YVolvme 9
AN A S 1987

MW o5 ING

P A gERS

)

LI Gug g TICS

edited by

Letta Strantzali

(© Partial funding for this journal is provided by the
Graduate Student Council from the Student Activity Fee

Linguistics Graduate Student Association AMERMN

University of Kansas, 1984

Studies in Native American Languages II1
Kansas Working Papers in Linguistics

Volume ¢, 1984

Articles

Paul Voorhis Catawba Morphology in the Texts of Frank
Speck and of Matthews Red Thunder Cloud

Nile R. Thompson Lexiecal Representation of Salish Verb

Douglas W. Isaacson Roots: A Preliminary Examination

John E. MecLaughlin A Revised Approach to Southern Paiute
Phonology

John E. McLaughlin JENNY: An Interactive Program in Basic
for Analyzing Comanche (and Other) Texts
(With Sample Text)

Danna Barrager Description of a Pikean Field Matrix
Permutation Program

David L. Shaul Esselen Linguistic Materials

Katherine Turner
James Collins

Joseph F. Kess The Structure and Function of Nootkan
Anita Copeland Baby Talk

Contents of Previous Volumes

31

b7

81

95

127

141

165

DESCRIPTION OF A PIKEAN FIELD MATRIX
PERMUTATION PROGRAM

Dana Barrager

Abstract: This paper presents a program which may
be used to perform Pikean field matrix permutations
and other matrix operations. The use of the program
is also demonstrated. This program can be a useful
tool for analyzing data from highly inflected
languages.

Pike (1963) suggested a matrix treatment of formatives as a tool
for analyzing morphological data. His technique involves compiling the
data in a matrix format and permuting the matrix to other matrices.
These matrices may be analyzed and information abstracted from them.
Intuitively, this is a very appealing approach. Permuting the matrices
is, however, a very tedious process, and it is doubtful that a human
could produce very useful results performing these manipulations by
hand. Also, hand permutation tends to propagate errors in the
matrices.

With the advent of computer availability to researchers, for-
tunately, these problems are easily solved. Computers are perfectly
suited for manipulating bodies of data, such as matrices. Pikean field
matrix permutations may be easily performed using a computer program.
This paper describes one such program. This program is a development
of another program presented in Miner and Taghva (1983). Readers
should refer to the earlier paper for a more detailed discussion of how
to interpret particular matrix configurations and why these matrix per-
mutations are useful. The program presented in Miner and Taghva is not
very powerful. The program presented here is more powerful. In par-
ticular, this program uses input and output files so that the matrices
may be stored as computer files and do not have to be typed in every
time the program is run. In addition, the individual cells may be much
larger, and there are several new commands which the earlier program
did not have. This program is presented as a tool linguists may wish
to use to assist in analyzing morphological data. The savings in time
and frustration are proportional to the complexity of the data. Data
from highly inflected languages, therefore, are very good candidates
for input to this program.

One of the greatest difficulties of matrix analysis is entering
the data correctly. The program makes this much easier by reading the
data from a file in the computer. Once the data is entered, it may be
inspected, modified, and verified. After this process is complete, the
data is ready to be used with the program. The data need never be en-
tered again. It may be manipulated, and sections of the matrix may be

Kansas Working Pepers in Linguistics, 1984, Volume 9, Pages 95-126

96

removed, and the resulting matrices may be stored on other files which
can also be used as input to the program. The use of input and output
files makes this a very useful tool in morphological analysis of highly
inflected languages.

The program provides other useful features which will be
described in the subsequent pages. These features are summarized here.
The data is entered as "cells" of the matrix. A cell of the matrix is
an element which may be referenced by one row name and one column name.
For example, the table on the following page gives a subset of the
Chukchi verb paradigms, provided by Scott R. Krause (1983). This data
will be used for examples in this paper. In this matrix, the cell
referenced by row name 3sg and column name 1pl is the unit "-mak'". The
coding scheme is given after the data. The program manipulates rows or
columns of cells, and in some cases, blocks of cells. Rows or columns
may be moved, merged into other rows or columns, or removed from the
matrix.

The matrix is presented here exactly as it is stored in the com-
puter file which is used as input to the program. The numbers at the
top of the matrix provide formatting information for the program which
will be explained shortly.

The cells may vary in size from one row per cell to five rows per
cell, and from one column per cell to ten columns per cell. This per-
mits a broad range of data to be handled. The matrix itself has a
limit of 50 rows and 150 columns. This seems like a reasonable size
for manipulating language data, but this size may be expanded if neces-
sary by changing constants in the program and recompiling the program.
If very large matrices are used, a problem exists in displaying the
data on a standard Cathode Ray Tube (CRT) terminal. Normally only
twenty-four rows and eighty columns may be displayed. There are two
solutions to this problem: use a terminal which may display more rows
or columns, or use the output files the program provides and have the
output files printed on a line printer. Either of these methods will
permit larger matrices to be examined.

The program provides a degree of assistance in using it. The In-
ventory procedure, for example, will give the user a list of commands
which may be used, if "I" or "i" is entered in response to the COM-
MAND: prompt. Alsc, most of the commands request specific information
which is required for processing the command. This means that complex
command syntax need not be memorized. Since the commands are all
single letters, and there are relatively few commands, memorizing them
should not be a problem.

97

39 21 63
s\o 1sg 2sg 3sg 1pl 2pl 3pl
1sg -gat -n-an -n/N -N-ane-t
-tak
2sg -g%e -N-an -tlen -N-ane-t
-gle
3sg -gle -gat -g/Na -mak -n/Na -g/Na-ni
-ni-n -tak -ne-t
1pl -gat -N-an -n/Na ~N-ane-t
-tak
2pl -n/Na -Na-tka -tku-n ~-Na-tka
-tak -tak
3pl -gam -gat -N-an -mak -n/Na -N-ane-t
~tak
Symbol IPA Equivalent
a)
? ?
8 ¥
N n

Chukchi Verb Paradigm and Coding Scheme

The program is written in Pascal programming language, which has
nice features, such as advanced file-handling capability, for this ap-
plication. The program is standard Pascal with the exception of the
ELSE clause in the CASE statement in the main program. Many compilers
support the ELSE in a CASE statement, but if not, this line may be left
out and the program will still run. However, without this line, execu-
tion will terminate if an illegal command is entered. There are ways
of preventing this problem without the use of the ELSE in the CASE
statement, such as using nested IF-THEN-ELSE statements in place of the
CASE statement.

The program was written to make modification as easy as possible.
The program is, due to the broad range of matrices it will accept,
rather complex. However, the program is divided up into a large number

98

of procedures which perform specialized functions. This means that the
program may be customized for specific applications with comparative
ease. Interior documentation is provided to assist the wuser in
figuring out how the program works. The program modularity also per-
mits new features to be added using the procedures which already exist.
The main program consists largely of a series of procedure calls, built
around a list of comands. New commands may be inserted into the list
relatively easily.

There are several commands which are not implemented in the
program which might be useful. Some ideas have been: a command to
transpose the matrix and a command to remove submatrices in a single
step. A particularly interesting suggestion is to add another display
mode. Rather than printing the entire matrix every time the display
command is entered, only as much of the matrix as could be displayed
would be printed. This would provide a "window" for examining the
matrix which could be moved around to view different parts of the
matrix. This would make examining large matrices considerably easier.

Another command which would be very useful, but would be rather
difficult to implement, is a command to automatically perform permuta-
tions and produce the "best'" matrix according to some pattern recogni-
tion scheme. The difficulty with this lies in the problem of defining
an algorithm which can identify desirable matrix configurations. It is
an interesting problem, however, which merits further investigation.

Using the Matrix Permutation Program

This section illustrates the use of the matrix permutation
program. The information presented in this section is in-
dependent of the system the program is implemented on.

1. The Data File: The distinction between logical and physical
rows and columns is vital in understanding how to use this program.
A physical row consists of one line of the matrix, whereas a
logical row may refer to one, or several, physical rows. A
logical row can be referenced by a name, as in the following ex-
amples: 1sg refers to the physical row on which the letters "lsg"
occur, the next row, which is a continuation of the first, and a
blank row. In this matrix, all 1logical rows consist of three
physical rows.

The same distinction applies to logical and physical
columns. In this matrix there are nine physical columns per logical
column. A '"cell"™ is a space which may be referenced by one
logical row and column name, in this matrix a three by nine sub-
matrix. The number of physical columns or rows per logical row or
column 1is determined by the user, who should base this decision upon
the data. In this program, up to five physical rows per logical row

99

and up to ten physical columns per logical column are permitted.
One cell may therefore contain up to 50 characters. Usually,
however, a blank physical row and a blank physical column between
logical rows and columns is desirable to avoid confusion. This means
that usually a maximum of 40 out of a possible 50 character
positions in a cell will be filled. The program will permit 50 total
physical rows and 150 total physical columns. These limitations
may be changed quite easily by changing constants in the program
before compiling the program.

When creating data files, the blank spaces must be kept in
mind. The program will not automatically generate blank spaces
between cells; they must be incorporated into the data file itself.
The data file which this program runs on is called by default
"datafile". When the program is run, it looks for a file called
"datafile", if no alternate data file is specified. An alternate data
file may be specified in some system-dependent manner. A data file,
in order to function properly with this program, must consist of
the following: the first non-blank line of the file should list, in
this order: 1) the number of physical rows per logical row 2) the
number of physical columns per logical column 3) the total number
of physical rows in the matrix, including blank rows 4) the total
number of physical columns in the matrix, including blank columns.
The mnext line should begin the 1listing of the data. It is suggested
that one logical row and column be reserved for headings. This is not
necessary, but helpful.

After the data file has been prepared, you are ready to
manipulate the data. The rest of this section explains the use of the
commands within the program. Henceforth, all uses of the terms row and
column refer to logical rows and columns unless explicitly stated
otherwise. All of the commands described here refer to logical
rows or columns. A row or column is referenced simply by typing the
first element in that row or column. That is why headings are not
strictly necessary.

2. Inventory--I: The commands all consist of one letter, which may
be wupper- or lower-case. All commands are designed to be as mnemonic
as possible, and the I command, which stands for Inventory,

incorporates the mnemonics. When you run the program, vyou will first
get a listing of the data. Then you will receive a message telling
you that vyou may obtain a listing of all commands by typing I.
Then you will be given the COMMAND: prompt. You will be given this
prompt whenever the program is ready for a command to be entered. You
need not be concerned about upper- and lower-case distinctions in com-
mand names. All command names may be entered in either case. In text,
I am using upper-case letters for commands to emphasize them. In ex-
amples, they are lower-case. Row or column names, however, must be
entered exactly as they appear. For example, the sequence "R 1lsg 2sg"

100

is exactly equivalent to "r 1lsg 2sg" but not to "R 158G 25G". Here is
an example of the I command:
If you need an inventory of commands, type "I".
command: i
Command Mnemonic Function
D - Display - Print matrix at terminal
P - Permanent - Write matrix to permfile
T - Temporary - Write matrix to tempfile
C vl y2 - Column - Move column yl1 to y2 position
R x1 x2 - Row - Move row x1 to X2 position
S - Strip - Create submatrix
M - Merge - Combine two rows or columns
Q - Quit - End Session
I - Inventory - Display inventory of commands
command :
Example 1. - Inventory of Commands
This listing tells you what commands are available, a mnemonic for

remembering that command, and a short description of what that com-
mand does. The command I may be entered at any COMMAND: prompt,

enabling you to review what commands are available at any time.

3. Display--D: When you run the program, it retrieves the data from
a file and stores it in memory. It automatically displays the data

once. From then on, it is your responsibility to tell

the

program when to display the data. This is done by entering the D (or
d) command on the COMMAND: line. The program will then display the

data.

A number of commands may be entered on one line Dbefore
hitting RETURN, which causes the command line to be processed. Com-
mands on the command line are separated by blanks. As you become

101

familiar with the way the commands work, you will want to place
several commands on a line. Frequently, you will want the last command
on the line to be D. This will cause the matrix to be displayed
after all other commands are processed. You may place the D command
before other commands, but this is not very useful. However, if
you make a mistake typing a command, that command and all subsequent
commands on that line will be ignored. You may then have to enter the
D command to find out how far the program got before it found an er-
ror. You will see numerous examples of the D command.

4. Moving Columns and Rows--R and C: These two commands are discussed
together since they work in a similar fashion. What they do is
provide the basic matrix permutations as described by Pike. They
are the only commands which accept arguments. All other commands will
query you for the necessary information. They each require two ar-
guments: two row names or two column names. A row or column name is
simply the first item in that row or column. They each move the first
argument to the position of the second argument, and move everything
between the first and second arguments, including the second argument,
in the direction of the first argument to fill up the hole. Here are a
couple of examples to demonstrate how this works. All examples involve
manipulations of the previous matrix displayed, in this case the Chuk-
chi verb paradigm matrix as shown at the beginning of the paper.

102

command: r 1lsg 3pl
command: ¢ 2sg 3sg
command: d

s\o 1sg 3sg 2sg 1pl 2pl 3pl
2sg -g?e -N-an -tlen ~N-ane-t
-gle
3sg -g?e -g/Na -gat -mak -n/Na -g/Na-ni
-ni-n ~tak -ne-t
1pl -N-an -gat -n/Na -N-ane-t
-tak
2pl -n/Na -Na-tka -tku-n -Na-tka
-tak -tak
3pl -gam -N-an -gat -mak -n/Na -N-ane-t
-tak
1sg -n-an -gat -n/N -N-ane-t
-tak
command:
Example 2. - Moving Rows and Columns

In this example, row lsg was moved to the position of 3sg, then 3sg and
2sg were moved up one position. Then columns 2sg and 3sg were
switched, and the matrix was displayed using the D command.

Since a large number of commands can be entered on one line, you
can do a number of permutations at once, and display the final
result. In this example, the previous matrix is permuted using several
commands simultaneously, and then displayed using a D command at the
end of the line.

103

command: r 1lsg 3sg ¢ 3pl 2sg r 1pl 2pl d

s\o 1sg 3sg 3pl 2sg 1pl 2pl
2sg -g?e -N-an -N-ane-t -tlen
-g?e
1sg -n-an -N-ane-t -gat -n/N
-tak
3sg -gle -g/Na -g/Na-ni -gat -mak -n/Na
-ni-n -ne-t -tak
2pl -n/Na -Na-tka -Na-tka -tku-n
-tak -tak
1pl -N-an -N-ane-t -gat -n/Na
-tak
3pl -gam -N-an -N-ane-t -gat -mak -n/Na
-tak
command :
Example 3. - Moving Rows and Columns

5. Writing Data to Files--T and P: A wuseful feature of this program
is that you may at any point write the matrix you have obtained out
to a file. This file may then be printed or used in subsequent
runs of the program. This means that you can save your work at any
point and return to it at that point.

Two files, called "permfile"” and "tempfile' are provided for this
purpose. Regardless of the names, both of them are temporary
files. The names were chosen because it is likely that you will wish
to write numerous versions of the matrix out to the file called
"tempfile", which you can then print, and save a final version of
the program on "permfile" for subsequent use. This is entirely up
to the wuser, however. Since they are temporary files, they will
be 1lost when the time-sharing session ends. Steps must be taken to
preserve them, if they are going to be needed later. The use of out-
put files 1is a feature of Pascal which adds significant power to the
program. Once a body of data has been placed in a matrix on a file,
it need never be entered again, but may be manipulated using the
program and restored.

10L

The commands used to write a matrix to a file are P and T. As
their names suggest, P writes the matrix to the file called "perm-
file", and T writes the matrix to the file called "temp-
file". The matrix may be written to a file several times during a

single session; the matrices will simply be placed one after the
other on the file. If you exit the program and then run the program
again during the same time-sharing session, anything stored on
"tempfile" or 'permfile" will cease to exist. Here is an example of
writing to a temporary file:

command: t

Matrix written to temporary file called tempfile.
Save or print tempfile.

command :

Example 4. - Writing to Temporary Files

6. Merging Columns and Rows--M: In some cases, it may be desirable
to merge two columns or rows. This is accomplished with the M com-
mand. The program will ask you if you wish to merge rows, columns, or
nothing, to which you respond R, C, or N. N permits you to change
your mind. If you respond with R or C, you will be asked which
columns or rows should be merged, to which you should respond with two
row or column names. The second row or column you specify will then be
merged into the first.

The order you specify the names is important. The first row or
column you specify will retain its integrity in the merge. That is,
no information that was in the first row or column will be lost. In-
formation may be lost in the second row or column if there is data in
the same cell in both the first and second. The first one specified
always takes precedence over the second. After the merge, the
program tries to find a blank spot in the heading to place the second
name you specified. This will usually be in the same column and in
the following physical row as the first name you gave. Here is an ex-
ample using M:

command: m

Merge columns(C) or rows(R) or none(N)
r

Enter rows to be merged: 1sg 1pl
command: d

s\o 1sg 3sg 3pl 2sg 1pl 2pl
2sg -g%e -N-an -N-ane-t ~tlen
-gle
1sg -n-an -N-ane-t -gat -n/N
/1pl -tak
3sg -gle -g/Na -g/Na-ni -gat ~mak -n/Na
-ni-n -ne-t -tak
2pl -n/Na -Na-tka -Na-tka ~tku-n
_tak "tak
3pl -gam -N-an -N-ane-t -gat ~mak -n/Na
-tak
command:

Example 5. - Merging Columns or Rows

In this example, rows 1lsg and 1pl were merged, with no loss of informa-
tion in either row, since the two rows were identical before the merge.
This is a way to reduce a matrix when redundancy occurs 1in rows and
columns.

7. Removing Elements--S: The most complicated command is the S com-

mand, which stands for Submatrix or Strip. This command will remove
blocks of the matrix, of any size, so long as they are rectangular in
shape. Irregular shapes may be removed by using the command several

times. To use this command, type S on the command line. The program
will ask you for the first and last columns you wish to affect. To
this you may respond with a single column name, two column names, or
N for none. If you respond with a single column name, the program
will assume the S command to affect only that column. If you
respond with two column names, a range between, and including,
those columns will be affected. If you enter N, none of the columns
will be affected.

106

The program will then ask you which rows you wish to be af-
fected. Again, you may respond with one row name, two row names,
or N. The program will then mark the rows and columns you specified
in response to these queries.

The next step will be to remove all of those columns and
rows 1in the boundaries you have instructed the program to use. In
the following example, a block consisting of four cells is removed by
specifying two row names and two column names.

command: s
Enter first and last columns (if any) to be stripped. (N = none)

3pl 2sg
Enter first and last rows (if any) to be stripped. (N = none)
lsg 3sg
command: d
s\o 1sg 3sg 3pl 2sg 1pl 2pl
2sg -gle -N-an -N-ane-t ~tlen
-gle
1sg -n=an =-n/N
/1pl -tak
3sg -g?e -g/Na -mak -n/Na
-ni-n -tak
2pl -n/Na -Na-tka -Na-tka -tku-n
-tak -tak
3pl -gam -N-an -N-ane-t -gat -mak -n/Na
-tak
command:
Example 6. - Removing Columns or Rows
If an N response is given to both questions, nothing will Dbe

changed. This permits you to change your mind after entering S on the
command line.

A subtlety of this command is that it permits you te remove en-
tire rows or columns if you specify N to one of the prompts, but not
to both. Suppose, for example, you answer with one row name for the

107

row prompt and N for the column prompt. The row you specified will be
removed from the matrix. If you enter N for the row prompt and two
column names for the column prompt, those columns and any columns
between them will be removed from the matrix. Here is an example of
removing entire columns. Note that the D command placed after the S
command causes the matrix to be automatically displayed after the S
command is processed. In general, any combination of commands may be
placed upon the command line and they will be processed until the end
of the line or until an erroneous command is encountered.

command: s d
Enter first and last columns (if any) to be stripped. (N = none)

2sg 3sg
Enter first and last rows (if any) to be stripped. (N = none)
n
s\o 1sg 1pl 2pl
2sg -g?e -tlen
-g?%e
lsg -n/N
/1lpl =tak

3sg -g%e -mak -n/Na

-tak
2pl -n/Na -tku-n

-tak -tak

3pl -gam -mak -n/Na

-tak
command :

Example 7. - Removing Columns or Rows

8. Exiting the Program--Q: Only one command remains to be discussed,
the Q command. This command causes the program to terminate and
return you to system level.

108

Program Listing

Following is a listing of the

Pascal. The ELSE

program, which is written in

in the CASE statement in the main program is non-

standard. Many compilers support it, but if yours does not, it should
be omitted from the program.

program permute(input, datafile, tempfile, permfile, output);

(* Author:

Date:

10/83

Dana Barrager

Purpose: To perform matrix manipulations upon a matrix
read in from a data file, and write to two
output files.

)

length of command line *)

er

(‘.‘r
(*
(*
(*
(*

of columns per cell *)
of rows per cell *)

or rows in matrix *)

of columns in matrix *)

*)

packed array[1..linelength] of char;
packed array|[l..maxcellsize] of char;

of char;
linetype;

of lines per cell *)

of columns per cell *)

total # of rows in matrix *)
total # of columns in matrix *)
trace variable ¥*)

array|[1l..rowmax, 1..colmax] of char;

k)

(* matrix from input file *)
(* switch variable *)

(* file to be printed *)

(* matrix data file *%)

(* file to be saved *)

const
linelength = 80; (%
maxcellsize = 10; (* maximum number
maxlinenum = 5; (* maximum numb
rowmax = 50; (* maximum number
colmax = 150; (* maximum number
blank = ' '; (¥ blank constant
type
commandtype =
celltype =
columntype = array[1l..rowmax] of celltype;
linetype = packed array[1l..colmax]
rowtype = array[1l..maxlinenum] of
matrixinfo = record
linenum integer;
cellsize : integer;
rownum integer;
colnum integer;
flag : boolean;
data
(* matrix *)
end; (* record *
var
matrix : matrixinfo;
head : boolean;
tempfile : text;
datafile : text;
permfile : text;
command : commandtype,

(* input command line *)

i : integer; (* loop index variable *)
error : boolean; (* error flag *)
done : boolean; (* termination flag *)

procedure buildmatrix(var matrix : matrixinfo);
(* Procedure to read data from a data file. %)

var
i,j,k,1,m : integer; (* loop index variables *)

begin (* procedure buildmatrix *)

ol

matrix.flag := false; (* set to true for trace of procedure calls.

if matrix.flag then writeln ('now in buildmatrix');
with matrix do
begin
reset(datafile);
readln(datafile, linenum, cellsize, rownum, colnum);
colnum := colnum div cellsize;
i:=1;
while((i <= rownum) and (not eof(datafile))) do
begin
j:=1;
k:= 1;
while ((j <= colnum) and (not eoln(datafile))) do
begin
1 :=1;
while ((1 <= cellsize) and (not eoln(datafile))) do
begin
read(datafile, data[i,k]);
k :=k + 1;
1:=1+1;
end; (* while *)
Js=3 ®1;
end; (¥ while *)
readln(datafile);
for m := k to colmax do data[i,m] := ' ';
i::=1+1
end (* while %)
end (* with %)
end; (* procedure buildmatrix *)

procedure inventory(flag : boolean; var i : integer);

(* Procedure to print a list of valid commands *)

)

109

110

begin (* procedure inventory *)
if flag then writeln ('now in inventory');

writeln('Command Mnemonic Function');

writeln;

writeln;

writeln(' D - Display - Print matrix at terminal');
writeln;

writeln(' P - Permanent - Write matrix to permfile');
writeln;

writeln(' T - Temporary - Write matrix to tempfile');
writeln;

writeln(' C y1 y2 - Column - Move column yl to y2 position');
writeln;

writeln(' R x1 x2 - Row - Move row x1 to x2 position');
writeln;

writeln(' S - Strip - Create submatrix');

writeln;

writeln(' M - Merge - Combine two rows or columns');
writeln;

writeln(' Q - Quit - End Session');

writeln;

writeln(' I - Inventory - Display inventory of commands');
writeln;

i=1i+1

end; (* procedure inventory *)

procedure writematrix(var outfile : text; var listpos : integer;
var matrix : matrixinfo; head : boolean);

(* Procedure to write matrix to output file. The output file
is passed in as a parameter. If the output file is not the
terminal, the formatting information is printed at the beginning
of the file, so the output files may be read in as input files. *)

var
i, j, k : integer; (* loop index variables *)

begin (* procedure writematrix *)
if matrix.flag then writeln ('now in writematrix');

with matrix do

begin

k := (colnum * cellsize);

if head then writeln(outfile, linenum, cellsize, rownum, k);
i = 1;

111

while i <= rownum do

begin

for j := 1 to (colnum * cellsize) do
write(outfile, data[i, j]);

writeln(outfile);

i:=1+1

end (* while *)
end; (* with *)
listpos := listpos + 1
end; (* procedure writematrix *)

procedure getarg(var argcell : celltype; var listpos : integer;
command : commandtype);

(* Procedure to return a row or column name argument from the
command line *)

var
i : integer; (* loop index variable *)

begin
if matrix.flag then writeln('Now in getarg');
while (command[listpos] = blank) and (listpos <linelength) do
listpos := listpos + 1;
i=1;
while(((command[listpos] < blank) and (listpos < linelength))
and (i <= maxcellsize)) do

begin

argcell[i] := command[listpos];
i=1+1;

listpos := listpos + 1

end; (* while *)

while (i <= maxcellsize) do
begin
argcell[i] := blank;
i:=1+ 1;
end (* while *

end; (* procedure getarg *)

procedure locatecol(var arg : integer; argcell : celltype;
var matrix : matrixinfo; var found : boolean);

(* Procedure to locate the position in the matrix of a column
argument on the command line *)

112

var
i, j : integer; (* loop index variables *)
tempcell : celltype; (* temporary storage variable *)

begin (* procedure locatecol *)
if matrix.flag then writeln('Now in locatecol');

j =1
found := false;
while ((not found) and (j <= (matrix.colnum * matrix.cellsize))) do
begin
for i := 1 to matrix.cellsize do
begin
tempcell[i] := matrix.data(l,j];
j=3+t1

end; (* for ¥)

for i :=(matrix.cellsize + 1) to maxcellsize do
tempcell[i] := blank;

if argcell = tempcell

then begin
found := true;
arg := (j - matrix.cellsize);

end (¥ then *)
end (¥ while ¥)
end; (* procedure locatecol *)

procedure getcolarg(var argl, arg2 : integer; var matrix: matrixinfo;
var listpos : integer; command : commandtype;
argnum : integer; var found : boolean);

(* Procedure to process command line arguments, returning integer
values for column names in commands using two previous procedures *)

var
argcell : celltype; (* temporary storage variable %)

begin
if matrix.flag then writeln('Now in getcolarg');
getarg(argcell, listpos, command);
locatecol(argl, argcell, matrix, found);
if found
then if argnum = 2
then begin
getarg(argcell, listpos, command);
locatecol(arg2, argcell, matrix, found)
end (* then *)
end; (* procedure getcolarg *)

procedure movecolumn (var matrix : matrixinfo; var error : boolean;
var listpos : integer; command : commandtype);

(* Procedure to move columns specified by the C command.
It uses the previous three procedures to determine which
columns to move. ¥*)

var
argl, arg2 : integer; (* the column positions of args *)
argnum : integer; (* switch varible for getcolarg *)
dif : integer; (* positive or negative direction vbl. *)
tempcol : columntype; (* temporary storage for columns *)
offset : integer; (* offset variable ¥*)
current, next : integer; (* column number indicators *)
i, j : integer; (* loop index variables *)
found : boolean; (* boolean variable for valid arguments *)

begin (* procedure movecol *)
if matrix.flag then writeln('Now in movecolumn.');
listpos := listpos + 1;
argnum := 2;
getcolarg(argl, arg2, matrix, listpos, command, argnum, found);
if not found
then error := true
else begin
with matrix do
begin
if argl < arg2
then dif := cellsize
else if argl arg2
then dif := -cellsize
else error := true;
if not error
then begin
offset := cellsize - 1;
for i := 1 to rowmax do
for j := 0 to offset do
tempcol[i,(j + 1)] := data[i, (argl + j)];
current := argl;
next := argl + dif;
while current < arg?2 do
begin
for i := 1 to rowmax do
for j := 0 to offset do
data[i, (current + j)] := datal[i, (next + j)I;
current := current + dif;
next := next + dif;

113

11k

end; (* while *)
for i := 1 to rowmax do
for j := 0 to offset do
data[i,(arg2 + j)] := tempcol[i,(j + 1)]
end (* then %)
end (* with *)
end (* else %)

end; (* procedure movecol %)

procedure locaterow(var arg : integer; argcell : celltype;
var matrix : matrixinfo; var found : boolean);

(* Procedure to locate the position in the matrix of a row
argument on the command line. %)

var
i, j : integer; (* loop index variables #*)
tempcell : celltype; (* temporary storage variable *)

begin (* procedure locaterow *)
if matrix.flag then writeln('Now in locaterow');

3¢ =0y
found := false;
while ((not found) and (j <= matrix.rownum)) do
begin
Ji—] ®= g
for i := 1 to matrix.cellsize do
tempcell[i] := matrix.data[j,i];

for i :=(matrix.cellsize + 1) to maxcellsize do
tempcell[i] := blank;
if (argcell = tempcell) and (tempcell < ' ")
then begin
found := true;
arg = j;
end (* then *)
end (* while %)
end; (* procedure locaterow *)

procedure getrowarg(var argl, arg2 : integer; var matrix: matrixinfo;
var listpos : integer; command : commandtype;
argnum : integer; var found : boolean);

(* Procedure to process command line arguments, returning integers
for row names in commands using previous procedure and getarg *)

115

var
argcell : celltype; (* temporary storage variable *)

begin
if matrix.flag then writeln('Now in getrowarg');
getarg(argcell, listpos, command);
locaterow(argl, argcell, matrix, found);
if found
then if argnum = 2
then begin
getarg(argcell, listpos, command);
locaterow(arg2, argcell, matrix, found)
end (* then *)
end; (* procedure getrowarg *)

procedure moverow (var matrix : matrixinfo; var error : boolean;
var listpos : integer; command : commandtype);

(* Procedure to move rows specified by the R command.
It uses the previous two procedures and getarg to
determine which rows to move. %)

var
argl, arg?2 : integer; (* the column positions of args to R *)
argnum : integer; (* switch varible for getrowarg *)
dif : integer; (* positive or negative direction vbl *)
temprow : rowtype; (¥ temporary storage for rows *)
current, next : integer; (* row number indicators *)
i, j, k : integer; (* loop index variables *)
found : boolean; (* boolean variable for valid arguments *)

begin (* procedure moverow *)
if matrix.flag then writeln('Now in moverow.');
listpos := listpos + 1;
argnum := 2;
getrowarg(argl, arg2, matrix, listpos, command, argnum, found);
if not found
then error := true
else begin
with matrix do
begin
if argl < arg2
then dif :=1

else if argl arg2
then dif := -1
else error := true;

if not error

116

then begin
k :=1;
for j := argl to (argl + (linenum -1)) do
begin
for i := 1 to (cellsize * colnum) do
emprow[k i] := datalj, i];
k := k
end; (* for *)
if dif =1
then k := linenum - 1
else k := 03
j := linenum;
while j 0 do
begin
if dif =1
then current := argl
else current := argl + (linenum - 1);
next := current + dif;
while current < (arg2 + k) do
begin
for i := 1 to (cellsize * colnum) do
data[current, i] := data[next, il;
current := current + dif;
next := next + dif;
end; (¥ while *
k := k - dif;
i i -1
end; (* while ¥*)
for j := 0 to (linenum - 1) do
for i := 1 to (cellsize * colnum) do
data[(arg2 + j), i] := temprow[(j + 1), i]
end (* then *)
end (¥ with *)
end (¥ else *)

end; (* procedure moverow *)

procedure strip(argl, arg2, arg3, argh : integer;
var matrix : matrixinfo; moverow, movecol : boolean);

(* Procedure to remove portions of the matrix *)

var
i, j : integer; (* loop index variables *)

117

begin (* procedure stripcol *)
with matrix do
begin
if flag then writeln('now in stripcol');
if (not moverow) and (not movecol)
then begin
for i := arg3 to (arg4 + (linenum - 1)) do
for j := argl to (arg2 + (cellsize -1)) do
data[i, j] := blank;
end (* then *)
else begin
if movecol then
for i := arg3 to argh do
for j := argl to
((colnum * cellsize) - (arg2 - argl + cellsize))
do
data[i, j] := data[i, (j + cellsize + arg2 - argl)];
if moverow then
for i := arg3 to (rownum - (argh - arg3 + linenum -1)) do
for j := argl to (arg2 + cellsize) do
data[i,j] := data[(i + (argh -arg3) + linenum), j]
end (¥ else %)
end (* with %)
end; (* procedure strip %)

procedure submatrix(var matrix : matrixinfo; var listpos : integer);

* Procedure to determine which portions of a matrix should be
removed when the S command is used. The user is queried
for necessary information. ¥)

var
moverow, movecol : boolean; * switch vbls. for strip ¥*)
command : commandtype; (¥ user input *)
i, argnum : integer; (* counter variables *)
argl, arg2?, (* column arguments *)
arg3, argh, (* row arguments *)
dummy : integer; (* dummy variable *)
done : boolean; (* loop termination variable *)
found : boolean; (* valid row or column vbl *)
errorcount : integer; * count of errors ¥)

procedure swap(var argl, arg2 : integer);

118

(* procedure to swap two values if argl arg2 *)

var
i : integer; (* temporary storage variable ¥)

begin (* procedure swap *)
if arg2 < argl
then begin

i = arg2;

arg2 := argl;

argl := 1

end (¥ then *)
end; (* procedure swap *)

begin (* procedure submatrix *)

if matrix.flag then writeln('now in submatrix');
errorcount := 0;
argnum := 1;
listpos := listpos + 1;
done := false;
moverow := false;
movecol := false;
i :=1;
while(not done) and (errorcount < 3) do
begin
writeln
('Enter first and last columns (if any) to be stripped. (N = none)');
readln(command) ;
getcolarg(argl, dummy, matrix, i, command, argnum, found);
if (not found) and ((command[1] = 'n') or (command[1l] = 'N'))
then begin
moverow := true;
argl 1;
arg2 (matrix.colnum - 1) * matrix.cellsize;
done true;
end (¥ then *
else begin
if found
then begin
getcolarg(arg2, dummy, matrix, i, command, argnum, found);
if not found then arg2 := argl;
done := true;
swap(argl, arg2);
end (* then ¥*)
else begin
errorcount := errorcount + 1;

B 1onn

writeln('Column not found--ignored.')
end (* else *)
end (¥ else *)
end; (* while *)
i:=1;
done := false;
while (not done) and (errorcount < 3) do
begin
writeln
('Enter first and last rows (if any) to be stripped. (N = none)');
readln(command);
getrowarg(arg3, dummy, matrix, i, command, argnum, found);
if (not found) and ({command[1] = 'n’') or (command[1] = 'N'))
then begin
movecol := true;
arg3 := 1;
arg4d := matrix.rownum;
done true;
end then %)
else begin
if found
then begin
getrowarg(args, dummy, matrix, i, command, argnum, found);
if not found then argh := arg3;
swap(arg3, argh);
done := true
end (* then *)
else begin
errorcount :!= errorcount + 1;
writeln('Row not found--ignored.')
end (* else %)
end (¥ else *)
end; (¥ while *)
if done
then begin
if (not moverow) or (not movecol)
then begin
strip(argl, arg2, arg3, arg4, matrix, moverow, movecol);
if moverow then
matrix.rownum :=
matrix.rownum - (argh -arg3 + matrix.linenum);
if movecol then
matrix.colnum :=
matrix.colnum - ((arg2 + matrix.cellsize - argl)
div matrix.cellsize);
end (* then ¥)
end (* then *)
else writeln('Too many errors.')

=nonon

—~

120

end; (* procedure submatrix *)

procedure mergecol(var matrix : matrixinfo; var errorcount : integer);

(* Procedure to merge two columns, as instructed by the user
in response to query. ¥*)

var
command : commandtype; (* input line from user *)
i, j, k : integer; (* loop index variables *)
argnum : integer; (* argument number for getcolarg *)
argl, arg2 : integer; * column arguments *)
blanknum : integer; * number of blanks in column heading *)
tempcell : celltype; (* temporary storage cell *)
found : boolean; (* valid argument variable *)

begin (* procedure mergecol *)
if matrix.flag then writeln('Now in mergecol');

write("Enter columns to be merged: ');
argnum := 2;
readln(command);
i= 15
getcolarg(argl, arg2, matrix, i, command, argnum, found);
if (argl < arg2) and (found)
then begin
with matrix do
begin
d == i35
while j <= rownum do
begin
i=1;
for k := argl to (argl + (cellsize - 1)) do
begin
tempcell[i] := data[j, k];
i:=1+1
end; (* for ¥*)
for k := (cellsize + 1) to maxcellsize do

tempcell[k] := blank;
if tempcell = ' !
then for k := 0 to (cellsize - 1) do
data(j, (argl + k)] := data[j, (arg2 + k)];

Ji=]j+1
end; (¥ while %)
for i := 0 to (cellsize - 1) do
data[2, (argl + i)] := data[l, (arg2 + i)];

for k := 1 to rownum do

for j := arg2 to (colnum * cellsize) do
datalk, j] := data[k, (j + cellsize)];
colnum := colnum - 1

end (¥ with %)
end (¥ then *)
else begin
writeln('Column not recognized--ignored.');
errorcount := errorcount + 1
end (* else %)
end; (* procedure mergecol *)

procedure mergerow(var matrix : matrixinfo; var errorcount :
(* Procedure to merge two rows, as instructed by the user
in response to query. *)
var
command : commandtype; (* input line from user *)
sy Blleye K : integer; (* loop index variables *)
argnum : integer; (* argument number for getrowarg *
argl, arg2 : integer; (* row arguments *)
blanknum : integer; (* number of blanks in row heading *)
tempcell : celltype; (* temporary storage cell *)
found : boolean; (* valid argument variable *)

begin (* procedure mergerow *)
if matrix.flag then writeln('Now in mergerow');
i:=1;

argnum := 2;
write('Enter rows to be merged: ');
readln(command);
getrowarg(argl, arg2, matrix, i, command, argnum, found);
if (argl < arg2) and (found)
then begin
with matrix do
begin
j := cellsize;
while j < (colnum * cellsize) do
begin
for k := 1 to cellsize do
tempcell[k] := datal[argl, (k + j)];
for k := (cellsize + 1) to maxcellsize do

témpcell[k] := blank;

if tempcell ="' :
then for i

for k :

0 to (linenum - 1) do
(j + 1) to (j + cellsize) do

data[(argl + i), k] := data[(arg2 + i), k];

integer);

121

122

j = j + cellsize
end; (* while %)

if linenum 1
then begin
data[(argl + 1), 1] := blank;
data[(argl + 1), 2] := '/';
for i := 3 to cellsize do

data[(argl + 1), i] := datalarg2, (i - 2)]
end (* then %)
else begin
blanknum := -2;
j := cellsize;
while (j 1) and (data[argl, j] = blank) do
begin
blanknum := blanknum + 1;
ji=g-1
end; (* while *)
k 1= 1;
J =4 r1
datalargl, j] := '/';
j=3t 1
- while (j < cellsize) and (blanknum 0) do
begin
datalargl, j] := datalarg2, k];
k := k + 1;
J =] =13
blanknum := blanknum - 1
end; (* while ¥*)
end; (* else *)

for k := arg2 to (rownum - linenum) do
for i := 1 to (colnum * cellsize) do
data[k, i] := data[(k + linenum), i];
rownum := rownum - linenum

end (* with %)
end (* then *)
else begin
writeln('Row not recognized--ignored.');
errorcount := errorcount + 1
end (* else *)
end; (* procedure mergerow *)

procedure merge(var matrix : matrixinfo; var i : integer;
var error : boolean);

(* procedure to merge rows or columns, as specified by the
user. User is queried for which he wishes to merge. *)

var
ch : char; (* input character variable *)
done : boolean; (* loop termination variable *)

errorcount : integer;(* alternate loop termination variable *)
begin (* procedure merge *)

if matrix.flag then writeln('now in merge');
errorcount := 0;
b T) T
done := false;
while(not done) and (errorcount <= 3) do
begin
writeln('Merge columns(C) or rows(R) or none(N)');
readln(ch);
if (ch = 'C') or (ch = '¢'")
then begin
mergecol (matrix, errorcount);
done := true
end (* then *)
else if (ch = 'R') or (ch = 'r')
then begin
mergerow(matrix, errorcount);
done := true
end (* then *)
else if (ch = 'N') or (ch = 'n')
then begin
done := true
end (* then *)
else begin
writeln('Invalid input. Enter C or R or N.');
errorcount := errorcount + 1;
readln;
end (¥ else *)
end (* while *

end; (* procedure merge *)

begin (¥ program permute *)

(* This begins the main program. It is mostly a list of procedure

1273

124

calls. The strategy of the main program is simple. A matrix is read
in from a file using Buildmatrix, then displayed using Writematrix.
Then the user is instructed that a list of commands may be obtained
by typing I, one of the valid commands. This provides some self-
documentation. Then a while loop is entered which processes a line

of commands each time through. Several commands, separated by spaces,
may be entered on one line. A command line is limited to 80 character
positions. If an erromeous command is entered, that command and all
subsequent commands are ignored. The commands are processed through a
case statement which recognizes valid commands and makes the
appropriate procedure calls. #%)

buildmatrix(matrix); (* call procedure to input matrix ¥)
rewrite(tempfile); (* open file for writing *)
rewrite(permfile); (* open file for writing *)

writematrix(output, i, matrix, false);

writeln('If you need an inventory of commands, type "I".');
done := false;

while (not done) do

begin (* begin processing commands *)
if (not done) then write('command: ');
readln(command);
i=1;
error := false;
while (((not done) and (i < linelength)) and (not error)) do
begin (* process input line %)
while ((command[i] = ' ') and (i < linelength)) do i := i + 1;
if i < linelength
then begin
case command[i] of
'I': inventory(matrix.flag, i);
'i': inventory(matrix.flag, i);
'D': writematrix(output, i, matrix, false);
'd': writematrix(output, i, matrix, false);
'"P': begin

writematrix(permfile, i, matrix, true);
writeln('Matrix written to temporary file called permfile.');
writeln('Save or print permfile.')
end;
begin
writematrix(permfile, i, matrix, true);
writeln('Matrix written to temporary file called permfile.');
writeln('Save or print permfile.')
end;
'"T': begin
writematrix(tempfile, i, matrix, true);
writeln('Matrix written to temporary file called tempfile.');
writeln('Save or print tempfile.')

125

end;
't': begin
writematrix(tempfile, i, matrix, true);
writeln('Matrix written to temporary file called tempfile.');
writeln('Save or print tempfile.')
end;
'C': movecolumn(matrix, error, i, command);
'c¢': movecolumn(matrix, error, i, command);
'R': moverow(matrix, error, i, command);
'r': moverow(matrix, error, i, command);
'S': submatrix(matrix, i);
's': submatrix(matrix, i);
'M': merge(matrix, i, error);
'm': merge(matrix, i, error);
'Q': done := true;
'q': done := true;
else error := true
end (¥ case %)
end; (* then *)
if error
then begin

end
end (

end. (*

wle

writeln('Invalid command or parameter, ignored.');

end (* then %)
(* while *
while *)
program permute *)

126

REFERENCES

Comrie, Bernard. 1980. Inverse Verb Forms in Siberia: Evidence from
Chukchee, Koryak, and Kamchadal. ©Folia Linguistica Historica
I:1.61-74,

Grogono, Peter. 1980. Programming in Pascal. Reading, Massachusetts:
Addison-Wesley.

Krause, Scott R.. 1980. Topics in Chukchee Phonology and Morphology.
University of Illinois Ph. D. Dissertation.

Miner, Kenneth L., and Barbara Lynn Taghva. 1983. Computerized
Permutation of Pikean Field Matrices. Kansas Working Papers in

Linguistics 8:1.97-106.

Miner, Kenneth L., and Dana Barrager. February, 1984. A Pascal
Program for Manipulation of Pikean Field Matrices. Newsletter for
the Society for the Study of the Indigenous Languages of the
Americas III:1.12-13.

Pike, Kenneth L.. 1962. Dimensions of Grammatical Constructions.
Language 38.221-323.

1963. Theoretical Implications of Matrix Permutation in

Fore (New Guinea). Anthropological Linguistics 5.1-23.

1975. On Describing Languages. In Robert Austerlitz,

ed., The Scope of American Linguistics. Lisse: Peter de Ridder

Press pp.9-38.

, and Barbara E. Erikson. 1964. Conflated Field Structures

in Potawatomi and Arabic. International Journal of American

Linguistics 30.201-212.

