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igher Education Spending on Research and Development 
In 2014, U.S. Colleges and Universities reported spending $67.3 billion on Re-
search & Development (R&D).  While this figure constitutes only about 15 

percent of the nation’s total R&D effort, colleges and universities performed more than 
half of U.S. basic research.2  Most of what we know about R&D performed at the na-
tion’s colleges and universities—not only aggregate totals, but also expenditures by 
field of study and by individual institutions – is derived from data collected by the 
National Science Foundation’s (NSF) National Center for Science and Engineering Sta-
tistics (NCSES) as part of its Higher Education R&D (HERD) survey.  The HERD sur-
vey continued and expanded a data collection effort that was started in 1972 as the 
Academic R&D Expenditures Survey. 

The data collected by the HERD sur-
vey are widely used by both university 
administrators and academic researchers 
interested in understanding the nation’s 
scientific enterprise.  University leader-
ship is interested in tracking total R&D 
expenditures and rankings of R&D ex-
penditures as an indicator of research 
prowess.  Most universities work to move 
up in the rankings by increasing their ex-

1 The material in this article is based in part upon work supported by the National Science Foundation 
under Grant Numbers SMA-1547513 and SMA-1547464.  Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily reflect the 
views of the National Science Foundation. 
2 National Science Board 2016, chapters 4, 5 

penditures.  Scholars interested in the po-
litical economy of federal science funding 
have used HERD expenditure data to 
track the expansion of the nation’s cadre 
of research universities and to assess the 
tendency of the political system to pro-
mote more equal distribution of funds 
across states and regions (Geiger and 
Feller 1995; Graham and Diamond 1997; 
Feller 2001).  Others have used more dis-
aggregated data on expenditures at the 

H 
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discipline level to explore either how 
funding is related to scientific productiv-
ity (Adams and Griliches, Rosenbloom et 
al 2015) or to uncover factors that influ-
ence the allocation of federal R&D fund-
ing across institutions (Lanahan et al 
2016; Rosenbloom and Ginther forthcom-
ing). 

The data collected in the HERD and 
the earlier Academic R&D Survey are de-
rived from institutional responses to an 
annual survey distributed by NCSES. 
Colleges and Universities undoubtedly 
take different approaches to compiling 
the necessary data, but at research uni-
versities with specialized research ad-
ministration staff, responsibility for re-
sponding to the survey is likely 
delegated to one or more specialists 
within the office of sponsored research 
or institutional research.   

The aforementioned method of col-
lecting data on college and university 
R&D expenditures results in three dis-
tinct problems.  First, responding to the 
HERD is costly in terms of the time 
required to accurately report the 
requested data.  Second, because of the 
nature of the annual survey and the lead 
time involved in tabulating responses, 
the data are available only with a long 
lag.  While the data are useful for 
retrospective analysis, the lags make 
them far less valuable for setting 
institutional strategy or performing 
real-time analysis of R&D activity.  Fi-
nally, the effort to classify projects by 

ř The survey categorizes projects into 4 different 
purposes (applied research, basic research, devel-
opment, and other), and 40 different scientific 
fields of study (e.g., Bioengineering and Biomedi-
cal Engineering, Astronomy and Astrophysics, 
Political Science and Government, etc.). 

their purpose and field of study is inevi-
tably subjective, making it problematic to 
make comparisons across institutions 
and introducing spurious variation 
within institutions when responsibility 
for data collection shifts from one person 
to another.ř 

To address these problems, we have 
been engaged in an experiment to apply 
techniques of machine learning to auto-
mate project classification.  Successful de-
velopment of classification algorithms 
would reduce the cost of responding to 
the HERD survey, allow for essentially 
real-time tracking of expenditures, and 
offer the potential to increase the con-
sistency of classification over time and 
across institutions.  As we describe here, 
our proof of concept investigation sug-
gests that such approaches are poten-
tially feasible, but require further efforts. 

Application of Machine Learning to 
Classify Sponsored Research Projects 

With the growth of large data sets and 
the declining cost of computation, appli-
cation of machine learning techniques to 
identify data patterns and make predic-
tions based on these patterns has become 
increasingly common.Ś  The goal of our 
project is to develop a classification 
algorithm that can be used to either 
supplement or replace human judgement 
in classifying sponsored research projects. 
To do so, we begin with a set of spon-
sored projects awards that have already 
been classified by Research Administra-
tion staff at the University of Kansas.  In 

Ś For an overview of machine learning and associ-
ated terminology see: https://en.wikipe-
dia.org/wiki/Machine_learning  
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the language of machine learning, this is 
an example of “supervised learning.” 

Working with staff in the University 
of Kansas Office of Research, we obtained 
a data set of historical sponsored project 
awards.  After dropping awards for 
which we did not have complete data, we 
were left with approximately 1,500 pro-
jects.  For each of these projects, the data 
included information on the:  

• Project sponsor
• Principle Investigator (PI) home

unit
• Project abstract describing the

project
• Human-assigned classification of

the project’s purpose and field of
study.

Figures 1 and 2 show the distribution 
of projects across fields of study and pur-
pose based on the human-assigned clas-
sification.  In addition to the full list of 
NSF-defined fields of study, our data in-
clude KU-specific fields of “Chem-Bio” 
and “CEBC” (that combines projects 
across chemistry, chemical engineering 
and biomedical sciences) that are used 
for internal institutional purposes.5  As 
Figure 1 illustrates, there are some 
fields for which we do not have a large 
number of projects.  The distribution of 
projects by purpose is also somewhat 
uneven, as illustrated in Figure 2. 

Figure 1:  Distribution of Projects by Field of Study 

5 For reporting purposes, expenditures in the 
Chem-Bio and CEBC categories are split evenly 

between the Chemistry and Biological and Bio-
medical Sciences and Chemistry and Chemical 
Engineering, respectively. 
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Notes to Figure 1: The University of Kansas Fields of Study are denoted with the 
following codes. 

Code 
A 
B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
C1 
C2 
C3 
C4 
D1 
D2 
D3 
D4 
D5 
E 
F1 
F2 
F3 
F4 
F5 
G 
H1 
H2 
H3 
H4 
H5 
I 
K 
L 
M 
N 
O 
P 

Field 
Computer and Information Sciences 
Aerospace / Aeronautical / Astronautical Engineering 
Bioengineering and Biomedical Engineering 
Chemical Engineering 
Civil Engineering 
Electrical, Electronic, and Communications Engineering 
Industrial and Manufacturing Engineering 
Mechanical Engineering 
Metallurgical & Materials Engineering 
Other Engineering 
Atmospheric Sciences and Meteorology 
Geological and Earth Sciences 
Ocean Sciences and Marine Sciences 
Other Geosciences, Atmospheric, and Ocean Sciences 
Agricultural Sciences 
Biological and Biomedical Sciences 
Health Sciences 
Natural Resources and Conservation 
Other Life Sciences 
Mathematics and Statistics 
Astronomy and Astrophysics 
Chemistry 
Materials Science 
Physics 
Other Physical Sciences 
Psychology 
Anthropology 
Economics 
Political Science and Government 
Sociology, Demography, and Population Studies 
Other Social Sciences 
Other Sciences 
Business Management and Business Administration 
Communication and Communications Technologies 
Education 
Humanities 
Law 
Social Work 
Visual and Performing Arts 
Other Non-S&E Fields

Q 
R
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Figure 2: Distribution of Projects by Purpose 

The major source of information 
about each project comes from the pro-
posed statement of work, which is treated 
as a “bag of words.” As a first step, we 
pre-process the data by standardizing 
word forms and eliminating “stop-
words” (e.g. the, is, to).  Individual (or 
collections of) words are converted to a 
numerical form based on their frequency 
of occurrence within and between project 
abstracts. In machine learning, these nu-
merical representations are referred to as 
“features.” The goal of the machine learn-
ing algorithm is to assess which specific 
combination of features are useful to dis-
criminate between purpose/field catego-
ries. 

Once the data are processed, we 
experimented with a selection of com-
monly used classifiers to identify features 
that provide predictive power.  Follow-
ing standard practice, we split the data 
into training and testing samples.  The 
training sample contains approximately 
70% of the observations, while the testing 
sample contains the remaining 30%. The 
models are trained on the training sample 
(which is further split into ÛÙÈÐÕÐÕÎɯ and 
validation samples) via a cross-validation 
procedure, which is necessary to prevent 
the models from over-fitting (i.e. “memɪ
orizing”) the data. We estimate the predic-
tion error of the models using the valida-
tion samples, and use the testing sample as 
an assessment of generalization error. 

KU MASC 2017 Research Retreat 39



Figure 3:  Schematic Representation of Data Analysis Steps 
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We treat the prediction of purpose and 
field categories as two separate classifica-
tion tasks.  For each classification prob-
lem we tried the following classifiers:  

• Decision Tree
• Support Vector Machine
• Logistic Regression
• Random Forest
• Naïve Bayes
• Neural Network

All of these classification schemes are 
binary: reporting a probability that the 
project belongs to a particular pur-
pose/field.  For each purpose/field, the 
classifier yields a predicted probability 
(between 0 and 1) or a categorical deter-
mination that the project belongs to that 
purpose/field.   

We first find classifiers for each pur-
pose/field by assessing their performance 
(as described below) and then assign pro-
jects to a single purpose/field using the 
purpose/field with the highest predicted 
probability across all the classifiers. 

The result of our analysis is a predic-
tion of the purpose/field to which each 
project should be assigned.  Comparing 
the human- and machine-assigned re-
sults produces a two-way contingency ta-
ble depicted in Figure 4.  Projects for 
which the two classifications agree (T1 
and T2) are successful predictions, 
whereas cases where the assignment is 
different (F1 and F2) are unsuccessful. 

Figure 4:  Project Classification Outcomes 
Actual Outcome Predicted Outcome 

In Field/Purpose Not in Field/Purpose 

In Field T1 F1 

Not in Field F2 T2 

A number of measures of the perfor-
mance of machine learning algorithm are 
possible.  The “accuracy” of the predic-
tions is simply the number of correct pre-
dictions as a share of all predictions: 

(T1+T2)/(T1+T2+F1+F2) 
Where the distribution of outcomes is 

uneven, however, this measure may not 

be very illuminating.  For example, in a 
binary classification problem where 90% 
of observations are not in a field, simply 
guessing that no projects belong to that 
field would yield an accuracy of 0.9, but 
would be a thoroughly uninformative 
classifier. 
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To correct for this, two other 
measures of prediction success have been 
proposed and are routinely used in eval-
uating the effectiveness of machine learn-
ing algorithms.  They are: 

• Precision = T1/(T1+F2), and
• Recall = T1/(T1+F1)
Intuitively, Precision measures the

share of all projects belonging to a classi-
fication that are correctly identified; Re-
call measures the share of projects that 
are predicted to be in the field that are 
correctly predicted.  The F-1 score, which 
is the harmonic mean of Precision and 
Recall, is generally viewed as the best sin-
gle summary of classifier performance. 

Results 
Among the different machine learn-

ing models, we found that the Logistic 
Regression classifier provides the best 
overall performance.  Figure 5 summa-
rizes the performance of the classifiers for 
each field of study, and Figure 6 reports 
performance for the classifiers for project 
purpose.  In each case, we compare F-1 
scores from the cross-validation results to 
those obtained using the testing sample. 
In cases where the number of projects 
was too small, we do not have any pro-
jects in the testing sample, so we cannot 
compute an F-1 score.  

Figure 5:  Comparison of F-1 Scores for Field of Study in Cross-Validation and 
Testing Samples 
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Figure 6: Comparison of F-1 Scores for Purpose in Cross-Validation and Testing 
Samples 

As shown earlier (Figures 1 and 2), 
the distribution of projects by purpose 
and field is highly uneven;  this differ-
ence accounts for much of the variation in 
classifier performance across the pur-
pose/field categories.  Figure 7 plots the 
relationship between the F-1 score and 
the number of projects assigned to each 
field in the training sample.  F-1 scores 

rise sharply as the number of projects in-
creases from 0 to about 40, reaching a 
range of 0.6-0.9 at this point.  For cases 
with more than 60 projects the F-1 scores 
are clustered around 0.8.   
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Figure 7:  F-1 Scores for Field of Study vs. Number of Projects in Training Sample 
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Figure 8: F-Scores for Purpose vs. Number of Projects in Training Sample 
Discussion 

     We have not yet succeeded 
in developing a set of classifiers that 
will precisely reproduce the 
human judgements underlying the 
University of Kansas’s response to 
the HERD survey.  But it is not clear 
that this is the appropriate measure of 
the project’s success.   

First, while we have relied on 
human judgements to train the 
classifiers, it is not entirely obvious 
that we should regard the human 
assessments as constituting the 
ground truth in this case.  Furthermore, 
different individuals at KU have 
classified projects for the HERD survey 
over the years; this may have added 
additional subjectivity or inconsistency 
in the classification of projects. It may 
be that the classifiers are more con- 

�������ȱ��ȱ�����ȱ��������ȱ����ȱ������ǯȱȱ
����������ȱ ����ȱ ����������¢ȱ ��������ȱ
����ȱ �������ȱ �¡���������ȱ ��ȱ ���ȱ �����ȱ
��ȱ ����ȱ ���ȱ � �ȱapproaches produce 
different results.  Careful analysis of 
these cases may help clarify the 
root of the disagreement and 
yield additional insights. 

Second, the end product of the 
classification process is an aggregated 
report on expenditures broken 
down by field of study and purpose.  
Rather than focusing on the accuracy 
of the individual project classiȬ
fications, it may prove more valuȬ
able to look at the extent to which 
aggregated results fromȱ theȱ ma�����ȱ
classifiersȱ approximateȱ the aggreȬ
gatedȱ results from the human classiȬ
fiers.   

Figure 8 shows comparable relationships for project purpose.
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��������ȱ encountered so far will be 
reduced by expanding the training 
data set to include additional examples. 

One initial objective of our project 
was to bring greater uniformity to 
HERD reporting across institutions. 
Future goals for this project include 
assessing the ability  of our classifiers 
to successfully classify projects at 
other institutions.ȱ �dding additional 
projects from other institutions to 
the training data set may also offer 
opportunities to further refine the 
classifiers we have developed. 
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