Kansas Working Papers in Linguistics

Volume 8, Number 1

Edited by Letta Strantzali

The editor would like to express her thanks to

the faculty and staff for their help in the
preparation of this volume. Funding for this
journal is provided by the Graduate Student Council
from the Student Activity Fee.

(© Linguistics Graduate Student Association
University of Kansas, 1983

Reprinted 1992

CONTENTS

Maria Alzira Nobre
Frances Ingemann

Patricia J. Hamel

Andrea G. Osburne

Philip Hubbard

Mark J. Elson
Hiroshi Nara
Kenneth L. Miner
Barbara Lynn Taghva

Anne M. Ediger

Contents of Previous Volumes

Kansas Working Papers in Linguistics

Volume 8, number 1, 1983

Oral Vowel Reduction in Brazilian
Portuguese

Brazilian Portuguese Stressed Vowels:

A Durational Study
Comma Intonation in a Tone Language

Albanian Reflexives: Violations of
Proposed Universals

The Generative Relationship

On Michael Dummett's Notion of
Decidability

Computerized Permutation of Pikean
Field Metrices

An Analysis of Sex Stereotypes in
the Japanese Language

31

b7
63

73
87

97

107

129

COMPUTERIZED PERMUTATION OF PIKEAN FIELD MATRICES

Eenneth L. Miner and Barbara Lynn Taghva
University of Kansas

Present-day computer technology ought to encourage re-examination
of pre-computer linguistic concepts, especially tools for analysis,
since some earlier ideas, difficult to apply or work with when offered,
may turn out to be useful if computerized. Here we give one example of
such an investigation, that of Pike's field matrix permutation.

Pike 1962 explored the concept of grammatical systems, or more
properly sub-systems, as matrices, with categories (syntactic, morpho-
logical, phonological, semantic) as parameters and formatives as inter-
sections of parameters, or cells. Pike 1963 put forward the idea of
matrix permutation as a tool in linguistic analysis. This technique,
like many, perhaps all, good ones, was of course always implicit in
linguistic work, and Pike's contribution was to show how it might be sys-
tematized. We will have nothing to say here about the implications of
matrix permutation for Pike's theory of language, or indeed for any
theory of language, but will regard it merely as a tool for organizing
data and revealing generalities.

In our discussion we will use, as data, Taos verbal prefixes as de-
scribed in Trager 1946.! One first sets up a matrix of the familiar sort,
with rows and columns determined by an arbitrary arrangement of categories,
as in Table 1.

Table 1. Initial Taos Matrix

3

&
o
[uw)
<

o=

(vs]

o)

-

sg 1 du 1 pl 2 sg 2 du 2 pl

2sg| o ku 1 may may may X X X
3sg| @ u i 0 an a3 2 man ma

1 du| gn kan gpen X X X a mgpen mapi
3du| gn gn gpen O an i 2 mgn ng
2 du |man mgn mgpen may may may X X X

2 pl | ma maw mapi may may may X X X
1pl] 1 kiw ipi X X X a mapen mapi
3pl| 1 iw ipi o an i a man ma
1sg | ti 0 pi X X X a mgpen mapi

Kansas Working Papers in Linguistics, 1983, volume 8/1, Pages 97-106

98

Then successive permutations of rows and columns are made in order to
bring similar formatives together. The goal is to obtain blocks (and
other patterns of distribution; see below) so that generalizations can be
made. For the data in the initial matrix of Table 1, a possible final
matrix is given in Table 2.

Table 2. Final Taos Matrix.

OBJ

SUBJ 2 sg 1pl 1 sg 1T du A B C 2 pl 2 du
3 sg _@_ i o E_Q}J‘l—“: @ u i mg man
3 pl a i 0 i an i i iw ipi ma man
3 du 2 i 0 : gn gn gn gpen _ I;l«% mr;l;n"_
ral el x (X @ ke we | sl sew
1 pl E@ X X X i kiw ipi mapl mapen
1 sg ég X X X ti o pi mapi mapen
2 sg %X may may may; o ku 1 X X
2 pl EX may may may| | ma maw mapi X X
2 du i%_ | may may may| | man man mapen X X

It is revealing to line in the occurring patterns of distribution, as has
been done here.

At least five generalizations can be tentatively made from Table 2:

i. @g- marks 2 sg OBJ
ii. mg- marks involvement of 2nd person
iii. -n- marks dual number
iv. -pi-, with alternant -pe- before -n, marks 1 acting on 2
v. may- marks 2 acting on 1, and takes precedence over, or
in Pike's terms "outranks", ii. and iii.

Pike himself would no doubt carry the analysis further, but we wish here only
to illustrate the method. Note that in the "final" matrix there is a resi-
due involving i- and o-. A new matrix can sometimes be set up to examine,

by the same method, such a remainder.

Although the exact pattern of distribution of formatives depends
partly on how the parameters are set up, certain patterns tend to recur in
a significant way:

)

1. A linear pattern, such as that for a-, tends to reflect marking
of one parameter on one axis, in this case, 2nd sg object.

2. A block pattern, such as that for may-, tends to reflect marking
of a combination of parameters, one on each axis, in this case, 2nd person
acting on 1st person.

3. An L-shaped pattern, such as that for -n-, tends to reflect
marking of one parameter on both axes ("involvement" marking), as in this
case, involvement of dual, either as SUBJ or OBJ.?2

4. A stairway pattern, such as that for the Koryak prefix ne- vs.
its absence (Comrie 1980) shown in Table 3, tends to reflect hierarchical
marking, as in this case, where the hierarchy is 1p > 2p > 3 sg > 3 pl:
ne- occurs when the subject is lower on the (animacy) hierarchy than the
object. For Algonquian examples of this see Morgan 1966.

Table 3. KXoryak prefix ne-.

SUBJ

O0BJ 1p 2p 3p sg 3p pl
1p ne- ne- ne-
2p ne- ne-
3 sg ne-
3pl ne-

(adapted from Comrie 1980: Table 3, p. 68)

The matrix permutation technique was applied to several languages
in Erikson 1962 and 1965 and Pike and Erikson 1964. Hockett's negative
response to the Potawatomi applications (Hockett 1966), which became
quite well-known especially among Indianists, may be one reason for the
subsequent lack of interest in the technique, at least as far as the
literature reveals (but for a recent re-statement see Pike 1975). This
criticism, however, had much more to do with the handling of the Potawa-
tomi data than with the technique of analysis.

Another reason for subsequent neglect of the technique may well be
thatit is quite laborious. There seems to be no alternative to drawing a

100

new matrix after each permutation or two, increasing the likelihood of

error each time. It should be obvious that, in principle, very complex
data could be sorted out quite easily with a compubter program and a CRT
display.

Qur program is written in FORTRAN, which, although it was not de-
signed for character manipulation or list processing, seemed best for the
initial experiment. Among its initial advantages are its portability (it
can be run on many types of equipment) and its usability by untrained in-
vestigators. More important, the type of formatting required for matrix
permutation turns out to be difficult to handle with other presently
available programming languages.

An actual run of our program follows, except that since thirteen
matrices are involved (our program will only carry out one permutation at
a time) we will spare the reader all but the first and last; and we will
spare him/her these also, since they are only slightly coded versions of
Tables 1 and 2 respectively.

After the run, the program itself is given.

Finally, we close with a brief discussion of problems and limitations.

*FIN -NWRN /HOMEWORK/MATRIX1

NO.OF ROWS YOU NEED

=10

NO.OF COLUMNS YOU NEED

=10

TYPE IN ROW 1 SEPARATED BY COMMA'S
= ,A,B,C,1sg,1d1,1pl,2s8g,2d1,2pl
TYPE IN ROW 2 SEPARATED BY COMMA'S
=2psg, 0,ku, i,may,may,may,x,x,X

TYPE IN ROW 3 SEPARATED BY COMMA'S
=3psg,0,u,i,0,An,i A, mAn,mA

TYPE IN ROW 4 SEPARATED BY COMMA'S
=1pdl,An,kan,Apn,x,x,x,A, mApn,mApi
TYPE IN ROW 5 SEPARATED BY COMMA'S
=3pdl,An,An,Apn,o,An,i, A, mAn,mA
TYPE IN ROW 6 SEPARATED BY COMMA'S
=2pdl,mAn,mAn, mApn, may ,may ,may,X,X, X
TYPE IN ROW 7 SEPARATED BY COMMA'S
=2ppl,mA,mAw,mApi, may,may,may,X,x,X
TYPE IN ROW 8 SEPARATED BY COMMA'S
=1ppl,i,kiw,ipi,x,x,x,A,mApn,mApi
TYPE IN ROW 9 SEPARATED BY COMMA'S
=3ppl,i,iw,ipi,0,An,i,A,mAn,mA

TYPE IN ROW 10 SEPARATED BY COMMA'S
=1psg, ti,o,pi,x,X,x,A,mApn,mApi
YOUR MATRIX IS

Lcoded version of Table 13

TYPE COMMAND
=C 10 5
YOUR MATRIX IS...

TYPE COMMAND
=C 10 6
YOUR MATRIX IS...

TYPE COMMAND
=R 2 8
YOUR MATRIX IS...

TYPE COMMAND
=R 5 10
YOUR MATRIX IS...

TYPE COMMAND
=R 7 7
YOUR MATRIX IS...

TYPE COMMAND
=R 73
YOUR MATRIX IS...

TYPE COMMARD
=R 4 5
YOUR MATRIX IS...

TYPE COMMAND
=R 7 8
YOUR MATRIX IS...

TYPE COMMAND
=C 10 2
YOUR MATRIX IS...

TYPE COMMAND
=C 10 3
YOUR MATRIX IS...

TYPE COMMAND
=C 10 4
YOUR MATRIX IS...

TYPE COMMAND
=C 10 4
YOUR MATRIX IS

[coded version of Table 21

TYPE COMMAND
=500

*JOURN OFF

101

10

20

30

102

*Program name : Matrix Permutation

*

*Written by : Barbara Lynn Taghva

*

*Input : This program will read in the rows of an n by m matrix

3
3

(for 0 =< n <= 10 and 0 =< m <=10). Each entry in
the matrix can be a string of up to four characters. The

= entries shoud be separated by commas.

3

* Three kinds of commands can be given to the program,as
& follows:

¥*

= (1) R 1 j

& (2) C 1 j

i (3) $ 0 0

#* The first command will move row i to row j, while the
* rest of the rows are displaced in a circular fashion.
3*

The second command will move column i to column j,

i while the rest of the columns are displaced in a

& circular fashion.

*

® The last command will stop the program.

¥*

*Output : The original matrix and all of the subsequent matrices
i will be displayed.

3

*Errors : The error "illegal input string---- ignored" is the

* only error message which will be displayed. This error
¥ indicates that the user is not following the correct
format of the commands. In the case of error, the

® Error Routine will issue this message and ignore

& the command.

¥*

3

CHARACTER *1 CHAR
CHARACTER #*4 A(10, 10)

INTEGER M, N, X, Y
PRINT, 'NO.OF ROWS YOU NEED!
READ, M

PRINT, 'NO. OF COLUMNS YOU NEED!
READ, N

DD20I=1, M

WRITE (42, 10) I
FORMAT (1X, 'TYPE IN ROW ' , I2, 'SEPARATED BY COMMA''S!')
READ, (A(I, J), J =1, N)

CONTINUE
CALL OUT (A, M, N)

PRINT, 'TYPE COMMAND'

READ, CHAR, X, Y

IF ((CHAR .NE. 'R') .AND. (CHAR .NE. 'C') .AND. (CHAR .NE. '$'))

&

GO TO %0

40
50

10

20

30
ko

10
20

30

IF ((CHAR .EQ. 'R') .AND. ((X .GT. M) .OR. (Y .GT. M
IF ((CHAR .EQ. 'C') .AND. ({X .GT. N) .OR. (Y .GT. N

IF (CHAR .EQ. '$') GO TO 50

CALL MOVE (A, M, N, CHAR, X, Y)
CALL OUT (A, M, N)

GO TO 30

GO TO 50

PRINT, 'ILLEGAL INPUT STRING --- IGNORED!
GO TO 30

STOP

END

SUBROUTINE OUT (A, M, N)

CHARACTER * A(10, 10)
INTEGER M, N, I, J
CHARACTER #3 COL(10), ROW(10)
D010 I =1, 10
COL(I) = 'COL!
ROW(I) = 'ROW!
CONTINUE
PRINT, 'YOUR MATRIX IS!
PRINT, ' !
PRINT, ' !
WRITE (42, 20)((CcOL(I), I), I =1, N)
FORMAT (' ' , 6X, 10(A3, I2, 1X))
PRINT, ' !
DO 40 I =1, M
WRITE (%2, 30) ROW(I), I, (A(I, J), J =1, N)
FORMAT (* ' , A3, I2, 1X, 10(A%, 2X))
PRINT, ! !
CONTINUE
RETURN
END

SUBROUTINE MOVE (A, M, N, CHAR, X, Y)
CHARACTER *4 A(10, 10), TEMP
CHARACTER 1 CHAR
INTEGER M, N, X, Y, I, J, L
IF (CHAR .EQ. 'C') GO TO 60
IF (X .LT. Y) GO TO 30
DO 20 K = 1, X-Y
I=ZXK
DO 10 J =1, N
TEMP = A(I, J)
AT,) = A(T+1, J)
A (I+1, J) = TEMP
CONTINUE
CONTINUE
G0 TO 120
DO 50 I = X, Y-1
DO 40 J =1, N
TEMP = A(I, J)
A(I, J) = A(I+1, J)
A)I+1, J) = TEMP

)
)

)
)

)
)

GO
GO

TO 4
TO 4

103

%0
50

60

70
80

90

100
110
120

104

CONTINUE
CONTINUE
GO TO 120
IF (X .LT. Y) GO TO 90
DO B0 E =1, Y
I & XK
DO 70 I =1, M
TEMP = A(I, J)
AT, 7) = A(T, J+1)
A(I, J+1) = TEMP
CONTINUE
CONTINUE
GO TO 120
B0 100 J=.K, T
DO 100 I =
TEMP = A(
A(I, J) =
A(I, J+1)
CONTINUE
CONTINUE
CONTINUE
RETURN
END

This program is limited in certain ways. Because of the size of the
customary CRT field, the attainable matrix size is too small. If one allows
four character spaces per cell and two spaces between columns, as we have
done in the foregoing, we have a maximum of eleven columns. Thus it was
necessary to adapt even this data, which was deliberately chosen to be
managable. In the run, mApn represents mgpen-, Apn represents gpen-. The

rogram can be modified in this regard by changing lines 2, 30, 32, 41,

5 and 51. For example, if a user decides to represent the formatives with
arbitrary symbols -- using, say, one character per cell -- the number of
possoble columns increases to 36. This would of course necessitate con-
stant decoding between permutations. CRTs with larger capacity are however
now beginning to become available.

Another limitation on this particular program is that the numbering
of rows and columns remains constant, as illustrated below. Suppose the
command is: move row one to row three, The change will be, e.g.,

C1 ce Cc3 C1 ce (45
R1 a b c R1 d e f
R2 d e f R2 a b c
R3 a b c R3 a b c

105

rather than: 1 ce C3
R2 d € £
R3 a b c
R1 a b c

This could be a serious problem: the formatives in a given row or column
remain constant while their arrangement changes, but if two rows or two
columns happened to have the same formatives, one could lose the distinction
between them during the procedure. This problem is solvable in FORTRAN, but
the resulting extra storage needed would have drastically increased the cost
of running the program. For this reason, row 1 and column 1 were used for
labelling at the time of input.

There are two further limitations which are caused by the nature of
the language FORTRAN. First, each time a user implements the program it
is necessary to type in the data. That is, if I work on Tacs three times
I must type in the data each time. Second, it is impossible to obtain a
copy of only the last, or final, matrix. In a different programming
language, these problems would be solvable,

It is obviously desirable to find or develop a more suitable pro-
gramming language for matrix permutation. 1In addition it 1s desirable to
allow more than one permutation at a time, to use more than two parameters
(perhaps), and to be able to store and retrieve a portion of a given
matrix as a separate matrix. 1In spite of these initial difficulties, in
principle Pike's technique can be rather easily computerized. No doubt
there are other such techniques, perhaps some due to this same highly ori-
ginal linguist, which would lend themselves usefully to the computer.

FOOTNOTES

1 A, B, and C are special classes of 3rd person singular object. Abbrevia-
tions: sg = singular; pl = plural; du = dual; 1, 2, 3 = person indices;
p = person; 0OBJ = object; SUBJ = subject.

2 These results are not intended as a contribution to the study of Tiwa,
but as part of a demonstration. We emphasize this in the hope of avoiding
a confrontation under some such heading as "What Tanoan is really like"!

106

REFERENCES

Comrie, Bernard, 1980. Inverse verb forms in Siberia: evidence
from Chukchee, Koryak, and Kamchadal. Folia Linguistica
Historica I:1.61-Th.

Erikson, Barbara E., 1962. Application of matrix theory to subject-
object reference in Potawatomi verbs. Mimeographed charts,
University of Michigan.

——————————————————— , 1965. Patterns of person-number reference in
Potawatomi. International Journal of American Linguistics 31.

226-236.

Hockett, Charles F., 1966. What Algonquian is really like. Inter-
national Journal of American Linguistics 32:1.

Kennedy, M., and M. B. Solomon, 1965. Ten Statement FORTRAN Plus
FORTRAN Four. Prentice-Hall: Englewood Cliffs, New Jersey.

Morgan, James O., 1966. A comparison of the transitive animate
verb in eight Algonquian languages. Anthropological Linguistics
8:6.1-16.

Pike, Kenneth L., 1962. Dimensions of grammatical constructions.
Language 38.221-323.

---------------- , 1963. Theoretical implications of matrix permu-
tation in Fore (New Guinea). Anthropological Linguistics 5.1-23.

———————————————— , 1975, On describing languages. In Robert Auster-
litz, ed., The Scope of American Linguistics. Peter de Ridder
Press: Lisse (=Papers of the First Golden Anniversary Symposium
of the LSA) pp. 9-38.

---------------- , and Barbara E. Erikson, 1964%. Conflated field
structures in Potawatomi and Arabic. International Journal of
American Linguistcs 30.201-212.

Trager, George L., 1946. An outline of Taos grammar. In Linguistic
Structures of Native America, Harry Hoijer, ed. (=Viking Fund
Publications in Anthropology 6) pp. 184-221. Johnson Reprint
1967.

