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Gynandromorph of the squash bee Eucera (Peponapis) 
pruinosa (Hymenoptera: Apidae: Eucerini) from an 
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Abstract.  Gynandromorphs are anomalous individuals that are genetically chimeric and ex-
press both male and female phenotypes.  Here, we describe the first record of a mosaic gynan-
dromorph of the squash bee Eucera (Peponapis) pruinosa (Say) from a single specimen collected 
from western Pennsylvania, United States of America (USA).  We discuss the known devel-
opmental mechanisms resulting in gynandromorphism and how parasitism or environmental 
contaminants may instigate these mechanisms in wild bee individuals.
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INTRODUCTION

Bees, and most hymenopterans, are haplodiploid insects in which females de-
velop from fertilized diploid eggs and males develop from unfertilized haploid eggs 
(Heimpel & de Boer, 2008).  Female bees store sperm in their spermatheca after mat-
ing and determine the sex of their progeny before egg-laying.  Genetically, sex is 
determined by one or multiple sex determination loci where the presence of two dif-
ferent alleles leads to the development of females while the presence of one allele 
leads to the expression of male phenotypes (Beye et al., 2003).  However, abnormali-
ties in sex determination can occur.  When the egg and sperm carry the same alleles, 
fertilized eggs develop as males even though they carry two copies of the genome 
(Harpur et al., 2013).  The frequency of diploid males has been used as an indicator 
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of loss of genetic diversity and high levels of inbreeding in bee populations (Zayed & 
Packer, 2005).  Diploid males are also an important marker in conservation genetics 
studies of bees (Lozier & Zayed, 2016) and have been reported in high frequencies in 
wasps, bumble bees, and orchid bees (e.g., Schenau & Jha, 2017; Giangarelli et al., 2015; 
López-Uribe et al., 2007; Zayed et al., 2004).

A less frequent form of abnormality in sex determination is the development of 
intersex and gynandromorph individuals (Hinojosa-Díaz et al., 2012).  Intersex in-
dividuals are chromosomally uniform but express ambiguously male and female 
characters making their identification difficult (Narita et al., 2010).  Gynandromorphs 
are individuals that genetically have both male and female structures and express 
phenotypes that can clearly be assigned to one sex in different parts of their bodies.  
Gynandromorphs can be classified into three main categories: bilateral, transverse, or 
mosaic (Michez et al., 2009).  Bilateral gynandromorphs are characterized by a sym-
metrical distribution of male and female characters along the longitudinal axis of 
the body.  In transverse gynanders, the distribution of male and female characters is 
found cross-sectional to the body (e.g., the head is of one sex and the body is of the 
other sex).  Mosaic gynandromorphs are defined by the random distribution of male 
or female characters in different parts of the body and it is the most common type of 
gynandromorph among bees. 

Here, we document the first record of a gynandromorph of the squash bee Eucera 
(Peponapis) pruinosa (Say).  This solitary, ground-nesting bee is a pollen specialist of 
plants in the genus Cucurbita L. (Cucurbitales: Cucurbitaceae), which includes crops 
such as pumpkins, squash, zucchini, and other gourds (Hurd et al., 1971).  Because 
of the widespread cultivation of domesticated Cucurbita spp., E. pruinosa recently ex-
panded its range from the xeric areas in northern Mexico and southwestern United 
States into northern North America (López-Uribe et al., 2016).  This bee species is 
an integral part of the Cucurbita agroecosystems in the United States and Canada 
because of its role as a crop pollinator (e.g., McGrady et al., 2020).  Populations of 
E. pruinosa distributed in the extended part of their range, including eastern North 
America, are exclusively distributed in agricultural areas where they are constantly 
threatened by local extinction due to tillage, crop rotation, and pesticides (Chan et al., 
2019; Ullmann et al., 2016). 

MATERIAL AND METHODS

LJJ collected the gynandromorph specimen of E. pruinosa from Cucurbita 
pepo L. (cultivar: Apogee) in Butler, Butler Co., Pennsylvania, USA (40°50'35.4"N, 
80°02'57.0"W) on 29 July 2019.  Before capturing, we observed the individual actively 
collecting pollen from a male flower of C. pepo (LJJ, pers. obs.).  We placed the speci-
men in a perforated falcon tube on ice and brought it back to the laboratory (Pennsyl-
vania State University, University Park, PA), where it was stored in a -20°C freezer. 

We photographed external morphological structures using an Olympus SZ61 
microscope with and without a 110AL1.5X WD61 lens, and mounted with an Olym-
pus LC30 3.1 megapixel digital color camera (Olympus Corporation, Tokyo, Japan).  
Digital images were taken manually using the Extended Focal Imaging (EFI) pro-
cess in the Olympus cellSens Standard V1.18 (Build 16686) Release X64 software 
(Olympus Corporation, Tokyo, Japan).  We viewed image metadata using the Olym-
pusImageJPlugin V2.3.1 (https://imagej.net/OlympusImageJPlugin).  We calibrated 
images for measurement using the “Analyze>Set Scale” feature in ImageJ V1.52q 
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(Schneider et al., 2012).  We measured each morphological feature three times using 
the “Analyze>Measure” line tool and report mean values in the description.  We used 
Adobe Photoshop CC v21.1.2 to remove shadowing around the bee, using the Paint 
Brush on Layer Masks and Spot Healing Brush tools.  We added scale bars to figures 
using the “Analyze>Tools>Scale Bar” feature in ImageJ V1.52q (Schneider et al., 2012).

For identification and description, we examined the gynandromorph and conspe-
cific specimens of both sexes collected from three localities: the same locality as the 
gynander, Cedar Meadows, Lancaster Co., and State College, Centre Co., Pennsylva-
nia, USA.  To describe morphological features, we used an AmScope SM-1BSX-64S 
Professional Binocular Stereo Zoom microscope, equipped with WF10x/20 lenses and 
an AmScope LED – 64S ring light (AmScope, Irvine, CA).  We followed the genus-
level taxonomic classification by Dorchin et al. (2018) and higher-level classification 
within Apidae by Bossert et al. (2019).  SKK confirmed species identifications using 
Ayala & Griswold’s (2012) key.  Furthermore, E. pruinosa is the only species within the 
subgenus Peponapis Robertson that occurs in Pennsylvania to date (Kilpatrick et al., 
2020).  We followed the morphological terminology by Michener (2007).  Abbrevia-
tions used in the morphological description and remarks are as follows: F, flagello-
mere; T, metasomal tergum; S, metasomal sternum.  The gynandromorph specimen is 
housed at the López-Uribe Laboratory (The Pennsylvania State University, University 
Park, PA).

RESULTS

Eucera (Peponapis) pruinosa (Say)
Gynandromorph

Description: Male and female features are patchily distributed throughout the 
body (Figs. 1–7).  Body length 11.74 mm; integument black unless otherwise noted.  
Head: width 4.14 mm; length 2.71 mm; clypeus width 1.69 mm; clypeus length 2.72 
mm; upper interocular distance 2.44 mm; lower interocular distance 2.54 mm; com-
pound eye length 2.16 mm; eye maximum width 0.75 mm.  Left of midline displaying 
female-specific features; antenna with 10 flagellomeres, clypeus lacking yellow sub-
apical maculation (Fig. 1).  F2 longer than F3.  Mandible black, with reddish brown 
apically, and lacking teeth apically.  Right of midline displaying male-specific fea-
tures; antenna with 11 flagellomeres, clypeus with yellow subapical maculation (Fig. 
1).  Mandible black, with yellow-brown maculation on apical fifth, and lacking apical 
teeth.  Antennae black to dark reddish brown.  Mesosoma: intertegular distance 3.30 
mm (Fig. 2).  Legs: all consistently black to reddish brown.  Left legs: all as in males, 
inner surface of hind basitarsus with longer setae, yet scopa lacking (Figs. 3, 4).  Right 
legs: all as in females, scopa present on hind tibia and basitarsus (Figs. 3, 5).  Meta-
soma: T2 width 5.44 mm; pubescence and structures as in females, consisting of six 
visible terga and sterna (Figs. 6, 7).  T6 with complete pygidial plate (Fig. 6).  Sting ap-
paratus normal, including gonostylus, stylus, and lancet, as in females.

Remarks: Notably, F2 is longer than F3, not shorter as in typical females of E. 
pruinosa.  As a result, this gynander specimen keys out to E. (P.) smithi (Hurd & Lin-
sley) when following the female couplets in Ayala & Griswold (2012).  Additionally, 
the specimen lacks apical teeth on the right mandible; two teeth are present in most 
conspecific males.  In regards to the apical half of the mandible, the left mandible lacks 
yellow maculations that most conspecific females possess in varying amounts; the ex-
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Figures 1–3.  Mosaic gynandromorph of Eucera (Peponapis) pruinosa (Say); scale bars = 2 mm.  
1. Head (in frontal view) showing the distinct bilateral split between the sexes (right half female, 
left half male).  2. Dorsal habitus showing male and female antennae, mesosoma, and female-
like metasomal features.  3. Ventral habitus showing patchily distributed female and male fea-
tures on the head and mesosoma, including the antennae and legs, and female-like metasoma.
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Figures 4–7.  Mosaic gynandromorph of Eucera (Peponapis) pruinosa (Say); scale bars = 2 mm.  
4. Left lateral habitus showing female antennae and male legs.  5. Right lateral habitus showing 
male antennae and female legs.  6. Metasomal terga (in dorsal view) showing T3–T6; T6 with 
pygidial plate.  7. Metasomal sterna (in ventral view) showing typical female features, including 
a lack of carinae on S6 (present in male Peponapis).

tent of this maculation also varies among males.  Furthermore, the setae on the left 
metabasitarsus appear longer, on average, compared to male conspecifics.

DISCUSSION

We describe the first gynandromorph of E. pruinosa, which belongs to the mosaic 
category of gynandromorphs with alternating bilateral female and male tissues dis-
tributed along the body. Mosaic gynandromorphs are common gynanders described 
in bees (Michez et al., 2009).  Due to the presence of distinct male and female char-
acters with clear boundaries, we interpret the external morphology of this specimen 
as belonging to a gynandromorph and not an intersex (Narita et al., 2010).  The latter 
express intermediate phenotypes between female and male unlike the well-defined 
structures observed in the specimen here described.  When collected, the specimen ex-
pressed pollen-collecting behavior typical of a female, and presumably was provision-
ing a nest.  This specimen is only the fourth gynandromorph within the genus Eucera 
and sixth within the tribe Eucerini that we are aware of (Dalla Torre & Friese, 1899; 
Cockerell, 1906; Masuda, 1940; Urban, 1999), suggesting that gynandromorphism may 
be uncommon among eucerine bees. 

There are a number of hypothesized developmental mechanisms to explain the 
production of gynandromorphs among insects, including chromosome elimination, 
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post-cleavage fertilization, egg binucleation, and polyspermy (Narita et al., 2010).  In 
bees, sex is determined by a single locus of complementary sex determination (sl-
CSD), where females are sl-CSD heterozygous and males are typically sl-CSD hemizy-
gous (Beye et al., 2003).  If the chromosome containing the sl-CSD is eliminated in one 
of the cells at the first somatic division, it will result in the production of both diploid 
(female) and haploid (male) cells (Bridges et al., 1919; van Wilgenburg et al., 2006).  
Post-cleavage fertilization has also been posited as a mechanism for the production 
of gynandromorphs in a number of specimens (Boveri, 1915).  By this mechanism, 
the egg cleaves into two cells before penetration of the sperm, leaving one unfused 
nucleus and one fused (fertilized).  This produces haploid and diploid cells, resulting 
in sex mosaicism.  Binucleate eggs would similarly result in gynandromorphism, as 
only one nucleus within the cell would be fused with the sperm’s nucleus, leaving the 
second nucleus unfertilized, resulting in partial fertilization (Stern & Sekiguti, 1931).  
Alternatively, gynandromorphism may arise through polyspermy when more than 
one spermatozoid enters the egg, leaving one to fuse with the nucleus and the other(s) 
to remain unfused (Morgan, 1916).  When post-cleavage fertilization results in gyn-
andromorphism, it has been argued that the individual is likely to present either a 
phenotype that is intermediate between both sexes, or that the female phenotype will 
be dominant (Morgan, 1916).  The specimen described here was observed to exhibit a 
female behavioral phenotype (e.g., pollen collection) shortly before the specimen was 
captured and has predominantly female physical characters (e.g., female-like metaso-
ma), suggesting post-cleavage fertilization as a possible mechanism for the expressed 
gynandromorphism.

Many instances of gynandromorphism or intersex individuals in wild conditions 
have been associated with human-mediated stressors in the environment, including 
the input of contaminants or pollutants into a system (LeBlanc, 2016).  The potential 
influence of contaminants on gynandromorphism in aquatic vertebrates and arthro-
pods is well documented (Grilo & Rosa, 2017; Devillers, 2020), particularly in Crus-
tacea (Ford, 2012; Dunn et al., 2020).  Some insecticides within the phenoxyphenoxy 
family are known to mimic an important reproductive hormone (methyl farnesoate) 
involved in the sex determination of crustaceans (Olmstead & LeBlanc, 2007).  These 
insecticides induce gynandromorphism in Daphnia magna Straus in laboratory condi-
tions, with rising temperatures posited to increase incidence of gynandromorphism 
when phenoxyphenoxy insecticides are applied (Olmstead & LeBlanc, 2007).  Expo-
sure to herbicides and other human-introduced environmental contaminants, includ-
ing antifouling agents and estrogenic compounds, has likewise been associated with 
gynandromorphism in aquatic and semi-aquatic organisms, including molluscs, am-
phibians, and fish (Huang et al., 2020; Scholz & Klüver, 2009; Chen & Guô, 2008).  The 
role of contaminants in causing gynandromorphism in terrestrial arthropods has been 
poorly studied, and is limited mostly to the effects of nuclear pollution on Lepidoptera 
(Dantchenko et al., 1995; Hiyama et al., 2012) and pesticide application on Arachnida 
(Buczek et al., 2019).  However, bee exposure to similar compounds through pesticide 
application is well documented (Krupke et al., 2012; Gill et al., 2012; Gill & Raine, 2014), 
suggesting the possibility that pesticides may also induce gynandromorphism in bees 
which forage in and around agroecosystems.

Parasitism by endoparasitic insects in the order Strepsiptera or by gram-negative 
bacteria in the genus Wolbachia Hertig & Wolbach has also been documented to re-
sult in gyanders and intersex individuals within Hymenoptera (Salt, 1927; Werren et 
al., 2008; Narita, 2010).  Strepsiptera parasitism has been found to alter the secondary 
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sexual characteristics of bees in the genus Andrena Fabricius, often resulting in female 
bees exhibiting male sexual characters (Salt, 1927).  Species of Wolbachia are known to 
induce parthenogenesis in Hymenoptera (Werren et al., 2008); when females are pro-
ducing haploid offspring, Wolbachia infection can cause failed segregation of the chro-
mosomes during mitotic division resulting in diploidization of the nucleus which cre-
ates a female clone (Stouthamer & Kazmer, 1994).  Under high temperature conditions 
however, the interference of Wolbachia in the process of mitosis is partially suppressed, 
postponing diploidization to a later cleavage stage allowing some cells to remain hap-
loid, which results in sex mosaicism (Stouthamer, 1997).  The specimen described here 
was not tested for any parasites or pathogens to avoid tissue damage for preservation 
purposes.  However, superficial examination revealed no indication of the presence 
of Strepsiptera parasites, which typically protrude between the abdominal segments 
of the host.  Likewise, Wolbachia have not been detected in the gut microbiome of E. 
pruinosa collected in Pennsylvania, USA (Shapiro et al., 2019), so we do not expect Wol-
bachia to be present in our specimen. 

This finding adds to the growing number of reports of gynandromorphs among 
bees in recent years (Krichilsky et al., 2020; Villamizar, 2020; Lucia & Gonzalez, 2013; 
Spring et al., 2015; Ramos & Ruz, 2013; Camargo & Gonçalves, 2013).  Detailed de-
scriptions of gynandromorphs are necessary to provide well-documented cases of this 
phenomenon and how these specimens differ from types of the same species.  Because 
of the low detection of gynanders in wild populations, the underlying developmental 
mechanisms leading to these phenotypes has not been fully explored for most species.  
Conducting population surveys in sexually dimorphic insects could capture the fre-
quency of gynandromorphs among wild terrestrial arthropods, and give insight into 
which factors may contribute to their occurrence (e.g., parasitism, pollution).  To in-
vestigate the developmental mechanisms resulting in gynandromorphism, there is the 
need to develop new technological approaches that allow the non-destructive charac-
terization of single cell ploidy levels.
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