-P) S 4op sm1 S j j j j

Q@.E.D.

From the result in Theorem 2.5.9 the semivariogram for the estimated residuals is a biased
estimate for the semivariogram of the actual residuals. The bias is represented by those terms
in the triple summation. The only exception comes when the drift is constant. In that case
the triple summation is zero as all the fi(;) are zero. These are considerations we must remem-

ber in the next chapter.
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CHAPTER 3 -- APPLICATIONS TO MAPPING AND MAP ANALYSIS

In this chapter the results obtained in Chapter 2 will be used in a practical way to em-
phasize the advantages of regionalized variable theory for contour mapping. In particular,
the results contained in Algorithm 2.3.28 will be used to estimate semivariograms; Algorithm
2.3.45 will be used to map the drift, and Algorithm 2.4.23 to perform universal kriging. Al-
though these may be implemented without reference to the preceding mathematical derivations,
Chapter 2 contains the foundation material on which these are based. That chapter may also be
useful as a reference to develop other algorithms to cover different needs.

The selected example is related to the search for oil by the mapping of subsurface geologic
structures. However, those interested in other applications will find this particular example
helpful. Although specific values and the nature of the problem will necessarily be different,

the steps to be taken remain essentially the same.

3.1 GeoLoGic ExAMPLE

The Magellan Basin is at the southern end of South America (Fig. 3.1.1); its boundaries
are roughly the Andes Mountains on the south and west, parallel 47°S. on the north, and the
Atlantic Ocean on the east. Prior to formation of the basin, there was intensive volcanic
activity which covered the area where the basin subsequently developed with a thick bed of
tuffs, breccias, and ignimbrites known as the Tobifera Series. Marine transgression began at
the end of the Jurassic. The Tobifera Series is overlain by the Springhill Group, a sequence
of alternating sandstones and shales, with an average thickness of 50 feet. The Springhill
Group is continental in origin at its base, representing an intermediate stage between the
volcanic and marine deposits. Marine sedimentation ended during the Miocene. All sediments
younger than the Springhill Group are impermeable except for sporadic sandstone lenses.

Most petroleum traps in the basin are essentially structural but combined stratigraphic-
structural traps occur. However, the stratigraphic component is always secondary, composed
of facies changes which define several productive levels or zones around a productive struc-
ture. Magellan Basin reservoirs are related to areas of positive relief in the underlying
volcanics. Salt domes are unknown. Most faults seem to be younger than the hydrocarbon
migration, as there are normal faults but no reservoirs have been found on the lower blocks.

In some areas of the world, all that remains to be done in the search for petroleum
reserves after a positive structural anomaly is located is to drill its top. In the Magellan
Basin, the only producing formation may be absent from the top of structures. In some places,

positive structure is present but the sandstone is absent and vice versa. In intermediate
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situations such as the Cullen field, annular reservoirs surround a barren core. This results
from the fact that sands were removed or possibly not deposited on the top of the old topo-
graphic peaks until the basin deepened so much that sedimentation of shales and marls occurred
over their crests.

Cullen is a mature field in the Magellan Basin with a cumulative production of 35 million
barrels of oil in 20 years. Data used in this example come from two sources. The main body of
information is taken from the 163 wells drilled in the area of the Cullen field. As the well
density in the southwest is poor, 63 additional values were taken from seismic reflection pro-

files to improve control in that area.

3.2 STRUCTURAL ANALYSIS

Knowledge of the semivariogram for the residuals of the regionalized variable is required
for any computation of drift or universal kriging. We have already defined this function and
given some expressions for its estimation, but have not presented any specific semivariograms.
This intrinsic function cannot be chosen arbitrarily; it is determined by the nature of spatial
continuity of the regionalized variable.

In the matrices in the algorithms we also have terms fi(;) coming from the analytical ex-
pression for the drift. We have not yet found a specific drift for the structural unit to be
mapped, which is the top of the Tobifera Series in the Cullen field. We have seen that there
is a close relationship between the type of semivariogram and the drift, and therefore some
form of conditional analysis is needed to find the most convenient semivariogram given a cer-
tain arbitrary drift. This is performed by what is called a structural analysis, and is an

essential prerequisite for the calculation of any terms in the matrices.

Data Selection for Structural Analysis: The very first step in a structural analysis is to search

for data. We need samples at regular intervals along a line in order to calculate a semivario-
gram. The selection of samples at regular intervals from randomly distributed data is always'
difficult and requires different approaches according to the particular circumstances. Within
certain tolerances, samples can be selected which are not exactly at regular intervals along a
line. When that cannot be done some kind of interpolation is necessary, although this is not
recommended and is to be avoided if possible, Interpolation methods fail to predict unexpected
changes in the regionalized variable in the absence of good control. Therefore, the sequence
of interpolated values will vary more gently than the true sequence and the semivariogram will
indicate a false higher continuity for the regionalized variable. This means the estimation
standard deviation will yield unrealistically narrow confidence intervals for the estimates.

On the other hand, a certain amount of statistical redundance is desirable to obtain reliable
and stable semivariograms. This means that a few short lines are not sufficient for a good
structural analysis. Finally, the regionalized variable must be tested for isotropy by studying

the semivariograms along different directions, which again requires a sizeable data set.
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Although the data to be mapped may not fit all requirements for a good structural analysis,
sometimes it is part of a larger body of information or there is an appropriate data set for
the same regionalized variable in the nearby vicinity. In such instances it is much better to
use the best data set and to extrapolate results of the structural analysis rather than to ex-
trapolate values in the data set to be mapped. This was done for this study, as the well data
from the Cullen field consists of 163 irregularly distributed values. Forty kilometers to the
north there are more than 2000 geophysical measurements from a marine survey, taken at regular
intervals along lines. The only problem with the marine data is that the measurements are
oriented only along two main directions. However, it seems better to obtain an estimate of the
semivariogram from this source rather than from the well data itself. 1In either case, the mea-
surements are estimates of the depth below sea level of a structural horizon, although in the

case of the marine survey, this is inferred from seismic return times.

Strategy for an Optimal Semivariogram and Drift Search: Our problem is to look for: a) The

optimal analytical expression and parameters for the intrinsic function, in particular, the
range. The optimality is partially decided by: b) The analytical expression for the drift;
that is, the nature of the functions fi(;) in Definition 2.3.20, as well as their number n, and
c¢) The isotropy of the semivariogram of the estimated residuals.

In the previous chapter we have seen that the determination of the intrinsic function and
the drift are not independent. More precisely, one must be assumed in order to determine the
other. This requires that we check the initial guess against the final result and repeat the
procedure if the fit between the assumption and the implication is not satisfactory. This
problem is similar to searching for the roots of a polynomial equation of high degree. Because
there is no formula whereby a root can be calculated, we guess at a solution, say X5 and assume
it is a root. Then, if it actually is a root, it should be: P(xl) = 0.

We then evaluate the polynomial to see if the expression is really equal to zero. If it
is, X is a root of the expression. If it is not, we try a second guess, XZ’ and so on, until
we obtain a result that, although it may not produce an expression exactly equal to zero, gives
a reasonably small residual. For example, if one-decimal precision is all that is required,
the residual P(xl) = 0.001 and the root x; = 1.4 could be sufficient, even though the real root
is+/2 . 1In a similar manner, we may search for a semivariogram.

The following algorithm, used iteratively, provides a method of finding optimal semivariograms.

Algorithm 3.2.1: This is a procedure to calculate the semivariogram for estimated residuals at
regular intervals along a line.
Step 1) Define an arbitrary analytical expression for the semivariogram of the actual
residuals.
Step 2) Select the analytical expression for the drift in Definition 2.3.20.
Step 3) Set k' =1 in Theorem 2.2.6. Select a first neighborhood with x, as the left-
most point. The length of the interval (k-p)a may be at most equal to the distance

between the extreme points in the data sequence.
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Step 4) Translate the origin so that the coordinate of the left-most sample is zero.
Using Algorithm 2.3.28, calculate the drift coefficients.
Step 5) Calculate the estimated residuals using Definition 2.5.1.
Step 6) Use Theorem 2.2.6 to calculate the semivariogram of the estimated residuals for
p=20,1, ..., k-1. Increase k' by one in the expression of this theorem.
Step 7) Slide the interval by p'a, p' being an arbitrary but normally small integer.
If the interval is still contained within the sample sequence, go to Step 4)
and calculate a new semivariogram for the new interval.
Step 8) Average all partial semivariograms for the sequence. The result is the average
semivariogram for the sequence.
Step 9) 1If there is another sequence in the same direction, go to Step 3).
Step 10) Average all the average semivariograms. The result is the average semivariogram

for the direction.
END

Obtaining coincidence between the assumed and the resulting semivariogram in Algorithm
3.2.1 is more an art than a science. Starting with neighborhoods of four or five points and
simple drifts seems the safest way.

The result of a search for the drift and the intrinsic function is not unique. Just as in
the problem of finding roots, there is usually more than one distinct solution. There are always
several combinations of drift and semivariogram expressions which may be equally satisfactory.
Therefore, after completion of Algorithm 3.2.1, experimentation should continue until a collec-
tion of solutions is obtained. The final solution or solutions are selected from among all
acceptable possibilities on the basis of convenience.

If attention is restricted to a small neighborhood (zo,r) around ;0 (that is, if we never
consider samples whose distance to the point to be kriged is larger than r), Y(ﬁ) will never
be needed for arguments |h| > 2r. Then y(h) can be defined for |h| < 2r only and y(h) beyond

that distance can be ignored. 1In this circumstance, a linear semivariogram of the form:
Y@ = o h, IB| <or
is a good approximation for 2r not larger than the range.
With this choice, we can use Algorithm 2.3.45 and 2.4.25 in place of Algorithms 2.3.39 and
2.4.17 for drift and universal kriging respectively.

Because the analysis is made along lines, we do not need more than one coordinate. There-

fore, we will work with a semivariogram of the form:
y(h) =wh, h<o2r

Because of the simplifications in the calculations, this is the most popular expression for the
semivariogram in practical applications. In this example, we will not consider other possible
expressions for the semivariogram. To determine the semivariogram in this form, all that is

necessary is to determine the slope w and the boundary r.
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Because the drift should represent only the main features of the regionalized variable and
not the details, a simple analytical expression is usually enough. Alternatives for the drift
might be polynomials no higher than second degree. Again, as our analysis is in one dimension,
we need one coordinate. We need those drift estimates which are valid for the entire neighbor-
hood; therefore M(x) will be

M(x) = a,
M(x) = a, + blx
or
M(x) =a_, +b,x+b x2

0 1 2

So, for a given neighborhood, using Algorithm 3.2.1, we must calculate the statistics Bs
in order to obtain estimated residuals and then compare the experimental semivariogram of the
estimated residuals with the theoretical result given by Theorem 2.5.9. The constant a, is
not necessary as it vanishes from the calculations.

From Appendix B, for a linear semivariogram and linear drift, the statistic B1 for b1 is:

1 Z(xk) - Z(xl)

B * —&Da

Here, a is the distance between two consecutive samples along a line in an interval of length

r whose extremes are xk and xl.

From Appendix C, for a linear semivariogram and quadratic drift, the expressions for the

necessary statistics are:

2 -6
B = ———— [Z -1/2 {Z(x,) + Z(x,)}]
2 (k-2) (k-1)a% ™ k 1
B = gy (2090 - 20xp] - (k-Da B3
where
Lk
Zn =k B2
j=1

and Xy and X, are the ends of the interval where the drift is valid. Therefore, the experi-

mentally estimated residuals when the drift is a constant are:

0 =
R (xj) = Z(xj) - 2

The experimentally estimated residuals for a linear drift are:

1 1
R"(x.) = Z(x.) - a, - B x.
(x;) = Z(x;) - ag - B} x;

and the experimentally estimated residuals for a quadratic drift are given by:
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2 _ 2 2
R (xj) = Z(xj) a, B1 xj - B2 X

2
J
The experimental semivariogram for the estimated residual comes from the following relation,
according to Theorem 2.5.8:
. k+k'-p-1 . .
i 1 i i 2
a) = z R™ (x.+pa) - R (x.
Yy (p2) ) i [R™( ;*P ) ( J)]
for k+k' less than or equal to the total number of samples and p = 0, 1, ..., k-1.
But from Theorem 2.5.9 we know that the semivariogram for the estimated residual will be
a biased estimator of the semivariogram for the true residuals if there is a drift. Appendices
D and E provide the amount of bias for the case of first- and second-degree polynomial drifts.
However, to calculate the bias, the actual semivariogram for the residuals must be known. Under
the assumption that the semivariogram for the real residuals is a straight line of slope w,
from Appendix D, such a semivariogram y(h) is given by:
2
1 wh
y(h) = yp(h) + =
for the case of a linear drift. For a quadratic drift and a linear semivariogram, from Appen-
dix E,

2
_ .2 wh 2
Y(h) = YE(h) + 5 5 [2L" + 2aL - a

L(L™-a")

2 _ 2(L+a)h + h?]

The goodness of fit depends on what slope is assumed for the semivariogram for the actual
residuals. In practice there are several ways to select the slope. We can take the slope at
the origin from the expression for yé(h). Another possible solution is to fit a regression line
trying to minimize the difference between both types of semivariogram taking into account that
values for small arguments are statistically more reliable than those for large arguments as
they are calculated using smaller numbers of pairs. If the experimental semivariogram is indeed
a straight line both methods yield very similar results.

The comparison between the semivariogram of the estimated residuals and the semivariogram
for the actual residuals is usually shown in the literature as parabolic curves, being biased
forms of the semivariograms. Such a presentation iends to confuse readers who are more familiar
with the unbiased, monotonically increasing semivariograms such as those in Figure 2.2.4. Using
the formulas above it is fairly straightforward either to remove the bias in the experimental
semivariograms or to bias the assumed semivariograms. The results of our structural analysis are
in terms of unbiased semivariograms.

The last step in the selection of the semivariogram and the drift is to determine how well
the semivariogram obtained with the estimated residuals fits the line w h. If they are alike,
all parameters and assumptions are assumed correct and the particular drift and semivariogram
chosen is one possible solution in the structural analysis. Otherwise, at least one parameter
or the assumption that the semivariogram can be represented by a straight line through the ori-

gin is incorrect. The model must be rejected in such an instance and other alternatives must be
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sought. Structural analysis is considerably simplified by the use of computers. Semivariograms
for the top of the Tobifera Series were obtained using SEMIVAR, a FORTRAN IV program for auto-
matic structure analysis (Olea, 1975). The length r of the interval, the degree of the drift,
and the sequences of samples are entered into the program, producing the average semivariograms

for each individual sequence and for parallel sequences.

Semivariograms for the Top of the Tobifera Series: Figures 3.2.1 to 3.2.7 contain the experimen-

tal semivariograms for the estimated residuals with the bias removed, and the assumed linear
semivariograms. These are given for the various directions and parameters tested, following the

strategy outlined above and using as data the elevations of the top of the tuff in an area in
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Figure 3.2.1--Experimental semivariograms for the top of the Tobifera Series, assuming no drift.

The neighborhood is 17.4 km and the average slope at the origin, Wy is 0.77 meters.
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Figure 3.2.2--Experimental semivariograms for the top of the Tobifera Series, assuming a linear

drift. The neighborhood is 2.4 km, and the average slope at the origin, Wps is 0.51 meters.

Open circles are the assumed linear semivariogram, dots are the experimental semivariogram.

East-West Northeast-Southwest

o
T
[
o
I

Y(h) 100 meters2
oe

Y (h) 100 meters?
oe

(6]
I
oce
[8,}
T
o

[ J — ®—
=0.39 met =0.
wEW 0 meters wNE-SW 0.38 meters

0 . - 0
0 1.2 2.4 0

h, kilometers

1 I
1.2 2.4

h, kilometers

Figure 3.2.3--Experimental semivariograms for the top of the Tobifera Series, assuming a quad-
ratic drift. The neighborhood is 2.4 km, and the average slope at the origin, wy is 0.39

meters. Open circles are the assumed linear semivariogram, dots are the experimental semi-

variogram.
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Figure 3.2.4--Experimental semivariograms for the top of the Tobifera Series, assuming a linear
drift. The neighborhood is 4.2 km, and the average slope at the origin, Wy s is 0.61 meters.

Open circles are the assumed linear semivariogram, dots are the experimental semivariogram.
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Figure 3.2.5--Experimental semivariograms for the top of the Tobifera Series, assuming a quad-
ratic drift. The neighborhood is 4.2 km, and the average slope at the origin, W s is 0.49

meters. Open circles are the assumed linear semivariogram, dots are the experimental semi-

variogram.
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the eastern Magellan Strait. Figure 3.2.1 shows semivariograms resulting under the assumption
that the drift is a constant. The semivariograms are free from any nugget effect with gentle
parabolic shape at the origin implying that the top of the tuff has a moderate continuity. This
assures us that there is in effect a varying drift underlying the regionalized variable.

The semivariograms indicate that the top of the tuff is isotropic. However, analysis of
only two directions is not sufficient to assure isotropy in all remaining directions. If aniso-
tropy is present, the semivariogram is no longer a function of only the distance between two

points, but also is a function of the orientation of the line through these points:

Y(0,8) = w(8) Y,(p)
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Figure 3.2.6--Experimental semivariograms for the top of the Tobifera Series, assuming a linear
drift. The neighborhood is 7.2 km, and the average slope at the origin, Wy s is 0.7 meters.

Open circles are the assumed linear semivariogram, dots are the experimental semivariogram.
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Figure 3.2.7--Experimental semivariograms for the top of the Tobifera Series, assuming a quad-
ratic drift. The neighborhood is 7.2 km, and the average slope at the origin, W s is 0.61

meters. Open circles are the assumed linear semivariogram, dots are the experimental semi-

variogram.

The general practice under isotropy or moderate anisotropy is to use an average slope QA in-
stead of w(8). The semivariograms indicate that for a given neighborhood size, the goodness

of fit between the assumed and experimental semivariogram is always better for the case of a
second-degree polynomial for the drift. Also, the semivariogram slope at the origin is smaller
when the drift is a second-degree polynomial which means we may have greater confidence in the
reliability of the estimation. It is also clear that as the neighborhood size increases the
goodness of fit deteriorates regardless of the degree of the polynomial for the drift. The opti-
mum neighborhood has a 2.1 km radius, as a smaller neighborhood will not include enough observa-
tions to perform the calculations and for a larger one the model will be in error. The second

degree of polynomial drift is optimal for universal kriging. For drift estimation we will see
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later the best choice is not only restricted by the structural analysis but also by the working
scale which yields the best physical interpretation of the results. For a first-degree poly-

nomial for the drift we will use the expression
Y(h) = 0.61h, h < 4200 meters
And for a second-degree polynomial for the drift we will use

Y(h) = 0.49%h, h < 4200 meters

3.3 GRID GENERATION

Now that we have found a semivariogram and established the form of the drift, we are almost
ready to perform kriging and drift estimation. However, there is still an important practical
consideration concerning the number of samples to be used to krige each point of the regular
grid.

The relation between the neighborhood (;O,r) and the collection of samples available to
produce a kriged estimate at a point is seldom optimal. Sometimes not enough points are con-
tained within the neighborhood and a specific point cannot be estimated. Sometimes scores of
samples are included within the neighborhood of almost any point. Remember from Algorithm
2.4.17, if we use k samples to krige a point, we must solve a system of simultaneous equations
with a (k+6) by (k+6) coefficient matrix for quadratic drift. This system of equations must be
solved for each of the hundreds or thousands of points in the contouring grid. Any reduction
in the number of samples that must be considered is very important. For instance, if we can
reduce the samples by one half, computer execution time will drop to one fourth. Although
ideally we should keep all the information contained in data points within the neighborhood,
there are practical reasons for not doing so. To use 84 points, for instance, means that we
must invert a 90 by 90 matrix. Procedures used to discard excess points must be different for
universal kriging and drift estimation as the systems of equations which yield the solutions
behave differently. For universal kriging, the screen effect (Appendix G) shows that consider-
ing all available information or considering only the closest samples is, for practical pur-
poses, equivalent. The contributions of the more distant samples are immaterial.

To implement an efficient sample discarding procedure for universal kriging we may divide
the space around the point to be kriged into eight octants and keep the closest points in each
octant. This insures a balanced distribution of samples, not only by distance, but also by
radial direction. With samples in all octants (Fig. 3.3.1), tests indicate that a limit of 16
samples or two points per octant are adequate (Appendix G). With fewer than nine samples we
begin to have trouble with meaningless results because of instability in the solutions for
Algorithm 2.4.17. Therefore, we may provide a secondary alternative for those points contain-
ing fewer than nine samples per neighborhood by widening the neighborhood to include four samples
per octant, which creates a maximum 38 by 38 matrix. If we have fewer than half the maximum
number of points possible in a two sample per octant interval, it is unlikely that we will

obtain 32 samples within the expanded neighborhood. In fact, most instances of sparse control
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occur along the margins of the map where at least half the octants are empty (Fig. 3.3.2).

Hence, use of wider neighborhoods for special cases usually increases the number of samples

to no more than 16. This alternative restricts
To retain four samples per octant in every case
and would provide no significant improvement in

Discarding samples for drift estimation is

and we cannot change the size of the neighborhood.

efficiently manipulated, some discarding procedure must be implemented.

us to solving, on an average, a 22 by 22 matrix.
would be approximately four times more expensive
accuracy.

almost impossible as there is no screen effect
However, as 90 by 90 matrices cannot be

The elimination of

samples should result in uniform sample distribution rather than keeping the nearest points to

the estimation location as in universal kriging.

servations per estimated point is always within

In our particular example, the number of ob-

reasonable limits.

The location X in our example is determined by two coordinates, the latitude x and the

longitude y.

m'(x) = a;

X +ay+a

Consequently, the expression for a quadratic drift would be:

‘(2+ax +az
3 4 T gy

X
X
X x
A X
X
X
X
X
X
X
X
X X X X
| x y |
X X
l |
| y |
X
| X l
| |
l 7 km >|

Figure 3.3.1--Seven-kilometer neighborhood divided into octants, with two points to be con-

sidered in each octant.
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Hence, there will be five functions fl(;) in matrices G and H.

lix) = x
£x) =y
£3(x) = %
£ (x) = xy
£ (x) = y°

The program used to generate all grids has been incorporated under the module KRIGE of SURFACE
II, a graphics system developed by the Kansas Geological Survey (Sampson, 1975). This system
also constructed the contour maps of the grids. The grids with kriged values and the estima-
tion variances are stored on a file which is used by the line-drawing modules, which converts
the grid values into plotter instructions to produce finished maps. Although contour line con-
struction is a significant aspect of automatic mapping, it is independent of the gridding algo-

rithm and will not be considered here.

Figure 3.3.2--Neighborhood divided into octants, with four points to be considered in each
octant. This illustrates the special case which occurs in the corner of a map where over

half the octants are empty.
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3.4 REsuLTs

Figure 3.4.1 is the map of the top of the Tobifera Series in the Cullen field of the
Magellan Basin, Chile, made by universal kriging using a 37 by 73 grid, second-degree poly-
nomial for the drift, and 2.4 km neighborhood radius. Figure 3.4.2 is the square root of the
estimation variance produced in the same manner. Figures 3.4.1 to 3.4.6 are at a scale of
1 cm= 0.75 km or 1:75,000.

On the University of Kansas Honeywell 635 computer, computation expenses to obtain the
tape with the commands for the plotter were $14. This includes the commands to generate both
the map of the top of the Tobifera Series and the error map. Therefore, the average cost per
map is $7. However, if we want to estimate by universal kriging the top of the tuff and not
produce the error map, the cost is essentially unchanged, because the cost of the error map is
marginal. The cost for the same commands but using the standard estimation procedure in SURFACE
IT was $8; therefore, the kriging algorithm implemented in this study is extremely economical
as compared to previously implemented versions (Olea, 1972).

To interpret these maps, it is useful to work on a light-table so they may be superimposed.
Suppose for the same location on both maps we read a 1600-meter elevation on the top of the tuff
and 10 meters on the error map. If it is assumed that the random variable Z;(zo) - Z(;O) is
normally distributed, the probability is 95 percent that the absolute value of the difference
between the estimated depth and the true depth is less than 20 meters, or twice the standard
deviation indicated on the error map.

The error map is a very powerful tool which can be used to analyze the reliability of each
feature in the map produced by universal kriging. Certain, probable, and fictitious structures
can be differentiated in an objective manner. The error map and the semivariogram can also be
used to determine where more information is needed to refine the map, and to estimate the number
of additional samples needed. In this way, the regionalized variable theory provides criteria
on which future sampling can be planned to achieve a specified reliability in areas with insuf-
ficient information. The error can always be reduced below a pre-specified limit by taking more
samples in these critical areas. As kriging is an optimal method of estimation, no other tech-
nique will be able to provide better estimates in areas of poor control; more samples are the
only answer.

The purpose of drift estimation is to provide a map which emphasizes local structures that
may be especially prospective. In this sense, the drift itself is not usually the most helpful
tool; a map of the residuals from the drift usually is more revealing. However, for a given
regionalized variable, there will be an infinite number of drifts, one for each working scale.
The selection of a neighborhood size and analytical expression to represent the drift are para-
meters to be adjusted to achieve the final goal, being the choice of the appropriate drift. All
may be equally correct in terms of regionalized variable theory if their parameters have been
selected properly. Figures 3.4.3 and 3.4.4 are two possible drift representations of the top of
the Tobifera Series for a neighborhood radius of 2.1 km. Figure 3.4.3 uses a second-degree
polynomial and Figure 3.4.4 uses a first-degree polynomial drift. In terms of a practical

exploration problem, some drifts and their associated residuals maps will do better than others.
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Well Symbols

® Cumulative o0il production
greater than 400,000 bbls.,
or initial production above
average.

¢ Cumulative o0il production
less than 400,000 bbls., or
initial production fair to
poor.

¥t Gas.

% 0il and gas.

4 0il shows.

¥ Gas shows.

¥ 0il and gas shows.

<4 Hydrocarbons not detected.

Modifications to
Basic Symbols

— Abandoned well, as:
- abandoned o0il well.

O Springhill Group missing
(production, if any, from
units adjacent to the un-
conformity), as:

® Springhill Group
missing, gas shows.

Other Information
Sources

° Seismic survey data.
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Figure 3.4.1--Structure contour map of top of Tobifera Series in Cullen area, estimated by univer-

sal kriging.

Contours in meters below sea level.
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The choice of the best working scale is beyond what the theory of regionalized variables can
forecast and is entirely a matter of experience in the area of application. However, once ex-
perience has been gained in an area, the results will be useful in forecasting the same region-
alized variable in surrounding areas. In the example, we are interested in a drift yielding a
map of residuals whose structures reflect the sedimentary environments at the time of the Spring-
hill Group deposition and which can be used to forecast oil production. In this sense, Figure
3.4.4 is a map of the best drift for the Tobifera Series top in the Cullen field area and Figure
3.4.5 is the corresponding estimation standard deviation map. Figure 3.4.6 is the map of resid-
uals obtained by subtracting from the drift the estimates for the top of the Tobifera Series in
Figure 3.4.1. The contour lines in the drift map in Figure 3.4.4 appear very complex, but the
complexity is not the result of an extremely variable surface, but rather of the extremely low
relief.

The map of residuals in Figure 3.4.6 was subdivided into three classes and two of the
resulting subareas shaded to assist in interpretation. Areas of negative residuals are dotted
and those with positive residuals greater than 30 meters are shown by dark shading. Intermediate
areas of residuals between 0 and 30 meters were left blank, as are areas in which contouring
could not be performed. Well location and production symbols are the same as in Figure 3.4.1.
The wells have been grouped in four production categories:

1) Wells with cumulative oil production of 400,000 barrels or more, and recently drilled

wells with above-average initial production.

2) Wells with cumulative production of less than 400,000 barrels or poor initial production.

3) Dry wells which encountered the Springhill Group.

4) Dry wells where the Springhill Group is missing.

The negative residuals in Figure 3.4.6 appear to be related to the large embayments formed
in the northeastern portion of the Cullen field during the transgression at the end of the
Jurassic. Marine currents, winds, tides, sediment sources or other geologic factors did not
permit sand deposition except in bays open to the north, northeast, or east, and sand deposition
was precluded on the promontories between the bays. Fine sediments laid down over the tuff were
not deposited contemporaneously with the Springhill sandstone, but at a quiet time when the water
depth was sufficient to cover the promontories.

The west side of the Cullen structure appears steeper and more monotonous than the east
side. This could be explained as the result‘of quiet oceanic environment. Calm water would
also explain the relative thinning of Lower Cretaceous sediments in the west as compared to the
Tobifera Series in the east. O0il production in the west is poor, especially in the southwest
where the scattered production is associated with shaly sediments having poor porosity. In the
remainder of the Cullen area, oil production and residual magnitude are highly correlated.
Figures 3.4.7 and 3.4.8 may be used to visualize this relationship.

Eighty-six percent of all the wells drilled where the Springhill Group is missing are in
areas of positive residuals greater than 30 meters. In areas of negative residuals, 81 percent
of the wells have high oil production and only 2 percent of the wells encounter a section in
which the Springhill Group is missing. The proportion of high production wells is more than

six times greater in negative residual areas than in areas of positive residuals of more than
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3.4.6.

30 meters. The proportion of all productive wells is almost seven times as great in the areas
of negative residuals.

Areas of residuals of intermediate size are also intermediate in production. In such
areas, the proportion of wells having high production is less than one sixth of that for the
negative residual areas. Only 40 percent of the wells are producers compared to 57 percent
productive wells in negative residual areas. The proportion of wells that do not encounter
the Springhill Group is twice that of the negative residual areas.

Wells without commercial production of hydrocarbons are almost equally distributed in the
three areas. However, where residuals are larger than +30 meters, the producing horizon tends

to be impervious; in areas of negative residuals, the sandstone usually has good porosity but
is water saturated.
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3.5 CONCLUSIONS

The most widely used techniques for map analysis are variations of polynomial surface-
fitting procedures. These methods and their simple mathematical formulations yield solutions
which may not be valid or optimal. The theory of regionalized variables, although more complex,
introduces a rigor that should produce better results, provided the observations can be regarded
as outcomes of random variates and the residuals satisfy a particular kind of stationarity.

In contrast to other methods, algorithms based on the theory of regionalized variables are
accompanied by guides to the selection of parameters. These parameters are found by a prior
study known as a structure analysis. The parameters include measures of the degree of continuity
and isotropy of the regionalized variable, the regional drift, and the influence zone of the
samples. Relationships among these parameters preclude their independent selection. Computer
time for structural analysis is very small; the main expense is usually incurred in the man-
hours spent inspecting the data collection.

Automatic contouring methods are techniques to represent a three-dimensional, single-

valued function by two-dimensional isopleths drawn using a plotter. The task is performed in
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several steps, starting with raw data input to the computer. Succeeding steps differ from one
implementation to another, but the basic problem is the estimation of an array of points located
at nodes of a regular grid. Universal kriging is used here as an exact interpolation procedure
for grid generation.

In map analysis, knowledge of the surface itself sometimes is not as crucial as formation
of an impression of the main components of the surface. Drift estimation is presented here as
an alternative to trend surface analysis for this purpose. The drift is defined in a statistical
way as the expected value of the regionalized variable. The actual drift is relative to the
working scale. Therefore, the drift at a point is not unique. The resulting maps differ sub-
stantially from trend surface polynomials. Trend and drift, although similar in concept, are
different mathematically and in appearance.

Universal kriging and drift estimation are optimal in the sense that they are unbiased and
the estimation variance is a minimum. They do equally well with regularly distributed or random-
ly distributed samples.

Advantages of kriging and drift estimation have been demonstrated theoretically and by means
of an example. In particular, maps of residuals were used in a hindsight prediction of paleo-
environments of deposition and hence the occurrence of oil in the Cullen field of Chile.

Because universal kriging and drift estimation are optimal, provided the fundamental assump-
tions expressed in the intrinsic hypothesis are met, they do not require an external yardstick
to measure their effectiveness. However, the methods do provide a statistic which shows the
reliability of the estimation. This statistic, the estimation variance, is not an indicator
of the effectiveness of the techniques, but rather depends upon the quality of sampling and the
continuity of the regionalized variable. The estimation variance shows the reliability of the
contour map and reflects the density and distribution of control points and the degree of spatial
autocorrelation within the surface. Certainly this measure is a highly desirable feature of an
estimation procedure.

The optimal drift for the purpose of revealing a physical phenomenon (such as oil occurrence)
is related to the search for the appropriate working scale and must be found by experimentation,
combined with additional specialized criteria from the particular area of application. This addi-
tional, troublesome, but unavoidable analysis is not necessary for universal kriging itself, which
always yields the best possible estimates of the mapped phenomenon.

The error map and structure analysis are useful for planning additional sampling when more
accurate results are required. The structural analysis will indicate the maximum permissible
spacing between control points, and the error map will show those areas where control is unaccept-
ably poor.

A contour map produced using universal kriging is approximately twice as expensive as one
obtained using simple, empirical estimation procedures. The ratio is more nearly equal when com-
paring universal kriging to more elaborate contouring methods or if the conventional map requires
that several parameters be selected and tested; the cost of the final conventional map is then
several times the cost of a single computer run. In addition, universal kriging can produce an

error map with almost no added computational expense.
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Regionalized variable techniques are complex statistical methods which may be unnecessarily
refined for preliminary examination of data with an homogeneous distribution or where high pre-
cision and error estimation are not necessary. However, universal kriging and drift estimation
should be adopted in any map analysis involving significant research, economic decisions, or any

kind of analysis where spatial estimation has an important bearing on the decision-making process.
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APPENDIX A
LAGRANGE'S METHOD OF MULTIPLIERS

This is a method for finding the maximum and minimum values of a function of several vari-
ables when relations between the variables are given. For instance, if it is desired to find
the maximum area of a rectangle whose perimeter is a constant k, it is necessary to find the
maximum value of xy for 2x + 2y - k = 0. Lagrange's method of multipliers involves solving

the system:
2x + 2y - k

du/dy
du/ax

I

il

where u = xy + u(2x + 2y - k).

Therefore, we must find x, y, and u in the system:

k

]}

2x + 2y

y + 21
X + 2u

whose solution is:
u = -k/8, x =y =k/4

In general, we may be given a function f(xl, X . xn) of n variables connected by h

2’
distinct relations. To find the values Xx,, X., ..., X_ for which this function may be a maxi-
1 2 n y

mum Or a minimum, equate to zero the partial derivatives of the auxiliary function:
U= £(Xps Xps eeey X)) F WO M0, Kol b

with respect to Xs Xps wees X Regarding ul, uz, cees uh as constants, solve these equations
simultaneously with the given relations, treating the u's as unknowns to be eliminated in a

system of n + h unknowns.
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APPENDIX B

LINEAR DRIFT ESTIMATION FOR A LINEAR SEMIVARIOGRAM

As presented in Section 2.3, we must estimate the drift in order to find the estimated
residuals for samples at regular intervals along a line. We will solve this problem for that
particular instance with the following restriction: the samples are points distributed along
a line in such a way that if jj > j, (xjj-xj) = a(jj-j) as shown in Figure B.1l. The distance
X=Xy is L. The linear semivariogram is:

Y(h) =wh
From Definition 2.3.2, the statistic for the drift is:

M'(x) = Bx

- L \ ¥—>
\hn.___l

[ 1 1 1 1 ! \ 1 \
X

1 X% X3 Xy X5 6 7 g8 %9 k-1 "k

Figure B.l--Location of samples at regular intervals along a line.

Our problem is to determine the statistic B. To find the optimal Aj’ we must apply Algo-

rithm 2.3.28. The system of equations in this case is:

AIEle-xl)+A25(x2-x1)+A35(x3-x1)+...+Ak5ka-xl)+ux1+v =0
Ala(xz—xl)+A251x2-x2)+K35(x3-x2)+...+Ak5(xk-x2)+ux2+v =0
Alaixs—xl)+A25(x3—x2)+A35{x3-x3)+...+Akﬁtxk-x3)+ux3+v =0
xlw(xj —x1)+A2w(xj -x2)+)\3w(xj —x3)+. . .+>\kw(xk-xj)+uxj +V = 0
Alw(xk—x1)+kzw(xk-x2)+A3w(xk-x3)+...+Akw(xk-xk)+uxj+v =0
Alxl + Azxz + ABXS + ... F Akxk =1
A1+k2+A3+...+Ak =0
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The first equation, for xj = X5 can be rewritten as:

_ k _ k

wjzl)\jxj—wxljzlxj+uxl+\)=0
and similarly for xj = X5

_ k _k

R I R

But, by the last two equalities in the system of equations, these relationships reduce to:

5+ux1+v=0

-0+ uxX, Vo= 0

Therefore,
2w
W=
-w(xk+x1)

Vv = L

Replacing W and v back into the second equation of the system and grouping in a different way
yields:

k k 2x X, +X

2 NMYy

But, since the first summation is zero and the other is one,

xz—xl—(xk-xz)

2x2)\1 + l—lexl + I =0
Therefore,
VR N S |
1 L(xz-xl) L

Now, replacing Xl, 4, and v in the third equation of the system,

k k 2x (x,-x,)-(x,-x,)
2 1 3707 TV
'xs(jf AprT ) (jzl Mg+ A T =0

1

which can be reduced to:
[L+(x3-x1)—xk-x3] - 2(x3-x1) = 2L(x2-x3) kz
or

L+2h -L+ 2h - 4h = L(xz-xs) AZ
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Therefore,

In a similar way, it can be shown that all the remaining weights are zero, except for the

last one which is:

>
1]
==

Therefore, the statistic B, is:

2(x) - Z(x))
L

w

il

nmomM=

>
[aN]
—_

=

.

p—

1l
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APPENDIX C

QUADRATIC DRIFT ESTIMATION FOR A LINEAR SEMIVARIOGRAM

Let the X; be the locations of k samples along a line at regular intervals. From Algo-

rithm 2.3.28, the solution of the problem of finding B, and B2 in the estimated drift

B 2
M'(x) = le + Bzx

is the solution of a system of equations

CW1 = D1
CW2 = D2
We will suppose that the location of the samples is similar to that in Figure B.1 and that Xy = 0.
Remember, from Definition 2.3.21,
k .
B.= ¢ A z(x))
s j=1 s j

By using Definition 2.3.8 for §(i,s), we can define two auxiliary functions pl(j) and pz(j):

p () = 8G,K) - 8(j,1)
p,() = a - S [6(5,k) + §(j,1)]

where a is the distance between consecutive samples and L is the distance between the first and

the last. As we will see, a linear combination of pl(j) and pz(j) is the solution for X;:

i1 . 2 .
)\5 - CS pl(J) + CS pz(J)

Therefore, the estimation of a quadratic drift with a linear semivariogram is obtained by find-
ing the constants c: for Xi and A%.

We will use the restrictions

k . .
j oAl ey
jzl AS f (xj) = §(i,s)

in the system CWs = Ds in Algorithm 2.3.28 to calculate the coefficients c;.

Calculation of c}: Because
ko
I Ay x. =1
j=1
then,
1 X 2 k L+a
c; X [8(,k) - 6(j,D]x. +ci Z [a-5={6(,k) + 8§(G,D}x, =1
b el oot 2 !
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But,
k
E: [G(J,k) - 6(3’1)] Xj = Xk - Xl =L
j=1
and
K L+a X L+a
ro[a- =5 {8G,k) + (G, X5 = a T ox. - (%, +x,)
. . j 2 1
j=1 j=1
2
- a (k-1)k  (L+a) L
2 2
- L(L+a) L(L+a) _ 0
2 T2 -
"Hence,
ci L=1
and
ci = 1/L
Calculation of c?: As
k .
LA xS =0
j=1 =
then,
k k
ol I 86,0 - 8G,D] X0+ ¢ I [a- 22 s, ¢ 8GN x?
. j 1 .-
j=1 j=1
Let us examine each term separately:
K 2 2 2
I [8(,k) -8G5, xi = x - x
. j k 1
j=1
= LZ
k k
I ofa- B2 {8G,0 + 8G,1} x a3 ox2 -2 2.0
- B j 2 k 1
J=1 j=1
k=1 2
=a 3 a2j2 _ (L+a)L

2

_ 2Pk (k) (2k-1)  (L+a)L?
6

2

2

_ L(L+a) (2L+a)  3L° + 3aL
- 6 - 6

0
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_ -l - ad
6
Therefore,
L_CZL(Lz—a2)=0

1 6
So,

2 6

C =
1 L2 _ az

Calculation of c;: The restriction we will use now is:

But this is exactly the same expression used for ci except for the right side of the equality.

Hence,
Ly .
c, L=0
which implies that c; is zero.
Calculation of cgz Now,
k .
IoA) xS =1
j=1
Using the expansion of cf for the left side of the equality and remembering that cé is zero,
2 6
C. = -
2 L(L2 _ 32)

Replacing all the values c: we have found:

6
b= LlisGgo - 8GLn - 7 [a- L22) {505,k + 8G, 1)}

>
.
I

j 6
R A L) (565,00 + 8G,1)}
-a
Therefore,
K 1 . . 6 L+a . .
B, = jzl T [8G3,K) - 6(3,1)] + Ii_j_;f {a - == [8(3,K) + §G,11} Z(xj)

Expanding the expression,
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Z(x,) - Z(x,) 3[2(x,) + Z(x;)] k
B = k 1’ k 1’7, 6ak 1 L Z(x.)

1 L L-a 2 2 k.

or, if we define Zm as

Lk

Tk R PG

Z(x,) - Z(x4)

B, - k . R SO r%.[zzm - 2(x) - Z(x))]
Analogously,

Bo-._5 [a - 22 (505,10 + 6,1} 2(x.)

2 Lata? a1 2 ’ ’ )
or

B, = - —o— [22_ - Z(x) - Z(x)]

2 L(L-a) m k 1

Calculation of Lagrange's Multipliers: Here we will calculate the multipliers u: and prove

that our solution of A; satisfies all equations in the system. The first group of equations

in Algorithm 2.3.28 for a linear semivariogram is of the form:

k .
T Al wlx;-x.| + ul X, + uz X +v=0
jep s T s 3 Ts T
The first term can be rewritten as:
k. iji . k.
T k; w]xjj-le =w X A;(x..-xj) +w I ki(x.—x..)
j=1 j=1 % 3] j=ij+1 I

Replacing Ai by its solution in terms of pi(j), we have four terms in the equality. We will

study each of them separately.

ji jj
" By
k k
2) X p,)(x.-x..) = I [8(§,k) - 6(3,1)](x,-x..)
SRS LS A E I B I 333
= X, =-X..
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3 z j L.-X.) =
) I, 20 x57x)
k
4) T P, () (x.-x..)
... 2
j=jj+l 73
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ii
I fa- SR (60,0 + 6G, DN (x-x.)
j=1 ii 3
ij
aJJij a .§ a(j-1) 5 (xjj xl)
j=1
: _ .2 (G3-1)(Gj-1+1) _ (L+a)
a(JJ-1+1)xjj a > - = (xjj-xl)
X..(x..+a)
_33~33 _ (L+a) _
(x5 7a)x35 2 2 (457
(x..+a)x..
ij jj _ (L+a)
2 7 (X557%1)
K
= I [a- SR 8GL0 8GNy
j=ji+l
- a ; (-Da - a(k-3j) x;. - 52 (x-x, )
j=ji+l 3] i

= a2 (k-;)k - a2 (Jj-é)jj

_Lasa) | 555 %y;
2 2

.. L+a
- a(k- Lo == -X..
al JJ)XJJ 7 (% %53)

+a) (L+a)

2

o (L-x, )Xss - X..
(L-x550%35 (X -%55)

J

Replacing all expressions from 1 to 4 in I XS wlx, . -x.|:
j=1 JJ ]
; A wlx,.-x.| = cl(x X..-X..+X.) + ¢? [Eiéiil. L+a (X, -X..+X..-x,) - (L-x,.) x..]
j=1 s 333 sk 733 7331 s - 2 2 Yk 733 i1 i3t il
k .
z A wlx..-x.] = l-2x. ) ¢ Ax..-L) x,,
j=1 S 33 ) s 1] s ) 1]
Therefore, for s = 1,
w 6w 1 2.2
+ (L-2x..) + X..-L)x,. + uix.. X;., +v, =0
L (b-2%55) 12,2 (5570%55 WXy T MG T
for jj =1, 2, .» k.
If jj = 1, X, = 0. Hence,
wL
—E'l' \)l = 0

Therefore,



v = -w
For jj = 2 and 3,
6w 2wa 1 22
2 2 (a-1) a - Tt WmE e =0
L™ -a
6w 4wa 1 2.2 _
5 2 (2a-L) 2a - T * 2 uja + 4 uja” = 0
L™-a
Hence,
1 2w(aL®-a?)
W1 577 2
L(L™-a"™)
2 6w
u = -
1 L2-a2
For s = 2,
6N(L;X.5)X.. . uéx'. . ugxg. . vz )
L(L%-a%) JJ] JJ]
Making jj equal to 1, se can see vz is zero.
For jj = 2 and 3,
2
6w(a;-a2) . u;a . ugaz -0
L(L™-a")
6w (2al-4a) 1 2
> + 2u2a + 4ua” = 0
L(L™-2")
Therefore,
1 6w
U = o
2 Lz_az
2 6w
u S e—
2 L(Lz_az)

We still must verify one more relation in the system of equations to see if the expression for
Ag is correct. This is the last equation in Algorithm 2.3.28 which states
k

L Ai =0 for s =1, 2, ..., k

j=1

To prove this is true, we must show that

2 k
1 pl(J) + CS jz Pz(J) =0

[g]
o™=

j



But

and

Therefore,

j

™M=

n .

J

[8(3,k
1

n o™=

TR

j=1

L+a
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) - 8G,D]=1-1=

L+a

[a - T {6(3’1() + G(J:I)}]

ka - T (1+1)

L+a - (L
k

1
L [cs

j=1

+a) = 0

P, G) *+ ¢2 p ()] = 0

0
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APPENDIX D

SEMIVARIOGRAM OF THE ESTIMATED RESIDUALS FOR A LINEAR SEMIVARIOGRAM AND
A LINEAR DRIFT

Let the xj be the locations of t samples along a line at regular intervals. Let the linear
semivariogram of the residuals be:
Y(h) = wh

By Theorem 2.5.9, the semivariogram for estimated residuals is in this case:

' -
) = Y() - 5Es kfz}f 1u} £ (xjopa) - £ (x)1°
By Appendix B,
1 _ 2w
| U A
and
k+ké-p—l[fl(x.+pa) - ftx)? = k+ké-P-1 p?a® = (k-p)h?
j=k' ) . j=k'
Therefore,
2

Yp(h) = y(h) - &
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APPENDIX E

SEMIVARIOGRAM OF THE ESTIMATED RESIDUALS FOR A LINEAR SEMIVARIOGRAM AND
QUADRATIC DRIFT

Let us define an auxiliary function T;(pg) as:
i, > 1 k+k'-p-1 i > i~ s > > s -
T (pa) = Py z [f (x.+pa) - £ (x.)][f (x,+pa) - £ (x.)]

S p j=k* J J J J
We will assume that h = pZ and that our t samples, t = k+k', are taken at regular intervals a
along a line. Therefore, we can reduce the analysis to one dimension. We can now rewrite
Theorem 2.5.9 as:

n

n . .
yg() =y() - 1/2 © = u; T:(h)
i=1 s=1

For n = 2, our task is to calculate four weights u; and four functions T:.

Calculation of T}: By its definition at the beginning of this appendix,

k+k'-p-1

1. 1 2
Tl(h) N E:E. jEk' (Xj+pa-xj)
1 2
= —— (k-p)h
p (k-p)
= h2
Calculation of Tf and T;: As Ti = T;, we need only to calculate either of the two.
k+k'-p-1
2 1 2 2
T (h) = — X X.+ - X. L+ - X,
1™ =5 e [Ge5+pa) - x51[(x5*pa)” - x]]
k+k'-p-1
- Eh‘ T (2x. h+h?)
-p j=k' )
h2 k+k'-p-1 )
= ="y z [Z(J-k') a + ap]
P j=k'

We may define a new summation variable jj such that:
i=d-x
Then,

n
(e}

£k, )

and

if j = k+k'-p-1, ji=k-p-1
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Therefore,
2 k-p-1 2 k-p-1
Tf(h) =%1_15 52 +E}-1_p L ap
ji=0 j=0
But ap is independent of j. Hence,
2 ah2 3
Ty(h) = % (-p-1)(k-p) + h
= h’L
Calculation of Tg:
k+k'-p-1 2 k+k'-p-1
) == I [ - x01P ey (2x,+h) 2
p j=k| J ] ‘P j=k' ]
12 k+k'-p-1 o )
= —R-—— z [Z(J-k )a+h]
P j=k'
2,2 k+k'-p-1
=2h T Gk? + aG-knp + pY
k-p j=k'

Introducing the same change of variable as for Ti:

[\S]

2,2
12 - i_g [4(k-P-1)(§iP)(2k-2P-1) + 4(ktp-é)(k-P)P + (k—p)pz]

% 2
=z [2(L-h) (2L-2h+a+3h) + 3h"]

2
T2 - -];— [4L2-2Lh+h+2a (L-h) ]
The multipliers u: were calculated in Appendix C. Therefore,
.. 2 ,.2.,2 2 2
Zul Tt - w(8L2—2; )h™ 12§h ; + gw 5 hg-[4L2 - 2Lh + he + 2a (L-h) ]
S S Lt-a9) (L°-a®)  L(L“-a%)
wh? 2 2 2
= T [(4L +4al-2a ) - 4(L+a)h + 2h ]
L(L"-a"™)
And,
2 wh? 2 2 2
YE(h) = vy(h) - ———7——7—-[2L +2al-a”-a(L+a)h + h"]
L(L™-a"™)

for h =0, a, 2a, ..., (k-1)a.
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APPENDIX F

A NuMERICAL EXAMPLE OF STRUCTURE ANALYSIS

Here we will show how to numerically obtain a semivariogram and to check our initial
hypotheses. We will use as data the depth to the top of a formation in six wells spaced one

km apart along a line.

Z(xl) = 1470 (meters)
Z(xz) = 1482
Z(XS) = 1520
Z(x4) = 1532
Z(XS) = 1544
Z(x6) = 1550

To solve this problem we will follow the ten-step procedure outlined in Algorithm 3.2.1.
Step 1) We will consider a linear semivariogram and a 4 km interval.
y(h) =wh |h| <4
Step 2) We will also consider a linear drift.
m'(x) = a;x
with (xj-xjj) < 4 km for any xj,xj..
Step 3) Our first interval will be (xl,xs).

Step 4) The system of equations we must solve has been developed in Appendix B. Our only
coefficient B, is:

1
. Z(xs) - Z(Xl)
1 4
Hence,
B1 = 18.5

Step 5) The estimated residuals are:

R(x;) = Z(x)) 1470.0

!
o
-
e
]
|
1Y

%0 1 0
R(x,) = Z(x,) - a, - Byx, = 1463.5 - 3,
R(x;) = Z(x35) - a; - Byx, = 1483.0 - a,
R(x,) = Z(x,) - aj - Bjx, = 1476.5 - a,
R(xg) = Z(xc) - a, - Byx, = 1470.0 - a,

Step 6) By Lemma 2.2.2,

|
o

Y (0) =

Yp(®) = 37 I [RGy+a) - Rix)]?
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1/8 (42.25 + 380.25 + 42,25 + 42.25)

63.375

1
Yg(22) = 533

j

I ™MW

| Rexpe2a) - R(xj)]2

1/6 (169 + 169 + 169)

= 84.5
1 2 2
YE(Sa) = Ezi-jzl [R(xj+3a) - R(xj)]
= 1/4 (42.25 + 42.25)
= 21.125
1 L 2
Yp(4a) = 5 I [R(x.+4a) - R(x.)]
E 2 . j ]
j=1
=0
Step 7) For p' = 1, we have a new interval (x2,x6) which is still part of the sequence.
Therefore, we go back to step 4).
Step 4)
Z(x.) - Z(x,)
-6 T2t
B1 = 7] 17.0

Step 5) The new residuals are:

R(xz) = Z(xz) -3, - sz = 1482 - a,

R(XS) = Z(xs) -ag - Bx3 = 1503 - a,

R(x4) = Z(x4) -ay - Bx4 = 1498 - a,

R(xs) = Z(xs) -ay - Bx5 = 1493 - a,

R(x6) = Z(x6) a, - Bx6 = 1482 - a,
Step 6) By Lemma 2.2.2,

¥(0) =0

5
V5@ =g I [RGyra) - R(xj)]2

1/8 (441 + 25 + 25 + 121)

= 76.5

L4
Vg(2a) = 7z L

J [R(x;+22) - R(x;)]°

2
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= 1/6 (256 + 100 + 256)

= 102.0

Ye(3a) = 755

I
I ™MW

2
[R(Xj+33) - R(XJ )]

= 1/4 (121 + 441)

= 140.5

N

2
Yp(4a) = 3 I [RGxya) - Rexp)]?

j=2

=0

Step 7) If we move one step forward up the interval, we need a seventh sample which we
do not have. Therefore, we go to step 8).

Step 8) The average semivariogram for those 6 samples is:

h Yéihl_
0 0.00
1 69.94
2 93.25
3 80.81
4 0.00

Step 9) Omit this step as we have one sequence.

Step 10) Omit this step as well. There are no semivariograms to average.
END

By the proof presented in Appendix D, the semivariogram of the estimated residuals for a

linear drift and linear semivariogram of the real residuals is:

Yg() = y(M) - 54—

The experimental semivariograms we found are independent of the value w chosen for the
slope of the theoretical semivariogram. In other words, whatever w we use, we will end up
with the same semivariograms for the estimated residuals when the semivariogram is a line
through the origin.

However, to remove the bias Ehz/h, the value for the slope is needed. One way to estimate
this slope is by the tangent through the origin of the semivariogram for the estimated results.

For a linear semivariogram and a linear drift, this is:

— L E
W = g (D)
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Hence, for our instance, K)_A is equal to 92.50 [mz/km].

oce

Y(h) 100 me'rersz
(o)

1 1 |

0
2 3 4

h, kilometers

Figure F.1--Comparison between the semivariogram for the estimated residuals with the bias

removed (dots) and the assumed linear semivariogram (open circles).

Figure F.1 is a plot showing how close the semivariogram obtained using the observations

fits a straight line of slope GA' Figure F.2 shows the same semivariograms, but here the bias

for the semivariogram of the estimated residuals has not been removed and the linear semivario-

gram has been biased for comparative purposes.
The curves fit fairly well in both graphical displays.
interval, a linear drift, and a linear semivariogram with a 92.50 [mz/km] slope is appropriate

Therefore, the choice of a 4 km
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100 —

V(h)

| |

0 1 2
h, kilometers

Figure F.2--Comparison between the semivariogram for the estimated residuals (dots) and the

assumed linear semivariogram with a bias added (open circles).
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APPENDIX G
THE ScrREEN EFFECT

The screen effect in universal kriging refers to the lack of influence of a sample at
> . . > . > . .
location X; on the estimation at x, when points Xy exist between the two. It is as though the

>
intervening points hide the point X from point x

A rigorous proof of the screen effect formulis is not particularly instructive. Instead,
we will illustrate the effect with an example. Figures G.1 to G.3 show the weights for 20
points along the sides of a square. Omitted values can be deduced from the symmetry of the
arrays. A linear semivariogram was used to calculate the values. The initial 20 samples
account for 100 percent of the weightings. In Figure G.2 a single curtain of 12 points immed-
iately reduces the contribution of the original points to 20.8 percent. In Figure G.3 a double
curtain of 16 samples further reduces the influence of the original points to only 2.4 percent.
In a critical situation, just one sample at the exact location of the point to be kriged is
enough to reduce the weights of all other points to zero.

The screen effect is a desirable phenomenon when selecting the optimal number of samples

to be used to krige a point. Although theoretically the more samples the better, in practice,

-0.34 0.11 0.19

0] 0] O o ®) o)

®) ®)

(@) O
A

0] O

(®) ®)

O o o ) 0] o

Figure G.1--Weights for universal kriging along the sides of a square. Weighting pattern is

symmetrical.
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-0.02 -0.01 -0.03
o o @) o (@] O
-0.1 0.17
(o) * * * * (o]
@] * * O
A
@] * * O
(o) * * * * o
o (0] o o (@] o

Figure G.2--Screen effect, showing reduction in weights assigned to points on a square by inser-

tion of a curtain of 12 points.

-0.002 -0.001 -0.002

(@] o (@) o O (@]
-0.008 -0.008

(@) * * * * (@]
0.28

O * + + * (@]

A

(@) * + + * (@)

(o) * * * * O

o O (@] (@] (0] (e

Figure G.3--Screen effect produced by insertion of a double curtain of 16 points.
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computational efficiency demands the fewer the better. The screen effect provides a useful
criterion for finding an optimal balance. In Figure G.3 the 16 samples nearest the point to
be estimated are sufficient to krige that point as they account for more than 97 percent of the
total weightings. This represents an average of only two samples per octant.

This conclusion is restricted to a regular and symmetric array of samples. However, experi-
ments with randomly distributed points show that there is no significant improvement in the es-
timation variance or change in the kriged value for more than two samples per octant. With each

doubling of the number of samples, the computation time increases by four times.
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